

IBM DB2 Universal Database
Call Level Interface Guide and Reference

Version 5

Document Number S10J-8159-00

IBM DB2 Universal Database ÉÂÔ

Call Level Interface Guide and Reference
Version 5

 S10J-8159-00

IBM DB2 Universal Database ÉÂÔ

Call Level Interface Guide and Reference
Version 5

 S10J-8159-00

Before using this information and the product it supports, be sure to read the general information under Appendix M,
“Notices” on page 745.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xi
Who Should Use this book . xi
How this Book is Structured . xi

Chapter 1. Introduction to CLI . 1
DB2 CLI Background Information . 1
Differences Between DB2 CLI and Embedded SQL 2

Comparing Embedded SQL and DB2 CLI . 3
Advantages of Using DB2 CLI . 4
Deciding on Embedded SQL or DB2 CLI . 5

Supported Environments . 6
Other Information Sources . 7

Chapter 2. Writing a DB2 CLI Application . 9
Initialization and Termination . 10

Handles . 10
Connecting to One or More Data Sources 11
Initialization and Connection Example . 12
Transaction Processing . 15
Diagnostics . 24
Data Types and Data Conversion . 27
Working with String Arguments . 33
Querying Environment and Data Source Information 34

Chapter 3. Using Advanced Features . 37
Environment, Connection, and Statement Attributes 37
Writing Multi-Threaded Applications . 40

When to Use Multiple Threads . 40
Programming Tips . 41

Distributed Unit of Work (Coordinated Distributed Transactions) 43
Attributes that Govern Distributed Unit of Work Semantics 43
Establishing a Coordinated Transaction Connection 46
Distributed Unit of Work Example . 47

Querying System Catalog Information . 49
Input Arguments on Catalog Functions . 49
Catalog Functions Example . 50

Scrollable Cursors . 51
Specifying the Rowset Returned from the Result Set 52
Typical Scrollable Cursors Application . 56
Using Bookmarks with Scrollable Cursors 59

Sending/Retrieving Long Data in Pieces . 61
Specifying Parameter Values at Execute Time 61
Fetching Data in Pieces . 62
Piecewise Input and Retrieval Example . 63

Using Arrays to Input Parameter Values . 63

 Copyright IBM Corp. 1993, 1997 iii

Column-Wise Array Insert . 64
Row-Wise Array Insert . 65
Retrieving Diagnostic Information . 67
Parameter Binding Offsets . 68
Array Input Example . 68

Retrieving a Result Set into an Array . 70
Returning Array Data for Column-Wise Bound Data 72
Returning Array Data for Row-Wise Bound Data 72
Column Binding Offsets . 73
Column-Wise, Row-Wise Binding Example 74

Using Descriptors . 78
Descriptor Types . 78
Values Stored in a Descriptor . 79
Allocating and Freeing Descriptors . 81
Getting, Setting, and Copying Descriptor Fields 84
Descriptor Sample . 86

Using Compound SQL . 89
ATOMIC and NOT ATOMIC Compound SQL 90
Compound SQL Error Handling . 92
Compound SQL Example . 93

Using Large Objects . 95
LOB Examples . 98
Using LOBs in ODBC Applications . 100

Using User Defined Types (UDT) . 101
User Defined Type Example . 102

Using Stored Procedures . 104
Calling Stored Procedures . 105
Registering Stored Procedures . 107
Handling Stored Procedure Arguments (SQLDA) 107
Returning Result Sets from Stored Procedures 108
Writing a Stored Procedure in CLI . 110
Stored Procedure Example . 110

Mixing Embedded SQL and DB2 CLI . 116
Mixed Embedded SQL and DB2 CLI Example 116

Asynchronous Execution of CLI . 118
Typical Asynchronous Application . 119
Sample Asynchronous Application . 121

Using Vendor Escape Clauses . 123
Escape Clause Syntax . 124
ODBC Date, Time, Timestamp Data . 124
ODBC Outer Join Syntax . 125
LIKE Predicate Escape Clauses . 125
Stored Procedure Call Syntax . 125
ODBC Scalar Functions . 126

Chapter 4. Configuring CLI/ODBC and Running Sample Applications 127
Setting up DB2 CLI Runtime Environment . 127
Running CLI/ODBC Programs . 127

iv CLI Guide and Reference

Platform Specific Details for CLI/ODBC Access 129
Detailed Configuration Information . 137

Application Development Environments . 141
Compiling a Sample Application . 142
Compile and Link Options . 143

DB2 CLI/ODBC Configuration Keyword Listing 144
Configuration Keywords . 144

Chapter 5. Functions . 175
Status of this Function in DB2 CLI Version 5 175
Purpose . 175
Syntax . 175
Arguments . 176
Usage . 176
Return Codes . 176
Diagnostics . 176
Restrictions . 177
Example . 177
References . 177
DB2 CLI Function Summary . 177
SQLAllocConnect - Allocate Connection Handle 183
SQLAllocEnv - Allocate Environment Handle 184
SQLAllocHandle - Allocate Handle . 185
SQLAllocStmt - Allocate a Statement Handle 190
SQLBindCol - Bind a Column to an Application Variable or LOB Locator 191
SQLBindFileToCol - Bind LOB File Reference to LOB Column 200
SQLBindFileToParam - Bind LOB File Reference to LOB Parameter 206
SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator . . . 210
SQLBrowseConnect - Get Required Attributes to Connect to Data source 226
SQLCancel - Cancel Statement . 232
SQLCloseCursor - Close Cursor and Discard Pending Results 235
SQLColAttribute - Return a Column Attribute 237
SQLColAttributes - Get Column Attributes . 248
SQLColumnPrivileges - Get Privileges Associated With The Columns of A Table 249
SQLColumns - Get Column Information for a Table 255
SQLConnect - Connect to a Data Source . 262
SQLCopyDesc - Copy Descriptor Information Between Handles 268
SQLDataSources - Get List of Data Sources 271
SQLDescribeCol - Return a Set of Attributes for a Column 276
SQLDescribeParam - Return Description of a Parameter Marker 283
SQLDisconnect - Disconnect from a Data Source 286
SQLDriverConnect - (Expanded) Connect to a Data Source 288
SQLEndTran - End Transactions of a Connection 294
SQLError - Retrieve Error Information . 298
SQLExecDirect - Execute a Statement Directly 303
SQLExecute - Execute a Statement . 310
SQLExtendedFetch - Extended Fetch (Fetch Array of Rows) 313
SQLFetch - Fetch Next Row . 320

 Contents v

SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns 331
SQLForeignKeys - Get the List of Foreign Key Columns 341
SQLFreeConnect - Free Connection Handle . 348
SQLFreeEnv - Free Environment Handle . 350
SQLFreeHandle - Free Handle Resources . 352
SQLFreeStmt - Free (or Reset) a Statement Handle 356
SQLGetConnectAttr - Get Current Attribute Setting 359
SQLGetConnectOption - Return Current Setting of A Connect Option 362
SQLGetCursorName - Get Cursor Name . 363
SQLGetData - Get Data From a Column . 366
SQLGetDescField - Get Single Field Settings of Descriptor Record 373
SQLGetDescRec - Get Multiple Field Settings of Descriptor Record 378
SQLGetDiagField - Get a Field of Diagnostic Data 382
SQLGetDiagRec - Get Multiple Fields Settings of Diagnostic Record 391
SQLGetEnvAttr - Retrieve Current Environment Attribute Value 394
SQLGetFunctions - Get Functions . 396
SQLGetInfo - Get General Information . 402
SQLGetLength - Retrieve Length of A String Value 440
SQLGetPosition - Return Starting Position of String 443
SQLGetSQLCA - Get SQLCA Data Structure 449
SQLGetStmtAttr - Get Current Setting of a Statement Attribute 453
SQLGetStmtOption - Return Current Setting of A Statement Option 456
SQLGetSubString - Retrieve Portion of A String Value 457
SQLGetTypeInfo - Get Data Type Information 461
SQLMoreResults - Determine If There Are More Result Sets 467
SQLNativeSql - Get Native SQL Text . 473
SQLNumParams - Get Number of Parameters in A SQL Statement 476
SQLNumResultCols - Get Number of Result Columns 478
SQLParamData - Get Next Parameter For Which A Data Value Is Needed . . . 480
SQLParamOptions - Specify an Input Array for a Parameter 483
SQLPrepare - Prepare a Statement . 486
SQLPrimaryKeys - Get Primary Key Columns of A Table 493
SQLProcedureColumns - Get Input/Output Parameter Information for A Procedure 496
SQLProcedures - Get List of Procedure Names 505
SQLPutData - Passing Data Value for A Parameter 510
SQLRowCount - Get Row Count . 516
SQLSetColAttributes - Set Column Attributes 518
SQLSetConnectAttr - Set Connection Attributes 519
SQLSetConnection - Set Connection Handle 537
SQLSetConnectOption - Set Connection Option 539
SQLSetCursorName - Set Cursor Name . 540
SQLSetDescField - Set a Single Field of a Descriptor Record 544
SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data 568
SQLSetEnvAttr - Set Environment Attribute . 573
SQLSetParam - Bind A Parameter Marker to a Buffer or LOB Locator 580
SQLSetPos - Set the Cursor Position in a Rowset 581
SQLSetStmtAttr - Set Options Related to a Statement 589
SQLSetStmtOption - Set Statement Option . 607

vi CLI Guide and Reference

SQLSpecialColumns - Get Special (Row Identifier) Columns 608
SQLStatistics - Get Index and Statistics Information For A Base Table 614
SQLTablePrivileges - Get Privileges Associated With A Table 621
SQLTables - Get Table Information . 625
SQLTransact - Transaction Management . 632

Appendix A. Programming Hints and Tips 637
Setting Common Connection Attributes . 637

SQL_ATTR_AUTOCOMMIT . 637
SQL_ATTR_TXN_ISOLATION . 637

Setting Common Statement Attributes . 637
SQL_ATTR_MAX_ROWS . 637
SQL_ATTR_CURSOR_HOLD . 637
SQL_ATTR_TXN_ISOLATION . 638

Comparing Binding and SQLGetData . 638
Increasing Transfer Efficiency . 638
Limiting Use of Catalog Functions . 638
Using Column Names of Function Generated Result Sets 639
Loading DB2 CLI Specific Functions From ODBC Applications 639
Making use of Dynamic SQL Statement Caching 639
Making use of the Global Dynamic Statement Cache 640
Optimizing Insertion and Retrieval of Data . 640
Optimizing for Large Object Data . 640
Case Sensitivity of Object Identifiers . 640
Using SQLDriverConnect Instead of SQLConnect 641
Implementing an SQL Governor . 641
Turning Off Statement Scanning . 642
Holding Cursors Across Rollbacks . 642
Preparing Compound SQL Sub-Statements . 643
Casting User Defined Types (UDTs) . 643
Use Multiple Threads rather than Asynchronous Execution 644
Using Deferred Prepare to Reduce Network Flow 644

Appendix B. Migrating Applications . 645
Summary of Changes . 645
Incompatibilities . 645
Changes from Version 2.1.1 to 5.0.0 . 646

DB2 CLI Functions Deprecated for Version 5 646
Replacement of the Pseudo Catalog Table for Stored Procedures 647
Setting a Subset of Statement Attributes using SQLSetConnectAttr() 647
Caching Statement Handles on the Client 648
Changes to SQLColumns() Return Values 648
Changes to SQLProcedureColumns() Return Values 649
Changes to the InfoTypes in SQLGetInfo() 649
Deferred Prepare now on by Default . 649

Changes from version 2.1.0 to 2.1.1 . 650
Stored Procedures that return multi-row result sets 650
Data Conversion and Values for SQLGetInfo 650

 Contents vii

Changes from version 1.x to 2.1.0 . 651
AUTOCOMMIT and CURSOR WITH HOLD Defaults 651
Graphic Data Type Values . 651
SQLSTATES . 652
Mixing Embedded SQL, Without CONNECT RESET 652
Use of VARCHAR FOR BIT DATA . 652
User Defined Types in Predicates . 652
Data Conversion Values for SQLGetInfo . 653
Function Prototype Changes . 653
Setting the DB2CLI_VER Define . 654

Appendix C. DB2 CLI and ODBC . 655
ODBC Function List . 658
Isolation Levels . 658

Appendix D. Extended Scalar Functions . 659
String Functions . 660
Numeric Functions . 661
Date and Time Functions . 664
System Functions . 667
Conversion Function . 667

Appendix E. SQLSTATE Cross Reference 669

Appendix F. Data Conversion . 685
Data Type Attributes . 685

Precision . 685
Scale . 686
Length . 687
Display Size . 688

Converting Data from SQL to C Data Types . 689
Converting Character SQL Data to C Data 690
Converting Graphic SQL Data to C Data . 691
Converting Numeric SQL Data to C Data . 692
Converting Binary SQL Data to C Data . 693
Converting Date SQL Data to C Data . 694
Converting Time SQL Data to C Data . 694
Converting Timestamp SQL Data to C Data 695
SQL to C Data Conversion Examples . 695

Converting Data from C to SQL Data Types . 696
Converting Character C Data to SQL Data 697
Converting Numeric C Data to SQL Data . 698
Converting Binary C Data to SQL Data . 699
Converting DBCHAR C Data to SQL Data 699
Converting Date C Data to SQL Data . 700
Converting Time C Data to SQL Data . 700
Converting Timestamp C Data to SQL Data 700
C to SQL Data Conversion Examples . 701

viii CLI Guide and Reference

Appendix G. Catalog Views for Stored Procedures 703
SYSCAT.PROCEDURES . 703
SYSCAT.PROCPARMS . 704

Appendix H. Pseudo Catalog Table for Stored Procedure Registration . . . 705

Appendix I. Supported SQL Statements . 709

Appendix J. Example Code Listing . 713
Embedded SQL Example . 715
Interactive SQL Example . 719

Appendix K. Using the DB2 CLI/ODBC Trace Facility 725
Enabling the Trace Using the db2cli.ini File . 725
Locating the Resulting Files . 725
Reading the Trace Information . 726

Detailed Trace File Format . 727
Example Trace File . 728

Tracing Muli-Threaded or Muli-Process Applications 733
ODBC Driver Manager Tracing . 733

Appendix L. How the DB2 Library Is Structured 735
SmartGuides . 735
Online Help . 736
DB2 Books . 738
About the Information Center . 742

Appendix M. Notices . 745
Trademarks . 746
Trademarks of Other Companies . 746

Bibliography . 749

Index . 751

Contacting IBM . 753

 Contents ix

x CLI Guide and Reference

About This Book

This book provides the information necessary to write applications using DB2 Call Level
Interface to access IBM DB2 Universal Database servers. This book should also be
used as a supplement when writing applications (using an ODBC Software
Development Kit) that access IBM DB2 Universal Database servers using ODBC.

References in this book to 'DB2', with or without a product version number, should be
understood to mean the 'DB2 Universal Database' product. Reference to DB2 on other
platforms use the specific product name (such as DB2 for MVS/ESA or DB2 for
OS/400).

Who Should Use this book
DB2 application programmers with a knowledge of SQL and the 'C' programming
language.

ODBC application programmers with a knowledge of SQL and the 'C' programming
language.

How this Book is Structured
This book is divided into the following chapters:

¹ Chapter 1, “Introduction to CLI” on page 1, introduces DB2 CLI and discusses the
background of the interface and its relation to embedded SQL.

¹ Chapter 2, “Writing a DB2 CLI Application” on page 9, provides an overview of a
typical DB2 CLI application. This chapter discusses the basic tasks or steps within
a simple DB2 CLI application. General concepts are introduced as well as the
basic functions and the interaction between them.

¹ Chapter 3, “Using Advanced Features” on page 37, provides an overview of more
advanced tasks and the functions used to perform them.

¹ Chapter 4, “Configuring CLI/ODBC and Running Sample Applications” on
page 127, contains information for setting up the necessary environment to
compile and run DB2 CLI applications. Sample applications are provided in order to
verify your environment. A listing of the CLI/ODBC configuration keywords and their
meanings is also included in this chapter.

¹ Chapter 5, “Functions” on page 175, is a reference for the functions that make up
DB2 CLI.

 ¹ Appendixes:

– Appendix A, “Programming Hints and Tips” on page 637, provides some
common hints and tips for improving performance and/or portability of DB2 CLI
applications.

 Copyright IBM Corp. 1993, 1997 xi

– Appendix B, “Migrating Applications” on page 645, summarizes what has
changed since the last release, and any incompatibilities and necessary steps
required for migrating existing applications.

– Appendix C, “DB2 CLI and ODBC” on page 655, discusses the differences
between ODBC and DB2 CLI.

– Appendix D, “Extended Scalar Functions” on page 659, describes the scalar
functions that can be accessed as DB2 functions, or using ODBC vendor
escape clauses.

– Appendix E, “SQLSTATE Cross Reference” on page 669, contains an
SQLSTATE table that lists the functions that may generate each SQLSTATE.
(Each function description in Chapter 5, “Functions” on page 175 lists the
possible SQLSTATEs for each function.)

– Appendix F, “Data Conversion” on page 685, contains information about SQL
and C data types, and conversion between them.

– Appendix H, “Pseudo Catalog Table for Stored Procedure Registration” on
page 705, describes how to create and maintain the DB2CLI.PROCEDURES
pseduo-catalog table.

– Appendix I, “Supported SQL Statements” on page 709, contains a list of the
SQL statements supported by DB2 Universal Database, and the subset of
SQL supported by DB2 CLI.

– Appendix J, “Example Code Listing” on page 713, lists the complete source
for some extensive examples.

xii CLI Guide and Reference

Chapter 1. Introduction to CLI

DB2 Call Level Interface (CLI) is IBM's callable SQL interface to the DB2 family of
database servers. It is a 'C' and 'C++' application programming interface for relational
database access, and it uses function calls to pass dynamic SQL statements as
function arguments. It is an alternative to embedded dynamic SQL, but unlike
embedded SQL, it does not require host variables or a precompiler.

DB2 CLI is based on the Microsoft** Open Database Connectivity** (ODBC)
specification, and the International Standard for SQL/CLI. These specifications were
chosen as the basis for the DB2 Call Level Interface in an effort to follow industry
standards and to provide a shorter learning curve for those application programmers
already familiar with either of these database interfaces. In addition, some DB2 specific
extensions have been added to help the application programmer specifically exploit
DB2 features.

The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC driver
manager. It conforms to level 2 of ODBC 2.0, and level 1 of ODBC 3.0. In addition it
also conforms to various ODBC 3.0 level 2 interface conformance items (202, 203, 205,
207, 209, and 211). Information regarding ODBC support and level 2 interface
conformance items is provided in Appendix C, “DB2 CLI and ODBC” on page 655.

DB2 CLI Background Information
To understand DB2 CLI or any callable SQL interface, it is helpful to understand what it
is based on, and to compare it with existing interfaces.

The X/Open Company and the SQL Access Group jointly developed a specification for
a callable SQL interface referred to as the X/Open Call Level Interface. The goal of this
interface is to increase the portability of applications by enabling them to become
independent of any one database vendor's programming interface. Most of the X/Open
Call Level Interface specification has been accepted as part of the ISO Call Level
Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI).

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open CLI.
Version 3 of ODBC conforms to almost all of ISO SQL/CLI. ODBC 3.0 does contain
considerable functionality that is not part of the International Standard; much of this is
being added to the the next draft of the standard.

The ODBC specification also includes an operating environment where database
specific ODBC Drivers are dynamically loaded at run time by a driver manager based
on the data source (database name) provided on the connect request. The application
is linked directly to a single driver manager library rather than to each DBMS's library.
The driver manager mediates the application's function calls at run time and ensures
they are directed to the appropriate DBMS specific ODBC driver. Since the ODBC
driver manager only knows about the ODBC-specific functions, DBMS-specific functions
cannot be accessed in an ODBC environment. DBMS-specific dynamic SQL statements

 Copyright IBM Corp. 1993, 1997 1

are supported via a mechanism called an escape clause which is described in “Using
Vendor Escape Clauses” on page 123.

ODBC is not limited to Microsoft operating systems, other implementations are available
on various platforms.

The DB2 CLI load library can be loaded as an ODBC driver by an ODBC driver
manager. For ODBC application development, you must obtain an ODBC Software
Development Kit (from Microsoft for Microsoft platforms, and from Visigenic Software,
Inc. for non-Microsoft platforms.) When developing ODBC applications that may
connect to DB2 servers, use this book (for information on DB2 specific extensions and
diagnostic information), in conjunction with the ODBC 3.0 Programmer's Reference and
SDK Guide.

Applications written directly to DB2 CLI link directly to the DB2 CLI load library. DB2
CLI includes support for many ODBC and ISO SQL/CLI functions, as well as DB2
specific functions. For a list of supported functions, refer to “DB2 CLI Function
Summary” on page 177.

For more information on the relationship between DB2 CLI and ODBC, refer to
Appendix C, “DB2 CLI and ODBC” on page 655.

The following DB2 features are available to both ODBC and DB2 CLI applications:

¹ The double byte (graphic) data types

 ¹ Stored Procedures

¹ Distributed Unit of Work (DUOW), two phase commit

 ¹ Compound SQL

¹ User Defined Types (UDT)

¹ User Defined Functions (UDF)

DB2 CLI also contains extensions to access DB2 features that can not be accessed by
ODBC applications:

¹ Support of Large Objects (LOBs), and LOB locators

¹ SQLCA access for detailed DB2 specific diagnostic information

Differences Between DB2 CLI and Embedded SQL
An application that uses an embedded SQL interface requires a precompiler to convert
the SQL statements into code, which is then compiled, bound to the database, and
executed. In contrast, a DB2 CLI application does not have to be precompiled or
bound, but instead uses a standard set of functions to execute SQL statements and
related services at run time.

This difference is important because, traditionally, precompilers have been specific to
each database product, which effectively ties your applications to that product. DB2 CLI

2 CLI Guide and Reference

enables you to write portable applications that are independent of any particular
database product. This independence means DB2 CLI applications do not have to be
recompiled or rebound to access different DB2 databases, including DRDA databases.
They just connect to the appropriate database at run time.

Comparing Embedded SQL and DB2 CLI
DB2 CLI and embedded SQL also differ in the following ways:

¹ DB2 CLI does not require the explicit declaration of cursors. DB2 CLI has a supply
of cursors that get used as needed. The application can then use the generated
cursor in the normal cursor fetch model for multiple row SELECT statements and
positioned UPDATE and DELETE statements.

¹ The OPEN statement is not used in DB2 CLI. Instead, the execution of a SELECT
automatically causes a cursor to be opened.

¹ Unlike embedded SQL, DB2 CLI allows the use of parameter markers on the
equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect() function).

¹ A COMMIT or ROLLBACK in DB2 CLI is issued via the SQLEndTran() function call
rather than by passing it as an SQL statement.

¹ DB2 CLI manages statement related information on behalf of the application, and
provides a statement handle to refer to it as an abstract object. This handle
eliminates the need for the application to use product specific data structures.

¹ Similar to the statement handle, the environment handle and connection handle
provide a means to refer to all global variables and connection specific information.
The descriptor handle describes either the parameters of an SQL statement or the
columns of a result set.

¹ DB2 CLI uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent with values
used by the IBM relational database products, there are differences. (There are
also differences between ODBC SQLSTATES and the X/Open defined
SQLSTATES). Refer to Table 196 on page 669 for a cross reference of all DB2
CLI SQLSTATEs.

¹ DB2 CLI supports read-only scrollable cursors. With scrollable cursors, you can
scroll through a static read-only cursor as follows:

– Forward by one or more rows
– Backward by one or more rows
– From the first row by one or more rows
– From the last row by one or more rows.

Despite these differences, there is an important common concept between embedded
SQL and DB2 CLI: DB2 CLI can execute any SQL statement that can be prepared
dynamically in embedded SQL.

Note: DB2 CLI can also accept some SQL statements that cannot be prepared
dynamically, such as compound SQL statements.

 Chapter 1. Introduction to CLI 3

Table 220 on page 709 lists each SQL statement, and indicates whether or not it can
be executed using DB2 CLI. The table also indicates if the command line processor can
be used to execute the statement interactively, (useful for prototyping SQL statements).

Each DBMS may have additional statements that you can dynamically prepare. In this
case, DB2 CLI passes the statements to the DBMS. There is one exception: the
COMMIT and ROLLBACK statement can be dynamically prepared by some DBMSs but
are not passed. In this case, use the SQLEndTran() function to specify either the
COMMIT or ROLLBACK statement.

Advantages of Using DB2 CLI
The DB2 CLI interface has several key advantages over embedded SQL.

¹ It is ideally suited for a client-server environment, in which the target database is
not known when the application is built. It provides a consistent interface for
executing SQL statements, regardless of which database server the application is
connected to.

¹ It increases the portability of applications by removing the dependence on
precompilers. Applications are distributed not as embedded SQL source code
which must be preprocessed for each database product, but as compiled
applications or run time libraries.

¹ Individual DB2 CLI applications do not need to be bound to each database, only
bind files shipped with DB2 CLI need to be bound once for all DB2 CLI
applications. This can significantly reduce the amount of management required for
the application once it is in general use.

¹ DB2 CLI applications can connect to multiple databases, including multiple
connections to the same database, all from the same application. Each connection
has its own commit scope. This is much simpler using CLI than using embedded
SQL where the application must make use of multi-threading to achieve the same
result.

¹ DB2 CLI eliminates the need for application controlled, often complex data areas,
such as the SQLDA and SQLCA, typically associated with embedded SQL
applications. Instead, DB2 CLI allocates and controls the necessary data
structures, and provides a handle for the application to reference them.

¹ DB2 CLI enables the development of multi-threaded thread-safe applications where
each thread can have its own connection and a separate commit scope from the
rest. DB2 CLI achieves this by eliminating the data areas described above, and
associating all such data structures that are accessible to the application with a
specific handle. Unlike embedded SQL, a multi-threaded CLI application does not
need to call any of the context management DB2 APIs; this is handled by the DB2
CLI driver automatically.

¹ DB2 CLI provides enhanced parameter input and fetching capability, allowing
arrays of data to be specified on input, retrieving multiple rows of a result set
directly into an array, and executing statements that generate multiple result sets.

¹ DB2 CLI provides a consistent interface to query catalog (Tables, Columns,
Foreign Keys, Primary Keys, etc.) information contained in the various DBMS

4 CLI Guide and Reference

catalog tables. The result sets returned are consistent across DBMSs. This shields
the application from catalog changes across releases of database servers, as well
as catalog differences amongst different database servers; thereby saving
applications from writing version specific and server specific catalog queries.

¹ Extended data conversion is also provided by DB2 CLI, requiring less application
code when converting information between various SQL and C data types.

¹ DB2 CLI incorporates both the ODBC and X/Open CLI functions, both of which are
accepted industry specifications. DB2 CLI is also aligned with the emerging ISO
CLI standard. Knowledge that application developers invest in these specifications
can be applied directly to DB2 CLI development, and vice versa. This interface is
intuitive to grasp for those programmers who are familiar with function libraries but
know little about product specific methods of embedding SQL statements into a
host language.

¹ DB2 CLI provides the ability to retrieve multiple rows and result sets generated
from a stored procedure residing on a DB2 Universal Database (or DB2 for
MVS/ESA version 5 or later) server. However, note that this capability exists for
Version 5 DB2 Universal Database clients using embedded SQL if the stored
procedure resides on server that is accessible from a DataJoiner Version 2 server.

¹ DB2 CLI supports server-side scrollable cursors that can be used in conjunction
with array output. This is useful in GUI applications that display database
information in scroll boxes that make use of the Page Up, Page Down, Home and
End keys. You can declare a read-only cursor as scrollable then move forward or
backward through the result set by one or more rows. You can also fetch rows by
specifying an offset from:

– The current row
– The beginning or end of the result set
– A specific row you have previously set with a bookmark.

¹ DB2 CLI applications can dynamically describe parameters in an SQL statement
the same way that CLI and Embedded SQL applications describe result sets. This
enables CLI applications to dynamically process SQL statements that contain
parameter markers without knowing the data type of those parameter markers in
advance. When the SQL statement is prepared, describe information is returned
detailing the data types of the parameters.

Deciding on Embedded SQL or DB2 CLI
Which interface you choose depends on your application.

DB2 CLI is ideally suited for query-based graphical user interface (GUI) applications
that require portability. The advantages listed above, may make using DB2 CLI seem
like the obvious choice for any application. There is however, one factor that must be
considered, the comparison between static and dynamic SQL. Only embedded
applications can use static SQL.

 Chapter 1. Introduction to CLI 5

Static SQL has several advantages:

 ¹ Performance

Dynamic SQL is prepared at run time, static SQL is prepared at precompile time.
As well as requiring more processing, the preparation step may incur additional
network-traffic at run time. This additional step (and network-traffic), however, will
not be required if the DB2 CLI application makes use of deferred prepare.

It is important to note that static SQL will not always have better performance than
dynamic SQL. Dynamic SQL can make use of changes to the database, such as
new indexes, and can use current database statistics to choose the optimal access
plan. In addition, precompilation of statements can be avoided if they are cached.

¹ Encapsulation and Security

In static SQL, the authorizations to objects (such as a table, view) are associated
with a package and are validated at package binding time. This means that
database administrators need only to grant execute on a particular package to a
set of users (thus encapsulating their privileges in the package) without having to
grant them explicit access to each database object. In dynamic SQL, the
authorizations are validated at run time on a per statement basis; therefore, users
must be granted explicit access to each database object. This permits these users
access to parts of the object that they do not have a need to access.

¹ Embedded SQL is supported in languages other than C or C++.

¹ For fixed query selects, embedded SQL is simpler.

If an application requires the advantages of both interfaces, it is possible to make use
of static SQL within a DB2 CLI application by creating a stored procedure that contains
the static SQL. The stored procedure is called from within a DB2 CLI application and is
executed on the server. Once the stored procedure is created, any DB2 CLI or ODBC
application can call it. For more information, refer to “Using Stored Procedures” on
page 104.

It is also possible to write a mixed application that uses both DB2 CLI and embedded
SQL, taking advantage of their respective benefits. In this case, DB2 CLI is used to
provide the base application, with key modules written using static SQL for performance
or security reasons. This complicates the application design, and should only be used if
stored procedures do not meet the applications requirements. Refer to “Mixing
Embedded SQL and DB2 CLI” on page 116.

Ultimately, the decision on when to use each interface, will be based on individual
preferences and previous experience rather than on any one factor.

 Supported Environments
DB2 CLI run time support is provided by both the server and Client Application Enabler
(DB2 Client Application Enabler) products. Refer to “Summary of Changes” on
page 645 for information about support in previous versions.

6 CLI Guide and Reference

DB2 CLI development support is included with the Software Developer's Kit which is
contained in the Application Developers Kit products. The support consists of the
necessary header files, link libraries and documentation required to develop both
embedded and DB2 CLI applications for a particular operating environment. For
example, DB2 SDK for OS/2 allows you to write applications that run under OS/2, with
DB2 Client Application Enabler for OS/2 these applications can access data on a DB2
for OS/2, DB2 for AIX, or other DB2 Universal Database servers. With DB2 Connect,
the applications can access DB2 for AS/400, DB2 for MVS/ESA, DB2 for VSE & VM
servers or any other IBM or non-IBM DRDA server.

Other Information Sources
When writing DB2 CLI applications, you may need to reference information for the
database servers that are being accessed, in order to understand any connectivity
issues, environment issues, SQL language support issues, and other server-specific
information. For DB2 Universal Database versions, refer to SQL Reference, the
Embedded SQL Programming Guide, and the API Reference. If you are writing
applications that will access other DB2 server products, refer to the SQL Reference
which contains information that is common to all products, including any differences.

 Chapter 1. Introduction to CLI 7

8 CLI Guide and Reference

Chapter 2. Writing a DB2 CLI Application

This section introduces a conceptual view of a typical DB2 CLI application.

A DB2 CLI application can be broken down into a set of tasks. Some of these tasks are
organized into discrete steps, while others may apply throughout the application. Each
task is carried out by calling one or more DB2 CLI functions.

Tasks described in this section are basic tasks that apply to all applications. More
advanced tasks, such as using array insert or using large object support, are discussed
in Chapter 3, “Using Advanced Features” on page 37.

The functions are used in examples to illustrate their use in DB2 CLI applications. Refer
to Chapter 5, “Functions” on page 175 for complete descriptions and usage information
for each of the functions.

Figure 1. Conceptual View of a DB2 CLI Application

Every DB2 CLI application contains the three main tasks shown in Figure 1.

Initialization
This task allocates and initializes some resources in preparation for the
main Transaction Processing task. Refer to “Initialization and Termination”
on page 10 for details.

Transaction Processing
This is the main task of the application. SQL statements are passed to DB2
CLI to query and modify the data. Refer to “Transaction Processing” on
page 15 for details.

Termination
This task frees allocated resources. The resources generally consist of
data areas identified by unique handles. Refer to “Initialization and
Termination” on page 10 for details.

As well as the three tasks listed above, there are general tasks, such as handling
diagnostic messages, which occur throughout an application.

 Copyright IBM Corp. 1993, 1997 9

Initialization and Termination

Figure 2. Conceptual View of Initialization and Termination Tasks

Figure 2 shows the function call sequences for both the initialization and termination
tasks. The transaction processing task in the middle of the diagram is shown in
Figure 3 on page 16.

 Handles
The initialization task consists of the allocation and initialization of environment and
connection handles (which are later freed in the termination task). An application then
passes the appropriate handle when it calls other DB2 CLI functions. A handle is a
variable that refers to a data object controlled by DB2 CLI. Using handles relieves the
application from having to allocate and manage global variables or data structures,
such as the SQLDA or SQLCA, used in IBM's embedded SQL interfaces.

10 CLI Guide and Reference

The SQLAllocHandle() function is called with with a handle type and parent handle
arguments to create environment, connection, statement, or descriptor handles. The
function SQLFreeHandle() is used to free the resources allocated to a handle.

There are four types of handles:

Environment Handle
The environment handle refers to the data object that contains information
regarding the global state of the application, such as attributes and
connections. An environment handle must be allocated before a connection
handle can be allocated.

Connection Handle
A connection handle refers to a data object that contains information
associated with a connection to a particular data source (database). This
includes connection attributes, general status information, transaction
status, and diagnostic information.

An application can be connected to several servers at the same time, and
can establish several distinct connections to the same server. An
application requires a connection handle for each concurrent connection to
a database server. For information on multiple connections, refer to
“Connecting to One or More Data Sources.”

Call SQLGetInfo() to determine if a user imposed limit on the number of
connector handles has been set.

Statement Handle(s)
Statement handles are discussed in the next section, “Transaction
Processing” on page 15.

Descriptor Handle(s)
A descriptor handle refers to a data object that contains information about:

¹ columns in a result set
¹ dynamic parameters in an SQL statement

Descriptors and descriptor handles are discussed in the section “Using
Descriptors” on page 78.

Connecting to One or More Data Sources
In order to connect concurrently to one or more data sources (or multiple concurrent
connections to the same data source), an application calls SQLAllocHandle(), with a
HandleType of SQL_HANDLE_DBC, once for each connection. The subsequent
connection handle is used with SQLConnect() to request a database connection and
with SQLAllocHandle(), with a HandleType of SQL_HANDLE_STMT, to allocate
statement handles for use within that connection. There is also an extended connect
function, SQLDriverConnect(), which allows for additional connect options, and the
ability to directly open a connection dialog box in environments that support a Graphical
User Interface. The function SQLBrowseConnect() can be used to discover all of the
attributes and attribute values required to connect to a data source.

 Chapter 2. Writing a DB2 CLI Application 11

The use of connection handles ensures that multi-threaded applications that utilize one
connection per thread are thread-safe since separate data structures are allocated and
maintained by DB2 CLI for each connection.

Unlike the distributed unit of work connections described in “Distributed Unit of Work
(Coordinated Distributed Transactions)” on page 43, there is no coordination between
the statements that are executed on different connections.

Initialization and Connection Example

12 CLI Guide and Reference

/* From CLI sample basiccon.c */

/* ... */

#include <stdio.h>

#include <stdlib.h>

#include <sqlcli1.h>

/* ... */

SQLRETURN

prompted_connect(SQLHANDLE henv,

SQLHANDLE * hdbc);

#define MAX_UID_LENGTH 18

#define MAX_PWD_LENGTH 30

#define MAX_CONNECTIONS 2

#define MAX_CONNECTIONS 2

/* extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1] ;

extern SQLCHAR uid[MAX_UID_LENGTH + 1] ;

extern SQLCHAR pwd[MAX_PWD_LENGTH + 1] ;

*/

int main() {

 SQLHANDLE henv;

SQLHANDLE hdbc[MAX_CONNECTIONS] ;

/* ... */

/* allocate an environment handle */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

/* Connect to first data source */

prompted_connect(henv, &hdbc[0]) ;

/* Connect to second data source */

prompted_connect(henv, &hdbc[1]) ;

/********* Start Processing Step *************************/

/* allocate statement handle, execute statement, etc. */

/********* End Processing Step ***************************/

printf("\nDisconnecting\n") ;

SQLDisconnect(hdbc[0]) ; /* disconnect first connection */

SQLDisconnect(hdbc[1]) ; /* disconnect second connection */

/* free first connection handle */

SQLFreeHandle(SQL_HANDLE_DBC, hdbc[0]) ;

/* free second connection handle */

SQLFreeHandle(SQL_HANDLE_DBC, hdbc[1]) ;

 Chapter 2. Writing a DB2 CLI Application 13

/* free environment handle */

SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

return (SQL_SUCCESS) ;

}

/* prompted_connect - prompt for connect options and connect */

SQLRETURN prompted_connect(SQLHANDLE henv,

SQLHANDLE * hdbc

) {

SQLCHAR server[SQL_MAX_DSN_LENGTH + 1] ;

SQLCHAR uid[MAX_UID_LENGTH + 1] ;

SQLCHAR pwd[MAX_PWD_LENGTH + 1] ;

/* allocate a connection handle */

if (SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 hdbc

) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n") ;

return(SQL_ERROR) ;

 }

/* Set AUTOCOMMIT OFF */

if (SQLSetConnectAttr(* hdbc,

 SQL_ATTR_AUTOCOMMIT,

(void *) SQL_AUTOCOMMIT_OFF, SQL_NTS

) != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n") ;

return(SQL_ERROR) ;

 }

printf(">Enter Server Name:\n") ;

gets((char *) server) ;

printf(">Enter User Name:\n") ;

gets((char *) uid) ;

printf(">Enter Password:\n") ;

gets((char *) pwd) ;

if (SQLConnect(* hdbc,

 server, SQL_NTS,

 uid, SQL_NTS,

 pwd, SQL_NTS

) != SQL_SUCCESS) {

printf(">--- ERROR while connecting to %s -------------\n",

 server

) ;

SQLDisconnect(* hdbc) ;

14 CLI Guide and Reference

SQLFreeHandle(SQL_HANDLE_DBC, * hdbc) ;

return(SQL_ERROR) ;

 }

else /* Print Connection Information */

printf("Successful Connect to %s\n", server) ;

return(SQL_SUCCESS) ;

}

 Transaction Processing
The following figure shows the typical order of function calls in a DB2 CLI application.
Not all functions or possible paths are shown.

 Chapter 2. Writing a DB2 CLI Application 15

Figure 3. Transaction Processing

Figure 3 shows the steps and the DB2 CLI functions in the transaction processing task.
This task contains five steps:

¹ Allocating statement handle(s)
¹ Preparation and execution of SQL statements

 ¹ Processing results
¹ Commit or Rollback

16 CLI Guide and Reference

¹ Optionally, Freeing statement handle(s) if the statement is unlikely to be executed
again.

Allocating Statement Handle(s)
SQLAllocHandle() is called with a HandleType of SQL_HANDLE_STMT to allocate a
statement handle. A statement handle refers to the data object that is used to track the
execution of a single SQL statement. This includes information such as statement
attributes, SQL statement text, dynamic parameters, cursor information, bindings for
dynamic arguments and columns, result values and status information (these are
discussed later). Each statement handle is associated with a connection handle.

A statement handle must be allocated before a statement can be executed.

The maximum number of statement handles that may be allocated at any one time is
limited by overall system resources (usually stack size). The maximum number of
statement handles that may actually be used, however, is defined by DB2 CLI (as listed
in Table 1). An HY014 SQLSTATE will be returned on the call to SQLPrepare() or
SQLExecDirect() if the application exceeds these limits.

Table 1. Maximum Number of Statement Handles Allocated at one Time

Isolation Level
Without
Hold With Hold Total

Cursor stability 296 100 396
No commit 296 100 396
Repeatable read 196 200 396
Read stability 296 100 396
Uncommitted read 296 100 396

Preparation and Execution
Once a statement handle has been allocated, there are two methods of specifying and
executing SQL statements:

1. Prepare then execute

a. Call SQLPrepare() with an SQL statement as an argument.
b. Call SQLBindParameter() if the SQL statement contains parameter markers.

 c. Call SQLExecute()

 2. Execute direct

a. Call SQLBindParameter() if the SQL statement contains parameter markers.
b. Call SQLExecDirect() with an SQL statement as an argument.

The first method splits the preparation of the statement from the execution. This method
is used when:

¹ The statement will be executed repeatedly (usually with different parameter
values). This avoids having to prepare the same statement more than once. The
subsequent executions make use of the access plans already generated by the
prepare.

 Chapter 2. Writing a DB2 CLI Application 17

¹ The application requires information about the columns in the result set, prior to
statement execution.

The second method combines the prepare step and the execute step into one. This
method is used when:

¹ The statement will be executed only once. This avoids having to call two functions
to execute the statement.

¹ The application does not require information about the columns in the result set,
before the statement is executed.

Note: SQLGetTypeInfo() and the schema (catalog) functions discussed in Chapter 3,
“Using Advanced Features” on page 37, execute their own query statements,
and generate a result set. Calling a schema function is equivalent to executing a
query statement, the result set is then processed as if a query statement had
been executed.

DB2 Universal Database version 5 or later has a global dynamic statement cache
stored on the server. This cache is used to store the most popular access plans for
prepared SQL statements. Before each statement is prepared, the server searches this
cache to see if an access plan has already been created for this exact SQL statement
(by this application or any other application or client). If so, the server does not need to
generate a new access plan, but will use the one in the cache instead. There is now no
need for the application to cache connections at the client unless connecting to a server
that does not have a global dynamic statement cache (such as DB2 Common Server
v2). For information on caching connections at the client see “Caching Statement
Handles on the Client” on page 648 in the Migration section.

Binding Parameters in SQL Statements: Both of the execution methods described
above allow the use of parameter markers in place of an expression (or host variable in
embedded SQL) in an SQL statement.

Parameter markers are represented by the ‘?’ character and indicate the position in the
SQL statement where the contents of application variables are to be substituted when
the statement is executed. The parameter markers are referenced sequentially, from left
to right, starting at 1. SQLNumParams() can be used to determine the number of
parameters in a statement.

When an application variable is associated with a parameter marker it is bound to the
parameter marker. The application must bind an application variable to each parameter
marker in the SQL statement before it executes that statement. Binding is carried out
by calling the SQLBindParameter() function with a number of arguments to indicate, the
numerical position of the parameter, the SQL type of the parameter, the data type of
the variable, a pointer to the application variable, and length of the variable.

The bound application variable and its associated length are called deferred input
arguments since only the pointers are passed when the parameter is bound; no data is
read from the variable until the statement is executed. Deferred arguments allow the
application to modify the contents of the bound parameter variables, and repeat the
execution of the statement with the new values.

18 CLI Guide and Reference

Information for each parameter remains in effect until overridden, or until the application
unbinds the parameter or drops the statement handle. If the application executes the
SQL statement repeatedly without changing the parameter binding, then DB2 CLI uses
the same pointers to locate the data on each execution. The application can also
change the parameter binding to a different set of deferred variables. The application
must not de-allocate or discard variables used for deferred input fields between the time
it binds the fields to parameter markers and the time DB2 CLI accesses them at
execution time.

It is possible to bind the parameters to a variable of a different type from that required
by the SQL statement. The application must indicate the C data type of the source, and
the SQL type of the parameter marker, and DB2 CLI will convert the contents of the
variable to match the SQL data type specified. For example, the SQL statement may
require an integer value, but your application has a string representation of an integer.
The string can be bound to the parameter, and DB2 CLI will convert the string to the
corresponding integer value when you execute the statement.

By default, DB2 CLI does not verify the type of the parameter marker. If the application
indicates an incorrect type for the parameter marker, it could cause either an extra
conversion by the DBMS, or an error. Refer to “Data Types and Data Conversion” on
page 27 for more information about data conversion.

Information about the parameter markers can be accessed using descriptors. If you
enable automatic population of the implementation parameter descriptor (IPD) then
information about the parameter markers will be collected. The statement attribute
SQL_ATTR_ENABLE_AUTO_IPD must be set to SQL_TRUE for this to work. See
“Using Descriptors” on page 78 for more information.

If the parameter marker is part of a predicate on a query and is associated with a User
Defined Type, then the parameter marker must be cast to the built-in type in the
predicate portion of the statement; otherwise, an error will occur. For an example, refer
to “User Defined Types in Predicates” on page 652.

The global dynamic statement cache was introduced in an earlier section. The access
plan will only be shared between statements if they are exactly the same. For SQL
statements with parameter markers, the specific values that are bound to the
parameters do not have to be the same, only the SQL statement itself.

For information on more advanced methods for binding application storage to
parameter markers, refer to:

¹ “Using Arrays to Input Parameter Values” on page 63
¹ “Sending/Retrieving Long Data in Pieces” on page 61
¹ “Parameter Binding Offsets” on page 68

 Processing Results
The next step after the statement has been executed depends on the type of SQL
statement.

 Chapter 2. Writing a DB2 CLI Application 19

Processing Query (SELECT, VALUES) Statements: If the statement is a query
statement, the following steps are generally needed in order to retrieve each row of the
result set:

1. Establish (describe) the structure of the result set, number of columns, column
types and lengths

2. (Optionally) bind application variables to columns in order to receive the data
3. Repeatedly fetch the next row of data, and receive it into the bound application

variables
4. (Optionally) retrieve columns that were not previously bound, by calling

SQLGetData() after each successful fetch.

¹ Each of the above steps requires some diagnostic checks.
¹ Chapter 3, “Using Advanced Features” on page 37 discusses advanced

techniques of using SQLFetchScroll() to fetch multiple rows at a time.
¹ DB2 CLI also supports scrollable read-only cursors; see “Scrollable Cursors” on

page 51 for more information.

Step 1
The first step requires analyzing the executed or prepared statement. The
application will need to query the number of columns, the type of each
column, and perhaps the names of each column in the result set. This
information can be obtained by calling SQLNumResultCols() and
SQLDescribeCol() (or SQLColAttributes()) after preparing or after
executing the statement.

Step 2
The second step allows the application to retrieve column data directly into
an application variable on the next call to SQLFetch(). For each column to
be retrieved, the application calls SQLBindCol() to bind an application
variable to a column in the result set. The application may use the
information obtained from Step 1 to determine the C data type of the
application variable and to allocate the maximum storage the column value
could occupy. Similar to variables bound to parameter markers using
SQLBindParameter(), columns are bound to deferred arguments. This time
the variables are deferred output arguments, as data is written to these
storage locations when SQLFetch() is called.

If the application does not bind any columns, as in the case when it needs
to retrieve columns of long data in pieces, it can use SQLGetData(). Both
the SQLBindCol() and SQLGetData() techniques can be combined if some
columns are bound and some are unbound. The application must not
de-allocate or discard variables used for deferred output fields between the
time it binds them to columns of the result set and the time DB2 CLI writes
the data to these fields.

Step 3
The third step is to call SQLFetch() to fetch the first or next row of the
result set. If any columns have been bound, the application variable will be
updated. SQLFetchScroll() can also be used for added flexibility when
moving through the result set, refer to “Scrollable Cursors” on page 51 for
more information. SQLFetchScroll() can also be used by the application to

20 CLI Guide and Reference

fetch multiple rows of the result set into an array. Refer to “Retrieving a
Result Set into an Array” on page 70 for more information.

If data conversion was indicated by the data types specified on the call to
SQLBindCol(), the conversion will occur when SQLFetch() is called. Refer to
“Data Types and Data Conversion” on page 27 for an explanation.

Step 4 (Optional)
The last (optional) step, is to call SQLGetData() to retrieve any unbound
columns. All columns can be retrieved this way, provided they were not
bound. SQLGetData() can also be called repeatedly to retrieve large
columns in smaller pieces, which cannot be done with bound columns.

Data conversion can also be indicated here, as in SQLBindCol(), by
specifying the desired target C data type of the application variable. Refer
to “Data Types and Data Conversion” on page 27 for more information.

To unbind a particular column of the result set, use SQLBindCol() with a
null pointer for the application variable argument (TargetValuePtr). To
unbind all of the columns with one function call, use SQLFreeStmt() with an
Option of SQL_UNBIND.

Applications will generally perform better if columns are bound instead of using
SQLGetData(). However, an application may be constrained in the amount of long data
that it can retrieve and handle at one time. If this is a concern, then SQLGetData() may
be the better choice. See “Using Large Objects” on page 95 for additional techniques
to handle long data.

For information on more advanced methods for binding application storage to result set
columns, refer to:

¹ “Retrieving a Result Set into an Array” on page 70
¹ “Sending/Retrieving Long Data in Pieces” on page 61
¹ “Column Binding Offsets” on page 73

Processing UPDATE, DELETE and INSERT Statements: If the statement is
modifying data (UPDATE, DELETE or INSERT), no action is required, other than the
normal check for diagnostic messages. In this case, SQLRowCount() can be used to
obtain the number of rows affected by the SQL statement.

If the SQL statement is a Positioned UPDATE or DELETE, it will be necessary to use a
cursor. A cursor is a moveable pointer to a row in the result table of an active query
statement. (This query statement must contain the FOR UPDATE OF clause to ensure
that the query is not opened as readonly.) In embedded SQL, cursors names are used
to retrieve, update or delete rows. In DB2 CLI, a cursor name is needed only for
Positioned UPDATE or DELETE SQL statements as they reference the cursor by
name. Furthermore, a cursor name is automatically generated when SQLAllocHandle()

is called with a HandleType of SQL_HANDLE_STMT.

To update a row that has been fetched, the application uses two statement handles,
one for the fetch and one for the update. The application calls SQLGetCursorName() to
obtain the cursor name. The application generates the text of a Positioned UPDATE or

 Chapter 2. Writing a DB2 CLI Application 21

DELETE, including this cursor name, and executes that SQL statement using a second
statement handle. The application cannot reuse the fetch statement handle to execute a
Positioned UPDATE or DELETE as it is still in use. You can also define your own
cursor name using SQLSetCursorName(), but it is best to use the generated name, since
all error messages will reference the generated name, and not the one defined by
SQLSetCursorName().

Processing Other Statements: If the statement neither queries nor modifies the data,
then there is no further action other than the normal check for diagnostic messages.

Commit or Rollback
A transaction is a recoverable unit of work, or a group of SQL statements that can be
treated as one atomic operation. This means that all the operations within the group are
guaranteed to be completed (committed) or undone (rolled back), as if they were a
single operation. A transaction can also be referred to as a Unit of Work or a Logical
Unit of Work. When the transaction spans multiple connections, it is referred to as a
Distributed Unit of Work.

DB2 CLI supports two commit modes:

auto-commit
In auto-commit mode, every SQL statement is a complete transaction, which is
automatically committed. For a non-query statement, the commit is issued at the
end statement execution. For a query statement, the commit is issued after the
cursor has been closed. The application must not start a second query before the
cursor of the first query has been closed.

manual-commit
In manual-commit mode, transactions are started implicitly with the first access to
the database using SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any
function that returns a result set, such as those described in “Querying System
Catalog Information” on page 49. At this point a transaction has begun, even if the
call failed. The transaction ends when you use SQLEndTran() to either rollback or
commit the transaction. This means that any statements executed (on the same
connection) between these are treated as one transaction.

The default commit mode is auto-commit (except when participating in a coordinated
transaction, see “Distributed Unit of Work (Coordinated Distributed Transactions)” on
page 43). An application can switch between manual-commit and auto-commit modes
by calling SQLSetConnectAttr(). Typically, a query-only application may wish to stay in
auto-commit mode. Applications that need to perform updates to the database should
turn off auto-commit as soon as the database connection has been established.

When multiple connections exist to the same or different databases, each connection
has its own transaction. Special care must be taken to call SQLEndTran() with the
correct connection handle to ensure that only the intended connection and related
transaction is affected. It is also possible to rollback or commit all the connections by
specifying a valid environment handle, and a NULL connection handle on the
SQLEndTran() call. Unlike distributed unit of work connections (described in “Distributed

22 CLI Guide and Reference

Unit of Work (Coordinated Distributed Transactions)” on page 43), there is no
coordination between the transactions on each connection.

When to Call SQLEndTran(): If the application is in auto-commit mode, it never
needs to call SQLEndTran(), a commit is issued implicitly at the end of each statement
execution.

In manual-commit mode, SQLEndTran() must be called before calling SQLDisconnect().
If Distributed Unit of Work is involved, additional rules may apply, refer to “Distributed
Unit of Work (Coordinated Distributed Transactions)” on page 43 for details.

It is recommended that an application that performs updates should not wait until the
disconnect before committing or rolling back the transaction. The other extreme is to
operate in auto-commit mode, which is also not recommended as this adds extra
processing. Refer to the “Environment, Connection, and Statement Attributes” on
page 37 and “SQLSetConnectAttr - Set Connection Attributes” on page 519 for
information about switching between auto-commit and manual-commit.

Consider the following when deciding where in the application to end a transaction:

¹ Each connection has only one outstanding transaction, so keep dependent
statements within the same transaction.

¹ Various resources may be held while you have an outstanding transaction. Ending
the transaction will release the resources for use by other users.

¹ Once a transaction has successfully been committed or rolled back, it is fully
recoverable from the system logs. Open transactions are not recoverable.

Effects of calling SQLEndTran():

When a transaction ends:

¹ All locks on DBMS objects are released, except those that are associated with a
held cursor.

¹ Prepared statements are preserved from one transaction to the next. Once a
statement has been prepared on a specific statement handle, it does not need to
be re-prepared even after a commit or rollback, provided the statement continues
to be associated with the same statement handle.

¹ Cursor names, bound parameters, and column bindings are maintained from one
transaction to the next.

¹ By default, cursors are preserved after a commit (but not a rollback). In other
words, all cursors are by default defined with the WITH HOLD clause (except when
connected to SQL/DS, which does not support the WITH HOLD clause, and when
the CLI application is running in a Distributed Unit of Work environment, see
“Distributed Unit of Work (Coordinated Distributed Transactions)” on page 43). For
information about changing the default behavior, refer to “SQLSetStmtAttr - Set
Options Related to a Statement” on page 589.

For more information and an example refer to “SQLEndTran - End Transactions of a
Connection” on page 294.

 Chapter 2. Writing a DB2 CLI Application 23

Freeing Statement Handles
Call SQLFreeStmt() to end processing for a particular statement handle. This function
can be used to do one or more of the following:

¹ Unbind all columns of the result set with the exception of the bookmark column if it
is used. See “Scrollable Cursors” on page 51 for more information on using
bookmarks.

The SQL_DESC_COUNT field of the application row descriptor (ARD) will also be
set to zero in this case. See “Using Descriptors” on page 78 for more information
on using descriptors.

¹ Unbind all parameter markers.

The SQL_DESC_COUNT field of the application parameter descriptor (APD) will
also be set to zero in this case. See “Using Descriptors” on page 78 for more
information on using descriptors.

¹ Close any cursors and discard any pending results (this can also be done using
SQLCloseCursor())

Call SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to:

¹ Drop the statement handle, and release all associated resources

The columns and parameters should always be unbound before using the handle to
process a statement with a different number or type of parameters or a different result
set; otherwise application programming errors may occur.

 Diagnostics
Diagnostics refers to dealing with warning or error conditions generated within an
application. There are two levels of diagnostics when calling DB2 CLI functions :

 ¹ Return Codes

¹ Detailed Diagnostics (SQLSTATEs, messages, SQLCA)

Each CLI function returns the function return code as a basic diagnostic. Both
SQLGetDiagRec() and SQLGetDiagField() functions provide more detailed diagnostic
information. The SQLGetSQLCA() function provides access to the SQLCA, if the
diagnostic is reported by the data source. This arrangement lets applications handle the
basic flow control based on Return Codes, and the SQLSTATES allow determination of
the specific causes of failure and specific error handling.

Both SQLGetDiagRec() and SQLGetDiagField() return three pieces of information:

 ¹ SQLSTATE

¹ Native error: if the diagnostic is detected by the data source, this is the SQLCODE;
otherwise, this is set to -99999.

¹ Message text: this is the message text associated with the SQLSTATE.

24 CLI Guide and Reference

For the detailed function information and example usage, refer to “SQLGetDiagRec -
Get Multiple Fields Settings of Diagnostic Record” on page 391 and “SQLGetDiagField
- Get a Field of Diagnostic Data” on page 382.

SQLGetSQLCA() returns the SQLCA for access to specific fields, but should never be
used as a substitute for SQLGetDiagRec() or SQLGetDiagField().

Function Return Codes
The following table lists all possible return codes for DB2 CLI functions. Each function
description in Chapter 5, “Functions” on page 175 lists the possible codes returned for
each function.

Table 2. DB2 CLI Function Return Codes

Return Code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning or
other information. Call SQLGetDiagRec() to receive the
SQLSTATE and any other informational messages or
warnings. The SQLSTATE will have a class of '01', see
Table 196 on page 669.

SQL_STILL_EXECUTING The function is running asynchronously and has not yet
completed. The DB2 CLI driver has returned control to
the application after calling the function, but the function
has not yet finished executing. See “Asynchronous
Execution of CLI” on page 118 for complete details.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant data
was found. When this is returned after the execution of
an SQL statement, additional information may be
available and can be obtained by calling
SQLGetDiagRec().

SQL_NEED_DATA The application tried to execute an SQL statement but
DB2 CLI lacks parameter data that the application had
indicated would be passed at execute time. For more
information, refer to “Sending/Retrieving Long Data in
Pieces” on page 61.

SQL_ERROR The function failed. Call SQLGetDiagRec() to receive the
SQLSTATE and any other error information.

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection or statement handle). This is a
programming error. No further information is available.

 SQLSTATEs
SQLSTATEs are alphanumeric strings of 5 characters (bytes) with a format of ccsss,
where cc indicates class and sss indicates subclass. Any SQLSTATE that has a class
of:

¹ '01', is a warning.

 Chapter 2. Writing a DB2 CLI Application 25

¹ 'HY', is generated by the DB2 CLI or ODBC driver.
¹ 'IM', is only generated by the ODBC driver manager.

Note: Previous versions of DB2 CLI returned SQLSTATEs with a class of 'S1' rather
than 'HY'. To force the CLI driver to return 'S1' SQLSTATEs, the application
should set the environment attribute SQL_ATTR_ODBC_VERSION to the value
SQL_OV_ODBC2. See “SQLSetEnvAttr - Set Environment Attribute” on
page 573 and Appendix B, “Migrating Applications” on page 645 for more
information.

DB2 CLI SQLSTATEs include both additional IBM defined SQLSTATEs that are
returned by the database server, and DB2 CLI defined SQLSTATEs for conditions that
are not defined in the ODBC v3 and ISO SQL/CLI specification. This allows for the
maximum amount of diagnostic information to be returned. When running applications
in a ODBC environment, it is also possible to receive ODBC defined SQLSTATEs.

Follow these guidelines for using SQLSTATEs within your application:

¹ Always check the function return code before calling SQLGetDiagRec() to determine
if diagnostic information is available.

¹ Use the SQLSTATEs rather than the native error code.

¹ To increase your application's portability, only build dependencies on the subset of
DB2 CLI SQLSTATEs that are defined by the ODBC v3 and ISO SQL/CLI
specification, and return the additional ones as information only. (Dependencies
refers to the application making logic flow decisions based on specific
SQLSTATEs.)

Note: It may be useful to build dependencies on the class (the first 2 characters)
of the SQLSTATEs.

¹ For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message will also include the IBM defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

Refer to Table 196 on page 669 for a listing and description of the SQLSTATEs
explicitly returned by DB2 CLI.

To gain a better understanding of how your application calls DB2, including any errors
that may occur, refer to the CLI/ODBC configuration keyword “TRACE” on page 168 for
information on using the CLI/ODBC trace facility.

 SQLCA
Embedded applications rely on the SQLCA for all diagnostic information. Although DB2
CLI applications can retrieve much of the same information by using SQLGetDiagRec(),
there may still be a need for the application to access the SQLCA related to the
processing of a statement. (For example, after preparing a statement, the SQLCA will
contain the relative cost of executing the statement.) The SQLCA only contains
meaningful information if there was an interaction with the data source on the previous
request (for example: connect, prepare, execute, fetch, disconnect).

26 CLI Guide and Reference

The SQLGetSQLCA() function is used to retrieve this structure. Refer to “SQLGetSQLCA
- Get SQLCA Data Structure” on page 449 for more information.

SQLGetSQLCA() should never be used as a substitute for SQLGetDiagRec() or
SQLGetDiagField().

Data Types and Data Conversion
When writing a DB2 CLI application it is necessary to work with both SQL data types
and C data types. This is unavoidable since the DBMS uses SQL data types, and the
application must use C data types. This means the application must match C data
types to SQL data types when transferring data between the DBMS and the application
(when calling DB2 CLI functions).

To help address this, DB2 CLI provides symbolic names for the various data types, and
manages the transfer of data between the DBMS and the application. It will also
perform data conversion (from a C character string to an SQL INTEGER type, for
example) if required. To accomplish this, DB2 CLI needs to know both the source and
target data type. This requires the application to identify both data types using symbolic
names.

C and SQL Data Types
Table 3 on page 28 list each of the SQL data types, with its corresponding symbolic
name, and the default C symbolic name.

SQL Data Type
This column contains the SQL data types as they would appear in an SQL
CREATE DDL statement. The SQL data types are dependent on the
DBMS.

Symbolic SQL Data Type
This column contains a SQL symbolic names that are defined (in sqlcli.h)
as an integer value. These values are used by various functions to identify
the SQL data types listed in the first column. Refer to “Example” on
page 279 for an example using these values.

Default C Symbolic Data Type
This column contains C symbolic names, also defined as an integer values.
These values are used in various functions arguments to identify the C
data type as shown in Table 4 on page 29. The symbolic names are used
by various functions, (such as SQLBindParameter(), SQLGetData(),
SQLBindCol(), etc.) to indicate the C data types of the application variables.
Instead of explicitly identifying the C data type when calling these functions,
SQL_C_DEFAULT can be specified instead, and DB2 CLI will assume a
default C data type based on the SQL data type of the parameter or
column as shown by this table. For example, the default C data type of
SQL_DECIMAL is SQL_C_CHAR.

 Chapter 2. Writing a DB2 CLI Application 27

Table 4 on page 29 shows the generic type definitions for each symbolic C type.

C Symbolic Data Type
This column contains C symbolic names, defined as integer values. These
values are used in various functions arguments to identify the C data type

Table 3. SQL Symbolic and Default Data Types

SQL Data Type Symbolic SQL Data Type Default Symbolic C Data Type

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR a SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR

CHAR SQL_CHAR SQL_C_CHAR

CHAR FOR BIT DATA b SQL_BINARY SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR a SQL_CLOB_LOCATOR SQL_C_CLOB_LOCATOR

DATE SQL_TYPE_DATE d SQL_C__TYPE_DATE d

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR a SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECIMAL SQL_DECIMAL SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR b SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR BIT DATA
b

SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC b SQL_LONGVARGRAPHIC SQL_C_DBCHAR

NUMERIC c SQL_NUMERIC c SQL_C_CHAR

REAL SQL_REAL SQL_C_FLOAT

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME d SQL_C_TYPE_TIME d

TIMESTAMP SQL_TYPE_TIMESTAMP d SQL_C_TYPE_TIMESTAMP d

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA b SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

a LOB locator types are not persistent SQL data types, (columns can not be defined with a locator type,
they are only used to describe parameter markers, or to represent a LOB value), refer to “Using Large
Objects” on page 95
b LONG data types and FOR BIT DATA data types should be replaced by an appropriate LOB types
whenever possible.
c NUMERIC is a synonym for DECIMAL on DB2 for MVS/ESA, DB2 for VSE & VM and DB2 Universal
Database.
d See Appendix B, “Migrating Applications” on page 645 for information on what data type was used in
previous releases.

Note: The data types, DATE, DECIMAL, NUMERIC, TIME, and TIMESTAMP cannot be transferred to their
default C buffer types without a conversion.

28 CLI Guide and Reference

shown in the last column. Refer to “Example” on page 198 for an example
using these values.

C Type
This column contains C defined types, defined in sqlcli.h using a C
typedef statement. The values in this column should be used to declare all
DB2 CLI related variables and arguments, in order to make the application
more portable. Refer to Table 6 on page 30 for a list of additional symbolic
data types used for function arguments.

Base C type
This column is shown for reference only, all variables and arguments
should be defined using the symbolic types in the previous column. Some
of the values are C structures that are described in Table 5.

Table 4. C Data Types

C Symbolic Data Type C Type Base C type

SQL_C_CHAR SQLCHAR unsigned char

SQL_C_BIT SQLCHAR unsigned char or char (Value 1 or 0)

SQL_C_TINYINT SQLSCHAR signed char (Range -128 to 127)

SQL_C_SHORT SQLSMALLINT short int

SQL_C_LONG SQLINTEGER long int

SQL_C_DOUBLE SQLDOUBLE double

SQL_C_FLOAT SQLREAL float

SQL_C_TYPE_DATE b DATE_STRUCT see Table 5

SQL_C_TYPE_TIME b TIME_STRUCT see Table 5

SQL_C_TYPE_TIMESTAMP b TIMESTAMP_STRUCT see Table 5

SQL_C_CLOB_LOCATOR a SQLINTEGER long int

SQL_C_BINARY SQLCHAR unsigned char

SQL_C_BLOB_LOCATOR a SQLINTEGER long int

SQL_C_DBCHAR SQLDBCHAR wchar_t

SQL_C_DBCLOB_LOCATOR SQLINTEGER long int

a LOB Locator Types.
b See Appendix B, “Migrating Applications” on page 645 for information on what data type was used in previous releases.

Note: fcSQL file reference data types (used in embedded SQL) are not needed in DB2 CLI, refer to “Using Large Objects” on page 95

Table 5 (Page 1 of 2). C DATE, TIME, and TIMESTAMP Structures

C Type Generic Structure Windows Structure

DATE_STRUCT typedef struct DATE_STRUCT

 {

 SQLSMALLINT year;

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 } DATE_STRUCT;

typedef struct tagDATE_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 } DATE_STRUCT;

 Chapter 2. Writing a DB2 CLI Application 29

Table 5 (Page 2 of 2). C DATE, TIME, and TIMESTAMP Structures

C Type Generic Structure Windows Structure

TIME_STRUCT typedef struct TIME_STRUCT

 {

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 } TIME_STRUCT;

typedef struct tagTIME_STRUCT

 {

 UWORD hour;

 UWORD minutes;

 UWORD second;

 } TIME_STRUCT;

TIMESTAMP_STRUCT typedef struct TIMESTAMP_STRUCT

 {

 SQLUSMALLINT year;

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 SQLINTEGER fraction;

 } TIMESTAMP_STRUCT;

typedef struct tagTIMESTAMP_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 UWORD hour;

 UWORD minute;

 UWORD second;

 UDWORD fraction;

 } TIMESTAMP_STRUCT;

Refer to Table 6 on page 30 for more information on the SQLUSMALLINT C data type.

Other C Data Types
As well as the data types that map to SQL data types, there are also C symbolic types
used for other function arguments, such as pointers and handles. Both the generic and
ODBC data types are shown below.

Table 6. C Data Types and Base C Data Types

Defined C Type Base C Type Typical Usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLHANDLE long int Handle used to reference all 4 types of handle information.

SQLHENV long int Handle referencing environment information.

SQLHDBC long int Handle referencing database connection information.

SQLHSTMT long int Handle referencing statement information.

SQLUSMALLINT unsigned short int Function input argument for unsigned short integer values.

SQLUINTEGER unsigned long int Function input argument for unsigned long integer values.

SQLRETURN short int Return code from DB2 CLI functions.

Versions of DB2 CLI prior to Version 2.1:

¹ Defined SQLRETURN as a long (32-bit) integer.
¹ Used SQLSMALLINT and SQLINTEGER instead of SQLUSMALLINT and SQLUINTEGER (signed instead of

unsigned). Refer to Appendix B, “Migrating Applications” on page 645 for more information.

 Data Conversion
As mentioned previously, DB2 CLI manages the transfer and any required conversion
of data between the application and the DBMS. Before the data transfer actually takes

30 CLI Guide and Reference

place, the source, target or both data types are indicated when calling
SQLBindParameter(), SQLBindCol() or SQLGetData(). These functions use the symbolic
type names shown in Table 3 on page 28, to identify the data types involved.

For example, to bind a parameter marker that corresponds to an SQL data type of
DECIMAL(5,3), to an application's C buffer type of double, the appropriate
SQLBindParameter() call would look like:

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,

SQL_DECIMAL, 5, 3, double_ptr, 0, NULL);

Table 3 on page 28 shows only the default data conversions. The functions mentioned
in the previous paragraph can be used to convert data to other types, but not all data
conversions are supported or make sense. Table 7 on page 32 shows all the
conversions supported by DB2 CLI.

The first column in Table 7 on page 32 contains the data type of the SQL data type,
the remaining columns represent the C data types. If the C data type columns contains:

D The conversion is supported and is the default conversion for the SQL data
type.

X all IBM DBMSs support the conversion,
blank no IBM DBMS supports the conversion.

As an example, the table indicates that a CHAR (or a C character string as indicated in
Table 7 on page 32) can be converted into a SQL_C_LONG (a signed long). In
contrast, a LONGVARCHAR cannot be converted to a SQL_C_LONG.

Refer to Appendix F, “Data Conversion” on page 685 for information about the required
formats and the results of converting between data types.

Limits on precision, and scale, as well as truncation and rounding rules for type
conversions follow rules specified in the SQL Reference with the following exception;
truncation of values to the right of the decimal point for numeric values may return a
truncation warning, whereas truncation to the left of the decimal point returns an error.
In cases of error, the application should call SQLGetDiagRec() to obtain the SQLSTATE
and additional information on the failure. When moving and converting floating point
data values between the application and DB2 CLI, no correspondence is guaranteed to
be exact as the values may change in precision and scale.

 Chapter 2. Writing a DB2 CLI Application 31

Table 7. Supported Data Conversions

SQL Data Type

S
Q
L
_
C
_
C
H
A
R

S
Q
L
_
C
_
L
O
N
G

S
Q
L
_
C
_
S
H
O
R
T

S
Q
L
_
C
_
T
I
N
Y
I
N
T

S
Q
L
_
C
_
F
L
O
A
T

S
Q
L
_
C
_
D
O
U
B
L
E

S
Q
L
_
C
_
T
Y
P
E
_
D
A
T
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E
S
T
A
M
P

S
Q
L
_
C
_
B
I
N
A
R
Y

S
Q
L
_
C
_
B
I
T

S
Q
L
_
C
_
D
B
C
H
A
R

S
Q
L
_
C
_
C
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
B
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
D
B
C
L
O
B
_
L
O
C
A
T
O
R

BLOB X D X

CHAR D X X X X X X X X X X

CLOB D X X

DATE X D X

DBCLOB X D X

DECIMAL D X X X X X X

DOUBLE X X X X X D X

FLOAT X X X X X D X

GRAPHIC X D

INTEGER X D X X X X X

LONG VARCHAR D X

LONG VARGRAPHIC X X D

NUMERIC D X X X X X X

REAL X X X X D X X

SMALLINT X X D X X X X

TIME X D X

TIMESTAMP X X X D

VARCHAR D X X X X X X X X X X

VARGRAPHIC X D

Note: Data is not converted to LOB Locator types, rather locators represent a data value, refer to “Using Large Objects” on page 95
for more information.

REAL is not supported by DB2 Universal Database.

NUMERIC is a synonym for DECIMAL on DB2 for MVS/ESA, DB2 for VSE & VM, and DB2 Universal Database.

32 CLI Guide and Reference

Working with String Arguments
The following conventions deal with the various aspects of working with string
arguments in DB2 CLI functions.

Length of String Arguments
Input string arguments have an associated length argument. This argument indicates to
DB2 CLI, either the exact length of the argument (not including the null terminator), the
special value SQL_NTS to indicate a null-terminated string, or SQL_NULL_DATA to
pass a NULL value. If the length is set to SQL_NTS, DB2 CLI will determine the length
of the string by locating the null terminator.

Output string arguments have two associated length arguments, an input length
argument to specify the length of the allocated output buffer, and an output length
argument to return the actual length of the string returned by DB2 CLI. The returned
length value is the total length of the string available for return, regardless of whether it
fits in the buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned in the
length argument and the output buffer is untouched. The descriptor field
SQL_DESC_INDICATOR_PTR is set to SQL_NULL_DATA if the column value is a null
value. For more information, including which other fields are set, see
SQL_DESC_INDICATOR_PTR on page 560 in SQLSetDescField().

If a function is called with a null pointer for an output length argument, DB2 CLI will not
return a length, and assumes that the data buffer is large enough to hold the data.
When the output data is a NULL value, DB2 CLI can not indicate that the value is
NULL. If it is possible that a column in a result set can contain a NULL value, a valid
pointer to the output length argument must always be provided. It is highly
recommended that a valid output length argument always be used.

Performance Hint

If the length argument (StrLen_or_IndPtr) and the output buffer (TargetValuePtr) are
contiguous in memory, DB2 CLI can return both values more efficiently, improving
application performance. For example, if the following structure is defined:

 struct

 { SQLINTEGER pcbValue;

 SQLCHAR rgbValue [BUFFER_SIZE];

 } buffer;

and &buffer.pcbValue and buffer.rgbValue is passed to SQLBindCol(), DB2 CLI would
update both values in one operation.

Null-Termination of Strings
By default, every character string that DB2 CLI returns is terminated with a null
terminator (hex 00), except for strings returned from graphic and DBCLOB data types
into SQL_C_CHAR application variables. Graphic and DBCLOB data types that are
retrieved into SQL_C_DBCHAR application variables are null terminated with a double

 Chapter 2. Writing a DB2 CLI Application 33

byte null terminator. This requires that all buffers allocate enough space for the
maximum number of bytes expected, plus the null-terminator.

It is also possible to use SQLSetEnvAttr() and set an environment attribute to disable
null termination of variable length output (character string) data. In this case, the
application allocates a buffer exactly as long as the longest string it expects. The
application must provide a valid pointer to storage for the output length argument so
that DB2 CLI can indicate the actual length of data returned; otherwise, the application
will not have any means to determine this. The DB2 CLI default is to always write the
null terminator.

It is possible, using the PATCH1 CLI/ODBC configuration keyword, to force DB2 CLI to
null terminate graphic and DBCLOB strings. This keyword can be set from the
CLI/ODBC Settings notebook accessible from the Client Configuration Assistant (CCA).
Refer to the “Platform Specific Details for CLI/ODBC Access” on page 129. The
Configure the CLI/ODBC Driver section for your platform will provide the steps required
to set the keywords. The description of PATCH1 in “Configuration Keywords” on
page 144 includes how to find the setting required to force the null termination of
graphic and DBCLOB strings.

 String Truncation
If an output string does not fit into a buffer, DB2 CLI will truncate the string to the size
of the buffer, and write the null terminator. If truncation occurs, the function will return
SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004 indicating truncation. The
application can then compare the buffer length to the output length to determine which
string was truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an SQLSTATE
of 01004, at least one of the buffers bound to a column is too small to hold the data.
For each buffer that is bound to a column, the application can compare the buffer
length with the output length and determine which column was truncated.

Interpretation of Strings
Normally, DB2 CLI interprets string arguments in a case-sensitive manner and does not
trim any spaces from the values. The one exception is the cursor name input argument
on the SQLSetCursorName() function, where if the cursor name is not delimited
(enclosed by double quotes) the leading and trailing blanks are removed and case is
ignored.

Querying Environment and Data Source Information
There are many situations when an application requires information about the
characteristics and capabilities of the current DB2 CLI driver or the data source that it is
connected to.

One of the most common situations involves displaying information for the user.
Information such as the data source name and version, or the version of the DB2 CLI
driver might be displayed at connect time, or as part of the error reporting process.

34 CLI Guide and Reference

These functions are also useful to generic applications that are written to adapt and
take advantage of facilities that may be available from some, but not all database
servers.

The following DB2 CLI functions provide data source specific information:

¹ “SQLDataSources - Get List of Data Sources” on page 271
¹ “SQLGetFunctions - Get Functions” on page 396
¹ “SQLGetInfo - Get General Information” on page 402
¹ “SQLGetTypeInfo - Get Data Type Information” on page 461

Querying Environment Information Example
The getinfo.c sample, shown in “Example” on page 437 generates the following
output when connected to DB2.

Server Name: SAMPLE

Database Name: SAMPLE

Instance Name: db2inst1

DBMS Name: DB2/6000

DBMS Version: 05.00.0000

CLI Driver Name: libdb2.a

 CLI Driver Version: 05.00.0000

 ODBC SQL Conformance Level: Extended Grammar

 Chapter 2. Writing a DB2 CLI Application 35

36 CLI Guide and Reference

Chapter 3. Using Advanced Features

This section covers a series of advanced tasks.

This section does not cover features that are provided generally by dynamic SQL, such
as User Defined Functions or Triggers. Refer to the SQL Reference for a complete
description of SQL language supported.

Environment, Connection, and Statement Attributes
Environments, connections, and statements each have a defined set of attributes (or
options). All attributes can be queried by the application, but only some attributes can
be changed from their default values. By changing attribute values, the application can
change the behavior of DB2 CLI.

An environment handle has attributes which affect the behavior of DB2 CLI functions
under that environment. The application can specify the value of an attribute by calling
SQLSetEnvAttr() and can obtain the current attribute value by calling SQLGetEnvAttr().
SQLSetEnvAttr() can only be called before connection handles have been allocated.

A connection handle has attributes which affect the behavior of DB2 CLI functions
under that connection. Of the attributes that can be changed:

¹ Some can be set any time once the connection handle is allocated.
¹ Some can be set only before the actual connection has been established.
¹ Some can be set only after the connection has been established.
¹ Some can be set after the connection has been established, but only while there

are no outstanding transactions or open cursors.

The application can change the value of connection attributes by calling
SQLSetConnectAttr() and can obtain the current value of an attribute by calling
SQLGetConnectAttr(). An example of a connection attribute which can be set any time
after a handle is allocated is the auto-commit option introduced in “Commit or Rollback”
on page 22. For complete details on when each attribute can be set, refer to
“SQLSetConnectAttr - Set Connection Attributes” on page 519.

A statement handle has attributes which affect the behavior of CLI functions executed
using that statement handle. Of the statement attributes that can be changed:

¹ Some attributes can be set, but currently can be set to only one specific value.
¹ Some attributes can be set any time after the statement handle has been allocated.
¹ Some attributes can only be set if there is no open cursor on that statement

handle.

The application can specify the value of any settable statement attribute by calling
SQLSetStmtAttr(), and can obtain the current value of an attribute by calling
SQLGetStmtAttr(). For complete details on when each attribute can be set, refer to
“SQLSetStmtAttr - Set Options Related to a Statement” on page 589.

 Copyright IBM Corp. 1993, 1997 37

The SQLSetConnectAttr() function cannot be used to set statement attributes. This was
supported in versions of DB2 CLI prior to version 5; see “Setting a Subset of Statement
Attributes using SQLSetConnectAttr()” on page 647 for details.

Many applications use just the default attribute settings; however, there may be
situations where some of these defaults are not suitable for a particular user of the
application. DB2 CLI provides end users with two methods to change some of these
default values at run time. The first method is to specify the new default attribute
value(s) in the connection string input to the SQLDriverConnect() and
SQLBrowseConnect() functions. The second method involves the specification of the new
default attribute value(s) in a DB2 CLI initialization file.

The DB2 CLI initialization file can be used to change default values for all DB2 CLI
applications on that workstation. This may be the end user's only means of changing
the defaults if the application does not provide a means for the user to provide default
attribute values in the SQLDriverConnect() connection string. Default attribute values
that are specified on SQLDriverConnect() override the values in the DB2 CLI
initialization file for that particular connection. For information on how the end user can
use the DB2 CLI initialization file as well as for a list of changeable defaults, refer to
“DB2 CLI/ODBC Configuration Keyword Listing” on page 144.

The mechanisms for changing defaults are intended for end user tuning; application
developers must use the appropriate set-attribute function. If an application does call a
set-attribute or option function with a value different from the initialization file or the
connection string specification, then the initial default value is overridden and the new
value takes effect.

The attributes that can be changed are listed in the detailed function descriptions of the
set attribute or option functions, see Chapter 5, “Functions” on page 175. The readonly
options (if any exist) are listed with the detailed function descriptions of the get attribute
or option functions.

For information on some commonly used attributes, refer to Appendix A, “Programming
Hints and Tips” on page 637.

The diagram below shows the addition of the attribute functions to the basic connect
scenario.

38 CLI Guide and Reference

Figure 4. Setting and Retrieving Attributes (Options)

 Chapter 3. Using Advanced Features 39

Writing Multi-Threaded Applications
DB2 CLI supports concurrent execution of threads on AIX, OS/2, Windows 95, and
Windows NT. On any other platform that supports threads, DB2 CLI is guaranteed to be
thread safe by serializing all calls to DB2 CLI. In other words, DB2 CLI is always
reentrant.

Note: If you are writing applications that use DB2 CLI calls and either embedded SQL
or DB2 API calls, see “Multi-Threaded Mixed Applications” on page 42.

Concurrent execution means that two threads can run independently of each other (on
a multi-processor machine they may run simultaneously). For example, an application
could implement a database-to-database copy in the following way:

¹ One thread connects to database A and uses SQLExecute() and SQLFetch() calls
to read data from one connection into a shared application buffer.

¹ The other thread connects to database B and concurrently reads from the shared
buffer and insert the data into database B.

In contrast, if DB2 CLI serializes all function calls, only one thread may be executing a
DB2 CLI function at a time. All other threads would have to wait until the current thread
is done before it would get a chance to execute.

When to Use Multiple Threads
The most common reason to create another thread in a DB2 CLI application is so that
a thread other than the one executing can be used to call SQLCancel() (to cancel a long
running query for example).

Note: This method should be used for any platform which supports threads rather than
using the asyncronous SQL model (which was designed for non-threaded
operating systems such a Windows 3.1). If your application cannot make use of
multi-threading then see “Asynchronous Execution of CLI” on page 118.

Most GUI based applications use threads in order to ensure that user interaction can be
handled on a higher priority thread than other application tasks. The application can
simply delegate one thread to run all DB2 CLI functions (with the exception of
SQLCancel()). In this case there are no thread-related application design issues since
only one thread will be accessing the data buffers that are used to interact with DB2
CLI.

Applications that use multiple connections, and are executing statements that may take
some time to execute, should consider executing DB2 CLI functions on multiple threads
to improve throughput. Such an application should follow standard practices for writing
any multi-thread application, most notable those concerning sharing data buffers. The
following section discusses in more detail what DB2 CLI guarantees and what the
application must guarantee in order to write a more complex multi-threaded application.

40 CLI Guide and Reference

 Programming Tips
Any resource allocated by DB2 CLI is guaranteed to be thread-safe. This is
accomplished by using either a shared global or connection specific semaphore. At any
one time, only one thread can be executing a DB2 CLI function that accepts an
environment handle as input. All other functions that accept a connection handle, (or a
statement or descriptor allocated on that connection handle), will be serialized on the
connection handle.

This means that once a thread starts executing a function with a connection handle, or
child of a connection handle, that handle cannot be used by any other thread until the
function has returned. The one exception to this is SQLCancel(), which must be able to
cancel a statement currently executing on another thread. For this reason, the most
natural design is map one thread per connection, plus one thread to handle
SQLCancel() requests. Each thread can then execute independently of the others.

As an example, if a thread is using a handle in one thread, and another thread frees
that handle between function calls, the next attempt to use that handle would result in a
return code of SQL_INVALID_HANDLE.

Note: This only applies for DB2 CLI applications. ODBC applications may trap since
the handle in this case is a pointer and the pointer may no longer be valid if
another thread has freed it. For this reason, it is best to follow the model below.

Sample Application Model
The following is intended as an example:

¹ Designate a master thread which allocates:
– m "child" threads
– n connection handles

¹ Each task that requires a connection is executed by one of the child threads, and
is given one of the n connections by the master thread.

¹ Each connection is marked as in use by the master thread until the child thread
returns it to the connection pool.

¹ An SQLCancel() request is handled by the master thread.

This model allows the master thread to have more threads than connections if the
threads are also used to perform non-SQL related tasks, or more connections than
threads if the application wants to maintain a pool of active connections to various
databases, but limit the number of active tasks.

Most importantly, this ensures that two threads are not trying to use the same
connection or statement handle at any one time. Although DB2 CLI controls access to
its resources, the application resources such as bound columns and parameter buffers
are not controlled by DB2 CLI, and the application must guarantee that a pointer to a
buffer is not being used by two threads at any one time. Any deferred arguments must
remain valid until the column or parameter has been unbound.

If is necessary for two threads to share a data buffer, the application must implement
some form of synchronization mechanism. For example, in the database-to-database

 Chapter 3. Using Advanced Features 41

copy scenario mentioned above, the use of the shared buffer must be synchronized by
the application.

 Application Deadlocks
The application must be aware of the possibility of creating deadlock situations with
shared resources in the database and the application.

DB2 can detect deadlocks at the server and rollback one or more transactions to
resolve them. An application may still deadlock if:

¹ two thread are connected to the same database, and
¹ one thread is holding an application resource and is waiting for a database

resource, and
¹ the other thread has a lock on the database resource while waiting for the

application resource.

In this case the DB2 Server is only going to see a lock, not a deadlock, and unless the
database LOCKTIMEOUT configuration setting is changed, the application will wait
forever.

The model suggested above avoids this problem by not sharing application resources
between threads once a thread starts executing on a connection.

Problems With Existing Multi-Threaded Applications
It is possible that an existing mulit-threaded DB2 CLI application ran successfully using
the serialized version of DB2 CLI (prior to version 5), yet suffers synchronization
problems when run using DB2 CLI version 5 or later.

In this case the DISABLEMULTITHREAD CLI/ODBC configuration keyword can be set
to 1 in order to force DB2 CLI to serialize all function calls. If this is required, the
application should be analyzed and corrected.

Multi-Threaded Mixed Applications
The DB2 CLI driver automatically calls the DB2 context APIs to allocate and manage
contexts for the application. This means that any application that calls SQLAllocEnv()
before calling any other DB2 API or embedded SQL will be initialized with the context
type set to SQL_CTX_MULTI_MANUAL. This is not the case, however, if the
application calls the DB2 API or embedded SQL before a CLI function.

This means that any thread that calls a DB2 API or embedded SQL must be attached
to a context, otherwise the call will fail with an SQLCODE of SQL1445N. This can be
done by calling the DB2 API sqleAttachToCtx() which will explicitly attach the thread to
a context, or by calling any DB2 CLI function (SQLSetConnection() for example).

A mixed multi-threaded application should follow one of these approaches:

¹ Allow DB2 CLI to allocate and manage all contexts.

Use DB2 CLI to allocate all connection handles and to perform all connections. Call
the SQLSetConnect() function in each thread prior to calling any embedded SQL.

42 CLI Guide and Reference

DB2 APIs can be called after any DB2 CLI function has been called in the same
thread.

¹ Explicitly manage all contexts.

Use the context APIs to allocate and attach to contexts prior to calling DB2 CLI
functions (SQLAllocEnv() will use the existing context as the default context). Use
the SQL_ATTR_CONN_CONTEXT connection attribute to explicitly set the context
that each DB2 CLI connection should use.

See Appendix B, “Migrating Applications” on page 645 for details on running existing
mixed applications.

Distributed Unit of Work (Coordinated Distributed Transactions)
The transaction scenario described in “Connecting to One or More Data Sources” on
page 11 portrays an application which interacts with only one database server in a
transaction. Even though concurrent connections allow for concurrent transactions, the
different transactions are not coordinated.

With Distributed Unit of Work (coordinated distributed transactions), the application is
able to access multiple database servers from within the same coordinated transaction.
Some distributed unit of work environments involve the use of a Transaction Manager
to coordinate two-phase commit among multiple databases. For detailed description of
distributed unit of work, refer to the Administration Guide. This section describes how
DB2 CLI applications can be written to use coordinated distributed unit of work.

First, consider the environment attribute (SQL_ATTR_CONNECTTYPE) which controls
whether the application is to operate in a coordinated or uncoordinated distributed
environment. The two possible values for this attribute are:

¹ SQL_CONCURRENT_TRANS - supports the single database per transaction
semantics described in Chapter 2. Multiple concurrent connections to the same
database and to different databases are permitted. This is the default.

¹ SQL_COORDINATED_TRANS - supports the multiple databases per transaction
semantics, as discussed below.

All connections within an application must have the same SQL_ATTR_CONNECTTYPE
setting. It is recommended that the application set this environment attribute, if
necessary, as soon as the environment handle has been created with a call to
SQLAllocHandle() (with a HandleType of SQL_HANDLE_ENV). Since ODBC
applications cannot access SQLSetEnvAttr(), they must set this using
SQLSetConnectAttr() before any connection has been established.

Attributes that Govern Distributed Unit of Work Semantics
A coordinated transaction means that commits or rollbacks among multiple database
connections are coordinated. The SQL_COORDINATED_TRANS setting of the
SQL_ATTR_CONNECTTYPE attribute corresponds to the Type 2 CONNECT in IBM
embedded SQL and must be considered in conjunction with the
SQL_ATTR_SYNC_POINT attribute, which has the following two possible settings:

 Chapter 3. Using Advanced Features 43

¹ SQL_ONEPHASE: One-phase commit is used to commit the work done by each
database in a multiple database transaction. To ensure data integrity, each
transaction must not have more than one database updated. The first database
that has updates performed in a transaction becomes the only updater in that
transaction, all other databases accessed are treated as read-only. Any update
attempts to these read-only database within this transaction are rejected.

¹ SQL_TWOPHASE: Two-phase commit is used to commit the work done by each
database in a multiple database transaction. This requires the use of a Transaction
Manager to coordinate two phase commits amongst the databases that support this
protocol. Multiple readers and multiple updaters are allowed within a transaction.

Similar to SQL_ATTR_CONNECTTYPE, it is recommended that the application set this
environment attribute, if necessary, as soon as the environment handle has been
created with a call to SQLAllocHandle() (with a HandleType of SQL_HANDLE_ENV).
ODBC applications must use SQLSetConnectAttr() to set this for each connection
handle under the environment before any connections have been established.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT settings. After the first
connection has been established, all subsequent connect types must be the same as
the first. Coordinated connections default to manual-commit mode (for discussion on
auto-commit mode, see “Commit or Rollback” on page 22).

The function SQLEndTran() must not be used in a Distributed Unit of Work environment.
The commit or rollback must be done using the transaction manager APIs.

Figure 5 on page 45 shows the logical flow of an application executing statements on
two SQL_CONCURRENT_TRANS connections ('A' and 'B'), and indicates the scope of
the transactions.

Figure 6 on page 46 shows the same statements being executed on two
SQL_COORDINATED_TRANS connections ('A' and 'B'), and the scope of a
coordinated distributed transaction.

44 CLI Guide and Reference

}

Figure 5. Multiple Connections with Concurrent Transactions

 Chapter 3. Using Advanced Features 45

}

Figure 6. Multiple Connections with Coordinated Transactions

Establishing a Coordinated Transaction Connection
An application can establish coordinated transaction connections by calling the
SQLSetEnvAttr() function, or by setting the CONNECTTYPE and SYNCPOINT
keywords in the DB2 CLI initialization file or in the connection string for
SQLDriverConnect(). The initialization file is intended for existing applications that do
not use the SQLSetConnectAttr() function. For information about the keywords, refer to
“DB2 CLI/ODBC Configuration Keyword Listing” on page 144.

46 CLI Guide and Reference

An application cannot have a mixture of concurrent and coordinated connections, the
type of the first connection will determine the type of all subsequent connections.
SQLSetEnvAttr() will return an error if an application attempts to change the connect
type while there is an active connection.

Distributed Unit of Work Example
The following example connects to two data sources using a
SQL_ATTR_CONNECTTYPE set to SQL_COORDINATED_TRANS and
SQL_ATTR_SYNC_POINT set to SQL_ONEPHASE.

 Chapter 3. Using Advanced Features 47

/* From CLI sample duowcon.c */

/* ... */

/* main */

int main(int argc, char * argv[]) {

SQLHANDLE henv, hdbc[MAX_CONNECTIONS] ;

SQLRETURN rc ;

/* ... */

/* allocate an environment handle */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

 /*

Before allocating any connection handles, set Environment wide

 Connect Options

Set to Connect Type 2, Syncpoint 1

 */

if (SQLSetEnvAttr(henv,

 SQL_CONNECTTYPE,

(SQLPOINTER) SQL_COORDINATED_TRANS,

 0

) != SQL_SUCCESS) {

printf(">---ERROR while setting Connect Type 2 -------------\n") ;

return(SQL_ERROR) ;

 }

/* ... */

if (SQLSetEnvAttr(henv,

 SQL_SYNC_POINT,

(SQLPOINTER) SQL_ONEPHASE,

 0

) != SQL_SUCCESS) {

printf(">---ERROR while setting Syncpoint One Phase -------------\n") ;

return(SQL_ERROR) ;

 }

/* ... */

/* Connect to first data source */

prompted_connect(henv, &hdbc[0]) ;

/* Connect to second data source */

DBconnect(henv, &hdbc[1]) ;

/********* Start Processing Step *************************/

/* allocate statement handle, execute statement, etc. */

/********* End Processing Step ***************************/

/* Disconnect, free handles and exit */

48 CLI Guide and Reference

Querying System Catalog Information
Often, one of the first tasks an application performs is to display to the user a list of
tables from which one or more tables are selected by the user to work with. Although
the application can issue its own queries against the database system catalog to get
this type of catalog information, it is best that the application calls the DB2 CLI catalog
functions instead. These catalog functions provide a generic interface to issue queries
and return consistent result sets across the DB2 family of servers. This allows the
application to avoid server specific and release specific catalog queries.

The catalog functions operate by returning to the application a result set through a
statement handle. Calling these functions is conceptually equivalent to using
SQLExecDirect() to execute a select against the system catalog tables. After calling
these functions, the application can fetch individual rows of the result set as it would
process column data from an ordinary SQLFetch(). The DB2 CLI catalog functions are:

¹ “SQLColumnPrivileges - Get Privileges Associated With The Columns of A Table”
on page 249

¹ “SQLColumns - Get Column Information for a Table” on page 255
¹ “SQLForeignKeys - Get the List of Foreign Key Columns” on page 341
¹ “SQLPrimaryKeys - Get Primary Key Columns of A Table” on page 493
¹ “SQLProcedureColumns - Get Input/Output Parameter Information for A Procedure”

on page 496
¹ “SQLProcedures - Get List of Procedure Names” on page 505
¹ “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 608
¹ “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 614
¹ “SQLTablePrivileges - Get Privileges Associated With A Table” on page 621
¹ “SQLTables - Get Table Information” on page 625
¹ “SQLGetTypeInfo - Get Data Type Information” on page 461

The result sets returned by these functions are defined in the descriptions for each
catalog function. The columns are defined in a specified order. In future releases, other
columns may be added to the end of each defined result set, therefore applications
should be written in a way that would not be affected by such changes.

Some of the catalog functions result in execution of fairly complex queries, and for this
reason should only be called when needed. It is recommended that the application save
the information returned rather than making repeated calls to get the same information.

Input Arguments on Catalog Functions
All of the catalog functions have CatalogName and SchemaName (and their associated
lengths) on their input argument list. Other input arguments may also include
TableName, ProcedureName, or ColumnName (and their associated lengths). These
input arguments are used to either identify or constrain the amount of information to be
returned. CatalogName, however, must always be a null pointer (with its length set to 0)
as DB2 CLI does not support three-part naming.

 Chapter 3. Using Advanced Features 49

In the Function Arguments sections for these catalog functions in Chapter 5,
“Functions” on page 175, each of the above input arguments are described either as a
pattern-value or just as an ordinary argument. For example, SQLColumnPrivileges()
treats SchemaName and TableName as ordinary arguments and ColumnName as a
pattern-value.

Inputs treated as ordinary arguments are taken literally and the case of letters is
significant. The argument does not qualify a query but rather identifies the information
desired. An error results if the application passes a null pointer for this argument.

Inputs treated as pattern-values are used to constrain the size of the result set by
including only matching rows as though the underlying query were qualified by a
WHERE clause. If the application passes a null pointer for a pattern-value input, the
argument is not used to restrict the result set (that is, there is no WHERE clause). If a
catalog function has more than one pattern-value input argument, they are treated as
though the WHERE clauses in the underlying query were joined by AND; a row
appears in this result set only if it meets all the conditions of the WHERE clauses.

Each pattern-value argument can contain:

¹ The underscore (_) character which stands for any single character.

¹ The percent (%) character which stands for any sequence of zero or more
characters. Note that providing a pattern-value containing a single % is equivalent
to passing a null pointer for that argument.

¹ Characters which stand for themselves. The case of a letter is significant.

These argument values are used on conceptual LIKE predicate(s) in the WHERE
clause. To treat the metadata characters (_, %) as themselves, an escape character
must immediately precede the _ or %. The escape character itself can be specified as
part of the pattern by including it twice in succession. An application can determine the
escape character by calling SQLGetInfo() with SQL_SEARCH_PATTERN_ESCAPE.

Catalog Functions Example
In the browser.c sample application:

¹ A list of all tables are displayed for the specified schema (qualifier) name or search
pattern.

¹ Column, special column, foreign key, and statistics information is returned for a
selected table.

Output from the browser.c sample is shown below, relevant segments of the sample
are listed for each of the catalog functions.

50 CLI Guide and Reference

Enter Search Pattern for Table Schema Name:

STUDENT

Enter Search Pattern for Table Name:

%

TABLE SCHEMA TABLE_NAME TABLE_TYPE

------------------------- ------------------------- ----------

1 STUDENT CUSTOMER TABLE

2 STUDENT DEPARTMENT TABLE

3 STUDENT EMP_ACT TABLE

4 STUDENT EMP_PHOTO TABLE

5 STUDENT EMP_RESUME TABLE

6 STUDENT EMPLOYEE TABLE

7 STUDENT NAMEID TABLE

8 STUDENT ORD_CUST TABLE

9 STUDENT ORD_LINE TABLE

10 STUDENT ORG TABLE

11 STUDENT PROD_PARTS TABLE

12 STUDENT PRODUCT TABLE

13 STUDENT PROJECT TABLE

14 STUDENT STAFF TABLE

Enter a table Number and an action:(n [Q | C | P | I | F | T |O | L])

|Q=Quit C=cols P=Primary Key I=Index F=Foreign Key |

|T=Tab Priv O=Col Priv S=Stats L=List Tables |

1c

Schema: STUDENT Table Name: CUSTOMER

CUST_NUM, NOT NULLABLE, INTeger (10)

FIRST_NAME, NOT NULLABLE, CHARacter (30)

LAST_NAME, NOT NULLABLE, CHARacter (30)

STREET, NULLABLE, CHARacter (128)

CITY, NULLABLE, CHARacter (30)

PROV_STATE, NULLABLE, CHARacter (30)

PZ_CODE, NULLABLE, CHARacter (9)

COUNTRY, NULLABLE, CHARacter (30)

PHONE_NUM, NULLABLE, CHARacter (20)

>> Hit Enter to Continue<<

1p

Primary Keys for STUDENT.CUSTOMER

 1 Column: CUST_NUM Primary Key Name: = NULL

>> Hit Enter to Continue<<

1f

Primary Key and Foreign Keys for STUDENT.CUSTOMER

 CUST_NUM STUDENT.ORD_CUST.CUST_NUM

Update Rule SET NULL , Delete Rule: NO ACTION

>> Hit Enter to Continue<<

 Scrollable Cursors
DB2 CLI Version 5 introduced Scrollable Cursors; the ability to scroll through a static
read-only cursor:

 Chapter 3. Using Advanced Features 51

¹ Forward by one or more rows
¹ Backward by one or more rows
¹ From the first row by one or more rows
¹ From the last row by one or more rows
¹ From a previously stored location in the cursor

The scrollable cursor is static. Once it is created no rows will be added or removed,
and no values in any rows will change. The cursor is not affected by other applications
accessing the same data.

The cursor is also read-only. It is not possible for the application to change any values.
How the rows of the cursor are locked, if at all, is determined by the isolation level of
the statement used to create the cursor. Refer to the SQL Reference for a complete
discussion of isolation levels and their effect.

It is important to understand the following terms:

result set The complete set of rows that are generated by the SQL SELECT
statement. Once created the result set will not change.

rowset The subset of rows from the result set that is returned after each fetch.
The application indicates the size of the rowset before the cursor is
created. Each call to SQLFetchScroll() populates the rowset with the
appropriate rows from the result set.

bookmark It is possible to store a pointer to a specific row in the result set; a
bookmark. Once stored, the application can continue to move throughout
the result set, then return to the bookmarked row to generate a rowset.
See “Using Bookmarks with Scrollable Cursors” on page 59 for complete
details.

Specifying the Rowset Returned from the Result Set
The position of the rowset within the result set is specified in the call to
SQLFetchScroll(). For example, the following call would generate a rowset starting on
the 11th row in the result set (step 5 in Figure 7 on page 54):

SQLFetchScroll(hstmt, /* Statement handle */

SQL_FETCH_ABSOLUTE, /* FetchOrientation value */

11); /* Offset value */

Scroll bar operations of a screen-based application can be mapped directly to the
positioning of a rowset. By setting the rowset size to the number of lines displayed on
the screen, the application can map the movement of the scroll bar to calls to
SQLFetchScroll().

52 CLI Guide and Reference

The following figure demonstrates a number of calls to SQLFetchScroll() using various
FetchOrientation values. The result set includes all of the rows (from 1 to n), and the
rowset size is 3. The order of the calls is indicated on the left, and the FetchOrientation
values are indicated on the right.

Rowset Retrieved FetchOrientation Value Scroll bar

First rowset SQL_FETCH_FIRST Home: Scroll bar at the
top

Last rowset SQL_FETCH_LAST End: Scroll bar at the
bottom

Next rowset SQL_FETCH_NEXT (same as calling SQLFetch()) Page Down

Previous rowset SQL_FETCH_PRIOR Page Up

Rowset starting on next
row

SQL_FETCH_RELATIVE with FetchOffset set to 1 Line Down

Rowset starting on
previous row

SQL_FETCH_RELATIVE with FetchOffset set to -1 Line Up

Rowset starting on a
specific row

SQL_FETCH_ABSOLUTE with FetchOffset set to
an offset from the start (a positive value) or the
end (a negative value) of the result set

Application generated

Rowset starting on a
previously bookmarked
row

SQL_FETCH_BOOKMARK with FetchOffset set to
a positive or negative offset from the bookmarked
row (see “Using Bookmarks with Scrollable
Cursors” on page 59 for more information)

Application generated

 Chapter 3. Using Advanced Features 53

Figure 7. Example of Retrieving Rowsets

For more details see Cursor Positioning Rules on page 332 in SQLFetchScroll().

Size of Returned Rowset
The statement attribute SQL_ATTR_ROW_ARRAY_SIZE is used to declare the number
of rows in the rowset. For example, to declare a rowset size of 35 rows, the following
call would be used:

/* CLI Sample: sfetch.c */

/*...*/

#define ROWSET_SIZE 35

/*...*/

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) ROWSET_SIZE,

 0);

The application cannot assume that the entire rowset will contain data. It must check
the rowset size after each rowset is created because there are instances where the
rowset will not contain a complete set of rows. For instance, consider the case where
the rowset size is set to 10, and SQLFetchScroll() is called using
SQL_FETCH_ABSOLUTE and FetchOffset set to -3. This will attempt to return 10 rows

54 CLI Guide and Reference

starting 3 rows from the end of the result set. Only the first three rows of the rowset will
contain meaningful data, however, and the application must ignore the rest of the rows.

Figure 8. Partial Rowset Example

See Setting the Rowset size on page 56 for more information on using the statement
attribute SQL_ATTR_ROW_ARRAY_SIZE.

Row Status Array
The row status array provides additional information about each row in the rowset. After
each call to SQLFetchScroll() the array is updated. The application must declare an
array (of type SQLUSMALLINT) with the same number of rows as the size of the
rowset (the statement attribute SQL_ATTR_ROW_ARRAY_SIZE). The address of this
array is then specified with the statement attribute SQL_ATTR_ROW_STATUS_PTR.

 Chapter 3. Using Advanced Features 55

/* CLI Sample: sfetch.c */

/* ... */

SQLUSMALLINT row_status[ROWSET_SIZE];

/* ... */

/* Set a pointer to the array to use for the row status */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

 (SQLPOINTER) row_status,

 0);

/* ... */

If the call to SQLFetchScroll() does not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO the the contents of the row status buffer is undefined,
otherwise the following values are returned:

Row status array value Description

SQL_ROW_SUCCESS The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO
The row was successfully fetched. However, a warning
was returned about the row.

SQL_ROW_ERROR An error occurred while fetching the row.

SQL_ROW_NOROW The rowset overlapped the end of the result set and no
row was returned that corresponded to this element of the
row status array.

ODBC defines the following values as well, but DB2 CLI does not return them:

 ¹ SQL_ROW_UPDATED
 ¹ SQL_ROW_DELETED
 ¹ SQL_ROW_ADDED
 ¹ SQL_ROW_UPDATED

In Figure 8 on page 55, the first 3 rows of the row status array would contain the value
SQL_ROW_SUCCESS; the remaining 7 rows would contain SQL_ROW_NOROW.

Typical Scrollable Cursors Application
Each application that will make use of scrollable cursors must complete the following
steps, in the following order:

1. Set Up the Environment
The following additional statement attributes are required when using scrollable cursors
in DB2 CLI applications. See “SQLSetStmtAttr - Set Options Related to a Statement” on
page 589 for complete details.

Setting the Rowset size
Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of
rows that you want returned from each call to SQLFetchScroll().

The default value is 1.

56 CLI Guide and Reference

Type of scrollable cursor
DB2 CLI only supports static, read-only cursors. Set the
SQL_ATTR_CURSOR_TYPE statement attribute to SQL_CURSOR_STATIC.
ODBC defines other scrollable cursors types, but they cannot be used with DB2
CLI.

This value must be set or the default value of SQL_CURSOR_FORWARD_ONLY
will be used.

Location to store number of rows returned
The application needs a way to determine how many rows were returned in the
rowset from each call to SQLFetchScroll(). The number of rows returned in the
rowset can at times be less than the maximum size of the rowset which was set
using SQL_ATTR_ROW_ARRAY_SIZE.

Set the SQL_ATTR_ROWS_FETCHED_PTR statement attribute as a pointer to a
SQLUINTEGER variable. This variable will then contain the number of rows
returned in the rowset after each call to SQLFetchScroll().

Array to use for the row status
Set the SQL_ATTR_ROW_STATUS_PTR statement attribute as a pointer to the
SQLUSMALLINT array that is used to store the row status. This array will then be
updated after each call to SQLFetchScroll().

For more information see “Row Status Array” on page 55.

WIll bookmarks be used?
If you plan on using bookmarks in your scrollable cursor then you must set the
SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE.

The following example demonstrates the required calls to SQLSetStmtAttr():

 Chapter 3. Using Advanced Features 57

/* CLI Sample: sfetch.c */

/* ... */

/* Set the number of rows in the rowset */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) ROWSET_SIZE,

 0);

 CHECK_STMT(hstmt, rc);

/* Set the SQL_ATTR_ROWS_FETCHED_PTR statement attribute to */

/* point to the variable numrowsfetched: */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

 &numrowsfetched,

 0);

 CHECK_STMT(hstmt, rc);

/* Set a pointer to the array to use for the row status */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

 (SQLPOINTER) row_status,

 0);

 CHECK_STMT(hstmt, rc);

/* Set the cursor type */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_CURSOR_TYPE,

 (SQLPOINTER) SQL_CURSOR_STATIC,

 0);

 CHECK_STMT(hstmt, rc);

/* Indicate that we will use bookmarks by setting the */

/* SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE: */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_USE_BOOKMARKS,

 (SQLPOINTER) SQL_UB_VARIABLE,

 0);

 CHECK_STMT(hstmt, rc);

/* ... */

2. Execute SQL SELECT Statement and Bind the Results
Follow the usual DB2 CLI process for executing an SQL statement and binding the
result set. The application can call SQLRowCount() to determine the number of rows in

58 CLI Guide and Reference

the overall result set. Scrollable cursors support the use of both column wise and row
wise binding. The CLI sample program sfetch.c demonstrates the use of both methods.

3. Fetch a Rowset of Rows at a time from the Result Set
At this point the application can read information from the result set using the following
steps:

1. Use SQLFetchScroll() to fetch a rowset of data from the result set. The
FetchOrientation argument is used to indicate the location of the rowset in the
result set. See “Specifying the Rowset Returned from the Result Set” on page 52
for more details.

A typical call to SQLFetchScroll() to retrieve the first rowset of data would be as
follows:

SQLFetchScroll(hstmt, SQL_FETCH_FIRST, 0);

2. Calculate the number of rows returned in the result set. This value is set
automatically after each call to SQLFetchScroll(). In the example above we set the
statement attribute SQL_ATTR_ROWS_FETCHED_PTR to the variable
numrowsfetched which will therefore contain the number of rows fetched after each
SQLFetchScroll() call.

If you have set the SQL_ATTR_ROW_STATUS_PTR statement attribute then the
row status array will also be updated for each possible row in the rowset. For more
information see “Row Status Array” on page 55.

3. Display or manipulate the data in the rows returned.

4. Free the Statement which then Closes the Result Set
Once the application has finished retrieving information it should follow the usual DB2
CLI process for freeing a statement handle.

Using Bookmarks with Scrollable Cursors
You can save a pointer to any row in the result set; a bookmark. The application can
then use that bookmark as a relative position to retrieve a rowset of information. You
can retrieve a rowset starting from the bookmarked row, or specify a positive or
negative offset.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you can
obtain the bookmark value from column 0 using SQLGetData(). In most cases you will
not want to bind column 0 and retrieve the bookmark value for every row, but use
SQLGetData() to retrieve the bookmark value for the specific row you require.

A bookmark is only valid within the result set in which it was created. The bookmark
value will be different if you select the same row from the same result set in two
different cursors.

The only valid comparison is a byte-by-byte comparison between two bookmark values
obtained from the same result set. If they are the same then they both point to the
same row. Any other mathematical calculations or comparisons between bookmarks will

 Chapter 3. Using Advanced Features 59

not provide any useful information. This includes comparing bookmark values within a
result set, and between result sets.

Typical Bookmark Usage
To make use of bookmarks the following steps must be followed in addition to the steps
described in “Typical Scrollable Cursors Application” on page 56.

Set up the Environment: To use bookmarks you must set the
SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. This is in
addition to the other statement attributes required for scrollable cursors.

ODBC defines both variable and fixed-length bookmarks. DB2 CLI only supports the
newer, variable-length bookmarks.

Get the Bookmark Value from the Desired Row in a Rowset: The application must
execute the SQL SELECT statement and use SQLFetchScroll() to retrieve a rowset
with the desired row. SQLSetPos() is then used to position the cursor within the
rowset. Finally, the bookmark value is obtained from column 0 using SQLGetData() and
stored in a variable.

Set the Bookmark Value Statement Attribute: The statement attribute
SQL_ATTR_FETCH_BOOKMARK_PTR is used to store the location for the next call to
SQLFetchScroll() that uses a bookmark.

Once you have the bookmark value using SQLGetData() (the variable abookmark
below), call SQLSetStmtAttr() as follows:

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_FETCH_BOOKMARK_PTR,

 (SQLPOINTER) abookmark,

 0);

Retrieve a Rowset Based on the Bookmark: Once the bookmark value is stored,
the application can continue to use SQLFetchScroll() to retrieve data from the result
set.

The application can then move throughout the result set, but still retrieve a rowset
based on the location of the bookmarked row at any point before the cursor is closed.

The following call to SQLFetchScroll() will retrieve a rowset starting with the
bookmarked row:

rc = SQLFetchScroll(hstmt, SQL_FETCH_BOOKMARK, 0);

The value 0 specifies the offset. You would specify -3 to begin the rowset 3 rows before
the bookmarked row, or specify 4 to begin 4 rows after.

Note that the variable used to store the bookmark value is not specified in the
SQLFetchScroll() call. It was set in the previous step using the statement attribute
SQL_ATTR_FETCH_BOOKMARK_PTR.

60 CLI Guide and Reference

Sending/Retrieving Long Data in Pieces
When manipulating long data, it may not be feasible for the application to load the
entire parameter data value into storage at the time the statement is executed, or when
the data is fetched from the database. A method has been provided to allow the
application to handle the data in a piecemeal fashion. The technique to send long data
in pieces is called Specifying Parameter Values at Execute Time because it can also be
used to specify values for fixed size non-character data types such as integers.

An application can also use the SQLGetSubString() function to retrieve a portion of a
large object value. See Figure 16 on page 98 in “Using Large Objects” on page 95 for
details.

Specifying Parameter Values at Execute Time
A bound parameter for which value is prompted at execution time instead of stored in
memory before calling SQLExecute() or SQLExecDirect() is called a data-at-execute
parameter. To indicate such a parameter on an SQLBindParameter() call, the
application:

¹ Sets the input data length pointer to point to a variable that, at execute time, will
contain the value SQL_DATA_AT_EXEC.

¹ If there is more than one data-at-execute parameter, sets each input data pointer
argument to some value that it will recognize as uniquely identifying the field in
question.

If there are any data-at-execute parameters when the application calls SQLExecDirect()

or SQLExecute(), the call returns with SQL_NEED_DATA to prompt the application to
supply values for these parameters. The application responds as follows:

1. It calls SQLParamData() to conceptually advance to the first such parameter.
SQLParamData() returns SQL_NEED_DATA and provides the contents of the input
data pointer argument specified on the associated SQLBindParameter() call to help
identify the information required.

2. It calls SQLPutData() to pass the actual data for the parameter. Long data can be
sent in pieces by calling SQLPutData() repeatedly.

3. It calls SQLParamData() again after it has provided the entire data for this
data-at-execute parameter. If more data-at-execute parameters exist,
SQLParamData() again returns SQL_NEED_DATA and the application repeats steps
2 and 3 above.

When all data-at-execute parameters have been assigned values, SQLParamData()

completes execution of the SQL statement and produces a return value and diagnostics
as the original SQLExecDirect() or SQLExecute() would have produced. The right side
of Figure 9 on page 63 illustrates this flow.

While the data-at-execution flow is in progress, the only DB2 CLI functions the
application can call are:

¹ SQLParamData() and SQLPutData() as given in the sequence above.

 Chapter 3. Using Advanced Features 61

¹ The SQLCancel() function which is used to cancel the flow and force an exit from
the loop(s) on the right side of Figure 9 on page 63 without executing the SQL
statement.

¹ The SQLGetDiagRec() function. The application also must not end the transaction
nor set any connection attributes.

Using the parameter at execute time technique to input Large Object data may require
the creation and use of a temporary file at the client. For alternative methods to input
long data, refer to “Using Large Objects” on page 95.

Fetching Data in Pieces
Typically, based on its knowledge of a column in the result set (via SQLDescribeCol()

or prior knowledge), the application may choose to allocate the maximum memory the
column value could occupy and bind it via SQLBindCol(). However, in the case of
character and binary data, the column can be arbitrarily long. If the length of the column
value exceeds the length of the buffer the application can allocate or afford to allocate,
a feature of SQLGetData() lets the application use repeated calls to obtain in sequence
the value of a single column in more manageable pieces.

Basically, as shown on the left side of Figure 9 on page 63, a call to SQLGetData()
returns SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data
exists for this column. SQLGetData() is called repeatedly to get the remaining pieces of
data until it returns SQL_SUCCESS, signifying that the entire data have been retrieved
for this column.

The function SQLGetSubString() can also be used to retrieve a specific portion of a
large object value. See “SQLGetSubString - Retrieve Portion of A String Value” on
page 457 for more information. For other alternative methods to retrieve long data,
refer to “Using Large Objects” on page 95.

62 CLI Guide and Reference

Figure 9. Piecewise Input and Retrieval

Piecewise Input and Retrieval Example
For an example of piecewise input of an image blob refer to picin2.c, shown in
“Example” on page 513.

For an example of piecewise retrieval of an image blob refer to showpic2.c, shown in
“Example” on page 372.

Using Arrays to Input Parameter Values
For some data entry and update applications (especially graphical), users may often
insert, delete, or change many cells in a data entry form and then ask for the data to be
sent to the database. For these situations of bulk insert, delete, or update, DB2 CLI
provides an array input method to save the application from having to call SQLExecute()

 Chapter 3. Using Advanced Features 63

repeatedly on the same INSERT, DELETE, or UPDATE statement. In addition, there is
significant savings in network flows.

There are two ways an application can bind the parameter markers in an SQL
statement to arrays:

¹ Column-Wise Array Insert (uses column-wise binding): A different array is bound to
each parameter.

¹ Row-Wise Array Insert (uses row-wise binding): A structure is created to store a
complete set of parameters for a statement. An array of these structures is created
and bound to the parameters. Parameter binding offsets (described in the next
section) can only be used with row-wise bindings.

SQLBindParameter() is still used to bind buffers to parameters, the only difference is
that the addresses passed are array addresses, not single-variable addresses. The
application must also set the SQL_ATTR_PARAM_BIND_TYPE statement attribute to
specify whether column-wise or row-wise binding will be used.

Column-Wise Array Insert
This method involves the binding of parameter marker(s) to array(s) of storage locations
via the SQLBindParameter() call. For character and binary input data, the application
uses the maximum input buffer size argument (BufferLength) on SQLBindParameter()
call to indicate to DB2 CLI the location of values in the input array. For other input data
types, the length of each element in the array is assumed to be the size of the C data
type. The statement attribute SQL_ATTR_PARAMSET_SIZE must be set (with a call to
SQLSetStmtAttr()) to the size of the array before the execution of the SQL statement.

Suppose for Figure 10 on page 65 there is an application that allows the user to
change values in the OVERTIME_WORKED and OVERTIME_PAID columns of a time
sheet data entry form. Also suppose that the primary key of the underlying
EMPLOYEE table is EMPLOY_ID. The application can then request to prepare the
following SQL statement:

UPDATE EMPLOYEE SET OVERTIME_WORKED= ? and OVERTIME_PAID= ?

 WHERE EMPLOY_ID=?

When the user has entered all the changes, the application counts that n rows are to
change and allocates m=3 arrays to store the changed data and the primary key. Then
it calls SQLBindParameter() to bind the three parameter markers to the location of three
arrays in memory. Next it sets the statement attribute SQL_ATTR_PARAMSET_SIZE
(with a call to SQLSetStmtAttr()) to specify the number of rows to change (the size of
the array). Then it calls SQLExecute() once and all the updates are sent to the
database. This is the flow shown on the right side of Figure 10 on page 65.

The basic method is shown on the left side of Figure 10 on page 65 where
SQLBindParameter() is called to bind the three parameter markers to the location of
three variables in memory. SQLExecute() is called to send the first set of changes to the
database. The variables are updated to reflect values for the next row of changes and
again SQLExecute() is called. Note that this method has n-1 extra SQLExecute() calls.

64 CLI Guide and Reference

...

...

...

...

Figure 10. Column-Wise Array Insert

See “Retrieving Diagnostic Information” on page 67 for information on errors that can
be accessed by the application.

Row-Wise Array Insert
The first step, when using row-wise array insert, is to create a structure that contains
two elements for each parameter. The first element for each parameter holds the
length/indicator buffer, and the second element holds the value itself. Once the
structure is defined the application must allocate an array of these structures. The
number of rows in the array corresponds to the number of values that will be used for
each parameter.

struct { SQLINTEGER La; SQLINTEGER A; /* Information for parameter A */

SQLINTEGER Lb; SQLCHAR B[4]; /* Information for parameter B */

SQLINTEGER Lc; SQLCHAR C[11]; /* Information for parameter C */

 } R[n];

 Figure 11 on page 66 shows the structure R with three parameters, in an array of n
rows. The array can then be populated with the appropriate data.

Once the array is created and populated the application must indicate that row-wise
binding is going to be used. It does this by setting the statement attribute
SQL_ATTR_PARAM_BIND_TYPE to the length of the structure created. The statement

 Chapter 3. Using Advanced Features 65

attribute SQL_ATTR_PARAMSET_SIZE must also be set to the number of rows in the
array.

Each parameter can now be bound to the appropriate two elements of the structure (in
the first row of the array) using SQLBindParameter().

/* Parameter A */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

5, 0, &R[0].A, 0, &R.La);

/* Parameter B */

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

10, 0, R[0].B, 10, &R.Lb);

/* Parameter C */

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

3, 0, R[0].C, 3, &R.Lc);

At this point the application can call SQLExecute() once and all of the updates are sent
to the database.

Figure 11. Row-Wise Array Insert

66 CLI Guide and Reference

See “Retrieving Diagnostic Information” on page 67 for information on errors that can
be accessed by the application.

Retrieving Diagnostic Information
A parameter status array can be populated after the SQLExecute() or SQLExecDirect()
call. The array contains information about the processing of each set of parameters.
See the statement attribute SQL_ATTR_PARAM_STATUS_PTR, or the corresponding
IPD descriptor header field SQL_DESC_ARRAY_STATUS_PTR, for complete details.

The statement attribute SQL_ATTR_PARAMS_PROCESSED, or the corresponding IPD
descriptor header field SQL_DESC_ROWS_PROCESSED_PTR, can be used to return
the number of sets of parameters that have been processed. See these attributes in the
description of SQLSetStmtAttr() or SQLSetDescField().

Once the application has determined what parameters had errors, it can use the
statement attribute SQL_ATTR_PARAM_OPERATION_PTR, or the corresponding APD
descriptor header field SQL_DESC_ARRAY_STATUS_PTR, (both of which point to an
array of values) to control which sets of parameters are ignored in a second call to
SQLExecute() or SQLExecDirect(). See these attributes in the description of
SQLSetStmtAttr() or SQLSetDescField().

Other Information

In environments where the underlying support allows Compound SQL (DB2 Universal
Database, or DRDA environments with DB2 Connect V 2.3 or higher), there is
additional savings in network flow. All the data in the array(s) together with the execute
request are packaged together as one flow. For DRDA environments, the underlying
Compound SQL support is always NOT ATOMIC COMPOUND SQL. This means that
execution will continue even if an error is detected with one of the intermediate array
elements. When SQLRowCount() is called after an array operation, the row count
received is the aggregate number of rows affects by all the elements in the input
parameter value array.

When connected to DB2 Universal Database, the application has the option of ATOMIC
or NOT ATOMIC COMPOUND SQL. With ATOMIC SQL (the default) either all the
elements of the array are processed successfully, or none at all. The application can
choose to select the type of COMPOUND SQL used by setting the
SQL_ATTR_PARAMOPT_ATOMIC attribute with SQLSetStmtAttr().

Note: SQLBindParam() must not be used to bind an array storage location to a
parameter marker. In the case of character or binary input data, there is no
method to specify the size of each element in the input array.

For queries with parameter markers on the WHERE clauses, an array of input values
will cause multiple sequential result sets to be generated. Each result set can be
processed before moving onto the next one by calling SQLMoreResults(). See
“SQLMoreResults - Determine If There Are More Result Sets” on page 467 for more
information and an example.

 Chapter 3. Using Advanced Features 67

Parameter Binding Offsets
When an application needs to change parameter bindings it can call
SQLBindParameter() a second time. This will change the bound parameter buffer
address and the corresponding length/indicator buffer address used. This can only be
used with row wise array inserts, but will work whether the application binds parameters
individually or using an array.

Instead of multiple calls to SQLBindParameter(), DB2 CLI also supports parameter
binding offsets. Rather than re-binding each time, an offset can be used to specify new
buffer and length/indicator addresses which will be used in a subsequent call to
SQLExecute() or SQLExecDirect().

To make use of parameter binding offsets, an application would follow these steps:

1. Call SQLBindParameter() as usual. The first set of bound parameter buffer
addresses and the corresponding length/indicator buffer addresses will act as a
template. The application will then move this template to different memory locations
using the offset.

2. Call SQLExecute() or SQLExecDirect() as usual. The values stored in the bound
addresses will be used.

3. Set up a variable to hold the memory offset value.

The statement attribute SQL_ATTR_PARAM_BIND_OFFSET_PTR points to the
address of an SQLINTEGER buffer where the offset will be stored. This address
must remain valid until the cursor is closed.

This extra level of indirection enables the use of a single memory variable to store
the offset for multiple sets of parameter buffers on different statement handles. The
application need only set this one memory variable and all of the offsets will be
changed.

4. Store an offset value (number of bytes) in the memory location pointed to by the
statement attribute set in the previous step.

The offset value is always added to the memory location of the originally bound
values. This sum must point to a valid memory address.

5. Call SQLExecute() or SQLExecDirect() again. CLI will add the offset specified
above to the locations used in the original call to SQLBindParam() to determine
where in memory to find the parameters to use.

6. Repeat steps 4 and 5 above as required.

See the section Parameter Binding Offsets on page 220 in SQLBindParam() for more
information.

Array Input Example
This example shows an array INSERT statement, for an example of an array query
statement, refer to “SQLMoreResults - Determine If There Are More Result Sets” on
page 467.

68 CLI Guide and Reference

/* From CLI sample custin.c */

/* ... */

SQLCHAR * stmt =

"INSERT INTO CUSTOMER (Cust_Num, First_Name, Last_Name) "

"VALUES (?, ?, ?)" ;

SQLINTEGER Cust_Num[] = {

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 230, 240, 250,

 } ;

SQLCHAR First_Name[][31] = {

 "EVA", "EILEEN", "THEODORE", "VINCENZO", "SEAN",

 "DOLORES", "HEATHER", "BRUCE", "ELIZABETH", "MASATOSHI",

 "MARILYN", "JAMES", "DAVID", "WILLIAM", "JENNIFER",

 "JAMES", "SALVATORE", "DANIEL", "SYBIL", "MARIA",

 "ETHEL", "JOHN", "PHILIP", "MAUDE", "BILL",

 } ;

SQLCHAR Last_Name[][31] = {

"SPENSER", "LUCCHESI", "O'CONNELL", "QUINTANA", "NICHOLLS",

 "ADAMSON", "PIANKA", "YOSHIMURA", "SCOUTTEN", "WALKER",

 "BROWN", "JONES", "LUTZ", "JEFFERSON", "MARINO",

 "SMITH", "JOHNSON", "PEREZ", "SCHNEIDER", "PARKER",

 "SMITH", "SETRIGHT", "MEHTA", "LEE", "GOUNOT",

 } ;

/* ... */

/* Prepare the statement */

rc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_PARAMSET_SIZE,

(SQLPOINTER) row_array_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_SLONG,

 SQL_INTEGER,

 0,

 0,

 Cust_Num,

 0,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 Chapter 3. Using Advanced Features 69

rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 31,

 0,

 First_Name,

 31,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 31,

 0,

 Last_Name,

 31,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecute(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Inserted %ld Rows\n", row_array_size) ;

Retrieving a Result Set into an Array
One of the most common tasks performed by an application is to issue a query
statement, and then fetch each row of the result set into application variables that have
been bound using SQLBindCol(). If the application requires that each column or each
row of the result set be stored in an array, each fetch must be followed by either a data
copy operation or a new set of SQLBindCol() calls to assign new storage areas for the
next fetch.

Alternatively, applications can eliminate the overhead of extra data copies or extra
SQLBindCol() calls by retrieving multiple rows of data (called a rowset) at a time into an
array.

Note: A third method of reducing overhead, which can be used on its own or with
arrays, is to specify a binding offset. Rather than re-binding each time, an offset
can be used to specify new buffer and length/indicator addresses which will be
used in a subsequent call to SQLFetch() or SQLFetchScroll(). This can only be
used with row offset binding, and is described in “Column Binding Offsets” on
page 73.

70 CLI Guide and Reference

When retrieving a result set into an array, SQLBindCol() is also used to assign storage
for application array variables. By default, the binding of rows is in column-wise fashion:
this is symmetrical to using SQLBindParameter() to bind arrays of input parameter
values as described in the previous section.

}
Figure 12. Column-Wise Binding

}
Figure 13. Row-Wise Binding

SQLFetchScroll() supports read-only scrollable cursors, the ability to move forwards
and backwards from any position in the result set. This can be used with both column
wise and row wise binding. See “Scrollable Cursors” on page 51 for more information.

 Chapter 3. Using Advanced Features 71

Returning Array Data for Column-Wise Bound Data
Figure 12 on page 71 is a logical view of column-wise binding. The right side of
Figure 14 on page 73 shows the function flows for column-wise retrieval.

To specify column-wise array retrieval, the application calls SQLSetStmtAttr() with the
SQL_ATTR_ROW_ARRAY_SIZE attribute to indicate how many rows to retrieve at a
time. When the value of the SQL_ATTR_ROW_ARRAY_SIZE attribute is greater than
1, DB2 CLI knows to treat the deferred output data pointer and length pointer as
pointers to arrays of data and length rather than to one single element of data and
length of a result set column.

The application then calls SQLFetchScroll() to retrieve the data. When returning data,
DB2 CLI uses the maximum buffer size argument (BufferLength) on SQLBindCol() to
determine where to store successive rows of data in the array; the number of bytes
available for return for each element is stored in the deferred length array. If the
number of rows in the result set is greater than the SQL_ATTR_ROW_ARRAY_SIZE
attribute value, multiple calls to SQLFetchScroll() are required to retrieve all the rows.

Returning Array Data for Row-Wise Bound Data
The application can also do row-wise binding which associates an entire row of the
result set with a structure. In this case the rowset is retrieved into an array of
structures, each of which holds the data in one row and the associated length fields.
Figure 13 on page 71 gives a pictorial view of row-wise binding.

To perform row-wise array retrieval, the application needs to call SQLSetStmtAttr() with
the SQL_ATTR_ROW_ARRAY_SIZE attribute to indicate how many rows to retrieve at
a time. In addition, it must call SQLSetStmtAttr() with the
SQL_ATTR_ROW_BIND_TYPE attribute value set to the size of the structure to which
the result columns will be bound. DB2 CLI treats the deferred output data pointer of
SQLBindCol() as the address of the data field for the column in the first element of the
array of these structures. It treats the deferred output length pointer as the address of
the associated length field of the column.

The application then calls SQLFetchScroll() to retrieve the data. When returning data,
DB2 CLI uses the structure size provided with the SQL_ATTR_ROW_BIND_TYPE
attribute to determine where to store successive rows in the array of structures.

Figure 14 on page 73 shows the required functions for each method. The left side
shows n rows being selected, and retrieved one row at a time into m application
variables. The right side shows the same n rows being selected, and retrieved directly
into an array.

¹ The diagram shows m columns bound, so m calls to SQLBindCol() are required in
both cases.

¹ If arrays of less than n elements had been allocated, then multiple
SQLFetchScroll() calls would be required.

72 CLI Guide and Reference

...

...

...

...

...

...

...

...

Figure 14. Array Retrieval

Column Binding Offsets
When an application needs to change bindings (for a subsequent fetch for example) it
can call SQLBindCol() a second time. This will change the buffer address and
length/indicator pointer used.

Instead of multiple calls to SQLBindCol(), DB2 CLI also supports column binding offsets.
Rather than re-binding each time, an offset can be used to specify new buffer and
length/indicator addresses which will be used in a subsequent call to SQLFetch() or
SQLFetchScroll(). This can only be used with row wise binding, but will work whether
the application retrieves a single row or multiple rows at a time.

To make use of column binding offsets, an application would follow these steps:

1. Call SQLBindCol() as usual. The first set of bound data buffer and length/indicator
buffer addresses will act as a template. The application will then move this
template to different memory locations using the offset.

 Chapter 3. Using Advanced Features 73

2. Call SQLFetch() or SQLFetchScroll() as usual. The data returned will be stored in
the locations bound above.

3. Set up a variable to hold the memory offset value.

The statement attribute SQL_ATTR_ROW_BIND_OFFSET_PTR points to the
address of an SQLINTEGER buffer where the offset will be stored. This address
must remain valid until the cursor is closed.

This extra level of indirection enables the use of a single memory variable to store
the offset for multiple sets of bindings on different statement handles. The
application need only set this one memory variable and all of the offsets will be
changed.

4. Store an offset value (number of bytes) in the memory location pointed to by the
statement attribute set in the previous step.

The offset value is always added to the memory location of the originally bound
values. This sum must point to a valid memory address.

5. Call SQLFetch() or SQLFetchScroll() again. CLI will add the offset specified above
to the locations used in the original call to SQLBindCol() to determine where in
memory to store the results.

6. Repeat steps 4 and 5 above as required.

See the section Column Binding Offsets on page 194 in SQLBindCol() for more
information.

Column-Wise, Row-Wise Binding Example

74 CLI Guide and Reference

/* From CLI sample ordrep.c */

/* ... */

SQLCHAR * stmt =

/* Common Table expression (or Define Inline View) */

"WITH order (ord_num, cust_num, prod_num, quantity, amount) AS ("

"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, '.'), p.units, char(l.quantity, '.')) "

"FROM ord_cust c, ord_line l, product p "

"WHERE c.ord_num = l.ord_num "

"AND l.prod_num = p.prod_num "

"AND cast (cust_num as integer) = ? "

 "), "

"totals (ord_num, total) AS ("

"SELECT ord_num, sum(decimal(amount, 10, 2)) "

"FROM order GROUP BY ord_num "

 ") "

/* The 'actual' SELECT from the inline view */

"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,10,2) amount, total "

"FROM order, totals "

"WHERE order.ord_num = totals.ord_num" ;

/* Array of customers to get list of all orders for */

SQLINTEGER Cust[] = {

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 230, 240, 250,

 } ;

/* Row-Wise (Includes buffer for both column data and length) */

typedef struct {

SQLINTEGER Ord_Num_L ;

SQLINTEGER Ord_Num ;

SQLINTEGER Cust_Num_L ;

SQLINTEGER Cust_Num ;

SQLINTEGER Prod_Num_L ;

SQLINTEGER Prod_Num ;

SQLINTEGER Quant_L ;

 SQLDOUBLE Quant ;

SQLINTEGER Amount_L ;

 SQLDOUBLE Amount ;

SQLINTEGER Total_L ;

 SQLDOUBLE Total ;

 } ord_info ;

ord_info ord_array[row_array_size] ;

SQLUINTEGER num_rows_fetched ;

SQLUSMALLINT row_status_array[row_array_size], i, j ;

/* ... */

/* Get details and total for each order Row-Wise */

 Chapter 3. Using Advanced Features 75

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_PARAMSET_SIZE,

(SQLPOINTER) row_array_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 Cust,

 0,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecDirect(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER) row_set_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set Size of One row, Used for Row-Wise Binding Only */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_BIND_TYPE,

(SQLPOINTER) sizeof(ord_info) ,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER) row_status_array,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

(SQLPOINTER) &num_rows_fetched,

76 CLI Guide and Reference

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind column 1 to the Ord_num Field of the first row in the array */

rc = SQLBindCol(hstmt,

 1,

 SQL_C_LONG,

(SQLPOINTER) & ord_array[0].Ord_Num,

 0,

 &ord_array[0].Ord_Num_L

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind remaining columns ... */

/* ... */

 /*

NOTE: This sample assumes that an order will never have more

rows than row_set_size. A check should be added below to call

SQLExtendedFetch multiple times for each result set.

 */

while (SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0) != SQL_NO_DATA) {

printf("**************************************\n") ;

printf("Orders for Customer: %ld\n", ord_array[0].Cust_Num) ;

printf("**************************************\n") ;

i = 0 ;

while (i < num_rows_fetched) {

if (row_status_array[i] == SQL_ROW_SUCCESS ||

row_status_array[i] == SQL_ROW_SUCCESS_WITH_INFO

) {

printf("\nOrder #: %ld\n", ord_array[i].Ord_Num) ;

printf(" Product Quantity Price\n") ;

printf(" -------- ---------------- ------------\n") ;

j = i ;

while (ord_array[j].Ord_Num == ord_array[i].Ord_Num) {

printf(" %8ld %16.7lf %12.2lf\n",

 ord_array[i].Prod_Num,

 ord_array[i].Quant,

 ord_array[i].Amount

) ;

 i++ ;

if (i >= num_rows_fetched) break ;

if (row_status_array[i] != SQL_ROW_SUCCESS)

if (row_status_array[i] != SQL_ROW_SUCCESS_WITH_INFO)

 break ;

 }

printf(" ============\n") ;

 printf(" %12.2lf\n",

 ord_array[j].Total

) ;

 }

 Chapter 3. Using Advanced Features 77

else i++ ;

 }

 }

 Using Descriptors
DB2 CLI stores information (data types, size, pointers, and so on) about columns in a
result set, and parameters in an SQL statement. The bindings of application buffers to
columns and parameters must also be stored. Descriptors are a logical view of this
information, and provide a way for applications to query and update this information.

Many CLI functions make use of descriptors, but the application itself does not need to
manipulate them directly.

For instance:

¹ When an application binds column data using SQLBindCol() descriptor fields are
set that completely describe the binding.

¹ A number of statement attributes correspond to the header fields of a descriptor. In
this case you can achieve the same effect calling SQLSetStmtAttr() as calling the
corresponding function SQLSetDescField() that sets the values in the descriptor
directly.

Although no database operations require direct access to descriptors, there are
situations where working directly with the descriptors will be more efficient or result in
simpler code. For instance, a descriptor that describes a row fetched from a table can
then be used to describe a row inserted back into the table.

 Descriptor Types
There are four types of descriptors, as follows:

Application Parameter Descriptor (APD)
Describes the application buffers (pointers, data types, scale, precision, length,
maximum buffer length, and so on) that are bound to parameters in an SQL
statement. If the parameters are part of a CALL statement they may be input,
ouput, or both. This information is described using the application's C data types.

Application Row Descriptor (ARD)
Describes the application buffers bound to the columns. The application may
specify different data types from those in the implementation row descriptor to
achieve data conversion of column data. This descriptor reflects any data
conversion that the application may specify.

Implementation Parameter Descriptor (IPD)
Describes the parameters in the SQL statement (SQL type, size, precision, and so
on).

¹ If the parameter is used as input, this describes the SQL data that the
database server will recive after DB2 CLI has performed any required
conversion.

78 CLI Guide and Reference

¹ If the parameter is used as output, this describes the SQL data before DB2
CLI performs any required conversion to the application's C data types.

Implementation Row Descriptor (IRD)
Describes the row of data from the result set before DB2 CLI performs any
required data conversion to the application's C data types.

The only difference between the four types of descriptors described above is how they
are used. One of the benefits of descriptors is that a single descriptor can be used to
serve multiple purposes. For instance, a row descriptor in one statement can be used
as a parameter descriptor in another statement.

As soon as a descriptor exists it is either an application descriptor or an implementation
descriptor. This is the case even if the descriptor has not yet been used in a database
operation. If the descriptor is allocated by the application using SQLAllocHandle() then
it is an application descriptor.

Values Stored in a Descriptor
Each descriptor contains both header fields and record fields. These fields together
completely describe the column or parameter.

 Header Fields
Each header field occurs once in each descriptor. Changing one of these fields affects
all columns or parameters.

Many of the following header fields correspond to a statement attribute. Setting the
header field of the descriptor using SQLSetDescField() is the same as setting the
corresponding statement attribute using SQLSetStmtAttr(). The same holds true for
retrieving the information using SQLGetDescField() or SQLGetStmtAttr(). If your
application does not already have a descriptor handle allocated then it is more efficient
to use the statement attribute calls instead of allocating the descriptor handle then
using the descriptor calls.

For more information about each of these fields see Header Fields on page 553 in
SQLSetDescField().

The descriptor header field SQL_DESC_COUNT is the one-based index of the
highest-numbered descriptor record that contains information. DB2 CLI automatically
updates this field (and the physical size of the desciptor) as columns or parameters are
bound and unbound. The initial value of SQL_DESC_COUNT is 0 when a descriptor is
first allocated.

Table 8. Header fields

SQL_DESC_ALLOC_TYPE SQL_DESC_BIND_TYPEa

SQL_DESC_ARRAY_SIZEa SQL_DESC_COUNT
SQL_DESC_ARRAY_STATUS_PTRa SQL_DESC_ROWS_PROCESSED_PTRa

SQL_DESC_BIND_OFFSET_PTRa

Note:

a Header field that corresponds to a statement attribute.

 Chapter 3. Using Advanced Features 79

 Descriptor Records
Zero or more descriptor records are contained in a single descriptor. As new columns
or parameters are bound, new desciptor records are added to the descriptor. When a
column or parameter is unbound, the descriptor record is removed.

Table 9 lists the fields in a descriptor record. They describe a column or parameter,
and occur once in each descriptor record.

For more information about each of these fields see Record Fields on page 558 in
SQLSetDescField().

Deferred Fields: Deferred fields are created when the descriptor header or a
descriptor record is created. The addresses of the defined variables are stored but not
used until a later point in the application. The application must not deallocate or discard
these variables between the time it associates them with the fields and the time CLI
reads or writes them.

The following table lists the deferred fields and the meaning or a null pointer where
applicable:

Table 9. Record Fields

SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LOCAL_TYPE_NAME
SQL_DESC_BASE_COLUMN_NAME SQL_DESC_NAME
SQL_DESC_BASE_TABLE_NAME SQL_DESC_NULLABLE
SQL_DESC_CASE_SENSITIVE SQL_DESC_OCTET_LENGTH
SQL_DESC_CATALOG_NAME SQL_DESC_OCTET_LENGTH_PTR
SQL_DESC_CONCISE_TYPE SQL_DESC_PARAMETER_TYPE
SQL_DESC_DATA_PTR SQL_DESC_PRECISION
SQL_DESC_DATETIME_INTERVAL_CODE SQL_DESC_SCALE
SQL_DESC_DATETIME_INTERVAL_PRECISION SQL_DESC_SCHEMA_NAME
SQL_DESC_DISPLAY_SIZE SQL_DESC_SEARCHABLE
SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TABLE_NAME
SQL_DESC_INDICATOR_PTR SQL_DESC_TYPE
SQL_DESC_LABEL SQL_DESC_TYPE_NAME
SQL_DESC_LENGTH SQL_DESC_UNNAMED
SQL_DESC_LITERAL_PREFIX SQL_DESC_UNSIGNED
SQL_DESC_LITERAL_SUFFIX SQL_DESC_UPDATABLE

80 CLI Guide and Reference

Bound Descriptor Records: The SQL_DESC_DATA_PTR field in each descriptor
record points to a variable that contains the parameter value (for APDs) or the column
value (for ARDs). This is a deferred field that defaults to null. Once the column or
parameter is bound it points to the parameter or column value. At this point the
descriptor record is said to be bound.

Application Parameter Descriptors (APD)
Each bound record constitutes a bound parameter. The application must bind a
parameter for each input and output parameter marker in the SQL statement
before the statement is executed.

Application Row Descriptors (ARD)
Each bound record relates to a bound column.

Consistency Check: A consistency check is performed automatically whenever an
application sets the SQL_DESC_DATA_PTR field of the APD or ARD. The check
ensures that various fields are consistent with each other, and that appropriate data
types have been specified.

To force a consistency check of IPD fields, the application can set the
SQL_DESC_DATA_PTR field of the IPD. This setting is only used to force the
consistency check. The value is not stored and cannot be retrieved by a call to
SQLGetDescField() or SQLGetDescRec().

A consistency check cannot be performed on an IRD.

See Consistency Checks on page 569 in SQLSetDescRec() for more information on the
consistency check.

Table 10. Deferred Fields

Field Meaning of Null value

SQL_DESC_DATA_PTR The record is unbound.

SQL_DESC_INDICATOR_PTR (none)

SQL_DESC_OCTET_LENGTH_PTR
(ARD and APD only)

¹ ARD: The length information for that column is not returned.
¹ APD: If the parameter is a character string, the driver

assumes that string is null-terminated. For output
parameters, a null value in this field prevents the driver from
returning length information. (If the SQL_DESC_TYPE field
does not indicate a character-string parameter, the
SQL_DESC_OCTET_LENGTH_PTR field is ignored.)

SQL_DESC_ARRAY_STATUS_PTR
(multirow fetch only)

A multirow fetch failed to return this component of the per-row
diagnostic information.

SQL_DESC_ROWS_PROCESSED_PTR
(multirow fetch only)

(none)

Allocating and Freeing Descriptors
Descriptors are allocated in one of two ways:

 Chapter 3. Using Advanced Features 81

Implicitly Allocated Descriptors
When a statement handle is allocated, a set of four descriptors are implicitly
allocated. When the statement handle is freed, all implicitly allocated descriptors
on that handle are freed as well.

To obtain handles to these implicitly allocated descriptors an application can call
SQLGetStmtAttr(), passing the statement handle and an Attribute value of:

 ¹ SQL_ATTR_APP_PARAM_DESC (APD)
 ¹ SQL_ATTR_APP_ROW_DESC (ARD)
 ¹ SQL_ATTR_IMP_PARAM_DESC (IPD)
 ¹ SQL_ATTR_IMP_ROW_DESC (IRD)

Explicitly Allocated Descriptors
An application can explicitly allocate application descriptors. It is not possible,
however, to allocate implementation descriptors.

An application descriptor on a connection can be explicitly allocated at any time it
is connected to the database. This is done by calling SQLSetStmtAttr(), passing
the statement handle and an Attribute value of:

 ¹ SQL_ATTR_APP_PARAM_DESC (APD)
 ¹ SQL_ATTR_APP_ROW_DESC (ARD)

In this case the explicitly specified allocated descriptor will be used rather than the
implicitly allocated descriptor.

An explicitly allocated descriptor can be associated with more than one statement.

Initialization of Fields
When an application row descriptor is allocated, its fields receive the initial values
indicated in the Initialization of Descriptor Fields on page 546 section of
SQLSetDescField(). The SQL_DESC_TYPE field is set to SQL_DEFAULT which
provides for a standard treatment of database data for presentation to the application.
The application may specify different treatment of the data by setting fields of the
descriptor record.

The initial value of the SQL_DESC_ARRAY_SIZE header field is 1. To enable multirow
fetch, the application can set this value in an ARD to specify the number of rows in a
rowset. See “Scrollable Cursors” on page 51 for information about rowsets in a
scrollable cursor.

There are no default values for the fields of an IRD. The fields are set when there is a
prepared or executed statement.

The following fields in an IPD are undefined until they have been automatically
populated by a call to SQLPrepare():

 ¹ SQL_DESC_CASE_SENSITIVE
 ¹ SQL_DESC_FIXED_PREC_SCALE
 ¹ SQL_DESC_TYPE_NAME
 ¹ SQL_DESC_DESC_UNSIGNED
 ¹ SQL_DESC_LOCAL_TYPE_NAME

82 CLI Guide and Reference

Automatic Population of the IPD
There are times when the application will need to discover information about the
parameters of a prepared SQL statement. A good example is when an ad-hoc query is
prepared; the application will not know anything about the parameters in advance. If the
application enables automatic population of the IPD, by setting the
SQL_ATTR_ENABLE_AUTO_IPD statement attribute to SQL_TRUE (using
SQLSetStmtAttr()), then the fields of the IPD are automatically populated to describe
the parameter. This includes the data type, precision, scale, and so on (the same
information that SQLDescribeParam() returns). The application can use this information
to determine if data conversion is required, and which application buffer is the most
appropriate to bind the parameter to.

Automatic population of the IPD involves some overhead. If it is not necessary for this
information to be automatically gathered by the CLI driver then the
SQL_ATTR_ENABLE_AUTO_IPD statement attribute should be set to SQL_FALSE.
This is the default setting, and the application should return it to this value when it is no
longer needed.

When automatic population of the IPD is active, each call to SQLPrepare() causes the
fields of the IPD to be updated. The resulting descriptor information can be retrieved by
calling the following functions:

 ¹ SQLGetDescField()

 ¹ SQLGetDescRec()

 ¹ SQLDescribeParam()

 Freeing Descriptors
Explicitly Allocated Descriptors

When an explicitly allocated descriptor is freed, all statement handles to which the
freed descriptor applied automatically revert to the original descriptors implicitly
allocated for them.

Explicitly allocated descriptors can be freed in one of two ways:

¹ by calling SQLFreeHandle()with a HandleType of SQL_HANDLE_DESC
¹ by freeing the connection handle that the descriptor is associated with

Implicitly Allocated Descriptors
An implicitly allocated descriptor can be freed in one of the following ways:

¹ by calling SQLDisconnect() which drops any statements or descriptors open
on the connection

¹ by calling SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to
free the statement handle and all of the implicitly allocated descriptors
associated with the statement

An implicitly allocated descriptor cannot be freed by calling SQLFreeHandle() with
a HandleType of SQL_HANDLE_DESC.

 Chapter 3. Using Advanced Features 83

Getting, Setting, and Copying Descriptor Fields
The following sections describe manipulating descriptors using descriptor handles. The
final section, “Accessing Descriptors without using a Handle” on page 85 describes
how to manipulate descriptor values by calling CLI functions that do not use descriptor
handles.

The handle of an explicitly allocated descriptor is returned in the OutputHandlePtr
argument when the application calls SQLAllocHandle() to allocate the descriptor.

The handle of an implicitly allocated descriptor is obtained by calling SQLGetStmtAttr()

with either SQL_ATTR_IMP_PARAM_DESC or SQL_ATTR_IMP_ROW_DESC.

Retrieving Values in Descriptor Fields
See “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
for information on how to obtain a single field of a descriptor record.

See “SQLGetDescRec - Get Multiple Field Settings of Descriptor Record” on page 378
for information on how to obtain the settings of multiple descriptor fields that affect the
data type and storage of column or parameter data.

Setting Values of Descriptor Fields
This section deals with how to set the values of descriptor fields using descriptor
handles. You can also set many of these fields without using descriptor handles; see
“Accessing Descriptors without using a Handle” on page 85 for more information.

Two methods can be used to set descriptor fields, one field at a time or multiple fields
at a time:

Setting Descriptor Fields Individually: Some fields of a descriptor are read-only, but
the others can be set using the function SQLSetDescField(). See the following sections
for specific details on each field that can be set:

¹ Header Fields on page 553
¹ Record Fields on page 558

Record and header fields are set differently using SQLSetDescField():

Header fields
The call to SQLSetDescField() passes the header field to be set and a record
number of 0. The record number is ignored since there is only one header field per
descriptor. In this case the record number of 0 does not indicate the bookmark
field.

Record fields
The call to SQLSetDescField() passes the record field to be set and a record
number of 1 or higher, or 0 to indicate the bookmark field.

The application must follow the steps defined in Sequence of Setting Descriptor Fields
on page 546 when setting individual fields of a descriptor. Setting some fields will
cause DB2 CLI to automatically set other fields. A consistency check will take place

84 CLI Guide and Reference

after the application follows the defined steps. This will ensure that the values in the
descriptor fields are consistent. See “Consistency Check” on page 81 for more
information.

If a function call that would set a descriptor fails, the contents of the descriptor fields
are undefined after the failed function call.

Setting Multiple Descriptor Fields at a time: A predefined set of descriptor fields
can be set with one call rather than setting individual fields one at a time.
SQLSetDescRec() sets the following fields for a single column or parameter:

 ¹ SQL_DESC_TYPE
 ¹ SQL_DESC_OCTET_LENGTH
 ¹ SQL_DESC_PRECISION
 ¹ SQL_DESC_SCALE
 ¹ SQL_DESC_DATA_PTR
 ¹ SQL_DESC_OCTET_LENGTH_PTR
 ¹ SQL_DESC_INDICATOR_PTR

(SQL_DESC_DATETIME_INTERVAL_CODE is also defined by ODBC but is not
supported by DB2 CLI.)

See “SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data”
on page 568 for more information.

 Copying Descriptors
One benefit of descriptors is the fact that a single descriptor can be used for multiple
purposes. For instance, an ARD on one statement handle can be used as an APD on
another statement handle.

There will be other instances, however, where the application will want to make a copy
of the original descriptor, then modify certain fields. In this case SQLCopyDesc() is used
to overwrite the fields of an existing descriptor with the values from another descriptor.
Only fields that are defined for both the source and target descriptors are copied (with
the exception of the SQL_DESC_ALLOC_TYPE field which cannot be changed).

Fields can be copied from any type of descriptor, but can only be copied to an
application descriptor (APD or ARD) or an IPD. Fields cannot be copied to an IRD. The
descriptor's allocation type will not be changed by the copy procedure (again, the
SQL_DESC_ALLOC_TYPE field cannot be changed).

See “SQLCopyDesc - Copy Descriptor Information Between Handles” on page 268 for
complete details on copying descriptors.

Accessing Descriptors without using a Handle
As was mentioned at the beginning of this section on descriptors, many CLI functions
make use of descriptors, but the application itself does not need to manipulate them
directly. Instead, the application can use a different function which will set or retrieve
one or more fields of a descriptor as well as perform other functions. This category of

 Chapter 3. Using Advanced Features 85

CLI functions are called concise functions. SQLBindCol() is an example of a concise
function that manipulates descriptor fields.

In addition to manipulating multiple fields, concise functions are called without explicitly
specifying the descriptor handle. The application does not even need to retrieve the
descriptor handle to use a concise function.

The following types of concise functions exist::

¹ The functions SQLBindCol() and SQLBindParameter() bind a column or parameter
by setting the descriptor fields that correspond to their arguments. These functions
also perform other tasks unrelated to descriptors.

If required, an application can also use the descriptor calls directly to modify
individual details of a binding. In this case the descriptor handle must be retrieved,
and the functions SQLSetDescField() or SQLSetDescRec() called to modify the
binding.

¹ The following functions always retrieve values in descriptor fields:

 – SQLColAttribute()

 – SQLDescribeCol()

 – SQLDescribeParam()

 – SQLNumParams()

 – SQLNumResultCols()

¹ The functions SQLSetDescRec() and SQLGetDescRec() set or get the multiple
descriptor fields that affect the data type and storage of column or parameter data.
A single call to SQLSetDescRec() can be used to change the values used in the
binding of a column or parameter.

¹ The functions SQLSetStmtAttr() and SQLGetStmtAttr() modify or return descriptor
fields in some cases, depending on which statement attribute is specified. See
“Values Stored in a Descriptor” on page 79 for details.

 Descriptor Sample

86 CLI Guide and Reference

/* From CLI sample descrptr.c */

/* ... */

SQLCHAR * sqlstmt =

"SELECT deptname, location from org where division = ? " ;

/* ... */

/* macro to initalize server, uid and pwd */

 INIT_UID_PWD ;

/* allocate an environment handle */

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

/* allocate a connect handle, and connect */

rc = DBconnect(henv, &hdbc) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Use SQLGetStmtAttr() to get implicit parameter descriptor handle */

rc = SQLGetStmtAttr (hstmt,

 SQL_ATTR_IMP_PARAM_DESC,

 &hIPDdesc,

 SQL_IS_POINTER,

 NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Use SQLGetStmtAttr() to get implicit row descriptor handle */

rc = SQLGetStmtAttr (hstmt,

 SQL_ATTR_IMP_ROW_DESC,

 &hIRDdesc,

 SQL_IS_POINTER,

 NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Call SQLGetDescField() to see how the header field */

/* SQL_DESC_ALLOC_TYPE is set. */

rc = SQLGetDescField(hIPDdesc,

0, /* ignored for header fields */

 SQL_DESC_ALLOC_TYPE,

&desc_smallint, /* The result */

 SQL_IS_SMALLINT,

NULL); /* ignored */

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Print the descriptor information */

printf("The IPD header descriptor field SQL_DESC_ALLOC_TYPE is %s\n",

 ALLOCTYPES[desc_smallint]);

/* prepare statement for multiple use */

rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

 Chapter 3. Using Advanced Features 87

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* bind division to parameter marker in sqlstmt */

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 10,

 0,

 division.s,

 11,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* bind deptname to first column in the result set */

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,

 &deptname.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location.s, 14,

 &location.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Call SQLGetDescField() to see how the descriptor record */

/* field SQL_DESC_PARAMETER_TYPE is set */

rc = SQLGetDescField(hIPDdesc,

1, /* Look at the parameter */

 SQL_DESC_PARAMETER_TYPE,

&desc_smallint, /* The result */

 SQL_IS_SMALLINT,

NULL); /* ignored */

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("The IPD record descriptor field SQL_DESC_PARAMETER_TYPE is %s\n",

 PARAMTYPE[desc_smallint]);

 strcpy(division.s, "Eastern");

rc = SQLExecute(hstmt);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\nDepartments in %s Division:\n", division.s);

 printf("Department Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("%-14.14s %-13.13s \n", deptname.s, location.s) ;

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

88 CLI Guide and Reference

/* Print out some implementation row descriptor fields */

/* from the last SQLFetch() above */

for (colCount = 1; colCount <=2; colCount++) {

printf("\nInformation for column %i\n",colCount);

/* Call SQLGetDescField() to see how the descriptor record */

/* field SQL_DESC_TYPE_NAME is set */

rc = SQLGetDescField(hIRDdesc,

 colCount,

SQL_DESC_TYPE_NAME, /* record field */

desc_char, /* The result */

 25,

NULL); /* ignored */

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf(" - IRD record descriptor field SQL_DESC_TYPE_NAME is %s\n",

 desc_char);

/* Call SQLGetDescField() to see how the descriptor record */

/* field SQL_DESC_LABEL is set */

rc = SQLGetDescField(hIRDdesc,

 colCount,

SQL_DESC_LABEL, /* record field */

desc_char, /* The result */

 25,

NULL); /* ignored */

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf(" - IRD record descriptor field SQL_DESC_LABEL is %s\n",

 desc_char);

} /* End of the for statement */

Using Compound SQL
Compound SQL allows multiple statements to be grouped into a executable single
block. This block of statements, together with any input parameter values, can then be
executed in a single continuous stream, reducing the execution time and network traffic.
Compound SQL is most often used to efficiently execute a series of INSERT, UPDATE
and DELETE statements.

Any SQL statement that can be prepared dynamically, other than a query, can be
executed as a statement inside a compound statement. Statements within a Compound
SQL statement are referred to as sub-statements. Compound SQL does not guarantee
the order in which the sub-statements are executed, therefore there must be no
dependency between the statements.

Compound SQL statements cannot be nested. The authorization ID of the Compound
SQL statement must be the appropriate authorization on all the individual
sub-statements contained within the Compound SQL statement.

 Chapter 3. Using Advanced Features 89

Compound SQL is supported when connected to DB2 Universal Database, or in DRDA
environments with DB2 Connect V 2.3 or higher.

ATOMIC and NOT ATOMIC Compound SQL
A Compound SQL statement block is specified by surrounding the sub-statements by a
BEGIN COMPOUND statement and an END COMPOUND statement. The BEGIN
COMPOUND syntax is shown below:

55─ ─BEGIN COMPOUND─ ──┬ ┬─ATOMIC───── ─STATIC─ ──┬ ┬──────────────────────────────────5%
 └ ┘─NOT ATOMIC─ └ ┘─STOP AFTER FIRST──?──STATEMENTS─

ATOMIC Specifies that, if any of the sub-statements within the Compound SQL
statement fails, then all changes made to the database by any of the
sub-statements are undone. ATOMIC is not supported in DRDA
environments.

NOT ATOMIC Specifies that, regardless of the failure of any sub-statements, the
Compound SQL statement will not undo any changes made to the
database by the other sub-statements.

STATIC Specifies that input variables for all sub-statements retain their original
value. If the same variable is set by more than one sub-statement, the
value of that variable following the Compound SQL statement is the value
set by the last sub-statement.

STOP AFTER FIRST ? STATEMENTS Specifies that only a certain number of
sub-statements are to be executed. If this clause is omitted, all the
sub-statements are executed.

The END COMPOUND syntax is shown below:

55─ ─END COMPOUND─ ──┬ ┬──────── ──5%
 └ ┘─COMMIT─

Specifying the COMMIT option will commit all the sub-statements if they executed
successfully. The COMMIT applies to the current transaction, including statements that
precede the compound statement. If COMMIT is specified, and the connection is a
coordinated distributed connection (SQL_COORDINATED_TRANS), an error will be
returned (SQLSTATE of 25000).

If the COMMIT option is not specified after END COMPOUND, the sub-statements will
not be committed unless the application is operating under auto-commit mode, in which
case the commit will be issued at the END COMPOUND. For information on the
auto-commit mode, refer to “Commit or Rollback” on page 22.

Figure 15 on page 92 shows the general sequence of function calls required to
execute a compound SQL statement. Note that:

¹ SQLPrepare() and SQLExecute() can be used in place of SQLExecDirect().

90 CLI Guide and Reference

¹ The BEGIN COMPOUND and END COMPOUND statements are executed with the
same statement handle.

¹ Each sub-statement must have its own statement handle.

¹ All statement handles must belong to the same connection, and have the same
isolation level.

¹ The sub-statements should be, but do not need to be, prepared before the BEGIN
COMPOUND statement, especially in DRDA environments where some
optimization may be possible to reduce network flow.

¹ The statement handles must remain allocated until the END COMPOUND
statement is executed.

¹ The only functions that may be called using the statement handles allocated for the
compound sub-statements are:

 – SQLAllocHandle()

 – SQLBindParameter()

 – SQLBindFileToParam()

 – SQLParamData()

 – SQLPutData()

 – SQLExecDirect(), SQLPrepare(), SQLExecute()

¹ SQLTransact() cannot be called for the same connection, or any connect requests
between BEGIN and END COMPOUND.

¹ The sub-statements may be executed in any order.

¹ SQLRowCount() (or SQLGetSQLCA()) can be called using the same statement handle
as the BEGIN, END COMPOUND statement to get an aggregate count of the rows
affected.

 Chapter 3. Using Advanced Features 91

{

Figure 15. Compound SQL

Compound SQL Error Handling
If the compound statement is ATOMIC and the END COMPOUND SQLExecDirect()

call returns:

¹ SQL_SUCCESS - all the sub-statements executed without any warnings or errors.

¹ SQL_SUCCESS_WITH_INFO - all the sub-statements executed successfully with
one or more warnings. Call SQLError() to obtain generic diagnostic information, or
call SQLGetSQLCA() to obtain the SQLCA for the entire compound SQL statement.
The statement handle used for SQLError() or SQLGetSQLCA() must the same one
used to process the BEGIN, END COMPOUND SQL.

Most of the information in the SQLCA reflects values set by the database server
when it processed the last sub-statement, such as the SQLCODE and SQLSTATE.
If one or more error occurred and none of these are of a serious nature, the

92 CLI Guide and Reference

SQLERRMC field in the SQLCA will contain information on up to a maximum of
seven of these errors.

¹ SQL_NO_DATA_FOUND - a BEGIN, END COMPOUND was executed without any
sub-statements, or none of the sub-statement affected any rows.

¹ SQL_ERROR - one or more sub-statements failed, and all sub-statements were
rolled back.

If the compound statement is NOT ATOMIC and the END COMPOUND
SQLExecDirect() call returns:

¹ SQL_SUCCESS - all sub-statements executed without any errors.

¹ SQL_SUCCESS_WITH_INFO - the COMPOUND statement executed with one or
more warnings. One or more sub-statements have returned an warning. Call
SQLError() or SQLGetSQLCA() to receive additional information on the information
on the warnings.

¹ SQL_NO_DATA_FOUND - a BEGIN, END COMPOUND was executed without any
sub-statements, or none of the sub-statement affected any rows.

¹ SQL_ERROR - the COMPOUND statement failed. At least one sub-statement
returned an error, examine the SQLCA to determine which statement(s) failed.

Note: Refer to the SQL Reference for details on the contents of an SQLCA after
Compound SQL execution.

Compound SQL Example
The following example executes a compound statement consisting of 4 sub-statements
to insert rows into a new AWARDS table.

 Chapter 3. Using Advanced Features 93

/* From CLI sample compnd.c */

/* ... */

SQLCHAR * stmt[] = {

"INSERT INTO awards (id, award) "

"SELECT id, 'Sales Merit' from staff "

"WHERE job = 'Sales' AND (comm/100 > years)",

"INSERT INTO awards (id, award) "

"SELECT id, 'Clerk Merit' from staff "

"WHERE job = 'Clerk' AND (comm/50 > years)",

"INSERT INTO awards (id, award) "

"SELECT id, 'Best ' concat job FROM STAFF "

"WHERE comm = (SELECT max(comm) FROM staff WHERE job = 'Clerk')",

"INSERT INTO awards (id, award) "

"SELECT id, 'Best ' concat job FROM STAFF "

"WHERE comm = (SELECT max(comm) FROM STAFF WHERE job = 'Sales')",

 } ;

SQLINTEGER i ;

/* ... */

/* Prepare 4 substatements */

for (i = 1; i < 4; i++) {

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &cmhstmt[i]) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLPrepare(cmhstmt[i], stmt[i], SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, cmhstmt[i], rc) ;

 }

rc = SQLExecDirect(hstmt,

(SQLCHAR *) "BEGIN COMPOUND NOT ATOMIC STATIC",

 SQL_NTS

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Execute 4 substatements */

for (i = 1; i < 4; i++) {

rc = SQLExecute(cmhstmt[i]) ;

CHECK_HANDLE(SQL_HANDLE_STMT, cmhstmt[i], rc) ;

 }

/* Execute the COMPOUND statement (of 4 sub-statements) */

printf("Executing the COMPOUND statement (of 4 sub-statements)\n") ;

rc = SQLExecDirect(hstmt,

(SQLCHAR *) "END COMPOUND COMMIT",

 SQL_NTS

) ;

94 CLI Guide and Reference

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

for (i = 1; i < 4; i++) {

rc = SQLFreeHandle(SQL_HANDLE_STMT, cmhstmt[i]) ;

CHECK_HANDLE(SQL_HANDLE_STMT, cmhstmt[i], rc) ;

 }

Using Large Objects
The term large object and the generic acronym LOB are used to refer to any type of
large object. There are three LOB data types: Binary Large Object (BLOB), Character
Large Object (CLOB), and Double-Byte Character Large Object (DBCLOB). These LOB
data types are represented symbolically as SQL_BLOB, SQL_CLOB, SQL_DBCLOB
respectively. The list in Table 3 on page 28 contains entries for the three LOB data
types, the corresponding symbolic name, and the default C symbolic name. The LOB
symbolic constants can be specified or returned on any of the DB2 CLI functions that
take in or return an SQL data type argument (such as SQLBindParameter(),
SQLDescribeCol()).

Since LOB values can be very large, transfer of data using the piecewise sequential
method provides by SQLGetData() and SQLPutData() can be quite time consuming.
Applications dealing with such data will often do so in random access segments or via
direct file input an output.

There are many cases where an application needs to select a large object value and
operate on pieces of it, but does not need or want the entire value to be transferred
from the database server into application memory. In these cases, the application can
reference an individual LOB value via a large object locator (LOB locator).

A LOB locator is a mechanism that allows an application program to manipulate a large
object value in an efficient, random access fashion. A LOB locator is a run time
concept: it is not a persistent type and is not stored in the database; it is a mechanism
used to refer to a LOB value during a transaction and does not persist beyond the
transaction in which it was created. The three LOB locator types each has its own C
data type (SQL_C_BLOB_LOCATOR, SQL_C_CLOB_LOCATOR,
SQL_C_DBCLOB_LOCATOR). These types are used to enable transfer of LOB locator
values to and from the database server.

A LOB locator is a simple token value that represents a single LOB value. A locator is
not a reference to a column in a row, rather it is created to reference a large object
value. There is no operation that could be performed on a locator that would have an
effect on the original LOB value stored in the row. An application can retrieve a LOB
locator into an application variable (using the SQLBindCol() or SQLGetData() functions)
and can then apply the following DB2 CLI functions to the associated LOB value via the
locator:

 Chapter 3. Using Advanced Features 95

SQLGetLength() Gets the length of a string that is represented by a LOB locator.

SQLGetPosition() Gets the position of a search string within a source string where the
source string is represented by a LOB locator. The search string can also
be represented by a LOB locator.

Locators are implicitly allocated by:

¹ Fetching a bound LOB column to the appropriate C locator type.

¹ Calling SQLGetSubString() and specifying that the substring be retrieved as a
locator.

¹ Calling SQLGetData() on an unbound LOB column and specifying the appropriate C
locator type. The C locator type must match the LOB column type or an error will
occur.

LOB locators also provide an efficient method of moving data from one column of a
table at the server to another column (of the same or different table) without having to
pull the data first into application memory and then sending it back to the server. For
example, the following INSERT statement inserts a LOB value that is a concatenation
of 2 LOB values as represented by their locators:

INSERT INTO lobtable values (CAST ? AS CLOB(4k) || CAST ? AS CLOB(5k))

The locator can be explicitly freed before the end of a transaction by executing the
FREE LOCATOR statement. The syntax is shown below.

55──FREE LOCATOR──?──5%

Although this statement cannot be prepared dynamically, DB2 CLI will accept it as a
valid statement on SQLPrepare() and SQLExecDirect(). The application uses
SQLBindParameter() with the SQL data type argument set to the appropriate SQL and
C symbolic data types from Table 3 on page 28.

Alternatively, if the application does require the entire LOB column value, it can request
direct file input and output for LOBs. Database queries, updates, and inserts may
involve transfer of single LOB column values into and from files. The two DB2 CLI LOB
file access functions are:

SQLBindFileToCol() Binds (associates) a LOB column in a result set with a file name.

SQLBindFileToParam() Binds (associates) a LOB parameter marker with a file name.

The file name is either the complete path name of the file (which is recommended), or a
relative file name. If a relative file name is provided, it is appended to the current path
(of the operating environment) of the client process. On execute or fetch, data transfer
to and from the file would take place, similar to bound application variables. A file
options argument associated with these 2 functions indicates how the files are to be
handled at time of transfer.

Use of SQLBindFileToParam() is more efficient than the sequential input of data
segments using SQLPutData() since SQLPutData() essentially puts the input segments

96 CLI Guide and Reference

into a temporary file and then uses the SQLBindFileToParam() technique to send the
LOB data value to the server. Applications should take advantage of
SQLBindFileToParam() instead of using SQLPutData().

Refer to Appendix C, “DB2 CLI and ODBC” on page 655 for information on writing
generic ODBC applications that use SQL_LONGVARCHAR and
SQL_LONGVARBINARY to respectively reference character and binary large object
data.

Not all DB2 servers currently have Large Object support, to determine if any of the LOB
functions are supported for the currently server, call SQLGetFunctions() with the
appropriate function name argument value.

Figure 16 on page 98 shows the retrieval of a character LOB (CLOB).

¹ The left hand side shows a locator being used to extract a character string from the
CLOB, without having to transfer the entire CLOB to an application buffer.

A LOB locator is fetched, which is then used as an input parameter to search the
CLOB for a substring, the substring is then retrieved.

¹ The right hand side shows how the CLOB can be fetched directly into a file.

The file is first bound to the CLOB column, and when the row is fetched, the entire
CLOB value is transferred directly to a file.

 Chapter 3. Using Advanced Features 97

Figure 16. Fetching CLOB Data

 LOB Examples
The following example extracts the "Interests" section from the Resume CLOB column
of the EMP_RESUME table. Only the substring is transferred to the application.

98 CLI Guide and Reference

/* From CLI sample lookres.c */

/* ... */

SQLCHAR * stmt2 = "SELECT resume FROM emp_resume "

"WHERE empno = ? AND resume_format = 'ascii'" ;

/* ... */

/* Get CLOB locator to selected Resume */

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_OUTPUT,

 emp_no.type,

 SQL_CHAR,

 emp_no.length,

 0,

 emp_no.s,

 emp_no.length,

 &emp_no.ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\n>Enter an employee number:\n") ;

gets((char *) emp_no.s) ;

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt,

 1,

 SQL_C_CLOB_LOCATOR,

 &ClobLoc1,

 0,

 &pcbValue

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFetch(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 /*

Search CLOB locator to find "Interests"

Get substring of resume (from position of interests to end)

 */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &lhstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Get total length */

rc = SQLGetLength(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 &SLength,

&Ind) ;

 Chapter 3. Using Advanced Features 99

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

/* Get Starting postion */

rc = SQLGetPosition(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 0,

(SQLCHAR *) "Interests",

 9,

 1,

 &Pos1,

 &Ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

rc = SQLFreeStmt(lhstmt, SQL_CLOSE) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

buffer = (SQLCHAR *) malloc(SLength - Pos1 + 1) ;

/* Get just the "Interests" section of the Resume CLOB */

/* (From Pos1 to end of CLOB) */

rc = SQLGetSubString(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 Pos1,

SLength - Pos1,

 SQL_C_CHAR,

 buffer,

SLength - Pos1 + 1,

 &OutLength,

 &Ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

/* Print Interest section of Employee's resume */

printf("\nEmployee #: %s\n %s\n", emp_no.s, buffer) ;

Using LOBs in ODBC Applications
Existing ODBC applications use SQL_LONGVARCHAR and SQL_LONGVARBINARY
instead of the DB2 BLOB and CLOB data types. By setting the LONGDATACOMPAT
keyword in the initialization file, or setting the SQL_ATTR_LONGDATA_COMPAT
connection attribute using SQLSetConnectAttr(), DB2 CLI will map the ODBC long data
types to the DB2 LOB data types.

When this mapping is in effect:

¹ SQLGetTypeInfo() will return CLOB, BLOB and DBCLOB characteristics when
called with SQL_LONGVARCHAR, SQL_LONGVARBINARY or
SQL_LONGVARGRAPHIC.

100 CLI Guide and Reference

¹ The following functions will return SQL_LONGVARCHAR, SQL_LONGVARBINARY
or SQL_LONGVARGRAPHIC when describing CLOB, BLOB or DBCLOB data
types:

 – SQLColumns()

 – SQLSpecialColumns()

 – SQLDescribeCol()

 – SQLColAttribute()

 – SQLProcedureColumns()

¹ LONG VARCHAR and LONG VARCHAR FOR BIT DATA will continue to be
described as SQL_LONGVARCHAR and SQL_LONGVARBINARY.

The default setting for SQL_ATTR_LONGDATA_COMPAT is SQL_LD_COMPAT_NO,
mapping is not in effect.

For more information, refer to “Configuration Keywords” on page 144, and
“SQLSetConnectAttr - Set Connection Attributes” on page 519.

With the mapping in effect, ODBC applications can retrieve LOB data by using the
SQLGetData(), SQLPutData() and related functions. For more information about inserting
and retrieving data in pieces, refer to “Sending/Retrieving Long Data in Pieces” on
page 61.

Note: DB2 CLI uses a temporary file when inserting LOB data in pieces. If the data
originates in a file, the use of a temporary file can be avoided by using
SQLBindFileToParam(). Call SQLGetFunctions() to query if support is provided
for SQLBindFileToParam().

Using User Defined Types (UDT)
In addition to the SQL data types (referred to as base SQL data types) defined in “Data
Types and Data Conversion” on page 27, new distinct types can be defined by the
user. These user defined types (UDTs) share its internal representation with an existing
type, but is considered to be a separate and incompatible type for most operations.
These UDTs are created using the CREATE DISTINCT TYPE SQL statement.

UDTs help provide the strong typing control needed in object oriented programming by
ensuring that only those functions and operators explicitly defined on a distinct type can
be applied to its instances. Applications continue to work with C data types for
application variables, and only need to consider the UDT types when constructing SQL
statements.

This means:

¹ All SQL to C data type conversion rules that apply to the built-in type apply to the
UDT.

¹ The UDT will have the same default C Type as the built-in type.

 Chapter 3. Using Advanced Features 101

¹ SQLDescribeCol() will return the built-in type information. The user defined type
name can be obtained by calling SQLColAttribute() with the input descriptor type
set to SQL_DESC_DISTINCT_TYPE .

¹ SQL predicates that involve parameter markers must be explicitly cast to the UDT.
This is required since the application can only deal with the built-in types, so before
any operation can be performed using the parameter, it must be cast from the C
built-in type to the UDT; otherwise an error will occur when the statement is
prepared. Refer to “User Defined Types in Predicates” on page 652 for more
information.

For complete rules and a description of user defined types(UDT) refer to the SQL
Reference.

User Defined Type Example
This example shows some UDTs and UDFs being defined, as well as some tables with
UDT columns. For an example that inserts rows into a table with UDT columns, refer to
“Example” on page 485.

102 CLI Guide and Reference

/* From CLI sample create.c */

/* ... */

/* Initialize SQL statement strings */

SQLCHAR * stmt[] = {

"CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS",

"CREATE DISTINCT TYPE PUNIT AS CHAR(2) WITH COMPARISONS",

"CREATE DISTINCT TYPE UPRICE AS DECIMAL(10, 2) "

 "WITH COMPARISONS",

"CREATE DISTINCT TYPE PRICE AS DECIMAL(10, 2) "

 "WITH COMPARISONS",

"CREATE FUNCTION PRICE(CHAR(12), PUNIT, char(16)) "

"returns char(12) "

"NOT FENCED EXTERNAL NAME 'order!price' "

"NOT VARIANT NO SQL LANGUAGE C PARAMETER STYLE DB2SQL "

"NO EXTERNAL ACTION",

"CREATE DISTINCT TYPE PNUM AS INTEGER WITH COMPARISONS",

"CREATE FUNCTION \"+\"(PNUM, INTEGER) RETURNS PNUM "

"source sysibm.\"+\"(integer, integer)",

"CREATE FUNCTION MAX(PNUM) RETURNS PNUM "

 "source max(integer)",

"CREATE DISTINCT TYPE ONUM AS INTEGER WITH COMPARISONS",

"CREATE TABLE CUSTOMER ("

"Cust_Num CNUM NOT NULL, "

"First_Name CHAR(30) NOT NULL, "

"Last_Name CHAR(30) NOT NULL, "

"Street CHAR(128) WITH DEFAULT, "

"City CHAR(30) WITH DEFAULT, "

"Prov_State CHAR(30) WITH DEFAULT, "

"PZ_Code CHAR(9) WITH DEFAULT, "

"Country CHAR(30) WITH DEFAULT, "

"Phone_Num CHAR(20) WITH DEFAULT, "

 "PRIMARY KEY (Cust_Num))",

"CREATE TABLE PRODUCT ("

"Prod_Num PNUM NOT NULL, "

"Description VARCHAR(256) NOT NULL, "

 "Price DECIMAL(10,2) WITH DEFAULT , "

 "Units PUNIT NOT NULL, "

 "Combo CHAR(1) WITH DEFAULT, "

"PRIMARY KEY (Prod_Num), "

"CHECK (Units in (PUNIT('m'), PUNIT('l'), PUNIT('g'), PUNIT('kg'), "

 "PUNIT(' '))))",

 Chapter 3. Using Advanced Features 103

"CREATE TABLE PROD_PARTS ("

"Prod_Num PNUM NOT NULL, "

"Part_Num PNUM NOT NULL, "

 "Quantity DECIMAL(14,7), "

"PRIMARY KEY (Prod_Num, Part_Num), "

"FOREIGN KEY (Prod_Num) REFERENCES Product, "

"FOREIGN KEY (Part_Num) REFERENCES Product, "

"CHECK (Prod_Num <> Part_Num))",

"CREATE TABLE ORD_CUST ("

"Ord_Num ONUM NOT NULL, "

"Cust_Num CNUM NOT NULL, "

"Ord_Date DATE NOT NULL, "

"PRIMARY KEY (Ord_Num), "

"FOREIGN KEY (Cust_Num) REFERENCES Customer)",

"CREATE TABLE ORD_LINE ("

"Ord_Num ONUM NOT NULL, "

"Prod_Num PNUM NOT NULL, "

 "Quantity DECIMAL(14,7), "

"PRIMARY KEY (Ord_Num, Prod_Num), "

"FOREIGN KEY (Prod_Num) REFERENCES Product, "

"FOREIGN KEY (Ord_Num) REFERENCES Ord_Cust)",

(char *) 0,

 } ;

/* ... */

/* Execute Direct statements */

i = 0 ;

while (stmt[i] != (char *) 0) {

printf(">Executing Statement %ld\n", (i + 1)) ;

rc = SQLExecDirect(hstmt, stmt[i], SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 i++ ;

 }

Using Stored Procedures
An application can be designed to run in two parts, one on the client and the other on
the server. The stored procedure is the part that runs at the database within the same
transaction as the application. Stored procedures can be written in either embedded
SQL or using the DB2 CLI functions (see “Writing a Stored Procedure in CLI” on
page 110). In general, stored procedures have the following advantages:

¹ Avoid network transfer of large amounts of data obtained as part of intermediate
results in a long sequence of queries.

¹ Deployment of client database applications into client/server pieces.

104 CLI Guide and Reference

In addition, stored procedures written in embedded static SQL have the following
advantages:

¹ Performance - static SQL is prepared at precompile time and has no run time
overhead of access plan (package) generation.

¹ Encapsulation (information hiding) - users' do not need to know the details about
the database objects in order to access them. Static SQL can help enforce this
encapsulation.

¹ Security - users' access privileges are encapsulated within the package(s)
associated with the stored procedure(s), so there is no need to grant explicit
access to each database object. For example, a user can be granted run access
for a stored procedure that selects data from tables for which the user does not
have select privilege.

Calling Stored Procedures
Stored procedures are invoked from a DB2 CLI application by passing the following
CALL statement syntax to SQLExecDirect() or to SQLPrepare() followed by
SQLExecute().

 ┌ ┐─,───
55─ ─CALL─ ─procedure-name──(─ ───6 ┴┬ ┬─── ─)──────────────────────────────────────5%
 └ ┘ ─?─

Note:

Although the CALL statement cannot be prepared dynamically, DB2 CLI accepts
the CALL statement as if it could be dynamically prepared.

Stored procedures can also be called using the ODBC vendor escape sequence
shown in “Stored Procedure Call Syntax” on page 125.

procedure-name Specifies a stored procedure name, and it can take one of the
following forms:

 ¹ procedure-name

The name (with no extension) of the procedure to execute. The
procedure invoked is determined as follows.

1. The procedure-name is used both as the name of the stored
procedure library and the function name within that library. For
example, if procedure-name is proclib, the DB2 server will load
the stored procedure library named proclib and execute the
function routine proclib() within that library.

2. If the library or function could not be found, the procedure-name is
used to search the defined procedures (in
SYSCAT.PROCEDURES) for a matching procedure. A matching
procedure is determined using the steps that follow.

a. Find the procedures from the catalog
(SYSCAT.PROCEDURES) where the PROCNAME matches

 Chapter 3. Using Advanced Features 105

the procedure-name specified and the PROCSCHEMA is a
schema name in the function path.

b. Next, eliminate any of these procedures that do not have the
same number of parameters as the number of arguments
specified in the CALL statement.

c. Chose the remaining procedure that is earliest in the function
path.

d. If there are no remaining procedures after step 2, an error is
returned (SQLSTATE 42884).

Once the procedure is selected, DB2 will invoke the procedure
defined by the external name.

 ¹ procedure-name!func-name

The use of the exclamation sign allows the specification of a library
name identified by procedure-name and the function to be executed is
given by func-name. This allows similar function routines to be placed
in the same stored procedure library.

 ¹ /u/db2user/procedure-name!func-name

The name of the stored procedure library is specified as a full path
name. The function to be executed is given by func-name.

For more information regarding the use of the CALL statement and stored procedures,
refer to the SQL Reference and the Embedded SQL Programming Guide.

If the server is DB2 Universal Database Version 2.1 or later, or DB2 for MVS/ESA V4.1
or later, SQLProcedures() can be called to obtain a list of stored procedures available at
the database.

Note: For DB2 Universal Database, SQLProcedures() may not return all procedures,
and applications can use any valid procedure, regardless of whether it is
returned by SQLProcedures(). For more information, refer to “Registering Stored
Procedures” on page 107 and “SQLProcedures - Get List of Procedure Names”
on page 505.

The ? in the CALL statement syntax diagram denote parameter markers corresponding
to the arguments for a stored procedure. All arguments must be passed using
parameter markers; literals, the NULL keyword, and special registers are not allowed.
However, literals can be used if the vendor escape call statement is used, ie. the call
statement is surrounded by curly braces ‘{...}’.

The parameter markers in the CALL statement are bound to application variables using
SQLBindParameter(). Although stored procedure arguments can be used both for input
and output, in order to avoid sending unnecessary data between the client and the
server, the application should specify on SQLBindParameter() the parameter type of an
input argument to be SQL_PARAM_INPUT and the parameter type of an output
argument to be SQL_PARAM_OUTPUT. Those arguments that are both input and
output have a parameter type of SQL_PARAM_INPUT_OUTPUT.

106 CLI Guide and Reference

If the server is DB2 Universal Database Version 2.1 or later, or DB2 for MVS/ESA V4.1
or later, an application can call SQLProcedureColumns() to determine the type of a
parameter in a procedure call. For more information, refer to “Registering Stored
Procedures” on page 107 below and “SQLProcedureColumns - Get Input/Output
Parameter Information for A Procedure” on page 496.

Registering Stored Procedures
For DB2 Universal Database, the stored procedure must be registered on the server (in
SYSCAT.PROCEDURES and SYSCAT.PROCPARMS) before SQLProcedures() and
SQLProcedureColumns() can be invoked; otherwise, these two catalog function calls will
return empty result sets. For information on registering stored procedures on the server,
see Appendix H, “Pseudo Catalog Table for Stored Procedure Registration” on
page 705.

If the stored procedure resides on a DB2 for MVS/ESA V4.1 or later server, the name
of the stored procedure must be defined in the SYSIBM.SYSPROCEDURES catalog
table. The pseudo catalog table used by DB2 Universal Database is a derivation and
extension of the DB2 for MVS/ESA SYSIBM.SYSPROCEDURES catalog table).

If the stored procedure resides on a DB2 for AS/400 V3.1 server, the application must
know the actual path and name of the stored procedure ahead of time as there is no
real or pseudo catalog table to retrieve information on stored procedures or their
argument list.

Handling Stored Procedure Arguments (SQLDA)
Although stored procedures are, in most ways, like any other application, stored
procedures written in CLI (and embedded SQL) must give special consideration to the
SQLDA structure which contains the stored procedure arguments. The SQLDA
structure is described in detail in the SQL Reference.

It is important to understand that all data stored in the SQLDA structure is stored as an
SQL data type, and must be treated as such by the stored procedure. For example,

¹ Strings are never null-terminated.

¹ CHAR types are blank padded.

¹ VARCHAR and LONG VARCHAR types have both a defined (maximum) length,
and an actual length stored as the first two bytes (SQLCHAR structure).

¹ DECIMAL (or NUMERIC) types are stored in packed decimal format.

¹ LOB or UDF types cause a doubled-SQLDA to be sent.

The suggested approach is for the stored procedure to interpret the SQLDA and move
all input arguments to host language variables on entry, and from host language
variables to the SQLDA on exit. This allows for SQLDA specific code to be localized
within the stored procedure.

 Chapter 3. Using Advanced Features 107

Returning Result Sets from Stored Procedures
DB2 CLI provides the ability to retrieve one or more result sets from a stored procedure
call, provided the stored procedure has been coded such that one or more cursors,
each associated with a query, has been opened and left opened when the stored
procedure exits. If more than one cursor is left open, multiple result sets are returned.

Processing within the CLI Application
DB2 CLI applications can retrieve result sets after the execution of a stored procedure
that has left cursor(s) open by doing the following:

¹ Before the stored procedure is called, ensure that there are no open cursors
associated with the statement handle.

¹ Call the stored procedure.

¹ The execution of the stored procedure CALL statement effectively causes the
opening of the cursor(s) associated with the result set(s).

¹ Examine any output parameters that have been returned by the stored procedure.
For example, the procedure may have been designed so that there is an output
parameter that indicates exactly how many result sets have been generated.

¹ The DB2 CLI application can then use all the normal functions that it has available
to process a regular query. If the application does not know the nature of the result
set or the number of columns returned, it can call SQLNumResultCols(),
SQLDescribeCol() or SQLColAttribute(). Next, it can choose to use any permitted
combination of SQLBindCol(), SQLFetch(), and SQLGetData() to obtain the data in
the result set.

¹ When SQLFetch() has returned SQL_NO_DATA_FOUND or if the application is
done with the current result set, the application can call SQLMoreResults() to
determine if there are more result sets to retrieve. Calling SQLMoreResults() will
close the current cursor and advance processing to the next cursor that has been
left open by the stored procedure.

¹ If there is another result set, then SQLMoreResults() will return success; otherwise,
an SQL_NO_DATA_FOUND is returned.

¹ Result sets must be processed in serial fashion by the application.

Programming Stored Procedures to Return Result Sets
DB2 Universal Database stored procedures must satisfy the following requirements to
return one or more result sets to a CLI application:

¹ The stored procedure must be run in FENCED mode. If this is not the case then no
result sets will be returned, and no error is generated. For more information on
fenced and unfenced stored procedures refer to the Embedded SQL Programming
Guide

¹ The stored procedure must be run on a remote server. This means there must be
a network or named pipe connection used. A 'loopback' connection to a server on
the same machine can be used; see the README file for the CLI sample

108 CLI Guide and Reference

programs (in the sqllib/samples/cli subdirectory) for instructions on setting up this
type of connection.

¹ The stored procedure indicates that a result set is to be returned by declaring a
cursor on the result set, opening a cursor on the result set (i.e. executing the
query), and leaving the cursor open when exiting the stored procedure.

¹ For every cursor that is left open, a result set is returned to the application.

¹ If more than one cursor is left open, the result sets are returned in the order in
which their cursors were opened in the stored procedure.

¹ If the stored procedure commits the current transaction then all cursors not
declared using the WITH HOLD clause will be closed.

¹ If the stored procedure rolls back the current transaction then all cursors will be
closed.

¹ If the stored procedure calls SQLFreeStmt() with either SQL_DROP or
SQL_CLOSE, then the cursor for the current result set is closed and the rows are
flushed. Note that this is also the case for all other cursors associated with other
result sets generated by this same stored procedure call.

¹ Only unread rows are passed back. For example, if the result set of a cursor has
500 rows, and 150 of those rows have already been read by the stored procedure
at the time the stored procedure terminates, then rows 151 through 500 will be
returned to the stored procedure. This can be useful if the stored procedure wishes
to filter out some initial rows and not return them to the application.

How Returning a Result Set Differs from Executing a Query
Statement
In general, calling a stored procedure that returns a result set is equivalent to executing
a query statement. The following restrictions apply:

¹ Column names are not returned by either SQLDescribeCol() or SQLColAttribute()

for static query statements. In this case, the ordinal position of the column is
returned instead.

¹ The length value of LOB data types is always set to the maximum length, or the
value of the LOBMAXCOLUMNSIZE keyword if it is specified.

¹ All result sets are read-only.

¹ The cursor cannot be used as a scrollable cursor.

¹ Schema functions (such as SQLTables()) cannot be used to return a result set. If
schema functions are used within a stored procedure, all of the cursors for the
associated statement handles must be closed before returning, otherwise
extraneous result sets may be returned.

¹ When a query is prepared, result set column information is available before the
execute. When a stored procedure is prepared, the result set column information is
not available until the CALL statement is executed.

 Chapter 3. Using Advanced Features 109

Writing a Stored Procedure in CLI
Although embedded SQL stored procedures provide the most advantages, application
developers who have existing DB2 CLI applications may wish to move components of
the application to run on the server. In order to minimize the required changes to the
code and logic of the application, these components can be implemented as stored
procedures, written using DB2 CLI.

Since all the internal information related to a DB2 CLI connection is referenced by the
connection handle and since a stored procedure runs under the same connection and
transaction as the client application, it is necessary that a stored procedure written
using DB2 CLI make a null SQLConnect() call to associate a connection handle with the
underlying connection of the client application. A null SQLConnect() is where the
ServerName, UserName, and Authentication argument pointers are all set to NULL and
their respective length arguments all set to 0. Of course, in order that an SQLConnect()
call can be made at all, the environment and connection handles must already be
allocated.

Note: Stored procedures written using Embedded SQL must be precompiled with the
DATETIME ISO option in order for DB2 CLI to deal with date-time values
correctly.

Stored Procedure Example
The following shows a stored procedure and an example that calls it. (The following
example is an input example, see the outcli2.c, outsrv2.c samples for an output
example.)

DB2 also includes a number of example programs that demonstrate stored procedures
that return multi-row result sets (see the set of example programs that begin with mrsp:
mrspcli.c, mrspcli2.c, mrspcli3.sqc, clicall.c, mrspsrv.c and mrspsrv2.sqc).

110 CLI Guide and Reference

/* From CLI sample inpsrv2.c */

/* ... */

/**

*

* PURPOSE: This sample program demonstrates stored procedures,

* using CLI. It is rewrite of the inpsrv.sqc embedded SQL

* stored procedure.

*

* There are two parts to this program:

* - the inpcli2 executable (placed on the client)

* - the inpsrv2 library (placed on the server)

* CLI stored procedures can be called by either CLI or embbeded

* applications.

*

* The inpsrv function will take the information

* received in the SQLDA to create a table and insert the

* names of the presidents.

*

* Refer to the inpcli2.c program for more details on how

* this program is invoked as the inpsrv2 function

* in the inpsrv2 library by the EXEC SQL CALL statement.

*

* The SQL CALL statement will pass in 2 identical SQLDA

* structures for input and output because all parameters

* on the CALL statement are assummed to have both the

* input and output attributes. However, only changes

* make to the data and indicator fields in the output SQLDA

* will be returned to the client program.

*

* NOTE: One technique to minimize network flow is to set the

* variables that returns no output to null on the server program

* before returning to the client program.

* This can be achieved by setting the value -128 to the

* indicator value associated with the data.

*

* The sqleproc API will call the inpsrv routine stored

* in the inpsrv library.

*

* The inpsrv routine will take the information received

* and create a table called "Presidents" in the "sample"

* database. It will then place the values it received in

* the input SQLDA into the "Presidents" table.

*

**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlda.h>

#include <sqlcli1.h>

#include "samputil.h" /* Header file for CLI sample code */

 Chapter 3. Using Advanced Features 111

int SQL_API_FN inpsrv2(struct sqlchar * input_data,

 struct sqlda * input_sqlda,

 struct sqlda * output_sqlda,

 struct sqlca * ca

) {

/* Declare a local SQLCA */

struct sqlca sqlca ;

SQLCHAR table_stmt[80] = "CREATE TABLE " ;

SQLCHAR insert_stmt[80] = "INSERT INTO " ;

SQLCHAR insert_data[21] ;

SQLINTEGER insert_data_ind ;

/* Delare Miscellanous Variables */

int cntr ;

char * table_name ;

short table_name_length ;

char * data_item[3] ;

short data_item_length[3] ;

int num_of_data = 0 ;

/* Delare CLI Variables */

SQLHANDLE henv, hdbc, hstmt ;

SQLRETURN rc ;

 /*---*/

/* Assign the data from the SQLDA to local variables so that we */

/* don't have to refer to the SQLDA structure further. This will */

/* provide better portability to other platforms such as DB2 MVS */

/* where they receive the parameter list differently. */

/* Note: Strings are not null-terminated in the SQLDA. */

 /*---*/

table_name = input_sqlda->sqlvar[0].sqldata ;

table_name_length = input_sqlda->sqlvar[0].sqllen ;

num_of_data = input_sqlda->sqld - 1 ;

for (cntr = 0; cntr < num_of_data; cntr++) {

data_item[cntr] = input_sqlda->sqlvar[cntr+1].sqldata ;

data_item_length[cntr] = input_sqlda->sqlvar[cntr+1].sqllen ;

 }

 /*---*/

/* Setup CLI required environment */

 /*---*/

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc) ;

 /*---*/

/* Issue NULL Connect, since in CLI we need a statement handle */

/* and thus a connection handle and environment handle. */

112 CLI Guide and Reference

/* A connection is not established, rather the current */

/* connection from the calling application is used */

 /*---*/

SQLConnect(hdbc, NULL, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS) ;

SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

 /*---*/

/* Create President Table */

/* - For simplicity, we'll ignore any errors from the */

 /* CREATE TABLE so that you can run this program even when the */

 /* table already exists due to a previous run. */

 /*---*/

strncat((char *) table_stmt,

(char *) table_name,

 table_name_length

) ;

strcat((char *) table_stmt, " (name CHAR(20))") ;

SQLExecDirect(hstmt, table_stmt, SQL_NTS) ;

SQLFreeStmt(hstmt, SQL_RESET_PARAMS) ;

 /*---*/

/* Generate and execute a PREPARE for an INSERT statement, and */

/* then insert the three presidents. */

 /*---*/

strncat((char *) insert_stmt,

(char *) table_name,

 table_name_length

) ;

strcat((char *) insert_stmt, " VALUES (?)") ;

if (SQLPrepare(hstmt, insert_stmt, SQL_NTS) != SQL_SUCCESS) goto ext ;

/* Bind insert_data to parameter marker */

 SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 20,

 0,

 insert_data,

 21,

 &insert_data_ind

) ;

for (cntr = 0; cntr < num_of_data; cntr++) {

strncpy((char *) insert_data,

(char *) data_item[cntr],

 Chapter 3. Using Advanced Features 113

 data_item_length[cntr]) ;

insert_data_ind = data_item_length[cntr] ;

if (SQLExecute(hstmt) != SQL_SUCCESS) goto ext ;

 }

 /*---*/

/* Return to caller */

 /* - Copy the SQLCA */

 /* - Update the output SQLDA. Since there's no output to */

/* return, we are setting the indicator values to -128 to */

/* return only a null value. */

 /* - Commit or Rollback the inserts. */

 /*---*/

ext:

rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca) ;

if (rc != SQL_SUCCESS) printf("RC = %d\n", rc) ;

memcpy(ca, &sqlca, sizeof(sqlca)) ;

if (output_sqlda != NULL) {

for (cntr = 0; cntr < output_sqlda->sqld; cntr++) {

if (output_sqlda->sqlvar[cntr].sqlind != NULL)

*(output_sqlda->sqlvar[cntr].sqlind) = -128 ;

 }

 }

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

printf(">Disconnecting\n") ;

rc = SQLDisconnect(hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

if (rc != SQL_SUCCESS)

return(terminate(henv, rc)) ;

return(SQL_SUCCESS) ;

}

114 CLI Guide and Reference

/* From CLI sample inpcli2.c */

/* ... */

SQLCHAR * stmt = "CALL inpsrv2(?, ?, ?, ?)" ;

/* ... */

rc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 9,

 0,

 Tab_Name,

 10,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 10,

 0,

 Pres_Name[0],

 11,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 3,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 10,

 0,

 Pres_Name[1],

 11,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 4,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 Chapter 3. Using Advanced Features 115

 10,

 0,

 Pres_Name[2],

 11,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecute(hstmt) ;

/* Ignore Warnings */

if (rc != SQL_SUCCESS_WITH_INFO)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

Mixing Embedded SQL and DB2 CLI
It is possible, and sometimes desirable, for an application to use DB2 CLI in
conjunction with embedded static SQL. Consider the scenario where the application
developer wishes to take advantage of the ease of use provided by the DB2 CLI
catalog functions and maximize the portion of the application's processing where
performance is critical. In order to mix the use of DB2 CLI and embedded SQL, the
application must comply to the following rules:

¹ All connection management and transaction management must be performed
completely using either DB2 CLI or embedded SQL. Either the DB2 CLI application
performs all the Connects and Commits/Rollback and calls functions written using
embedded SQL; or an embedded SQL application performs all the Connects and
Commits/Rollback and calls functions written in DB2 CLI which use a null
connection (see “Writing a Stored Procedure in CLI” on page 110 for details on
null connections).

¹ Query statement processing must not and cannot straddle across DB2 CLI and
embedded SQL interfaces for the same statement; for example, the application
cannot open a cursor in an embedded SQL routine, and then call the DB2 CLI
SQLFetch() function to retrieve row data.

Since DB2 CLI permits multiple connections, the SQLSetConnection() function must be
called prior to making a function call to a routine written in embedded SQL. This allows
the application to explicitly specify the connection under which the embedded SQL
routine should perform its processing.

If the DB2 CLI application is multithreaded and also makes embedded SQL calls or
DB2 API calls, then each thread must have a DB2 context. See “Writing Multi-Threaded
Applications” on page 40 for complete details.

Mixed Embedded SQL and DB2 CLI Example
The following example demonstrates an application that connects to two data sources,
and executes both embedded SQL and dynamic SQL using DB2 CLI.

116 CLI Guide and Reference

/* From CLI sample mixed.sqc */

/* ... */

/* allocate an environment handle */

 SQLAllocEnv(&henv);

/* Connect to first data source */

 DBconnect(henv, &hdbc[0]);

/* Connect to second data source */

 DBconnect(henv, &hdbc[1]);

/********* Start Processing Step *************************/

/* NOTE: at this point there are two active connections */

/* set current connection to the first database */

if ((rc = SQLSetConnection(hdbc[0])) != SQL_SUCCESS)

printf("Error setting connection 1\n");

/* call function that contains embedded SQL */

if ((rc = Create_Tab()) != 0)

printf("Error Creating Table on 1st connection, RC=%d\n", rc);

/* Commit transation on connection 1 */

SQLTransact(henv, hdbc[0], SQL_COMMIT);

/* set current connection to the second database */

if ((rc = SQLSetConnection(hdbc[1])) != SQL_SUCCESS)

printf("Error setting connection 2\n");

/* call function that contains embedded SQL */

if ((rc = Create_Tab()) != 0)

printf("Error Creating Table on 2nd connection, RC=%d\n", rc);

/* Commit transation on connection 2 */

SQLTransact(henv, hdbc[1], SQL_COMMIT);

/* Pause to allow the existance of the tables to be verified. */

printf("Tables created, hit Return to continue\n");

 getchar();

 SQLSetConnection(hdbc[0]);

if ((rc = Drop_Tab()) != 0)

printf("Error dropping Table on 1st connection, RC=%d\n", rc);

/* Commit transation on connection 1 */

SQLTransact(henv, hdbc[0], SQL_COMMIT);

 SQLSetConnection(hdbc[1]);

if ((rc = Drop_Tab()) != 0)

printf("Error dropping Table on 2nd connection, RC=%d\n", rc);

/* Commit transation on connection 2 */

 Chapter 3. Using Advanced Features 117

SQLTransact(henv, hdbc[1], SQL_COMMIT);

 printf("Tables dropped\n");

/********* End Processing Step ***************************/

/* ... */

/************* Embedded SQL Functions *******************************

** This would normally be a seperate file to avoid having to *

** keep precompiling the embedded file in order to compile the DB2 CLI *

** section. *

**/

#include "sql.h"

#include "sqlenv.h"

EXEC SQL INCLUDE SQLCA;

int

Create_Tab()

{

EXEC SQL CREATE TABLE mixedup

(ID INTEGER, NAME CHAR(10));

 return(SQLCODE);

}

int

Drop_Tab()

{

EXEC SQL DROP TABLE mixedup;

 return(SQLCODE);

}

Asynchronous Execution of CLI
DB2 CLI can run a subset of functions asynchronously; the DB2 CLI driver returns
control to the application after calling the function, but before that function has finished
executing. The function returns SQL_STILL_EXECUTING each time it is called until it is
finished running, at which point it returns a different value (SQL_SUCCESS for
example).

Asynchronous execution is only beneficial on single-threaded operating systems.
Applications that run on multithreaded operating systems should execute functions on
separate threads instead.

Asynchronous execution is possible for those functions that normally send a request to
the server and then wait for a response. Rather than waiting, a function executing
asynchronously returns control to the application. The application can then perform

118 CLI Guide and Reference

other tasks, or return control to the operating system, and use an interrupt to repeatedly
poll the function until a return code other than SQL_STILL_EXECUTING is returned.

Typical Asynchronous Application
Each application that will will run functions asynchronously must complete the following
steps in addition to the normal CLI steps, in the following order:

1. Set Up the Environment
To ensure that functions can be called asynchronously, the application should call
SQLGetInfo() with an option of SQL_ASYNC_MODE.

/* See what type of Asynchronous support is available. */

rc = SQLGetInfo(hdbc, /* Connection handle */

SQL_ASYNC_MODE, /* Query the support available */

&ubuffer, /* Store the result in this variable */

 4,

 &outlen);

 The call to SQLGetInfo() will return one of the following values:

SQL_AM_STATEMENT - Statement Level
Indicates that asynchronous execution can be turned on or off on a statement
level.

Statement level asynchronous execution is set using the statement attribute
SQL_ATTR_ASYNC_ENABLE. An application can have at most 1 active function
running in asynchronous mode on any one connection. It should be set to
SQL_ASYNC_ENABLE_ON using SQLSetStmtAttr().

/* Set statement level asynchronous execution on */

rc = SQLSetStmtAttr(hstmt, /* Statement handle */

 SQL_ATTR_ASYNC_ENABLE,

 (SQLPOINTER) SQL_ASYNC_ENABLE_ON,

 0);

SQL_AM_CONNECTION - Connection Level
DB2 Universal Database supports SQL_AM_STATEMENT, but
SQL_AM_CONNECTION may be returned by other datasources. It indicates that
all statements on a connection must execute in the same way.

Connection level asynchronous execution is set using the connection attribute
SQL_ATTR_ASYNC_ENABLE. It should be set to SQL_ASYNC_ENABLE_ON
using SQLSetConnectAttr().

All statements already allocated, as well as future statement handles allocated on
this connection will be enabled for asynchronous execution.

SQL_AM_NONE - Asynchronous execution not supported
This will be returned for one of two reasons:

1. The datasource itself does not support asynchronous execution.

2. The DB2 CLI/ODBC configuration keyword ASYNCENABLE has been
specifically set to disable asynchronous execution. See “ASYNCENABLE” on
page 146 for more details.

 Chapter 3. Using Advanced Features 119

In either case the functions will be executed synchronously. If the application does
call SQLSetStmtAttr() or SQLSetConnectAttr() to turn on asynchronous execution,
the call will return an SQLSTATE of 01S02 (option value changed).

2. Call a Function that Supports Asynchronous Execution
When the application calls a function that can be run asynchronously one of two things
can take place.

¹ If the function will not benefit from being run asynchronously, DB2 CLI can decide
to run it synchronously and return the normal return code (other than
SQL_STILL_EXECUTING).

In this case the application runs as it would if the asynchronous mode had not
been enabled.

¹ DB2 CLI will perform some minimal processing (such as checking the arguments
for errors), then pass the statement on to the server. Once this quick processing is
complete a return code of SQL_STILL_EXECUTING is returned to the application.

See the SQL_ATTR_ASYNC_ENABLE statement attribute in the SQLSetStmtAttr()

function for a list of functions that can be executed asynchronously.

The following example demonstrates a common while loop that takes both possible
outcomes into account:

while ((rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS)) == SQL_STILL_EXECUTING)

{

/* Other processing can be performed here, between each call to

* see if SQLExecDirect() has finished running asynchronously.

* This section will never run if CLI runs the function

 * synchronously.

 */

}

/* The application continues at this point when SQLExecDirect() */

/* has finished running. */

3. Poll Asynchronous Function While Calling Others
The application determines whether the function has completed by calling it repeatedly
with the same arguments it used to call the function the first time. A return code of
SQL_STILL_EXECUTING indicates it is not yet finished, any other value indicates it
has completed. The value other than SQL_STILL_EXECUTING is the same return code
it would have returned if it had executed synchronously.

Functions that can be called during Asynchronous execution

The following functions can be called while a function is being executed
asynchronously. Any other function will return an SQLSTATE of HY010 (Function
sequence error).

¹ any function on any other statement within the same connection

120 CLI Guide and Reference

¹ any function on any connection other than the one associated with the
asynchronous statement

¹ SQLCancel() on the asynchronous statement to stop it (see “5. Cancelling the
Asynchronous Function Call”)

¹ SQLGetDiagField() and SQLGetDiagRec() on the asynchronous statement or
connection to get a header diagnostic field but not a record diagnostic field (see “4.
Diagnostic Information while Running”)

¹ SQLAllocHandle() on the connection associated with the asynchronous statement,
to allocate a statement handle

4. Diagnostic Information while Running
The following values are returned when SQLGetDiagField() is called on a statement
handle that has an asynchronous function executing:

¹ the values of SQL_DIAG_CURSOR_ROW_COUNT,
SQL_DIAG_DYNAMIC_FUNCTION, SQL_DIAG_DYNAMIC_FUNCTION_CODE,
and SQL_DIAG_ROW_COUNT header fields are undefined

¹ SQL_DIAG_NUMBER header field returns 0

¹ SQL_DIAG_RETURN_CODE header field returns SQL_STILL_EXECUTING

¹ all record fields return SQL_NO_DATA

SQLGetDiagRec() always returns SQL_NO_DATA when it is called on a statement
handle that has an asynchronous function executing.

5. Cancelling the Asynchronous Function Call
The application can issue a request to cancel any function that is running
asynchronously by calling SQLCancel(). There are cases, however, where this request
will not be carried out (if the function has already finished, for example).

The return code from the SQLCancel() call indicates whether the cancel request was
received, not whether the execution of the asynchronous function was stopped.

The only way to tell if the function was canceled is to call it again, using the original
arguments.

¹ If the cancel was successful, the function will return SQL_ERROR and an
SQLSTATE of HY008 (Operation canceled).

¹ If the cancel was not successful, the function will either return a value other than
SQL_ERROR, or will return SQL_ERROR and an SQLSTATE other than HY008.

Sample Asynchronous Application
The following CLI sample, async.c, demonstrates a simple application that runs
SQLExecDirect() asynchronously. It is based on the CLI sample program fetch.c.

 Chapter 3. Using Advanced Features 121

/* CLI sample async.c */

/* ... */

/* Make the result from SQLGetInfo() more meaningful by mapping */

/* the returned value to the string. */

static char ASYNCMODE[][19] = { "SQL_AM_NONE",

 "SQL_AM_CONNECTION",

 "SQL_AM_STATEMENT" };

/* ... */

* See what type of Asynchronous support is available,

* and whether or not the CLI/ODBC configuration keyword ASYNCENABLE

* is set on or off.

 */

rc = SQLGetInfo(hdbc, /* Connection handle */

SQL_ASYNC_MODE, /* Query the support available */

&ubuffer, /* Store the result in this variable */

 4,

 &outlen);

 CHECK_STMT(hstmt, rc);

printf("SQL_ASYNC_MODE value from SQLGetInfo() is %s.\n\n",ASYNCMODE[ubuffer]);

if (ubuffer == SQL_AM_NONE) { /* Async not supported */

printf("Asynchronous execution is not supported by this datasource\n");

printf("or has been turned off by the CLI/ODBC configuration keyword\n");

printf("ASYNCENABLE. The application will continue, but SQLExecDirect()\n");

printf("will not be run asynchronously.\n\n");

/* There is no need to set the SQLSetStmtAttr() option */

} else {

/* Set statement level asynchronous execution on */

rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ASYNC_ENABLE,

 (SQLPOINTER) SQL_ASYNC_ENABLE_ON,

 0);

 CHECK_STMT(hstmt, rc);

 }

/* The while loop is new for the asynchronous sample, the */

/* SQLExecDirect() call remains the same. */

while ((rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS)) == SQL_STILL_EXECUTING) {

printf(" ...SQLExecDirect() still executing asynchronously...\n");

/* Other processing can be performed here, between each call

* to see if SQLExecDirect() has finished running asynchronously.

* This section will never run if CLI runs the function

 * synchronously.

 */

 }

 CHECK_STMT(hstmt, rc);

122 CLI Guide and Reference

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,

 &deptname.ind);

 CHECK_STMT(hstmt, rc);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location.s, 15,

 &location.ind);

 CHECK_STMT(hstmt, rc);

printf("Departments in Eastern division:\n");

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("%-14.14s %-14.14s \n", deptname.s, location.s);

 }

if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmt, rc, __LINE__, __FILE__);

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);

 CHECK_STMT(hstmt, rc);

rc = SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT);

 CHECK_DBC(hdbc, rc);

 printf("Disconnecting\n");

rc = SQLDisconnect(hdbc);

 CHECK_DBC(hdbc, rc);

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 CHECK_DBC(hdbc, rc);

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv);

if (rc != SQL_SUCCESS)

return (terminate(henv, rc));

} /* end main */

Using Vendor Escape Clauses
The X/Open SQL CAE specification defined an escape clause as: “a syntactic
mechanism for vendor-specific SQL extensions to be implemented in the framework of
standardized SQL”. Both DB2 CLI and ODBC support vendor escape clauses as
defined by X/Open.

Currently, escape clauses are used extensively by ODBC to define SQL extensions.
DB2 CLI translates the ODBC extensions into the correct DB2 syntax. The
SQLNativeSql() function can be used to display the resulting syntax.

If an application is only going to access DB2 data sources, then there is no reason to
use the escape clauses. If an application is going to access other data sources that

 Chapter 3. Using Advanced Features 123

offer the same support, but uses different syntax, then the escape clauses increase the
portability of the application.

DB2 CLI used both the standard and shorthand syntax for escape clauses. The
standard syntax has been deprecated (although DB2 CLI still supports it). An escape
clause using the standard syntax took the form:

 −−(*vendor(vendor-identifier),
product(product-identifier) extended SQL text*)––

Applications should now only use the shorthand syntax, as described below, to remain
current with the latest ODBC standards.

Escape Clause Syntax
The format of an escape clause definition is:

{ extended SQL text }

 to define the following SQL extensions:

¹ Extended date, time, timestamp data

 ¹ Outer join

 ¹ LIKE predicate

¹ Call stored procedure

¹ Extended scalar functions

 – Numeric functions
 – String functions
 – System functions

ODBC Date, Time, Timestamp Data
The ODBC escape clauses for date, time, and timestamp data are:

 {d 'value'}

 {t 'value'}

 {ts 'value'}

d indicates value is a date in the yyyy-mm-dd format,
t indicates value is a time in the hh:mm:ss format
ts indicates value is a timestamp in the yyyy-mm-dd hh:mm:ss[.f...] format.

For example, the following statement can be used to issue a query against the
EMPLOYEE table:

SELECT * FROM EMPLOYEE WHERE HIREDATE={d '1994-03-29'}

DB2 CLI will translate the above statement to a DB2 format. SQLNativeSql() can be
used to return the translated statement.

The ODBC escape clauses for date, time, and timestamp literals can be used in input
parameters with a C data type of SQL_C_CHAR.

124 CLI Guide and Reference

ODBC Outer Join Syntax
The ODBC escape clause for outer join is:

 {oj outer-join}

 where outer join is

table-name {LEFT | RIGHT | FULL} OUTER JOIN

{table-name | outer-join}

 ON search-condition

For example, DB2 CLI will translate the following statement:

SELECT * FROM {oj T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3}

 WHERE T1.C2>20

to IBM's format, which corresponds to the SQL92 outer join syntax.

SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3 WHERE T1.C2>20

Note: Not all DB2 servers support outer join. To determine if the current server
supports outer joins, call SQLGetInfo() with the
SQL_SQL92_RELATIONAL_JOIN_OPERATORS and SQL_OJ_CAPABILITIES
options.

LIKE Predicate Escape Clauses
In a SQL LIKE predicate, the metacharacter % matches zero or more of any character
and the metacharacter _ matches any one character. The ESCAPE clause allows the
definition of patterns intended to match values that contain the actual percent and
underscore characters by preceding them with an escape character. The escape clause
ODBC uses to define the LIKE predicate escape character is:

{escape 'escape-character'}

where escape-character is any character supported by the DB2 rules governing the use
of the ESCAPE clause.

Applications that are not concerned about portability across different vendor DBMS
products should pass the ESCAPE clause directly to the data source. To determine
when LIKE predicate escape characters are supported by a particular DB2 data source,
an application should call SQLGetInfo() with the SQL_LIKE_ESCAPE_CLAUSE
information type.

Stored Procedure Call Syntax
The ODBC escape clause for calling a stored procedure is:

 {[?=]call procedure-name[([parameter][,[parameter]]...)]}

¹ procedure-name. specifies the name of a procedure stored at the data source
¹ parameter specifies a procedure parameter.

A procedure may have zero or more parameters. (The square brackets ([]) indicate
optional arguments.)

 Chapter 3. Using Advanced Features 125

ODBC species the optional parameter ?= to represent the procedure's return value,
which, if present, will be stored in the location specified by the first parameter marker
as defined via SQLBindParameter(). DB2 CLI will return the SQLCODE as the
procedure's return value if ?= is present in the escape clause. If ?= is not present, then
the application can retrieve the SQLCA by using the SQLGetSQLCA() function. Unlike
ODBC, DB2 CLI does not support literals as procedure arguments, parameter markers
must be used.

For more information about stored procedures, refer to “Using Stored Procedures” on
page 104 or the Embedded SQL Programming Guide.

For example, DB2 CLI will translate the following statement:

 {CALL NETB94(?,?,?)}

To an internal CALL statement format:

CALL NEBT94(?, ?, ?)

ODBC Scalar Functions
Scalar functions such as string length, substring, or trim can be used on columns of a
result sets and on columns that restrict rows of a result set. The ODBC escape clauses
for scalar functions is:

 {fn scalar-function}

Where, scalar-function can be any function listed in Appendix D, “Extended Scalar
Functions” on page 659.

For example, DB2 CLI will translate of the following statement:

SELECT {fn CONCAT(FIRSTNAME,LASTNAME)} FROM EMPLOYEE

to:

SELECT FIRSTNAME CONCAT LASTNAME FROM EMPLOYEE

SQLNativeSql() can be called to obtain the translated SQL statement.

To determine which scalar functions are supported by the current server referenced by
a specific connection handle, call SQLGetInfo() with the SQL_NUMERIC_FUNCTIONS,
SQL_STRING_FUNCTIONS, SQL_SYSTEM_FUNCTIONS, and
SQL_TIMEDATE_FUNCTIONS options.

126 CLI Guide and Reference

Chapter 4. Configuring CLI/ODBC and Running Sample
Applications

The DB2 CLI runtime environment is included with any of the DB2 Client Application
Enabler products. Development support for each platform is provided by the
corresponding DB2 Software Developer's Kit (DB2 SDK) which is part of the separately
orderable DB2 Application Development Kit product.

For example, OS/2 applications are developed using DB2 SDK for OS/2, and can run
against any DB2 server using DB2 Client Application Enabler for OS/2.

Setting up DB2 CLI Runtime Environment
Runtime support for DB2 CLI applications is contained in all DB2 Universal Database
products, including the DB2 Client Application Enabler and the DB2 SDK. This section
describes the general setup required; see also “Platform Specific Details for CLI/ODBC
Access” on page 129.

In order for a DB2 CLI application to successfully access a DB2 database:

1. The database (and node if the database is remote) must be cataloged. Use either
the command line processor or (if applicable) the DB2 administration tool for your
platform.

2. The DB2 CLI bind files must be bound to the database.

DB2 CLI will auto-bind on the first access to the database, provided the user has
the appropriate authorization. The database administrator may need to perform the
first connect, or explicitly bind the files. See “How to Bind the DB2 CLI/ODBC
Driver to the Database” on page 137 for more information.

3. Optionally the DB2 CLI/ODBC Configuration Keywords can be set.

See “Platform Specific Details for CLI/ODBC Access” on page 129 for more
information on how to do this using the tools available on your platform, or “How to
Set CLI/ODBC Configuration Keywords” on page 138 for details on doing this
manually.

Running CLI/ODBC Programs
The DB2 Call Level Interface (CLI) run-time environment and the ODBC driver are
included with the DB2 Client Application Enabler. This is contained on the DB2 Client
Pack CD-ROM or can be downloaded from the Web page at
http://www.software.ibm.com/data/db2.

This support enables applications developed using ODBC and DB2 CLI APIs to work
with any DB2 server. DB2 CLI application development support is provided by the DB2
Software Developer's Kit (DB2 SDK) which is part of the separately orderable DB2
Application Development Kit product.

 Copyright IBM Corp. 1993, 1997 127

Before DB2 CLI or ODBC applications can access DB2, the DB2 CLI packages must
be bound on the server. Although this will occur automatically on the first connection if
the user has the required authority to bind the packages, it is recommended that the
administrator do this first with each version of the client on each platform that will
access the server. See “How to Bind the DB2 CLI/ODBC Driver to the Database” on
page 137 for specific details.

The following general steps are required on the client system to give DB2 CLI and
ODBC applications access to DB2 databases. These instructions assume that you have
successfully connected to DB2 using a valid user ID and password. Depending on the
platform many of these steps are automatic. For complete details, see the section that
deals specifically with your platform.

1. Use the CCA to add the remote system (if you have separate client and server
machines) so that its instances and databases can be made known to the Control
Center, then add the instances and databases for that system. (Your local system
is represented by the icon labelled Local .) If you do not have access to this
program you can use the catalog command in the command line processor.

2. On all platforms other than OS/2 and Windows 3.1, the DB2 CLI/ODBC driver is
automatically installed when the DB2 Client Application Enabler is installed, and
therefore nothing needs to be done. On OS/2 and Windows 3.1 you must use the
Install ODBC Driver icon to install both the DB2 CLI/ODBC driver and the ODBC
driver manager.

3. To access the DB2 database from ODBC:

a. The Microsoft, Visigenic, or other ODBC Driver Manager must already be
installed (this is done by default during the installation of DB2).

b. The DB2 databases must be registered as ODBC data sources. The ODBC
driver manager does not read the DB2 catalog information; instead it
references its own list of data sources.

c. If a DB2 table does not have a unique index then many ODBC applications will
open it as read-only. Create a unique index for each DB2 table that is to be
updated by an ODBC application. Refer to the CREATE INDEX statement in
the SQL Reference. Using the Control Center you would alter the settings of
the table, then click on the Primary Key tab and move one or more columns
from the available columns list over to the primary key columns list. Any
column you select as part of the primary key must be defined as NOT NULL.

4. Various CLI/ODBC Configuration Keywords can be set to modify the behavior of
DB2 CLI/ODBC and the applications using it.

5. If you followed the above steps to install ODBC support, and added DB2
databases as ODBC data sources, your ODBC applications will now be able to
access them.

After the platform specific instructions there are further details on the following topics:

¹ “How to Bind the DB2 CLI/ODBC Driver to the Database” on page 137
¹ “How to Set CLI/ODBC Configuration Keywords” on page 138
¹ “Configuring db2cli.ini” on page 138

128 CLI Guide and Reference

Platform Specific Details for CLI/ODBC Access
The platform specific details on how to give DB2 CLI and ODBC applications access to
DB2 are divided into the following categories:

¹ “Windows 3.1, Windows 95 and Windows NT Client Access to DB2 using
CLI/ODBC”

¹ “OS/2 Client Access to DB2 using CLI/ODBC” on page 131
¹ “UNIX Client Access to DB2 using CLI/ODBC” on page 132
¹ “Macintosh Client Access to DB2 using CLI/ODBC” on page 134

Windows 3.1, Windows 95 and Windows NT Client Access to DB2
using CLI/ODBC
Before DB2 CLI and ODBC applications can successfully access a DB2 database from
a Windows 3.1, Windows 95, or Windows NT client, perform the following steps on the
client system:

1. The DB2 database (and node if the database is remote) must be cataloged. To do
so, use the CCA (or the command line processor).

For more information refer to the on-line help in the CCA (or the catalog command
in the Command Reference).

2. Verify that the Microsoft ODBC Driver Manager and the DB2 CLI/ODBC driver are
installed. On Windows 95 and Windows NT they are both installed with DB2 unless
the ODBC component is manually unselected during the install. On Windows 3.1
you must use the Install ODBC Driver icon to install the Microsoft ODBC Driver
Manager and the DB2 CLI/ODBC driver.

To verify that they both exist on the machine:

a. Run the Microsoft ODBC Administrator from the icon in the Control Panel, or
issue the appropriate command from the command line: odbcad32.exe for
Windows 95 or Windows NT operating systems, odbcadm.exe on Windows
3.1.

b. Click on the Drivers push button, or the ODBC Drivers tab (depending on the
platform).

c. Verify that "IBM DB2 ODBC Driver" is shown in the list.

If either the Microsoft ODBC Driver Manager or the IBM DB2 CLI/ODBC driver is
not installed, then rerun the DB2 install and select the ODBC component in
Windows 95 or Windows NT, or double-click on the Install ODBC Driver icon in
the DB2 program group in Windows 3.1.

3. Register the DB2 database with the ODBC driver manager as a data source. On
Windows 95 and Windows NT you can make the data source available to all users
of the system (a system data source), or only the current user (a user data
source). Use either of these methods to add the data source:

¹ Using the CCA:

a. Select the DB2 database alias that you want to add as a data source.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 129

b. Click on the Properties push button. The Database Properties window
opens.

c. Select the Register this database for ODBC check box.

d. On Windows 95 and Windows NT you can use the radio buttons to add
the data source as either a user or system data source.

¹ Using the Microsoft 32bit ODBC Administration tool , which you can access
from the icon in the Control Panel or by running odbcad32.exe from the
command line:

a. On Windows 95 and Windows NT the list of user data sources appears by
default. If you want to add a system data source click on the System DSN
button, or the System DSN tab (depending on the platform).

b. Click on the Add push button.

c. Double-click on the IBM DB2 ODBC Driver in the list.

d. Select the DB2 database to add and click on OK.

¹ On Windows 95 and Windows NT there is a command that can be issued in
the command line processor to register the DB2 database with the ODBC
driver manager as a data source. An administrator could create a command
line processor script to register the required databases. This script could then
be run on all of the machines that require access to the DB2 databases
through ODBC.

See the

CATALOG [user | system] ODBC DATA SOURCE

 command in the Command Reference for more information.

4. Optional: Configure the DB2 CLI/ODBC driver using the CCA:

a. Select the DB2 database alias you want to configure.

b. Click on the Properties push button. The Database Properties window opens.

c. Click on the Settings push button. The CLI/ODBC Settings window opens.

d. Click on the Advanced push button. You can set the configuration keywords in
the window that opens. These keywords are associated with the database
alias name, and affect all DB2 CLI/ODBC applications that access the
database. The online help explains all of the keywords, as does “Configuration
Keywords” on page 144.

For information on manually editing this file (db2cli.ini), see “Configuring
db2cli.ini” on page 138.

5. Optional: Using 16-bit ODBC applications:

Although not directly related to DB2, some users have experienced problems when
running 16-bit ODBC applications on Windows 95 or Windows NT.

130 CLI Guide and Reference

Both 16- and 32-bit applications use the same 32-bit IBM DB2 CLI/ODBC Driver.
The Microsoft ODBC Driver Manager takes care of the conversion between the
16-bit application and the 32-bit ODBC driver.

Some 16-bit applications were shipped with an old set of 16-bit Driver Manager
DLLs (that is, before 1995). These DLLs do not function well in the 32-bit
environment. The following symptoms may occur when running the old DLLs:

¹ Traps occur in odbc.dll or other ODBC related DLLs.
¹ 16-bit applications do not see data sources cataloged using the 32-bit ODBC

Administrator (from the Control Panel).

If (and only if) you are experiencing these problems you may want to update the
Microsoft 16-bit ODBC Driver Manager DLLs. These files are provided with DB2 in
the SQLLIB\MSODBC16 subdirectory. Use these new DLLs to replace the older
versions that are located in the system subdirectory of the Windows operating
system directory.

6. If you have installed ODBC access (as described above), you can now access DB2
data using ODBC applications. Start the ODBC application and go to the Open
window. Select the ODBC databases file type. The DB2 databases that you added
as ODBC data sources will be selectable from the list. Many ODBC applications
will open the table as read-only unless a unique index exists.

OS/2 Client Access to DB2 using CLI/ODBC
Before DB2 CLI and ODBC applications can successfully access a DB2 database from
an OS/2 client, perform the following steps on the client system:

1. The DB2 database (and node if the database is remote) must be cataloged. To do
so, use the CCA (or the command line processor).

For more information see the on-line help in the CCA (or the catalog command in
the Command Reference).

2. If you are using ODBC applications to access DB2 data, perform the following
steps. (If you are using only CLI applications, skip this step and go to the next
step.)

a. Check that the ODBC Driver Manager (Visigenic or Intersolv) and the DB2
CLI/ODBC driver are installed:

1) Run the ODBC Administration tool in one of two ways:

¹ Double-click on the Control Panel icon from the Main Folder in
WIN-OS/2 or the ODBC Folder in OS/2, and double-click on the
ODBC Administrator icon.

¹ Run odbcadm.exe from the command line.

 The Data Sources window opens.

2) Click on the Drivers push button. The Drivers window opens.

3) Verify that "IBM DB2 ODBC Driver" is shown in the list.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 131

If either the ODBC Driver Manager or the IBM DB2 CLI/ODBC driver is not
installed then double-click on the Install ODBC Driver icon in the DB2 folder
to install both the DB2 CLI/ODBC driver and the ODBC driver manager.

b. Register the DB2 database with the ODBC driver manager as a data source
using either of these methods:

¹ Using the CCA:

1) Select the DB2 database alias that you want to add as a data source.

2) Click on the Properties push button.

3) Select the Register this database for ODBC check box.

¹ Using the Visigenic ODBC Administration tool , which you can access
from the ODBC folder or by running odbcadm.exe from the command
line:

1) Click on the Add push button from the Data Sources window. The
Add Data Source Window opens.

2) Double-click on the IBM DB2 ODBC Driver in the list.

3) Select the DB2 database to add and click on OK.

3. Optional: Configure the DB2 CLI/ODBC driver using the CCA:

a. Select the DB2 database alias you want to configure.

b. Click on the Properties push button. The Database Properties window opens.

c. Click on the Settings push button. The CLI/ODBC Settings window opens.

d. Click on the Advanced push button. You can set the configuration keywords in
the window that appears. These keywords are associated with the database
alias name, and affect all DB2 CLI/ODBC applications that access the
database. The online help explains all of the keywords, as does “Configuration
Keywords” on page 144.

For information on manually editing this file (db2cli.ini), see “Configuring
db2cli.ini” on page 138.

4. If you have installed ODBC access (as described above), you can now access DB2
data using ODBC applications. Start the ODBC application and go to the Open
window. Select the ODBC databases file type. The DB2 databases that you added
as ODBC data sources will be selectable from the list. Many ODBC applications
will open the table as read-only unless a unique index exists.

UNIX Client Access to DB2 using CLI/ODBC
Before DB2 CLI and ODBC applications can successfully access a DB2 database from
a UNIX client, perform the following steps on the client system:

1. The DB2 database (and node if the database is remote) must be cataloged. To do
so, use the command line processor.

For more information see the catalog command in the Command Reference.

132 CLI Guide and Reference

2. The DB2 CLI/ODBC driver is automatically installed when DB2 is installed, and
therefore nothing needs to be done.

3. If you are using ODBC applications to access DB2 data, perform the following
steps. (If you are using only CLI applications, skip this step and go to the next
step.)

a. When using an ODBC application you must ensure that the Visigenic ODBC
Driver Manager components are installed and that each user that will use
ODBC has access to it.

¹ If DB2 installed the Driver Manager it would be located in the sqllib/odbclib
subdirectory.

¹ If the Driver Manager was installed by another program, the file .odbc.ini
(begins with a period) would be located in the root directory of the user ID
that runs the ODBC application.

b. The Driver Manager uses two initialization files:

odbcinst.ini ODBC Driver Manager's configuration file indicating which
database drivers are installed. Each user that will use ODBC
must have access to this file.

.odbc.ini End-user's data source configuration. Each user has a separate
copy of this file.

A sample template of these files are provided in the sqllib/odbclib subdirectory.

Setting up odbcinst.ini

The settings in this file impact all of the ODBC drivers on the machine.

Use an ASCII editor to update this file. It must have a stanza (section) called
[IBM DB2 ODBC DRIVER], with a line starting with "Driver" indicating the full
path to the DB2 ODBC driver (db2.o). For example, if the home directory of
your end user is /u/thisuser/ and the sqllib directory is installed there, then the
correct entry would be:

[IBM DB2 ODBC DRIVER]

 Driver=/u/thisuser/sqllib/lib/db2.o

See the sample file in the sqllib/odbclib subdirectory for an example.

Setting up odbc.ini

The settings in this file are associated with a particular user on the machine;
different users can have different odbc.ini files.

The odbc.ini file must be copied into the end user's home directory and called
.odbc.ini. Update this file, using an ASCII editor, to reflect the appropriate data
source configuration information. To register a DB2 database as an ODBC
data source there must be one stanza (section) for each DB2 database.

The sample odbc.ini template shows:

¹ line 2 (part of the [ODBC Data Source] stanza):

SAMPLE=IBM DB2 ODBC DRIVER

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 133

Indicates that there is a data source called SAMPLE that used the IBM
DB2 ODBC DRIVER.

¹ lines 4-6 (part of the [SAMPLE] stanza):

 [SAMPLE]

 Driver=/u/thisuser/sqllib/lib/db2.o

Description=Sample DB2 ODBC Database

Indicates that the SAMPLE database is part of the DB2 instance located
in the directory /u/thisuser.

¹ line 11 (part of the [ODBC] stanza):

 InstallDir=/u/thisuser/sqllib/odbclib

Indicates that /u/thisuser/sqllib/odbclib should be treated as the location
where ODBC is installed.

Note: If your application specifically installed the ODBC components
(such as the Driver Manager) elsewhere, you must update the line
starting with InstallDir under the [ODBC] stanza to reflect this new
location.

For example, if ODBC has been installed in /opt/odbc, the [ODBC]
stanza would look like:

 [ODBC]

 Trace=0

 TraceFile=odbctrace.out

 InstallDir=/opt/odbc

See the sample file in the sqllib/odbclib subdirectory for an example. You can
also see “How to Configure ODBC.INI” on page 140 for more detailed
information.

Once the .ini files are set up you can run your ODBC application and access
DB2 databases. Refer to the documentation that comes with your ODBC
application for additional help and information.

4. Configure the DB2 CLI/ODBC driver (optional).

There are various keywords and values that can be used to modify the behavior of
DB2 CLI/ODBC and the applications using it. The keywords are associated with the
database alias name, and affect all DB2 CLI/ODBC applications that access the
database.

For information on manually editing this file (db2cli.ini), see “Configuring db2cli.ini”
on page 138. For information about the specific keywords see “Configuration
Keywords” on page 144.

Macintosh Client Access to DB2 using CLI/ODBC
Before DB2 CLI and ODBC applications can successfully access a DB2 database from
a Macintosh client, perform the following steps on the client system:

1. The DB2 database (and node if the database is remote) must be cataloged. To do
so, use the command line processor.

134 CLI Guide and Reference

For more information see the catalog command in the Command Reference.

2. If you are using ODBC applications to access DB2 data, perform the following
steps. (If you are using only CLI applications, skip to step #4.)

a. An ODBC driver manager must be installed to handle the communications
between the ODBC applications and the DB2 ODBC driver. DB2 does not
supply a Macintosh ODBC driver manager, only the DB2 ODBC driver itself. If
your ODBC application does not supply an ODBC driver manager then you
can obtain the MacODBC driver manager directly from Apple.

b. Register the DB2 database with the ODBC driver manager list of data sources
(contained in the ODBC Preferences file) as a data source using either of
these methods:

¹ Running ODBC Setup (in a 68K environment) or ODBC Setup PPC (in a
PowerMacintosh environment) from the Control Panel

¹ Editing the initialization (ODBC Preferences or ODBC Preferences PPC)
file directly; refer to the next step in this process for more information.

3. Configuring ODBC Preferences or ODBC Preferences PPC: The ODBC
initialization file is used to record information such as the available drivers and data
sources. See the documentation for your driver manager for procedures on
updating this file.

The MacODBC driver manager uses the ODBC Preferences file or the ODBC
Preferences PPC file to record information about the available drivers and data
sources.

It is also possible to modify these files manually. Do not change any of the existing
entries in the files.

a. Use an ASCII editor to edit the ODBC Preferences file or the ODBC
Preferences PPC file.

68K Environment
The following is a sample ODBC Preferences file:

[ODBC Data Sources]

GLOBALDB=IBM ODBC DB2 for Macintosh

SAMPLE=IBM ODBC DB2 for Macintosh

 [GLOBALDB]

 Driver=appl:ODBC$DB2DriverFunctionSet

Description=My GLOBAL database

 [SAMPLE]

 Driver=appl:ODBC$DB2DriverFunctionSet

Description=My SAMPLE database

PowerMacintosh Environment
The following is a sample ODBC Preferences PPC:

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 135

[ODBC Data Sources]

SAMPLE=IBM ODBC DB2 for PPC

 [SAMPLE]

 Driver=DB2ODBCDriverPPC

Description=My SAMPLE database

b. The [ODBC Data Source] section lists the name of each available data source
and the description of the associated driver.

For each data source listed in the [ODBC Data Source] section, there is a
section that lists additional information about that data source. These are
called the Data Source Specification sections.

Under the [ODBC DATA SOURCE] entry, add the following line:

68K Environment
database_alias=IBM ODBC DB2 for Macintosh

PowerMacintosh Environment
database_alias=IBM ODBC DB2 for PPC

Where database_alias is the alias of the database cataloged in the database
directory (the database name used by the Command Line Processor
CONNECT TO statement).

c. Add a new entry in the Data Source Specification section to associate the data
source with the driver:

68K Environment

[database_alias]

Driver=appl:ODBC$DB2DriverFunctionSet

PowerMacintosh Environment

[database_alias]

Driver=DB2ODBCDriverPPC

Where database_alias is the alias of the database cataloged in the database
directory, and listed under the Data Source Specification section.

4. The DB2 CLI/ODBC driver can be configured further by editing the db2cli.ini file.
This file contains various keywords and values that can be used to modify the
behavior of DB2 CLI and the applications using it. The keywords are associated
with the database alias name, and affect all DB2 CLI applications that access the
database. For a complete description of all the keywords and their usage, refer to
“Configuration Keywords” on page 144.

5. If you have installed ODBC access (as described above), you can now access DB2
data using ODBC applications. Start the ODBC application and go to the Open
window. Select the ODBC databases file type. The DB2 databases that you added
as ODBC data sources will be selectable from the list. Many ODBC applications
will open the table as read-only unless a unique index exists.

136 CLI Guide and Reference

Detailed Configuration Information
The section “Platform Specific Details for CLI/ODBC Access” on page 129 should
provide you with all of the information you require. The following additional information
is useful where DB2 tool support is not available, and for administrators who require
more detailed information.

¹ “How to Bind the DB2 CLI/ODBC Driver to the Database”
¹ “How to Set CLI/ODBC Configuration Keywords” on page 138
¹ “Configuring db2cli.ini” on page 138

How to Bind the DB2 CLI/ODBC Driver to the Database
The CLI/ODBC driver will autobind on the first connection to the database, provided the
user has the appropriate privilege or authorization. The administrator may want to
perform the first connect or explicitly bind the required files.

Table 11. DB2 CLI Bind Files and Package Names

Bind File Name Package Name
Needed by DB2

Universal Database Needed by DRDA servers

db2clics.bnd SQLL15xx Yes Yes

db2clirr.bnd SQLL25xx Yes Yes

db2cliur.bnd SQLL35xx Yes Yes

db2clirs.bnd SQLL45xx Yes Yes

db2clinc.bnd SQLL55xx No DB2 for AS/400

db2cliws.bnd SQLL65xx Yes No

db2clims.bnd SQLL75xx No DB2 for MVS/ESA

db2clivm.bnd SQLL85xx No SQL/DS

db2cliv1.bnd SQLLB5xx Version 1 only No

db2cliv2.bnd SQLL95xx Version 2 or later No

db2clias.bnd SQLLA5xx No DB2 for AS/400

Note: Where the 'xx' is unique for each platform, such as:

C0 DB2 for AIX
D0 DB2 for OS/2
W0 DB2 Client Application Enabler for Windows

Previous versions of DB2 servers do not need all of the bind files and will therefore return errors at bind time.

The db2cli.lst file contains the names of the required bind files for DB2 CLI to connect
to DB2 Version 2 or later servers (db2clixx.bnd where xx is cs, rr, rs, ur, ws, and
v2). The db2cli1.lst file contains the names of the required bind files for DB2 CLI to
connect to DB2 Version 1 servers (db2clixx.bnd where xx is cs, rr, ur, and v1).

For DRDA servers:

¹ use one of ddcsvm.lst, ddcsmvs.lst, ddcsvse.lst, or ddcs400.lst bind list files.
¹ Refer to the SYSSCHEMA keyword in “Configuration Keywords” on page 144.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 137

¹ Refer to the Quick Beginnings or DB2 Connect Enterprise Edition Quick Beginnings
for details about required bind options.

How to Set CLI/ODBC Configuration Keywords
DB2 CLI can be configured further by using either the CCA or the DB2 Client Setup
administration tool, whichever is applicable for your platform, or by manually editing the
db2cli.ini file.

This file contains various keywords and values that can be used to modify the behavior
of DB2 CLI and the applications using it. The keywords are associated with the
database alias name, and affect all DB2 CLI and ODBC applications that access the
database.

By default, the location of the CLI/ODBC configuration keyword file is as follows:

Platform: Location:

OS/2 sqllib directory

Windows NT sqllib directory

Windows 95 sqllib directory

Windows 3.1 sqllib\win directory

UNIX sqllib/cfg directory of the database instance running the CLI/ODBC
applications

The environment variable DB2CLIINIPATH can also be used to override the default and
specify a different location for the file.

The configuration keywords enable you to:

¹ Configure general features such as data source name, user name, and password.
¹ Set options that will affect performance.
¹ Indicate query parameters such as wild card characters.
¹ Set patches or work-arounds for various ODBC applications.
¹ Set other, more specific features associated with the connection, such as code

pages and IBM Graphic data types.

For a complete description of all the keywords and their usage, refer to “Configuration
Keywords” on page 144.

Configuring db2cli.ini: The db2cli.ini initialization file is an ASCII file which stores
values for the DB2 CLI configuration options. A sample file is shipped to help you get
started. Refer to “Configuration Keywords” on page 144 for information on each
keyword.

See “Platform Specific Details for CLI/ODBC Access” on page 129 for more information
on how to modify this file on your platform.

138 CLI Guide and Reference

Within the file, there is one section for each database (data source) the user wishes to
configure, as well as a common section (if necessary) that affects all connections to
DB2.

Only the keywords that apply to all connections to DB2 through the DB2 CLI/ODBC
driver are included in the COMMON section. This includes the following keywords:

 ¹ DISABLEMULTITHREAD
 ¹ TRACE
 ¹ TRACEFILENAME
 ¹ TRACEFLUSH
 ¹ TRACEPATHNAME

All other keywords are to be placed in the database specific section, described below.

The COMMON section of the db2cli.ini file begins with:

[COMMON]

Before setting a common keyword it is important to evaluate its impact on all DB2
CLI/ODBC connections from that client. A keyword such as TRACE, for instance, will
generate information on all DB2 CLI/ODBC applications connecting to DB2 on that
client, even if you are intending to trouble shoot only one of those applications.

Each database specific section always begins with the name of the database alias
between square brackets:

[database alias]

 This is called the section header .

The parameters are set by specifying a keyword with its associated keyword value in
the form:

KeywordName =keywordValue

¹ All the keywords and their associated values for each database must be located
below the database section header.

¹ The keyword settings in each section apply only to the database alias named in
that section header.

¹ The keywords are not case sensitive; however, their values can be if the values
are character based.

¹ For the syntax associated with each keyword, refer to “DB2 CLI/ODBC
Configuration Keyword Listing” on page 144.

¹ If a database is not found in the .INI file, the default values for these keywords are
in effect.

¹ Comment lines are introduced by having a semi-colon in the first position of a new
line.

¹ Blank lines are permitted.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 139

¹ If duplicate entries for a keyword exist, the first entry is used (and no warning is
given).

The following is a sample .INI file with 2 database alias sections:

; This is a comment line.

[MYDB22]

AUTOCOMMIT=0

TABLETYPE="'TABLE','SYSTEM TABLE'"

; This is another comment line.

[MYDB2MVS]

DBNAME=SAAID

TABLETYPE="'TABLE'"

SCHEMALIST="'USER1',CURRENT SQLID,'USER2'"

Although you can edit the db2cli.ini file manually on all platforms, we recommend that
you use the CCA if it is available on your platform.

How to Configure ODBC.INI
Microsoft's 16-bit ODBC Driver Manager and Visigenic's ODBC Driver Manager use the
odbc.ini file to record information about the available drivers and data sources.
Visigenic's ODBC Driver Manager also uses the odbcinst.ini file on UNIX platforms.
Although the necessary files are updated automatically by the tools on most platforms,
users of ODBC on UNIX platforms will have to edit them manually. The file odbc.ini
(and odbcinst.ini where required) are located:

Platform: Location:

Windows drive:\windows (where drive is the drive where Windows is installed)

Win-OS/2 drive:\os2\mdos\winos2 (where drive is the drive where OS/2 is installed)

UNIX Home directory of user ID running ODBC application

It is also possible to modify this file manually. Do not change any of the existing entries
in the file.

1. Use an ASCII editor to edit the odbc.ini file.

The following is an example odbc.ini file:

[ODBC Data Sources]

MS Access Databases=Access Data (*.mdb)

[MS Access Databases]

 Driver=D:\WINDOWS\SYSTEM\simba.dll

 FileType=RedISAM

 SingleUser=False

 UseSystemDB=False

The [ODBC Data Sources] section lists the name of each available data source
and the description of the associated driver.

140 CLI Guide and Reference

For each data source listed in the [ODBC Data Sources] section, there is a section
that lists additional information about that data source. These are called the Data
Source Specification sections.

2. Under the [ODBC DATA SOURCE] entry, add the following line:

database_alias=IBM DB2 ODBC DRIVER

where database_alias is the alias of the database cataloged in the database
directory (the database name used by the command line processor CONNECT TO
statement).

3. Add a new entry in the Data Source Specification section to associate the data
source with the driver:

[database_alias]

Driver=drive:\windows\system\db2cliw.dll

 Where:

¹ database_alias is the alias of the database cataloged in the database
directory, and listed under the Data Source Specification section.

¹ drive is the drive where Windows is installed.

The following shows the example file with the IBM data source entries added:

[ODBC Data Sources]

MS Access Databases=Access Data (*.mdb)

SAMPLE=IBM DB2 ODBC DRIVER

[MS Access Databases]

 Driver=D:\WINDOWS\SYSTEM\simba.dll

 FileType=RedISAM

 SingleUser=False

 UseSystemDB=False

 [SAMPLE]

 Driver=D:\WINDOWS\SYSTEM\db2cliw.dll

Description=Sample DB2 Client/Server database

Note: If you are running the ODBC application under WIN-OS/2, specify the equivalent
path \OS2\MDOS\WINOS2\SYSTEM in place of the \WINDOWS\SYSTEM path.

UNIX Configuration of .ini files

The section “UNIX Client Access to DB2 using CLI/ODBC” on page 132 contains
detailed steps on how to update both the odbc.ini and odbcinst.ini files.

Application Development Environments
DB2 CLI application development support is provided when you install a DB2 SDK
which is part of the separately orderable DB2 Application Development Kit product. The
DB2 SDK requires the same initial runtime setup as a DB2 Client Application Enabler.
Before using the DB2 CLI development environment, you may want to verify that your
environment is set up correctly by following these steps:

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 141

¹ Start the command line processor by issuing the command DB2, or use the
Command Center if it is available on your platform.

¹ List the cataloged databases with the command: LIST DATABASE DIRECTORY

¹ Connect to database with the command: CONNECT TO database USER userid USING

password

If there are no databases cataloged, or the connect fails refer to the Quick Beginnings
for information about configuring the environment.

Once a connection has been confirmed, proceed with compiling the sample application.

Note: There is also an applet referred to as "Interactive CLI" or db2cli in the DB2 CLI
samples directory. Refer to the INTCLI.DOC file in the same directory for more
information on this programmer's utility that is used to design and prototype CLI
function calls.

Compiling a Sample Application
DB2 CLI includes various sample applications in the {DB2PATH}/samples/cli directory
(where {DB2PATH} is the directory the DB2 SDK product was installed). The README file
in the same directory lists each sample along with an explanation, and describes how
to build the samples using the make facility (with the makefile that is also included).

DB2 CLI provides a way to ensure that your compiler environment is set up correctly
without using the make facility. A sample application is included that is compiled and
linked using a file composed of compile and link commands; a build script. The build
script is a command file (.cmd) in OS/2, a batch file (.bat) in Windows, and a script file
on UNIX platforms. Once you compile and link the sample application you can run it
with command line arguments for the database, user id and password. This allows the
application to connect to any database that you have access to.

The appropriate compiler must be installed and setup before continuing.

Copy the sample application and command file to a test directory to which you have
write access, and execute the command file.

Execute the resulting executable file by entering:

clisampl database userid password

Where:

¹ database is the name of a cataloged database
¹ userid is a userid that has SYSADMIN access database manger
¹ password valid password

 Expected Results
The example program performs the following SQL operations using DB2 CLI function
calls:

1. Connects to a database

142 CLI Guide and Reference

2. Creates a table

3. Inserts data into the table using a parameter marker

4. Selects the data

5. Drops the table

6. Disconnects from the database.

Expected output:

Connecting

Create table - CREATE TABLE CLISAMPL (COL1 VARCHAR(50))

Insert - INSERT INTO CLISAMPL VALUES (?)

Select - SELECT * FROM CLISAMPL

Number of columns - 1

Column name - COL1

Column type - 12

Column precision - 50

Column scale - 0

Column nullable - TRUE

Column value - Row 1

Column value - Row 2

Disconnecting

Exiting program

The output of the Windows 3.1 program is written into a file named “clisampl.log” in the
directory where the executable is invoked.

Compile and Link Options
Refer to the DB2 SDK Building Your Applications for information on compiling and
linking the samples for your particular platform. A make file and build script are also
supplied that have the correct options for the platform and supported compilers. These
files are located in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory.

If you are migrating applications from previous versions of DB2 CLI, refer to
“Incompatibilities” on page 645 for additional information.

Note: The order in which the compiler searches for include (header) files can be
significant if there are two or more files with the same name, (for example
sql.h and sqlext.h are included in some ODBC SDK environments).

If you are building only DB2 CLI applications, always put the DB2 include path
before any others.

If you are building ODBC applications, your build environment may require
further customization in order to use the correct include files. Refer to the ODBC
SDK documentation for more information.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 143

DB2 CLI/ODBC Configuration Keyword Listing
For specific details on how to set the DB2 CLI/ODBC configuration keywords for your
platform see the last step of “Platform Specific Details for CLI/ODBC Access” on
page 129. See “How to Set CLI/ODBC Configuration Keywords” on page 138 for
information on the location and format of the db2cli.ini file.

 Configuration Keywords
The keywords are listed in alphabetical order starting with “APPENDAPINAME” on
page 146. They are also divided into categories. Each of these categories is presented
on a separate tab on the CLI/ODBC Settings notebook, accessible from the Client
Configuration Assistant (not available on UNIX platforms).

Configuration Keywords by Category
CLI/ODBC Settings General Configuration Keywords: General keywords.

¹ “DBALIAS” on page 152
¹ “PWD” on page 163
¹ “UID” on page 171

Compatibility Configuration Keywords: The Compatibility set of options are used
to define DB2 behavior. They can be set to ensure that other applications are
compatible with DB2.

¹ “DEFERREDPREPARE” on page 154
¹ “DISABLEMULTITHREAD” on page 155
¹ “EARLYCLOSE” on page 155
¹ “TRANSLATEDLL” on page 170
¹ “TRANSLATEOPTION” on page 170

Data Type Configuration Keywords: The Data Type set of options are used to
define how DB2 reports and handles various data types.

¹ “BITDATA” on page 146
¹ “GRAPHIC” on page 157
¹ “LOBMAXCOLUMNSIZE” on page 159
¹ “LONGDATACOMPAT” on page 160

Enterprise Configuration Keywords: The Enterprise set of options are used to
maximize the efficiency of connections to large databases.

¹ “CURRENTPACKAGESET” on page 148
¹ “CURRENTSQLID” on page 149
¹ “DBNAME” on page 153
¹ “GATEWAYVERSION” on page 156
¹ “GRANTEELIST” on page 156
¹ “GRANTORLIST” on page 157
¹ “SCHEMALIST” on page 164
¹ “SYSSCHEMA” on page 165
¹ “TABLETYPE” on page 166

144 CLI Guide and Reference

Environment Configuration Keywords: The Environment set of options are used to
define the location of various files on the server and client machines.

¹ “CURRENTFUNCTIONPATH” on page 147
¹ “DEFAULTPROCLIBRARY” on page 153
¹ “TEMPDIR” on page 167

Optimization Configuration Keywords: The Optimization set of options are used to
speed up and reduce the amount of network flow between the CLI/ODBC Driver and
the server.

¹ “DB2DEGREE” on page 150
¹ “DB2ESTIMATE” on page 150
¹ “DB2EXPLAIN” on page 151
¹ “DB2OPTIMIZATION” on page 152
¹ “KEEPSTATEMENT” on page 159
¹ “OPTIMIZEFORNROWS” on page 162
¹ “UNDERSCORE” on page 172

Service Configuration Keywords: The Service set of options are used to help in
troubleshooting problems with CLI/ODBC connections. Some options can also be used
by programmers to gain a better understanding of how their CLI programs are
translated into calls to the server.

¹ “APPENDAPINAME” on page 146
¹ “IGNOREWARNINGS” on page 158
¹ “PATCH1” on page 162
¹ “PATCH2” on page 162
¹ “POPUPMESSAGE” on page 163
¹ “SQLSTATEFILTER” on page 164
¹ “TRACE” on page 168
¹ “TRACEFILENAME” on page 168
¹ “TRACEFLUSH” on page 169
¹ “TRACEPATHNAME” on page 169
¹ “WARNINGLIST” on page 172

Transaction Configuration Keywords: The Transaction set of options are used to
control and speed up SQL statements used in the application.

¹ “ASYNCENABLE” on page 146
¹ “CONNECTTYPE” on page 147
¹ “CURSORHOLD” on page 149
¹ “KEEPCONNECT” on page 158
¹ “MAXCONN” on page 160
¹ “MODE” on page 161
¹ “MULTICONNECT” on page 161
¹ “SYNCPOINT” on page 165
¹ “TXNISOLATION” on page 171

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 145

 APPENDAPINAME
Keyword Description: Append the CLI/ODBC function name which generated an error

to the error message.

db2cli.ini Keyword Syntax: APPENDAPINAME = 0 | 1

Default Setting: Do NOT display DB2 CLI function name.

DB2 CLI/ODBC Settings Tab: Service

Usage Notes:

The DB2 CLI function (API) name that generated an error is appended to the error
message retrieved using SQLGetDiagRec() or SQLError(). The function name is
enclosed in curly braces { }.

For example,

[IBM][CLI Driver]" CLIxxxx: < text >

SQLSTATE=XXXXX {SQLGetData}"

0 = do NOT append DB2 CLI function name (default)
1 = append the DB2 CLI function name

This keyword is only useful for debugging.

 ASYNCENABLE
Keyword Description: Enable or disable the ability to execute queries asynchronously.

db2cli.ini Keyword Syntax: ASYNCENABLE = 1 | 0

Default Setting: Execute queries asynchronously.

DB2 CLI/ODBC Settings Tab: Transaction

Equivalent Statement Attribute: SQL_ATTR_ASYNC_ENABLE

Usage Notes:

This option allows you to enable or disable the ability to execute queries
asynchronously. This only benefits applications that were written to take advantage of
this feature. Disable it only if your application does not function properly when enabled.
It is placed in the data source specific section of the db2cli.ini file.

1 = Execute queries asynchronously (default)
0 = Queries not executed asynchronously

Note: The CLI/ODBC driver will act as it did with previous versions of DB2 that did not
support asynchronous ODBC.

 BITDATA
Keyword Description: Specify whether binary data types are reported as binary or

character data types.

db2cli.ini Keyword Syntax: BITDATA = 1 | 0

146 CLI Guide and Reference

Default Setting: Report FOR BIT DATA and BLOB data types as binary data types.

DB2 CLI/ODBC Settings Tab: Data Type

Usage Notes:

This option allows you to specify whether ODBC binary data types (SQL_BINARY,
SQL_VARBINARY, SQL_LONGVARBINARY, and SQL_BLOB), are reported as binary
type data. IBM DBMSs support columns with binary data types by defining CHAR,
VARCHAR, and LONG VARCHAR columns with the FOR BIT DATA attribute. DB2
Universal Database will also support binary data via the BLOB data type (in this case it
is mapped to a CLOB data type).

Users may also need to set this option if they are using a DB2 Version 1 application
that retrieves (LONG) (VAR)CHAR data into SQL_C_CHAR buffer. In DB2 Version 1,
data is moved into the SQL_C_CHAR buffer unchanged; starting in DB2 Version 2, the
data is converted into the ASCII representation of each hexadecimal nibble.

Only set BITDATA = 0 if you are sure that all columns defined as FOR BIT DATA or
BLOB contain only character data, and the application is incapable of displaying binary
data columns.

1 = report FOR BIT DATA and BLOB data types as binary data types (default).
0 = report FOR BIT DATA and BLOB data types as character data types.

 CONNECTTYPE
Keyword Description: Remote or Distributed unit of work.

db2cli.ini Keyword Syntax: CONNECTTYPE = 1 | 2

Default Setting: Remote unit of work

DB2 CLI/ODBC Settings Tab: Transaction

See Also: “SYNCPOINT” on page 165

Equivalent Connection Attribute: SQL_ATTR_CONNECTTYPE

Usage Notes:

This option allows you to specify the default connect type.

1 = Remote unit of work. Multiple concurrent connections, each with its own
commit scope. The concurrent transactions are not coordinated. (default)
2 = Distributed unit of work. Coordinated connections where multiple databases
participate under the same distributed unit of work. This setting works in
conjunction with the SYNCPOINT setting to determine if a Transaction Manager
should be used.

 CURRENTFUNCTIONPATH
Keyword Description: Specify the schema used to resolve function references and

data type references in dynamic SQL statements.

db2cli.ini Keyword Syntax: CURRENTFUNCTIONPATH = current_function_path

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 147

Default Setting: See description below.

DB2 CLI/ODBC Settings Tab: Environment

Usage Notes:

This keyword defines the path used to resolve function references and data type
references that are used in dynamic SQL statements. It contains a list of one or more
schema-names, where schema-names are enclosed in double quotes and separated by
commas.

The default value is "SYSIBM","SYSFUN",X where X is the value of the USER special
register delimited by double quotes. The schema SYSIBM does not need to be
specified. If it is not included in the function path, then it is implicitly assumed as the
first schema.

This keyword is used as part of the process for resolving unqualified function
references that may have been defined in a schema name other than the current user's
schema. The order of the schema names determines the order in which the function
names will be resolved. For more information on function resolution, refer to the SQL
Reference.

 CURRENTPACKAGESET
Keyword Description: Issue "SET CURRENT PACKAGESET schema" after every

connect.

db2cli.ini Keyword Syntax: CURRENTPACKAGESET = schema name

Default Setting: The clause is not appended.

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC
Settings notebook. The db2cli.ini file must be modified directly to make use
of this keyword.

Only Applicable when: connecting to a DB2 for MVS/ESA v4.1 or later database.

Equivalent Connection Attribute: SQL_ATTR_CURRENT_PACKAGE_SET

Usage Notes:

This option will issue the command "SET CURRENT PACKAGESET schema" after
every connect to a DB2 for MVS/ESA v4.1 or later database. By default this clause is
not appended.

This statement sets the schema name (collection identifier) that will be used to select
the package to use for subsequent SQL statements.

CLI/ODBC applications issue dynamic SQL statements. Using this option you can
control the privileges used to run these statements:

¹ Choose a schema to use when running SQL statements from CLI/ODBC
applications.

148 CLI Guide and Reference

¹ Ensure the objects in the schema have the desired privileges and then rebind
accordingly.

¹ Set the CURRENTPACKAGESET option to this schema.

The SQL statements from the CLI/ODBC applications will now run under the specified
schema and use the privileges defined there.

Refer to the SQL Reference for more information on the SET CURRENT
PACKAGESET command.

 CURRENTSQLID
Keyword Description: Specify the ID used in a SET CURRENT SQLID statement sent

to the DBMS upon a successful connect.

db2cli.ini Keyword Syntax: CURRENTSQLID = current_sqlid

Default Setting: No statement is issued.

DB2 CLI/ODBC Settings Tab: Enterprise

Only Applicable when: connecting to those DB2 DBMS's where SET CURRENT
SQLID is supported (such as DB2 for MVS/ESA).

Usage Notes:

Upon a successful connect, if this option is set, a SET CURRENT SQLID statement is
sent to the DBMS. This allows the end user and the application to name SQL objects
without having to qualify them by schema name.

 CURSORHOLD
Keyword Description: Effect of a transaction completion on open cursors.

db2cli.ini Keyword Syntax: CURSORHOLD = 1 | 0

Default Setting: Selected--Cursors are not destroyed.

DB2 CLI/ODBC Settings Tab: Transaction

Equivalent Statement Attribute: SQL_ATTR_CURSOR_HOLD

Usage Notes:

This option controls the effect of a transaction completion on open cursors.

1 = cursor hold, the cursors are not destroyed when the transaction is committed
(default).
0 = cursor no hold, the cursors are destroyed when the transaction is committed.

Note: Cursors are always destroyed when transactions are rolled back.

This option affects the result returned by SQLGetInfo() when called with
SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR.
The value of CURSORHOLD is ignored if connecting to DB2 for VSE & VM where
cursor with hold is not supported.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 149

You can use this option to tune performance. It can be set to cursor no hold (0) if you
are sure that your application:

1. Does not have behavior that is dependent on the
SQL_CURSOR_COMMIT_BEHAVIOR or the
SQL_CURSOR_ROLLBACK_BEHAVIOR information returned via SQLGetInfo(),
and

2. Does not require cursors to be preserved from one transaction to the next.

The DBMS will operate more efficiently, as resources no longer need to be maintained
after the end of a transaction.

 DB2DEGREE
Keyword Description: Set the degree of parallelism for the execution of SQL

statements.

db2cli.ini Keyword Syntax: DB2DEGREE = 0 | integer value from 1 to 32767 | ANY

Default Setting: No SET CURRENT DEGREE statement is issued.

DB2 CLI/ODBC Settings Tab: Optimization

Only Applicable when: connecting to a cluster database system.

Usage Notes:

This option only applies to a DB2 Version 5 or later server. If the value specified is
anything other than 0 (the default) then DB2 CLI will issue the following SQL statement
after a successful connection:

SET CURRENT DEGREE value

This specifies the degree of parallelism for the execution of the SQL statements. The
database manager will determine the degree of parallelism if you specify ANY.

For more information, see the SET CURRENT DEGREE statement in the SQL
Reference.

 DB2ESTIMATE
Keyword Description: Threshold for displaying CLI optimizer estimates after SQL

query statement preparation.

db2cli.ini Keyword Syntax: DB2ESTIMATE = 0 | large positive number

Default Setting: Estimates are not returned.

DB2 CLI/ODBC Settings Tab: Optimization

Only Applicable when: a GUI application accesses a DB2 Version 2 or later server.

Equivalent Connection Attribute: SQL_ATTR_DB2ESTIMATE

Usage Notes:

This option determines whether DB2 CLI will display a dialog box to report estimates
returned by the DB2 optimizer at the end of SQL query statement preparation.

150 CLI Guide and Reference

0 = Estimates are not returned (default).
large positive number = The threshold above which DB2 CLI will display the
window to report estimates. This value is compared against the SQLERRD(4) field
in the SQLCA associated with the PREPARE. If the value in SQLERRD(4) is
greater than DB2ESTIMATE, the estimates window will appear.

The graphic window will display the optimizer estimates, along with push buttons to
allow users to choose whether they wish to continue with subsequent execution of
this query or cancel it.

The recommended value for DB2ESTIMATE is 60000.

This option is only relevant when connecting to a DB2 version 2 or later database. In
order for the window to appear, the application must have a graphical interface.

If this option is used then the DB2 CLI/ODBC option DEFERREDPREPARE will be
considered off.

 DB2EXPLAIN
Keyword Description: Determines whether Explain snapshot and/or Explain table

information will be generated by the server.

db2cli.ini Keyword Syntax: DB2EXPLAIN = 0 | 1 | 2 | 3

Default Setting: Neither Explain snapshot nor Explain table information will be
generated by the server.

DB2 CLI/ODBC Settings Tab: Optimization

Equivalent Connection Attribute: SQL_ATTR_DB2EXPLAIN

Usage Notes:

This keyword determines whether Explain snapshot and/or Explain table information will
be generated by the server.

0 = both off (default)

A 'SET CURRENT EXPLAIN SNAPSHOT=NO' and a 'SET CURRENT EXPLAIN
MODE=NO' statement will be sent to the server to disable both the Explain
snapshot and the Explain table information capture facilities.
1 = Only Explain snapshot facility on

A 'SET CURRENT EXPLAIN SNAPSHOT=YES' and a 'SET CURRENT EXPLAIN
MODE=NO' statement will be sent to the server to enable the Explain snapshot
facility, and disable the Explain table information capture facility.
2 = Only Explain table information capture facility on

A 'SET CURRENT EXPLAIN MODE=YES' and a 'SET CURRENT EXPLAIN
SNAPSHOT=NO' will be sent to the server to enable the Explain table information
capture facility and disable the Explain snapshot facility.
3 = Both on

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 151

A 'SET CURRENT EXPLAIN MODE=YES' and a 'SET CURRENT EXPLAIN
SNAPSHOT=YES' will be sent to the server to enable both the Explain snapshot
and the Explain table information capture facilities.

Explain information is inserted into Explain tables, which must be created before the
Explain information can be generated. For more information on these tables, refer to
the SQL Reference.

The current authorization ID must have INSERT privilege for the Explain tables.

Option 1 is only valid when connecting to a DB2 Common Server version 2.1.0 or later
database; options 2 and 3 when connecting to a DB2 Common Server version 2.1.1 or
later database.

 DB2OPTIMIZATION
Keyword Description: Set the query optimization level.

db2cli.ini Keyword Syntax: DB2OPTIMIZATION = integer value from 0 to 9

Default Setting: No SET CURRENT QUERY OPTIMIZATION statement issued.

DB2 CLI/ODBC Settings Tab: Optimization

Only Applicable when: when connecting to a DB2 Version 2 server or later.

Usage Notes:

If this option is set then DB2 CLI will issue the following SQL statement after a
successful connection:

SET CURRENT QUERY OPTIMIZATION positive number

This specifies the query optimization level at which the optimizer should operate the
SQL queries. Refer to the SQL Reference for the allowable optimization levels.

 DBALIAS
Keyword Description: Enables Data Source Names greater than 8 characters.

db2cli.ini Keyword Syntax: DBALIAS = dbalias

Default Setting: Use the DB2 database alias as the ODBC Data Source Name.

DB2 CLI/ODBC Settings Tab: CLI/ODBC Settings General

Usage Notes:

This keyword allows for Data Source Names of greater than 8 single byte characters.
The Data Source Name (DSN) is the name, enclosed in square brackets, that denotes
the section header in the db2cli.ini file (on platforms where this is an ASCII file).
Typically, this section header is the database alias name which has a maximum length
of 8 bytes. A user who wishes to refer to the data source with a longer, more
meaningful name, can place the longer name in the section header, and set this
keyword value to the database alias used on the CATALOG command. Here is an
example:

152 CLI Guide and Reference

; The much longer name maps to an 8 single byte character dbalias

[MyMeaningfulName]

DBALIAS=DB2DBT10

The end user can specify [MyMeaningfulName] as the name of the data source on
connect while the actual database alias is DB2DBT10.

In a 16-bit Windows ODBC environment, under the [ODBC DATA SOURCES] entry in the
ODBC.INI file, the following line must also be updated with the long alias name
(dbname).

< alias >═IBM DB2 ODBC DRIVER

 DBNAME
Keyword Description: Specify the database name to reduce the time it takes for the

application to query MVS table information.

db2cli.ini Keyword Syntax: DBNAME = dbname

Default Setting: Don't filter on the DBNAME column.

DB2 CLI/ODBC Settings Tab: Enterprise

Only Applicable when: connecting to DB2 for MVS/ESA.

See Also: “SCHEMALIST” on page 164, “TABLETYPE” on page 166

Usage Notes:

This option is only used when connecting to DB2 for MVS/ESA, and only if (base) table
catalog information is requested by the application. If a large number of tables exist in
the DB2 for MVS/ESA subsystem, a dbname can be specified to reduce the time it
takes for the application to query table information, and reduce the number of tables
listed by the application.

This value maps to the DBNAME column in the DB2 for MVS/ESA system catalog tables.
If no value is specified, or if views, synonyms, system tables, or aliases are also
specified via TABLETYPE, only table information will be restricted; views, aliases, and
synonyms are not restricted with DBNAME. It can be used in conjunction with
SCHEMALIST, and TABLETYPE to further limit the number of tables for which
information will be returned.

 DEFAULTPROCLIBRARY
Keyword Description: Set default stored procedure library.

db2cli.ini Keyword Syntax: DEFAULTPROCLIBRARY = < full path name >

Default Setting: Do not add a default stored procedure library to stored procedure
calls.

DB2 CLI/ODBC Settings Tab: Environment

Only Applicable when: application is not using the stored procedure catalog table.

Usage Notes:

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 153

This option should only be used on a temporary basis; the stored procedure catalog
table should be used instead. See the SQL Reference for more information.

The library pointed to by this option will be used in all stored procedure calls that do not
already explicitly specify a library. Because you are specifying a location on the server
machine, you must use the path format of that operating system, not of the client. For
more information, see the CALL statement in the SQL Reference.

For instance, if the stored procedures are located on the server in the library file
d:\terry\proclib\comstor, you could set DEFAULTPROCLIBRARY to
d:\terry\proclib\comstor, then call the stored procedure func without specifying a library.
The resulting SQL statement sent would be:

 CALL d:\terry\proclib\comstor!func

 DEFERREDPREPARE
Keyword Description: Minimize network flow by combining the PREPARE request with

the corresponding execute request.

db2cli.ini Keyword Syntax: DEFERREDPREPARE = 0 | 1

Default Setting: The prepare request will be delayed until the execute request is sent.

DB2 CLI/ODBC Settings Tab: Compatibility

Not Applicable when: DB2ESTIMATE is set.

Equivalent Statement Attribute: SQL_ATTR_DEFERRED_PREPARE

Usage Notes:

Defers sending the PREPARE request until the corresponding execute request is
issued. The two requests are then combined into one command/reply flow (instead of
two) to minimize network flow and to improve performance.

The default behavior has changed from DB2 version 2. Deferred prepare is now the
default and must be explicitly turned off if required.

¹ 0 = Disable deferred prepare. The PREPARE request will be executed the moment
it is issued.

¹ 1 (default) = Enable deferred prepare. Defer the execution of the PREPARE
request until the corresponding execute request is issued.

If the target DB2 Common Server database or the DDCS gateway does not
support deferred prepare, the client disables deferred prepare for that connection.

Note: When deferred prepare is enabled, the row and cost estimates normally
returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a PREPARE
statement may become zeros. This may be of concern to users who want to
use these values to decide whether or not to continue the SQL statement.

This option is turned off if the CLI/ODBC option DB2ESTIMATE is set to a value other
than zero.

154 CLI Guide and Reference

 DISABLEMULTITHREAD
Keyword Description: Disable Multithreading.

db2cli.ini Keyword Syntax: DISABLEMULTITHREAD = 0 | 1

Default Setting: Multithreading is enabled.

DB2 CLI/ODBC Settings Tab: Compatibility

Usage Notes:

The CLI/ODBC driver is capable of supporting multiple concurrent threads.

This option is used to enable or disable multi-thread support.

0 = Multithreading is enabled (default).
1 = Disable Multithreading.

If multithreading is disabled then all calls for all threads will be serialized at the process
level. Use this setting for multithreaded applications that require the serialized behavior
of DB2 Version 2.

(This option is contained in the Common section of the initialization file and therefore
applies to all connections to DB2.)

 EARLYCLOSE
Keyword Description: Should the cursor associated with the connection be closed

early by the DB2 server when it encounters the end of the result set?

db2cli.ini Keyword Syntax: EARLYCLOSE = 1 | 0

Default Setting: EARLYCLOSE behavior is on.

DB2 CLI/ODBC Settings Tab: Compatibility

Equivalent Statement Attribute: SQL_ATTR_EARLYCLOSE

Usage Notes:

This option specifies whether or not the temporary cursor on the server can be
automatically closed, without closing the cursor on the client, when the last record is
sent to the client.

0 = Do not close the temporary cursor on the server early.
1 = Close the temporary cursor on the server early (default).

This saves the CLI/ODBC driver a network request by not issuing the statement to
explicitly close the cursor because it knows that it has already been closed.

Having this option on will speed up applications that make use of many small result
sets.

The EARLYCLOSE feature is not used if either:
¹ The statement disqualifies for blocking.
¹ The cursor type is anything other than SQL_CURSOR_FORWARD_ONLY.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 155

Note: Although this option can be set at any time, the option value used is the one
that exists when the statement is executed (when the cursor is opened).

 GATEWAYVERSION
Keyword Description: Specify DB2 Connect or DB2 DDCS gateway version being

used.

db2cli.ini Keyword Syntax: GATEWAYVERSION = gateway version

Default Setting: 5

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC
Settings notebook. The db2cli.ini file must be modified directly to make use
of this keyword.

Only Applicable when: connecting to a data source through a DB2 Connect or DB2
DDCS gateway.

Usage Notes:

This option is used to indicate to the DB2 CLI driver which version of a DB2 Connect or
DB2 DDCS gateway is being used. The CLI driver can then use this information to
maximize its interaction with the data source (supporting stored procedures that return
multiple result sets, for instance).

5 = Indicates that a version 5 DB2 Connect gateway is being used (default).

2 = Indicates that a version 2 DB2 DDCS gateway is being used.

 GRANTEELIST
Keyword Description: Reduce the amount of information returned when the

application gets a list of table or column privileges.

db2cli.ini Keyword Syntax: GRANTEELIST = " 'userID1', 'userID2',... 'userIDn' "

Default Setting: Do not filter the results.

DB2 CLI/ODBC Settings Tab: Enterprise

See Also: “GRANTORLIST” on page 157

Usage Notes:

This option can be used to reduce the amount of information returned when the
application gets a list of privileges for tables in a database, or columns in a table. The
list of authorization IDs specified is used as a filter; the only tables or columns that are
returned are those with privileges that have been granted TO those IDs.

Set this option to a list of one or more authorization IDs that have been granted
privileges, delimited with single quotes, and separated by commas. The entire string
must also be enclosed in double quotes. For example:

GRANTEELIST=" 'USER1', 'USER2', 'USER8' "

156 CLI Guide and Reference

In the above example, if the application gets a list of privileges for a specific table, only
those columns that have a privilege granted TO USER1, USER2, or USER8 would be
returned.

 GRANTORLIST
Keyword Description: Reduce the amount of information returned when the

application gets a list of table or column privileges.

db2cli.ini Keyword Syntax: GRANTORLIST = " 'userID1', 'userID2',... 'userIDn' "

Default Setting: Do not filter the results.

DB2 CLI/ODBC Settings Tab: Enterprise

See Also: “GRANTEELIST” on page 156

Usage Notes:

This option can be used to reduce the amount of information returned when the
application gets a list of privileges for tables in a database, or columns in a table. The
list of authorization IDs specified is used as a filter; the only tables or columns that are
returned are those with privileges that have been granted BY those IDs.

Set this option to a list of one or more authorization IDs that have granted privileges,
delimited with single quotes, and separated by commas. The entire string must also be
enclosed in double quotes. For example:

GRANTORLIST=" 'USER1', 'USER2', 'USER8' "

In the above example, if the application gets a list of privileges for a specific table, only
those columns that have a privilege granted BY USER1, USER2, or USER8 would be
returned.

 GRAPHIC
Keyword Description: Controls whether DB2 CLI reports the IBM GRAPHIC (double

byte character support) as one of the supported data types.

db2cli.ini Keyword Syntax: GRAPHIC = 0 | 1 | 2 | 3

Default Setting: GRAPHIC is not returned as a supported data type.

DB2 CLI/ODBC Settings Tab: Data Type

Usage Notes:

This option controls how two related pieces of information are returned by the
application:

¹ Whether DB2 CLI reports the IBM GRAPHIC (double byte character support) as
one of the supported data types when SQLGetTypeInfo() is called.
SQLGetTypeInfo() lists the data types supported by the DB2 database in the
current connection.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 157

¹ What unit is used to report the length of graphic columns. This applies to all DB2
CLI/ODBC functions that return length/precision either on the output argument or
as part of the result set.

0 = Do not report IBM GRAPHIC data type as a supported type. Length of graphic
columns returned as number of DBCS characters. (default)
1 = Report IBM GRAPHIC data type as supported. Length of graphic columns
returned as number of DBCS characters.
2 = Do not report IBM GRAPHIC data type as a supported type. Length of graphic
columns returned as number of bytes. (This is needed for Microsoft Access**
1.1-J and Microsoft Query**-J .)
3 = Settings 1 and 2 combined. IBM GRAPHIC data type reported as supported.
Length of graphic columns returned as number of bytes.

The default is that GRAPHIC is not returned since many off the shelf applications do
not recognize this data type and cannot provide proper handling.

 IGNOREWARNINGS
Keyword Description: Ignore Warnings.

db2cli.ini Keyword Syntax: IGNOREWARNINGS = 0 | 1

Default Setting: Warnings are returned as normal.

DB2 CLI/ODBC Settings Tab: Service

See Also: “WARNINGLIST” on page 172

Usage Notes:

On rare occasions an application will not correctly handle warning messages. This
option can be used to indicate that warnings from the database manager are not to be
passed on to the application.

0 = Warnings reported as usual (default).
1 = Database manager warnings are ignored, SQL_SUCCESS is returned.
Warnings from the DB2 CLI/ODBC driver are still returned; many are required for
normal operation.

Although this option can be used on its own, it can also be used in conjunction with the
WARNINGLIST CLI/ODBC configuration keyword.

 KEEPCONNECT
Keyword Description: Number of connections to cache.

db2cli.ini Keyword Syntax: KEEPCONNECT = 0 | positive integer

Default Setting: Do not cache connections.

DB2 CLI/ODBC Settings Tab: Transaction

Usage Notes:

0 = Do not cache database connections (default).

158 CLI Guide and Reference

Setting this option to a value greater than zero can speed up applications that
constantly connect to and disconnect from the same database using the same
connection information.

Instead of closing the connection each time, then re-opening it again, the CLI/ODBC
driver will keep the connection open and cache the connection information. When the
request to connect to the same database occurs a second time, the existing connection
is used. This saves the time, resources, and network flow to close the first connection,
as well as to re-open the second connection.

The value set for this option indicates the number of database connections to cache.
Although the maximum is limited only by system resources, usually a value of 1 or 2 is
sufficient for applications that will benefit at all from this behavior.

 KEEPSTATEMENT
Keyword Description: Number of statement handles to cache.

db2cli.ini Keyword Syntax: KEEPSTATEMENT = 5 | positive integer

Default Setting: Cache 5 statement handles.

DB2 CLI/ODBC Settings Tab: Optimization

Usage Notes:

By default, the memory required for 5 statement handles is cached. When a statement
handle is closed, the memory used for that handle is not deallocated but is instead
used when the next statement handle is allocated.

The value set for this option determines how many statement handles are cached. It
can be set to less than 5 to explicitly reduce the amount of memory used by the
statement cache. It can be increased above 5 to improve performance for applications
that open, close, and then re-open large sets of statements.

The maximum number of cached statement handles is determined by system
resources.

 LOBMAXCOLUMNSIZE
Keyword Description: Override default COLUMN_SIZE for LOB data types.

db2cli.ini Keyword Syntax: LOBMAXCOLUMNSIZE = integer greater than zero

Default Setting: 2 Gigabytes (1G for DBCLOB)

DB2 CLI/ODBC Settings Tab: Data Type

Only Applicable when: LONGDATACOMPAT option is used.

See Also: “LONGDATACOMPAT” on page 160

Usage Notes:

This will override the 2 Gigabyte (1G for DBCLOB) value that is returned by
SQLGetTypeInfo() for the COLUMN_SIZE column for SQL_CLOB, SQL_BLOB, and

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 159

SQL_DBCLOB SQL data types. Subsequent CREATE TABLE statements that contain
LOB columns will use the column size value you set here instead of the default.

 LONGDATACOMPAT
Keyword Description: Report LOBs as long data types or as large object types.

db2cli.ini Keyword Syntax: LONGDATACOMPAT = 0 | 1

Default Setting: Reference LOB data types as large object types.

DB2 CLI/ODBC Settings Tab: Data Type

See Also: “LOBMAXCOLUMNSIZE” on page 159

Equivalent Connection Attribute: SQL_ATTR_LONGDATA_COMPAT

Usage Notes:

This option indicates to DB2 CLI what data type the application expects when working
with a database with large object (LOB) columns.

This option is useful when running ODBC applications that cannot handle the large
object data types.

The DB2 CLI/ODBC option LOBMAXCOLUMNSIZE can be used in conjunction with
this option to reduce the default size declared for the data.

Database data type Large Objects (0--Default) Long Data Types (1)

CLOB SQL_CLOB SQL_LONGVARCHAR
BLOB SQL_BLOB SQL_LONGVARBINARY
DBCLOB SQL_DBCLOB SQL_LONGVARGRAPHIC

 MAXCONN
Keyword Description: Maximum number of connections allowed for each application.

db2cli.ini Keyword Syntax: MAXCONN = 0 | positive number

Default Setting: As many connections as permitted by system resources.

DB2 CLI/ODBC Settings Tab: Transaction

Equivalent Connection Attribute: SQL_ATTR_MAXCONN

Usage Notes:

This option is used to specify the maximum number of connections allowed for each
CLI/ODBC application. This can be used as a governor for the maximum number of
connections an administrator may wish to restrict each application to open. A value of 0
may be used to represent no limit; that is, an application is allowed to open up as many
connections as permitted by the system resources.

On OS/2 and WIN32 platforms (Windows NT and Windows 95), if the NetBIOS protocol
is in use, this value corresponds to the number of connections (NetBIOS sessions) that
will be concurrently set up by the application. The range of values for OS/2 NetBIOS is
1 to 254. Specifying 0 (the default) will result in 5 reserved connections. Reserved

160 CLI Guide and Reference

NetBIOS sessions cannot be used by other applications. The number of connections
specified by this parameter will be applied to any adapter that the DB2 NetBIOS
protocol uses to connect to the remote server (adapter number is specified in the node
directory for a NetBIOS node).

 MODE
Keyword Description: Default connect mode.

db2cli.ini Keyword Syntax: MODE = SHARE | EXCLUSIVE

Default Setting: SHARE

DB2 CLI/ODBC Settings Tab: Transaction

Not Applicable when: connecting to a DRDA database.

Usage Notes:

Sets the CONNECT mode to either SHARE or EXCLUSIVE. If a mode is set by the
application at connect time, this value is ignored. The default is SHARE.

Note: EXCLUSIVE is not permitted for DRDA connections. Refer to the SQL
Reference for more information on the CONNECT statement.

 MULTICONNECT
Keyword Description: How SQLConnect() requests are mapped to physical database

connections.

db2cli.ini Keyword Syntax: MULTICONNECT = 0 | 1

Default Setting: Each SQLConnect() request by the application will result in a physical
database connection.

DB2 CLI/ODBC Settings Tab: Transaction

Usage Notes:

This option is used to specify how SQLConnect() requests are mapped to physical
database connections.

1 = Connections are not shared, multiple connections are used (default) -- Each
SQLConnect() request by the application will result in a physical database
connection.
0 = Connections are mapped to one physical connection, one connection is used --
All connections for the application are mapped to one physical connection. This
may be used if the ODBC application runs out of file handles because it uses so
many connections. It can also be useful for some applications that only read data
from the database, and for some applications that use autocommit.

Note: If MULTICONNECT is set off then all statements are executed on the same
connection and therefore in the same transaction. This means that a rollback
will roll back ALL statements on all connections. Be sure that the application is
designed to work with MULTICONNECT off before doing so or the application
may not operate correctly.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 161

 OPTIMIZEFORNROWS
Keyword Description: Append "OPTIMIZE FOR n ROWS" clause to every select

statement.

db2cli.ini Keyword Syntax: OPTIMIZEFORNROWS = integer

Default Setting: The clause is not appended.

DB2 CLI/ODBC Settings Tab: Optimization

Usage Notes:

This option will append the "OPTIMIZE FOR n ROWS" clause to every select
statement, where n is an integer larger than 0. If set to 0 (the default) this clause will
not be appended.

For more information on the effect of the OPTIMIZE FOR n ROWS clause, refer to the
Administration Guide.

 PATCH1
Keyword Description: Use work-arounds for known problems with ODBC applications.

db2cli.ini Keyword Syntax: PATCH1 = { 0 | 1 | 2 | 4 | 8 | 16 | ... }

Default Setting: Use no work-arounds.

DB2 CLI/ODBC Settings Tab: Service

See Also: “PATCH2”

Usage Notes:

This keyword is used to specify a work-around for known problems with ODBC
applications. The value specified can be for none, one, or multiple work-arounds. The
patch values specified here are used in conjunction with any PATCH2 values that may
also be set.

Using the DB2 CLI/ODBC Settings notebook you can select one or more patches to
use. If you set the values in the db2cli.ini file itself and want to use multiple patch
values then simply add the values together to form the keyword value. For example, if
you want the patches 1, 4, and 8, then specify PATCH1=13.

0 = No work around (default)

The DB2 CLI/ODBC Settings notebook has a list of values. Select the Service folder in
the DB2 folder for information on how to update this list of values. This information is
also contained in the README file (there will be no such section in the README if there are
no current patch values for that platform).

 PATCH2
Keyword Description: Use work-arounds for known problems with CLI/ODBC

applications.

162 CLI Guide and Reference

db2cli.ini Keyword Syntax: PATCH2 = "patch value 1, patch value 2, patch value 3,
 ..."

Default Setting: Use no work-arounds

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC
Settings notebook. The db2cli.ini file must be modified directly to make use
of this keyword.

See Also: “PATCH1” on page 162

Usage Notes:

This keyword is used to specify a work-around for known problems with CLI/ODBC
applications. The value specified can be for none, one, or multiple work-arounds. The
patch values specified here are used in conjunction with any PATCH1 values that may
also be set.

When specifying multiple patches, the values are specified in a comma delimited string
(unlike the PATCH1 option where the values are added together and the sum is used).

0 = No work around (default)

To set PATCH2 values 3, 4 and 8 you would specify:

PATCH2="3, 4, 8"

The PATCH2 values are contained in the README file (there will be no such section in
the README if there are no current patch values for that platform).

 POPUPMESSAGE
Keyword Description: Pop up a message box every time CLI/ODBC generates an

error.

db2cli.ini Keyword Syntax: POPUPMESSAGE = 0 | 1

Default Setting: Do not display message box.

DB2 CLI/ODBC Settings Tab: Service

Only Applicable when: running OS/2 or Windows applications.

See Also: “SQLSTATEFILTER” on page 164

Usage Notes:

Pops up a message box every time DB2 CLI generates an error that can be retrieved
using SQLGetDiagRec() or SQLError(). Useful for debugging applications that do not
report messages to users.

0 = do NOT display message box (default)
1 = display message box

 PWD
Keyword Description: Define default password.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 163

db2cli.ini Keyword Syntax: PWD = password

Default Setting: None

DB2 CLI/ODBC Settings Tab: CLI/ODBC Settings General

Usage Notes:

This password value is used if a password is not provided by the application at connect
time.

It is stored as plain text and is therefore not secure.

 SCHEMALIST
Keyword Description: Restrict schemas used to query table information.

db2cli.ini Keyword Syntax: SCHEMALIST = " 'schema1', 'schema2',... 'schemaN' "

Default Setting: None

DB2 CLI/ODBC Settings Tab: Enterprise

Usage Notes:

SCHEMALIST is used to provide a more restrictive default, and therefore improve
performance, for those applications that list every table in the DBMS.

If there are a large number of tables defined in the database, a schema list can be
specified to reduce the time it takes for the application to query table information, and
reduce the number of tables listed by the application. Each schema name is
case-sensitive, must be delimited with single quotes, and separated by commas. The
entire string must also be enclosed in double quotes. For example:

 SCHEMALIST="'USER1','USER2','USER3'"

For DB2 for MVS/ESA, CURRENT SQLID can also be included in this list, but without
the single quotes, for example:

 SCHEMALIST="'USER1',CURRENT SQLID,'USER3'"

The maximum length of the string is 256 characters.

This option can be used in conjunction with DBNAME and TABLETYPE to further limit
the number of tables for which information will be returned.

 SQLSTATEFILTER
Keyword Description: Do not pop up an error message for the defined SQLSTATES.

db2cli.ini Keyword Syntax: SQLSTATEFILTER = " 'XXXXX', 'YYYYY', ... "

Default Setting: None

DB2 CLI/ODBC Settings Tab: Service

Only Applicable when: POPUPMESSAGE option is turned on.

164 CLI Guide and Reference

See Also: “POPUPMESSAGE” on page 163

Usage Notes:

Use in conjunction with the POPUPMESSAGE option. This prevents DB2 CLI from
displaying errors that are associated with the defined states.

Each SQLSTATE must be in upper case, delimited with single quotes and separated by
commas. The entire string must also be enclosed in double quotes. For example:

SQLSTATEFILTER=" 'HY1090', '01504', '01508' "

 SYNCPOINT
Keyword Description: How commits and rollbacks are coordinated among multiple

database (DUOW) connections.

db2cli.ini Keyword Syntax: SYNCPOINT = 1 | 2

Default Setting: 1 Phase commit.

DB2 CLI/ODBC Settings Tab: Transaction

Only Applicable when: default connect type set to Coordinated Connections
(CONNECTTYPE=2)

See Also: “CONNECTTYPE” on page 147

Equivalent Connection Attribute: SQL_ATTR_SYNC_POINT

Usage Notes:

Use this option to specify how commits and rollbacks will be coordinated among
multiple database (DUOW) connections. It is only relevant when the default connect
type is set to Coordinated connections (CONNECTTYPE = 2).

¹ 1 = ONEPHASE (default)

A Transaction Manager is not used to perform two phase commit but one phase
commit is used to commit the work done by each database in a multiple database
transaction.

¹ 2 = TWOPHASE

A Transaction Manager is required to coordinate two phase commits among those
databases that support this.

 SYSSCHEMA
Keyword Description: Indicates an alternative schema to be searched in place of the

SYSIBM (or SYSTEM, QSYS2) schemas.

db2cli.ini Keyword Syntax: SYSSCHEMA = sysschema

Default Setting: No alternatives specified.

DB2 CLI/ODBC Settings Tab: Enterprise

Usage Notes:

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 165

This option indicates an alternative schema to be searched in place of the SYSIBM (or
SYSTEM, QSYS2) schemas when the DB2 CLI and ODBC Catalog Function calls are
issued to obtain system catalog information.

Using this schema name the system administrator can define a set of views consisting
of a subset of the rows for each of the following system catalog tables:

DB2 Universal
Database DB2 for MVS/ESA

DB2 for VSE &
VM OS/400 DB2 for AS/400

SYSTABLES SYSTABLES SYSCATALOG SYSTABLES SYSTABLES
SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS SYSCOLUMNS
SYSINDEXES SYSINDEXES SYSINDEXES SYSINDEXES SYSINDEXES
SYSTABAUTH SYSTABAUTH SYSTABAUTH SYSCST
SYSRELS SYSRELS SYSKEYCOLS SYSKEYCST
SYSDATATYPES SYSSYNONYMS SYSSYNONYMS SYSCSTCOL
SYSPROCEDURES SYSKEYS SYSKEYS SYSKEYS
SYSPROCPARMS SYSCOLAUTH SYSCOLAUTH SYSREFCST

SYSFOREIGNKEYS
SYSPROCEDURES 1
SYSDATABASE

1 DB2 for MVS/ESA 4.1 only.

For example, if the set of views for the system catalog tables is in the ACME schema,
then the view for SYSIBM.SYSTABLES is ACME.SYSTABLES; and SYSSCHEMA
should then be set to ACME.

Defining and using limited views of the system catalog tables reduces the number of
tables listed by the application, which reduces the time it takes for the application to
query table information.

If no value is specified, the default is:

¹ SYSCAT or SYSIBM on DB2 Universal Database

¹ SYSIBM on DB2 for common server versions prior to 2.1, DB2 for MVS/ESA and
OS/400

¹ SYSTEM on DB2 for VSE & VM

¹ QSYS2 on DB2 for AS/400

This keyword can be used in conjunction with SCHEMALIST and TABLETYPE (and
DBNAME on DB2 for MVS/ESA) to further limit the number of tables for which
information will be returned.

 TABLETYPE
Keyword Description: Define a default list of TABLETYPES returned when querying

table information.

db2cli.ini Keyword Syntax: TABLETYPE = " 'TABLE' | ,'ALIAS' | ,'VIEW' | ,
'INOPERATIVE VIEW' | , 'SYSTEM TABLE' | ,'SYNONYM' "

166 CLI Guide and Reference

Default Setting: No default list of TABLETYPES is defined.

DB2 CLI/ODBC Settings Tab: Enterprise

Usage Notes:

If there is a large number of tables defined in the database, a tabletype string can be
specified to reduce the time it takes for the application to query table information, and
reduce the number of tables listed by the application.

Any number of the values can be specified. Each type must be delimited with single
quotes, separated by commas, and in uppercase. The entire string must also be
enclosed in double quotes. For example:

 TABLETYPE="'TABLE','VIEW'"

This option can be used in conjunction with DBNAME and SCHEMALIST to further limit
the number of tables for which information will be returned.

TABLETYPE is used to provide a default for the DB2 CLI function that retrieves the list
of tables, views, aliases, and synonyms in the database. If the application does not
specify a table type on the function call, and this keyword is not used, information about
all table types is returned. If the application does supply a value for the tabletype on the
function call, then that argument value will override this keyword value.

If TABLETYPE includes any value other than TABLE, then the DBNAME keyword
setting cannot be used to restrict information to a particular DB2 for MVS/ESA
database.

 TEMPDIR
Keyword Description: Define the directory used for temporary files associated with

LOB fields.

db2cli.ini Keyword Syntax: TEMPDIR = < full path name >

Default Setting: Use the system temporary directory.

DB2 CLI/ODBC Settings Tab: Environment

Usage Notes:

When working with Large Objects (CLOBS, BLOBS, etc...), a temporary file is often
created on the client machine to store the information. Using this option you can specify
a location for these temporary files. The system temporary directory will be used if
nothing is specified.

The keyword is placed in the data source specific section of the db2cli.ini file, and has
the following syntax:

 ¹ TempDir= F:\DB2TEMP

When a Large Object is accessed, an SQLSTATE of HY507 will be returned if the path
name is invalid, or if the temporary files cannot be created in the directory specified.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 167

 TRACE
Keyword Description: Turn on the DB2 CLI/ODBC trace facility.

db2cli.ini Keyword Syntax: TRACE = 0 | 1

Default Setting: No trace information is captured.

DB2 CLI/ODBC Settings Tab: Service

See Also: “TRACEFILENAME,” “TRACEFLUSH” on page 169 , “TRACEPATHNAME”
on page 169

Equivalent Connection Attribute: SQL_ATTR_TRACE

Usage Notes:

When this option is on (1), CLI/ODBC trace records are appended to the file indicated
by the TRACEFILENAME configuration parameter or to files in the subdirectory
indicated by the TRACEPATHNAME configuration parameter.

For example, to set up a CLI/ODBC trace file that is written to disk after each trace
entry:

 fflCOMMON“

 TRACE=1

 TRACEFILENAME=E:\TRACES\CLI\MONDAY.CLI

 TRACEFLUSH=1

(This option is contained in the Common section of the initialization file and therefore
applies to all connections to DB2.)

 TRACEFILENAME
Keyword Description: File used to store the DB2 CLI/ODBC trace information.

db2cli.ini Keyword Syntax: TRACEFILENAME = < Full file name >

Default Setting: None

DB2 CLI/ODBC Settings Tab: Service

Only Applicable when: the TRACE option is turned on.

See Also: “TRACE,” “TRACEFLUSH” on page 169 , “TRACEPATHNAME” on
page 169

Equivalent Connection Attribute: SQL_ATTR_TRACEFILE

Usage Notes:

If the file specified does not exist, then it will be created; otherwise, the new trace
information will be appended to the end of the file.

If the filename given is invalid or if the file cannot be created or written to, no trace will
occur and no error message will be returned.

This option is only used when the TRACE option is turned on. This will be done
automatically when you set this option in the CLI/ODBC Configuration utility.

168 CLI Guide and Reference

See the TRACE option for an example of using the various trace settings. The
TRACEPATHNAME option will be ignored if this option is set.

DB2 CLI trace should only be used for debugging purposes. It will slow down the
execution of the CLI/ODBC driver, and the trace information can grow quite large if it is
left on for extended periods of time.

(This option is contained in the Common section of the initialization file and therefore
applies to all connections to DB2.)

 TRACEFLUSH
Keyword Description: Force a write to disk after each CLI/ODBC trace entry.

db2cli.ini Keyword Syntax: TRACEFLUSH = 0 | 1

Default Setting: Do not write after every entry.

DB2 CLI/ODBC Settings Tab: Service

Only Applicable when: the CLI/ODBC TRACE option option is turned on.

See Also: “TRACE” on page 168, “TRACEFILENAME” on page 168,
“TRACEPATHNAME”

Usage Notes:

Set this option on (TRACEFLUSH = 1) to force a write to disk after each trace entry.
This will slow down the trace process, but will ensure that each entry is written to disk
before the application continues to the next statement.

This option is only used when the TRACE CLI/ODBC option is turned on. See the
TRACE option for an example.

(This option is contained in the Common section of the initialization file and therefore
applies to all connections to DB2.)

 TRACEPATHNAME
Keyword Description: Subdirectory used to store individual DB2 CLI/ODBC trace files.

db2cli.ini Keyword Syntax: TRACEPATHNAME = < Full subdirectory name >

Default Setting: None

DB2 CLI/ODBC Settings Tab: Service

Only Applicable when: the TRACE option is turned on.

Not Applicable when: the TRACEFILENAME option is turned on.

See Also: “TRACE” on page 168, “TRACEFILENAME” on page 168,
“TRACEFLUSH”

Usage Notes:

Each thread or process that uses the same DLL or shared library will have a separate
DB2 CLI/ODBC trace file created in the specified directory.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 169

No trace will occur, and no error message will be returned, if the subdirectory given is
invalid or if it cannot be written to.

This option is only used when the TRACE option is turned on. This will be done
automatically when you set this option in the CLI/ODBC Configuration utility.

See the TRACE option for an example of using the various trace settings. It will be
ignored if the DB2 CLI/ODBC option TRACEFILENAME is used.

DB2 CLI trace should only be used for debugging purposes. It will slow down the
execution of the CLI/ODBC driver, and the trace information can grow quite large if it is
left on for extended periods of time.

(This option is contained in the Common section of the initialization file and therefore
applies to all connections to DB2.)

 TRANSLATEDLL
Keyword Description: Indicate the location of DB2TRANS.DLL (which contains

codepage mapping tables).

db2cli.ini Keyword Syntax: TRANSLATEDLL = X:\PATH\DB2TRANS.DLL

Default Setting: No character set translation takes place.

DB2 CLI/ODBC Settings Tab: Compatibility

Only Applicable when: a Windows application connects to a DB2 Version 1 server.

See Also: “TRANSLATEOPTION”

Equivalent Connection Attribute: SQL_ATTR_TRANSLATE_LIB

Usage Notes:

Indicate the directory where the DB2 Client Application Enabler for Windows or the
Software Developers Kit for Windows has been installed. DB2TRANS.DLL is the DLL
that contains codepage mapping tables.

This keyword is used on 16-bit versions of Windows when connecting to DB2 for OS/2
Version 1, or when using a version of DDCS for OS/2 prior to Version 2.3 in
conjunction with the TRANSLATEOPTION, to provide proper mapping of NLS SBCS
characters (such as the umlaut character in German) to the corresponding characters in
the Windows codepage 1004.

Note: This option is useful when a Windows application connects to a downlevel
server that does not support unequal codepage conversion (such as DB2
Version 1).

 TRANSLATEOPTION
Keyword Description: Define the codepage number of the database in DB2 Version 1.

db2cli.ini Keyword Syntax: TRANSLATEOPTION = database codepage number

Default Setting: None. Must be set if the TRANSLATEDLL option is specified.

170 CLI Guide and Reference

DB2 CLI/ODBC Settings Tab: Compatibility

Only Applicable when: TRANSLATEDLL is set, and a Windows application connects
to DB2 Version 1.

See Also: “TRANSLATEDLL” on page 170

Equivalent Connection Attribute: SQL_ATTR_TRANSLATE_OPTION

Usage Notes:

Defines the codepage number of the database in DB2 Version 1 (it can be obtained by
querying the database configuration parameters). Specifying TRANSLATEDLL and
TRANSLATEOPTION enables the translation of characters from codepage number
database codepage number to the Windows 1004 codepage.

There are two supported values for database codepage number: 437 and 850. If you
specify any other values, a warning is returned on the connect request indicating that
translation is not possible.

Note: This option is useful when a Windows application connects to a downlevel
server that does not support unequal codepage conversion (such as DB2
Version 1).

 TXNISOLATION
Keyword Description: Set the default isolation level.

db2cli.ini Keyword Syntax: TXNISOLATION = 1 | 2 | 4 | 8 | 32

Default Setting: Read Committed (Cursor Stability)

DB2 CLI/ODBC Settings Tab: Transaction

Equivalent Statement Attribute: SQL_ATTR_TXN_ISOLATION

Usage Notes:

Sets the isolation level to:

1 = Read Uncommitted (Uncommitted read)
2 = Read Committed (Cursor stability) (default)
4 = Repeatable Read (Read Stability)
8 = Serializable (Repeatable read)
32 = (No Commit, DATABASE 2 for AS/400 only; this is similar to autocommit)

The words in parentheses are IBM's terminology for the equivalent SQL92 isolation
levels. Note that no commit is not an SQL92 isolation level and is supported only on
DB2 for AS/400. Refer to the SQL Reference for more information on isolation levels.

 UID
Keyword Description: Define default user ID.

db2cli.ini Keyword Syntax: UID = userid

Default Setting: None

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 171

DB2 CLI/ODBC Settings Tab: CLI/ODBC Settings General

Usage Notes:

The specified userid value is used if a userid is not provided by the application at
connect time.

 UNDERSCORE
Keyword Description: Specify whether or not the underscore character "_" is to be

used as a wildcard character.

db2cli.ini Keyword Syntax: UNDERSCORE = 1 | 0

Default Setting: "_" acts as a wildcard.

DB2 CLI/ODBC Settings Tab: Optimization

Usage Notes:

This option allows you to specify whether the underscore character "_" is to be used as
a wildcard character (matching any one character, including no character), or to be
used as itself. This option only affects catalog function calls that accept search pattern
strings.

1 = "_" acts as a wildcard (default)

The underscore is treated as a wildcard matching any one character or none. For
example, if two tables are defined as follows:

CREATE TABLE "OWNER"."KEY_WORDS" (COL1 INT)

CREATE TABLE "OWNER"."KEYWORDS" (COL1 INT)

The DB2 CLI catalog function call that returns table information (SQLTables()) will
return both of these entries if "KEY_WORDS" is specified in the table name search
pattern argument.
0 = "_" acts as itself

The underscore is treated as itself. If two tables are defined as the example above,
SQLTables() will return only the "KEY_WORDS" entry if "KEY_WORDS" is
specified in the table name search pattern argument.

Setting this keyword to 0 can result in performance improvement in those cases
where object names (owner, table, column) in the database contain underscores.

Note: This keyword only has an effect on DB2 common server versions prior to
Version 2.1. The ESCAPE clause for the LIKE predicate can be used for
subsequent versions and all other DB2 servers. For more information on the
ESCAPE clause, refer to the SQL Reference.

 WARNINGLIST
Keyword Description: Specify which errors to downgrade to warnings.

db2cli.ini Keyword Syntax: WARNINGLIST = " ' xxxxx ', ' yyyyy ', ..."

Default Setting: Do not downgrade any SQLSTATEs.

172 CLI Guide and Reference

DB2 CLI/ODBC Settings Tab: Service

See Also: “IGNOREWARNINGS” on page 158

Usage Notes:

Any number of SQLSTATEs returned as errors can be downgraded to warnings. Each
must be delimited with single quotes, separated by commas, and in uppercase. The
entire string must also be enclosed in double quotes. For example:

WARNINGLIST=" '01S02', 'HY090' "

This option can be used in conjunction with the IGNOREWARNINGS CLI/ODBC
configuration keyword. If you also set IGNOREWARNINGS on then any errors you
downgrade to warnings will not be reported at all.

 Chapter 4. Configuring CLI/ODBC and Running Sample Applications 173

174 CLI Guide and Reference

 Chapter 5. Functions

This section provides a description of each function. Each description has the following
sections.

 ¹ Status
 ¹ Purpose
 ¹ Syntax
 ¹ Arguments
 ¹ Usage
 ¹ Return Codes
 ¹ Diagnostics
 ¹ Restrictions
 ¹ Example

Each section is described below.

Status of this Function in DB2 CLI Version 5
This section is only included in Version 2 functions that have been replaced with new
functions in Version 5.

It describes what new function should be used, and how to use it in place of the old
function.

 Purpose
This section gives a brief overview of what the function does. It also indicates if any
functions should be called before and after calling the function being described.

Each function also has a table, such as the one below which indicates which
specification or standard the function conforms to. The first column indicates which level
of DB2 CLI the function was first provided, the second column indicates which version
(1.0, 2.0, or 3.0) of the ODBC specification the function was first provided. The last
column indicates if the function is included in the ISO CLI standard.

Note: This table indicates support of the function, some functions use a set of options
that do not apply to all specifications or standards. The restrictions section will
identify any significant differences.

Table 12. Sample Function Specification Table

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
This section contains the generic 'C' prototype. The generic prototype is used for all
environments, including Windows.

 Copyright IBM Corp. 1993, 1997 175

Note: All function arguments that are pointers are defined using the macro FAR, this
macro is defined out (set to a blank) for all platforms except Windows. On
Windows FAR is used to define pointer arguments as far pointers.

 Arguments
This section lists each function argument, along with its data type, a description and
whether it is an input or output argument.

Only SQLGetInfo() and SQLBindParameter() have parameters that are both input and
output.

Some functions contain input or output arguments which are known as deferred or
bound arguments.

These arguments are pointers to buffers allocated by the application, and are
associated with (or bound to) either a parameter in an SQL statement, or a column in a
result set. The data areas specified by the function are accessed by DB2 CLI at a later
time. It is important that these deferred data areas are still valid at the time DB2 CLI
accesses them.

 Usage
This section provides information about how to use the function, and any special
considerations. Possible error conditions are not discussed here, but are listed in the
diagnostics section instead.

 Return Codes
This section lists all the possible function return codes. When SQL_ERROR or
SQL_SUCCESS_WITH_INFO is returned, error information can be obtained by calling
SQLError().

Refer to “Diagnostics” on page 24 for more information about return codes.

 Diagnostics
This section contains a table that lists the SQLSTATEs explicitly returned by DB2 CLI
(SQLSTATEs generated by the DBMS may also be returned) and indicates the cause
of the error. These values are obtained by calling SQLError() after the function returns
a SQL_ERROR or SQL_SUCCESS_WITH_INFO.

Refer to “Diagnostics” on page 24 for more information about diagnostics.

176 CLI Guide and Reference

 Restrictions
This section indicates any differences or limitations between DB2 CLI and ODBC that
may affect an application.

 Example
This section contains either a code fragment, or a reference to a code fragment
demonstrating the use of the function, using the generic data type definitions. The
complete source used for all code fragments is available in the sqllib/samples/cli (or
sqllib\samples\cli) directory. On Windows, the samples directory is in the sqllib\win
directory. For a list of the included examples, refer to Appendix J, “Example Code
Listing” on page 713.

See Chapter 4, “Configuring CLI/ODBC and Running Sample Applications” on
page 127 for more information on setting up the DB2 CLI environment and accessing
the sample applications.

 References
This section lists related DB2 CLI functions.

DB2 CLI Function Summary
Depr in the ODBC column indicates that the function has been deprecated in ODBC.
See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more information.

The SQL/CLI column can have the following values:

¹ 95 - Defined in the SQL/CLI 9075-3 specification.
¹ SQL3 - Defined in the SQL/CLI part of the ISO SQL3 draft replacement for

SQL/CLI 9075-3.

Table 13 (Page 1 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

Connecting to a Data Source

SQLAllocEnv Depr 95 V 1.1 Obtains an environment handle. One
environment handle is used for one or
more connections.

SQLAllocConnect Depr 95 V 1.1 Obtains a connection handle.

SQLAllocHandle Core 95 V 5 Obtains a handle.

SQLBrowseConnect Level 1 95 V 5 Get required attributes to connect to a
data source.

SQLConnect Core 95 V 1.1 Connects to specific driver by data source
name, user Id, and password.

 Chapter 5. Functions 177

Table 13 (Page 2 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

SQLDriverConnect Core SQL3 V 2.1 a Connects to a specific driver by
connection string or optionally requests
that the Driver Manager and driver display
connection dialogs for the user.

Note: This function is also affected by
the additional IBM keywords
supported in the ODBC.INI file.

SQLDrivers Core No NONE DB2 CLI does not support this function as
it is implemented by a Driver Manager.

SQLSetConnectAttr Core 95 V 5 Set connection attributes.

SQLSetConnectOption Depr 95 V 2.1 Set connection attributes.

SQLSetConnection No SQL3 V 2.1 Sets the current active connection. This
function only needs to be used when
using embedded SQL within a DB2 CLI
application with multiple concurrent
connections.

Obtaining Information about a Driver and Data Source

SQLDataSources Lvl 2 95 V 1.1 Returns the list of available data sources.

SQLGetInfo Core 95 V 1.1 Returns information about a specific
driver and data source.

SQLGetFunctions Core 95 V 1.1 Returns supported driver functions.

SQLGetTypeInfo Core 95 V 1.1 Returns information about supported data
types.

Setting and Retrieving Driver Options

SQLSetEnvAttr Core 95 V 2.1 Sets an environment option.

SQLGetEnvAttr Core 95 V 2.1 Returns the value of an environment
option.

SQLSetConnectOption Lvl 1 Yes V 2.1 a Sets a connection option.

SQLGetConnectAttr Lvl 1 95 V 5 Returns the value of a connection option.

SQLGetConnectOption Depr 95 V 2.1 a Returns the value of a connection option.

SQLSetStmtAttr Core 95 V 5 Sets a statement attribute.

SQLSetStmtOption Depr 95 V 2.1 a Sets a statement option.

SQLGetStmtAttr Core 95 V 5 Returns the value of a statement attribute.

SQLGetStmtOption Depr 95 V 2.1 a Returns the value of a statement option.

Preparing SQL Requests

SQLAllocStmt Depr 95 V 1.1 Allocates a statement handle.

SQLPrepare Core 95 V 1.1 Prepares an SQL statement for later
execution.

178 CLI Guide and Reference

Table 13 (Page 3 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

SQLBindParameter Lvl 1 95 b V 2.1 Assigns storage for a parameter in an
SQL statement (ODBC 2.0)

SQLSetParam Depr No V 1.1 Assigns storage for a parameter in an
SQL statement (ODBC 1.0).

Note: In ODBC 2.0 this function has
been replaced by
SQLBindParameter.

SQLParamOptions Depr No V 2.1 Specifies the use of multiple values for
parameters.

SQLGetCursorName Core 95 V 1.1 Returns the cursor name associated with
a statement handle.

SQLSetCursorName Core 95 V 1.1 Specifies a cursor name.

Submitting Requests

SQLDescribeParam Level 2 SQL3 V 5 Returns description of a parameter
marker.

SQLExecute Core 95 V 1.1 Executes a prepared statement.

SQLExecDirect Core 95 V 1.1 Executes a statement.

SQLNativeSql Lvl 2 95 V 2.1 a Returns the text of an SQL statement as
translated by the driver.

SQLNumParams Lvl 2 95 V 2.1 a Returns the number of parameters in a
statement.

SQLParamData Lvl 1 95 V 2.1 a Used in conjunction with SQLPutData() to
supply parameter data at execution time.
(Useful for long data values.)

SQLPutData Core 95 V 2.1 a Send part or all of a data value for a
parameter. (Useful for long data values.)

Retrieving Results and Information about Results

SQLRowCount Core 95 V 1.1 Returns the number of rows affected by
an insert, update, or delete request.

SQLNumResultCols Core 95 V 1.1 Returns the number of columns in the
result set.

SQLDescribeCol Core 95 V 1.1 Describes a column in the result set.

SQLColAttribute Core Yes V 5 Describes attributes of a column in the
result set.

SQLColAttributes Depr Yes V 1.1 Describes attributes of a column in the
result set.

SQLColumnPrivileges Level 2 95 V 2.1 Get privileges associated with the
columns of a table.

 Chapter 5. Functions 179

Table 13 (Page 4 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

SQLSetColAttributes No No V 2.1 Sets attributes of a column in the result
set.

SQLBindCol Core 95 V 1.1 Assigns storage for a result column and
specifies the data type.

SQLFetch Core 95 V 1.1 Returns a result row.

SQLFetchScroll Core 95 V 5 Returns a rowset from a result row.

SQLExtendedFetch Depr 95 V 2.1 Returns multiple result rows.

SQLGetData Core 95 V 1.1 Returns part or all of one column of one
row of a result set. (Useful for long data
values.)

SQLMoreResults Lvl 1 SQL3 V 2.1 a Determines whether there are more result
sets available and, if so, initializes
processing for the next result set.

SQLError Depr 95 V 1.1 Returns additional error or status
information.

SQLGetDiagField Core 95 V 5 Get a field of diagnostic data.

SQLGetDiagRec Core 95 V 5 Get multiple fields of diagnostic data.

SQLSetPos Level 1 SQL3 V 5 Set the cursor position in a rowset.

SQLGetSQLCA No No V 2.1 Returns the SQLCA associated with a
statement handle.

SQLBulkOperations Level 1 No NONE DB2 CLI does not support this function.

Descriptors

SQLCopyDesc Core 95 V 5 Copy descriptor information between
handles.

SQLGetDescField Core 95 V 5 Get single field settings of a descriptor
record.

SQLGetDescRec Core 95 V 5 Get multiple field settings of a descriptor
record.

SQLSetDescField Core 95 V 5 Set a single field of a descriptor record.

SQLSetDescRec Core 95 V 5 Set multiple field settings of a descriptor
record.

Large Object Support

SQLBindFileToCol No No V 2.1 Associates LOB file reference with a LOB
column.

SQLBindFileToParam No No V 2.1 Associates LOB file reference with a
parameter marker.

SQLGetLength No SQL3 V 2.1 Gets length of a string referenced by a
LOB locator.

180 CLI Guide and Reference

Table 13 (Page 5 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

SQLGetPosition No SQL3 V 2.1 Gets the position of a string within a
source string referenced by a LOB
locator.

SQLGetSubString No SQL3 V 2.1 Creates a new LOB locator that
references a substring within a source
string (the source string is also
represented by a LOB locator).

Obtaining information about the data source's system tables (catalog functions)

SQLColumns Lvl 1 SQL3 V 2.1 a Returns the list of column names in
specified tables.

SQLForeignKeys Lvl 2 SQL3 V 2.1 Returns a list of column names that
comprise foreign keys, if they exist for a
specified table.

SQLPrimaryKeys Lvl 1 SQL3 V 2.1 Returns the list of column name(s) that
comprise the primary key for a table.

SQLProcedureColumns Lvl 2 No V 2.1 Returns the list of input and output
parameters for the specified procedures.

SQLProcedures Lvl 2 No V 2.1 Returns the list of procedure names
stored in a specific data source.

SQLSpecialColumns Core SQL3 V 2.1 a Returns information about the optimal set
of columns that uniquely identifies a row
in a specified table.

SQLStatistics Core SQL3 V 2.1 a Returns statistics about a single table and
the list of indexes associated with the
table.

SQLTablePrivileges Lvl 2 SQL3 V 2.1 Returns a list of tables and the privileges
associated with each table.

SQLTables Core SQL3 V 2.1 a Returns the list of table names stored in a
specific data source.

Terminating a Statement

SQLFreeHandle Core 95 V 1.1 Free Handle Resources.

SQLFreeStmt Core 95 V 1.1 End statement processing and closes the
associated cursor, discards pending
results, and, optionally, frees all resources
associated with the statement handle.

SQLCancel Core 95 V 1.1 Cancels an SQL statement.

SQLTransact Depr No V 1.1 Commits or rolls back a transaction.

SQLCloseCursor Core 95 V 5 Commits or rolls back a transaction.

Terminating a Connection

SQLDisconnect Core 95 V 1.1 Closes the connection.

 Chapter 5. Functions 181

Table 13 (Page 6 of 6). DB2 CLI Function List by Category

Task
Function Name

ODBC
3.0 SQL/CLI

DB2 CLI
First Version
Supported Purpose

SQLEndTran Core 95 V 5 Ends transaction of a connection.

SQLFreeConnect Depr 95 V 1.1 Releases the connection handle.

SQLFreeEnv Depr 95 V 1.1 Releases the environment handle.

Note:

a Runtime support for this function was also available in the DB2 Client Application Enabler for DOS
Version 1.2 product.

b SQLBindParam() has been replaced by SQLBindParameter().

The ODBC function(s):

¹ SQLSetPos, SQLBrowseConnect, and SQLDescribeParam are not supported by DB2 CLI.
¹ SQLSetScrollOptions is supported for runtime only, because it has been superceded by the

SQL_CURSOR_TYPE, SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement
options.

¹ SQLDrivers is implemented by the ODBC driver manager.

182 CLI Guide and Reference

SQLAllocConnect

SQLAllocConnect - Allocate Connection Handle

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLAllocConnect() has been deprecated and replaced with
SQLAllocHandle(); see “SQLAllocHandle - Allocate Handle” on page 185 for
more information.

Although this version of DB2 CLI continues to support SQLAllocConnect(), we
recommend that you begin using SQLAllocHandle() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLAllocConnect(henv, hdbc);

for example, would be rewritten using the new function as:

SQLAllocHandle(SQL_HANDLE_DBC, henv, hdbc);

 Chapter 5. Functions 183

SQLAllocEnv

SQLAllocEnv - Allocate Environment Handle

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLAllocEnv has been deprecated and replaced with
SQLAllocHandle; see “SQLAllocHandle - Allocate Handle” on page 185 for more
information.

Although this version of DB2 CLI continues to support SQLAllocEnv, we
recommend that you begin using SQLAllocHandle in your DB2 CLI programs so
that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLAllocEnv(&henv);

for example, would be rewritten using the new function as:

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

184 CLI Guide and Reference

SQLAllocHandle

SQLAllocHandle - Allocate Handle

 Purpose

SQLAllocHandle() allocates environment, connection, statement, or descriptor handles.

Note: This function is a generic function for allocating handles that replaces the
deprecated version 2 functions SQLAllocConnect(), SQLAllocEnv(), and
SQLAllocStmt().

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLAllocHandle (SQLSMALLINT HandleType,

 SQLHANDLE InputHandle,

 SQLHANDLE *OutputHandlePtr);

 Function Arguments

Table 14. SQLAllocHandle Arguments

Data Type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be allocated by
SQLAllocHandle(). Must be one of the following
values:

 ¹ SQL_HANDLE_ENV
 ¹ SQL_HANDLE_DBC
 ¹ SQL_HANDLE_STMT
 ¹ SQL_HANDLE_DESC

SQLHANDLE InputHandle input Existing handle to use as a context for the new
handle being allocated. If HandleType is
SQL_HANDLE_ENV, this is SQL_NULL_HANDLE. If
HandleType is SQL_HANDLE_DBC, this must be an
environment handle, and if it is SQL_HANDLE_STMT
or SQL_HANDLE_DESC, it must be a connection
handle.

SQLHANDLE OutputHandlePtr output Pointer to a buffer in which to return the handle to
the newly allocated data structure.

 Usage
SQLAllocHandle() is used to allocate environment, connection, statement, and
descriptor handles, as described below.

Multiple environment, connection, or statement handles can be allocated by an
application at a time.

 Chapter 5. Functions 185

SQLAllocHandle

If the application calls SQLAllocHandle() with *OutputHandlePtr set to an environment,
connection, statement, or descriptor handle that already exists, DB2 CLI overwrites the
information associated with the handle. DB2 CLI does not check to see whether the
handle entered in *OutputHandlePtr is already in use, nor does it check the previous
contents of a handle before overwriting them.

On operating systems that support multiple threads, applications can use the same
environment, connection, statement, or descriptor handle on different threads. DB2 CLI
provides thread safe access for all handles and function calls. The application itself
might experience unpredictable behavior if the threads it creates do not co-ordinate
their use of DB2 CLI resources. For more information refer to “Writing Multi-Threaded
Applications” on page 40.

Allocating an Environment Handle

An environment handle provides access to global information such as valid connection
handles and active connection handles. To request an environment handle, an
application calls SQLAllocHandle() with a HandleType of SQL_HANDLE_ENV and a
InputHandle of SQL_NULL_HANDLE. DB2 CLI allocates the environment handle, and
passes the value of the associated handle back in *OutputHandlePtr argument. The
application passes the *OutputHandle value in all subsequent calls that require an
environment handle argument.

When DB2 CLI processes the SQLAllocHandle() function with a HandleType of
SQL_HANDLE_ENV, it checks the Trace keyword in the [COMMON] section of the
db2cli.ini file. If it is set to 1, DB2 CLI enables tracing for the current application. If the
trace flag is set, tracing starts when the first environment handle is allocated, and ends
when the last environment handle is freed. For more information, see “TRACE” on
page 168.

After allocating an environment handle, an application should call SQLSetEnvAttr() on
the environment handle to set the SQL_ATTR_ODBC_VERSION environment attribute.
If the application is run as an ODBC application, and this attribute is not set before
SQLAllocHandle() is called to allocate a connection handle on the environment, then
the call to allocate the connection will return SQLSTATE HY010 (Function sequence
error.).

Allocating a Connection Handle

A connection handle provides access to information such as the valid statement and
descriptor handles on the connection and whether a transaction is currently open. To
request a connection handle, an application calls SQLAllocHandle() with a HandleType
of SQL_HANDLE_DBC. The InputHandle argument is set to the environment handle
that was returned by the call to SQLAllocHandle() that allocated that handle. DB2 CLI
allocates the connection handle, and passes the value of the associated handle back in
*OutputHandlePtr. The application passes the *OutputHandlePtr value in all subsequent
calls that require a connection handle.

186 CLI Guide and Reference

SQLAllocHandle

If the SQL_ATTR_ODBC_VERSION environment attribute is not set before
SQLAllocHandle() is called to allocate a connection handle on the environment, then
the call to allocate the connection will return SQLSTATE HY010 (Function sequence
error.) when the application is using the ODBC Driver Manager.

Allocating a Statement Handle

A statement handle provides access to statement information, such as error messages,
the cursor name, and status information for SQL statement processing. To request a
statement handle, an application connects to a data source, and then calls
SQLAllocHandle() prior to submitting SQL statements. In this call, HandleType should
be set to SQL_HANDLE_STMT and InputHandle should be set to the connection
handle that was returned by the call to SQLAllocHandle() that allocated that handle.
DB2 CLI allocates the statement handle, associates the statement handle with the
connection specified, and passes the value of the associated handle back in
*OutputHandlePtr. The application passes the *OutputHandlePtr value in all subsequent
calls that require a statement handle.

When the statement handle is allocated, DB2 CLI automatically allocates a set of four
descriptors, and assigns the handles for these descriptors to the
SQL_ATTR_APP_ROW_DESC, SQL_ATTR_APP_PARAM_DESC,
SQL_ATTR_IMP_ROW_DESC, SQL_ATTR_IMP_PARAM_DESC statement attributes.
To use explicitly allocated application descriptors instead of the automatically allocated
ones, see the “Allocating a Descriptor Handle” section below.

Allocating a Descriptor Handle

When an application calls SQLAllocHandle() with a HandleType of
SQL_HANDLE_DESC, DB2 CLI allocates an application descriptor explicitly. The
application can use an explicitly allocated application descriptor in place of an
automatically allocated one by calling the SQLSetStmtAttr() function with the
SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC attribute. An
implementation descriptor cannot be allocated explicitly, nor can an implementation
descriptor be specified in a SQLSetStmtAttr() function call.

Explicitly allocated descriptors are associated with a connection handle rather than a
statement handle (as automatically allocated descriptors are). Descriptors can be
associated with a connection handle only when an application is actually connected to
the database. Since explicitly allocated descriptors are associated with a connection
handle, an application can explicitly associate an allocated descriptor with more than
one statement within a connection. An automatically allocated application descriptor, on
the other hand, cannot be associated with more than one statement handle. Explicitly
allocated descriptor handles can either be freed explicitly by the application, by calling
SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC, or freed implicitly when
the connection handle is freed upon disconnect.

When an explicitly allocated application descriptor is associated with a statement, the
automatically allocated descriptor that is no longer used is still associated with the
connection handle. When the explicitly allocated descriptor is freed, the automatically

 Chapter 5. Functions 187

SQLAllocHandle

allocated descriptor is once again associated with the statement (the
SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC Attribute for that
statement is once again set to the automatically allocated descriptor handle). This is
true for all statements that were associated with the explicitly allocated descriptor on
the connection; each statement's original automatically allocated descriptor handle is
again associated with that statement.

When a descriptor is first used, the initial value of its SQL_DESC_TYPE field is
SQL_C_DEFAULT. DATA_PTR, INDICATOR_PTR, and OCTET_LENGTH_PTR are all
initially set to null pointers. For the initial values of other fields, see “SQLSetDescField -
Set a Single Field of a Descriptor Record” on page 544.

For more information see “Using Descriptors” on page 78.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_ERROR

When allocating a handle other than an environment handle, if SQLAllocHandle()

returns SQL_ERROR, it will set OutputHandlePtr to SQL_NULL_HENV,
SQL_NULL_HDBC, SQL_NULL_HSTMT, or SQL_NULL_HDESC, depending on the
value of HandleType, unless the output argument is a null pointer. The application can
then obtain additional information from the diagnostic data structure associated with the
handle in the InputHandle argument.

Environment Handle Allocation Errors

 Diagnostics

Table 15 (Page 1 of 2). SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, but the connection specified by the
InputHandle argument was not open. The connection process
must be completed successfully (and the connection must be
open) for DB2 CLI to allocate a statement or descriptor handle.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory for the specified handle.

HY010 Function sequence error. The HandleType argument was SQL_HANDLE_DBC, and
SQLSetEnvAttr() has not been called to set the
SQL_ODBC_VERSION environment attribute.

188 CLI Guide and Reference

SQLAllocHandle

Table 15 (Page 2 of 2). SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the function
call could not be processed because the underlying memory
objects could not be accessed, possibly because of low memory
conditions.

HY014 No more handles. The limit for the number of handles that can be allocated for the
type of handle indicated by the HandleType argument has been
reached.

HY092 Option type out of range. The HandleType argument was not:

 ¹ SQL_HANDLE_ENV
 ¹ SQL_HANDLE_DBC
 ¹ SQL_HANDLE_STMT
 ¹ SQL_HANDLE_DESC

HYC00 Driver not capable. The HandleType argument was SQL_HANDLE_DESC but the
DB2 CLI driver was Version 2 or earlier.

 Restrictions
None.

 Example
Refer to:

 ¹ SQLBrowseConnect()

 ¹ SQLConnect()

 ¹ SQLSetCursorName()

 References
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLFreeHandle - Free Handle Resources” on page 352
¹ “SQLPrepare - Prepare a Statement” on page 486
¹ “SQLSetConnectAttr - Set Connection Attributes” on page 519
¹ “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
¹ “SQLSetEnvAttr - Set Environment Attribute” on page 573
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

 Chapter 5. Functions 189

SQLAllocStmt

SQLAllocStmt - Allocate a Statement Handle

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLAllocStmt() has been deprecated and replaced with
SQLAllocHandle(); see “SQLAllocHandle - Allocate Handle” on page 185 for
more information.

Although this version of DB2 CLI continues to support SQLAllocStmt(), we
recommend that you begin using SQLAllocHandle() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLAllocStmt(hdbc, &hstmt);

for example, would be rewritten using the new function as:

SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

190 CLI Guide and Reference

SQLBindCol

SQLBindCol - Bind a Column to an Application Variable or LOB Locator

 Purpose

SQLBindCol() is used to associate (bind) columns in a result set to either:

¹ Application variables or arrays of application variables (storage buffers), for all C
data types. In this case, data is transferred from the DBMS to the application when
SQLFetch() or SQLFetchScroll() is called. Data conversion may occur as the data
is transferred.

¹ A LOB locator, for LOB columns. In this case a LOB locator, not the data itself, is
transferred from the DBMS to the application when SQLFetch() is called.

Alternatively, LOB columns can be bound directly to a file using
SQLBindFileToCol().

SQLBindCol() is called once for each column in the result set that the application needs
to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called
before this function, and SQLFetch() or SQLFetchScroll() is called after. Column
attributes may also be needed before calling SQLBindCol(), and can be obtained using
SQLDescribeCol() or SQLColAttribute().

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLBindCol (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */

SQLSMALLINT TargetType, /* fCType */

SQLPOINTER TargetValuePtr, /* rgbValue */

SQLINTEGER BufferLength, /* cbValueMax */

SQLINTEGER *FAR StrLen_or_IndPtr); /* pcbValue */

 Function Arguments

Table 16 (Page 1 of 3). SQLBindCol Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Number identifying the column. Columns are
numbered sequentially, from left to right.

¹ Column numbers start at 1 if bookmarks are
not used (SQL_ATTR_USE_BOOKMARKS
statement attribute set to SQL_UB_OFF).

¹ Column numbers start at 0 if bookmarks are
used (the statement attribute set to
SQL_UB_ON).

 Chapter 5. Functions 191

SQLBindCol

Table 16 (Page 2 of 3). SQLBindCol Arguments

Data Type Argument Use Description

SQLSMALLINT TargetType input The C data type for column number ColumnNumber
in the result set. The following types are supported:

 ¹ SQL_C_BINARY
 ¹ SQL_C_BIT
 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CHAR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCHAR
 ¹ SQL_C_DBCLOB_LOCATOR
 ¹ SQL_C_DOUBLE
 ¹ SQL_C_FLOAT
 ¹ SQL_C_LONG
 ¹ SQL_C_SHORT
 ¹ SQL_C_TYPE_DATE
 ¹ SQL_C_TYPE_TIME
 ¹ SQL_C_TYPE_TIMESTAMP
 ¹ SQL_C_TINYINT

Specifying SQL_C_DEFAULT causes data to be
transferred to its default C data type, refer to
Table 3 on page 28 for more information.

SQLPOINTER TargetValuePtr input/output
(deferred)

Pointer to buffer (or an array of buffers if using
SQLFetchScroll()) where DB2 CLI is to store the
column data or the LOB locator when the fetch
occurs.

This buffer is used to return data when the
Operation argument to SQLSetPos is
SQL_REFRESH. The buffer is used to retrieve data
when the SQLSetPos Operation argument is set to
SQL_UPDATE.

If TargetValuePtr is null, the column is unbound.

SQLINTEGER BufferLength input Size of TargetValuePtr buffer in bytes available to
store the column data or the LOB locator.

If TargetType denotes a binary or character string
(either single or double byte) or is
SQL_C_DEFAULT, then BufferLength must be > 0,
or an error will be returned. Otherwise, this
argument is ignored.

192 CLI Guide and Reference

SQLBindCol

Table 16 (Page 3 of 3). SQLBindCol Arguments

Data Type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr input/output
(deferred)

Pointer to value (or array of values) which indicates
the number of bytes DB2 CLI has available to
return in the TargetValuePtr buffer. If TargetType is
a LOB locator, the size of the locator is returned,
not the size of the LOB data.

This buffer is used to return data when the
Operation argument to SQLSetPos is
SQL_REFRESH. The buffer is used to retrieve data
when the SQLSetPos Operation argument is set to
SQL_UPDATE.

SQLFetch() returns SQL_NULL_DATA in this
argument if the data value of the column is null.

This pointer value must be unique for each bound
column, or NULL.

SQL_NO_LENGTH may also be returned, refer to
the Usage section below for more information.

¹ For this function, both TargetValuePtr and StrLen_or_Ind are deferred outputs,
meaning that the storage locations these pointers point to do not get updated until
a result set row is fetched. As a result, the locations referenced by these pointers
must remain valid until SQLFetch() or SQLFetchScroll() is called. For example, if
SQLBindCol() is called within a local function, SQLFetch() must be called from
within the same scope of the function or the TargetValuePtr buffer must be
allocated as static or global.

¹ DB2 CLI will be able to optimize data retrieval for all variable length data types if
TargetValuePtr is placed consecutively in memory after StrLen_or_IndPtr, see
below for more details.

 Usage
The application calls SQLBindCol() once for each column in the result set for which it
wishes to retrieve either the data, or optionally in the case of LOB columns, a LOB
locator. Result sets are generated either by calling SQLPrepare(), SQLExecDirect(),
SQLGetTypeInfo(), or one of the catalog functions. When SQLFetch() is called, the data
in each of these bound columns is placed into the assigned location (given by the
pointers TargetValuePtr and StrLen_or_Ind). If TargetType is a LOB locator, a locator
value is returned, not the LOB data; the LOB locator references the entire data value in
the LOB column.

SQLFetch() and SQLFetchScroll() can be used to retrieve multiple rows from the result
set into an array. In this case, TargetValuePtr references an array. For more
information, refer to “Retrieving a Result Set into an Array” on page 70 and
“SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on page 331.

Columns are identified by a number, assigned sequentially from left to right.

 Chapter 5. Functions 193

SQLBindCol

¹ Column numbers start at 1 if bookmarks are not used
(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

¹ Column numbers start at 0 if bookmarks are used (the statement attribute set to
SQL_UB_ON).

If you are going to use bookmarks you must first set the
SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_ON.

The number of columns in the result set can be determined by calling
SQLNumResultCols() or by calling SQLColAttribute() with the DescType argument set
to SQL_COLUMN_COUNT.

The application can query the attributes (such as data type and length) of the column
by first calling SQLDescribeCol() or SQLColAttribute(). This information can then be
used to allocate a storage location of the correct data type and length, to indicate data
conversion to another data type, or in the case of LOB data types, optionally return a
locator. Refer to “Data Types and Data Conversion” on page 27 for more information
on default types and supported conversions.

An application can choose not to bind every column, or even not to bind any columns.
Data in any of the columns can also be retrieved using SQLGetData() after the bound
columns have been fetched for the current row. Generally, SQLBindCol() is more
efficient than SQLGetData(). For a discussion of when to use one function over the
other, refer to Appendix A, “Programming Hints and Tips” on page 637.

In subsequent fetches, the application can change the binding of these columns or bind
previously unbound columns by calling SQLBindCol(). The new binding does not apply
to data already fetched, it will be used on the next fetch. To unbind a single column
(including columns bound with SQLBindFileToCol()), call SQLBindCol() with the
TargetValuePtr pointer set to NULL. To unbind all the columns, the application should
call SQLFreeStmt() with the Option input set to SQL_UNBIND.

Instead of multiple calls to SQLBindCol(), DB2 CLI also supports column binding offsets.
Rather than re-binding each time, an offset can be used to specify new buffer and
length/indicator addresses which will be used in a subsequent call to SQLFetch() or
SQLFetchScroll(). This can only be used with row wise binding, but will work whether
the application retrieves a single row or multiple rows at a time.

See “Column Binding Offsets” on page 73 for the list of steps required to use an offset.

The application must ensure enough storage is allocated for the data to be retrieved. If
the buffer is to contain variable length data, the application must allocate as much
storage as the maximum length of the bound column requires; otherwise, the data may
be truncated. If the buffer is to contain fixed length data, DB2 CLI assumes the size of
the buffer is the length of the C data type. If data conversion is specified, the required
size may be affected, see “Data Types and Data Conversion” on page 27 for more
information.

194 CLI Guide and Reference

SQLBindCol

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and
StrLen_or_IndPtr will be set to the actual size of TargetValuePtr available for return to
the application.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute (used
to limit the amount of data returned to the application). The application can specify not
to report truncation by calling SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a
value for the maximum length to return for all variable length columns, and by allocating
a TargetValuePtr buffer of the same size (plus the null-terminator). If the column data is
larger than the set maximum length, SQL_SUCCESS will be returned when the value is
fetched and the maximum length, not the actual length, will be returned in
StrLen_or_IndPtr.

If the column to be bound is a SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then TargetType can be set to SQL_C_DBCHAR or
SQL_C_CHAR. If TargetType is SQL_C_DBCHAR, the data fetched into the
TargetValuePtr buffer will be null-terminated with a double byte null-terminator. If
TargetType is SQL_C_CHAR, then there will be no null-termination of the data. In both
cases, the length of the TargetValuePtr buffer (BufferLength) is in units of bytes and
should therefore be a multiple of 2. It is also possible to force DB2 CLI to null terminate
graphic strings, see the PATCH1 keyword in “Configuration Keywords” on page 144.

When binding any variable length column, DB2 CLI will be able to write
StrLen_or_IndPtr and TargetValuePtr in one operation if they are allocated
contiguously. For example:

struct { SQLINTEGER StrLen_or_IndPtr;

 SQLCHAR TargetValuePtr[MAX_BUFFER];

 } column;

Note: SQL_NO_TOTAL will be returned in StrLen_or_IndPtr if:

¹ The SQL type is a variable length type, and
¹ StrLen_or_IndPtr and TargetValuePtr are contiguous, and
¹ The column type is NOT NULLABLE, and
¹ String truncation occurred.

LOB locators can in general be treated as any other data type, but there are some
important differences:

¹ Locators are generated at the server when a row is fetched and a LOB locator C
data type is specified on SQLBindCol(), or when SQLGetSubString() is called to
define a locator on a portion of another LOB. Only the locator is transferred to the
application.

¹ The value of the locator is only valid within the current transaction. You cannot
store a locator value and use it beyond the current transaction, even if the cursor
used to fetch the LOB locator has the WITH HOLD attribute.

¹ A locator can also be freed before the end of the transaction with the FREE
LOCATOR statement.

 Chapter 5. Functions 195

SQLBindCol

¹ Once a locator is received, the application can use SQLGetSubString(), to either
receive a portion of the LOB value, or to generate another locator representing the
sub-string. The locator value can also be used as input for a parameter marker
(using SQLBindParameter()).

A LOB locator is not a pointer to a database position, but rather it is a reference to
a LOB value: a snapshot of that LOB value. There is no association between the
current position of the cursor and the row from which the LOB value was extracted.
This means that even after the cursor has moved to a different row, the LOB
locator (and thus the value that it represents) can still be referenced.

¹ SQLGetPosition() and SQLGetLength() can be used with SQLGetSubString() to
define the sub-string.

For a given LOB column in the result set, the binding can be to a:

¹ storage buffer for holding the entire LOB data value,
¹ LOB locator, or
¹ LOB file reference (using SQLBindFileToCol()).

The most recent bind column function call determines the type of binding that is in
effect.

Descriptors and SQLBindCol

The following sections describe how SQLBindCol() interacts with descriptors.

Note: Calling SQLBindCol() for one statement can affect other statements. This occurs
when the ARD associated with the statement is explicitly allocated and is also
associated with other statements. Because SQLBindCol() modifies the
descriptor, the modifications apply to all statements with which this descriptor is
associated. If this is not the required behavior, the application should dissociate
this descriptor from the other statements before calling SQLBindCol().

Argument Mappings

Conceptually, SQLBindCol() performs the following steps in sequence:

1. Calls SQLGetStmtAttr() to obtain the ARD handle.
2. Calls SQLGetDescField() to get this descriptor's SQL_DESC_COUNT field, and if

the value in the ColumnNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ColumnNumber.

3. Calls SQLSetDescField() multiple times to assign values to the following fields of
the ARD:
¹ Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

TargetType, except that if TargetType is one of the concise identifiers of a
datetime or interval subtype, it sets SQL_DESC_TYPE to SQL_DATETIME or
SQL_INTERVAL, respectively, sets SQL_DESC_CONCISE_TYPE to the
concise identifier, and sets SQL_DESC_DATETIME_INTERVAL_CODE to the
corresponding datetime or interval subcode.

196 CLI Guide and Reference

SQLBindCol

¹ Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION,
SQL_DESC_SCALE, and SQL_DESC_DATETIME_INTERVAL_PRECISION,
as appropriate for TargetType.

¹ Sets the SQL_DESC_OCTET_LENGTH field to the value of BufferLength.
¹ Sets the SQL_DESC_DATA_PTR field to the value of TargetValue.
¹ Sets the SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_Ind

(see the following paragraph).
¹ Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_Ind (see the following paragraph).

The variable that the StrLen_or_Ind argument refers to is used for both indicator and
length information. If a fetch encounters a null value for the column, it stores
SQL_NULL_DATA in this variable; otherwise, it stores the data length in this variable.
Passing a null pointer as StrLen_or_Ind keeps the fetch operation from returning the
data length, but makes the fetch fail if it encounters a null value and has no way to
return SQL_NULL_DATA.

If the call to SQLBindCol() fails, the content of the descriptor fields it would have set in
the ARD are undefined, and the value of the SQL_DESC_COUNT field of the ARD is
unchanged.

Implicit Resetting of COUNT Field

SQLBindCol() sets SQL_DESC_COUNT to the value of the ColumnNumber argument
only when this would increase the value of SQL_DESC_COUNT. If the value in the
TargetValuePtr argument is a null pointer and the value in the ColumnNumber
argument is equal to SQL_DESC_COUNT (that is, when unbinding the highest bound
column), then SQL_DESC_COUNT is set to the number of the highest remaining bound
column.

Cautions Regarding SQL_DEFAULT

To retrieve column data successfully, the application must determine correctly the
length and starting point of the data in the application buffer. When the application
specifies an explicit TargetType, application misconceptions are readily detected.
However, when the application specifies a TargetType of SQL_DEFAULT,
SQLBindCol() can be applied to a column of a different data type from the one intended
by the application, either from changes to the metadata or by applying the code to a
different column. In this case, the application may fail to determine the start or length of
the fetched column data. This can lead to unreported data errors or memory violations.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Chapter 5. Functions 197

SQLBindCol

 Diagnostics

Table 17. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index The value specified for the argument ColumnNumber exceeded
the maximum number of columns in the result set.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY002 Invalid column number. The value specified for the argument ColumnNumber was less
than 0.

The value specified for the argument ColumnNumber exceeded
the maximum number of columns supported by the data source.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 1
and the argument TargetType is either SQL_C_CHAR,
SQL_C_BINARY or SQL_C_DEFAULT.

HYC00 Driver not capable. DB2 CLI recognizes, but does not support the data type specified
in the argument TargetType

A LOB locator C data type was specified, but the connected
server does not support LOB data types.

Note: Additional diagnostic messages relating to the bound columns may be reported at fetch time.

 Restrictions
The LOB data support is only available when connected to a server that supports Large
Object data types. If the application attempts to specify a LOB locator C data type,
SQLSTATE HYC00 will be returned.

 Example
Refer to “Example” on page 328.

198 CLI Guide and Reference

SQLBindCol

 References
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331

 Chapter 5. Functions 199

SQLBindFileToCol

SQLBindFileToCol - Bind LOB File Reference to LOB Column

 Purpose

SQLBindFileToCol() is used to associate (bind) a LOB column in a result set to a file
reference or an array of file references. This enables data in that column to be
transferred directly into a file when each row is fetched for the statement handle.

The LOB file reference arguments (file name, file name length, file reference options)
refer to a file within the application's environment (on the client). Before fetching each
row, the application must make sure that these variables contain the name of a file, the
length of the file name, and a file option (new / overwrite / append). These values can
be changed between each fetch.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */

 SQLCHAR *FAR FileName,

 SQLSMALLINT *FAR FileNameLength,

 SQLUINTEGER *FAR FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *FAR StringLength,

 SQLINTEGER *FAR IndicatorValue);

 Function Arguments

Table 18 (Page 1 of 2). SQLBindFileToCol Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT icol input Number identifying the column. Columns are
numbered sequentially, from left to right, starting at 1.

SQLPOINTER FileName input
(deferred)

Pointer to the location that will contain the file name
or an array of file names at the time of the next fetch
using the StatementHandle. This is either the
complete path name of the file(s) or a relative file
name(s). If relative file name(s) are provided, they
are appended to the current path of the running
application. This pointer cannot be NULL.

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that will contain the length of
the file name (or an array of lengths) at the time of
the next fetch using the StatementHandle. If this
pointer is NULL, then a length of SQL_NTS is
assumed.

The maximum value of the file name length is 255.

200 CLI Guide and Reference

SQLBindFileToCol

Table 18 (Page 2 of 2). SQLBindFileToCol Arguments

Data Type Argument Use Description

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that will contain the file option
or (array of file options) to be used when writing the
file at the time of the next fetch using the
StatementHandle. The following FileOptions are
supported:

SQL_FILE_CREATE
Create a new file. If a file by this name
already exists, SQL_ERROR will be returned.

SQL_FILE_OVERWRITE
If the file already exists, overwrite it.
Otherwise, create a new file.

SQL_FILE_APPEND
If the file already exists, append the data to it.
Otherwise, create a new file.

Only one option can be chosen per file, there is no
default.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer or, if
the application uses SQLFetchScroll() to retrieve
multiple rows for the LOB column, this specifies the
length of each element in the FileName array.

SQLINTEGER * StringLength output
(deferred)

Pointer to the location that contains the length (or
array of lengths) in bytes of the LOB data that is
returned. If this pointer is NULL, nothing is returned.

SQLINTEGER * IndicatorValue output
(deferred)

Pointer to the location that contains an indicator
value (or array of values).

 Usage
The application calls SQLBindFileToCol() once for each column that should be
transferred directly to a file when a row is fetched. LOB data is written directly to the file
without any data conversion, and without appending null-terminators.

FileName, FileNameLength, and FileOptions must be set before each fetch. When
SQLFetch() or SQLFetchScroll() is called, the data for any column which has been
bound to a LOB file reference is written to the file or files pointed to by that file
reference. Errors associated with the deferred input argument values of
SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the
deferred StringLength and IndicatorValue output arguments are updated between fetch
operations.

If SQLFetchScroll() is used to retrieve multiple rows for the LOB column, FileName,
FileNameLength, and FileOptions point to an array of LOB file reference variables. In
this case, MaxFileNameLength specifies the length of each element in the FileName
array and is used by DB2 CLI to determine the location of each element in the
FileName array. The contents of the array of file references must be valid at the time of

 Chapter 5. Functions 201

SQLBindFileToCol

the SQLFetchScroll() call. The StringLength and IndicatorValue pointers each point to
an array whose elements are updated upon the SQLFetchScroll() call.

Using SQLFetchScroll(), multiple LOB values can be written to multiple files, or to the
same file depending on the file names specified. If writing to the same file, the
SQL_FILE_APPEND file option should be specified for each file name entry. Only
column-wise binding of arrays of file references is supported with SQLFetchScroll().

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 19. SQLBindFileToCol SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY002 Invalid column number. The value specified for the argument icol was less than 1.

The value specified for the argument icol exceeded the maximum
number of columns supported by the data source.

HY009 Invalid argument value. FileName, StringLength or FileOptions is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument MaxFileNameLength was
less than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

 Restrictions
This function is not available when connected to DB2 servers that do not support Large
Object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOCOL and check the SupportedPtr output argument to
determine if the function is supported for the current connection.

202 CLI Guide and Reference

SQLBindFileToCol

 Example

 Chapter 5. Functions 203

SQLBindFileToCol

/* From CLI sample showpic.c */

/* ... */

SQLCHAR * stmt1 =

"select employee.empno, firstnme || lastname as name "

"from employee, emp_photo "

"where employee.empno = emp_photo.empno and photo_format = ?" ;

SQLCHAR * stmt2 =

"SELECT picture FROM emp_photo "

"WHERE empno = ? AND photo_format = ?" ;

/* ... */

/* Get Employee Number */

printf("Select a Employee Number from the list above\n");

 gets((char *)Empno.s);

/* Execute statement 2 which selects the picturee blob */

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind blob column to a file */

rc = SQLBindFileToCol(hstmt, 1, FName, &FNLength, &FOption,

13, NULL, &FNInd);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set deferred FName argument to putput file name. */

switch (Photo_Format[0]) {

 case 'x':

sprintf((char *)FName, "P%s.xwd", Empno.s, Photo_Format);

sprintf(buffer, "xwud -in %s &", FName);

printf("xwud will be used to display image\n");

 break;

 case 'b':

sprintf((char *)FName, "P%s.bmp", Empno.s, Photo_Format);

sprintf(buffer, "iconedit %s", FName);

#if !defined(DB2WIN)

printf("iconedit will be used to display image\n");

#endif

 break;

 case 'g':

sprintf((char *)FName, "P%s.gif", Empno.s, Photo_Format);

printf("Will create file: %s\n", FName);

 break;

 default :

sprintf((char *)FName, "P%s.pic", Empno.s, Photo_Format);

printf("Unknown Format, will attempt to create file: %s \n", FName);

 }

/* Fetch the blob column into the bound file */

rc = SQLFetch(hstmt);

204 CLI Guide and Reference

SQLBindFileToCol

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("%s has been sucessfully Created\n", FName);

#if !defined(DB2WIN)

/*If supported, execute local display tool with the file just created */

if (buffer[0] != '\0') system(buffer);

#endif

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206

 Chapter 5. Functions 205

SQLBindFileToParam

SQLBindFileToParam - Bind LOB File Reference to LOB Parameter

 Purpose

SQLBindFileToParam() is used to associate (bind) a parameter marker in an SQL
statement to a file reference or an array of file references. This enables data from the
file to be transferred directly into a LOB column when that statement is subsequently
executed.

The LOB file reference arguments (file name, file name length, file reference options)
refer to a file within the application's environment (on the client). Before calling
SQLExecute() or SQLExecDirect(), the application must make sure that this information
is available in the deferred input buffers. These values can be changed between
SQLExecute() calls.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLBindFileToParam (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT TargetType, /* ipar */

SQLSMALLINT DataType, /* fSqlType */

 SQLCHAR *FAR FileName,

 SQLSMALLINT *FAR FileNameLength,

 SQLUINTEGER *FAR FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *FAR IndicatorValue);

 Function Arguments

Table 20 (Page 1 of 2). SQLBindFileToParam Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT TargetType input Parameter marker number. Parameters are
numbered sequentially, from left to right, starting at 1.

SQLSMALLINT DataType input SQL Data Type of the column. The data type must
be one of:

 ¹ SQL_BLOB
 ¹ SQL_CLOB
 ¹ SQL_DBCLOB

SQLCHAR * FileName input
(deferred)

Pointer to the location that will contain the file name
or an array of file names when the statement
(StatementHandle) is executed. This is either the
complete path name of the file or a relative file name.
If a relative file name is provided, it is appended to
the current path of the client process.

This argument cannot be NULL.

206 CLI Guide and Reference

SQLBindFileToParam

Table 20 (Page 2 of 2). SQLBindFileToParam Arguments

Data Type Argument Use Description

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that will contain the length of
the file name (or an array of lengths) at the time of
the next SQLExecute() or SQLExecDirect() using the
StatementHandle.

If this pointer is NULL, then a length of SQL_NTS is
assumed.

The maximum value of the file name length is 255.

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that will contain the file option
(or an array of file options) to be used when reading
the file. The location will be accessed when the
statement (StatementHandle) is executed. Only one
option is supported (and it must be specified):

SQL_FILE_READ
A regular file that can be opened, read and
closed. (The length is computed when the file
is opened)

This pointer cannot be NULL.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer. If
the application calls SQLParamOptions() to specify
multiple values for each parameter, this is the length
of each element in the FileName array.

SQLINTEGER * IndicatorValue output
(deferred)

Pointer to the location that contains an indicator
value (or array of values), which is set to
SQL_NULL_DATA if the data value of the parameter
is to be null. It must be set to 0 (or the pointer can
be set to null) when the data value is not null.

 Usage
The application calls SQLBindFileToParam() once for each parameter marker whose
value should be obtained directly from a file when a statement is executed. Before the
statement is executed, FileName, FileNameLength, and FileOptions values must be set.
When the statement is executed, the data for any parameter which has been bound
using SQLBindFIleToParam() is read from the referenced file and passed to the server.

If the application uses SQLParamOptions() to specify multiple values for each parameter,
then FileName, FileNameLength, and FileOptions point to an array of LOB file
reference variables. In this case, MaxFileNameLength specifies the length of each
element in the FileName array and is used by DB2 CLI to determine the location of
each element in the FileName array.

A LOB parameter marker can be associated with (bound to) an input file using
SQLBindFileToParam(), or with a stored buffer using SQLBindParameter(). The most
recent bind parameter function call determines the type of binding that is in effect.

 Chapter 5. Functions 207

SQLBindFileToParam

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 21. SQLBindFileToParam SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY004 SQL data type out of range. The value specified for DataType was not a valid SQL type for this
function call.

HY009 Invalid argument value. FileName, FileOptions FileNameLength, is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the input argument MaxFileNameLength
was less than 0.

HY093 Invalid parameter number. The value specified for TargetType was either less than 1 or
greater than the maximum number of parameters supported.

HYC00 Driver not capable. The server does not support Large Object data types.

 Restrictions
This function is not available when connected to DB2 servers that do not support Large
Object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOPARAM and check the SupportedPtr output argument to
determine if the function is supported for the current connection.

 Example

208 CLI Guide and Reference

SQLBindFileToParam

/* From CLI sample picin.c */

/* ... */

SQLCHAR * stmt =

"INSERT INTO emp_photo (empno, photo_format, picture) VALUES (?, ?, ?)" ;

/* ... */

/* Prepare the INSERT statement */

rc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

7, 0, Empno, 7, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

11, 0, Photo_Format, 11, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind the Blob file to the parameter */

rc = SQLBindFileToParam(hstmt, 3, SQL_BLOB, FName, &FNlength,

&FOption, 255, &FInd);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Enter the Employee Number:\n");

 gets((char *)Empno);

while (1) {

printf("Which Picture Format [xwd (XWindows), bitmap]?\n");

 gets((char *)Photo_Format);

if (strcmp((char *)Photo_Format, "xwd") == 0 ||

strcmp((char *)Photo_Format, "bitmap") == 0) break;

 printf("Invalid Format!\n");

 }

printf("Enter the filename of the Photo of type %s\n", Photo_Format);

 gets((char *)FName);

rc = SQLExecute(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLParamOptions - Specify an Input Array for a Parameter” on page 483

 Chapter 5. Functions 209

SQLBindParameter

SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator

 Purpose

SQLBindParameter() is used to associate (bind) parameter markers in an SQL
statement to either:

¹ Application variables or arrays of application variables (storage buffers), for all C
data types. In this case data is transferred from the application to the DBMS when
SQLExecute() or SQLExecDirect() is called. Data conversion may occur as the data
is transferred.

¹ A LOB locator, for SQL LOB data types. In this case a LOB locator value, not the
LOB data itself, is transferred from the application to the server when the SQL
statement is executed.

Alternatively, LOB parameters can be bound directly to a file using
SQLBindFileToParam().

This function must also be used to bind an application storage to a parameter of a
stored procedure CALL statement where the parameter may be input, output or both.
This function is essentially an extension of SQLSetParam().

Specification: DB2 CLI 2.1 ODBC 2.0

 Syntax
SQLRETURN SQL_API SQLBindParameter(SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ParameterNumber, /* ipar */

SQLSMALLINT InputOutputType, /* fParamType */

SQLSMALLINT ValueType, /* fCType */

SQLSMALLINT ParameterType, /* fSqlType */

SQLUINTEGER ColumnSize, /* cbColDef */

SQLSMALLINT DecimalDigits, /* ibScale */

SQLPOINTER ParameterValuePtr,/* rgbValue */

SQLINTEGER BufferLength, /* cbValueMax */

SQLINTEGER *FAR StrLen_or_IndPtr);/* pcbValue */

 Function Arguments

Table 22 (Page 1 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement Handle

SQLUSMALLINT ParameterNumber input Parameter marker number, ordered sequentially left
to right, starting at 1.

210 CLI Guide and Reference

SQLBindParameter

Table 22 (Page 2 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT InputOutputType input The type of parameter. The value of the
SQL_DESC_PARAMETER_TYPE field of the IPD is
also set to this argument. The supported types are:

¹ SQL_PARAM_INPUT: The parameter marker is
associated with an SQL statement that is not a
stored procedure CALL; or, it marks an input
parameter of the CALLed stored procedure.

When the statement is executed, actual data
value for the parameter is sent to the server: the
ParameterValuePtr buffer must contain valid
input data value(s); the StrLen_or_IndPtr buffer
must contain the corresponding length value or
SQL_NTS, SQL_NULL_DATA, or (if the value
should be sent via SQLParamData() and
SQLPutData()) SQL_DATA_AT_EXEC.

¹ SQL_PARAM_INPUT_OUTPUT: The parameter
marker is associated with an input/output
parameter of the CALLed stored procedure.

When the statement is executed, actual data
value for the parameter is sent to the server: the
ParameterValuePtr buffer must contain valid
input data value(s); the StrLen_or_IndPtr buffer
must contain the corresponding length value or
SQL_NTS, SQL_NULL_DATA, or (if the value
should be sent via SQLParamData() and
SQLPutData()) SQL_DATA_AT_EXEC.

¹ SQL_PARAM_OUTPUT: The parameter marker
is associated with an output parameter of the
CALLed stored procedure or the return value of
the stored procedure.

After the statement is executed, data for the
output parameter is returned to the application
buffer specified by ParameterValuePtr and
StrLen_or_IndPtr, unless both are NULL
pointers, in which case the output data is
discarded. If an output parameter does not have
a return value then StrLen_or_IndPtr is set to
SQL_NULL_DATA.

 Chapter 5. Functions 211

SQLBindParameter

Table 22 (Page 3 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT ValueType input C data type of the parameter. The following types are
supported:

 ¹ SQL_C_BINARY
 ¹ SQL_C_BIT
 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CHAR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCHAR
 ¹ SQL_C_DBCLOB_LOCATOR
 ¹ SQL_C_DOUBLE
 ¹ SQL_C_FLOAT
 ¹ SQL_C_LONG
 ¹ SQL_C_SHORT
 ¹ SQL_C_TYPE_DATE
 ¹ SQL_C_TYPE_TIME
 ¹ SQL_C_TYPE_TIMESTAMP
 ¹ SQL_C_TINYINT

Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type to the type
indicated in ParameterType.

212 CLI Guide and Reference

SQLBindParameter

Table 22 (Page 4 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT ParameterType input SQL Data Type of the parameter. The supported
types are:

 ¹ SQL_BINARY
 ¹ SQL_BLOB
 ¹ SQL_BLOB_LOCATOR
 ¹ SQL_CHAR
 ¹ SQL_CLOB
 ¹ SQL_CLOB_LOCATOR
 ¹ SQL_DBCLOB
 ¹ SQL_DBCLOB_LOCATOR
 ¹ SQL_DECIMAL
 ¹ SQL_DOUBLE
 ¹ SQL_FLOAT
 ¹ SQL_GRAPHIC
 ¹ SQL_INTEGER
 ¹ SQL_LONGVARBINARY
 ¹ SQL_LONGVARCHAR
 ¹ SQL_LONGVARGRAPHIC
 ¹ SQL_NUMERIC
 ¹ SQL_REAL
 ¹ SQL_SMALLINT
 ¹ SQL_TYPE_DATE
 ¹ SQL_TYPE_TIME
 ¹ SQL_TYPE_TIMESTAMP
 ¹ SQL_VARBINARY
 ¹ SQL_VARCHAR
 ¹ SQL_VARGRAPHIC

Note: SQL_BLOB_LOCATOR,
SQL_CLOB_LOCATOR,
SQL_DBCLOB_LOCATOR are application
related concepts and do not map to a data
type for column definition during a CREATE
TABLE statement.

SQLUINTEGER ColumnSize input Precision of the corresponding parameter marker. If
ParameterType denotes:

¹ A binary or single byte character string (e.g.
SQL_CHAR, SQL_BLOB), this is the maximum
length in bytes for this parameter marker.

¹ A double byte character string (e.g.
SQL_GRAPHIC), this is the maximum length in
double-byte characters for this parameter.

¹ SQL_DECIMAL, SQL_NUMERIC, this is the
maximum decimal precision.

¹ Otherwise, this argument is ignored.

 Chapter 5. Functions 213

SQLBindParameter

Table 22 (Page 5 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLSMALLINT DecimalDigits input Scale of the corresponding parameter if
ParameterType is SQL_DECIMAL or
SQL_NUMERIC. If ParameterType is
SQL_TYPE_TIMESTAMP, this is the number of digits
to the right of the decimal point in the character
representation of a timestamp (for example, the scale
of yyyy-mm-dd hh:mm:ss.fff is 3).

Other than for the ParameterType values mentioned
here, DecimalDigits is ignored.

SQLPOINTER ParameterValuePtr input
(deferred)
and/or
output
(deferred)

¹ On input (InputOutputType set to
SQL_PARAM_INPUT, or
SQL_PARAM_INPUT_OUTPUT):

At execution time, if StrLen_or_IndPtr does not
contain SQL_NULL_DATA or
SQL_DATA_AT_EXEC, then ParameterValuePtr
points to a buffer that contains the actual data
for the parameter.

If StrLen_or_IndPtr contains
SQL_DATA_AT_EXEC, then ParameterValuePtr
is an application-defined 32-bit value that is
associated with this parameter. This 32-bit value
is returned to the application via a subsequent
SQLParamData() call.

If SQLParamOptions() is called to specify multiple
values for the parameter, then
ParameterValuePtr is a pointer to a input buffer
array of BufferLength bytes.

¹ On output (InputOutputType set to
SQL_PARAM_OUTPUT, or
SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr points to the buffer where the
output parameter value of the stored procedure
will be stored.

If InputOutputType is set to
SQL_PARAM_OUTPUT, and both
ParameterValuePtr and StrLen_or_IndPtr are
NULL pointers, then the output parameter value
or the return value from the stored procedure call
is discarded.

214 CLI Guide and Reference

SQLBindParameter

Table 22 (Page 6 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLINTEGER BufferLength input For character and binary data, BufferLength specifies
the length of the ParameterValuePtr buffer (if is
treated as a single element) or the length of each
element in the ParameterValuePtr array (if the
application calls SQLParamOptions() to specify
multiple values for each parameter). For
non-character and non-binary data, this argument is
ignored -- the length of the ParameterValuePtr buffer
(if it is a single element) or the length of each
element in the ParameterValuePtr array (if
SQLParamOptions() is used to specify an array of
values for each parameter) is assumed to be the
length associated with the C data type.

For output parameters, BufferLength is used to
determine whether to truncate character or binary
output data in the following manner:

¹ For character data, if the number of bytes
available to return is greater than or equal to
BufferLength, the data in ParameterValuePtr is
truncated to BufferLength-1 bytes and is
null-terminated (unless null-termination has been
turned off).

¹ For binary data, if the number of bytes available
to return is greater than BufferLength, the data in
ParameterValuePtr is truncated to BufferLength
bytes.

 Chapter 5. Functions 215

SQLBindParameter

Table 22 (Page 7 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr input
(deferred)
and/or
output
(deferred)

- If this is an input or input/output parameter:

This is the pointer to the location which contains
(when the statement is executed) the length of the
parameter marker value stored at
ParameterValuePtr.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage location
must contain either the exact length of the data
stored at ParameterValuePtr, or SQL_NTS if the
contents at ParameterValuePtr is null-terminated.

If ValueType indicates character data (explicitly, or
implicitly using SQL_C_DEFAULT), and this pointer
is set to NULL, it is assumed that the application will
always provide a null-terminated string in
ParameterValuePtr. This also implies that this
parameter marker will never have a null value.

If ParameterType denotes a graphic data type and
the ValueType is SQL_C_CHAR, the pointer to
StrLen_or_IndPtr can never be NULL and the
contents of StrLen_or_IndPtr can never hold
SQL_NTS. In general for graphic data types, this
length should be the number of octets that the
double byte data occupies; therefore, the length
should always be a multiple of 2. In fact, if the length
is odd, then an error will occur when the statement is
executed.

When SQLExecute() or SQLExecDirect() is called,
and StrLen_or_IndPtr points to a value of
SQL_DATA_AT_EXEC, the data for the parameter
will be sent with SQLPutData(). This parameter is
referred to as a data-at-execution parameter.

216 CLI Guide and Reference

SQLBindParameter

Table 22 (Page 8 of 8). SQLBindParameter Arguments

Data Type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr (cont) input
(deferred)
and/or
output
(deferred)

If SQLParamOptions() is used to specify multiple
values for each parameter, StrLen_or_IndPtr points
to an array of SQLINTEGER values where each of
the elements can be the number of bytes in the
corresponding ParameterValuePtr element (excluding
the null-terminator), or SQL_NULL_DATA.

- If this is an output parameter (InputOutputType is
set to SQL_PARAM_OUTPUT):

This must be an output parameter or return value of
a stored procedure CALL and points to one of the
following, after the execution of the stored procedure:

¹ number of bytes available to return in
ParameterValuePtr, excluding the
null-termination character.

 ¹ SQL_NULL_DATA
¹ SQL_NO_TOTAL if the number of bytes

available to return cannot be determined.

 Usage
A parameter marker is represented by a "?" character in an SQL statement and is used
to indicate a position in the statement where an application supplied value is to be
substituted when the statement is executed. This value can be obtained from:

¹ An application variable.

SQLBindParameter() (or SQLSetParam()) is used to bind the application storage area
to the parameter marker.

¹ A LOB value from the database server (by specifying a LOB locator).

SQLBindParameter() (or SQLSetParam()) is used to bind a LOB locator to the
parameter marker. The LOB value itself is supplied by the database server, so only
the LOB locator is transferred between the database server and the application.

An application can use a locator with SQLGetSubString(), SQLGetPosition() or
SQLGetLength(). SQLGetSubString() can either return another locator, or the data
itself. All locators remain valid until the end of the transaction in which they were
created (even when the cursor moves to another row, or until it is freed using the
FREE LOCATOR statement.

¹ A file (within the applications environment) containing a LOB value.

SQLBindFileToParam() is used to bind a file to a LOB parameter marker. When
SQLExecDirect() is executed, DB2 CLI will transfer the contents of the file directly
to the database server.

The application must bind a variable to each parameter marker in the SQL statement
before executing the SQL statement. For this function, ParameterValuePtr and

 Chapter 5. Functions 217

SQLBindParameter

StrLen_or_IndPtr are deferred arguments, the storage locations must be valid and
contain input data values when the statement is executed. This means either keeping
the SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically allocated or
declared statically or globally.

SQLBindParameter() (or SQLSetParam()) can be called before SQLPrepare() if the
columns in the result set are known; otherwise, the attributes of the result set can be
obtained after the statement is prepared.

Parameter markers are referenced by number (ColumnNumber) and are numbered
sequentially from left to right, starting at 1.

All parameters bound by this function remain in effect until SQLFreeStmt() is called with
either the SQL_DROP or SQL_RESET_PARAMS option, or until SQLBindParameter() is
called again for the same parameter ParameterNumber number.

After the SQL statement has been executed, and the results processed, the application
may wish to reuse the statement handle to execute a different SQL statement. If the
parameter marker specifications are different (number of parameters, length or type)
then SQLFreeStmt() should be called with SQL_RESET_PARAMS to reset or clear the
parameter bindings.

The C buffer data type given by ValueType must be compatible with the SQL data type
indicated by ParameterType, or an error will occur.

An application can pass the value for a parameter either in the ParameterValuePtr
buffer or with one or more calls to SQLPutData(). In latter case, these parameters are
data-at-execution parameters. The application informs DB2 CLI of a data-at-execution
parameter by placing the SQL_DATA_AT_EXEC value in the StrLen_or_IndPtr buffer. It
sets the ParameterValuePtr input argument to a 32 bit value which will be returned on a
subsequent SQLParamData() call and can be used to identify the parameter position.

Since the data in the variables referenced by ParameterValuePtr and StrLen_or_IndPtr
is not verified until the statement is executed, data content or format errors are not
detected or reported until SQLExecute() or SQLExecDirect() is called.

SQLBindParameter() essentially extends the capability of the SQLSetParam() function by
providing a method of:

¹ Specifying whether a parameter is input, input / output, or output, necessary for
proper handling of parameters for stored procedures.

¹ Specifying an array of input parameter values when SQLParamOptions() is used in
conjunction with SQLBindParameter(). SQLSetParam() can still be used to bind
single element application variables to parameter markers that are not part of a
stored procedure CALL statement.

The InputOutputType argument specifies the type of the parameter. All parameters in
the SQL statements that do not call procedures are input parameters. Parameters in
stored procedure calls can be input, input/output, or output parameters. Even though

218 CLI Guide and Reference

SQLBindParameter

the DB2 stored procedure argument convention typically implies that all procedure
arguments are input/output, the application programmer may still choose to specify
more exactly the input or output nature on the SQLBindParameter() to follow a more
rigorous coding style.

¹ If an application cannot determine the type of a parameter in a procedure call, set
InputOutputType to SQL_PARAM_INPUT; if the data source returns a value for the
parameter, DB2 CLI discards it.

¹ If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, DB2 CLI sets
the StrLen_or_IndPtr buffer to SQL_NULL_DATA.

¹ If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement has been
processed. If the ParameterValuePtr and StrLen_or_IndPtr arguments are both null
pointers, DB2 CLI discards the output value. If the data source does not return a
value for an output parameter, DB2 CLI sets the StrLen_or_IndPtr buffer to
SQL_NULL_DATA.

¹ For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments.
In the case where InputOutputType is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically
allocated or statically / globally declared.

Similarly, if InputOutputType is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the ParameterValuePtr and StrLen_or_IndPtr
buffer locations must remain valid until the CALL statement has been executed.

For character and binary C data, the BufferLength argument specifies the length of the
ParameterValuePtr buffer if it is a single element; or, if the application calls
SQLParamOptions() to specify multiple values for each parameter, BufferLength is the
length of each element in the ParameterValuePtr array, INCLUDING the null-terminator.
If the application specifies multiple values, BufferLength is used to determine the
location of values in the ParameterValuePtr array. For all other types of C data, the
BufferLength argument is ignored.

An application can pass the value for a parameter either in the ParameterValuePtr
buffer or with one or more calls to SQLPutData(). In latter case, these parameters are
data-at-execution parameters. The application informs DB2 CLI of a data-at-execution
parameter by placing the SQL_DATA_AT_EXEC value in the StrLen_or_IndPtr buffer. It
sets the ParameterValuePtr input argument to a 32 bit value which will be returned on a
subsequent SQLParamData() call and can be used to identify the parameter position.

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, DB2 CLI can provide some performance
enhancement if the ParameterValuePtr buffer is placed consecutively in memory after
the StrLen_or_IndPtr buffer. For example:

 Chapter 5. Functions 219

SQLBindParameter

struct { SQLINTEGER StrLen_or_IndPtr;

 SQLCHAR ParameterValuePtr[MAX_BUFFER];

 } column;

A parameter can only be bound to either a file or a storage location, not both. The most
recent bind parameter function call determines the bind that is in effect.

Parameter Binding Offsets

When an application needs to change parameter bindings it can call
SQLBindParameter() a second time. This will change the bound parameter buffer
address and the corresponding length/indicator buffer address used.

Instead of multiple calls to SQLBindParameter(), DB2 CLI also supports parameter
binding offsets. Rather than re-binding each time, an offset can be used to specify new
buffer and length/indicator addresses which will be used in a subsequent call to
SQLExecute() or SQLExecDirect(). This cannot be used with column wise array inserts,
but will work whether the application binds parameters individually or using an array.

See “Parameter Binding Offsets” on page 68 for the list of steps required to use an
offset.

Descriptors

How a parameter is bound is determined by fields of the APDs and IPDs. The
arguments in SQLBindParameter are used to set those descriptor fields. The fields can
also be set by the SQLSetDescField functions, although SQLBindParameter is more
efficient to use because the application does not have to obtain a descriptor handle to
call SQLBindParameter.

Note: Calling SQLBindParameter() for one statement can affect other statements. This
occurs when the ARD associated with the statement is explicitly allocated and is
also associated with other statements. Because SQLBindParameter() modifies
the fields of the APD, the modifications apply to all statements with which this
descriptor is associated. If this is not the required behavior, the application
should dissociate this descriptor from the other statements before calling
SQLBindParameter().

Conceptually, SQLBindParameter() performs the following steps in sequence:

1. Calls SQLGetStmtAttr() to obtain the APD handle.
2. Calls SQLGetDescField() to get the APD's SQL_DESC_COUNT field, and if the

value of the ColumnNumber argument exceeds the value of SQL_DESC_COUNT,
calls SQLSetDescField() to increase the value of SQL_DESC_COUNT to
ColumnNumber.

3. Calls SQLSetDescField() multiple times to assign values to the following fields of
the APD:
¹ Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ValueType, except that if ValueType is one of the concise identifiers of a
datetime or interval subtype, it sets SQL_DESC_TYPE to SQL_DATETIME or

220 CLI Guide and Reference

SQLBindParameter

SQL_INTERVAL respectively, sets SQL_DESC_CONCISE_TYPE to the
concise identifier, and sets SQL_DESC_DATETIME_INTERVAL_CODE to the
corresponding datetime or interval subcode.

¹ Sets the SQL_DESC_DATA_PTR field to the value of ParameterValue.
¹ Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_Ind.
¹ Sets the SQL_DESC_INDICATOR_PTR field also to the value of

StrLen_or_Ind.
 The StrLen_or_Ind parameter specifies both the indicator information and the
length for the parameter value.

4. Calls SQLGetStmtAttr() to obtain the IPD handle.
 5.

6. Calls SQLGetDescField() to get the IPD's SQL_DESC_COUNT field, and if the
value of the ColumnNumber argument exceeds the value of SQL_DESC_COUNT,
calls SQLSetDescField to increase the value of SQL_DESC_COUNT to
ColumnNumber.

7. Calls SQLSetDescField() multiple times to assign values to the following fields of
the IPD:
¹ Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ParameterType, except that if ParameterType is one of the concise identifiers
of a datetime or interval subtype, it sets SQL_DESC_TYPE to
SQL_DATETIME or SQL_INTERVAL respectively, sets
SQL_DESC_CONCISE_TYPE to the concise identifier, and sets
SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime or
interval subcode.

¹ Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION, and
SQL_DESC_DATETIME_INTERVAL_PRECISION, as appropriate for
ParameterType.

¹ Sets SQL_DESC_SCALE to the value of DecimalDigits.

If the call to SQLBindParameter() fails, the content of the descriptor fields that it would
have set in the APD are undefined, and the SQL_DESC_COUNT field of the APD is
unchanged. In addition, the SQL_DESC_LENGTH, SQL_DESC_PRECISION,
SQL_DESC_SCALE, and SQL_DESC_TYPE fields of the appropriate record in the IPD
are undefined and the SQL_DESC_COUNT field of the IPD is unchanged.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

 Chapter 5. Functions 221

SQLBindParameter

Table 23 (Page 1 of 2). SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the ValueType
argument to the data type identified by the ParameterType
argument is not a meaningful conversion. (For example,
conversion from SQL_C_DATE to SQL_DOUBLE.)

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. The value specified by the argument ParameterNumber not a valid
data type or SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument ParameterType is not a valid
SQL data type.

HY009 Invalid argument value. The argument ParameterValuePtr was a null pointer and the
argument StrLen_or_IndPtr was a null pointer, and
InputOutputType is not SQL_PARAM_OUTPUT.

HY010 Function sequence error. Function was called after SQLExecute() or SQLExecDirect() had
returned SQL_NEED_DATA, but data have not been sent for all
data-at-execution parameters.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY021 Inconsistent descriptor
information

The descriptor information checked during a consistency check
was not consistent.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than
0.

HY093 Invalid parameter number. The value specified for the argument ValueType was less than 1
or greater than the maximum number of parameters supported by
the server.

HY094 Invalid scale value. The value specified for ParameterType was either SQL_DECIMAL
or SQL_NUMERIC and the value specified for DecimalDigits was
less than 0 or greater than the value for the argument ParamDef
(precision).

The value specified for ParameterType was SQL_C_TIMESTAMP
and the value for ParameterType was either SQL_CHAR or
SQL_VARCHAR and the value for DecimalDigits was less than 0
or greater than 6.

HY104 Invalid precision value. The value specified for ParameterType was either SQL_DECIMAL
or SQL_NUMERIC and the value specified for ParamDef was less
than 1.

HY105 Invalid parameter type. InputOutputType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

222 CLI Guide and Reference

SQLBindParameter

Table 23 (Page 2 of 2). SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

HYC00 Driver not capable. DB2 CLI or data source does not support the conversion specified
by the combination of the value specified for the argument
ValueType and the value specified for the argument
ParameterType.

The value specified for the argument ParameterType is not
supported by either DB2 CLI or the data source.

 Restrictions
In DB2 CLI v5 and ODBC 2.0, this function has replaced SQLSetParam().

A new value for StrLen_or_IndPtr, SQL_DEFAULT_PARAM, was introduced in ODBC
2.0, to indicate that the procedure is to use the default value of a parameter, rather
than a value sent from the application. Since DB2 stored procedure arguments do not
have the concept of default values, specification of this value for StrLen_or_IndPtr
argument will result in an error when the CALL statement is executed since the
SQL_DEFAULT_PARAM value will be considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be used
with the StrLen_or_IndPtr argument. The macro is used to specify the sum total length
of the entire data that would be sent for character or binary C data via the subsequent
SQLPutData() calls. Since the DB2 ODBC driver does not need this information, the
macro is not needed. An ODBC application calls SQLGetInfo() with the
SQL_NEED_LONG_DATA_LEN option to check if the driver needs this information.
The DB2 ODBC driver will return 'N' to indicate that this information is not needed by
SQLPutData().

 Example
The example shown below binds a variety of data types bound to a set of parameters.
For an additional example refer to “Stored Procedure Example” on page 110.

 Chapter 5. Functions 223

SQLBindParameter

/* From CLI sample prodin.c */

/* ... */

SQLCHAR * stmt =

"INSERT INTO PRODUCT VALUES (?, ?, ?, ?, ?)" ;

SQLINTEGER Prod_Num[] = {

100110, 100120, 100210, 100220, 100510, 100520, 200110,

200120, 200210, 200220, 200510, 200610, 990110, 990120,

500110, 500210, 300100

 };

SQLCHAR * Description[] = {

"Aquarium-Glass-25 litres", "Aquarium-Glass-50 litres",

"Aquarium-Acrylic-25 litres", "Aquarium-Acrylic-50 litres",

 "Aquarium-Stand-Small", "Aquarium-Stand-Large",

"Pump-Basic-25 litre", "Pump-Basic-50 litre",

"Pump-Deluxe-25 litre", "Pump-Deluxe-50 litre",

"Pump-Filter-(for Basic Pump)",

"Pump-Filter-(for Deluxe Pump)",

 "Aquarium-Kit-Small", "Aquarium-Kit-Large",

 "Gravel-Colored", "Fish-Food-Deluxe-Bulk",

 "Plastic-Tubing"

 };

SQLDOUBLE UPrice[] = {

110.00, 190.00, 100.00, 150.00, 60.00, 90.00, 30.00,

45.00, 55.00, 75.00, 4.75, 5.25, 160.00, 240.00,

2.50, 35.00, 5.50

 };

SQLCHAR * Units[] = {

 " ", " ", " ", " ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", " ", "kg", "kg", "m"

 };

SQLCHAR * Combo[] = {

"N", "N", "N", "N", "N", "N", "N", "N", "N",

"N", "N", "N", "Y", "Y", "N", "N", "N"

 };

/* ... */

/* Prepare the statement */

rc = SQLPrepare(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_PARAMSET_SIZE,

(SQLPOINTER) row_array_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

224 CLI Guide and Reference

SQLBindParameter

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,

0, 0, Prod_Num, 0, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

257, 0, Description, 257, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DOUBLE, SQL_DECIMAL,

10, 2, UPrice, 0, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

3, 0, Units, 3, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

2, 0, Combo, 2, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecute(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Inserted %ld Rows\n", row_array_size) ;

 References
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 480
¹ “SQLParamOptions - Specify an Input Array for a Parameter” on page 483
¹ “SQLPutData - Passing Data Value for A Parameter” on page 510

 Chapter 5. Functions 225

SQLBrowseConnect

SQLBrowseConnect - Get Required Attributes to Connect to Data source

 Purpose

SQLBrowseConnect() supports an iterative method of discovering and enumerating the
attributes and attribute values required to connect to a data source. Each call to
SQLBrowseConnect() returns successive levels of attributes and attribute values. When
all levels have been enumerated, a connection to the data source is completed and a
complete connection string is returned by SQLBrowseConnect(). A return code of
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO indicates that all connection
information has been specified and the application is now connected to the data source.

Specification: DB2 CLI 5.0 ODBC 1

 Syntax
SQLRETURN SQLBrowseConnect (SQLHDBC ConnectionHandle,

 SQLCHAR *InConnectionString,

 SQLSMALLINT StringLength1,

 SQLCHAR *OutConnectionString,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *StringLength2Ptr);

 Function Arguments

Table 24. SQLBrowseConnect Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLCHAR *szConnStrIn input Browse request connection string (see
InConnectionString Argument on page 227).

SQLSMALLINT cbConnStrIn input Length of *InConnectionString.

SQLCHAR *OutConnectionString output Pointer to a buffer in which to return the browse
result connection string (see OutConnectionString
Argument on page 227).

SQLINTEGER BufferLength input Length of the *OutConnectionString buffer.

SQLSMALLINT *StringLength2Ptr output The total number of bytes (excluding the null
termination byte) available to return in
*OutConnectionString. If the number of bytes
available to return is greater than or equal to
BufferLength, the connection string in
*OutConnectionString is truncated to BufferLength
minus the length of a null termination character.

226 CLI Guide and Reference

SQLBrowseConnect

 Usage
InConnectionString Argument

A browse request connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= attribute-keyword=attribute-value | DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD
| driver-defined-attribute-keyword

attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

where

¹ character-string has zero or more characters
¹ identifier has one or more characters
¹ attribute-keyword is case insensitive
¹ attribute-value may be case sensitive
¹ the value of the DSN keyword does not consist solely of blanks

Because of connection string and initialization file grammar, keywords and attribute
values that contain the characters []{}(),;?*=!@ should be avoided. Because of the
grammar in the system information, keywords and data source names cannot contain
the backslash (\) character. For DB2 CLI Version 2, braces are required around the
DRIVER keyword.

If any keywords are repeated in the browse request connection string, DB2 CLI uses
the value associated with the first occurrence of the keyword. If the DSN and DRIVER
keywords are included in the same browse request connection string, DB2 CLI uses
which ever keyword appears first.

OutConnectionString Argument

The browse result connection string is a list of connection attributes. A connection
attribute consists of an attribute keyword and a corresponding attribute value. The
browse result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]
driver-defined-attribute-keyword ::= identifer[:localized-identifier]

 Chapter 5. Functions 227

SQLBrowseConnect

attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by DB2 CLI.)
attribute-value-list ::= character-string [:localized-character
string] | character-string [:localized-character string], attribute-value-list

where

¹ character-string and localized-character string have zero or more characters
¹ identifier and localized-identifier have one or more characters; attribute-keyword is

case insensitive
¹ attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data source
names cannot contain the backslash (\) character.

The browse result connection string syntax is used according to the following semantic
rules:

¹ If an asterisk (*) precedes an attribute-keyword, the attribute is optional, and may
be omitted in the next call to SQLBrowseConnect().

¹ The attribute keywords UID and PWD have the same meaning as defined in
SQLDriverConnect().

¹ When connecting to a DB2 Universal Database, only DSN, UID and PWD are
required. Other keywords can be specified but do not affect the connection.

¹ ODBC-attribute-keywords and driver-defined-attribute-keywords include a localized
or user-friendly version of the keyword. This might be used by applications as a
label in a dialog box. However, UID, PWD, or the identifier alone must be used
when passing a browse request string to DB2 CLI.

¹ The {attribute-value-list} is an enumeration of actual values valid for the
corresponding attribute-keyword. Note that the braces ({}) do not indicate a list of
choices; they are returned by DB2 CLI. For example, it might be a list of server
names or a list of database names.

¹ If the attribute-value is a single question mark (?), a single value corresponds to
the attribute-keyword. For example, UID=JohnS; PWD=Sesame.

¹ Each call to SQLBrowseConnect() returns only the information required to satisfy the
next level of the connection process. DB2 CLI associates state information with the
connection handle so that the context can always be determined on each call.

Using SQLBrowseConnect

SQLBrowseConnect() requires an allocated connection. If SQLBrowseConnect() returns
SQL_ERROR, outstanding connections are terminated and the connection is returned
to an unconnected state.

When SQLBrowseConnect() is called for the first time on a connection, the browse
request connection string must contain the DSN keyword.

228 CLI Guide and Reference

SQLBrowseConnect

On each call to SQLBrowseConnect(), the application specifies the connection attribute
values in the browse request connection string. DB2 CLI returns successive levels of
attributes and attribute values in the browse result connection string; it returns
SQL_NEED_DATA as long as there are connection attributes that have not yet been
enumerated in the browse request connection string. The application uses the contents
of the browse result connection string to build the browse request connection string for
the next call to SQLBrowseConnect(). All mandatory attributes (those not preceded by an
asterisk in the OutConnectionString argument) must be included in the next call to
SQLBrowseConnect(). Note that the application cannot use the contents of previous
browse result connection strings when building the current browse request connection
string; that is, it cannot specify different values for attributes set in previous levels.

When all levels of connection and their associated attributes have been enumerated,
DB2 CLI returns SQL_SUCCESS, the connection to the data source is complete, and a
complete connection string is returned to the application. The connection string is
suitable to use in conjunction with SQLDriverConnect() with the
SQL_DRIVER_NOPROMPT option to establish another connection. The complete
connection string cannot be used in another call to SQLBrowseConnect(), however; if
SQLBrowseConnect() were called again, the entire sequence of calls would have to be
repeated.

SQLBrowseConnect() also returns SQL_NEED_DATA if there are recoverable, nonfatal
errors during the browse process, for example, an invalid password supplied by the
application or an invalid attribute keyword supplied by the application. When
SQL_NEED_DATA is returned and the browse result connection string is unchanged,
an error has occurred and the application can call SQLGetDiagRec() to return the
SQLSTATE for browse-time errors. This permits the application to correct the attribute
and continue the browse.

An application may terminate the browse process at any time by calling
SQLDisconnect(). DB2 CLI will terminate any outstanding connections and return the
connection to an unconnected state.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NEED_DATA
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 25 (Page 1 of 2). SQLBrowseConnect SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

 Chapter 5. Functions 229

SQLBrowseConnect

Table 25 (Page 2 of 2). SQLBrowseConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer *OutConnectionString was not large enough to return
entire browse result connection string, so the string was truncated.
The buffer *StringLength2Ptr contains the length of the
untruncated browse result connection string. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection string
attribute.

An invalid attribute keyword was specified in the browse request
connection string (InConnectionString). (Function returns
SQL_NEED_DATA.)

An attribute keyword was specified in the browse request
connection string (InConnectionString) that does not apply to the
current connection level. (Function returns SQL_NEED_DATA.)

01S02 Option value changed. DB2 CLI did not support the specified value of the ValuePtr
argument in SQLSetConnectAttr() and substituted a similar value.
(Function returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to data
source.

DB2 CLI was unable to establish a connection with the data
source.

08002 Connection in use. The specified connection had already been used to establish a
connection with a data source and the connection was open.

08004 The application server
rejected establishment of the
connection.

The data source rejected the establishment of the connection for
implementation defined reasons.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was trying trying to connect failed before the function
completed processing.

28000 Invalid authorization
specification.

Either the user identifier or the authorization string or both as
specified in the browse request connection string
(InConnectionString) violated restrictions defined by the data
source.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument StringLength1 was less than 0
and was not equal to SQL_NTS.

The value specified for argument BufferLength was less than 0.

230 CLI Guide and Reference

SQLBrowseConnect

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLConnect - Connect to a Data Source” on page 262
¹ “SQLDisconnect - Disconnect from a Data Source” on page 286
¹ “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 288
¹ “SQLFreeHandle - Free Handle Resources” on page 352

 Chapter 5. Functions 231

SQLCancel

SQLCancel - Cancel Statement

 Purpose

SQLCancel() can be used to prematurely terminate the data-at-execution sequence
described in “Sending/Retrieving Long Data in Pieces” on page 61.

In a multi-threaded application, SQLCancel() will cancel the original request, which will
return an SQLSTATE of HY008.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLCancel (SQLHSTMT StatementHandle); /* hstmt */

 Function Arguments

Table 26. SQLCancel Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

 Usage
After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for values
for data-at-execution parameters, SQLCancel() can be used to cancel the
data-at-execution sequence described in “Sending/Retrieving Long Data in Pieces” on
page 61. SQLCancel() can be called any time before the final SQLParamData() in the
sequence. After the cancellation of this sequence, the application can call SQLExecute()
or SQLExecDirect() to re-initiate the data-at-execution sequence.

In DB2 CLI version 2, or when the SQL_ATTR_ODBC_VERSION environment attribute
is set to SQL_OV_ODBC2, if an application calls SQLCancel() when no processing is
being done on the statement, SQLCancel() has the same effect as SQLFreeStmt() with
the SQL_CLOSE option. This is not the case in DB2 CLI version 5, or when the
SQL_ATTR_ODBC_VERSION environment attribute is set to SQL_OV_ODBC5. A call
to SQLCancel() when no processing is being done on the statement is not treated as
SQLFreeStmt() with the SQL_CLOSE option, but has no effect at all. Applications
should not call SQLCancel() to close a cursor, but rather SQLFreeStmt() should be used.

Canceling Asynchronous Processing

After an application calls a function asynchronously, it calls the function repeatedly to
determine whether it has finished processing. If the function is still processing, it returns
SQL_STILL_EXECUTING. If the function has finished processing, it returns a different
code.

232 CLI Guide and Reference

SQLCancel

After any call to the function that returns SQL_STILL_EXECUTING, an application can
call SQLCancel() to cancel the function. If the cancel request is successful,
SQL_SUCCESS is returned. This message does not indicate that the function was
actually canceled; it indicates that the cancel request was processed. The application
must continue to call the original function until the return code is not
SQL_STILL_EXECUTING. If the function was successfully canceled, the return code is
SQL_ERROR and SQLSTATE HY008 (Operation was cancelled). If the function
completed its normal processing, the return code is SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO if the function succeeded or SQL_ERROR and a
SQLSTATE other than HY008 (Operation was cancelled) if the function failed.

For more information about asynchronous processing, see “Asynchronous Execution of
CLI” on page 118.

Canceling Functions in Multithread Applications

In a multithread application, the application can cancel a function that is running
synchronously on a statement. To cancel the function, the application calls SQLCancel()
with the same statement handle as that used by the target function, but on a different
thread. How the function is canceled depends upon the operating system. As in
canceling a function running asynchronously, the return code of the SQLCancel()
indicates only whether DB2 CLI processed the request successfully. Only
SQL_SUCCESS or SQL_ERROR can be returned; no SQLSTATEs are returned. If the
original function is canceled, it returns SQL_ERROR and SQLSTATE HY008 (Operation
was cancelled).

If an SQL statement is being executed when SQLCancel() is called on another thread to
cancel the statement execution, it is possible that the execution succeeds and returns
SQL_SUCCESS, while the cancel is also successful. In this case, DB2 CLI assumes
that the cursor opened by the statement execution is closed by the cancel, so the
application will not be able to use the cursor.

For more information about threading, see “Writing Multi-Threaded Applications” on
page 40.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_ERROR

 Diagnostics

Table 27 (Page 1 of 2). SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

 Chapter 5. Functions 233

SQLCancel

Table 27 (Page 2 of 2). SQLCancel SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY018 Server declined cancel
request.

The server declined the cancel request.

HY506 Error closing a file. An error occurred when closing the temporary file generated by
DB2 CLI when inserting LOB data in pieces using
SQLParamData()/SQLPutData().

 Restrictions
None.

 Example
Refer to “Example” on page 513.

 References
¹ “SQLPutData - Passing Data Value for A Parameter” on page 510
¹ “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 480

234 CLI Guide and Reference

SQLCloseCursor

SQLCloseCursor - Close Cursor and Discard Pending Results

 Purpose

SQLCloseCursor() closes a cursor that has been opened on a statement, and discards
pending results.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLCloseCursor (SQLHSTMT StatementHandle);

 Function Arguments

Table 28. SQLCloseCursor Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

 Usage
After an application calls SQLCloseCursor(), the application can reopen the cursor later
by executing a SELECT statement again with the same or different parameter values.

SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state) if no cursor is open.
Calling SQLCloseCursor() is equivalent to calling SQLFreeStmt() with the SQL_CLOSE
option, with the exception that SQLFreeStmt() with SQL_CLOSE has no effect on the
application if no cursor is open on the statement, while SQLCloseCursor() returns
SQLSTATE 24000 (Invalid cursor state).

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 29 (Page 1 of 2). SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. No cursor was open on the StatementHandle. (This is returned
only by DB2 CLI Version 5 or later.)

 Chapter 5. Functions 235

SQLCloseCursor

Table 29 (Page 2 of 2). SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLFreeHandle - Free Handle Resources” on page 352
¹ “SQLMoreResults - Determine If There Are More Result Sets” on page 467

236 CLI Guide and Reference

SQLColAttribute

SQLColAttribute - Return a Column Attribute

 Purpose

SQLColAttribute() returns descriptor information for a column in a result set. Descriptor
information is returned as a character string, a 32-bit descriptor-dependent value, or an
integer value.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLColAttribute (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT ColumnNumber, /* icol */

SQLSMALLINT FieldIdentifier, /* fDescType */

SQLPOINTER CharacterAttributePtr, /* rgbDesc */

SQLSMALLINT BufferLength, /* cbDescMax */

SQLSMALLINT *StringLengthPtr, /* pcbDesc */

SQLPOINTER NumericAttributePtr); /* pfDesc */

 Function Arguments

Table 30 (Page 1 of 2). SQLColAttribute Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ColumnNumber input The number of the record in the IRD from which the
field value is to be retrieved. This argument
corresponds to the column number of result data,
ordered sequentially from left to right, starting at 1.
Columns may be described in any order.

Column 0 can be specified in this argument, but all
values except SQL_DESC_TYPE and
SQL_DESC_OCTET_LENGTH will return undefined
values.

SQLSMALLINT FieldIdentifier input The field in row ColumnNumber of the IRD that is to
be returned (see Table 31 on page 239).

SQLPOINTER CharacterAttributePtr output Pointer to a buffer in which to return the value in the
FieldIdentifier field of the ColumnNumber row of the
IRD, if the field is a character string. Otherwise, the
field is unused.

SQLINTEGER BufferLength input The length of the *CharacterAttributePtr buffer, if the
field is a character string. Otherwise, this field is
ignored.

 Chapter 5. Functions 237

SQLColAttribute

Table 30 (Page 2 of 2). SQLColAttribute Arguments

Data Type Argument Use Description

SQLSMALLINT *StringLengthPtr output Pointer to a buffer in which to return the total number
of bytes (excluding the null termination byte for
character data) available to return in
*CharacterAttributePtr.

For character data, if the number of bytes available
to return is greater than or equal to BufferLength, the
descriptor information in *CharacterAttributePtr is
truncated to BufferLength minus the length of a null
termination character and is null-terminated by DB2
CLI.

For all other types of data, the value of BufferLength
is ignored and DB2 CLI assumes the size of
*CharacterAttributePtr is 32 bits.

SQLPOINTER NumericAttributePtr output Pointer to an integer buffer in which to return the
value in the FieldIdentifier field of the ColumnNumber
row of the IRD, if the field is a numeric descriptor
type, such as SQL_DESC_COLUMN_LENGTH.
Otherwise, the field is unused.

 Usage
SQLColAttribute() returns information either in *NumericAttributePtr or in
*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a
32-bit, signed value; all other formats of information are returned in
*CharacterAttributePtr. When information is returned in *NumericAttributePtr, DB2 CLI
ignores CharacterAttributePtr, BufferLength, and StringLengthPtr When information is
returned in *CharacterAttributePtr, DB2 CLI ignores NumericAttributePtr.

SQLColAttribute() returns values from the descriptor fields of the IRD. The function is
called with a statement handle rather than a descriptor handle. The values returned by
SQLColAttribute() for the FieldIdentifier values listed below can also be retrieved by
calling SQLGetDescField() with the appropriate IRD handle.

The currently defined descriptor types, the version of DB2 CLI in which they were
introduced (perhaps with different name), and the arguments in which information is
returned for them are shown below; it is expected that more descriptor types will be
defined to take advantage of different data sources.

DB2 CLI must return a value for each of the descriptor types. If a descriptor type does
not apply to a data source, then, unless otherwise stated, DB2 CLI returns 0 in
*StringLengthPtr or an empty string in *CharacterAttributePtr.

The following table lists the descriptor types returned by SQLColAttribute().

238 CLI Guide and Reference

SQLColAttribute

Table 31 (Page 1 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_COLUMN_AUTO_INCREMENT Numeric
AttributePtr

Changed to SQL_DESC_AUTO_UNIQUE_VALUE. a

SQL_COLUMN_CASE_SENSITIVE Numeric
AttributePtr

Changed to SQL_DESC_CASE_SENSITIVE. a

SQL_COLUMN_CATALOG_NAME Character
AttributePtr

Changed to SQL_DESC_CATALOG_NAME. a

SQL_COLUMN_COUNT Numeric
AttributePtr

Changed to SQL_DESC_COUNT. a

SQL_COLUMN_DISPLAY_SIZE Numeric
AttributePtr

Changed to SQL_DESC_DISPLAY_SIZE. a

SQL_COLUMN_LABEL Character
AttributePtr

Changed to SQL_DESC_LABEL. a

SQL_COLUMN_DISTINCT_TYPE Character
AttributePtr

Changed to SQL_DESC_DISTINCT_TYPE. a

SQL_COLUMN_LENGTH Numeric
AttributePtr

Changed to SQL_DESC_OCTET_LENGTH. a

SQL_COLUMN_MONEY Numeric
AttributePtr

Changed to SQL_DESC_FIXED_PREC_SCALE. a

SQL_COLUMN_NAME Character
AttributePtr

Changed to SQL_DESC_NAME. a

SQL_COLUMN_NULLABLE Numeric
AttributePtr

Changed to SQL_DESC_NULLABLE. a

SQL_COLUMN_OWNER_NAME Character
AttributePtr

Changed to SQL_DESC_SCHEMA_NAME. a

SQL_COLUMN_PRECISION Numeric
AttributePtr

Changed to SQL_DESC_PRECISION. a

SQL_COLUMN_QUALIFIER_NAME Character
AttributePtr

Changed to SQL_DESC_CATALOG_NAME. a

SQL_COLUMN_SCALE Numeric
AttributePtr

Changed to SQL_DESC_SCALE. a

SQL_COLUMN_SEARCHABLE Numeric
AttributePtr

Changed to SQL_DESC_SEARCHABLE. a

SQL_COLUMN_TABLE_NAME Character
AttributePtr

Changed to SQL_DESC_TABLE_NAME. a

SQL_COLUMN_TYPE Numeric
AttributePtr

Changed to SQL_DESC_TYPE. a

SQL_COLUMN_TYPE_NAME Character
AttributePtr

Changed to SQL_DESC_TYPE_NAME. a

SQL_COLUMN_UNSIGNED Numeric
AttributePtr

Changed to SQL_DESC_UNSIGNED. a

 Chapter 5. Functions 239

SQLColAttribute

Table 31 (Page 2 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_COLUMN_UPDATABLE Numeric
AttributePtr

Changed to SQL_DESC_UPDATABLE. a

SQL_DESC_AUTO_UNIQUE_VALUE
(DB2 CLI v2)

Numeric
AttributePtr

Indicates if the column data type is an auto
increment data type.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types.

SQL_DESC_BASE_COLUMN_NAME
(DB2 CLI v5)

Character
AttributePtr

The base column name for the set column. If a base
column name does not exist (as in the case of
columns that are expressions), then this variable
contains an empty string.

This information is returned from the
SQL_DESC_BASE_COLUMN_NAME record field of
the IRD, which is a read-only field.

SQL_DESC_BASE_TABLE_NAME (DB2
CLI v5)

Character
AttributePtr

The name of the base table that contains the
column. If the base table name cannot be defined or
is not applicable, then this variable contains an
empty string.

SQL_DESC_CASE_SENSITIVE (DB2
CLI v2)

Numeric
AttributePtr

Indicates if the column data type is a case sensitive
data type.

Either SQL_TRUE or SQL_FALSE will be returned in
NumericAttributePtr depending on the data type.

Case sensitivity does not apply to graphic data
types, SQL_FALSE is returned.

SQL_FALSE is returned for non-character data
types.

SQL_DESC_CATALOG_NAME (DB2
CLI v2)

Character
AttributePtr

The catalog of the table that contains the column is
returned in CharacterAttributePtr. An empty string is
returned since DB2 CLI only supports two part
naming for a table.

SQL_DESC_CONCISE_TYPE (DB2
CLI v5)

Character
AttributePtr

The concise data type.

For the datetime data types, this field returns the
concise data type, e.g., SQL_TYPE_TIME.

This information is returned from the
SQL_DESC_CONCISE_TYPE record field of the
IRD.

SQL_DESC_COUNT (DB2 CLI v2) Numeric
AttributePtr

The number of columns in the result set is returned
in NumericAttributePtr.

SQL_DESC_DISPLAY_SIZE (DB2
CLI v2)

Numeric
AttributePtr

The maximum number of bytes needed to display
the data in character form is returned in
NumericAttributePtr.

Refer to Table 200 on page 689 for the display size
of each of the column types.

240 CLI Guide and Reference

SQLColAttribute

Table 31 (Page 3 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_DESC_DISTINCT_TYPE (DB2
CLI v2)

Character
AttributePtr

The user defined distinct type name of the column is
returned in CharacterAttributePtr. If the column is a
built-in SQL type and not a user defined distinct
type, an empty string is returned.

Note: This is an IBM defined extension to the list of
descriptor attributes defined by ODBC.

SQL_DESC_FIXED_PREC_SCALE (DB2
CLI v2)

Numeric
AttributePtr

SQL_TRUE if the column has a fixed precision and
non-zero scale that are data-source-specific.

SQL_FALSE if the column does not have a fixed
precision and non-zero scale that are
data-source-specific.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types.

SQL_DESC_LABEL (DB2 CLI v2) Character
AttributePtr

The column label is returned in
CharacterAttributePtr. If the column does not have a
label, the column name or the column expression is
returned. If the column is unlabeled and unnamed,
an empty string is returned.

SQL_DESC_LENGTH (DB2 CLI v2) Numeric
AttributePtr

A numeric value that is either the maximum or actual
character length of a character string or binary data
type. It is the maximum character length for a
fixed-length data type, or the actual character length
for a variable-length data type. Its value always
excludes the null termination byte that ends the
character string.

This information is returned from the
SQL_DESC_LENGTH record field of the IRD.

SQL_DESC_LITERAL_PREFIX (DB2
CLI v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that DB2 CLI recognizes as
a prefix for a literal of this data type. This field
contains an empty string for a data type for which a
literal prefix is not applicable.

SQL_DESC_LITERAL_SUFFIX (DB2
CLI v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that DB2 CLI recognizes as
a suffix for a literal of this data type. This field
contains an empty string for a data type for which a
literal suffix is not applicable.

SQL_DESC_LOCAL_TYPE_NAME (DB2
CLI v5)

Character
AttributePtr

This VARCHAR(128) record field contains any
localized (native language) name for the data type
that may be different from the regular name of the
data type. If there is no localized name, then an
empty string is returned. This field is for display
purposes only. The character set of the string is
locale-dependent and is typically the default
character set of the server.

 Chapter 5. Functions 241

SQLColAttribute

Table 31 (Page 4 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_DESC_NAME (DB2 CLI v2) Character
AttributePtr

The name of the column ColumnNumber is returned
in CharacterAttributePtr. If the column is an
expression, then the result returned is product
specific.

In either case, SQL_DESC_UNNAMED is set to
SQL_NAMED. If there is no column name or a
column alias, an empty string is returned and
SQL_DESC_UNNAMED is set to SQL_UNNAMED.

This information is returned from the
SQL_DESC_NAME record field of the IRD.

SQL_DESC_NULLABLE (DB2 CLI v2) Numeric
AttributePtr

If the column identified by ColumnNumber can
contain nulls, then SQL_NULLABLE is returned in
NumericAttributePtr.

If the column is constrained not to accept nulls, then
SQL_NO_NULLS is returned in NumericAttributePtr.

This information is returned from the
SQL_DESC_NULLABLE record field of the IRD.

SQL_DESC_NUM_PREX_RADIX (DB2
CLI v5)

Numeric
AttributePtr

¹ If the datatype in the SQL_DESC_TYPE field is
an approximate data type, this SQLINTEGER
field contains a value of 2 because the
SQL_DESC_PRECISION field contains the
number of bits.

¹ If the datatype in the SQL_DESC_TYPE field is
an exact numeric data type, this field contains a
value of 10 because the
SQL_DESC_PRECISION field contains the
number of decimal digits.

¹ This field is set to 0 for all non-numeric data
types.

SQL_DESC_OCTET_LENGTH (DB2
CLI v2)

Numeric
AttributePtr

The number of bytes of data associated with the
column is returned in NumericAttributePtr. This is the
length in bytes of data transferred on the fetch or
SQLGetData() for this column if SQL_C_DEFAULT is
specified as the C data type. Refer to Table 199 on
page 688 for the length of each of the SQL data
types.

If the column identified in ColumnNumber is a fixed
length character or binary string, (for example,
SQL_CHAR or SQL_BINARY) the actual length is
returned.

If the column identified in ColumnNumber is a
variable length character or binary string, (for
example, SQL_VARCHAR or SQL_BLOB) the
maximum length is returned.

242 CLI Guide and Reference

SQLColAttribute

Table 31 (Page 5 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_DESC_PRECISION (DB2 CLI v2) Numeric
AttributePtr

The precision in units of digits is returned in
NumericAttributePtr if the column is SQL_DECIMAL,
SQL_NUMERIC, SQL_DOUBLE, SQL_FLOAT,
SQL_INTEGER, SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of characters the column can
hold.

If the column is a graphic SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of double-byte characters the
column can hold.

Refer to Table 197 on page 686 for the precision of
each of the SQL data types.

This information is returned from the
SQL_DESC_PRECISION record field of the IRD.

SQL_DESC_SCALE (DB2 CLI v2) Numeric
AttributePtr

The scale attribute of the column is returned. Refer
to Table 198 on page 687 for the scale of each of
the SQL data types.

This information is returned from the SCALE record
field of the IRD.

SQL_DESC_SCHEMA_NAME (DB2
CLI v2)

Character
AttributePtr

The schema of the table that contains the column is
returned in CharacterAttributePtr. An empty string is
returned as DB2 CLI is unable to determine this
attribute.

SQL_DESC_SEARCHABLE (DB2
CLI v2)

Numeric
AttributePtr

Indicates if the column data type is searchable:

¹ SQL_PRED_NONE (SQL_UNSEARCHABLE in
DB2 CLI v2) if the column cannot be used in a
WHERE clause.

¹ SQL_PRED_CHAR (SQL_LIKE_ONLY in DB2
CLI v2) if the column can be used in a WHERE
clause only with the LIKE predicate.

 ¹ SQL_PRED_BASIC (SQL_ALL_EXCEPT_LIKE
in DB2 CLI v2) if the column can be used in a
WHERE clause with all comparison operators
except LIKE.

¹ SQL_SEARCHABLE if the column can be used
in a WHERE clause with any comparison
operator.

SQL_DESC_TABLE_NAME (DB2
CLI v2)

Character
AttributePtr

The name of the table that contains the column is
returned in CharacterAttributePtr. An empty string is
returned as DB2 CLI cannot determine this attribute.

 Chapter 5. Functions 243

SQLColAttribute

Table 31 (Page 6 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

SQL_DESC_TYPE (DB2 CLI v2) Numeric
AttributePtr

The SQL data type of the column identified in
ColumnNumber is returned in NumericAttributePtr.
The possible values returned are listed in Table 3 on
page 28.

When ColumnNumber is equal to 0, SQL_BINARY is
returned for variable-length bookmarks, and
SQL_INTEGER is returned for fixed-length
bookmarks.

For the datetime data types, this field returns the
verbose data type, i.e., SQL_DATETIME.

This information is returned from the
SQL_DESC_TYPE record field of the IRD.

SQL_DESC_TYPE_NAME (DB2 CLI v2) Character
AttributePtr

The type of the column (as entered in an SQL
statement) is returned in CharacterAttributePtr.

For information on each data type refer to the
TYPE_NAME attribute found in “Data Types and
Data Conversion” on page 27.

SQL_DESC_UNNAMED (DB2 CLI v5) Numeric
AttributePtr

SQL_NAMED or SQL_UNNAMED. If the
SQL_DESC_NAME field of the IRD contains a
column alias, or a column name, SQL_NAMED is
returned. If there is no column name or a column
alias, SQL_UNNAMED is returned.

This information is returned from the
SQL_DESC_UNNAMED record field of the IRD.

SQL_DESC_UNSIGNED (DB2 CLI v2) Numeric
AttributePtr

Indicates if the column data type is an unsigned type
or not.

SQL_TRUE is returned in NumericAttributePtr for all
non-numeric data types, SQL_FALSE is returned for
all numeric data types.

SQL_DESC_UPDATABLE (DB2 CLI v2) Numeric
AttributePtr

Indicates if the column data type is an updateable
data type:

 ¹ SQL_ATTR_READWRITE_UNKNOWN is
returned in NumericAttributePtr for all DB2 SQL
data types.

¹ SQL_ATTR_READONLY is returned if the
column is obtained from a catalog function call.

Although DB2 CLI does not retrun them, ODBC also
defines the following values:

 ¹ SQL_DESC_UPDATABLE
 ¹ SQL_UPDT_WRITE

244 CLI Guide and Reference

SQLColAttribute

Table 31 (Page 7 of 7). SQLColAttribute Arguments

FieldIdentifier
Information
returned in Description

Note:

a In DB2 Version 5, the version 2 FieldIdentifier values have been changed. Although the old version
2 FieldIdentifier is still supported in this version of DB2, we recommend that you begin using the
new FieldIdentifier.

This function is an extensible alternative to SQLDescribeCol(). SQLDescribeCol()

returns a fixed set of descriptor information based on ANSI-89 SQL. SQLColAttribute()
allows access to the more extensive set of descriptor information available in ANSI
SQL-92 and DBMS vendor extensions.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 32 (Page 1 of 2). SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *CharacterAttributePtr was not large enough to return
the entire string value, so the string value was truncated. The
length of the untruncated string value is returned in
*StringLengthPtr. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return
a result set.

The statement associated with the StatementHandle did not return
a result set. There were no columns to describe.

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for ColumnNumber was less
than 0. The value specified for the argument ColumnNumber was
greater than the number of columns in the result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

 Chapter 5. Functions 245

SQLColAttribute

Table 32 (Page 2 of 2). SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation was cancelled Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than
0.

HY091 Descriptor type out of range. The value specified for the argument FieldIdentifier was not one of
the defined values, and was not an implementation-defined value.

HYC00 Driver not capable. The value specified for the argument FieldIdentifier was not
supported by DB2 CLI.

SQLColAttribute() can return any SQLSTATE that can be returned by SQLPrepare() or
SQLExecute() when called after SQLPrepare() and before SQLExecute() depending on
when the data source evaluates the SQL statement associated with the
StatementHandle.

For performance reasons, an application should not call SQLColAttribute() before
executing a statement.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLDescribeCol - Return a Set of Attributes for a Column” on page 276
¹ “SQLFetch - Fetch Next Row” on page 320

246 CLI Guide and Reference

SQLColAttribute

¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on
page 331

 Chapter 5. Functions 247

SQLColAttributes

SQLColAttributes - Get Column Attributes

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLColAttributes() has been deprecated and replaced
with SQLColAttribute(); see “SQLColAttribute - Return a Column Attribute” on
page 237 for more information.

Although this version of DB2 CLI continues to support SQLColAttributes(), we
recommend that you begin using SQLColAttribute() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

All of the field identifiers used with the version 2 function SQLColAttributes() have
been changed for use with SQLColAttribute(). The old field identifiers are listed in
Table 31 on page 239, along with their replacement values.

SQLSTATE 07002

All functions that return SQLSTATE 07002 can also return the state if the application
has used SQLSetColAttributes() to inform DB2 CLI of the descriptor information of the
result set, but it did not provide this for every column in the result set. See Table 196
on page 669 for the list of DB2 CLI functions that return 07002.

248 CLI Guide and Reference

SQLColumnPrivileges

SQLColumnPrivileges - Get Privileges Associated With The Columns of A Table

 Purpose

SQLColumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set, which can be retrieved
using the same functions that are used to process a result set generated from a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLColumnPrivileges(SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR *FAR CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR *FAR SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR *FAR TableName /* szTableName */

SQLSMALLINT NameLength3, /* cbTableName */

SQLCHAR *FAR ColumnName, /* szColumnName */

SQLSMALLINT NameLength4); /* cbColumnName */

 Function Arguments

Table 33. SQLColumnPrivileges Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3 part table name. This must be
a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName input Schema qualifier of table name.

SQLSMALLINT NameLength2 input Length of SchemaName.

SQLCHAR * TableName input Table name.

SQLSMALLINT NameLength3 input Length of TableName

SQLCHAR * ColumnName input Buffer that may contain a pattern-value to qualify the
result set by column name.

SQLSMALLINT NameLength4 input Length of ColumnName

 Usage
The results are returned as a standard result set containing the columns listed in
Table 34 on page 250. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, COLUMN_NAME, and PRIVILEGE. If multiple privileges are associated
with any given column, each privilege is returned as a separate row. A typical
application may wish to call this function after a call to SQLColumns() to determine

 Chapter 5. Functions 249

SQLColumnPrivileges

column privilege information. The application should use the character strings returned
in the TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns of the SQLColumns()
result set as input arguments to this function.

Since calls to SQLColumnPrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating the calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Note that the ColumnName argument accepts a search pattern. For more information
about valid search patterns, refer to “Input Arguments on Catalog Functions” on
page 49.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 34 (Page 1 of 2). Columns Returned by SQLColumnPrivileges

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
not NULL

Name of the table or view.

4 COLUMN_NAME VARCHAR(128)
not NULL

Name of the column of the specified table or view.

5 GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

6 GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is granted.

250 CLI Guide and Reference

SQLColumnPrivileges

Table 34 (Page 2 of 2). Columns Returned by SQLColumnPrivileges

Column
Number/Name Data Type Description

7 PRIVILEGE VARCHAR(128) The column privilege. This can be:

 ¹ INSERT
 ¹ REFERENCES
 ¹ SELECT
 ¹ UPDATE

Note: Some IBM RDBMSs do not offer column level privileges at
the column level. DB2 Universal Database, DB2 for
MVS/ESA and DB2 for VSE & VM support the UPDATE
column privilege; there is one row in this result set for each
updateable column. For all other privileges for DB2 Universal
Database, DB2 for MVS/ESA and DB2 for VSE & VM, and
for all privileges for other IBM RDBMSs, if a privilege has
been granted at the table level, a row is present in this result
set.

8 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant the privilege to
other users.

Either "YES", "NO".

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLColumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, then each privilege is
returned as a separate row in the result set.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 35 (Page 1 of 2). SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40001 Serialization failure The transaction was rolled back due to a resource deadlock with
another transaction.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

 Chapter 5. Functions 251

SQLColumnPrivileges

Table 35 (Page 2 of 2). SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY009 Invalid argument value. TableName is NULL.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example

252 CLI Guide and Reference

SQLColumnPrivileges

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_column_privileges(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

/* ... */

rc = SQLColumnPrivileges(hstmt, NULL, 0, schema, SQL_NTS,

tablename, SQL_NTS, columnname.s, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) columnname.s, 129,

 &columnname.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,

 &grantor.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) grantee.s, 129,

 &grantee.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) privilege.s, 129,

 &privilege.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 8, SQL_C_CHAR, (SQLPOINTER) is_grantable.s, 4,

 &is_grantable.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Column Privileges for %s.%s\n", schema, tablename);

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

sprintf((char *)cur_name, " Column: %s\n", columnname.s);

if (strcmp((char *)cur_name, (char *)pre_name) != 0) {

 printf("\n%s\n", cur_name);

printf(" Grantor Grantee Privilege Grantable\n");

printf(" --------------- --------------- ---------- ---\n");

 }

strcpy((char *)pre_name, (char *)cur_name);

 printf(" %-15s", grantor.s);

printf(" %-15s", grantee.s);

printf(" %-10s", privilege.s);

printf(" %-3s\n", is_grantable.s);

} /* endwhile */

 Chapter 5. Functions 253

SQLColumnPrivileges

 References
¹ “SQLColumns - Get Column Information for a Table” on page 255
¹ “SQLTables - Get Table Information” on page 625

254 CLI Guide and Reference

SQLColumns

SQLColumns - Get Column Information for a Table

 Purpose

SQLColumns() returns a list of columns in the specified tables. The information is
returned in an SQL result set, which can be retrieved using the same functions that are
used to fetch a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLColumns (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3, /* cbTableName */

SQLCHAR FAR *ColumnName, /* szColumnName */

SQLSMALLINT NameLength4); /* cbColumnName */

 Function Arguments

Table 36. SQLColumns Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Buffer that may contain a pattern-value to qualify the
result set. Catalog is the first part of a 3 part table
name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName input Buffer that may contain a pattern-value to qualify the
result set by schema name.

SQLSMALLINT NameLength2 input Length of SchemaName

SQLCHAR * TableName input Buffer that may contain a pattern-value to qualify the
result set by table name.

SQLSMALLINT NameLength3 input Length of TableName

SQLCHAR * ColumnName input Buffer that may contain a pattern-value to qualify the
result set by column name.

SQLSMALLINT NameLength4 input Length of ColumnName

 Chapter 5. Functions 255

SQLColumns

 Usage
This function is called to retrieve information about the columns of either a table or a
set of tables. A typical application may wish to call this function after a call to
SQLTables() to determine the columns of a table. The application should use the
character strings returned in the TABLE_SCHEMA and TABLE_NAME columns of the
SQLTables() result set as input to this function.

SQLColumns() returns a standard result set, ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and ORDINAL_POSITION. Table 37 lists the columns in the result set.

The SchemaName, TableName, and ColumnName arguments accept search patterns.
For more information about valid search patterns, see “Input Arguments on Catalog
Functions” on page 49.

This function does not return information on the columns in a result set,
SQLDescribeCol() or SQLColAttribute() should be used instead.

If the SQL_ATTR_LONGDATA_COMPAT attribute is set to SQL_LD_COMPAT_YES
via either a call to SQLSetConnectAttr() or by setting the LONGDATACOMPAT
keyword in the DB2 CLI initialization file, then the LOB data types are reported as
SQL_LONGVARCHAR, SQL_LONGVARBINARY or SQL_LONGVARGRAPHIC.

Since calls to SQLColumns() in many cases map to a complex and thus expensive query
against the system catalog, they should be used sparingly, and the results saved rather
than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_OWNER_SCHEMA_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change. There were
changes to these columns between version 2 and version 5.
 See “Changes to SQLColumns() Return Values” on page 648 for more information if
you are running a version 2 DB2 CLI application (that uses SQLColumns()) against a
version 5 or later server.

Table 37 (Page 1 of 3). Columns Returned By SQLColumns

Column Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

256 CLI Guide and Reference

SQLColumns

Table 37 (Page 2 of 3). Columns Returned By SQLColumns

Column Number/Name Data Type Description

3 TABLE_NAME VARCHAR(128)
not NULL

Name of the table, view, alias, or synonym.

4 COLUMN_NAME VARCHAR(128)
not NULL

Column identifier. Name of the column of the specified table,
view, alias, or synonym.

5 DATA_TYPE SMALLINT not
NULL

SQL data type of column identified by COLUMN_NAME.
This is one of the values in the Symbolic SQL Data Type
column in Table 3 on page 28.

6 TYPE_NAME VARCHAR(128)
not NULL

Character string representing the name of the data type
corresponding to DATA_TYPE.

7 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or
binary string, then this column contains the maximum length
in characters for the column.

For date, time, timestamp data types, this is the total number
of characters required to display the value when converted
to character.

For numeric data types, this is either the total number of
digits, or the total number of bits allowed in the column,
depending on the value in the NUM_PREC_RADIX column
in the result set.

See also, Table 197 on page 686.

8 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to
store data from this column if SQL_C_DEFAULT were
specified on the SQLBindCol(), SQLGetData() and
SQLBindParameter() calls. This length does not include any
null-terminator. For exact numeric data types, the length
accounts for the decimal and the sign.

See also, Table 199 on page 688.

9 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data types
where scale is not applicable.

See also, Table 198 on page 687.

10 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an approximate
numeric data type, this column contains the value 2, then the
COLUMN_SIZE column contains the number of bits allowed
in the column.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE contains the
number of decimal digits allowed for the column.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not
applicable.

 Chapter 5. Functions 257

SQLColumns

Table 37 (Page 3 of 3). Columns Returned By SQLColumns

Column Number/Name Data Type Description

11 NULLABLE SMALLINT not
NULL

SQL_NO_NULLS if the column does not accept NULL
values.

SQL_NULLABLE if the column accepts NULL values.

12 REMARKS VARCHAR(254) May contain descriptive information about the column.

13 COLUMN_DEF VARCHAR(254) The column's default value. If the default value is a numeric
literal, then this column contains the character representation
of the numeric literal with no enclosing single quotes. If the
default value is a character string, then this column is that
string enclosed in single quotes. If the default value a
pseudo-literal, such as for DATE, TIME, and TIMESTAMP
columns, then this column contains the keyword of the
pseudo-literal (e.g. CURRENT DATE) with no enclosing
quotes.

If NULL was specified as the default value, then this column
returns the word NULL, not enclosed in quotes. If the default
value cannot be represented without truncation, then this
column contains TRUNCATED with no enclosing single
quotes. If no default value was specified, then this column is
NULL.

14 SQL_DATA_TYPE SMALLINT not
NULL

SQL data type, as it appears in the SQL_DESC_TYPE
record field in the IRD. This column is the same as the
DATA_TYPE column.

15 SQL_DATETIME_SUB SMALLINT The subtype code for datetime data types:

 ¹ SQL_CODE_DATE
 ¹ SQL_CODE_TIME
 ¹ SQL_CODE_TIMESTAMP

 For all other data types this column returns NULL.

16 CHAR_OCTET_LENGTH INTEGER Contains the maximum length in octets for a character data
type column. For Single Byte character sets, this is the
same as COLUMN_SIZE. For all other data types it is NULL.

17 ORDINAL_POSITION INTEGER not
NULL

The ordinal position of the column in the table. The first
column in the table is number 1.

18 IS_NULLABLE VARCHAR(254) Contains the string 'NO' if the column is known to be not
nullable; and 'YES' otherwise.

Note: This result set is identical to the X/Open CLI Columns() result set specification, which is an extended version of
the SQLColumns() result set specified in ODBC V2. The ODBC SQLColumns() result set includes every column
in the same position.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR

258 CLI Guide and Reference

SQLColumns

 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 38. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example

 Chapter 5. Functions 259

SQLColumns

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_columns(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

/* ... */

rc = SQLColumns(hstmt, NULL, 0, schema, SQL_NTS,

tablename, SQL_NTS, (SQLCHAR *)"%", SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_LONG, (SQLPOINTER) &length,

 sizeof(length), &length_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 9, SQL_C_SHORT, (SQLPOINTER) &scale,

 sizeof(scale), &scale_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 12, SQL_C_CHAR, (SQLPOINTER) remarks.s, 129,

 &remarks.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 11, SQL_C_SHORT, (SQLPOINTER) & nullable,

 sizeof(nullable), &nullable_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Schema: %s Table Name: %s\n", schema, tablename);

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

 printf(" %s", column_name.s);

if (nullable == SQL_NULLABLE) {

 printf(", NULLABLE");

} else {

printf(", NOT NULLABLE");

 }

printf(", %s", type_name.s);

if (length_ind != SQL_NULL_DATA) {

printf(" (%ld", length);

} else {

 printf("(\n");

 }

if (scale_ind != SQL_NULL_DATA) {

260 CLI Guide and Reference

SQLColumns

printf(", %d)\n", scale);

} else {

 printf(")\n");

 }

} /* endwhile */

 References
¹ “SQLTables - Get Table Information” on page 625
¹ “SQLColumnPrivileges - Get Privileges Associated With The Columns of A Table”

on page 249
¹ “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 608

 Chapter 5. Functions 261

SQLConnect

SQLConnect - Connect to a Data Source

 Purpose

SQLConnect() establishes a connection to the target database. The application must
supply a target SQL database, and optionally an authorization-name, and an
authentication-string.

A connection handle must be allocated using SQLAllocHandle() before calling this
function.

This function must be called before allocating a statement handle using
SQLAllocHandle().

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLConnect (SQLHDBC ConnectionHandle, /* hdbc */

SQLCHAR *FAR ServerName, /* szDSN */

SQLSMALLINT NameLength1, /* cbDSN */

SQLCHAR *FAR UserName, /* szUID */

SQLSMALLINT NameLength2, /* cbUID */

SQLCHAR *FAR Authentication, /* szAuthStr */

SQLSMALLINT NameLength3); /* cbAuthStr */

 Function Arguments

Table 39. SQLConnect Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLCHAR * ServerName input Data Source: The name or alias-name of the
database.

SQLSMALLINT NameLength1 input length of contents of ServerName argument

SQLCHAR * UserName input Authorization-name (user identifier)

SQLSMALLINT NameLength2 input Length of contents of UserName argument

SQLCHAR * Authentication input Authentication-string (password)

SQLSMALLINT NameLength3 input Length of contents of Authentication argument

 Usage
The target database (also known as data source) for IBM RDBMSs is the
database-alias. The application can obtain a list of databases available to connect to by
calling SQLDataSources().

262 CLI Guide and Reference

SQLConnect

Before SQLDataSources() can return this information, the database(s) must be
cataloged. Under Windows, using the ODBC Driver Manager, the user must catalog the
database twice:

1. Once to the IBM RDBMS
2. Once to ODBC.

This can be accomplished in one step with the DB2 Client Setup included with the DB2
Client Application Enabler products. Although the methods of cataloging are different
between ODBC Driver Manager and for IBM RDBMSs, the DB2 CLI applications are
shielded from this. (One of the strengths of Call Level Interface is that the application
does not have to know about the target database until SQLConnect() is invoked at
runtime.) The mapping of the data source name to an actual DBMS is outside the
scope and responsibility of the CLI application.

When using DB2 CLI in environments without an ODBC Driver Manager, the IBM
RDBMSs need to be cataloged only once. For more information on cataloging, refer to
Chapter 4, “Configuring CLI/ODBC and Running Sample Applications” on page 127.

The input length arguments to SQLConnect() (NameLength1, NameLength2,
NameLength3) can be set to the actual length of their associated data (not including
any null-terminating character) or to SQL_NTS to indicate that the associated data is
null-terminated.

The ServerName and UserName argument values must not contain any blanks.

Use the more extensible SQLDriverConnect() function to connect when the applications
needs to:

¹ Request the user to specify more than just the data source name, user ID, and
password arguments on connect,

¹ Display a graphical dialog box to prompt for connect information

Various connection characteristics (options) may be specified by the end user in the
section of the DB2CLI.INI (and ODBC.INI) initialization file associated with the
ServerName data source argument or set by the application using SQLSetConnectAttr().
The extended connect function, SQLDriverConnect(), can also be called with additional
connect options.

Stored procedures written using DB2 CLI must make a null SQLConnect() call. A null
SQLConnect() is where the ServerName, UserName, and Authentication argument
pointers are all set to NULL and their respective length arguments all set to 0. A null
SQLConnect() still requires SQLAllocEnv() and SQLAllocConnect() be called first, but
does not require that SQLTransact() be called before SQLDisconnect(). For more
information, refer to “Stored Procedure Example” on page 110.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR

 Chapter 5. Functions 263

SQLConnect

 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 40. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data
source.

DB2 CLI was unable to establish a connection with the data
source (server).

The connection request was rejected because an existing
connection established via embedded SQL already exists.

08002 Connection in use. The specified ConnectionHandle has already been used to
establish a connection with a data source and the connection is
still open.

08004 The application server
rejected establishment of the
connection.

The data source (server) rejected the establishment of the
connection.

The number of connections specified by the MAXCONN keyword
has been reached.

28000 Invalid authorization
specification.

The value specified for the argument UserName or the value
specified for the argument Authentication violated restrictions
defined by the data source.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. A non matching double quote (") was found in either the
ServerName, UserName, or Authentication argument.

HY090 Invalid string or buffer length. The value specified for argument NameLength1 was less than 0,
but not equal to SQL_NTS and the argument ServerName was
not a null pointer.

The value specified for argument NameLength2 was less than 0,
but not equal to SQL_NTS and the argument UserName was not
a null pointer.

The value specified for argument NameLength3 was less than 0,
but not equal to SQL_NTS and the argument Authentication was
not a null pointer.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY501 Invalid data source name. An invalid data source name was specified in argument
ServerName.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for
SQLSetConnectAttr().

264 CLI Guide and Reference

SQLConnect

 Restrictions
The implicit connection (or default database) option for IBM RDBMSs is not supported.
SQLConnect() must be called before any SQL statements can be executed.

 Example

 Chapter 5. Functions 265

SQLConnect

/* From CLI sample samputil.c */

/* ... */

/*

 Global Variables for user id and password, defined in main module.

 To keep samples simple, not a recommended practice.

 The INIT_UID_PWD macro is used to initialize these variables.

*/

SQLCHAR server[SQL_MAX_DSN_LENGTH + 1] ;

SQLCHAR uid[MAX_UID_LENGTH + 1] ;

SQLCHAR pwd[MAX_PWD_LENGTH + 1] ;

/* ... */

/* connect without prompt */

SQLRETURN DBconnect(SQLHANDLE henv,

SQLHANDLE * hdbc

) {

/* allocate a connection handle */

if (SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 hdbc

) != SQL_SUCCESS) {

printf(">---ERROR while allocating a connection handle-----\n") ;

return(SQL_ERROR) ;

 }

/* Set AUTOCOMMIT OFF */

if (SQLSetConnectAttr(* hdbc,

 SQL_ATTR_AUTOCOMMIT,

(void *) SQL_AUTOCOMMIT_OFF, SQL_NTS

) != SQL_SUCCESS) {

printf(">---ERROR while setting AUTOCOMMIT OFF ------------\n") ;

return(SQL_ERROR) ;

 }

if (SQLConnect(* hdbc,

 server, SQL_NTS,

 uid, SQL_NTS,

 pwd, SQL_NTS

) != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s -------\n",

 server

) ;

SQLDisconnect(* hdbc) ;

SQLFreeHandle(SQL_HANDLE_DBC, * hdbc) ;

return(SQL_ERROR) ;

 }

else /* Print Connection Information */

printf(">Connected to %s\n", server) ;

return(SQL_SUCCESS) ;

266 CLI Guide and Reference

SQLConnect

}

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 288
¹ “SQLSetConnectAttr - Set Connection Attributes” on page 519
¹ “SQLGetConnectAttr - Get Current Attribute Setting” on page 359
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLDataSources - Get List of Data Sources” on page 271
¹ “SQLDisconnect - Disconnect from a Data Source” on page 286

 Chapter 5. Functions 267

SQLCopyDesc

SQLCopyDesc - Copy Descriptor Information Between Handles

 Purpose

SQLCopyDesc() copies descriptor information from one descriptor handle to another.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLCopyDesc (SQLHDESC SourceDescHandle,

 SQLHDESC TargetDescHandle);

 Function Arguments

Table 41. SQLCopyDesc Arguments

Data Type Argument Use Description

SQLHDESC SourceDescHandle input Source descriptor handle.

SQLHDESC TargetDescHandle input Target descriptor handle. TargetDescHandle can be
a handle to an application descriptor or an IPD.
SQLCopyDesc() will return SQLSTATE HY016 (Cannot
modify an implementation descriptor) if
TargetDescHandle is a handle to an IRD.

 Usage
A call to SQLCopyDesc() copies the fields of the source descriptor handle to the target
descriptor handle. Fields can only be copied to an application descriptor or an IPD, but
not to an IRD. Fields can be copied from either an application or an implementation
descriptor.

All fields of the descriptor, except SQL_DESC_ALLOC_TYPE (which specifies whether
the descriptor handle was automatically or explicitly allocated), are copied, whether or
not the field is defined for the destination descriptor. Copied fields overwrite the
existing fields.

All descriptor fields are copied, even if SourceDescHandle and TargetDescHandle are
are on two different connections or environments.

The call to SQLCopyDesc() is immediately aborted if an error occurs.

When the SQL_DESC_DATA_PTR field is copied, a consistency check is performed. If
the consistency check fails, SQLSTATE HY021 (Inconsistent descriptor information.) is
returned and the call to SQLCopyDesc() is immediately aborted. For more information,
see ”Consistency Checks“ in ”SQLSetDescField().“

268 CLI Guide and Reference

SQLCopyDesc

Note: Descriptor handles can be copied across connections or environments. An
application may, however, be able to associate an explicitly allocated descriptor
handle with a StatementHandle, rather than calling SQLCopyDesc() to copy fields
from one descriptor to another. An explicitly allocated descriptor can be
associated with another StatementHandle on the same ConnectionHandle by
setting the SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC
statement attribute to the handle of the explicitly allocated descriptor. When this
is done, SQLCopyDesc() does not have to be called to copy descriptor field
values from one descriptor to another.

A descriptor handle cannot be associated with a StatementHandle on another
ConnectionHandle, however; to use the same descriptor field values on
StatementHandles on different ConnectionHandles, SQLCopyDesc() has to be
called.

For a description of the fields in a descriptor header or record, see “SQLSetDescField -
Set a Single Field of a Descriptor Record” on page 544. For more information on
descriptors, see “Using Descriptors” on page 78.

Copying Rows between Tables

An ARD on one statement handle can serve as the APD on another statement handle.
This allows an application to copy rows between tables without copying data at the
application level. To do this, an application calls SQLCopyDesc() to copy the fields of an
ARD that describes a fetched row of a table, to the APD for a parameter in an INSERT
statement on another statement handle. The SQL_ACTIVE_STATEMENTS InfoType
returned by the driver for a call to SQLGetInfo() must be greater than 1 for this
operation to succeed.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
When SQLCopyDesc() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLGetDiagRec() with a
HandleType of SQL_HANDLE_DESC and a Handle of TargetDescHandle. If an invalid
SourceDescHandle was passed in the call, SQL_INVALID_HANDLE will be returned,
but no SQLSTATE will be returned.

When an error is returned, the call to SQLCopyDesc() is immediately aborted, and the
contents of the fields in the TargetDescHandle descriptor are undefined.

 Chapter 5. Functions 269

SQLCopyDesc

Table 42. SQLCopyDesc SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was trying to connect failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate the memory required to support
execution or completion of the function.

HY007 Associated statement is not
prepared.

SourceDescHandle was associated with an IRD, and the
associated statement handle was not in the prepared or executed
state.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY016 Cannot modify an
implementation row
descriptor.

TargetDescHandle was associated with an IRD.

HY021 Inconsistent descriptor
information.

The descriptor information checked during a consistency check
was not consistent. For more information, see Consistency
Checks on page 565 in SQLSetDescField().

HY092 Option type out of range. The call to SQLCopyDesc() prompted a call to SQLSetDescField(),
but *ValuePtr was not valid for the FieldIdentifier argument on
TargetDescHandle.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
None.

270 CLI Guide and Reference

SQLDataSources

SQLDataSources - Get List of Data Sources

 Purpose

SQLDataSources() returns a list of target databases available, one at a time. A database
must be cataloged to be available. For more information on cataloging, refer to
Chapter 4, “Configuring CLI/ODBC and Running Sample Applications” on page 127.

SQLDataSources() is usually called before a connection is made, to determine the
databases that are available to connect to.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLDataSources (SQLHENV EnvironmentHandle,

 SQLUSMALLINT Direction,

 SQLCHAR FAR *ServerName,

 SQLSMALLINT BufferLength1,

SQLSMALLINT FAR *NameLength1Ptr,

 SQLCHAR FAR *Description,

 SQLSMALLINT BufferLength2,

SQLSMALLINT FAR *NameLength2Ptr);

 Function Arguments

Table 43 (Page 1 of 2). SQLDataSources Arguments

Data Type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLUSMALLINT Direction input Used by application to request the first data source
name in the list or the next one in the list. Direction
can take on only the following values:

 ¹ SQL_FETCH_FIRST
 ¹ SQL_FETCH_NEXT

SQLCHAR * ServerName output Pointer to buffer to hold the data source name
retrieved.

SQLSMALLINT BufferLength1 input Maximum length of the buffer pointed to by
ServerName. This should be less than or equal to
SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT * NameLength1Ptr output Pointer to location where the maximum number of
bytes available to return in the ServerName will be
stored.

SQLCHAR * Description output Pointer to buffer where the description of the data
source is returned. DB2 CLI will return the
Comment field associated with the database
catalogued to the DBMS.

SQLSMALLINT BufferLength2 input Maximum length of the Description buffer.

 Chapter 5. Functions 271

SQLDataSources

Table 43 (Page 2 of 2). SQLDataSources Arguments

Data Type Argument Use Description

SQLSMALLINT * NameLength2Ptr output Pointer to location where this function will return the
actual number of bytes available to return for the
description of the data source.

 Usage
The application can call this function any time with Direction set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list will always be returned.

If SQL_FETCH_NEXT is specified:

¹ Directly following a SQL_FETCH_FIRST call, the second database in the list is
returned

¹ Before any other SQLDataSources() call, the first database in the list is returned
¹ When there are no more databases in the list, SQL_NO_DATA_FOUND is

returned. If the function is called again, the first database is returned.
¹ Any other time, the next database in the list is returned.

In an ODBC environment, the ODBC Driver Manager will perform this function. For
more information refer to Appendix C, “DB2 CLI and ODBC” on page 655.

Since the IBM RDBMSs always returns the description of the data source blank padded
to 30 bytes, DB2 CLI will do the same.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

 Diagnostics

272 CLI Guide and Reference

SQLDataSources

Table 44. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data source name returned in the argument ServerName was
longer than the value specified in the argument BufferLength1.
The argument NameLength1Ptr contains the length of the full data
source name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument Description was
longer than the value specified in the argument BufferLength2.
The argument NameLength2Ptr contains the length of the full data
source description. (Function returns
SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure. Unrecoverable system error.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no specific SQLSTATE was defined. The error message
returned by SQLError() in the argument ErrorMsg describes the
error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength1 was less than 0.

The value specified for argument BufferLength2 was less than 0.

HY103 Direction option out of range. The value specified for the argument Direction was not equal to
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

 Authorization
None.

 Example

 Chapter 5. Functions 273

SQLDataSources

/* From CLI sample datasour.c */

/* ... */

#include <stdio.h>

#include <stdlib.h>

#include <sqlcli1.h>

#include "samputil.h" /* Header file for CLI sample code */

/* ... */

/***

** main

** - initialize

** - terminate

***/

int main() {

SQLHANDLE henv ;

SQLRETURN rc ;

SQLCHAR source[SQL_MAX_DSN_LENGTH + 1], description[255] ;

SQLSMALLINT buffl, desl ;

/* ... */

/* allocate an environment handle */

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

/* list the available data sources (servers) */

printf("The following data sources are available:\n") ;

printf("ALIAS NAME Comment(Description)\n") ;

printf("--\n") ;

while ((rc = SQLDataSources(henv,

 SQL_FETCH_NEXT,

 source,

SQL_MAX_DSN_LENGTH + 1,

 &buffl,

 description,

 255,

 &desl

)

) != SQL_NO_DATA_FOUND

) printf("%-30s %s\n", source, description) ;

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

return(SQL_SUCCESS) ;

}

274 CLI Guide and Reference

SQLDataSources

 References
None.

 Chapter 5. Functions 275

SQLDescribeCol

SQLDescribeCol - Return a Set of Attributes for a Column

 Purpose

SQLDescribeCol() returns a set of commonly used descriptor information (column
name, type, precision, scale, nullability) for the indicated column in the result set
generated by a query.

This information is also available in the fields of the IRD.

If the application needs only one attribute of the descriptor information, or needs an
attribute not returned by SQLDescribeCol(), the SQLColAttribute() function can be
used in place of SQLDescribeCol(). See “SQLColAttribute - Return a Column Attribute”
on page 237 for more information.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLColAttribute()) is usually called before a bind column function
(SQLBindCol(), SQLBindFileToCol()) to determine the attributes of a column before
binding it to an application variable.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLDescribeCol (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */

SQLCHAR *FAR ColumnName, /* szColName */

SQLSMALLINT BufferLength, /* cbColNameMax */

SQLSMALLINT *FAR NameLengthPtr, /* pcbColName */

SQLSMALLINT *FAR DataTypePtr, /* pfSqlType */

SQLUINTEGER *FAR ColumnSizePtr, /* pcbColDef */

SQLSMALLINT *FAR DecimalDigitsPtr, /* pibScale */

SQLSMALLINT *FAR NullablePtr); /* pfNullable */

 Function Arguments

Table 45 (Page 1 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number to be described. Columns are
numbered sequentially from left to right, starting at 1.
This can also be set to 0 to describe the bookmark
column.

SQLCHAR * ColumnName output Pointer to column name buffer. This value is read
from the SQL_DESC_NAME field of the IRD. This is
set to NULL if the column name cannot be
determined.

276 CLI Guide and Reference

SQLDescribeCol

Table 45 (Page 2 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLSMALLINT BufferLength input Size of ColumnName buffer.

SQLSMALLINT * NameLengthPtr output Bytes available to return for ColumnName argument.
Truncation of column name (ColumnName) to
BufferLength - 1 bytes occurs if NameLengthPtr is
greater than or equal to BufferLength.

SQLSMALLINT * DataTypePtr output Base SQL data type of column. To determine if there
is a User Defined Type associated with the column,
call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE. Refer to the
Symbolic SQL Data Type column of Table 3 on
page 28 for the data types that are supported.

SQLUINTEGER * ColumnSizePtr output Precision of column as defined in the database.

If fSqlType denotes a graphic or DBCLOB SQL data
type, then this variable indicates the maximum
number of double-byte characters the column can
hold.

SQLSMALLINT * DecimalDigitsPtr output Scale of column as defined in the database (only
applies to SQL_DECIMAL, SQL_NUMERIC,
SQL_TIMESTAMP). Refer to Table 198 on
page 687 for the scale of each of the SQL data
types.

SQLSMALLINT * NullablePtr output Indicates whether NULLS are allowed for this column

 ¹ SQL_NO_NULLS
 ¹ SQL_NULLABLE

 Usage
Columns are identified by a number, are numbered sequentially from left to right, and
may be described in any order.

¹ Column numbers start at 1 if bookmarks are not used
(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

¹ Column numbers start at 0 if bookmarks are used (the statement attribute set to
SQL_UB_ON).

If a null pointer is specified for any of the pointer arguments, DB2 CLI assumes that the
information is not needed by the application and nothing is returned.

If the column is a User Defined Type, SQLDescribeCol only returns the built-in type in
DataTypePtr. Call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE to obtain the User Defined Type.

 Chapter 5. Functions 277

SQLDescribeCol

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO, one
of the following SQLSTATEs may be obtained by calling the SQLError() function.

Table 46 (Page 1 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument ColumnName was
longer than the value specified in the argument BufferLength. The
argument NameLengthPtr contains the length of the full column
name. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return
a result set.

The statement associated with the StatementHandle did not return
a result set. There were no columns to describe. (Call
SQLNumResultCols() first to determine if there are any rows in the
result set.)

07009 Invalid descriptor index The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for ColumnNumber was less
than 0. The value specified for the argument ColumnNumber was
greater than the number of columns in the result set.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY002 Invalid column number. The value specified for the argument ColumnNumber was less
than 1.

The value specified for the argument ColumnNumber was greater
than the number of columns in the result set.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY090 Invalid string or buffer length. The length specified in argument BufferLength less than 1.

278 CLI Guide and Reference

SQLDescribeCol

Table 46 (Page 2 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYC00 Driver not capable. The SQL data type of column ColumnNumber is not recognized
by DB2 CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
The following ODBC defined data types are not supported:

 ¹ SQL_BIGINT
 ¹ SQL_BIT
 ¹ SQL_TINYINT

 Example

 Chapter 5. Functions 279

SQLDescribeCol

/* From CLI sample samputil.c */

/* ... */

/* print_results */

SQLRETURN print_results(SQLHANDLE hstmt) {

 SQLCHAR colname[32] ;

SQLSMALLINT coltype ;

SQLSMALLINT colnamelen ;

SQLSMALLINT nullable ;

SQLUINTEGER collen[MAXCOLS] ;

SQLSMALLINT scale ;

 SQLINTEGER outlen[MAXCOLS] ;

 SQLCHAR * data[MAXCOLS] ;

 SQLCHAR errmsg[256] ;

 SQLRETURN rc ;

SQLSMALLINT nresultcols, i ;

 SQLINTEGER displaysize ;

rc = SQLNumResultCols(hstmt, &nresultcols) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

for (i = 0; i < nresultcols; i++) {

 SQLDescribeCol(hstmt,

(SQLSMALLINT) (i + 1),

 colname,

 sizeof(colname),

 &colnamelen,

 &coltype,

 &collen[i],

 &scale,

 NULL

) ;

/* get display length for column */

 SQLColAttribute(hstmt,

(SQLSMALLINT) (i + 1),

 SQL_DESC_DISPLAY_SIZE,

 NULL,

 0,

 NULL,

 &displaysize

) ;

 /*

Set column length to max of display length,

and column name length. Plus one byte for

 null terminator.

 */

collen[i] = max(displaysize,

strlen((char *) colname)

) + 1 ;

 printf("%-*.*s",

280 CLI Guide and Reference

SQLDescribeCol

(int) collen[i],

(int) collen[i],

 colname

) ;

/* allocate memory to bind column */

data[i] = (SQLCHAR *) malloc((int) collen[i]) ;

/* bind columns to program vars, converting all types to CHAR */

 SQLBindCol(hstmt,

(SQLSMALLINT) (i + 1),

 SQL_C_CHAR,

 data[i],

 collen[i],

 &outlen[i]

) ;

 }

printf("\n") ;

/* display result rows */

while (SQLFetch(hstmt) != SQL_NO_DATA) {

errmsg[0] = '\0' ;

for (i = 0; i < nresultcols; i++) {

/* Check for NULL data */

if (outlen[i] == SQL_NULL_DATA)

 printf("%-*.*s",

(int) collen[i],

(int) collen[i],

 "NULL"

) ;

else { /* Build a truncation message for any columns truncated */

if (outlen[i] >= collen[i]) {

sprintf((char *) errmsg + strlen((char *) errmsg),

"%d chars truncated, col %d\n",

(int) outlen[i] - collen[i] + 1,

i + 1

) ;

 }

/* Print column */

 printf("%-*.*s",

(int) collen[i],

(int) collen[i],

 data[i]

) ;

 }

} /* for all columns in this row */

printf("\n%s", errmsg) ; /* print any truncation messages */

} /* while rows to fetch */

/* free data buffers */

for (i = 0; i < nresultcols; i++) {

 Chapter 5. Functions 281

SQLDescribeCol

free(data[i]) ;

 }

return(SQL_SUCCESS) ;

} /* end print_results */

 References
¹ “SQLSetColAttributes - Set Column Attributes” on page 518
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLNumResultCols - Get Number of Result Columns” on page 478
¹ “SQLPrepare - Prepare a Statement” on page 486

282 CLI Guide and Reference

SQLDescribeParam

SQLDescribeParam - Return Description of a Parameter Marker

 Purpose

SQLDescribeParam() returns the description of a parameter marker associated with a
prepared SQL statement. This information is also available in the fields of the IPD.

Specification: DB2 CLI 5.0 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLDescribeParam (SQLHSTMT StatementHandle,

 SQLUSMALLINT ParameterNumber,

 SQLSMALLINT *DataTypePtr,

 SQLUINTEGER *ParameterSizePtr,

 SQLSMALLINT *DecimalDigitsPtr,

 SQLSMALLINT *NullablePtr);

 Function Arguments

Table 47 (Page 1 of 2). SQLDescribeParam Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ParameterNumber input Parameter marker number ordered sequentially in
increasing parameter order, starting at 1.

SQLSMALLINT * DataTypePtr output Pointer to a buffer in which to return the SQL data
type of the parameter. This value is read from the
SQL_DESC_CONCISE_TYPE record field of the
IPD.

When ColumnNumber is equal to 0 (for a bookmark
column), SQL_BINARY is returned in *DataTypePtr
for variable-length bookmarks.

SQLUINTEGER * ParameterSizePtr output Pointer to a buffer in which to return the size of the
column or expression of the corresponding parameter
marker as defined by the data source.

SQLSMALLINT DecimalDigitsPtr output Pointer to a buffer in which to return the number of
decimal digits of the column or expression of the
corresponding parameter as defined by the data
source.

 Chapter 5. Functions 283

SQLDescribeParam

Table 47 (Page 2 of 2). SQLDescribeParam Arguments

Data Type Argument Use Description

SQLSMALLINT NullablePtr output Pointer to a buffer in which to return a value that
indicates whether the parameter allows NULL values.
This value is read from the SQL_DESC_NULLABLE
field of the IPD.

One of the following:

¹ SQL_NO_NULLS: The parameter does not allow
NULL values (this is the default value).

¹ SQL_NULLABLE: The parameter allows NULL
values.

¹ SQL_NULLABLE_UNKNOWN: Cannot determine
if the parameter allows NULL values.

 Usage
Parameter markers are numbered in increasing parameter order, starting with 1, in the
order they appear in the SQL statement.

SQLDescribeParam() does not return the type (input, input/output, or output) of a
parameter in an SQL statement. Except in calls to procedures, all parameters in SQL
statements are input parameters. To determine the type of each parameter in a call to a
procedure, an application calls SQLProcedureColumns().

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 48 (Page 1 of 2). SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid
descriptor
index.

The value specified for the argument ParameterNumber less than 1.

The value specified for the argument ParameterNumber was greater than the
number of parameters in the associated SQL statement.

The parameter marker was part of a non-DML statement.

The parameter marker was part of a SELECT list.

08S01 Communication
link failure.

The communication link between DB2 CLI and the data source to which it was
connected failed before the function completed processing.

284 CLI Guide and Reference

SQLDescribeParam

Table 48 (Page 2 of 2). SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

21S01 Insert value
list does not
match
column list.

The number of parameters in the INSERT statement did not match the number
of columns in the table named in the statement.

HY000 General
error.

An error occurred for which there was no specific SQLSTATE. The error
message returned by SQLGetDiagRec() in the *MessageText buffer describes the
error and its cause.

HY001 Memory
allocation
failure.

DB2 CLI was unable to allocate memory required to support execution or
completion of the function.

HY008 Operation
was
cancelled

Asynchronous processing was enabled for the StatementHandle. The function
was called and, before it completed execution, SQLCancel() was called on the
StatementHandle. Then the function was called again on the StatementHandle.

The function was called and, before it completed execution, SQLCancel() was
called on the StatementHandle from a different thread in a multithread
application.

HY010 Function
sequence
error.

The function was called prior to calling SQLPrepare() or SQLExecDirect() for the
StatementHandle.

An asynchronously executing function (not this one) was called for the
StatementHandle and was still executing when this function was called.

SQLExecute(), SQLExecDirect(), SQLBulkOperations(), or SQLSetPos() was
called for the StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution parameters or columns.

HY013 Unexpected
memory
handling
error.

The function call could not be processed because the underlying memory
objects could not be accessed, possibly because of low memory conditions.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLPrepare - Prepare a Statement” on page 486

 Chapter 5. Functions 285

SQLDisconnect

SQLDisconnect - Disconnect from a Data Source

 Purpose

SQLDisconnect() closes the connection associated with the database connection
handle.

SQLEndTran() must be called before calling SQLDisconnect() if an outstanding
transaction exists on this connection.

After calling this function, either call SQLConnect() to connect to another database, or
call SQLFreeHandle().

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLDisconnect (SQLHDBC ConnectionHandle;) /* hdbc */

 Function Arguments

Table 49. SQLDisconnect Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

 Usage
If an application calls SQLDisconnect() before it has freed all the statement handles
associated with the connection, DB2 CLI frees them after it successfully disconnects
from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the disconnect
from the database is successful, additional error or implementation specific information
is available. For example, a problem was encountered on the clean up subsequent to
the disconnect, or if there is no current connection because of an event that occurred
independently of the application (such as communication failure).

After a successful SQLDisconnect() call, the application can re-use ConnectionHandle
to make another SQLConnect() or SQLDriverConnect() request.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

286 CLI Guide and Reference

SQLDisconnect

 Diagnostics

Table 50. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the disconnect
succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The connection specified in the argument ConnectionHandle was
not open.

25000 25501 Invalid transaction state. There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.

Note: This error does not apply to stored procedures written in
DB2 CLI.

25501 Invalid transaction state. There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “SQLAllocHandle - Allocate Handle” on page 185

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLConnect - Connect to a Data Source” on page 262
¹ “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 288
¹ “SQLEndTran - End Transactions of a Connection” on page 294
¹ “SQLFreeHandle - Free Handle Resources” on page 352

 Chapter 5. Functions 287

SQLDriverConnect

SQLDriverConnect - (Expanded) Connect to a Data Source

 Purpose

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a
connection to the target database, but SQLDriverConnect() supports additional
connection parameters and the ability to prompt the user for connection information.

Use SQLDriverConnect() when the data source requires parameters other than the 3
input arguments supported by SQLConnect() (data source name, user ID and
password), or when you want to use DB2 CLI's graphical user interface to prompt the
user for mandatory connection information.

Once a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
Generic

SQLRETURN SQLDriverConnect (SQLHDBC ConnectionHandle, /* hdbc */

SQLHWND WindowHandle, /* hwnd */

SQLCHAR *FAR InConnectionString, /* szConnStrIn */

SQLSMALLINT StringLength1, /* cbConnStrIn */

SQLCHAR *FAR OutConnectionString,/* szConnStrOut */

SQLSMALLINT BufferLength, /* cbConnStrOutMax */

SQLSMALLINT *FAR StringLength2Ptr, /* pcbConnStrOut */

SQLUSMALLINT DriverCompletion); /* fDriverCompletion */

 Function Arguments

Table 51 (Page 1 of 2). SQLDriverConnect Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLHWND hwindow input Window handle (platform dependent): on Windows,
this is the parent Windows handle. On OS/2, this is
the parent PM window handle. On AIX, this is the
parent MOTIF Widget window handle.

If a NULL is passed, then no dialog will be
presented.

SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection string
(see syntax and description below).

SQLSMALLINT StringLength1 input Length of InConnectionString.

288 CLI Guide and Reference

SQLDriverConnect

Table 51 (Page 2 of 2). SQLDriverConnect Arguments

Data Type Argument Use Description

SQLCHAR * OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this
buffer will contain the completed connection string.
Applications should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for
this buffer.

SQLSMALLINT BufferLength input Maximum size of the buffer pointed to by
OutConnectionString.

SQLCHAR * StringLength2Ptr output Pointer to the number of bytes available to return in
the OutConnectionString buffer.

If the value of StringLength2Ptr is greater than or
equal to BufferLength, the completed connection
string in OutConnectionString is truncated to
BufferLength - 1 bytes.

SQLUSMALLINT DriverCompletion input Indicates when DB2 CLI should prompt the user for
more information.

Possible values:

 ¹ SQL_DRIVER_PROMPT
 ¹ SQL_DRIVER_COMPLETE
 ¹ SQL_DRIVER_COMPLETE_REQUIRED
 ¹ SQL_DRIVER_NOPROMPT

 Usage
The connection string is used to pass one or more values needed to complete a
connection. The contents of the connection string and the value of DriverCompletion will
determine if DB2 CLI needs to establish a dialog with the user.

 ┌ ┐─,───
55─ ───6 ┴──┬ ┬─DSN───────────────────── ─═──attribute─ ───────────────────────────5%
 ├ ┤─UID─────────────────────
 ├ ┤─PWD─────────────────────
 └ ┘─DB2 CLI-defined-keyword─

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if
DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty is specified (PWD=;).

The list of DB2 CLI defined keywords and their associated attribute values are
discussed in “Configuration Keywords” on page 144. Any one of the keywords in that

 Chapter 5. Functions 289

SQLDriverConnect

section can be specified on the connection string. If any keywords are repeated in the
connection string, the value associated with the first occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their respective
values are used to augment the information passed to DB2 CLI in the connection string.
If the information in the CLI initialization file contradicts information in the connection
string, the values in connection string take precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is returned.

The following values of DriverCompletion determines when a dialog will be opened:

SQL_DRIVER_PROMPT: A dialog is always initiated. The information from the
connection string and the CLI initialization file are used as initial values, to
be supplemented by data input via the dialog box.

SQL_DRIVER_COMPLETE: A dialog is only initiated if there is insufficient information
in the connection string. The information from the connection string is used
as initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED: A dialog is only initiated if there is insufficient
information in the connection string. The information from the connection
string is used as initial values. Only mandatory information is requested.
The user is prompted for required information only.

SQL_DRIVER_NOPROMPT: The user is not prompted for any information. A
connection is attempted with the information contained in the connection
string. If there is not enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.
Applications that need to set up multiple connections to the same database for a given
user ID should store this output connection string. This string can then be used as the
input connection string value on future SQLDriverConnect() calls.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NO_DATA_FOUND
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_ERROR

 Diagnostics
All of the diagnostics generated by “SQLConnect - Connect to a Data Source” on
page 262 can be returned here as well. The following table shows the additional
diagnostics that can be returned.

290 CLI Guide and Reference

SQLDriverConnect

Table 52. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut was not large enough to hold the entire
connection string. The argument StringLength2Ptr contains the
actual length of the connection string available for return.
(Function returns SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string
attribute.

An invalid keyword or attribute value was specified in the input
connection string, but the connection to the data source was
successful anyway because one of the following occurred:

¹ The unrecognized keyword was ignored.
¹ The invalid attribute value was ignored, the default value was

used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

HY000 General error.

Dialog Failed

The information specified in the connection string was insufficient
for making a connect request, but the dialog was prohibited by
setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090 Invalid string or buffer length. The value specified for StringLength1 was less than 0, but not
equal to SQL_NTS.

The value specified for BufferLength was less than 0.

HY110 Invalid driver completion. The value specified for the argument fCompletion was not equal to
one of the valid values.

 Restrictions
None.

 Example

 Chapter 5. Functions 291

SQLDriverConnect

/* From CLI sample drivrcon.c */

/* ... */

/**

** drv_connect - Prompt for connect options and connect **

**/

int

drv_connect(SQLHENV henv,

SQLHDBC * hdbc,

 SQLCHAR con_type)

{

 SQLRETURN rc;

SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];

SQLCHAR uid[MAX_UID_LENGTH + 1];

SQLCHAR pwd[MAX_PWD_LENGTH + 1];

 SQLCHAR con_str[255];

 SQLCHAR buffer[255];

 SQLSMALLINT outlen;

printf("Enter Server Name:\n");

gets((char *) server);

printf("Enter User Name:\n");

gets((char *) uid);

printf("Enter Password Name:\n");

gets((char *) pwd);

/* Allocate a connection handle */

 SQLAllocHandle(SQL_HANDLE_DBC,

 henv,

 hdbc

);

CHECK_HANDLE(SQL_HANDLE_DBC, *hdbc, rc);

sprintf((char *)con_str, "DSN=%s;UID=%s;PWD=%s;AUTOCOMMIT=0;CONNECTTYPE=1;",

server, uid, pwd);

rc = SQLDriverConnect(*hdbc,

 (SQLHWND) NULL,

 con_str,

 SQL_NTS,

NULL, 0, NULL,

 SQL_DRIVER_NOPROMPT);

if (rc != SQL_SUCCESS) {

printf("Error while connecting to database, RC= %ld\n", rc);

CHECK_HANDLE(SQL_NULL_HENV, *hdbc, rc);

 return (SQL_ERROR);

} else {

 printf("Successful Connect\n");

 return (SQL_SUCCESS);

 }

}

292 CLI Guide and Reference

SQLDriverConnect

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLConnect - Connect to a Data Source” on page 262

 Chapter 5. Functions 293

SQLEndTran

SQLEndTran - End Transactions of a Connection

 Purpose

SQLEndTran() requests a commit or rollback operation for all active operations on all
statements associated with a connection. SQLEndTran() can also request that a
commit or rollback operation be performed for all connections associated with an
environment.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLEndTran (SQLSMALLINT HandleType,

 SQLHANDLE Handle,

 SQLSMALLINT CompletionType);

 Function Arguments

Table 53. SQLEndTran Arguments

Data Type Argument Use Description

SQLSMALLINT HandleType input Handle type identifier. Contains either
SQL_HANDLE_ENV if Handle is an environment
handle, or SQL_HANDLE_DBC if Handle is a
connection handle.

SQLHANDLE Handle input The handle, of the type indicated by HandleType,
indicating the scope of the transaction. See the
“Usage” section below for more information.

SQLSMALLINT CompletionType input One of the following two values:

 ¹ SQL_COMMIT
 ¹ SQL_ROLLBACK

 Usage
If HandleType is SQL_HANDLE_ENV and Handle is a valid environment handle, then
DB2 CLI will attempt to commit or roll back transactions one at a time, depending on
the value of CompletionType, on all connections that are in a connected state on that
environment. SQL_SUCCESS will only be returned if it receives SQL_SUCCESS for
each connection. If it receives SQL_ERROR on one or more connections, it will return
SQL_ERROR to the application, and the diagnostic information will be placed in the
diagnostic data structure of the environment. To determine which connection(s) failed
during the commit or rollback operation, the application can call SQLGetDiagRec() for
each connection.

SQLEndTran() should not be used when working in a Distributed Unit of Work
environment. The transaction manager APIs should be used instead.

294 CLI Guide and Reference

SQLEndTran

If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all
active operations on any statement associated with an affected connection. If
CompletionType is SQL_ROLLBACK, SQLEndTran() issues a rollback request for all
active operations on any statement associated with an affected connection. If no
transactions are active, SQLEndTran() returns SQL_SUCCESS with no effect on any
data sources.

If DB2 CLI is in manual-commit mode (by calling SQLSetConnectAttr() with the
SQL_ATTR_AUTOCOMMIT attribute set to SQL_AUTOCOMMIT_OFF), a new
transaction is implicitly started when an SQL statement that can be contained within a
transaction is executed against the current data source.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo() with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_DELETE, SQLEndTran()
closes and deletes all open cursors on all statements associated with the connection
and discards all pending results. SQLEndTran() leaves any statement present in an
allocated (unprepared) state; the application can reuse them for subsequent SQL
requests or can call SQLFreeStmt() or SQLFreeHandle() with a HandleType of
SQL_HANDLE_STMT to deallocate them.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_CLOSE, SQLEndTran()
closes all open cursors on all statements associated with the connection. SQLEndTran()
leaves any statement present in a prepared state; the application can call SQLExecute()

for a statement associated with the connection without first calling SQLPrepare().

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_PRESERVE,
SQLEndTran() does not affect open cursors associated with the connection. Cursors
remain at the row they pointed to prior to the call to SQLEndTran().

When autocommit mode is on, calling SQLEndTran() with either SQL_COMMIT or
SQL_ROLLBACK when no transaction is active will return SQL_SUCCESS (indicating
that there is no work to be committed or rolled back) and have no effect on the data
source.

When autocommit mode is off, calling SQLEndTran() with a CompletionType of either
SQL_COMMIT or SQL_ROLLBACK always returns SQL_SUCCESS.

When a DB2 CLI application is running in autocommit mode, the DB2 CLI driver does
not pass the SQLEndTran() statement to the server.

 Chapter 5. Functions 295

SQLEndTran

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 54. SQLEndTran SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The ConnectionHandle was not in a connected state.

08007 Connection failure during
transaction.

The connection associated with the ConnectionHandle failed
during the execution of the function and it cannot be determined
whether the requested COMMIT or ROLLBACK occurred before
the failure.

40001 Transaction rollback. The transaction was rolled back due to a resource deadlock with
another transaction.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. An asynchronously executing function was called for a
StatementHandle associated with the ConnectionHandle and was
still executing when SQLEndTran() was called.

SQLExecute() or SQLExecDirect() was called for a
StatementHandle associated with the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before data
was sent for all data-at-execution parameters or columns.

HY012 Invalid transaction code. The value specified for the argument CompletionType was neither
SQL_COMMIT nor SQL_ROLLBACK.

HY092 Option type out of range. The value specified for the argument HandleType was neither
SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

296 CLI Guide and Reference

SQLEndTran

 References
¹ “SQLGetInfo - Get General Information” on page 402
¹ “SQLFreeHandle - Free Handle Resources” on page 352
¹ “SQLFreeStmt - Free (or Reset) a Statement Handle” on page 356

 Chapter 5. Functions 297

SQLError

SQLError - Retrieve Error Information

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLError() has been deprecated and replaced with
SQLGetDiagRec() and SQLGetDiagField(); see “SQLGetDiagRec - Get Multiple
Fields Settings of Diagnostic Record” on page 391 and “SQLGetDiagField - Get
a Field of Diagnostic Data” on page 382 for more information.

Although this version of DB2 CLI continues to support SQLError(), we
recommend that you begin using SQLGetDiagRec() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

 Purpose

SQLError() returns the diagnostic information (both errors and warnings) associated
with the most recently invoked DB2 CLI function for a particular statement, connection
or environment handle.

The information consists of a standardized SQLSTATE, native error code, and a text
message. Refer to “Diagnostics” on page 24 for more information.

Call SQLError() after receiving a return code of SQL_ERROR or
SQL_SUCCESS_WITH_INFO from another function call.

Note: Some database servers may provide product-specific diagnostic information
after returning SQL_NO_DATA_FOUND from the execution of a statement.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR FAR *szSqlState,

 SQLINTEGER FAR *pfNativeError,

 SQLCHAR FAR *szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

SQLSMALLINT FAR *pcbErrorMsg);

 Function Arguments

298 CLI Guide and Reference

SQLError

Table 55 (Page 1 of 2). SQLError Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle. To obtain diagnostic information
associated with an environment, pass a valid
environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT
respectively.

SQLHDBC hdbc input Database connection handle. To obtain diagnostic
information associated with a connection, pass a
valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

SQLHSTMT hstmt input Statement handle. To obtain diagnostic information
associated with a statement, pass a valid statement
handle. The henv and hdbc arguments are ignored.

SQLCHAR * szSqlState output SQLSTATE as a string of 5 characters terminated by
a null character. The first 2 characters indicate error
class; the next 3 indicate subclass. The values
correspond directly to SQLSTATE values defined in
the X/Open SQL CAE specification and the ODBC
specification, augmented with IBM specific and
product specific SQLSTATE values.

SQLINTEGER * pfNativeError output Native error code. In DB2 CLI, the pfNativeError
argument will contain the SQLCODE value returned
by the DBMS. If the error is generated by DB2 CLI
and not the DBMS, then this field will be set to
-99999.

 Chapter 5. Functions 299

SQLError

Table 55 (Page 2 of 2). SQLError Arguments

Data Type Argument Use Description

SQLCHAR * szErrorMsg output Pointer to buffer to contain the implementation
defined message text. If the error is detected by DB2
CLI, then the error message would be prefaced by:

[IBM][CLI Driver]

 to indicate that it is DB2 CLI that detected the error
and there is no database connection yet.

If the error is detected while there is a database
connection, then the error message returned from the
DBMS would be prefaced by:

[IBM][CLI Driver][DBMS-name]

where DBMS-name is the name returned by
SQLGetInfo() with SQL_DBMS_NAME information
type.

For example,

 ¹ DB2

 ¹ DB2/6000

If the DBMS-name is not regcognized then DB2 CLI
will treat it as a DB2 Universal Database version 5
data source.

If the error is generated by the DBMS, the IBM
defined SQLSTATE will be appended to the text
string.

SQLSMALLINT cbErrorMsgMax input The maximum (that is, the allocated) length of the
buffer szErrorMsg. The recommended length to
allocate is SQL_MAX_MESSAGE_LENGTH + 1.

SQLSMALLINT * pcbErrorMsg output Pointer to total number of bytes available to return to
the szErrorMsg buffer. This does not include the null
termination character.

 Usage
The SQLSTATEs are those defined by the X/OPEN SQL CAE and the X/Open SQL
CLI CAE, augmented with IBM specific and product specific SQLSTATE values.

To obtain diagnostic information associated with:

¹ An environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

¹ A connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

¹ A statement, pass a valid statement handle. The henv and hdbc arguments are
ignored.

300 CLI Guide and Reference

SQLError

If diagnostic information generated by one DB2 CLI function is not retrieved before a
function other than SQLError() is called with the same handle, the information for the
previous function call is lost. This is true whether or not diagnostic information is
generated for the second DB2 CLI function call.

Multiple diagnostic messages may be available after a given DB2 CLI function call.
These messages can be retrieved one at a time by repeatedly calling SQLError(). For
each message retrieved, SQLError() returns SQL_SUCCESS and removes it from the
list of messages available. When there are no more messages to retrieve,
SQL_NO_DATA_FOUND is returned, the SQLSTATE is set to "00000", pfNativeError is
set to 0, and pcbErrorMsg and szErrorMsg are undefined.

Diagnostic information stored under a given handle is cleared when a call is made to
SQLError() with that handle, or when another DB2 CLI function call is made with that
handle. However, information associated with a given handle type is not cleared by a
call to SQLError() with an associated but different handle type: for example, a call to
SQLError() with a connection handle input will not clear errors associated with any
statement handles under that connection.

SQL_SUCCESS is returned even if the buffer for the error message (szErrorMsg) is too
short since the application will not be able to retrieve the same error message by
calling SQLError() again. The actual length of the message text is returned in the
pcbErrorMsg.

To avoid truncation of the error message, declare a buffer length of
SQL_MAX_MESSAGE_LENGTH + 1. The message text will never be longer than this.

Note: The defined value of SQL_MAX_MESSAGE_LENGTH has been increased
since DB2 CLI Version 1.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if no diagnostic information is available for the
input handle, or if all of the messages have been retrieved via calls to SQLError().

 Diagnostics
SQLSTATEs are not defined, since SQLError() does not generate diagnostic
information for itself.

 Restrictions
Although ODBC also returns X/Open SQL CAE SQLSTATEs, only DB2 CLI (and the
DB2 ODBC driver) returns the additional IBM defined SQLSTATEs. The ODBC Driver
Manager also returns SQLSTATE values with a prefix of IM. These SQLSTATES are
not defined by X/Open and are not returned by DB2 CLI. For more information on

 Chapter 5. Functions 301

SQLError

ODBC specific SQLSTATEs refer to ODBC 3.0 Software Development Kit and
Programmer's Reference.

Because of this, you should only build dependencies on the standard SQLSTATEs.
This means any branching logic in the application should only rely on the standard
SQLSTATEs. The augmented SQLSTATEs are most useful for debugging purposes.

Note: It may be useful to build dependencies on the class (the first 2 characters) of
the SQLSTATEs.

 Example
Refer to “SQLGetDiagRec - Get Multiple Fields Settings of Diagnostic Record” on
page 391.

 References
¹ “SQLGetSQLCA - Get SQLCA Data Structure” on page 449

302 CLI Guide and Reference

SQLExecDirect

SQLExecDirect - Execute a Statement Directly

 Purpose

SQLExecDirect() directly executes the specified SQL statement. The statement can
only be executed once. Also, the connected database server must be able to
dynamically prepare statement. (For more information about supported SQL statements
refer to Table 220 on page 709.)

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLExecDirect (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR *FAR StatementText, /* szSqlStr */

SQLINTEGER TextLength); /* cbSqlStr */

 Function Arguments

Table 56. SQLExecDirect Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle, see “SQLFreeStmt
- Free (or Reset) a Statement Handle” on page 356
for more information.

SQLCHAR * StatementText input SQL statement string. The connected database
server must be able to prepare the statement, see
Table 220 on page 709 for more information.

SQLINTEGER TextLength input Length of contents of StatementText argument. The
length must be set to either the exact length of the
statement, or if the statement is null-terminated, set
to SQL_NTS.

 Usage
If the SQL statement text contains vendor escape clause sequences, DB2 CLI will first
modify the SQL statement text to the appropriate DB2 specific format before submitting
it for preparation and execution. If the application does not generate SQL statements
that contain vendor escape clause sequences (“Using Vendor Escape Clauses” on
page 123), then it should set the SQL_ATTR_NOSCAN statement attribute to
SQL_NOSCAN_ON at the connection level so that DB2 CLI does not perform a scan
for vendor escape clauses.

The SQL statement cannot be a COMMIT or ROLLBACK. Instead, SQLTransact() must
be called to issue COMMIT or ROLLBACK. For more information about supported SQL
statements refer to Table 220 on page 709.

 Chapter 5. Functions 303

SQLExecDirect

The SQL statement string may contain parameter markers. A parameter marker is
represented by a "?" character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecDirect() is
called. This value can be obtained from:

¹ An application variable.

SQLSetParam() or SQLBindParameter() is used to bind the application storage area
to the parameter marker.

¹ A LOB value residing at the server referenced by a LOB locator.
SQLBindParameter() or SQLSetParam() is used to bind a LOB locator to a parameter
marker. The actual value of the LOB is kept at the server and does not need to be
first transferred to the application before being used as input parameter value for
another SQL statement.

¹ A file (within the applications environment) containing a LOB value.

SQLBindFileToParam() is used to bind a file to a LOB parameter marker. When
SQLExecDirect() is executed, DB2 CLI will transfer the contents of the file directly
to the database server.

All parameters must be bound before calling SQLExecDirect().

Refer to the PREPARE section of the SQL Reference for information on rules related to
parameter markers.

If the SQL statement is a query, SQLExecDirect() will generate a cursor name, and
open the cursor. If the application has used SQLSetCursorName() to associate a cursor
name with the statement handle, DB2 CLI associates the application generated cursor
name with the internally generated one.

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next row
(or rows) of data into bound variables, LOB locators or LOB file references (using
SQLBindCol() or SQLBindFileToCol()). Data can also be retrieved by calling
SQLGetData() for any column that was not bound.

If the SQL statement is a Positioned DELETE or a Positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLParamOptions() has been called to specify that an array of input parameter values
has been bound to each parameter marker, then the application needs to call
SQLExecDirect() only once to process the entire array of input parameter values.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR

304 CLI Guide and Reference

SQLExecDirect

 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NEED_DATA
 ¹ SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or
Searched DELETE and no rows satisfy the search condition.

 Diagnostics

Table 57 (Page 1 of 4). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

StatementText contained an UPDATE or DELETE statement
which did not contain a WHERE clause. (Function returns
SQL_SUCCESS_WITH_INFO or SQL_NO_DATA_FOUND if there
were no rows in the table).

01508 Statement disqualified for
blocking.

The statement was disqualified for blocking for reasons other than
storage.

07001 Wrong number of
parameters.

The number of parameters bound to application variables using
SQLBindParameter() was less than the number of parameter
markers in the SQL statement contained in the argument
StatementText.

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables
would result in incompatible data conversion.

21S01 Insert value list does not
match column list.

StatementText contained an INSERT statement and the number of
values to be inserted did not match the degree of the derived
table.

21S02 Degrees of derived table
does not match column list.

StatementText contained a CREATE VIEW statement and the
number of names specified is not the same degree as the derived
table defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded
the maximum length of the column.

22003 Numeric value out of range. A numeric value assigned to a numeric type column caused
truncation of the whole part of the number, either at the time of
assignment or in computing an intermediate result.

StatementText contained an SQL statement with an arithmetic
expression which caused division by zero.

Note: as a result the cursor state is undefined for DB2 Universal
Database (the cursor will remain open for other RDBMSs).

 Chapter 5. Functions 305

SQLExecDirect

Table 57 (Page 2 of 4). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

22005 Error in assignment. StatementText contained an SQL statement with a parameter or
literal and the value or LOB locator was incompatible with the data
type of the associated table column.

The length associated with a parameter value (the contents of the
pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or
SQLSetParam(), denoted an SQL graphic data type, but the
deferred length argument (pcbValue) contains an odd length
value. The length value must be even for graphic data types.

22007 Invalid datetime format. StatementText contained an SQL statement with an invalid
datetime format; that is, an invalid string representation or value
was specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012 Division by zero is invalid. StatementText contained an SQL statement with an arithmetic
expression that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the
UPDATE, DELETE, SET, or
GET statement is not
positioned on a row.

Results were pending on the StatementHandle from a previous
query or a cursor associated with the hsmt had not been closed.

34000 Invalid cursor name. StatementText contained a Positioned DELETE or a Positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx a Invalid SQL syntax. StatementText contained one or more of the following:

 ¹ a COMMIT
 ¹ a ROLLBACK
¹ an SQL statement that the connected database server could

not prepare
¹ a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to a deadlock or timeout.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

42xxx Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

306 CLI Guide and Reference

SQLExecDirect

Table 57 (Page 3 of 4). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

428A1 Unable to access a file
referenced by a host file
variable.

This can be raised for any of the following scenarios. The
associated reason code in the text identifies the particular error:

¹ 01 - The file name length is invalid or the file name and/or the
path has an invalid format.

¹ 02 - The file option is invalid. It must have one of the following
values:

SQL_FILE_READ -read from an existing file

SQL_FILE_CREATE -create a new file for write

SQL_FILE_OVERWRITE -overwrite an existing file.

If the file does not exist,

create the file.

SQL_FILE_APPEND -append to an existing file.

If the file does not exist,

create the file.

¹ 03 - The file cannot be found.
¹ 04 - The SQL_FILE_CREATE option was specified for a file

with the same name as an existing file.
¹ 05 - Access to the file was denied. The user does not have

permission to open the file.
¹ 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in
exclusive mode.

¹ 07 - Disk full was encountered while writing to the file.
¹ 08 - Unexpected end of file encountered while reading from

the file.
¹ 09 - A media error was encountered while accessing the file.

42895 The value of a host variable
in the EXECUTE or OPEN
statement cannot be used
because of its data type.

The LOB locator type specified on the bind parameter function call
does not match the LOB data type of the parameter marker.

The argument fSQLType used on the bind parameter function
specified a LOB locator type but the corresponding parameter
marker is not a LOB.

44000 Integrity constraint violation. StatementText contained an SQL statement which contained a
parameter or literal. This parameter value was NULL for a column
defined as NOT NULL in the associated table column, or a
duplicate value was supplied for a column constrained to contain
only unique values, or some other integrity constraint was violated.

56084 LOB data is not supported in
DRDA.

LOB columns cannot either be selected or updated when
connecting to DRDA servers (using DB2 Connect).

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already
exists.

StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

S0002 Database object does not
exist.

StatementText contained an SQL statement that references a
table name or view name which does not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the
specified index name already existed.

 Chapter 5. Functions 307

SQLExecDirect

Table 57 (Page 4 of 4). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

S0012 Index not found. StatementText contained a DROP INDEX statement and the
specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a
column name which does not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. StatementText was a null pointer.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The argument TextLength was less than 1 but not equal to
SQL_NTS.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()

operation was not valid.

HY503 Invalid file name length. The fileNameLength argument value from SQLBindFileToParam()

was less than 0, but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the
37 class.

 Restrictions
None.

 Example
Refer to “Example” on page 328.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206

308 CLI Guide and Reference

SQLExecDirect

¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on
page 210

¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 480
¹ “SQLPutData - Passing Data Value for A Parameter” on page 510
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

 Chapter 5. Functions 309

SQLExecute

SQLExecute - Execute a Statement

 Purpose

SQLExecute() executes a statement, that was successfully prepared using
SQLPrepare(), once or multiple times. The statement is executed using the current
value of any application variables that were bound to parameter markers by
SQLBindParameter(), SQLSetParam() or SQLBindFileToParam()

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLExecute (SQLHSTMT StatementHandle); /* hstmt */

 Function Arguments

Table 58. SQLExecute Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle, see “SQLFreeStmt
- Free (or Reset) a Statement Handle” on page 356
for more information.

 Usage
The SQL statement string may contain parameter markers. A parameter marker is
represented by a "?" character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecute() is called.
This value can be obtained from:

¹ An application variable.

SQLSetParam() or SQLBindParameter() is used to bind the application storage area
to the parameter marker.

¹ A LOB value residing at the server referenced by a LOB locator.
SQLBindParameter() or SQLSetParam() is used to bind a LOB locator to a parameter
marker. The actual value of the LOB is kept at the server and does not need to be
first transferred to the application before being used as input parameter value for
another SQL statement.

¹ A file (within the applications environment) containing a LOB value.

SQLBindFileToParam() is used to bind a file to a LOB parameter marker. When
SQLExecDirect() is executed, DB2 CLI will transfer the contents of the file directly
to the database server.

All parameters must be bound before calling SQLExecute().

310 CLI Guide and Reference

SQLExecute

Once the application has processed the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(); SQLPrepare() must be called first.

If the prepared SQL statement is a query, SQLExecute() will generate a cursor name,
and open the cursor. If the application has used SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 CLI associates the application generated
cursor name with the internally generated one.

To execute a query more than once, the application must close the cursor by calling
SQLFreeStmt() with the SQL_CLOSE option. There must not be an open cursor on the
statement handle when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next row
(or rows) of data into bound variables, LOB locators or LOB file references (using
SQLBindCol() or SQLBindFileToCol). Data can also be retrieved by calling SQLGetData()
for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time SQLExecute() is
called, and must be defined on a separate statement handle under the same
connection handle.

If SQLParamOptions() has been called to specify that an array of input parameter values
has been bound to each parameter marker, then the application needs to call
SQLExecDirect() only once to process the entire array of input parameter values. If the
executed statement returns multiple result sets (one for each set of input parameters),
then SQLMoreResults() should be used to advance to the next result set once
processing on the current result set is complete. Refer to “SQLMoreResults - Determine
If There Are More Result Sets” on page 467 for more information.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NEED_DATA
 ¹ SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE or
Searched DELETE and no rows satisfy the search condition.

 Chapter 5. Functions 311

SQLExecute

 Diagnostics
The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() (refer to
Table 57 on page 305.) except for HY009, HY090 and with the addition of the
SQLSTATE in the table below.

Table 59. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle was not in prepared state.
SQLExecute() was called without first calling SQLPrepare().

 Authorization
None.

 Example
Refer to “Example” on page 328.

 References
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLPrepare - Prepare a Statement” on page 486
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLParamOptions - Specify an Input Array for a Parameter” on page 483
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191

312 CLI Guide and Reference

SQLExtendedFetch

SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLExtendedFetch() has been deprecated and replaced
with SQLFetchScroll(); see “SQLFetchScroll - Fetch Rowset and Return Data
for All Bound Columns” on page 331 for more information.

Although this version of DB2 CLI continues to support SQLExtendedFetch(), we
recommend that you begin using SQLFetchScroll() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

 Purpose

SQLExtendedFetch() extends the function of SQLFetch() by returning a block of data
containing multiple rows (called a rowset), in the form of a array, for each bound
column. The size of the rowset is determined by the SQL_ROWSET_SIZE attribute on
an SQLSetStmtAttr() call.

To fetch one row of data at a time, an application should call SQLFetch().

For more description on block or array retrieval, refer to “Retrieving a Result Set into an
Array” on page 70.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLExtendedFetch (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT FetchOrientation, /* fFetchType */

SQLINTEGER FetchOffset, /* irow */

SQLUINTEGER *FAR RowCountPtr, /* pcrow */

SQLUSMALLINT *FAR RowStatusArray); /* rgfRowStatus */

 Function Arguments

Table 60 (Page 1 of 2). SQLExtendedFetch Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLUSMALLINT FetchOrientation Input Direction and type of fetch. DB2 CLI only supports
the fetch direction SQL_FETCH_NEXT; that is,
forward only cursor direction. The next array (rowset)
of data is retrieved.

 Chapter 5. Functions 313

SQLExtendedFetch

Table 60 (Page 2 of 2). SQLExtendedFetch Arguments

Data Type Argument Use Description

SQLINTEGER FetchOffset Input Reserved for future use.

SQLUINTEGER * RowCountPtr Output Number of the rows actually fetched. If an error
occurs during processing, RowCountPtr points to the
ordinal position of the row (in the rowset) that
precedes the row where the error occurred. If an
error occurs retrieving the first row RowCountPtr
points to the value 0.

SQLUSMALLINT * RowStatusArray Output An array of status values. The number of elements
must equal the number of rows in the rowset (as
defined by the SQL_ROWSET_SIZE attribute). A
status value for each row fetched is returned:

 ¹ SQL_ROW_SUCCESS

If the number of rows fetched is less than the
number of elements in the status array (i.e. less than
the rowset size), the remaining status elements are
set to SQL_ROW_NOROW.

DB2 CLI cannot detect whether a row has been
updated or deleted since the start of the fetch.
Therefore, the following ODBC defined status values
will not be reported:

 ¹ SQL_ROW_DELETED
 ¹ SQL_ROW_UPDATED

 Usage
SQLExtendedFetch() is used to perform an array fetch of a set of rows. An application
specifies the size of the array by calling SQLSetStmtAttr() with the
SQL_ROWSET_SIZE attribute.

Before SQLExtendedFetch() is called the first time, the cursor is positioned before the
first row. After SQLExtendedFetch() is called, the cursor is positioned on the row in the
result set corresponding to the last row element in the rowset just retrieved.

For any columns in the result set that have been bound via the SQLBindCol() or
SQLBindFileToCol() function, DB2 CLI converts the data for the bound columns as
necessary and stores it in the locations bound to these columns. As mentioned in
section “Retrieving a Result Set into an Array” on page 70, the result set can be bound
in a column-wise or row-wise fashion.

¹ For column-wise binding of application variables:

To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_ATTR_BIND_TYPE statement attribute.
(This is the default value.) Then the application calls the SQLBindCol() function.

314 CLI Guide and Reference

SQLExtendedFetch

When the application calls SQLExtendedFetch(), data for the first row is stored at
the start of the buffer. Each subsequent row of data is stored at an offset of
cbValueMax bytes (argument on SQLBindCol() call) or, if the associated C buffer
type is fixed width (such as SQL_C_LONG), at an offset corresponding to that fixed
length from the data for the previous row.

For each bound column, the number of bytes available to return for each element
is stored in the pcbValue array buffer (deferred output argument on SQLBindCol())
buffer bound to the column. The number of bytes available to return for the first
row of that column is stored at the start of the buffer, and the number of bytes
available to return for each subsequent row is stored at an offset of
sizeof(SQLINTEGER) bytes from the value for the previous row. If the data in the
column is NULL for a particular row, the associated element in the pcbValue array
is set to SQL_NULL_DATA.

¹ For column-wise binding of file references:

The StringLength and IndicatorValue pointers on SQLBindFileToCol() are pointers
to output arrays. The actual length of the file and the associated indicator value for
the first row is stored at the start of the StringLength and IndicatorValue arrays
respectively. File lengths and indicator values for subsequent rows are written to
these arrays at an offset of sizeof(SQLINTEGER) bytes from the previous row.

¹ For row-wise binding of application variables:

The application needs to first call SQLSetStmtAttr() with the
SQL_ATTR_BIND_TYPE attribute, with the vParam argument set to the size of the
structure capable of holding a single row of retrieved data and the associated data
lengths for each column data value.

For each bound column, the first row of data is stored at the address given by the
rgbValue supplied on the SQLBindCol() call for the column and each subsequent
row of data at an offset of vParam bytes (used on the SQLSetStmtAttr() call) from
the data for the previous row.

For each bound column, the number of bytes available to return for the first row is
stored at the address given by the pcbValue argument supplied on the
SQLBindCol() call, and the number of bytes available to return for each subsequent
row at an offset of vParam bytes from address containing the value for the
previous row.

Row-wise binding of file references is not supported.

If SQLExtendedFetch() returns an error that applies to the entire rowset, the
SQL_ERROR function return code is reported with the appropriate SQLSTATE. The
contents of the rowset buffer are undefined and the cursor position is unchanged.

If an error occurs that applies to a single row:

¹ the corresponding element in the RowStatusArray array for the row is set to
SQL_ROW_ERROR

¹ an SQLSTATE of 01S01 is added to the list of errors that can be obtained using
SQLError()

 Chapter 5. Functions 315

SQLExtendedFetch

¹ zero or more additional SQLSTATEs, describing the error for the current row, are
added to the list of errors that can be obtained using SQLError()

An SQL_ROW_ERROR in the RowStatusArray array only indicates that there was an
error with the corresponding element; it does not indicate how many SQLSTATEs were
generated. Therefore, SQLSTATE 01S01 is used as a separator between the resulting
SQLSTATEs for each row. DB2 CLI continues to fetch the remaining rows in the rowset
and returns SQL_SUCCESS_WITH_INFO as the function return code. After
SQLExtendedFetch() returns, for each row encountering an error there is an SQLSTATE
of 01S01 and zero or more additional SQLSTATEs indicating the error(s) for the current
row, retrievable via SQLError(). Individual errors that apply to specific rows do not
affect the cursor which continues to advance.

The number of elements in the RowStatusArray array output buffer must equal the
number of rows in the rowset (as defined by the SQL_ROWSET_SIZE statement
attribute). If the number of rows fetched is less than the number of elements in the
status array, the remaining status elements are set to SQL_ROW_NOROW.

An application cannot mix SQLExtendedFetch() with SQLFetch() calls.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

 Diagnostics

Table 61 (Page 1 of 4). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns was truncated.
(Function returns SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function
returns SQL_SUCCESS_WITH_INFO.)

07002 Too many columns. A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to
the data type specified by fCType in SQLBindCol().

316 CLI Guide and Reference

SQLExtendedFetch

Table 61 (Page 2 of 4). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCol() was a null pointer and the value of the
corresponding column is null. There is no means to report
SQL_NULL_DATA.

The pointer specified for the argument IndicatorValue in
SQLBindFileToCol() was a null pointer and the value of the
corresponding LOB column is NULL. There is no means to report
SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or more
columns would have caused the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

A value from an arithmetic expression was returned which resulted
in division by zero.

Note: The associated cursor is undefined if this error is detected
by DB2 Universal Database. If the error was detected by
DB2 CLI or by other IBM RDBMSs, the cursor will remain
open and continue to advance on subsequent fetch calls.

22005 Error in assignment. A returned value was incompatible with the data type of the bound
column.

A returned LOB locator was incompatible with the data type of the
bound column.

22007 Invalid datetime format. Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which resulted
in division by zero.

24000 Invalid cursor state. The previous SQL statement executed on the statement handle
was not a query.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

 Chapter 5. Functions 317

SQLExtendedFetch

Table 61 (Page 3 of 4). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

428A1 Unable to access a file
referenced by a host file
variable.

This can be raised for any of the following scenarios. The
associated reason code in the text identifies the particular error:

¹ 01 - The file name length is invalid or the file name and/or the
path has an invalid format.

¹ 02 - The file option is invalid. It must have one of the following
values:

SQL_FILE_READ -read from an existing file

SQL_FILE_CREATE -create a new file for write

SQL_FILE_OVERWRITE -overwrite an existing file.

If the file does not exist,

create the file.

SQL_FILE_APPEND -append to an existing file.

If the file does not exist,

create the file.

¹ 03 - The file cannot be found.
¹ 04 - The SQL_FILE_CREATE option was specified for a file

with the same name as an existing file.
¹ 05 - Access to the file was denied. The user does not have

permission to open the file.
¹ 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in
exclusive mode.

¹ 07 - Disk full was encountered while writing to the file.
¹ 08 - Unexpected end of file encountered while reading from

the file.
¹ 09 - A media error was encountered while accessing the file.

54028 The maximum number of
concurrent LOB handles has
been reached.

Maximum LOB locator assigned.

The maximum number of concurrent LOB locators has been
reached. A new locator can not be assigned.

56084 LOB data is not supported in
DRDA.

LOBs not supported on DRDA.

LOB columns cannot either be selected or updated when
connecting to DRDA servers (using DB2 Connect).

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. SQLExtendedFetch() was called for an StatementHandle after
SQLFetch() was called and before SQLFreeStmt() had been called
with the SQL_CLOSE option.

The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

318 CLI Guide and Reference

SQLExtendedFetch

Table 61 (Page 4 of 4). SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToCol()

operation was not valid.

HY106 Fetch type out of range. The value specified for the argument FetchOrientation was not
recognized.

HYC00 Driver not capable. DB2 CLI or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCol() or
SQLBindFileToCol() and the SQL data type of the corresponding
column.

A call to SQLBindCol() was made for a column data type which is
not supported by DB2 CLI.

The specified fetch type is recognized, but not supported.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example
Refer to “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on
page 331.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLFetch - Fetch Next Row” on page 320

 Chapter 5. Functions 319

SQLFetch

SQLFetch - Fetch Next Row

 Purpose

SQLFetch() advances the cursor to the next row of the result set, and retrieves any
bound columns.

Columns may be bound to:

 ¹ Application storage
 ¹ LOB locators
¹ Lob file references

When SQLFetch() is called, the appropriate data transfer is performed, along with any
data conversion if conversion was indicated when the column was bound. The columns
can also be received individually after the fetch, by calling SQLGetData().

SQLFetch() can only be called after a result set has been generated (using the same
statement handle) by either executing a query, calling SQLGetTypeInfo() or calling a
catalog function.

To retrieve multiple rows at a time, use SQLFetchScroll().

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLFetch (SQLHSTMT StatementHandle); /* hstmt */

 Function Arguments

Table 62. SQLFetch Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

 Usage
SQLFetch() can only be called after a result set has been generated on the same
statement handle. Before SQLFetch() is called the first time, the cursor is positioned
before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the
number of columns in the result set or SQLFetch() will fail.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not
return data to the application, but just advances the cursor. In this case SQLGetData()
could be called to obtain all of the columns individually. If the cursor is a multirow
cursor (that is, the SQL_ATTR_ROW_ARRAY_SIZE is greater than 1), SQLGetData()

320 CLI Guide and Reference

SQLFetch

can be called only if SQL_GD_BLOCK is returned when SQLGetInfo() is called with an
InfoType of SQL_GETDATA_EXTENSIONS. Data in unbound columns is discarded
when SQLFetch() advances the cursor to the next row. For fixed length data types, or
small variable length data types, binding columns provides better performance than
using SQLGetData().

Columns may be bound to:

 ¹ Application storage

SQLBindCol() is used to bind application storage to the column. Data will be
transferred from the server to the application at fetch time. Length of the available
data to return is also set.

 ¹ LOB locators

SQLBindCol() is used to bind LOB locators to the column. Only the LOB locator (4
bytes) will be transferred from the server to the application at fetch time.

Once an application receives a locator it can be used in SQLGetSubString(),
SQLGetPosition(), SQLGetLength() or as the value of a parameter marker in
another SQL statement. SQLGetSubString() can either return another locator, or
the data itself. All locators remain valid until the end of the transaction in which
they were created (even when the cursor moves to another row), or until it is freed
using the FREE LOCATOR statement.

¹ Lob file references

SQLBindFileToCol() is used to bind a file to a LOB column. DB2 CLI will write the
data directly to a file, and update the StringLength and IndicatorValue buffers
specified on SQLBindFileToCol().

If the data value for the column is NULL and SQLBindCol() was used,
SQL_NULL_DATA is stored in the pcbValue buffer specified on SQLBindCol().

If the data value for the column is NULL and SQLBindFileToCol() was used, then
IndicatorValue will be set to SQL_NULL_DATA and StringLength to 0.

If LOB values are too large to be retrieved in one fetch, they can be retrieved in pieces
by either using SQLGetData() (which can be used for any column type), or by binding a
LOB locator, and using SQLGetSubString().

If any bound storage buffer are not large enough to hold the data returned by
SQLFetch(), the data will be truncated. If character data is truncated,
SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated indicating
truncation. The SQLBindCol() deferred output argument pcbValue will contain the actual
length of the column data retrieved from the server. The application should compare the
actual output length to the input buffer length (pcbValue and cbValueMax arguments
from SQLBindCol()) to determine which character columns have been truncated.

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (refer to the diagnostics section).

 Chapter 5. Functions 321

SQLFetch

Truncation of graphic data types is treated the same as character data types, except
that the rgbValue buffer is filled to the nearest multiple of two bytes that is still less than
or equal to the cbValueMax specified in SQLBindCol(). Graphic (DBCS) data transferred
between DB2 CLI and the application is not null-terminated if the C buffer type is
SQL_C_CHAR (unless indicated by the PATCH1 initialization keyword, refer to
“Configuration Keywords” on page 144 for more information). If the buffer type is
SQL_C_DBCHAR, then null-termination of graphic data does occur.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute. The
application can specify that DB2 CLI should not report truncation by calling
SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum length
to return for any one column, and by allocating a rgbValue buffer of the same size (plus
the null-terminator). If the column data is larger than the set maximum length,
SQL_SUCCESS will be returned and the maximum length, not the actual length will be
returned in pcbValue.

When all the rows have been retrieved from the result set, or the remaining rows are
not needed, SQLFreeStmt() should be called to close the cursor and discard the
remaining data and associated resources.

To retrieve multiple rows at a time, use SQLFetchScroll(). An application cannot mix
SQLFetch() with SQLExtendedFetch() calls on the same statement handle. It can,
however, mix SQLFetch() with SQLFetchScroll() calls on the same statement handle.

Positioning the Cursor

When the result set is created, the cursor is positioned before the start of the result set.
SQLFetch() fetches the next rowset. It is equivalent to calling SQLFetchScroll() with
FetchOrientation set to SQL_FETCH_NEXT. For more information see “Scrollable
Cursors” on page 51.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of rows
in the rowset. If the rowset being fetched by SQLFetch() overlaps the end of the result
set, SQLFetch() returns a partial rowset. That is, if S + R-1 is greater than L, where S is
the starting row of the rowset being fetched, R is the rowset size, and L is the last row
in the result set, then only the first L-S+1 rows of the rowset are valid. The remaining
rows are empty and have a status of SQL_ROW_NOROW.

See SQLFetchScroll(), Cursor Positioning Rules on page 332 under
SQL_FETCH_NEXT for more information.

After SQLFetch() returns, the current row is the first row of the rowset.

Row Status Array

SQLFetch() sets values in the row status array in the same manner as
SQLFetchScroll(). For more information see SQLFetchScroll(), Row Status on
page 335.

322 CLI Guide and Reference

SQLFetch

Rows Fetched Buffer

SQLFetch() returns the number of rows fetched in the rows fetched buffer in the same
manner as SQLFetchScroll(). For more information see SQLFetchScroll(), Rows
Fetched Buffer on page 336.

Error Handling

Errors and warnings can apply to individual rows or to the entire function. For more
information about diagnostic records see “SQLGetDiagField - Get a Field of Diagnostic
Data” on page 382.

Errors and Warnings on the Entire Function

If an error applies to the entire function, such as SQLSTATE HYT00 (Timeout expired)
or SQLSTATE 24000 (Invalid cursor state), SQLFetch() returns SQL_ERROR and the
applicable SQLSTATE. The contents of the rowset buffers are undefined and the cursor
position is unchanged.

If a warning applies to the entire function, SQLFetch() returns
SQL_SUCCESS_WITH_INFO and the applicable SQLSTATE. The status records for
warnings that apply to the entire function are returned before the status records that
apply to individual rows.

Errors and Warnings in Individual Rows

If an error (such as SQLSTATE 22012 (Division by zero)) or a warning (such as
SQLSTATE 01004 (Data truncated)) applies to a single row, SQLFetch():

¹ Sets the corresponding element of the row status array to SQL_ROW_ERROR for
errors or SQL_ROW_SUCCESS_WITH_INFO for warnings.

¹ Adds zero or more status records containing SQLSTATEs for the error or warning.

¹ Sets the row and column number fields in the status records. If SQLFetch() cannot
determine a row or column number, it sets that number to
SQL_ROW_NUMBER_UNKNOWN or SQL_COLUMN_NUMBER_UNKNOWN
respectively. If the status record does not apply to a particular column, SQLFetch()
sets the column number to SQL_NO_COLUMN_NUMBER.

SQLFetch() continues fetching rows until it has fetched all of the rows in the rowset. It
returns SQL_SUCCESS_WITH_INFO unless an error occurs in every row of the rowset
(not counting rows with status SQL_ROW_NOROW), in which case it returns
SQL_ERROR. In particular, if the rowset size is 1 and an error occurs in that row,
SQLFetch() returns SQL_ERROR.

SQLFetch() returns the status records in row number order. That is, it returns all status
records for unknown rows (if any), then all status records for the first row (if any), then
all status records for the second row (if any), and so on. The status records for each
individual row are ordered according to the normal rules for ordering status records; for
more information, see SQLGetDiagField(), Sequence of Status Records on page 388.

 Chapter 5. Functions 323

SQLFetch

Descriptors and SQLFetch

The following sections describe how SQLFetch() interacts with descriptors.

Argument Mappings

The driver does not set any descriptor fields based on the arguments of SQLFetch().

Other Descriptor Fields

The following descriptor fields are used by SQLFetch():

Table 63. Descriptor Fields

Descriptor field Desc. Location Set through

SQL_DESC_ARRAY_SIZE ARD header SQL_ATTR_ROW_ARRAY_SIZE statement
attribute

SQL_DESC_ARRAY_STATUS_PTR IRD header SQL_ATTR_ROW_STATUS_PTR statement
attribute

SQL_DESC_BIND_OFFSET_PTR ARD header SQL_ATTR_ROW_BIND_OFFSET_PTR
statement attribute

SQL_DESC_BIND_TYPE ARD header SQL_ATTR_ROW_BIND_TYPE statement
attribute

SQL_DESC_COUNT ARD header ColumnNumber argument of SQLBindCol()

SQL_DESC_DATA_PTR ARD records TargetValuePtr argument of SQLBindCol()

SQL_DESC_INDICATOR_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH ARD records BufferLength argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_ROWS_PROCESSED_PTR IRD header SQL_ATTR_ROWS_FETCHED_PTR
statement attribute

SQL_DESC_TYPE ARD records TargetType argument in SQLBindCol()

All descriptor fields can also be set through SQLSetDescField().

Separate Length and Indicator Buffers

Applications can bind a single buffer or two separate buffers to be used to hold length
and indicator values. When an application calls SQLBindCol(),
SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR fields of the
ARD are set to the same address, which is passed in the StrLen_or_IndPtr argument.
When an application calls SQLSetDescField() or SQLSetDescRec(), it can set these two
fields to different addresses.

SQLFetch() determines whether the application has specified separate l ength and
indicator buffers. In this case, when the data is not NULL, SQLFetch() sets the indicator
buffer to 0 and returns the length in the length buffer. When the data is NULL,

324 CLI Guide and Reference

SQLFetch

SQLFetch() sets the indicator buffer to SQL_NULL_DATA and does not modify the
length buffer.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or previous
SQLFetch() calls have fetched all the rows from the result set.

If all the rows have been fetched, the cursor is positioned after the end of the result set.

 Diagnostics

Table 64 (Page 1 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index Column 0 was bound but bookmarks are not being used (the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF).

01004 Data truncated. The data returned for one or more columns was truncated. String
values or numeric values are right truncated.
(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07002 Too many columns. A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to
the data type specified by fCType in SQLBindCol()

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCol() was a null pointer and the value of the
corresponding column is null. There is no means to report
SQL_NULL_DATA. The pointer specified for the argument
IndicatorValue in SQLBindFileToCol() was a null pointer and the
value of the corresponding LOB column is NULL. There is no
means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or more
columns would have caused the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

A value from an arithmetic expression was returned which resulted
in division by zero.

Note: The associated cursor is undefined if this error is detected
by DB2 Universal Database. If the error was detected by
DB2 CLI or by other IBM RDBMSs, the cursor will remain
open and continue to advance on subsequent fetch calls.

 Chapter 5. Functions 325

SQLFetch

Table 64 (Page 2 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

22005 Error in assignment. A returned value was incompatible with the data type of binding.

A returned LOB locator was incompatible with the data type of the
bound column.

22007 Invalid datetime format. Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which resulted
in division by zero.

24000 Invalid cursor state. The previous SQL statement executed on the statement handle
was not a query.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

428A1 Unable to access a file
referenced by a host file
variable.

This can be raised for any of the following scenarios. The
associated reason code in the text identifies the particular error:

¹ 01 - The file name length is invalid or the file name and/or the
path has an invalid format.

¹ 02 - The file option is invalid. It must have one of the following
values:

SQL_FILE_READ -read from an existing file

SQL_FILE_CREATE -create a new file for write

SQL_FILE_OVERWRITE -overwrite an existing file.

If the file does not exist,

create the file.

SQL_FILE_APPEND -append to an existing file.

If the file does not exist,

create the file.

¹ 03 - The file cannot be found.
¹ 04 - The SQL_FILE_CREATE option was specified for a file

with the same name as an existing file.
¹ 05 - Access to the file was denied. The user does not have

permission to open the file.
¹ 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in
exclusive mode.

¹ 07 - Disk full was encountered while writing to the file.
¹ 08 - Unexpected end of file encountered while reading from

the file.
¹ 09 - A media error was encountered while accessing the file.

326 CLI Guide and Reference

SQLFetch

Table 64 (Page 3 of 3). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

54028 The maximum number of
concurrent LOB handles has
been reached.

Maximum LOB locator assigned.

The maximum number of concurrent LOB locators has been
reached. A new locator can not be assigned.

56084 LOB data is not supported in
DRDA.

LOBs not supported on DRDA.

LOB columns cannot either be selected or updated when
connecting to DRDA servers (using DB2 Connect).

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. SQLFetch() was called for an StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() had
been called with the SQL_CLOSE option.

The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToCol()

operation was not valid.

HYC00 Driver not capable. DB2 CLI or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCol() or
SQLBindFileToCol() and the SQL data type of the corresponding
column.

A call to SQLBindCol() was made for a column data type which is
not supported by DB2 CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Chapter 5. Functions 327

SQLFetch

 Restrictions
None.

 Example

328 CLI Guide and Reference

SQLFetch

/* From CLI sample fetch.c */

/* ... */

/***

** main

***/

int main(int argc, char * argv[]) {

SQLHANDLE henv, hdbc, hstmt ;

SQLRETURN rc ;

SQLCHAR * sqlstmt =

"SELECT deptname, location from org where division = 'Eastern'" ;

struct { SQLINTEGER ind ;

SQLCHAR s[15] ;

} deptname, location ;

/* ... */

/* macro to initalize server, uid and pwd */

 INIT_UID_PWD ;

/* allocate an environment handle */

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

/* allocate a connect handle, and connect */

rc = DBconnect(henv, &hdbc) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, deptname.s, 15, &deptname.ind) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, location.s, 15, &location.ind) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Departments in Eastern division:\n") ;

printf("DEPTNAME Location\n") ;

printf("-------------- -------------\n") ;

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

printf("%-14.14s %-14.14s \n", deptname.s, location.s) ;

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Commit the changes. */

 Chapter 5. Functions 329

SQLFetch

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Disconnect and free up CLI resources. */

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\n>Disconnecting\n") ;

rc = SQLDisconnect(hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

return(SQL_SUCCESS) ;

} /* end main */

 References
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLGetData - Get Data From a Column” on page 366

330 CLI Guide and Reference

SQLFetchScroll

SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns

 Purpose

SQLFetchScroll() fetches the specified rowset of data from the result set and returns
data for all bound columns. Rowsets can be specified at an absolute or relative position
or by bookmark.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLFetchScroll (SQLHSTMT StatementHandle,

 SQLSMALLINT FetchOrientation,

 SQLINTEGER FetchOffset);

 Function Arguments

Table 65. SQLFetchScroll Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT FetchOrientation input Type of fetch:

 ¹ SQL_FETCH_NEXT
 ¹ SQL_FETCH_PRIOR
 ¹ SQL_FETCH_FIRST
 ¹ SQL_FETCH_LAST
 ¹ SQL_FETCH_ABSOLUTE
 ¹ SQL_FETCH_RELATIVE
 ¹ SQL_FETCH_BOOKMARK

For more information, see Positioning the Cursor on
page 332.

SQLINTEGER FetchOffset input Number of the row to fetch. The interpretation of this
argument depends on the value of the
FetchOrientation argument. For more information,
see Positioning the Cursor on page 332.

 Usage
Overview

SQLFetchScroll() returns a specified rowset from the result set. Rowsets can be
specified by absolute or relative position or by bookmark. SQLFetchScroll() can be
called only while a result set exists-that is, after a call that creates a result set and
before the cursor over that result set is closed. If any columns are bound, it returns the
data in those columns. If the application has specified a pointer to a row status array or
a buffer in which to return the number of rows fetched, SQLFetchScroll() returns this

 Chapter 5. Functions 331

SQLFetchScroll

information as well. Calls to SQLFetchScroll() can be mixed with calls to SQLFetch()
but cannot be mixed with calls to SQLExtendedFetch().

Positioning the Cursor

When the result set is created, the cursor is positioned before the start of the result set.
SQLFetchScroll() positions the block cursor based on the values of the
FetchOrientation and FetchOffset arguments as shown in the following table. The exact
rules for determining the start of the new rowset are shown in the next section.

FetchOrientation Meaning

SQL_FETCH_NEXT Return the next rowset. This is equivalent to calling
SQLFetch(). SQLFetchScroll() ignores the value of
FetchOffset.

SQL_FETCH_PRIOR Return the prior rowset. SQLFetchScroll() ignores the value of
FetchOffset.

SQL_FETCH_RELATIVE Return the rowset FetchOffset from the start of the current
rowset.

SQL_FETCH_ABSOLUTE Return the rowset starting at row FetchOffset.

SQL_FETCH_FIRST Return the first rowset in the result set. SQLFetchScroll()
ignores the value of FetchOffset.

SQL_FETCH_LAST Return the last complete rowset in the result set.
SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_BOOKMARK Return the rowset FetchOffset rows from the bookmark
specified by the SQL_ATTR_FETCH_BOOKMARK_PTR
statement attribute.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of rows
in the rowset. If the rowset being fetched by SQLFetchScroll() overlaps the end of the
result set, SQLFetchScroll() returns a partial rowset. That is, if S + R-1 is greater than
L, where S is the starting row of the rowset being fetched, R is the rowset size, and L is
the last row in the result set, then only the first L-S+1 rows of the rowset are valid. The
remaining rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() returns, the rowset cursor is positioned on the first row of the
result set.

Cursor Positioning Rules

The following sections describe the exact rules for each value of FetchOrientation.
These rules use the following notation:

FetchOrientation Meaning

Before start The block cursor is positioned before the start of the result set. If
the first row of the new rowset is before the start of the result set,
SQLFetchScroll() returns SQL_NO_DATA.

332 CLI Guide and Reference

SQLFetchScroll

After end The block cursor is positioned after the end of the result set. If the
first row of the new rowset is after the end of the result set,
SQLFetchScroll() returns SQL_NO_DATA.

CurrRowsetStart The number of the first row in the current rowset.

LastResultRow The number of the last row in the result set.

RowsetSize The rowset size.

FetchOffset The value of the FetchOffset argument.

BookmarkRow The row corresponding to the bookmark specified by the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

SQL_FETCH_NEXT rules:

SQL_FETCH_PRIOR rules:

a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE rules:

Table 66. SQL_FETCH_NEXT Rules:

Condition First row of new rowset

Before start 1

CurrRowsetStart + RowsetSize <= LastResultRow CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow After end

After end After end

Table 67. SQL_FETCH_PRIOR Rules:

Condition First row of new rowset

Before start Before start

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize 1 a

CurrRowsetStart > RowsetSize CurrRowsetStart - RowsetSize

After end AND LastResultRow < RowsetSize 1 a

After end AND LastResultRow >= RowsetSize LastResultRow - RowsetSize + 1

Table 68 (Page 1 of 2). SQL_FETCH_RELATIVE Rules:

Condition First row of new rowset

Before start OR After end -- a

CurrRowsetStart = 1 AND FetchOffset < 0 Before start

 Chapter 5. Functions 333

SQLFetchScroll

a SQLFetchScroll() returns the same rowset as if it was called with
FetchOrientation set to SQL_FETCH_ABSOLUTE. For more information, see the
“SQL_FETCH_ABSOLUTE” section.
b SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE rules:

a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST rules:

SQL_FETCH_LAST rules:

Table 68 (Page 2 of 2). SQL_FETCH_RELATIVE Rules:

Condition First row of new rowset

CurrRowsetStart + FetchOffset < 1 AND |FetchOffset|
> RowsetSize

Before start

CurrRowsetStart + FetchOffset < 1 AND |FetchOffset|
<= RowsetSize

1 b

1 <= CurrRowsetStart + FetchOffset <=
LastResultRow

CurrRowsetStart + FetchOffset

CurrRowsetStart + FetchOffset > LastResultRow After end

Table 69. SQL_FETCH_ABSOLUTE Rules:

Condition First row of new rowset

FetchOffset < 0 AND |FetchOffset| <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset < 0 AND |FetchOffset| > LastResultRow
AND |FetchOffset| > RowsetSize

Before start

FetchOffset < 0 AND |FetchOffset| > LastResultRow
AND |FetchOffset| <= RowsetSize

1 a

FetchOffset = 0 Before start

1 <= FetchOffset <= LastResultRow FetchOffset

FetchOffset > LastResultRow After end

Table 70. SQL_FETCH_FIRST Rules:

Condition First row of new rowset

Any 1

334 CLI Guide and Reference

SQLFetchScroll

SQL_FETCH_BOOKMARK rules:

Returning Data in Bound Columns

SQLFetchScroll() returns data in bound columns in the same way as SQLFetch(). For
more information see “SQLFetch - Fetch Next Row” on page 320.

If no columns are bound, SQLFetchScroll() does not return data but does move the
block cursor to the specified position. As with SQLFetch(), you can use SQLGetData() to
retrieve the information in this case.

Buffer Addresses

SQLFetchScroll() uses the same formula to determine the address of data and
length/indicator buffers as SQLFetch(). For more information, see “Buffer Addresses” in
SQLBindCol().

Row Status Array

The row status array is used to return the status of each row in the rowset. The
address of this array is specified with the SQL_ATTR_ROW_STATUS_PTR statement
attribute. The array is allocated by the application and must have as many elements as
are specified by the SQL_ATTR_ROW_ARRAY_SIZE statement attribute. Its values are
set by SQLFetch(), SQLFetchScroll() SQLSetPos() (except when they have been called
after the cursor has been positioned by SQLExtendedFetch()). If the value of the
SQL_ATTR_ROW_STATUS_PTR statement attribute is a null pointer, these functions
do not return the row status.

The contents of the row status array buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

Table 71. SQL_FETCH_LAST Rules:

Condition First row of new rowset

RowsetSize <= LastResultRow LastResultRow - RowsetSize + 1

RowsetSize > LastResultRow 1

Table 72. SQL_FETCH_BOOKMARK Rules:

Condition First row of new rowset

BookmarkRow + FetchOffset < 1 Before start

1 <= BookmarkRow + FetchOffset <= LastResultRow BookmarkRow +FetchOffset

BookmarkRow + FetchOffset > LastResultRow After end

 Chapter 5. Functions 335

SQLFetchScroll

Row status array value Description

SQL_ROW_SUCCESS The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO
The row was successfully fetched. However, a warning
was returned about the row.

SQL_ROW_ERROR An error occurred while fetching the row.

SQL_ROW_NOROW The rowset overlapped the end of the result set and no
row was returned that corresponded to this element of the
row status array.

ODBC defines the following values, but DB2 CLI does not return them:

 ¹ SQL_ROW_UPDATED
 ¹ SQL_ROW_DELETED
 ¹ SQL_ROW_ADDED
 ¹ SQL_ROW_UPDATED

Rows Fetched Buffer

The rows fetched buffer is used to return the number of rows fetched, including those
rows for which no data was returned because an error occurred while they were being
fetched. In other words, it is the number of rows for which the value in the row status
array is not SQL_ROW_NOROW. The address of this buffer is specified with the
SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The buffer is allocated by the
application. It is set by SQLFetch() and SQLFetchScroll(). If the value of the
SQL_ATTR_ROWS_FETCHED_PTR statement attribute is a null pointer, these
functions do not return the number of rows fetched. To determine the number of the
current row in the result set, an application can call SQLGetStmtAttr() with the
SQL_ATTR_ROW_NUMBER attribute.

The contents of the rows fetched buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO,
except when SQL_NO_DATA is returned, in which case the value in the rows fetched
buffer is set to 0.

Error Handling

SQLFetchScroll() returns errors and warnings in the same manner as SQLFetch(); for
more information see SQLFetch(), Error Handling on page 323. SQLExtendedFetch()
returns errors in the same manner as SQLFetch() with the following exceptions:

¹ When a warning occurs that applies to a particular row in the rowset,
SQLExtendedFetch() sets the corresponding entry in the row status array to
SQL_ROW_SUCCESS, not SQL_ROW_SUCCESS_WITH_INFO.

¹ If errors occur in every row in the rowset, SQLExtendedFetch() returns
SQL_SUCCESS_WITH_INFO, not SQL_ERROR.

¹ In each group of status records that applies to an individual row, the first status
record returned by SQLExtendedFetch() must contain SQLSTATE 01S01 (Error in

336 CLI Guide and Reference

SQLFetchScroll

row); SQLFetchScroll() does not return this SQLSTATE. Note that if
SQLExtendedFetch() is unable to return additional SQLSTATEs, it still must return
this SQLSTATE.

Descriptors and SQLFetchScroll()

SQLFetchScroll() interacts with descriptors in the same manner as SQLFetch(). For
more information see SQLFetch(), Descriptors and SQLFetch on page 324.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NO_DATA
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
The return code associated with each SQLSTATE value is SQL_ERROR, unless noted
otherwise. If an error occurs on a single column, SQLGetDiagField() can be called with
a DiagIdentifier of SQL_DIAG_COLUMN_NUMBER to determine the column the error
occurred on; and SQLGetDiagField() can be called with a DiagIdentifier of
SQL_DIAG_ROW_NUMBER to determine the row containing that column.

Table 73 (Page 1 of 3). SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. String or binary data returned for a column resulted in the
truncation of non-blank character or non-NULL binary data. String
values are right truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function
returns SQL_SUCCESS_WITH_INFO.) (This SQLSTATE is only
returned when connected to DB2 CLI v2.)

01S06 Attempt to fetch before the
result set returned the first
rowset.

The requested rowset overlapped the start of the result set when
the current position was beyond the first row, and either
FetchOrientation was SQL_PRIOR, or FetchOrientation was
SQL_RELATIVE with a negative FetchOffset whose absolute
value was less than or equal to the current
SQL_ATTR_ROW_ARRAY_SIZE. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S07 Fractional truncation. The data returned for a column was truncated. For numeric data
types, the fractional part of the number was truncated. For time,
timestamp, and interval data types containing a time component,
the fractional portion of the time was truncated.

 Chapter 5. Functions 337

SQLFetchScroll

Table 73 (Page 2 of 3). SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

07002 Too many columns. A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006 Invalid conversion. A data value of a column in the result set could not be converted
to the C data type specified by TargetType in SQLBindCol().

07009 Invalid descriptor index. Column 0 was bound and the SQL_USE_BOOKMARKS statement
attribute was set to SQL_UB_OFF.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

22001 String data right truncation. A variable-length bookmark returned for a row was truncated.

22002 Invalid output or indicator
buffer specified.

NULL data was fetched into a column whose StrLen_or_IndPtr set
by SQLBindCol() (or SQL_DESC_INDICATOR_PTR set by
SQLSetDescField() or SQLSetDescRec()) was a null pointer.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or more
bound columns would have caused the whole (as opposed to
fractional) part of the number to be truncated.

22007 Invalid datetime format. A character column in the result set was bound to a date, time, or
timestamp C structure, and a value in the column was,
respectively, an invalid date, time, or timestamp.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which resulted
in division by zero.

22018 Invalid character value for
cast specification.

A character column in the result set was bound to a character C
buffer and the column contained a character for which there was
no representation in the character set of the buffer. A character
column in the result set was bound to an approximate numeric C
buffer and a value in the column could not be cast to a valid
approximate numeric value. A character column in the result set
was bound to an exact numeric C buffer and a value in the
column could not be cast to a valid exact numeric value. A
character column in the result set was bound to a datetime or
interval C buffer and a value in the column could not be cast to a
valid datetime or interval value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set
was associated with the StatementHandle.

40001 Transaction rollback. The transaction in which the fetch was executed was terminated
to prevent deadlock.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

338 CLI Guide and Reference

SQLFetchScroll

Table 73 (Page 3 of 3). SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation was cancelled Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The
function was called without first calling SQLExecDirect(),
SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

SQLFetchScroll() was called for the StatementHandle after
SQLFetch() was called, and was connected to a DB2 v2 or earlier
server, and either before SQLFreeStmt() was called with the
SQL_CLOSE option, or before SQLMoreResults() was called.

SQLFetchScroll() was called for a StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() with
SQL_CLOSE was called.

HY106 Fetch type out of range. The value specified for the argument FetchOrientation was invalid.

The argument FetchOrientation was SQL_FETCH_BOOKMARK,
and the SQL_ATTR_USE_BOOKMARKS statement attribute was
set to SQL_UB_OFF.

The value of the SQL_CURSOR_TYPE statement attribute was
SQL_CURSOR_FORWARD_ONLY and the value of argument
FetchOrientation was not SQL_FETCH_NEXT.

HY107 Row value out of range. The value specified with the SQL_ATTR_CURSOR_TYPE
statement attribute was SQL_CURSOR_KEYSET_DRIVEN, but
the value specified with the SQL_ATTR_KEYSET_SIZE statement
attribute was greater than 0 and less than the value specified with
the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY111 Invalid bookmark value. The argument FetchOrientation was SQL_FETCH_BOOKMARK
and the bookmark pointed to by the value in the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was
not valid or was a null pointer.

HYC00 Driver not capable. The specified fetch type is not supported.

The conversion specified by the combination of the TargetType in
SQLBindCol() and the SQL data type of the corresponding column
is not supported.

 Chapter 5. Functions 339

SQLFetchScroll

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLDescribeCol - Return a Set of Attributes for a Column” on page 276
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLNumResultCols - Get Number of Result Columns” on page 478
¹ “SQLSetPos - Set the Cursor Position in a Rowset” on page 581
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

340 CLI Guide and Reference

SQLForeignKeys

SQLForeignKeys - Get the List of Foreign Key Columns

 Purpose

SQLForeignKeys() returns information about foreign keys for the specified table. The
information is returned in an SQL result set which can be processed using the same
functions that are used to retrieve a result generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLForeignKeys (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR *FAR PKCatalogName, /* szPkCatalogName */

SQLSMALLINT NameLength1, /* cbPkCatalogName */

SQLCHAR *FAR PKSchemaName, /* szPkSchemaName */

SQLSMALLINT NameLength2, /* cbPkSchemaName */

SQLCHAR *FAR PKTableName, /* szPkTableName */

SQLSMALLINT NameLength3, /* cbPkTableName */

SQLCHAR *FAR FKCatalogName, /* szFkCatalogName */

SQLSMALLINT NameLength4, /* cbFkCatalogName */

SQLCHAR *FAR FKSchemaName, /* szFkSchemaName */

SQLSMALLINT NameLength5, /* cbFkSchemaName */

SQLCHAR *FAR FKTableName, /* szFkTableName */

SQLSMALLINT NameLength6); /* cbFkTableName */

 Function Arguments

Table 74 (Page 1 of 2). SQLForeignKeys Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * PKCatalogName input Catalog qualifier of the primary key table. This must
be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 input Length of PKCatalogName. This must be set to 0.

SQLCHAR * PKSchemaName input Schema qualifier of the primary key table.

SQLSMALLINT NameLength2 input Length of PKSchemaName

SQLCHAR * PKTableName input Name of the table name containing the primary key.

SQLSMALLINT NameLength3 input Length of PKTableName

SQLCHAR * FKCatalogName input Catalog qualifier of the table containing the foreign
key. This must be a NULL pointer or a zero length
string.

SQLSMALLINT NameLength4 input Length of FKCatalogName. This must be set to 0.

SQLCHAR * FKSchemaName input Schema qualifier of the table containing the foreign
key.

SQLSMALLINT NameLength5 input Length of FKSchemaName

 Chapter 5. Functions 341

SQLForeignKeys

Table 74 (Page 2 of 2). SQLForeignKeys Arguments

Data Type Argument Use Description

SQLCHAR * FKTableName input Name of the table containing the foreign key.

SQLSMALLINT NameLength6 input Length of FKTableName

 Usage
If PKTableName contains a table name, and FKTableName is an empty string,
SQLForeignKeys() returns a result set containing the primary key of the specified table
and all of the foreign keys (in other tables) that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string,
SQLForeignKeys() returns a result set containing all of the foreign keys in the specified
table and the primary keys (in other tables) to which they refer.

If both PKTableName and FKTableName contain table names, SQLForeignKeys()

returns the foreign keys in the table specified in FKTableName that refer to the primary
key of the table specified in PKTableName. This should be one key at the most.

If the schema qualifier argument associated with a table name is not specified, then the
schema name defaults to the one currently in effect for the current connection.

Table 75 lists the columns of the result set generated by the SQLForeignKeys() call. If
the foreign keys associated with a primary key are requested, the result set is ordered
by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and ORDINAL_POSITION.
If the primary keys associated with a foreign key are requested, the result set is
ordered by PKTABLE_CAT, PKTABLE_SCHEM, PKTABLE_NAME, and
ORDINAL_POSITION.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the associated TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 75 (Page 1 of 2). Columns Returned By SQLForeignKeys

Column Number/Name Data Type Description

1 PKTABLE_CAT VARCHAR(128) This is always NULL.

2 PKTABLE_SCHEM VARCHAR(128) The name of the schema containing PKTABLE_NAME.

342 CLI Guide and Reference

SQLForeignKeys

Table 75 (Page 2 of 2). Columns Returned By SQLForeignKeys

Column Number/Name Data Type Description

3 PKTABLE_NAME VARCHAR(128)
not NULL

Name of the table containing the primary key.

4 PKCOLUMN_NAME VARCHAR(128)
not NULL

Primary key column name.

5 FKTABLE_CAT VARCHAR(128) This is always NULL.

6 FKTABLE_SCHEM VARCHAR(128) The name of the schema containing FKTABLE_NAME.

7 FKTABLE_NAME VARCHAR(128)
not NULL

The name of the table containing the Foreign key.

8 FKCOLUMN_NAME VARCHAR(128)
not NULL

Foreign key column name.

9 ORDINAL_POSITION SMALLINT
not NULL

The ordinal position of the column in the key, starting at 1.

10 UPDATE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation
is UPDATE:

 ¹ SQL_RESTRICT
 ¹ SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either
RESTRICT or SQL_NO_ACTION. However, ODBC applications
may encounter the following UPDATE_RULE values when
connected to non-IBM RDBMSs:

 ¹ SQL_CASCADE
 ¹ SQL_SET_NULL

11 DELETE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation
is DELETE:

 ¹ SQL_CASCADE
 ¹ SQL_NO_ACTION
 ¹ SQL_RESTRICT
 ¹ SQL_SET_DEFAULT
 ¹ SQL_SET_NULL

12 FK_NAME VARCHAR(128) Foreign key identifier. NULL if not applicable to the data source.

13 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

14 DEFERRABILITY SMALLINT One of:

 ¹ SQL_INITIALLY_DEFERRED
 ¹ SQL_INITIALLY_IMMEDIATE
 ¹ SQL_NOT_DEFERRABLE

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLForeignKeys() result set in ODBC.

 Chapter 5. Functions 343

SQLForeignKeys

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 76. SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. The arguments PKTableName and FKTableName were both
NULL pointers.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

The length of the table or owner name is greater than the
maximum length supported by the server. Refer to “SQLGetInfo -
Get General Information” on page 402.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

344 CLI Guide and Reference

SQLForeignKeys

 Example

 Chapter 5. Functions 345

SQLForeignKeys

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_foreign_keys(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

/* ... */

rc = SQLForeignKeys(hstmt, NULL, 0,

schema, SQL_NTS, tablename, SQL_NTS,

 NULL, 0,

NULL, SQL_NTS, NULL, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) pktable_schem.s, 129,

 &pktable_schem.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) pktable_name.s, 129,

 &pktable_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) pkcolumn_name.s, 129,

 &pkcolumn_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR, (SQLPOINTER) fktable_schem.s, 129,

 &fktable_schem.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) fktable_name.s, 129,

 &fktable_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 8, SQL_C_CHAR, (SQLPOINTER) fkcolumn_name.s, 129,

 &fkcolumn_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 10, SQL_C_SHORT, (SQLPOINTER) &update_rule,

 0, &update_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 11, SQL_C_SHORT, (SQLPOINTER) &delete_rule,

 0, &delete_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 12, SQL_C_CHAR, (SQLPOINTER) fkey_name.s, 129,

 &fkey_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 13, SQL_C_CHAR, (SQLPOINTER) pkey_name.s, 129,

 &pkey_name.ind);

346 CLI Guide and Reference

SQLForeignKeys

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Primary Key and Foreign Keys for %s.%s\n", schema, tablename);

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(" %s %s.%s.%s\n Update Rule ",

pkcolumn_name.s, fktable_schem.s, fktable_name.s, fkcolumn_name.s);

if (update_rule == SQL_RESTRICT) {

printf("RESTRICT "); /* always for IBM DBMSs */

} else {

if (update_rule == SQL_CASCADE) {

printf("CASCADE "); /* non-IBM only */

} else {

printf("SET NULL ");

 }

 }

printf(", Delete Rule: ");

if (delete_rule== SQL_RESTRICT) {

printf("RESTRICT "); /* always for IBM DBMSs */

} else {

if (delete_rule == SQL_CASCADE) {

printf("CASCADE "); /* non-IBM only */

} else {

if (delete_rule == SQL_NO_ACTION) {

printf("NO ACTION "); /* non-IBM only */

} else {

printf("SET NULL ");

 }

 }

 }

 printf("\n");

if (pkey_name.ind > 0) {

printf(" Primary Key Name: %s\n", pkey_name.s);

 }

if (fkey_name.ind > 0) {

printf(" Foreign Key Name: %s\n", fkey_name.s);

 }

 }

 References
¹ “SQLPrimaryKeys - Get Primary Key Columns of A Table” on page 493
¹ “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 614

 Chapter 5. Functions 347

SQLFreeConnect

SQLFreeConnect - Free Connection Handle

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLFreeConnect() has been deprecated and replaced with
SQLFreeHandle(); see “SQLFreeHandle - Free Handle Resources” on page 352
for more information.

Although this version of DB2 CLI continues to support SQLFreeConnect(), we
recommend that you begin using SQLFreeHandle() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLFreeConnect(hdbc);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 Purpose

SQLFreeConnect() invalidates and frees the connection handle. All DB2 CLI resources
associated with the connection handle are freed.

SQLDisconnect() must be called before calling this function.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

 Function Arguments

Table 77. SQLFreeConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

348 CLI Guide and Reference

SQLFreeConnect

 Usage
If this function is called when a connection still exists, SQL_ERROR is returned, and
the connection handle remains valid.

To continue termination, call SQLFreeEnv(), or, if a new connection handle is required,
call SQLAllocConnect().

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 78. SQLFreeConnect SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called prior to SQLDisconnect() for the hdbc.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “SQLFreeHandle - Free Handle Resources” on page 352.

 References
¹ “SQLDisconnect - Disconnect from a Data Source” on page 286
¹ “SQLFreeHandle - Free Handle Resources” on page 352

 Chapter 5. Functions 349

SQLFreeEnv

SQLFreeEnv - Free Environment Handle

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLFreeEnv() has been deprecated and replaced with
SQLFreeHandle(); see “SQLFreeHandle - Free Handle Resources” on page 352
for more information.

Although this version of DB2 CLI continues to support SQLFreeEnv(), we
recommend that you begin using SQLFreeHandle() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLFreeEnv(henv);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 Purpose

SQLFreeEnv() invalidates and frees the environment handle. All DB2 CLI resources
associated with the environment handle are freed.

SQLFreeConnect() must be called before calling this function.

This function is the last DB2 CLI step an application needs to do before terminating.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLFreeEnv (SQLHENV henv);

 Function Arguments

Table 79. SQLFreeEnv Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle

350 CLI Guide and Reference

SQLFreeEnv

 Usage
If this function is called when there is still a valid connection handle, SQL_ERROR is
returned, and the environment handle will remain valid.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 80. SQLFreeEnv SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. There is an hdbc which is in allocated or connected state. Call
SQLDisconnect() and SQLFreeConnect() for the hdbc before calling
SQLFreeEnv().

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Authorization
None.

 Example
Refer to “SQLFreeHandle - Free Handle Resources” on page 352.

 References
¹ “SQLFreeHandle - Free Handle Resources” on page 352

 Chapter 5. Functions 351

SQLFreeHandle

SQLFreeHandle - Free Handle Resources

 Purpose

SQLFreeHandle() frees resources associated with a specific environment, connection,
statement, or descriptor handle.

Note: This function is a generic function for freeing resources. It replaces the Version
2 functions SQLFreeConnect (for freeing a connection handle), and SQLFreeEnv()
(for freeing an environment handle). SQLFreeHandle() also replaces the
Version 2 function SQLFreeStmt() (with the SQL_DROP Option) for freeing a
statement handle.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLFreeHandle (SQLSMALLINT HandleType,

 SQLHANDLE Handle);

 Function Arguments

Table 81. SQLFreeHandle Arguments

Data Type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle().
Must be one of the following values:

 ¹ SQL_HANDLE_ENV
 ¹ SQL_HANDLE_DBC
 ¹ SQL_HANDLE_STMT
 ¹ SQL_HANDLE_DESC

If HandleType is not one of the above values,
SQLFreeHandle() returns SQL_INVALID_HANDLE.

SQLHANDLE Handle input The handle to be freed.

 Usage
SQLFreeHandle() is used to free handles for environments, connections, statements,
and descriptors, as described below.

An application should not use a handle after it has been freed; DB2 CLI does not check
the validity of a handle in a function call.

Freeing an Environment Handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV, an
application must call SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC for all

352 CLI Guide and Reference

SQLFreeHandle

connections allocated under the environment. Otherwise, the call to SQLFreeHandle()
returns SQL_ERROR and the environment and any active connection remains valid.

Freeing a Connection Handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC, an
application must call SQLDisconnect() for the connection. Otherwise, the call to
SQLFreeHandle() returns SQL_ERROR and the connection remains valid.

Freeing a Statement Handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT frees all
resources that were allocated by a call to SQLAllocHandle() with a HandleType of
SQL_HANDLE_STMT. When an application calls SQLFreeHandle() to free a statement
that has pending results, the pending results are deleted. When an application frees a
statement handle, DB2 CLI frees all the automatically generated descriptors associated
with that handle. If there are results pending when SQLFreeHandle() is called, the result
sets are discarded.

Note that SQLDisconnect() automatically drops any statements and descriptors open on
the connection.

Freeing a Descriptor Handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC frees the
descriptor handle in Handle. The call to SQLFreeHandle() does not release any memory
allocated by the application that may be referenced by the deferred fields
(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR) of any descriptor record of Handle. When an
explicitly allocated descriptor handle is freed, all statements that the freed handle had
been associated with revert to their automatically allocated descriptor handle.

Note that SQLDisconnect() automatically drops any statements and descriptors open on
the connection. When an application frees a statement handle, DB2 CLI frees all the
automatically generated descriptors associated with that handle.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

 Diagnostics

 Chapter 5. Functions 353

SQLFreeHandle

Table 82. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The HandleType argument was SQL_HANDLE_DBC, and the
communication link between DB2 CLI and the data source to
which it was trying to connect failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The HandleType argument was SQL_HANDLE_ENV, and at least
one connection was in an allocated or connected state.
SQLDisconnect() and SQLFreeHandle() with a HandleType of
SQL_HANDLE_DBC must be called for each connection before
calling SQLFreeHandle() with a HandleType of
SQL_HANDLE_ENV. The HandleType argument was
SQL_HANDLE_DBC, and the function was called before calling
SQLDisconnect() for the connection.

The HandleType argument was SQL_HANDLE_STMT; an
asynchronously executing function was called on the statement
handle; and the function was still executing when this function was
called.

The HandleType argument was SQL_HANDLE_STMT;
SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. (DM) All subsidiary handles and other resources were
not released before SQLFreeHandle() was called.

HY013 Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, and the function call could not be
processed because the underlying memory objects could not be
accessed, possibly because of low memory conditions.

HY017 Invalid use of an
automatically allocated
descriptor handle.

The Handle argument was set to the handle for an automatically
allocated descriptor or an implementation descriptor.

 Restrictions
None.

 Example
See SQLBrowseConnect() and SQLConnect().

354 CLI Guide and Reference

SQLFreeHandle

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLSetCursorName - Set Cursor Name” on page 540

 Chapter 5. Functions 355

SQLFreeStmt

SQLFreeStmt - Free (or Reset) a Statement Handle

 Purpose

SQLFreeStmt() ends processing on the statement referenced by the statement handle.
Use this function to:

¹ Close a cursor

¹ Disassociate (reset) parameters from application variables and LOB file references

¹ Unbind columns from application variables and LOB file references

¹ To drop the statement handle and free the DB2 CLI resources associated with the
statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the results.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT Option); /* fOption */

 Function Arguments

Table 83. SQLFreeStmt Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT Option input Option which specified the manner of freeing the
statement handle. The option must have one of the
following values:

 ¹ SQL_CLOSE
 ¹ SQL_DROP
 ¹ SQL_UNBIND
 ¹ SQL_RESET_PARAMS

 Usage
SQLFreeStmt() can be called with the following options:

SQL_CLOSE The cursor (if any) associated with the statement handle
(StatementHandle) is closed and all pending results are discarded.
The application can reopen the cursor by calling SQLExecute() with
the same or different values in the application variables (if any) that
are bound to StatementHandle. The cursor name is retained until the
statement handle is dropped or the next successful
SQLSetCursorName() call. If no cursor has been associated with the

356 CLI Guide and Reference

SQLFreeStmt

statement handle, this option has no effect (no warning or error is
generated).

SQLCloseCursor() can also be used to close a cursor.

SQL_DROP DB2 CLI resources associated with the input statement handle are
freed, and the handle is invalidated. The open cursor, if any, is
closed and all pending results are discarded.

This option has been replaced with a call to SQLFreeHandle() with
the HandleType set to SQL_HANDLE_STMT. Although this version
of DB2 CLI continues to support this option, we recommend that you
begin using SQLFreeHandle() in your DB2 CLI programs so that they
conform to the latest standards.

SQL_UNBIND Sets the SQL_DESC_COUNT field of the ARD to 0, releasing all
column buffers bound by SQLBindCol() or SQLBindFileToCol() for
the given StatementHandle. This does not unbind the bookmark
column; to do that, the SQL_DESC_DATA_PTR field of the ARD for
the bookmark column is set to NULL. Note that if this operation is
performed on an explicitly allocated descriptor that is shared by more
than one statement, the operation will affect the bindings of all
statements that share the descriptor.

SQL_RESET_PARAMS
Sets the SQL_DESC_COUNT field of the APD to 0, releasing all
parameter buffers set by SQLBindParameter() or
SQLBindFileToParam() for the given StatementHandle. Note that if
this operation is performed on an explicitly allocated descriptor that is
shared by more than one statement, this operation will affect the
bindings of all the statements that share the descriptor.

SQLFreeStmt() has no effect on LOB locators, call SQLExecDirect() with the FREE
LOCATOR statement to free a locator. Refer to “Using Large Objects” on page 95 for
more information on using LOBs.

In order to reuse a statement handle to execute a different statement when the handle
associated with a query, catalog function or SQLGetTypeInfo() was:

¹ Associated with a query, catalog function or SQLGetTypeInfo(), you must close the
cursor.

¹ Bound with a different number or type of parameters, the parameters must be
reset.

¹ Bound with a different number or type of column bindings, the columns must be
unbound.

Alternatively you may drop the statement handle and allocate a new one.

 Chapter 5. Functions 357

SQLFreeStmt

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if Option is set to SQL_DROP, since
there would be no statement handle to use when SQLError() is called.

 Diagnostics

Table 84. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY092 Option type out of range. The value specified for the argument Option was not
SQL_CLOSE, SQL_DROP, SQL_UNBIND, or
SQL_RESET_PARAMS.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

 Authorization
None.

 Example
Refer to “Example” on page 328.

 References
¹ “SQLAllocHandle - Allocate Handle” on page 185
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

358 CLI Guide and Reference

SQLGetConnectAttr

SQLGetConnectAttr - Get Current Attribute Setting

 Purpose

SQLGetConnectAttr() returns the current setting of a connection attribute.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

 Function Arguments

Table 85. SQLGetConnectAttr Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current
value of the attribute specified by Attribute.

SQLINTEGER BufferLength input ¹ If ValuePtr points to a character string, this
argument should be the length of *ValuePtr.

¹ If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.

¹ If ValuePtr is not a pointer, then BufferLength
should have the value SQL_IS_NOT_POINTER.

¹ If the value in *ValuePtr is a unicode string the
BufferLength argument must be an even
number.

SQLINTEGER *StringLengthPtr output A pointer to a buffer in which to return the total
number of bytes (excluding the null-termination
character) available to return in *ValuePtr. If ValuePtr
is a null pointer, no length is returned. If the attribute
value is a character string, and the number of bytes
available to return is greater than BufferLength minus
the length of the null-termination character, the data
in *ValuePtr is truncated to BufferLength minus the
length of the null-termination character and is
null-terminated by DB2 CLI.

 Chapter 5. Functions 359

SQLGetConnectAttr

 Usage
For a list of attributes that can be set, see “SQLSetConnectAttr - Set Connection
Attributes” on page 519. Note that if Attribute specifies an attribute that returns a string,
ValuePtr must be a pointer to a buffer for the string. The maximum length of the string,
including the null termination character, will be BufferLength bytes.

Depending on the attribute, an application does not need to establish a connection prior
to calling SQLGetConnectAttr(). However, if SQLGetConnectAttr() is called and the
specified attribute does not have a default and has not been set by a prior call to
SQLSetConnectAttr(), SQLGetConnectAttr() will return SQL_NO_DATA.

If Attribute is SQL_ATTR_ TRACE or SQL_ATTR_ TRACEFILE, ConnectionHandle
does not have to be valid, and SQLGetConnectAttr() will not return SQL_ERROR if
ConnectionHandle is invalid. These attributes apply to all connections.
SQLGetConnectAttr() will return SQL_ERROR if another argument is invalid.

While an application can set statement attributes using SQLSetConnectAttr(), an
application cannot use SQLGetConnectAttr() to retrieve statement attribute values; it
must call SQLGetStmtAttr() to retrieve the setting of statement attributes.

The SQL_ATTR_AUTO_IPD connection attribute can be returned by a call to
SQLGetConnectAttr(), but cannot be set by a call to SQLSetConnectAttr().

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NO_DATA
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 86 (Page 1 of 2). SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The the length of
the untruncated string value is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open connection.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

360 CLI Guide and Reference

SQLGetConnectAttr

Table 86 (Page 2 of 2). SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. SQLBrowseConnect() was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than
0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the DB2 CLI
driver, but was not supported by the data source.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLGetStmtAttr - Get Current Setting of a Statement Attribute” on page 453
¹ “SQLSetConnectAttr - Set Connection Attributes” on page 519
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

 Chapter 5. Functions 361

SQLGetConnectOption

SQLGetConnectOption - Return Current Setting of A Connect Option

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLGetConnectOption() has been deprecated and replaced
with SQLGetConnectAttr(); see “SQLGetConnectAttr - Get Current Attribute
Setting” on page 359 for more information.

Although this version of DB2 CLI continues to support SQLGetConnectOption(),
we recommend that you begin using SQLGetConnectAttr() in your DB2 CLI
programs so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

362 CLI Guide and Reference

SQLGetCursorName

SQLGetCursorName - Get Cursor Name

 Purpose

SQLGetCursorName() returns the cursor name associated with the input statement
handle. If a cursor name was explicitly set by calling SQLSetCursorName(), this name
will be returned; otherwise, an implicitly generated name will be returned.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLGetCursorName (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR *FAR CursorName, /* szCursor */

SQLSMALLINT BufferLength, /* cbCursorMax */

SQLSMALLINT *FAR NameLengthPtr); /* pcbCursor */

 Function Arguments

Table 87. SQLGetCursorName Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName output Cursor name

SQLSMALLINT BufferLength input Length of buffer CursorName

SQLSMALLINT * NameLengthPtr output Number of bytes available to return for CursorName

 Usage
SQLGetCursorName() will return the cursor name set explicitly with SQLSetCursorName(),
or if no name was set, it will return the cursor name internally generated by DB2 CLI.

If a name is set explicitly using SQLSetCursorName(), this name will be returned until the
statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR. Cursor
names are always 18 characters or less, and are always unique within a connection.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Chapter 5. Functions 363

SQLGetCursorName

 Diagnostics

Table 88. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in CursorName was longer than the
value in BufferLength, and is truncated to BufferLength - 1 bytes.
The argument NameLengthPtr contains the length of the full
cursor name available for return. The function returns
SQL_SUCCESS_WITH_INFO.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.

 Restrictions
ODBC generated cursor names start with SQL_CUR, DB2 CLI generated cursor names
start with SQLCUR, and X/Open CLI generated cursor names begin with either
SQLCUR or SQL_CUR.

 Example

364 CLI Guide and Reference

SQLGetCursorName

/* From CLI sample getcurs.c */

/* ... */

SQLCHAR * sqlstmt = "SELECT name, job FROM staff "

"WHERE job = 'Clerk' "

"FOR UPDATE OF job" ;

/* ... */

rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

/* Get Cursor of the SELECT statement's handle */

rc = SQLGetCursorName(hstmt1, cursor, 19, &clength) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

/* bind name to first column in the result set */

rc = SQLBindCol(hstmt1, 1, SQL_C_CHAR, name.s, 10, &name.ind) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

/* bind job to second column in the result set */

rc = SQLBindCol(hstmt1, 2, SQL_C_CHAR, job.s, 6, &job.ind) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

printf("Job Change for all clerks\n") ;

while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS) {

printf("Name: %-9.9s Job: %-5.5s \n", name.s, job.s);

printf("Enter new job or return to continue\n");

 gets((char *)newjob);

if (newjob[0] != '\0') {

 sprintf((char *)updstmt,

"UPDATE staff set job = '%s' where current of %s",

 newjob, cursor);

rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt2, rc2) ;

 }

 }

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

 References
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLPrepare - Prepare a Statement” on page 486
¹ “SQLSetCursorName - Set Cursor Name” on page 540

 Chapter 5. Functions 365

SQLGetData

SQLGetData - Get Data From a Column

 Purpose

SQLGetData() retrieves data for a single column in the current row of the result set. This
is an alternative to SQLBindCol(), which is used to transfer data directly into application
variables or LOB locators on each SQLFetch() or SQLFetchScroll() call. SQLGetData()

can also be used to retrieve large data values in pieces.

SQLFetch() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() or SQLFetchScroll() is called
to retrieve the next row.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLGetData (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */

SQLSMALLINT TargetType, /* fCType */

SQLPOINTER TargetValuePtr, /* rgbValue */

SQLINTEGER BufferLength, /* cbValueMax */

SQLINTEGER *FAR StrLen_or_IndPtr); /* pcbValue */

 Function Arguments

Table 89 (Page 1 of 2). SQLGetData Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number for which the data retrieval is
requested. Result set columns are numbered
sequentially.

¹ Column numbers start at 1 if bookmarks are not
used (SQL_ATTR_USE_BOOKMARKS
statement attribute set to SQL_UB_OFF).

¹ Column numbers start at 0 if bookmarks are
used (the statement attribute set to SQL_UB_ON
or SQL_UB_VARIABLE).

366 CLI Guide and Reference

SQLGetData

Table 89 (Page 2 of 2). SQLGetData Arguments

Data Type Argument Use Description

SQLSMALLINT TargetType input The C data type of the column identifier by
ColumnNumber. The following types are supported:

 ¹ SQL_C_BINARY
 ¹ SQL_C_BIT
 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CHAR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCHAR
 ¹ SQL_C_DBCLOB_LOCATOR
 ¹ SQL_C_DOUBLE
 ¹ SQL_C_FLOAT
 ¹ SQL_C_LONG
 ¹ SQL_C_SHORT
 ¹ SQL_C_TYPE_DATE
 ¹ SQL_C_TYPE_TIME
 ¹ SQL_C_TYPE_TIMESTAMP
 ¹ SQL_C_TINYINT

Specifying SQL_C_DEFAULT results in the data
being converted to its default C data type, refer to
Table 3 on page 28 for more information.

SQLPOINTER TargetValuePtr output Pointer to buffer where the retrieved column data is
to be stored.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by
TargetValuePtr

SQLINTEGER * StrLen_or_IndPtr output Pointer to value which indicates the number of bytes
DB2 CLI has available to return in the TargetValuePtr
buffer. If the data is being retrieved in pieces, this
contains the number of bytes still remaining.

The value is SQL_NULL_DATA if the data value of
the column is null. If this pointer is NULL and
SQLFetch() has obtained a column containing null
data, then this function will fail because it has no
means of reporting this.

If SQLFetch() has fetched a column containing binary
data, then the pointer to StrLen_or_IndPtr must not
be NULL or this function will fail because it has no
other means of informing the application about the
length of the data retrieved in the TargetValuePtr
buffer.

Note: DB2 CLI will provide some performance enhancement if TargetValuePtr is placed consecutively in memory
after StrLen_or_IndPtr

 Chapter 5. Functions 367

SQLGetData

 Usage
SQLGetData() can be used with SQLBindCol() for the same result set, as long as
SQLFetch() and not SQLFetchScroll() is used. The general steps are:

1. SQLFetch() - advances cursor to first row, retrieves first row, transfers data for
bound columns.

2. SQLGetData() - transfers data for the specified column.
3. Repeat step 2 for each column needed.
4. SQLFetch() - advances cursor to next row, retrieves next row, transfers data for

bound columns.
5. Repeat steps 2, 3 and 4 for each row in the result set, or until the result set is no

longer needed.

SQLGetData() can also be used to retrieve long columns if the C data type (TargetType)
is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR, or if TargetType is
SQL_C_DEFAULT and the column type denotes a binary or character string.

Upon each SQLGetData() call, if the data available for return is greater than or equal to
BufferLength, truncation occurs. Truncation is indicated by a function return code of
SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting data truncation. The
application can call SQLGetData() again, with the same ColumnNumber value, to get
subsequent data from the same unbound column starting at the point of truncation. To
obtain the entire column, the application repeats such calls until the function returns
SQL_SUCCESS. The next call to SQLGetData() returns SQL_NO_DATA_FOUND.

Although SQLGetData() can be used for the sequential retrieval of LOB column data,
use the DB2 CLI LOB functions if only a portion of the LOB data or a few sections of
the LOB column data are needed:

1. Bind the column to a LOB locator.
2. Fetch the row.
3. Use the locator in a SQLGetSubString() call, to retrieve the data in pieces

(SQLGetLength() and SQLGetPosition() may also be required in order to determine
the values of some of the arguments).

4. Repeat step 2.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute. The
application can specify that truncation is not to be reported by calling SQLSetStmtAttr()

with SQL_ATTR_MAX_LENGTH and a value for the maximum length to return for any
one column, and by allocating a TargetValuePtr buffer of the same size (plus the
null-terminator). If the column data is larger than the set maximum length,
SQL_SUCCESS will be returned and the maximum length, not the actual length will be
returned in StrLen_or_IndPtr.

To discard the column data part way through the retrieval, the application can call
SQLGetData() with ColumnNumber set to the next column position of interest. To
discard data that has not been retrieved for the entire row, the application should call
SQLFetch() to advance the cursor to the next row; or, if it is not interested in any more
data from the result set, call SQLFreeStmt() to close the cursor.

368 CLI Guide and Reference

SQLGetData

The TargetType input argument determines the type of data conversion (if any) needed
before the column data is placed into the storage area pointed to by TargetValuePtr.

For SQL graphic column data:

¹ The length of the TargetValuePtr buffer (BufferLength) should be a multiple of 2.
The application can determine the SQL data type of the column by first calling
SQLDescribeCol() or SQLColAttribute().

¹ The pointer to StrLen_or_IndPtr must not be NULL since DB2 CLI will be storing
the number of octets stored in TargetValuePtr.

¹ If the data is to be retrieved in piecewise fashion, DB2 CLI will attempt to fill
TargetValuePtr to the nearest multiple of two octets that is still less than or equal to
BufferLength. This means if BufferLength is not a multiple of two, the last byte in
that buffer will be untouched; DB2 CLI will not split a double-byte character.

The contents returned in TargetValuePtr is always null-terminated unless the column
data to be retrieved is binary, or if the SQL data type of the column is graphic (DBCS)
and the C buffer type is SQL_C_CHAR. If the application is retrieving the data in
multiple chunks, it should make the proper adjustments (for example, strip off the
null-terminator before concatenating the pieces back together assuming the null
termination environment attribute is in effect).

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (refer to the diagnostics section).

With the exception of scrollable cursors, applications that use SQLFetchScroll() to
retrieve data should call SQLGetData() only when the rowset size is 1 (equivalent to
issuing SQLFetch()). SQLGetData() can only retrieve column data for a row where the
cursor is currently positioned.

Using SQLGetData() with Scrollable Cursors

SQLGetData() can also be used with scrollable cursors. You can save a pointer to any
row in the result set; a bookmark. The application can then use that bookmark as a
relative position to retrieve a rowset of information.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you can
obtain the bookmark value from column 0 using SQLGetData(). In most cases you will
not want to bind column 0 and retrieve the bookmark value for every row, but use
SQLGetData() to retrieve the bookmark value for the specific row you require.

See “Scrollable Cursors” on page 51 for more information.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR

 Chapter 5. Functions 369

SQLGetData

 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If this
is the case, StrLen_or_IndPtr will contain 0, and TargetValuePtr will contain a null
terminator.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since the
result is undefined.

 Diagnostics

Table 90 (Page 1 of 2). SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (ColumnNumber) was
truncated. String or numeric values are right truncated.
SQL_SUCCESS_WITH_INFO is returned.

07006 Invalid conversion. The data value cannot be converted to the C data type specified
by the argument TargetType.

The function has been called before for the same ColumnNumber
value but with a different TargetType value.

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument StrLen_or_IndPtr was
a null pointer and the value of the column is null. There is no
means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for the column
would have caused the whole part of the number to be truncated.

22005 Error in assignment. A returned value was incompatible with the data type denoted by
the argument TargetType.

22007 Invalid datetime format. Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on
a row.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

370 CLI Guide and Reference

SQLGetData

Table 90 (Page 2 of 2). SQLGetData SQLSTATEs

SQLSTATE Description Explanation

HY002 Invalid column number. The specified column was less than 0 or greater than the number
of result columns.

The specified column was 0, but the application did not enable
bookmarks (by setting the SQL_ATTR_USE_BOOKMARKS
statement attribute).

SQLExtendedFetch() was called for this result set.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY009 Invalid argument value. The argument TargetValuePtr was a null pointer.

The argument StrLen_or_IndPtr was a null pointer and the column
SQL data type was graphic (DBCS) and fcType was set to
SQL_C_CHAR.

HY010 Function sequence error. The specified StatementHandle was not in a cursor positioned
state. The function was called without first calling SQLFetch().

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value of the argument BufferLength is less than 0 and the
argument TargetType is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is
one of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).

HYC00 Driver not capable. The SQL data type for the specified data type is recognized but
not supported by DB2 CLI.

The requested conversion from the SQL data type to the
application data TargetType cannot be performed by DB2 CLI or
the data source.

The column was bound using SQLBindFileToCol().

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Chapter 5. Functions 371

SQLGetData

 Restrictions
None.

 Example
Refer to “Example” on page 328 for a comparison between using bound columns and
using SQLGetData().

/* From CLI sample getdata.c */

/* ... */

SQLCHAR * sqlstmt = "SELECT deptname, location from org "

"WHERE division = 'Eastern'" ;

/* ... */

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Departments in Eastern division:\n") ;

printf("DEPTNAME Location\n") ;

printf("-------------- -------------\n") ;

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

rc = SQLGetData(hstmt, 1, SQL_C_CHAR, deptname.s,

 15, &(deptname.ind));

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLGetData(hstmt, 2, SQL_C_CHAR, location.s,

 15, &(location.ind));

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("%-14.14s %-14.14s \n", deptname.s, location.s);

 }

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLGetSubString - Retrieve Portion of A String Value” on page 457

372 CLI Guide and Reference

SQLGetDescField

SQLGetDescField - Get Single Field Settings of Descriptor Record

 Purpose

SQLGetDescField() returns the current settings of a single field of a descriptor record.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetDescField (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT FieldIdentifier,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

 Function Arguments

Table 91 (Page 1 of 2). SQLGetDescField Arguments

Data Type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record from which the
application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. If the FieldIdentifier argument
indicates a field of the descriptor header record,
RecNumber must be 0. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescField() will return the default values of
the fields. For more information, see
SQLSetDescField() Initialization of Descriptor Fields
on page 546.

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to
be returned. For more information, see
SQLSetDescField() FieldIdentifier Arguments on
page 553.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the descriptor
information. The data type depends on the value of
FieldIdentifier.

 Chapter 5. Functions 373

SQLGetDescField

Table 91 (Page 2 of 2). SQLGetDescField Arguments

Data Type Argument Use Description

SQLINTEGER BufferLength input ¹ If ValuePtr points to a character string, this
argument should be the length of *ValuePtr.

¹ If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.

¹ If ValuePtr is not a pointer, then BufferLength
should have the value SQL_IS_NOT_POINTER.

¹ If the value in *ValuePtr is of a unicode data type
the BufferLength argument must be an even
number.

SQLSMALLINT *StringLengthPtr output Pointer to the total number of bytes (excluding the
number of bytes required for the null termination
character) available to return in *ValuePtr.

 Usage
An application can call SQLGetDescField() to return the value of a single field of a
descriptor record. A call to SQLGetDescField() can return the setting of any field in any
descriptor type, including header fields, record fields, and bookmark fields. An
application can obtain the settings of multiple fields in the same or different descriptors,
in arbitrary order, by making repeated calls to SQLGetDescField(). SQLGetDescField()

can also be called to return DB2 CLI defined descriptor fields.

For performance reasons, an application should not call SQLGetDescField() for an IRD
before executing a statement.

The settings of multiple fields that describe the name, data type, and storage of column
or parameter data can also be retrieved in a single call to SQLGetDescRec().
SQLGetStmtAttr() can be called to return the setting of a single field in the descriptor
header that is also a statement attribute.

When an application calls SQLGetDescField() to retrieve the value of a field that is
undefined for a particular descriptor type, the function returns SQLSTATE HY091
(Invalid descriptor field identifier). When an application calls SQLGetDescField() to
retrieve the value of a field that is defined for a particular descriptor type, but has no
default value and has not been set yet, the function returns SQL_SUCCESS but the
value returned for the field is undefined. For more information, see “Initialization of
Descriptor Fields” in SQLSetDescField().

The SQL_DESC_ALLOC_TYPE header field is available as read-only. This field is
defined for all types of descriptors.

The following record fields are available as read-only. Each of these fields is defined
either for the IRD only, or for both the IRD and the IPD.

374 CLI Guide and Reference

SQLGetDescField

SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LITERAL_SUFFIX

SQL_DESC_BASE_COLUMN_NAME SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_CASE_SENSITIVE SQL_DESC_SCHEMA_NAME

SQL_DESC_CATALOG_NAME SQL_DESC_SEARCHABLE

SQL_DESC_DISPLAY_SIZE SQL_DESC_TABLE_NAME

SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TYPE_NAME

SQL_DESC_LABEL SQL_DESC_UNSIGNED

SQL_DESC_LITERAL_PREFIX SQL_DESC_UPDATABLE

For a description of the above fields, and fields that can be set in a descriptor header
or record, see the SQLSetDescField() section. For more information on descriptors, see
“Using Descriptors” on page 78.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_NO_DATA
 ¹ SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement is
in the prepared or executed state, but there was no open cursor associated with it.

 Diagnostics

Table 92 (Page 1 of 2). SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

HY013 Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the function
call could not be processed because the underlying memory
objects could not be accessed, possibly because of low memory
conditions.

HY021 Inconsistent descriptor
information.

The descriptor information checked during a consistency check
was not consistent. For more information, see SQLSetDescField()
Consistency Checks on page 565.

01004 Data truncated. The buffer *ValuePtr was not large enough to return the entire
descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

 Chapter 5. Functions 375

SQLGetDescField

Table 92 (Page 2 of 2). SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index. The value specified for the RecNumber argument was less than 1,
the SQL_ATTR_USE_BOOKMARK statement attribute was
SQL_UB_OFF, and the field was not a header field or a DB2 CLI
defined field.

The FieldIdentifier argument was a record field, and the
RecNumber argument was 0.

The RecNumber argument was less than 0, and the field was not
a header field or a DB2 CLI defined field.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate the memory required to support
execution or completion of the function.

HY007 Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for
which SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HY091 Descriptor type out of range. FieldIdentifier was undefined for the DescriptorHandle.

The value specified for the RecNumber argument was greater
than the value in the SQL_DESC_COUNT field.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

376 CLI Guide and Reference

SQLGetDescField

 References
¹ “SQLGetDescRec - Get Multiple Field Settings of Descriptor Record” on page 378
¹ “SQLSetDescField - Set a Single Field of a Descriptor Record” on page 544
¹ “SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data”

on page 568

 Chapter 5. Functions 377

SQLGetDescRec

SQLGetDescRec - Get Multiple Field Settings of Descriptor Record

 Purpose

SQLGetDescRec() returns the current settings of multiple fields of a descriptor record.
The fields returned describe the name, data type, and storage of column or parameter
data.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetDescRec (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLCHAR *Name,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *StringLengthPtr,

 SQLSMALLINT *TypePtr,

 SQLSMALLINT *SubTypePtr,

 SQLINTEGER *LengthPtr,

 SQLSMALLINT *PrecisionPtr,

 SQLSMALLINT *ScalePtr,

 SQLSMALLINT *NullablePtr);

 Function Arguments

Table 93 (Page 1 of 2). SQLGetDescRec Arguments

Data Type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record from which the
application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. The RecNumber argument must be
less than or equal to the value of
SQL_DESC_COUNT. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescRec() will return the default values of the
fields (for more information, see “Initialization of
Descriptor Fields” in SQLSetDescField()).

SQLCHAR Name output A pointer to a buffer in which to return the
SQL_DESC_NAME field for the descriptor record.

SQLINTEGER BufferLength input Length of the *Name buffer, in bytes.

378 CLI Guide and Reference

SQLGetDescRec

Table 93 (Page 2 of 2). SQLGetDescRec Arguments

Data Type Argument Use Description

SQLSMALLINT *StringLengthPtr output A pointer to a buffer in which to return the number of
bytes of data available to return in the *Name buffer,
excluding the null termination character. If the
number of bytes was greater than or equal to
BufferLength, the data in *Name is truncated to
BufferLength minus the length of a null termination
character, and is null terminated by DB2 CLI.

SQLSMALLINT TypePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_TYPE field for the descriptor record.

SQLSMALLINT SubTypePtr output For records whose type is SQL_DATETIME or
SQL_INTERVAL, this is a pointer to a buffer in which
to return the value of the
SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLINTEGER LengthPtr output A pointer to a buffer in which to return the value of
the SQL_DESC_OCTET_LENGTH field for the
descriptor record.

SQLSMALLINT PrecisionPtr output A pointer to a buffer in which to return the value of
the SQL_DESC_PRECISION field for the descriptor
record.

SQLSMALLINT ScalePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_SCALE field for the descriptor
record.

SQLSMALLINT *NullablePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_NULLABLE field for the descriptor
record.

 Usage
An application can call SQLGetDescRec() to retrieve the values of the following fields for
a single column or parameter:

 ¹ SQL_DESC_NAME
 ¹ SQL_DESC_TYPE
¹ SQL_DESC_DATETIME_INTERVAL_CODE (for records whose type is

SQL_DATETIME)
 ¹ SQL_DESC_OCTET_LENGTH
 ¹ SQL_DESC_PRECISION
 ¹ SQL_DESC_SCALE
 ¹ SQL_DESC_NULLABLE

SQLGetDescRec() does not retrieve the values for header fields.

An application can inhibit the return of a field's setting by setting the argument
corresponding to the field to a null pointer. When an application calls SQLGetDescRec()
to retrieve the value of a field that is undefined for a particular descriptor type, the
function returns SQL_SUCCESS but the value returned for the field is undefined. For

 Chapter 5. Functions 379

SQLGetDescRec

example, calling SQLGetDescRec() for the SQL_DESC_NAME or
SQL_DESC_NULLABLE field of an APD or ARD will return SQL_SUCCESS but an
undefined value for the field.

When an application calls SQLGetDescRec() to retrieve the value of a field that is defined
for a particular descriptor type, but has no default value and has not been set yet, the
function returns SQL_SUCCESS but the value returned for the field is undefined.

The values of fields can also be retrieved individually by a call to SQLGetDescField().
For a description of the fields in a descriptor header or record, see “SQLSetDescField -
Set a Single Field of a Descriptor Record” on page 544. For more information on
descriptors, see “Using Descriptors” on page 78.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_NO_DATA
 ¹ SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement in
in the prepared or executed state, but there was no open cursor associated with it.

 Diagnostics

Table 94 (Page 1 of 2). SQLGetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *Name was not large enough to return the entire
descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The RecNumber argument was set to 0 and the DescriptorHandle
argument was an IPD handle.

The RecNumber argument was set to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

380 CLI Guide and Reference

SQLGetDescRec

Table 94 (Page 2 of 2). SQLGetDescRec SQLSTATEs

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate the memory required to support
execution or completion of the function.

HY007 Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for
which SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data”

on page 568
¹ “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

 Chapter 5. Functions 381

SQLGetDiagField

SQLGetDiagField - Get a Field of Diagnostic Data

 Purpose

SQLGetDiagField() returns the current value of a field of a diagnostic data structure,
associated with a specific handle, that contains error, warning, and status information.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetDiagField (SQLSMALLINT HandleType,

 SQLHANDLE Handle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT DiagIdentifier,

 SQLPOINTER DiagInfoPtr,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *StringLengthPtr);

 Function Arguments

Table 95 (Page 1 of 2). SQLGetDiagField Arguments

Data Type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of
handle for which diagnostics are desired. Must be
one of the following:

 ¹ SQL_HANDLE_ENV
 ¹ SQL_HANDLE_DBC
 ¹ SQL_HANDLE_STMT
 ¹ SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the type
indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the application
seeks information. Status records are numbered
from 1. If the DiagIdentifier argument indicates any
field of the diagnostics header record, RecNumber
must be 0. If not, it should be greater than 0.

SQLSMALLINT DiagIdentifier input Indicates the field of the diagnostic data structure
whose value is to be returned. For more information,
see DiagIdentifier Argument on page 384.

SQLPOINTER DiagInfoPtr output Pointer to a buffer in which to return the diagnostic
information. The data type depends on the value of
DiagIdentifier.

382 CLI Guide and Reference

SQLGetDiagField

Table 95 (Page 2 of 2). SQLGetDiagField Arguments

Data Type Argument Use Description

SQLINTEGER BufferLength input If DiagInfoPtr points to a character string, this
argument should be the length of *ValuePtr. If
ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER. If ValuePtr is not a pointer, then
BufferLength should have the value
SQL_IS_NOT_POINTER. If the value in *DiagInfoPtr
is a unicode string the BufferLength argument must
be an even number.

SQLSMALLINT *StringLengthPtr output Pointer to a buffer in which to return the total number
of bytes (excluding the number of bytes required for
the null termination character) available to return in
*DiagInfoPtr, for character data. If the number of
bytes available to return is greater than BufferLength,
then the text in *DiagInfoPtr is truncated to
BufferLength minus the length of a null termination
character. This argument is ignored for non-character
data.

 Usage
An application typically calls SQLGetDiagField() to accomplish one of three goals:

1. To obtain specific error or warning information when a function call has returned
SQL_ERROR or SQL_SUCCESS_WITH_INFO (or SQL_NEED_DATA for the
SQLBrowseConnect() function).

2. To find out the number of rows in the data source that were affected when insert,
delete, or update operations were performed with a call to SQLExecute() or
SQLExecDirect() (from the SQL_DIAG_ROW_COUNT header field), or to find out
the number of rows that exist in the current open static scrollable cursor (from the
SQL_DIAG_CURSOR_ROW_COUNT header field).

3. To determine which function was executed by a call to SQLExecDirect() or
SQLExecute() (from the SQL_DIAG_DYNAMIC_FUNCTION and
SQL_DIAG_DYNAMIC_FUNCTION_CODE header fields).

Any DB2 CLI function can post zero or more errors each time it is called, so an
application can call SQLGetDiagField() after any function call. SQLGetDiagField()
retrieves only the diagnostic information most recently associated with the diagnostic
data structure specified in the Handle argument. If the application calls another function,
any diagnostic information from a previous call with the same handle is lost.

An application can scan all diagnostic records by incrementing RecNumber, as long as
SQLGetDiagField() returns SQL_SUCCESS. The number of status records is indicated
in the SQL_DIAG_NUMBER header field. Calls to SQLGetDiagField() are
non-destructive as far as the header and status records are concerned. The application
can call SQLGetDiagField() again at a later time to retrieve a field from a record, as

 Chapter 5. Functions 383

SQLGetDiagField

long as another function other than SQLGetDiagField(), SQLGetDiagRec(), or
SQLError() has not been called in the interim, which would post records on the same
handle.

An application can call SQLGetDiagField() to return any diagnostic field at any time,
with the exception of SQL_DIAG_ROW_COUNT, which will return SQL_ERROR if
Handle was not a statement handle on which an SQL statement had been executed. If
any other diagnostic field is undefined, the call to SQLGetDiagField() will return
SQL_SUCCESS (provided no other error is encountered), and an undefined value is
returned for the field.

HandleType Argument

Each handle type can have diagnostic information associated with it. The HandleType
argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a field is
not applicable are indicated in the Header Field and Record Fields sections below.

No DB2 CLI specific header diagnostic field should be associated with an environment
handle.

DiagIdentifier Argument

This argument indicates the identifier of the field desired from the diagnostic data
structure. If RecNumber is greater than or equal to 1, the data in the field describes the
diagnostic information returned by a function. If RecNumber is 0, the field is in the
header of the diagnostic data structure, so contains data pertaining to the function call
that returned the diagnostic information, not the specific information.

Header Fields

The following header fields can be included in the DiagIdentifier argument. The only
diagnostic header fields that are defined for a descriptor field are SQL_DIAG_NUMBER
and SQL_DIAG_RETURNCODE.

384 CLI Guide and Reference

SQLGetDiagField

Table 96 (Page 1 of 2). Header Fields for DiagIdentifier Arguments

DiagIdentifier
Type Returns

SQL_DIAG_CURSOR_ROW_COUNT (return type SQLINTEGER)
This field contains the count of rows in the cursor. Its semantics depend upon the
SQLGetInfo() information types:

 ¹ SQL_DYNAMIC_CURSOR_ATTRIBUTES2
 ¹ SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2
 ¹ SQL_KEYSET_CURSOR_ATTRIBUTES2
 ¹ SQL_STATIC_CURSOR_ATTRIBUTES2

which indicate which row counts are available for each cursor type (in the
SQL_CA2_CRC_EXACT and SQL_CA2_CRC_APPROXIMATE bits).

The contents of this field are defined only for statement handles and only after
SQLExecute(), SQLExecDirect(), or SQLMoreResults() has been called. Calling
SQLGetDiagField() with a DiagIdentifier of SQL_DIAG_CURSOR_ROW_COUNT on
other than a statement handle will return SQL_ERROR.

SQL_DIAG_DYNAMIC_FUNCTION (return type CHAR *)

This is a string that describes the SQL statement that the underlying function
executed (see Dynamic Function Fields on page 388 for the values that DB2 CLI
supports). The contents of this field are defined only for statement handles, and
only after a call to SQLExecute() or SQLExecDirect(). The value of this field is
undefined before a call to SQLExecute() or SQLExecDirect().

SQL_DIAG_DYNAMIC_FUNCTION_CODE (return type SQLINTEGER)

This is a numeric code that describes the SQL statement that was executed by the
underlying function (see Dynamic Function Fields on page 388 for the values that
DB2 CLI supports). The contents of this field are defined only for statement
handles, and only after a call to SQLExecute() or SQLExecDirect(). The value of this
field is undefined before a call to SQLExecute(), SQLExecDirect(), or
SQLMoreResults(). Calling SQLGetDiagField() with a DiagIdentifier of
SQL_DIAG_DYNAMIC_FUNCTION_CODE on other than a statement handle will
return SQL_ERROR. The value of this field is undefined before a call to
SQLExecute() or SQLExecDirect().

SQL_DIAG_NUMBER (return type SQLINTEGER)

The number of status records that are available for the specified handle.

SQL_DIAG_RETURNCODE (return type RETCODE)

Return code returned by the last executed function associated with the specified
handle. See “Function Return Codes” on page 25 for a list of return codes. If no
function has yet been called on the Handle, SQL_SUCCESS will be returned for
SQL_DIAG_RETURNCODE.

SQL_DIAG_ROW_COUNT (return type SQLINTEGER)

 Chapter 5. Functions 385

SQLGetDiagField

Record Fields

The following record fields can be included in the DiagIdentifier argument:

The number of rows affected by an insert, delete, or update performed by
SQLExecute(), SQLExecDirect(), or SQLSetPos(). It is defined after a cursor
specification has been executed. The contents of this field are defined only for
statement handles. The data in this field is returned in the RowCountPtr argument
of SQLRowCount(). The data in this field is reset after every function call, whereas
the row count returned by SQLRowCount() remains the same until the statement is
set back to the prepared or allocated state.

386 CLI Guide and Reference

SQLGetDiagField

Table 97 (Page 1 of 2). Record Fields for DiagIdentifier Arguments

DiagIdentifier Returns

SQL_DIAG_CLASS_ORIGIN (return type CHAR *)
A string that indicates the document that defines the class and subclass portion of
the SQLSTATE value in this record.

DB2 CLI always returns an empty string for SQL_DIAG_CLASS_ORIGIN.

SQL_DIAG_COLUMN_NUMBER (return type SQLINTEGER)

If the SQL_DIAG_ROW_NUMBER field is a valid row number in a rowset or set of
parameters, then this field contains the value that represents the column number in
the result set. Result set column numbers always start at 1; if this status record
pertains to a bookmark column, then the field can be zero. It has the value
SQL_NO_COLUMN_NUMBER if the status record is not associated with a column
number. If DB2 CLI cannot determine the column number that this record is
associated with, this field has the value SQL_COLUMN_NUMBER_UNKNOWN.
The contents of this field are defined only for statement handles.

SQL_DIAG_CONNECTION_NAME (return type CHAR *)

A string that indicates the name of the connection that the diagnostic record relates
to.

DB2 CLI always returns an empty string for SQL_DIAG_CONNECTION_NAME

SQL_DIAG_MESSAGE_TEXT (return type CHAR *)

An informational message on the error or warning.

SQL_DIAG_NATIVE (return type SQLINTEGER)

A driver/data-source-specific native error code. If there is no native error code, the
driver returns 0.

SQL_DIAG_ROW_NUMBER (return type SQLINTEGER)

This field contains the row number in the rowset, or the parameter number in the
set of parameters, with which the status record is associated. This field has the
value SQL_NO_ROW_NUMBER if this status record is not associated with a row
number. If DB2 CLI cannot determine the row number that this record is associated
with, this field has the value SQL_ROW_NUMBER_UNKNOWN. The contents of
this field are defined only for statement handles.

SQL_DIAG_SERVER_NAME (return type CHAR *)

A string that indicates the server name that the diagnostic record relates to. It is the
same as the value returned for a call to SQLGetInfo() with the
SQL_DATA_SOURCE_NAME InfoType. For diagnostic data structures associated
with the environment handle and for diagnostics that do not relate to any server,
this field is a zero-length string.

SQL_DIAG_SQLSTATE (return type CHAR *)

A five-character SQLSTATE diagnostic code.

SQL_DIAG_SUBCLASS_ORIGIN (return type CHAR *)

 Chapter 5. Functions 387

SQLGetDiagField

Values of the Dynamic Function Fields

The table below describes the values of SQL_DIAG_DYNAMIC_FUNCTION and
SQL_DIAG_DYNAMIC_FUNCTION_CODE that apply to each type of SQL statement
executed by a call to SQLExecute() or SQLExecDirect(). This is the list that DB2 CLI
uses. ODBC also specifies other values.

A string with the same format and valid values as SQL_DIAG_CLASS_ORIGIN, that
identifies the defining portion of the subclass portion of the SQLSTATE code.

DB2 CLI always returns an empty string for SQL_DIAG_SUBCLASS_ORIGIN.

Table 98. Values of Dynamic Function Fields

SQL Statement Executed
Value of SQL_DIAG_
DYNAMIC_FUNCTION

Value of SQL_DIAG_DYNAMIC_
FUNCTION_CODE

alter-table-statement “ALTER TABLE” SQL_DIAG_ALTER_TABLE

create-index-statement “CREATE INDEX” SQL_DIAG_CREATE_INDEX

create-table-statement “CREATE TABLE” SQL_DIAG_CREATE_TABLE

create-view-statement “CREATE VIEW” SQL_DIAG_CREATE_VIEW

cursor-specification “SELECT CURSOR” SQL_DIAG_SELECT_CURSOR

delete-statement-positioned “DYNAMIC DELETE CURSOR” SQL_DIAG_DYNAMIC_DELETE_CURSOR

delete-statement-searched “DELETE WHERE” SQL_DIAG_DELETE_WHERE

drop-index-statement “DROP INDEX” SQL_DIAG_DROP_INDEX

drop-table-statement “DROP TABLE” SQL_DIAG_DROP_TABLE

drop-view-statement “DROP VIEW” SQL_DIAG_DROP_VIEW

grant-statement “GRANT” SQL_DIAG_GRANT

insert-statement “INSERT” SQL_DIAG_INSERT

ODBC-procedure-extension “CALL” SQL_DIAG_PROCEDURE_CALL

revoke-statement “REVOKE” SQL_DIAG_REVOKE

update-statement-positioned “DYNAMIC UPDATE CURSOR” SQL_DIAG_DYNAMIC_UPDATE_CURSOR

update-statement-searched “UPDATE WHERE” SQL_DIAG_UPDATE_WHERE

Unknown empty string SQL_DIAG_UNKNOWN_STATEMENT

Sequence of Status Records

Status records are placed in a sequence based upon row number and the type of the
diagnostic.

If there are two or more status records, the sequence of the records is determined first
by row number. The following rules apply to determining the sequence of errors by row:

¹ Records that do not correspond to any row appear in front of records that
correspond to a particular row, since SQL_NO_ROW_NUMBER is defined to be -1.

388 CLI Guide and Reference

SQLGetDiagField

¹ Records for which the row number is unknown appear in front of all other records,
since SQL_ROW_NUMBER_UNKNOWN is defined to be -2.

¹ For all records that pertain to specific rows, records are sorted by the value in the
SQL_DIAG_ROW_NUMBER field. All errors and warnings of the first row affected
are listed, then all errors and warnings of the next row affected, and so on.

Within each row, or for all those records that do not correspond to a row or for which
the row number is unknown, the first record listed is determined using a set of sorting
rules. After the first record, the order of the other records affecting a row is undefined.
An application cannot assume that errors precede warnings after the first record.
Applications should scan the entire diagnostic data structure to obtain complete
information on an unsuccessful call to a function.

The following rules are followed to determine the first record within a row. The record
with the highest rank is the first record.

¹ Errors . Status records that describe errors have the highest rank. The following
rules are followed to sort errors:

– Records that indicate a transaction failure or possible transaction failure
outrank all other records.

– If two or more records describe the same error condition, then SQLSTATEs
defined by the X/Open CLI specification (classes 03 through HZ) outrank
ODBC- and driver-defined SQLSTATEs.

¹ Implementation-defined No Data values . Status records that describe DB2 CLI
No Data values (class 02) have the second highest rank.

¹ Warnings . Status records that describe warnings (class 01) have the lowest rank.
If two or more records describe the same warning condition, then warning
SQLSTATEs defined by the X/Open CLI specification outrank ODBC- and
driver-defined SQLSTATEs.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA

 Diagnostics
SQLGetDiagField() does not post error values for itself. It uses the following return
values to report the outcome of its own execution:

¹ SQL_SUCCESS: The function successfully returned diagnostic information.

¹ SQL_SUCCESS_WITH_INFO: *DiagInfoPtr was too small to hold the requested
diagnostic field so the data in the diagnostic field was truncated. To determine that
a truncation occurred, the application must compare BufferLength to the actual
number of bytes available, which is written to *StringLengthPtr.

 Chapter 5. Functions 389

SQLGetDiagField

¹ SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was not
a valid handle.

¹ SQL_ERROR: One of the following occurred:

– The DiagIdentifier argument was not one of the valid values.

– The DiagIdentifier argument was SQL_DIAG_CURSOR_ROW_COUNT,
SQL_DIAG_DYNAMIC_FUNCTION,
SQL_DIAG_DYNAMIC_FUNCTION_CODE, or SQL_DIAG_ROW_COUNT, but
Handle was not a statement handle.

– The RecNumber argument was negative or 0 when DiagIdentifier indicated a
field from a diagnostic record. RecNumber is ignored for header fields.

– The value requested was a character string and BufferLength was less than
zero.

¹ SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLGetDiagRec - Get Multiple Fields Settings of Diagnostic Record” on page 391

390 CLI Guide and Reference

SQLGetDiagRec

SQLGetDiagRec - Get Multiple Fields Settings of Diagnostic Record

 Purpose

SQLGetDiagRec() returns the current values of multiple fields of a diagnostic record that
contains error, warning, and status information. Unlike SQLGetDiagField(), which
returns one diagnostic field per call, SQLGetDiagRec() returns several commonly used
fields of a diagnostic record, including the SQLSTATE, the native error code, and the
error message text.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetDiagRec (SQLSMALLINT HandleType,

 SQLHANDLE Handle,

 SQLSMALLINT RecNumber,

 SQLCHAR *SQLState,

 SQLINTEGER *NativeErrorPtr,

 SQLCHAR *MessageText,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *TextLengthPtr);

 Function Arguments

Table 99 (Page 1 of 2). SQLGetDiagRec Arguments

Data Type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of
handle for which diagnostics are desired. Must be
one of the following:

 ¹ SQL_HANDLE_ENV
 ¹ SQL_HANDLE_DBC
 ¹ SQL_HANDLE_STMT
 ¹ SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the type
indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the application
seeks information. Status records are numbered
from 1.

SQLCHAR SQLState output Pointer to a buffer in which to return a five-character
SQLSTATE code pertaining to the diagnostic record
RecNumber. The first two characters indicate the
class; the next three indicate the subclass.

SQLINTEGER NativeErrorPtr output Pointer to a buffer in which to return the native error
code, specific to the data source.

 Chapter 5. Functions 391

SQLGetDiagRec

Table 99 (Page 2 of 2). SQLGetDiagRec Arguments

Data Type Argument Use Description

SQLCHAR MessageText output Pointer to a buffer in which to return the error
message text. The fields returned by
SQLGetDiagRec() are contained in a text string.

SQLINTEGER BufferLength input Length (in bytes) of the *MessageText buffer.

SQLSMALLINT TextLengthPtr output Pointer to a buffer in which to return the total number
of bytes (excluding the number of bytes required for
the null termination character) available to return in
*MessageText. If the number of bytes available to
return is greater than BufferLength, then the error
message text in *MessageText is truncated to
BufferLength minus the length of a null termination
character.

 Usage
An application typically calls SQLGetDiagRec() when a previous call to a DB2 CLI
function has returned SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. However, any
function can post zero or more errors each time it is called, so an application can call
SQLGetDiagRec() after any function call. An application can call SQLGetDiagRec()
multiple times to return some or all of the records in the diagnostic data structure.

SQLGetDiagRec() returns a character string containing multiple fields of the diagnostic
data structure record. More information about the data returned can be found in
“SQLGetDiagField - Get a Field of Diagnostic Data” on page 382.

SQLGetDiagRec() cannot be used to return fields from the header of the diagnostic data
structure (the RecNumber argument must be greater than 0). The application should
call SQLGetDiagField() for this purpose.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated with
the handle specified in the Handle argument. If the application calls another function,
except SQLGetDiagRec() or SQLGetDiagField(), any diagnostic information from the
previous calls on the same handle is lost.

An application can scan all diagnostic records by looping, incrementing RecNumber, as
long as SQLGetDiagRec() returns SQL_SUCCESS. Calls to SQLGetDiagRec() are
non-destructive to the header and record fields. The application can call
SQLGetDiagRec() again at a later time to retrieve a field from a record, as long as no
other function, except SQLGetDiagRec() or SQLGetDiagField(), has been called in the
interim. The application can also retrieve a count of the total number of diagnostic
records available by calling SQLGetDiagField() to retrieve the value of the
SQL_DIAG_NUMBER field, then call SQLGetDiagRec() that many times.

For a description of the fields of the diagnostic data structure, see “SQLGetDiagField -
Get a Field of Diagnostic Data” on page 382.

392 CLI Guide and Reference

SQLGetDiagRec

HandleType Argument

Each handle type can have diagnostic information associated with it. The HandleType
argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a field is
not applicable are indicated in Header Fields on page 384 and Record Fields on
page 386 in the description of SQLGetDescField().

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
SQLGetDiagRec() does not post error values for itself. It uses the following return values
to report the outcome of its own execution:

¹ SQL_SUCCESS: The function successfully returned diagnostic information.

¹ SQL_SUCCESS_WITH_INFO: The *MessageText buffer was too small to hold the
requested diagnostic message. No diagnostic records were generated. To
determine that a truncation occurred, the application must compare BufferLength to
the actual number of bytes available, which is written to *StringLengthPtr.

¹ SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was not
a valid handle.

¹ SQL_ERROR: One of the following occurred:

– RecNumber was negative or 0.
– BufferLength was less than zero.

¹ SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLGetDiagField - Get a Field of Diagnostic Data” on page 382

 Chapter 5. Functions 393

SQLGetEnvAttr

SQLGetEnvAttr - Retrieve Current Environment Attribute Value

 Purpose

SQLGetEnvAttr() returns the current setting for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

Specification: DB2 CLI 2.1 ISO CLI

 Syntax
SQLRETURN SQLGetEnvAttr (SQLHENV EnvironmentHandle, /* henv */

 SQLINTEGER Attribute,

SQLPOINTER ValuePtr, /* Value */

 SQLINTEGER BufferLength,

SQLINTEGER *FAR StringLengthPtr); /* StringLength */

 Function Arguments

Table 100. SQLGetEnvAttr Arguments

Data Type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Attribute to receive. Refer to Table 163 on page 574
for the list of environment attributes and their
descriptions.

SQLPOINTER ValuePtr output The current value associated with Attribute. The type
of the value returned depends on Attribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by ValuePtr, if the
attribute value is a character string; otherwise,
ignored.

SQLINTEGER * StringLengthPtr output Pointer to a buffer in which to return the total number
of bytes (excluding the number of bytes returned for
the null-termination character) available to return in
ValuePtr. If ValuePtr is a null pointer, no longth is
returned. If the attribute value is a character string,
and the number of bytes available to return is greater
than or equal to BufferLength, the data in ValuePtr is
truncated to BufferLength minus the length of a
null-termination character and is null-terminated by
DB2 CLI

If Attribute does not denote a string, then DB2 CLI ignores BufferLength and does not
set StringLengthPtr.

394 CLI Guide and Reference

SQLGetEnvAttr

 Usage
SQLGetEnvAttr() can be called at any time between the allocation and freeing of the
environment handle. It obtains the current value of the environment attribute.

For a list of valid environment attributes, refer to Table 163 on page 574.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 101. SQLGetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY092 Option type out of range. An invalid Attribute value was specified.

 Restrictions
None.

 Example
/* From CLI sample getattrs.c */

/* ... */

rc = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, 0, NULL) ;

CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc) ;

printf("Null Termination of Output strings is: ") ;

if (output_nts == SQL_TRUE) printf("True\n") ;

else printf("False\n") ;

 References
¹ “SQLSetEnvAttr - Set Environment Attribute” on page 573

 Chapter 5. Functions 395

SQLGetFunctions

SQLGetFunctions - Get Functions

 Purpose

SQLGetFunctions() to query whether a specific function is supported. This allows
applications to adapt to varying levels of support when connecting to different database
servers.

A connection to a database server must exist before calling this function.

Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLGetFunctions (SQLHDBC ConnectionHandle, /* hdbc */

SQLUSMALLINT FunctionId, /* fFunction */

SQLUSMALLINT *FAR SupportedPtr); /* pfExists */

 Function Arguments

Table 102. SQLGetFunctions Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle.

SQLUSMALLINT FunctionId input The function being queried. Valid FunctionId values
are shown in Figure 17 on page 397

SQLUSMALLINT * SupportedPtr output Pointer to location where this function will return
SQL_TRUE or SQL_FALSE depending on whether
the function being queried is supported.

 Usage
Figure 17 on page 397 shows the valid values for the FunctionId argument and
whether the corresponding function is supported. (This list was generated using the
sample application getfuncs.c.)

If FunctionId is set to SQL_API_ALL_FUNCTIONS, then SupportedPtr must point to an
SQLSMALLINT array of 100 elements. The array is indexed by the FunctionId values
used to identify many of the functions. Some elements of the array are unused and
reserved. Since some FunctionId values are greater than 100, the array method can not
be used to obtain a list of functions. The SQLGetFunction() call must be explicitly
issued for all FunctionId values equal to or above 100. The complete set of FunctionId
values is defined in sqlcli1.h.

Note: The LOB support functions (SQLGetLength(), SQLGetPosition(),
SQLGetSubString(), SQLBindFileToCol(), SQLBindFileToCol()) are not
supported when connected to DB2 for common server prior to Version 2.1 or
other IBM RDBMSs that do not support LOB data types.

396 CLI Guide and Reference

SQLGetFunctions

Connected to Server: SAMPLE

 Database Name: SAMPLE

 Instance Name: db2inst1

DBMS Name: DB2/6000

DBMS Version: 05.00.0000

SQLALLOCCONNECT is supported SQLALLOCENV is supported

SQLALLOCHANDLE is supported SQLALLOCSTMT is supported

SQLBINDCOL is supported SQLBINDFILETOCOL is supported

SQLBINDFILETOPARAM is supported SQLBINDPARAM is supported

SQLBINDPARAMETER is supported SQLBROWSECONNECT is supported

SQLCANCEL is supported SQLCLOSECURSOR is supported

SQLCOLATTRIBUTE is supported SQLCOLATTRIBUTES is supported

SQLCOLUMNPRIVILEGES is supported SQLCOLUMNS is supported

SQLCONNECT is supported SQLCOPYDESC is supported

SQLDATASOURCES is supported SQLDESCRIBECOL is supported

SQLDESCRIBEPARAM is supported SQLDISCONNECT is supported

SQLDRIVERCONNECT is supported SQLENDTRAN is supported

SQLERROR is supported SQLEXECDIRECT is supported

SQLEXECUTE is supported SQLEXTENDEDFETCH is supported

SQLFETCH is supported SQLFETCHSCROLL is supported

SQLFOREIGNKEYS is supported SQLFREECONNECT is supported

SQLFREEENV is supported SQLFREEHANDLE is supported

SQLFREESTMT is supported SQLGETCONNECTATTR is supported

SQLGETCONNECTOPTION is supported SQLGETCURSORNAME is supported

SQLGETDATA is supported SQLGETDESCFIELD is supported

SQLGETDESCREC is supported SQLGETDIAGFIELD is supported

SQLGETDIAGREC is supported SQLGETENVATTR is supported

SQLGETFUNCTIONS is supported SQLGETINFO is supported

SQLGETLENGTH is supported SQLGETPOSITION is supported

SQLGETSQLCA is supported SQLGETSTMTATTR is supported

SQLGETSTMTOPTION is supported SQLGETSUBSTRING is supported

SQLGETTYPEINFO is supported SQLMORERESULTS is supported

SQLNATIVESQL is supported SQLNUMPARAMS is supported

SQLNUMRESULTCOLS is supported SQLPARAMDATA is supported

SQLPARAMOPTIONS is supported SQLPREPARE is supported

SQLPRIMARYKEYS is supported SQLPROCEDURECOLUMNS is supported

SQLPROCEDURES is supported SQLPUTDATA is supported

SQLROWCOUNT is supported SQLSETCOLATTRIBUTES is supported

SQLSETCONNECTATTR is supported SQLSETCONNECTION is supported

SQLSETCONNECTOPTION is supported SQLSETCURSORNAME is supported

SQLSETDESCFIELD is supported SQLSETDESCREC is supported

SQLSETENVATTR is supported SQLSETPARAM is supported

SQLSETPOS is supported SQLSETSCROLLOPTIONS is supported

SQLSETSTMTATTR is supported SQLSETSTMTOPTION is supported

SQLSPECIALCOLUMNS is supported SQLSTATISTICS is supported

SQLTABLEPRIVILEGES is supported SQLTABLES is supported

SQLTRANSACT is supported

Figure 17. Supported Functions list (output from getfuncs.c).

 Chapter 5. Functions 397

SQLGetFunctions

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 103. SQLGetFunctions SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. The argument SupportedPtr was a null pointer.

HY010 Function sequence error. SQLGetFunctions() was called before a database connection was
established.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Authorization
None.

 Example
The following example generates the listing shown in Figure 17 on page 397 for any
data source.

398 CLI Guide and Reference

SQLGetFunctions

/* From CLI sample getfuncs.c */

/* ... */

typedef struct {

SQLUSMALLINT id ;

char * name ;

} functionInfo ;

functionInfo functions[] = {

{ SQL_API_SQLALLOCCONNECT, "SQLALLOCCONNECT" },

{ SQL_API_SQLALLOCENV, "SQLALLOCENV" },

{ SQL_API_SQLALLOCHANDLE, "SQLALLOCHANDLE" },

{ SQL_API_SQLALLOCSTMT, "SQLALLOCSTMT" },

{ SQL_API_SQLBINDCOL, "SQLBINDCOL" },

{ SQL_API_SQLBINDFILETOCOL, "SQLBINDFILETOCOL" },

 { SQL_API_SQLBINDFILETOPARAM, "SQLBINDFILETOPARAM" },

{ SQL_API_SQLBINDPARAM, "SQLBINDPARAM" },

{ SQL_API_SQLBINDPARAMETER, "SQLBINDPARAMETER" },

{ SQL_API_SQLBROWSECONNECT, "SQLBROWSECONNECT" },

{ SQL_API_SQLCANCEL, "SQLCANCEL" },

{ SQL_API_SQLCLOSECURSOR, "SQLCLOSECURSOR" },

{ SQL_API_SQLCOLATTRIBUTE, "SQLCOLATTRIBUTE" },

{ SQL_API_SQLCOLATTRIBUTES, "SQLCOLATTRIBUTES" },

{ SQL_API_SQLCOLUMNPRIVILEGES, "SQLCOLUMNPRIVILEGES" },

{ SQL_API_SQLCOLUMNS, "SQLCOLUMNS" },

{ SQL_API_SQLCONNECT, "SQLCONNECT" },

{ SQL_API_SQLCOPYDESC, "SQLCOPYDESC" },

{ SQL_API_SQLDATASOURCES, "SQLDATASOURCES" },

{ SQL_API_SQLDESCRIBECOL, "SQLDESCRIBECOL" },

{ SQL_API_SQLDESCRIBEPARAM, "SQLDESCRIBEPARAM" },

{ SQL_API_SQLDISCONNECT, "SQLDISCONNECT" },

{ SQL_API_SQLDRIVERCONNECT, "SQLDRIVERCONNECT" },

{ SQL_API_SQLENDTRAN, "SQLENDTRAN" },

{ SQL_API_SQLERROR, "SQLERROR" },

{ SQL_API_SQLEXECDIRECT, "SQLEXECDIRECT" },

{ SQL_API_SQLEXECUTE, "SQLEXECUTE" },

{ SQL_API_SQLEXTENDEDFETCH, "SQLEXTENDEDFETCH" },

{ SQL_API_SQLFETCH, "SQLFETCH" },

{ SQL_API_SQLFETCHSCROLL, "SQLFETCHSCROLL" },

{ SQL_API_SQLFOREIGNKEYS, "SQLFOREIGNKEYS" },

{ SQL_API_SQLFREECONNECT, "SQLFREECONNECT" },

{ SQL_API_SQLFREEENV, "SQLFREEENV" },

{ SQL_API_SQLFREEHANDLE, "SQLFREEHANDLE" },

{ SQL_API_SQLFREESTMT, "SQLFREESTMT" },

{ SQL_API_SQLGETCONNECTATTR, "SQLGETCONNECTATTR" },

{ SQL_API_SQLGETCONNECTOPTION, "SQLGETCONNECTOPTION" },

{ SQL_API_SQLGETCURSORNAME, "SQLGETCURSORNAME" },

{ SQL_API_SQLGETDATA, "SQLGETDATA" },

{ SQL_API_SQLGETDESCFIELD, "SQLGETDESCFIELD" },

{ SQL_API_SQLGETDESCREC, "SQLGETDESCREC" },

{ SQL_API_SQLGETDIAGFIELD, "SQLGETDIAGFIELD" },

{ SQL_API_SQLGETDIAGREC, "SQLGETDIAGREC" },

 Chapter 5. Functions 399

SQLGetFunctions

{ SQL_API_SQLGETENVATTR, "SQLGETENVATTR" },

{ SQL_API_SQLGETFUNCTIONS, "SQLGETFUNCTIONS" },

{ SQL_API_SQLGETINFO, "SQLGETINFO" },

{ SQL_API_SQLGETLENGTH, "SQLGETLENGTH" },

{ SQL_API_SQLGETPOSITION, "SQLGETPOSITION" },

{ SQL_API_SQLGETSQLCA, "SQLGETSQLCA" },

{ SQL_API_SQLGETSTMTATTR, "SQLGETSTMTATTR" },

{ SQL_API_SQLGETSTMTOPTION, "SQLGETSTMTOPTION" },

{ SQL_API_SQLGETSUBSTRING, "SQLGETSUBSTRING" },

{ SQL_API_SQLGETTYPEINFO, "SQLGETTYPEINFO" },

{ SQL_API_SQLMORERESULTS, "SQLMORERESULTS" },

{ SQL_API_SQLNATIVESQL, "SQLNATIVESQL" },

{ SQL_API_SQLNUMPARAMS, "SQLNUMPARAMS" },

{ SQL_API_SQLNUMRESULTCOLS, "SQLNUMRESULTCOLS" },

{ SQL_API_SQLPARAMDATA, "SQLPARAMDATA" },

{ SQL_API_SQLPARAMOPTIONS, "SQLPARAMOPTIONS" },

{ SQL_API_SQLPREPARE, "SQLPREPARE" },

{ SQL_API_SQLPRIMARYKEYS, "SQLPRIMARYKEYS" },

{ SQL_API_SQLPROCEDURECOLUMNS, "SQLPROCEDURECOLUMNS" },

{ SQL_API_SQLPROCEDURES, "SQLPROCEDURES" },

{ SQL_API_SQLPUTDATA, "SQLPUTDATA" },

{ SQL_API_SQLROWCOUNT, "SQLROWCOUNT" },

{ SQL_API_SQLSETCOLATTRIBUTES, "SQLSETCOLATTRIBUTES" },

{ SQL_API_SQLSETCONNECTATTR, "SQLSETCONNECTATTR" },

{ SQL_API_SQLSETCONNECTION, "SQLSETCONNECTION" },

{ SQL_API_SQLSETCONNECTOPTION, "SQLSETCONNECTOPTION" },

{ SQL_API_SQLSETCURSORNAME, "SQLSETCURSORNAME" },

{ SQL_API_SQLSETDESCFIELD, "SQLSETDESCFIELD" },

{ SQL_API_SQLSETDESCREC, "SQLSETDESCREC" },

{ SQL_API_SQLSETENVATTR, "SQLSETENVATTR" },

{ SQL_API_SQLSETPARAM, "SQLSETPARAM" },

{ SQL_API_SQLSETPOS, "SQLSETPOS" },

{ SQL_API_SQLSETSCROLLOPTIONS, "SQLSETSCROLLOPTIONS" },

{ SQL_API_SQLSETSTMTATTR, "SQLSETSTMTATTR" },

{ SQL_API_SQLSETSTMTOPTION, "SQLSETSTMTOPTION" },

{ SQL_API_SQLSPECIALCOLUMNS, "SQLSPECIALCOLUMNS" },

{ SQL_API_SQLSTATISTICS, "SQLSTATISTICS" },

 { SQL_API_SQLTABLEPRIVILEGES, "SQLTABLEPRIVILEGES" },

{ SQL_API_SQLTABLES, "SQLTABLES" },

{ SQL_API_SQLTRANSACT, "SQLTRANSACT" },

{ 0, (char *) 0 }

} ;

/* ... */

func_pos = 0 ;

side = 0 ;

*b_line = '\0' ;

*e_line = '\0' ;

while (functions[func_pos].id != 0) {

 SQLGetFunctions(hdbc,

400 CLI Guide and Reference

SQLGetFunctions

 functions[func_pos].id,

 &supported

) ;

if (supported)

printf("%s%-20s is supported%s",

 b_line,

 functions[func_pos].name,

 e_line

) ;

 else

printf("%s%-20s is not supported%s",

 b_line,

 functions[func_pos].name,

 e_line

) ;

if (side) {

*b_line = '\0' ;

*e_line = '\0' ;

side = 0 ;

 }

 else {

strcpy(b_line, " ") ;

strcpy(e_line, "\n") ;

side = 1 ;

 }

 func_pos++ ;

 }

 References
None.

 Chapter 5. Functions 401

SQLGetInfo

SQLGetInfo - Get General Information

 Purpose

SQLGetInfo() returns general information, (including supported data conversions) about
the DBMS that the application is currently connected to.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLGetInfo (SQLHDBC ConnectionHandle, /* hdbc */

SQLUSMALLINT InfoType, /* fInfoType */

SQLPOINTER InfoValuePtr, /* rgbInfoValue */

SQLSMALLINT BufferLength, /* cbInfoValueMax */

SQLSMALLINT *FAR StringLengthPtr); /* pcbInfoValue */

 Function Arguments

Table 104. SQLGetInfo Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle

SQLUSMALLINT InfoType input The type of information desired. The argument must
be one of the values in the first column of the tables
in “Data Types and Data Conversion” on page 27.

SQLPOINTER InfoValuePtr output
(also
input)

Pointer to buffer where this function will store the
desired information. Depending on the type of
information being retrieved, 5 types of information
can be returned:

¹ 16 bit integer value
¹ 32 bit integer value
¹ 32 bit binary value
¹ 32 bit mask
¹ null-terminated character string

SQLSMALLINT BufferLength input Maximum length of the buffer pointed by InfoValuePtr
pointer.

SQLSMALLINT * StringLengthPtr output Pointer to location where this function will return the
total number of bytes available to return the desired
information. In the case of string output, this size
does not include the null terminating character.

If the value in the location pointed to by
StringLengthPtr is greater than the size of the
InfoValuePtr buffer as specified in BufferLength, then
the string output information would be truncated to
BufferLength - 1 bytes and the function would return
with SQL_SUCCESS_WITH_INFO.

402 CLI Guide and Reference

SQLGetInfo

 Usage
Refer to Table 105 for a list of the possible values of InfoType and a description of the
information that SQLGetInfo() would return for that value.

A number of information types were renamed for DB2 CLI version 5. See “Changes to
the InfoTypes in SQLGetInfo()” on page 649 for the list. Table 105 lists both the old
value and the new value.

Table 105 (Page 1 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

Note: DB2 CLI returns a value for each InfoType in this table. If the InfoType does not apply or is not supported, the result is
dependent on the return type. If the return type is a:

¹ Character string containing 'Y' or 'N', "N" is returned.
¹ Character string containing a value other than just 'Y' or 'N', an empty string is returned.
¹ 16-bit integer, 0 (zero).
¹ 32-bit integer, 0 (zero).
¹ 32-bit mask, 0 (zero).

SQL_ACCESSIBLE_PROCEDURES string A character string of "Y" indicates that the user can
execute all procedures returned by the function
SQLProcedures(). "N" indicates there may be
procedures returned that the user cannot execute.

SQL_ACCESSIBLE_TABLES string A character string of "Y" indicates that the user is
guaranteed SELECT privilege to all tables returned by
the function SQLTables(). "N" indicates that there may
be tables returned that the user cannot access.

SQL_ACTIVE_ENVIRONMENTS 16-bit integer This InfoType has been replaced with
SQL_MAX_CONCURRENT_ACTIVITIES.

The maximum number of active environments that the
DB2 CLI driver can support. If there is no specified limit
or the limit is unknown, this value is set to zero.

SQL_AGGREGATE_FUNCTIONS 32-bit mask A bitmask enumerating support for aggregation
functions:

 ¹ SQL_AF_ALL
 ¹ SQL_AF_AVG
 ¹ SQL_AF_COUNT
 ¹ SQL_AF_DISTINCT
 ¹ SQL_AF_MAX
 ¹ SQL_AF_MIN
 ¹ SQL_AF_SUM

SQL_ALTER_DOMAIN 32-bit mask DB2 CLI returns 0 indicating that the ALTER DOMAIN
statement is not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_AD_ADD_CONSTRAINT_DEFERRABLE
 ¹ SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE
 ¹ SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED
 ¹ SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE
 ¹ SQL_AD_ADD_DOMAIN_CONSTRAINT
 ¹ SQL_AD_ADD_DOMAIN_DEFAULT
 ¹ SQL_AD_CONSTRAINT_NAME_DEFINITION
 ¹ SQL_AD_DROP_DOMAIN_CONSTRAINT
 ¹ SQL_AD_DROP_DOMAIN_DEFAULT

 Chapter 5. Functions 403

SQLGetInfo

Table 105 (Page 2 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_ACTIVE_CONNECTIONS 16-bit integer This InfoType has been replaced with
SQL_MAX_DRIVER_CONNECTIONS.

The maximum number of active connections supported
per application.

Zero is returned, indicating that the limit is dependent
on system resources.

The MAXCONN keyword in the db2cli.ini initialization
file or the SQL_ATTR_MAX_CONNECTIONS
environment/connection option can be used to impose a
limit on the number of connections. This limit is returned
if it is set to any value other than zero.

SQL_ACTIVE_STATEMENTS 16-bit integer This InfoType has been replaced with
SQL_MAX_CONCURRENT_ACTIVITIES.

The maximum number of active statements per
connection.

Zero is returned, indicating that the limit is dependent
on database system and DB2 CLI resources, and limits.

SQL_ALTER_TABLE 32-bit mask Indicates which clauses in the ALTER TABLE statement
are supported by the DBMS.

 ¹ SQL_AT_ADD_COLUMN_COLLATION
 ¹ SQL_AT_ADD_COLUMN_DEFAULT
 ¹ SQL_AT_ADD_COLUMN_SINGLE
 ¹ SQL_AT_ADD_CONSTRAINT
 ¹ SQL_AT_ADD_TABLE_CONSTRAINT
 ¹ SQL_AT_CONSTRAINT_NAME_DEFINITION
 ¹ SQL_AT_DROP_COLUMN_CASCADE
 ¹ SQL_AT_DROP_COLUMN_DEFAULT
 ¹ SQL_AT_DROP_COLUMN_RESTRICT
 ¹ SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE
 ¹ SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT
 ¹ SQL_AT_SET_COLUMN_DEFAULT
 ¹ SQL_AT_CONSTRAINT_INITIALLY_DEFERRED
 ¹ SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE
 ¹ SQL_AT_CONSTRAINT_DEFERRABLE
 ¹ SQL_AT_CONSTRAINT_NON_DEFERRABLE

404 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 3 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_ASYNC_MODE 32-bit unsigned
integer

Indicates the level of asynchronous support:

¹ SQL_AM_CONNECTION, connection level
asynchronous execution is supported. Either all
statement handles associated with a given
connection handle are in asynchronous mode, or all
are in synchronous mode. A statement handle on a
connection cannot be in asynchronous mode while
another statement handle on the same connection
is in synchronous mode, and vice versa.

¹ SQL_AM_STATEMENT, statement level
asynchronous execution is supported. Some
statement handles associated with a connection
handle can be in asynchronous mode, while other
statement handles on the same connection are in
synchronous mode.

¹ SQL_AM_NONE, asynchronous mode is not
supported.

This value is also returned if the DB2 CLI/ODBC
configuration keyword ASYNCENABLE is set to
disable asynchronous execution. See
“Asynchronous Execution of CLI” on page 118 for
more information.

SQL_BATCH_ROW_COUNT 32-bit mask Indicates how row counts are dealt with. DB2 CLI
always returns SQL_BRC_ROLLED_UP indicating that
row counts for consecutive INSERT, DELETE, or
UPDATE statements are rolled up into one.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_BRC_PROCEDURES
 ¹ SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT 32-bit mask Indicates which level of batches are supported:

¹ SQL_BS_SELECT_EXPLICIT, supports explicit
batches that can have result-set generating
statements.

 ¹ SQL_BS_ROW_COUNT_EXPLICIT, supports
explicit batches that can have row-count generating
statements.

¹ SQL_BS_SELECT_PROC, supports explicit
procedures that can have result-set generating
statements.

¹ SQL_BS_ROW_COUNT_PROC, supports explicit
procedures that can have row-count generating
statements.

 Chapter 5. Functions 405

SQLGetInfo

Table 105 (Page 4 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_BOOKMARK_PERSISTENCE 32-bit mask Indicates when bookmarks remain valid after an
operation:

¹ SQL_BP_CLOSE, bookmarks are valid after an
application calls SQLFreeStmt() with the
SQL_CLOSE option, SQLCloseCursor() to close
the cursor associated with a statement.

¹ SQL_BP_DELETE, the bookmark for a row is valid
after that row has been deleted.

¹ SQL_BP_DROP, bookmarks are valid after an
application calls SQLFreeHandle() with a
HandleType of SQL_HANDLE_STMT to drop a
statement.

¹ SQL_BP_TRANSACTION, bookmarks are valid
after an application commits or rolls back a
transaction.

¹ SQL_BP_UPDATE, the bookmark for a row is valid
after any column in that row has been updated,
including key columns.

¹ SQL_BP_OTHER_HSTMT, a bookmark associated
with one statement can be used with another
statement. Unless SQL_BP_CLOSE or
SQL_BP_DROP is specified, the cursor on the first
statement must be open.

¹ SQL_BP_DROP is specified, the cursor on the first
statement must be open.

SQL_CATALOG_LOCATION 16-bit integer A 16-bit integer value indicated the position of the
qualifier in a qualified table name. DB2 CLI always
returns SQL_CL_START for this information type.
ODBC also defines the value SQL_CL_END which is
not returned by DB2 CLI.

In previous versions of DB2 CLI this InfoType was
SQL_QUALIFIER_LOCATION.

SQL_CATALOG_NAME string A character string of "Y" indicates that the server
supports catalog names. "N" indicates that catalog
names are not supported.

SQL_CATALOG_NAME_SEPARATOR string The character(s) used as a separator between a
catalog name and the qualified name element that
follows it.

In previous versions of DB2 CLI this InfoType was
SQL_QUALIFIER_NAME_SEPARATOR.

SQL_CATALOG_TERM string The database vendor's terminology for a qualifier

The name that the vendor uses for the high order part
of a three part name.

Since DB2 CLI does not support three part names, a
zero-length string is returned.

In previous versions of DB2 CLI this InfoType was
SQL_QUALIFIER_TERM.

SQL_CATALOG_USAGE 32-bit mask This is similar to SQL_OWNER_USAGE except that
this is used for catalog.

In previous versions of DB2 CLI this InfoType was
SQL_QUALIFIER_USAGE.

406 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 5 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_COLLATION_SEQ string The name of the collation sequence. This is a character
string that indicates the name of the default collation for
the default character set for this server (for example
æISO 8859-1Æ or EBCDIC). If this is unknown, an
empty string will be returned.

SQL_COLUMN_ALIAS string Returns "Y" if column aliases are supported, or "N" if
they are not.

SQL_CONCAT_NULL_BEHAVIOR 16-bit integer Indicates how the concatenation of NULL valued
character data type columns with non-NULL valued
character data type columns is handled.

¹ SQL_CB_NULL - indicates the result is a NULL
value (this is the case for IBM RDBMs).

¹ SQL_CB_NON_NULL - indicates the result is a
concatenation of non-NULL column values.

SQL_CONVERT_BIGINT
SQL_CONVERT_BINARY
SQL_CONVERT_BIT
SQL_CONVERT_CHAR
SQL_CONVERT_DATE
SQL_CONVERT_DECIMAL
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT
SQL_CONVERT_INTEGER
SQL_CONVERT_INTERVAL_YEAR_MONTH
SQL_CONVERT_INTERVAL_DAY_TIME
SQL_CONVERT_LONGVARBINARY
SQL_CONVERT_LONGVARCHAR
SQL_CONVERT_NUMERIC
SQL_CONVERT_REAL
SQL_CONVERT_SMALLINT
SQL_CONVERT_TIME
SQL_CONVERT_TIMESTAMP
SQL_CONVERT_TINYINT
SQL_CONVERT_VARBINARY
SQL_CONVERT_VARCHAR

32-bit mask Indicates the conversions supported by the data source
with the CONVERT scalar function for data of the type
named in the InfoType. If the bitmask equals zero, the
data source does not support any conversions for the
data of the named type, including conversions to the
same data type.

For example, to find out if a data source supports the
conversion of SQL_INTEGER data to the
SQL_DECIMAL data type, an application calls
SQLGetInfo() with InfoType of
SQL_CONVERT_INTEGER. The application then ANDs
the returned bitmask with SQL_CVT_DECIMAL. If the
resulting value is nonzero then the conversion is
supported.

The following bitmasks are used to determine which
conversions are supported:

 ¹ SQL_CVT_BIGINT
 ¹ SQL_CVT_BINARY
 ¹ SQL_CVT_BIT
 ¹ SQL_CVT_CHAR
 ¹ SQL_CVT_DATE
 ¹ SQL_CVT_DECIMAL
 ¹ SQL_CVT_DOUBLE
 ¹ SQL_CVT_FLOAT
 ¹ SQL_CVT_INTEGER
 ¹ SQL_CVT_INTERVAL_YEAR_MONTH
 ¹ SQL_CVT_INTERVAL_DAY_TIME
 ¹ SQL_CVT_LONGVARBINARY
 ¹ SQL_CVT_LONGVARCHAR
 ¹ SQL_CVT_NUMERIC
 ¹ SQL_CVT_REAL
 ¹ SQL_CVT_SMALLINT
 ¹ SQL_CVT_TIME
 ¹ SQL_CVT_TIMESTAMP
 ¹ SQL_CVT_TINYINT
 ¹ SQL_CVT_VARBINARY
 ¹ SQL_CVT_VARCHAR

 Chapter 5. Functions 407

SQLGetInfo

Table 105 (Page 6 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_CONVERT_FUNCTIONS 32-bit mask Indicates the scalar conversion functions supported by
the driver and associated data source.

DB2 CLI Version 2.1.1 and later supports ODBC scalar
conversions between char variables (CHAR,
VARCHAR, LONG VARCHAR and CLOB) and
DOUBLE (or FLOAT).

¹ SQL_FN_CVT_CONVERT - used to determine
which conversion functions are supported.

SQL_CORRELATION_NAME 16-bit integer Indicates the degree of correlation name support by the
server:

¹ SQL_CN_ANY, supported and can be any valid
user-defined name.

¹ SQL_CN_NONE, correlation name not supported.
¹ SQL_CN_DIFFERENT, correlation name supported

but it must be different than the name of the table
that it represent.

SQL_CREATE_ASSERTION 32-bit mask Indicates which clauses in the CREATE ASSERTION
statement are supported by the DBMS. DB2 CLI always
returns zero; the CREATE ASSERTION statement is
not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA_CREATE_ASSERTION
 ¹ SQL_CA_CONSTRAINT_INITIALLY_DEFERRED
 ¹ SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE
 ¹ SQL_CA_CONSTRAINT_DEFERRABLE
 ¹ SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET 32-bit mask Indicates which clauses in the CREATE CHARACTER
SET statement are supported by the DBMS. DB2 CLI
always returns zero; the CREATE CHARACTER SET
statement is not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CCS_CREATE_CHARACTER_SET
 ¹ SQL_CCS_COLLATE_CLAUSE
 ¹ SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION 32-bit mask Indicates which clauses in the CREATE COLATION
statement are supported by the DBMS. DB2 CLI always
returns zero; the CREATE COLLATION statement is
not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CCOL_CREATE_COLLATION

408 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 7 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_CREATE_DOMAIN 32-bit mask Indicates which clauses in the CREATE DOMAIN
statement are supported by the DBMS. DB2 CLI always
returns zero; the CREATE DOMAIN statement is not
supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CDO_CREATE_DOMAIN
 ¹ SQL_CDO_CONSTRAINT_NAME_DEFINITION
 ¹ SQL_CDO_DEFAULT
 ¹ SQL_CDO_CONSTRAINT
 ¹ SQL_CDO_COLLATION
 ¹ SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED
 ¹ SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE
 ¹ SQL_CDO_CONSTRAINT_DEFERRABLE
 ¹ SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_SCHEMA 32-bit mask Indicates which clauses in the CREATE SCHEMA
statement are supported by the DBMS:

 ¹ SQL_CS_CREATE_SCHEMA
 ¹ SQL_CS_AUTHORIZATION
 ¹ SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE 32-bit mask Indicates which clauses in the CREATE TABLE
statement are supported by the DBMS.

The following bitmasks are used to determine which
clauses are supported:

 ¹ SQL_CT_CREATE_TABLE
 ¹ SQL_CT_TABLE_CONSTRAINT
 ¹ SQL_CT_CONSTRAINT_NAME_DEFINITION

The following bits specify the ability to create temporary
tables:

¹ SQL_CT_COMMIT_PRESERVE, deleted rows are
preserved on commit.

¹ SQL_CT_COMMIT_DELETE, deleted rows are
deleted on commit.

 ¹ SQL_CT_GLOBAL_TEMPORARY, global
temporary tables can be created.

¹ SQL_CT_LOCAL_TEMPORARY, local temporary
tables can be created.

The following bits specify the ability to create column
constraints:

 ¹ SQL_CT_COLUMN_CONSTRAINT, specifying
column constraints is supported.

¹ SQL_CT_COLUMN_DEFAULT, specifying column
defaults is supported.

 ¹ SQL_CT_COLUMN_COLLATION, specifying
column collation is supported.

The following bits specify the supported constraint
attributes if specifying column or table constraints is
supported:

 ¹ SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
 ¹ SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
 ¹ SQL_CT_CONSTRAINT_DEFERRABLE
 ¹ SQL_CT_CONSTRAINT_NON_DEFERRABLE

 Chapter 5. Functions 409

SQLGetInfo

Table 105 (Page 8 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_CREATE_TRANSLATION 32-bit mask Indicates which clauses in the CREATE TRANSLATION
statement are supported by the DBMS. DB2 CLI always
returns zero; the CREATE TRANSLATION statement is
not supported.

ODBC also defines the following value that is not
returned by DB2 CLI:

 ¹ SQL_CTR_CREATE_TRANSLATION

SQL_CREATE_VIEW 32-bit mask Indicates which clauses in the CREATE VIEW
statement are supported by the DBMS:

 ¹ SQL_CV_CREATE_VIEW
 ¹ SQL_CV_CHECK_OPTION
 ¹ SQL_CV_CASCADED
 ¹ SQL_CV_LOCAL

A return value of 0 means that the CREATE VIEW
statement is not supported.

SQL_CURSOR_CLOSE_BEHAVIOR 32-bit unsigned
integer

Indicates whether or not locks are released when the
cursor is closed. The possible values are:

¹ SQL_CC_NO_RELEASE: locks are not released
when the cursor on this statement handle is closed.
This is the default.

¹ SQL_CC_RELEASE: locks are released when the
cursor on this statement handle is closed.

Typically cursors are explicitly closed when the function
SQLFreeStmt() is called with the SQL_CLOSE or
SQL_DROP option. In addition, the end of the
transaction (when a commit or rollback is issued) may
also cause the closing of the cursor (depending on the
WITH HOLD attribute currently in use).

SQL_CURSOR_COMMIT_BEHAVIOR 16-bit integer Indicates how a COMMIT operation affects cursors. A
value of:

¹ SQL_CB_DELETE, destroy cursors and drops
access plans for dynamic SQL statements.

¹ SQL_CB_CLOSE, destroy cursors, but retains
access plans for dynamic SQL statements
(including non-query statements)

¹ SQL_CB_PRESERVE, retains cursors and access
plans for dynamic statements (including non-query
statements). Applications can continue to fetch
data, or close the cursor and re-execute the query
without re-preparing the statement.

Note: After COMMIT, a FETCH must be issued to
reposition the cursor before actions such as
positioned updates or deletes can be taken.

410 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 9 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_CURSOR_ROLLBACK_BEHAVIOR 16-bit integer Indicates how a ROLLBACK operation affects cursors.
A value of:

¹ SQL_CB_DELETE, destroy cursors and drops
access plans for dynamic SQL statements.

¹ SQL_CB_CLOSE, destroy cursors, but retains
access plans for dynamic SQL statements
(including non-query statements)

¹ SQL_CB_PRESERVE, retains cursors and access
plans for dynamic statements (including non-query
statements). Applications can continue to fetch
data, or close the cursor and re-execute the query
without re-preparing the statement.

Note: DB2 servers do not have the
SQL_CB_PRESERVE property.

SQL_CURSOR_SENSITIVITY 32-bit unsigned
integer

Indicates support for cursor sensitivity:

¹ SQL_INSENSITIVE, all cursors on the statement
handle show the result set without reflecting any
changes made to it by any other cursor within the
same transaction.

¹ SQL_UNSPECIFIED, tt is unspecified whether
cursors on the statement handle make visible the
changes made to a result set by another cursor
within the same transaction. Cursors on the
statement handle may make visible none, some, or
all such changes.

¹ SQL_SENSITIVE, cursors are sensitive to changes
made by other cursors within the same transaction.

SQL_DATA_SOURCE_NAME string The name used as data source on the input to
SQLConnect(), or the DSN keyword value in the
SQLDriverConnect() connection string.

SQL_DATA_SOURCE_READ_ONLY string A character string of "Y" indicates that the database is
set to READ ONLY mode, "N" indicates that is not set
to READ ONLY mode.

SQL_DATABASE_NAME string The name of the current database in use

Note: also returned by SELECT CURRENT SERVER
on IBM DBMS's.

 Chapter 5. Functions 411

SQLGetInfo

Table 105 (Page 10 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_DATETIME_LITERALS 32-bit unsigned
integer

Indicates the datetime literals that are supported by the
DBMS. DB2 CLI always returns zero; datetime literals
are not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_DL_SQL92_DATE
 ¹ SQL_DL_SQL92_TIME
 ¹ SQL_DL_SQL92_TIMESTAMP
 ¹ SQL_DL_SQL92_INTERVAL_YEAR
 ¹ SQL_DL_SQL92_INTERVAL_MONTH
 ¹ SQL_DL_SQL92_INTERVAL_DAY
 ¹ SQL_DL_SQL92_INTERVAL_HOUR
 ¹ SQL_DL_SQL92_INTERVAL_MINUTE
 ¹ SQL_DL_SQL92_INTERVAL_SECOND
 ¹ SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH
 ¹ SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR
 ¹ SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE
 ¹ SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND
 ¹ SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE
 ¹ SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND
 ¹ SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DBMS_NAME string The name of the DBMS product being accessed

For example:

 ¹ "DB2/6000"
 ¹ "DB2/2"

SQL_DBMS_VER string The Version of the DBMS product accessed. A string of
the form 'mm.vv.rrrr' where mm is the major version, vv
is the minor version and rrrr is the release. For
example, "0r.01.0000" translates to major version r,
minor version 1, release 0.

SQL_DDL_INDEX 32-bit unsigned
integer

Indicates support for the creation and dropping of
indexes:

 ¹ SQL_DI_CREATE_INDEX
 ¹ SQL_DI_DROP_INDEX

412 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 11 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_DEFAULT_TXN_ISOLATION 32-bit mask The default transaction isolation level supported

One of the following masks are returned:

¹ SQL_TXN_READ_UNCOMMITTED = Changes are
immediately perceived by all transactions (dirty
read, non-repeatable read, and phantoms are
possible).

This is equivalent to IBM's UR level.

¹ SQL_TXN_READ_COMMITTED = Row read by
transaction 1 can be altered and committed by
transaction 2 (non-repeatable read and phantoms
are possible)

This is equivalent to IBM's CS level.

¹ SQL_TXN_REPEATABLE_READ = A transaction
can add or remove rows matching the search
condition or a pending transaction (repeatable read,
but phantoms are possible)

This is equivalent to IBM's RS level.

¹ SQL_TXN_SERIALIZABLE = Data affected by
pending transaction is not available to other
transactions (repeatable read, phantoms are not
possible)

This is equivalent to IBM's RR level.

¹ SQL_TXN_VERSIONING = Not applicable to IBM
DBMSs.

¹ SQL_TXN_NOCOMMIT = Any chnages are
effectively committed at the end of a successful
operation; no explicit commit or rollback is allowed.

This is a DB2 for AS/400 isolation level.

In IBM terminology,

¹ SQL_TXN_READ_UNCOMMITTED is Uncommitted
Read;

¹ SQL_TXN_READ_COMMITTED is Cursor Stability;
¹ SQL_TXN_REPEATABLE_READ is Read Stability;
¹ SQL_TXN_SERIALIZABLE is Repeatable Read.

SQL_DESCRIBE_PARAMETER string "Y" if parameters can be described; "N" if not.

SQL_DM_VER string Reserved.

SQL_DRIVER_HDBC 32 bits DB2 CLI's database handle

SQL_DRIVER_HDESC 32 bits DB2 CLI's descriptor handle

SQL_DRIVER_HENV 32 bits DB2 CLI's environment handle

SQL_DRIVER_HLIB 32 bits Reserved.

 Chapter 5. Functions 413

SQLGetInfo

Table 105 (Page 12 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_DRIVER_HSTMT 32 bits DB2 CLI's statement handle

In an ODBC environment with an ODBC Driver
Manager, if InfoType is set to SQL_DRIVER_HSTMT,
the Driver Manager statement handle (i.e. the one
returned from SQLAllocStmt()) must be passed on input
in rgbInfoValue from the application. In this case
rgbInfoValue is both an input and an output argument.
The ODBC Driver Manager is responsible for returning
the mapped value. ODBC applications wishing to call
DB2 CLI specific functions (such as the LOB functions)
can access them, by passing these handle values to
the functions after loading the DB2 CLI library and
issuing an operating system call to invoke the desired
functions.

SQL_DRIVER_NAME string The file name of the DB2 CLI implementation.

SQL_DRIVER_ODBC_VER string The version number of ODBC that the Driver supports.
DB2 CLI will return "03.00".

SQL_DRIVER_VER string The version of the CLI driver. A string of the form
'mm.vv.rrrr' where mm is the major version, vv is the
minor version and rrrr is the release. For example,
"05.01.0000" translates to major version 5, minor
version 1, release 0.

SQL_DROP_ASSERTION 32-bit unsigned
integer

Indicates which clause in the DROP ASSERTION
statement is supported by the DBMS. DB2 CLI always
returns zero; the DROP ASSERTION statement is not
supported.

ODBC also defines the following value that is not
returned by DB2 CLI:

 ¹ SQL_DA_DROP_ASSERTION

SQL_DROP_CHARACTER_SET 32-bit unsigned
integer

Indicates which clause in the DROP CHARACTER SET
statement is supported by the DBMS. DB2 CLI always
returns zero; the DROP CHARACTER SET statement is
not supported.

ODBC also defines the following value that is not
returned by DB2 CLI:

 ¹ SQL_DCS_DROP_CHARACTER_SET

SQL_DROP_COLLATION 32-bit unsigned
integer

Indicates which clause in the DROP COLLATION
statement is supported by the DBMS. DB2 CLI always
returns zero; the DROP COLLATION statement is not
supported.

ODBC also defines the following value that is not
returned by DB2 CLI:

 ¹ SQL_DC_DROP_COLLATION

414 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 13 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_DROP_DOMAIN 32-bit unsigned
integer

Indicates which clauses in the DROP DOMAIN
statement are supported by the DBMS. DB2 CLI always
returns zero; the DROP DOMAIN statement is not
supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_DD_DROP_DOMAIN
 ¹ SQL_DD_CASCADE
 ¹ SQL_DD_RESTRICT

SQL_DROP_SCHEMA 32-bit unsigned
integer

Indicates which clauses in the DROP SCHEMA
statement are supported by the DBMS. DB2 CLI always
returns zero; the DROP SCHEMA statement is not
supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_DS_DROP_SCHEMA
 ¹ SQL_DS_CASCADE
 ¹ SQL_DS_RESTRICT

SQL_DROP_TABLE 32-bit unsigned
integer

Indicates which clauses in the DROP TABLE statement
are supported by the DBMS:

 ¹ SQL_DT_DROP_TABLE
 ¹ SQL_DT_CASCADE
 ¹ SQL_DT_RESTRICT

SQL_DROP_TRANSLATION 32-bit unsigned
integer

Indicates which clauses in the DROP TRANSLATION
statement are supported by the DBMS. DB2 CLI always
returns zero; the DROP TRANSLATION statement is
not supported.

ODBC also defines the following value that is not
returned by DB2 CLI:

 ¹ SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW 32-bit unsigned
integer

Indicates which clauses in the DROP VIEW statement
are supported by the DBMS. DB2 CLI always returns
zero; the DROP VIEW statement is not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_DV_DROP_VIEW
 ¹ SQL_DV_CASCADE
 ¹ SQL_DV_RESTRICT

 Chapter 5. Functions 415

SQLGetInfo

Table 105 (Page 14 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a dynamic cursor (subset 1 of
2). DB2 CLI always returns zero; dynamic cursors are
not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA1_NEXT
 ¹ SQL_CA1_ABSOLUTE
 ¹ SQL_CA1_RELATIVE
 ¹ SQL_CA1_BOOKMARK
 ¹ SQL_CA1_LOCK_EXCLUSIVE
 ¹ SQL_CA1_LOCK_NO_CHANGE
 ¹ SQL_CA1_LOCK_UNLOCK
 ¹ SQL_CA1_POS_POSITION
 ¹ SQL_CA1_POS_UPDATE
 ¹ SQL_CA1_POS_DELETE
 ¹ SQL_CA1_POS_REFRESH
 ¹ SQL_CA1_POSITIONED_UPDATE
 ¹ SQL_CA1_POSITIONED_DELETE
 ¹ SQL_CA1_SELECT_FOR_UPDATE
 ¹ SQL_CA1_BULK_ADD
 ¹ SQL_CA1_BULK_UPDATE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_DELETE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a dynamic cursor (subset 2 of
2). DB2 CLI always returns zero; dynamic cursors are
not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA2_READ_ONLY_CONCURRENCY
 ¹ SQL_CA2_LOCK_CONCURRENCY
 ¹ SQL_CA2_OPT_ROWVER_CONCURRENCY
 ¹ SQL_CA2_OPT_VALUES_CONCURRENCY
 ¹ SQL_CA2_SENSITIVITY_ADDITIONS
 ¹ SQL_CA2_SENSITIVITY_DELETIONS
 ¹ SQL_CA2_SENSITIVITY_UPDATES
 ¹ SQL_CA2_MAX_ROWS_SELECT
 ¹ SQL_CA2_MAX_ROWS_INSERT
 ¹ SQL_CA2_MAX_ROWS_DELETE
 ¹ SQL_CA2_MAX_ROWS_UPDATE
 ¹ SQL_CA2_MAX_ROWS_CATALOG
 ¹ SQL_CA2_MAX_ROWS_AFFECTS_ALL
 ¹ SQL_CA2_CRC_EXACT
 ¹ SQL_CA2_CRC_APPROXIMATE
 ¹ SQL_CA2_SIMULATE_NON_UNIQUE
 ¹ SQL_CA2_SIMULATE_TRY_UNIQUE
 ¹ SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY string The character string "Y" indicates the database server
supports the DIRECT specification of expressions in the
ORDER BY list, "N" indicates that is does not.

416 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 15 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_FETCH_DIRECTION 32-bit mask The supported fetch directions.

The following bit-masks are used in conjunction with the
flag to determine which options are supported.

 ¹ SQL_FD_FETCH_NEXT
 ¹ SQL_FD_FETCH_FIRST
 ¹ SQL_FD_FETCH_LAST
 ¹ SQL_FD_FETCH_PREV
 ¹ SQL_FD_FETCH_ABSOLUTE
 ¹ SQL_FD_FETCH_RELATIVE
 ¹ SQL_FD_FETCH_RESUME

SQL_FILE_USAGE 16-bit integer Indicates how a single-tier driver directly treats files in a
data source. The DB2 CLI driver is not a single-tier
driver and therefor always returns
SQL_FILE_NOT_SUPPORTED.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_FILE_TABLE
 ¹ SQL_FILE_CATALOG

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 32-bit mask Indicates the supported attributes of a forward-only
cursor (subset 1 of 2).

 ¹ SQL_CA1_NEXT
 ¹ SQL_CA1_POSITIONED_UPDATE
 ¹ SQL_CA1_POSITIONED_DELETE
 ¹ SQL_CA1_SELECT_FOR_UPDATE

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA1_LOCK_EXCLUSIVE
 ¹ SQL_CA1_LOCK_NO_CHANGE
 ¹ SQL_CA1_LOCK_UNLOCK
 ¹ SQL_CA1_POS_POSITION
 ¹ SQL_CA1_POS_UPDATE
 ¹ SQL_CA1_POS_DELETE
 ¹ SQL_CA1_POS_REFRESH
 ¹ SQL_CA1_BULK_ADD
 ¹ SQL_CA1_BULK_UPDATE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_DELETE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_FETCH_BY_BOOKMARK

 Chapter 5. Functions 417

SQLGetInfo

Table 105 (Page 16 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 32-bit mask Indicates the supported attributes of a forward-only
cursor (subset 2 of 2).

 ¹ SQL_CA2_READ_ONLY_CONCURRENCY
 ¹ SQL_CA2_LOCK_CONCURRENCY
 ¹ SQL_CA2_MAX_ROWS_SELECT
 ¹ SQL_CA2_MAX_ROWS_CATALOG

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA2_OPT_ROWVER_CONCURRENCY
 ¹ SQL_CA2_OPT_VALUES_CONCURRENCY
 ¹ SQL_CA2_SENSITIVITY_ADDITIONS
 ¹ SQL_CA2_SENSITIVITY_DELETIONS
 ¹ SQL_CA2_SENSITIVITY_UPDATES
 ¹ SQL_CA2_MAX_ROWS_INSERT
 ¹ SQL_CA2_MAX_ROWS_DELETE
 ¹ SQL_CA2_MAX_ROWS_UPDATE
 ¹ SQL_CA2_MAX_ROWS_AFFECTS_ALL
 ¹ SQL_CA2_CRC_EXACT
 ¹ SQL_CA2_CRC_APPROXIMATE
 ¹ SQL_CA2_SIMULATE_NON_UNIQUE
 ¹ SQL_CA2_SIMULATE_TRY_UNIQUE
 ¹ SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS 32-bit mask Indicates whether extensions to the SQLGetData()
function are supported. The following extensions are
currently identified and supported by DB2 CLI:

¹ SQL_GD_ANY_COLUMN, SQLGetData() can be
called for unbound columns that precede the last
bound column.

¹ SQL_GD_ANY_ORDER, SQLGetData() can be
called for columns in any order.

¹ SQL_GD_BLOCK, SQLGetData() can be called for
bound columns as well as unbound columns.

ODBC also defines SQL_GD_BOUND which is not
returned by DB2 CLI.

SQL_GROUP_BY 16-bit integer Indicates the degree of support for the GROUP BY
clause by the server:

¹ SQL_GB_NO_RELATION, there is no relationship
between the columns in the GROUP BY and in the
SELECT list

¹ SQL_GB_NOT_SUPPORTED, GROUP BY not
supported

 ¹ SQL_GB_GROUP_BY_EQUALS_SELECT,
GROUP BY must include all non-aggregated
columns in the select list.

 ¹ SQL_GB_GROUP_BY_CONTAINS_SELECT, the
GROUP BY clause must contain all
non-aggregated columns in the SELECT list.

¹ SQL_GB_COLLATE, a COLLATE clause can be
specified at the end of each grouping column.

418 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 17 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_IDENTIFIER_CASE 16-bit integer Indicates case sensitivity of object names (such as
table-name).

A value of:

¹ SQL_IC_UPPER = identifier names are stored in
upper case in the system catalog.

¹ SQL_IC_LOWER = identifier names are stored in
lower case in the system catalog.

¹ SQL_IC_SENSITIVE = identifier names are case
sensitive, and are stored in mixed case in the
system catalog.

¹ SQL_IC_MIXED = identifier names are not case
sensitive, and are stored in mixed case in the
system catalog.

Note: Identifier names in IBM DBMSs are not case
sensitive.

SQL_IDENTIFIER_QUOTE_CHAR string Indicates the character used to surround a delimited
identifier

SQL_INDEX_KEYWORDS 32-bit mask Indicates the keywords in the CREATE INDEX
statement that are supported:

¹ SQL_IK_NONE, none of the keywords are
supported.

¹ SQL_IK_ASC, ASC keyword is supported.
¹ SQL_IK_DESC, DESC keyword is supported.
¹ SQL_IK_ALL, all keywords are supported.

 To see the the CREATE INDEX statement is
supported, an application can call SQLGetInfo() with the
SQL_DLL_INDEX InfoType.

 Chapter 5. Functions 419

SQLGetInfo

Table 105 (Page 18 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_INFO_SCHEMA_VIEWS 32-bit mask Indicates the views in the INFORMATIONAL_SCHEMA
that are supported. DB2 CLI always returns zero; no
views in the INFORMATIONAL_SCHEMA are
supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_ISV_ASSERTIONS
 ¹ SQL_ISV_CHARACTER_SETS
 ¹ SQL_ISV_CHECK_CONSTRAINTS
 ¹ SQL_ISV_COLLATIONS
 ¹ SQL_ISV_COLUMN_DOMAIN_USAGE
 ¹ SQL_ISV_COLUMN_PRIVILEGES
 ¹ SQL_ISV_COLUMNS
 ¹ SQL_ISV_CONSTRAINT_COLUMN_USAGE
 ¹ SQL_ISV_CONSTRAINT_TABLE_USAGE
 ¹ SQL_ISV_DOMAIN_CONSTRAINTS
 ¹ SQL_ISV_DOMAINS
 ¹ SQL_ISV_KEY_COLUMN_USAGE
 ¹ SQL_ISV_REFERENTIAL_CONSTRAINTS
 ¹ SQL_ISV_SCHEMATA
 ¹ SQL_ISV_SQL_LANGUAGES
 ¹ SQL_ISV_TABLE_CONSTRAINTS
 ¹ SQL_ISV_TABLE_PRIVILEGES
 ¹ SQL_ISV_TABLES
 ¹ SQL_ISV_TRANSLATIONS
 ¹ SQL_ISV_USAGE_PRIVILEGES
 ¹ SQL_ISV_VIEW_COLUMN_USAGE
 ¹ SQL_ISV_VIEW_TABLE_USAGE
 ¹ SQL_ISV_VIEWS

SQL_INSERT_STATEMENT 32-bit mask Indicates support for INSERT statements:

 ¹ SQL_IS_INSERT_LITERALS
 ¹ SQL_IS_INSERT_SEARCHED
 ¹ SQL_IS_SELECT_INTO

SQL_INTEGRITY string The "Y" character string indicates that the data source
supports Integrity Enhanced Facility (IEF) in SQL89 and
in X/Open XPG4 Embedded SQL, an "N" indicates it
does not.

In previous versions of DB2 CLI this InfoType was
SQL_ODBC_SQL_OPT_IEF.

420 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 19 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_KEYSET_CURSOR_ATTRIBUTES1 32-bit mask Indicates the supported attributes of a keyset cursor
(subset 1 of 2). DB2 CLI always returns zero; keyset
cursors are not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA1_NEXT
 ¹ SQL_CA1_ABSOLUTE
 ¹ SQL_CA1_RELATIVE
 ¹ SQL_CA1_BOOKMARK
 ¹ SQL_CA1_LOCK_EXCLUSIVE
 ¹ SQL_CA1_LOCK_NO_CHANGE
 ¹ SQL_CA1_LOCK_UNLOCK
 ¹ SQL_CA1_POS_POSITION
 ¹ SQL_CA1_POS_UPDATE
 ¹ SQL_CA1_POS_DELETE
 ¹ SQL_CA1_POS_REFRESH
 ¹ SQL_CA1_POSITIONED_UPDATE
 ¹ SQL_CA1_POSITIONED_DELETE
 ¹ SQL_CA1_SELECT_FOR_UPDATE
 ¹ SQL_CA1_BULK_ADD
 ¹ SQL_CA1_BULK_UPDATE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_DELETE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2 32-bit mask Indicates the supported attributes of a keyset cursor
(subset 2 of 2). DB2 CLI always returns zero; keyset
cursors are not supported.

ODBC also defines the following values that are not
returned by DB2 CLI:

 ¹ SQL_CA2_READ_ONLY_CONCURRENCY
 ¹ SQL_CA2_LOCK_CONCURRENCY
 ¹ SQL_CA2_OPT_ROWVER_CONCURRENCY
 ¹ SQL_CA2_OPT_VALUES_CONCURRENCY
 ¹ SQL_CA2_SENSITIVITY_ADDITIONS
 ¹ SQL_CA2_SENSITIVITY_DELETIONS
 ¹ SQL_CA2_SENSITIVITY_UPDATES
 ¹ SQL_CA2_MAX_ROWS_SELECT
 ¹ SQL_CA2_MAX_ROWS_INSERT
 ¹ SQL_CA2_MAX_ROWS_DELETE
 ¹ SQL_CA2_MAX_ROWS_UPDATE
 ¹ SQL_CA2_MAX_ROWS_CATALOG
 ¹ SQL_CA2_MAX_ROWS_AFFECTS_ALL
 ¹ SQL_CA2_CRC_EXACT
 ¹ SQL_CA2_CRC_APPROXIMATE
 ¹ SQL_CA2_SIMULATE_NON_UNIQUE
 ¹ SQL_CA2_SIMULATE_TRY_UNIQUE
 ¹ SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS sting This is a string of all the keywords at the DBMS that
are not in the ODBC's list of reserved words.

SQL_LIKE_ESCAPE_CLAUSE string A character string that indicates if an escape character
is supported for the metacharacters percent and
underscore in a LIKE predicate.

SQL_LOCK_TYPES 32-bit mask Reserved option, zero is returned for the bit-mask.

 Chapter 5. Functions 421

SQLGetInfo

Table 105 (Page 20 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS 32-bit unsigned
integer

The maximum number of active concurrent statements
in asynchronous mode that DB2 CLI can support on a
given connection. This value is zero if there is no
specific limit, or the limit is unknown.

SQL_MAX_BINARY_LITERAL_LEN 32-bit unsigned
integer

A 32-bit unsigned integer value specifying the maximum
length of a hexadecimal literal in a SQL statement.

SQL_MAX_CATALOG_NAME_LEN 16-bit integer The maximum length of a catalog name in the data
source. This value is zero if there is no maximum
length, or the length is unknown.

In previous versions of DB2 CLI this fInfoType was
SQL_MAX_QUALIFIER_NAME_LEN.

SQL_MAX_CHAR_LITERAL_LEN 32-bit unsigned
integer

The maximum length of a character literal in an SQL
statement (in bytes).

SQL_MAX_COLUMN_NAME_LEN 16-bit integer The maximum length of a column name (in bytes)

SQL_MAX_COLUMNS_IN_GROUP_BY 16-bit integer Indicates the maximum number of columns that the
server supports in a GROUP BY clause. Zero if no limit.

SQL_MAX_COLUMNS_IN_INDEX 16-bit integer Indicates the maximum number of columns that the
server supports in an index. Zero if no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY 16-bit integer Indicates the maximum number of columns that the
server supports in an ORDER BY clause. Zero if no
limit.

SQL_MAX_COLUMNS_IN_SELECT 16-bit integer Indicates the maximum number of columns that the
server supports in a select list. Zero if no limit.

SQL_MAX_COLUMNS_IN_TABLE 16-bit integer Indicates the maximum number of columns that the
server supports in a base table. Zero if no limit.

SQL_MAX_CONCURRENT_ACTIVITIES 16-bit integer The maximum number of active environments that the
DB2 CLI driver can support. If there is no specified limit
or the limit is unknown, this value is set to zero.

In previous versions of DB2 CLI this InfoType was
SQL_ACTIVE_ENVIRONMENTS.

SQL_MAX_CURSOR_NAME_LEN 16-bit integer The maximum length of a cursor name (in bytes). This
value is zero if there is no maximum length, or the
length is unknown.

SQL_MAX_DRIVER_CONNECTIONS 16-bit integer The maximum number of active connections supported
per application.

Zero is returned, indicating that the limit is dependent
on system resources.

The MAXCONN keyword in the db2cli.ini initialization
file or the SQL_ATTR_MAX_CONNECTIONS
environment/connection option can be used to impose a
limit on the number of connections. This limit is returned
if it is set to any value other than zero.

In previous versions of DB2 CLI this InfoType was
SQL_ACTIVE_CONNECTIONS.

SQL_MAX_IDENTIFIER_LEN 16-bit integer The maximum size (in characters) that the data source
supports for user-defined names.

SQL_MAX_INDEX_SIZE 32-bit unsigned
integer

Indicates the maximum size in bytes that the server
supports for the combined columns in an index. Zero if
no limit.

422 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 21 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_MAX_OWNER_NAME_LEN 16-bit integer This fInfoType has been replaced with
SQL_MAX_SCHEMA_NAME_LEN.

The maximum length of a schema qualifier name (in
bytes).

SQL_MAX_PROCEDURE_NAME_LEN 16-bit integer The maximum length of a procedure name (in bytes).

SQL_MAX_QUALIFIER_NAME_LEN 16-bit integer This fInfoType has been replaced with
SQL_MAX_CATALOG_NAME_LEN.

The maximum length of a catalog qualifier name; first
part of a 3 part table name (in bytes).

SQL_MAX_ROW_SIZE 32-bit unsigned
integer

Specifies the maximum length in bytes that the server
supports in single row of a base table. Zero if no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG string Set to "Y" to indicate that the value returned by
SQL_MAX_ROW_SIZE InfoType includes the length of
product-specific long string data types. Otherwise, set to
"N".

SQL_MAX_SCHEMA_NAME_LEN 16-bit integer The maximum length of a schema qualifier name (in
bytes).

In previous versions of DB2 CLI this fInfoType was
SQL_MAX_OWNER_NAME_LEN.

SQL_MAX_STATEMENT_LEN 32-bit unsigned
integer

Indicates the maximum length of an SQL statement
string in bytes, including the number of white spaces in
the statement.

SQL_MAX_TABLE_NAME_LEN 16-bit integer The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT 16-bit integer Indicates the maximum number of table names allowed
in a FROM clause in a <query specification>.

SQL_MAX_USER_NAME_LEN 16-bit integer Indicates the maximum size allowed for a <user
identifier> (in bytes).

SQL_MULT_RESULT_SETS string The character string "Y" indicates that the database
supports multiple result sets, "N" indicates that it does
not.

SQL_MULTIPLE_ACTIVE_TXN string The character string "Y" indicates that active
transactions on multiple connections are allowed, "N"
indicates that only one connection at a time can have
an active transaction.

DB2 CLI returns "N" for coordinated distributed unit of
work (CONNECT TYPE 2) connections, (since the
transaction or Unit Of Work spans all connections), and
returns "Y" for all other connections.

SQL_NEED_LONG_DATA_LEN string A character string reserved for the use of ODBC. "N is"
always returned.

SQL_NON_NULLABLE_COLUMNS 16-bit integer Indicates whether non-nullable columns are supported:

¹ SQL_NNC_NON_NULL, columns can be defined
as NOT NULL.

¹ SQL_NNC_NULL, columns can not be defined as
NOT NULL.

SQL_NULL_COLLATION 16-bit integer Indicates where NULLs are sorted in a list:

¹ SQL_NC_HIGH, null values sort high
¹ SQL_NC_LOW, to indicate that null values sort low

 Chapter 5. Functions 423

SQLGetInfo

Table 105 (Page 22 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_NUMERIC_FUNCTIONS 32-bit mask Indicates the ODBC scalar numeric functions supported
These functions are intended to be used with the ODBC
vendor escape sequence described in “Using Vendor
Escape Clauses” on page 123.

The following bit-masks are used to determine which
numeric functions are supported:

 ¹ SQL_FN_NUM_ABS
 ¹ SQL_FN_NUM_ACOS
 ¹ SQL_FN_NUM_ASIN
 ¹ SQL_FN_NUM_ATAN
 ¹ SQL_FN_NUM_ATAN2
 ¹ SQL_FN_NUM_CEILING
 ¹ SQL_FN_NUM_COS
 ¹ SQL_FN_NUM_COT
 ¹ SQL_FN_NUM_DEGREES
 ¹ SQL_FN_NUM_EXP
 ¹ SQL_FN_NUM_FLOOR
 ¹ SQL_FN_NUM_LOG
 ¹ SQL_FN_NUM_LOG10
 ¹ SQL_FN_NUM_MOD
 ¹ SQL_FN_NUM_PI
 ¹ SQL_FN_NUM_POWER
 ¹ SQL_FN_NUM_RADIANS
 ¹ SQL_FN_NUM_RAND
 ¹ SQL_FN_NUM_ROUND
 ¹ SQL_FN_NUM_SIGN
 ¹ SQL_FN_NUM_SIN
 ¹ SQL_FN_NUM_SQRT
 ¹ SQL_FN_NUM_TAN
 ¹ SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE 16-bit integer The level of ODBC conformance.

 ¹ SQL_OAC_NONE
 ¹ SQL_OAC_LEVEL1
 ¹ SQL_OAC_LEVEL2

SQL_ODBC_INTERFACE_CONFORMANCE 32-bit unsigned
integer

Indicates the level of the ODBC 3.0 interface that the
DB2 CLI driver conforms to:

¹ SQL_OIC_CORE, the minimum level that all ODBC
drivers are expected to conform to. This level
includes basic interface elements such as
connection functions; functions for preparing and
executing an SQL statement; basic result set
metadata functions; basic catalog functions; and so
on.

¹ SQL_OIC_LEVEL1, a level including the core
standards compliance level functionality, plus
scrollable cursors, bookmarks, positioned updates
and deletes, and so on.

¹ SQL_OIC_LEVEL2, a level including level 1
standards compliance level functionality, plus
advanced features such as sensitive cursors;
update, delete, and refresh by bookmarks; stored
procedure support; catalog functions for primary
and foreign keys; multi-catalog support; and so on.

424 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 23 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_SCHEMA_TERM string The database vendor's terminology for a schema
(owner).

In previous versions of DB2 CLI this InfoType was
SQL_OWNER_TERM.

SQL_SCHEMA_USAGE 32-bit mask Indicates the type of SQL statements that have schema
(owners) associated with them when these statements
are executed, Schema qualifiers (owners) are:

¹ SQL_SU_DML_STATEMENTS - supported in all
DML statements.

¹ SQL_SU_PROCEDURE_INVOCATION - supported
in the procedure invocation statement.

¹ SQL_SU_TABLE_DEFINITION - supported in all
table definition statements.

¹ SQL_SU_INDEX_DEFINITION - supported in all
index definition statements.

¹ SQL_SU_PRIVILEGE_DEFINITION - supported in
all privilege definition statements (i.e. grant and
revoke statements).

In previous versions of DB2 CLI this InfoType was
SQL_OWNER_USAGE.

SQL_ODBC_SAG_CLI_CONFORMANCE 16-bit integer The compliance to the functions of the SQL Access
Group (SAG) CLI specification.

A value of:

¹ SQL_OSCC_NOT_COMPLIANT - the driver is not
SAG-compliant.

¹ SQL_OSCC_COMPLIANT - the driver is
SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE 16-bit integer A value of:

¹ SQL_OSC_MINIMUM, minimum ODBC SQL
grammar supported

¹ SQL_OSC_CORE, core ODBC SQL Grammar
supported

¹ SQL_OSC_EXTENDED, extended ODBC SQL
Grammar supported

For the definition of the above 3 types of ODBC SQL
grammar, see the ODBC 3.0 Software Development Kit
and Programmer's Reference

SQL_ODBC_SQL_OPT_IEF string This InfoType has been replaced with
SQL_INTEGRITY.

The "Y" character string indicates that the data source
supports Integrity Enhanced Facility (IEF) in SQL89 and
in X/Open XPG4 Embedded SQL, an "N" indicates it
does not.

SQL_ODBC_VER string The version number of ODBC that the driver manager
supports.

DB2 CLI will return the string "03.01.0000".

 Chapter 5. Functions 425

SQLGetInfo

Table 105 (Page 24 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_OJ_CAPABILITIES 32-bit mask A 32-bit bit-mask enumerating the types of outer join
supported.

The bitmasks are:

¹ SQL_OJ_LEFT : Left outer join is supported.
¹ SQL_OJ_RIGHT : Right outer join is supported.
¹ SQL_OJ_FULL : Full outer join is supported.
¹ SQL_OJ_NESTED : Nested outer join is supported.
¹ SQL_OJ_ORDERED : The order of the tables

underlying the columns in the outer join ON clause
need not be in the same order as the tables in the
JOIN clause.

¹ SQL_OJ_INNER : The inner table of an outer join
can also be an inner join.

¹ SQL_OJ_ALL_COMPARISONS : Any predicate
may be used in the outer join ON clause. If this bit
is not set, the equality (=) operator is the only valid
comparison operator in the ON clause.

SQL_ORDER_BY_COLUMNS_IN_SELECT string Set to "Y" if columns in the ORDER BY clauses must
be in the select list; otherwise set to "N".

SQL_OUTER_JOINS string The character string:

¹ "Y" indicates that outer joins are supported, and
DB2 CLI supports the ODBC outer join request
syntax.

¹ "N" indicates that it is not supported.

(See “Using Vendor Escape Clauses” on page 123)

SQL_OWNER_TERM string This InfoType has been replaced with
SQL_SCHEMA_TERM.

The database vendor's terminology for a schema
(owner).

SQL_OWNER_USAGE 32-bit mask This InfoType has been replaced with
SQL_SCHEMA_USAGE.

Indicates the type of SQL statements that have schema
(owners) associated with them when these statements
are executed, Schema qualifiers (owners) are:

¹ SQL_OU_DML_STATEMENTS - supported in all
DML statements.

¹ SQL_OU_PROCEDURE_INVOCATION - supported
in the procedure invocation statement.

¹ SQL_OU_TABLE_DEFINITION - supported in all
table definition statements.

¹ SQL_OU_INDEX_DEFINITION - supported in all
index definition statements.

¹ SQL_OU_PRIVILEGE_DEFINITION - supported in
all privilege definition statements (i.e. grant and
revoke statements).

426 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 25 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_PARAM_ARRAY_ROW_COUNTS 32-bit unsigned
integer

Indicates the availability of row counts in a
parameterized execution:

¹ SQL_PARC_BATCH, individual row counts are
available for each set of parameters. This is
conceptually equivalent to the driver generating a
batch of SQL statements, one for each parameter
set in the array. Extended error information can be
retrieved by using the SQL_PARAM_STATUS_PTR
descriptor field.

¹ SQL_PARC_NO_BATCH, there is only one row
count available, which is the cumulative row count
resulting from the execution of the statement for the
entire array of parameters. This is conceptually
equivalent to treating the statement along with the
entire parameter array as one atomic unit. Errors
are handled the same as if one statement were
executed.

SQL_PARAM_ARRAY_SELECTS 32-bit unsigned
integer

Indicates the availability of result sets in a
parameterized execution:

¹ SQL_PAS_BATCH, there is one result set available
per set of parameters. This is conceptually
equivalent to the driver generating a batch of SQL
statements, one for each parameter set in the
array.

¹ SQL_PAS_NO_BATCH, there is only one result set
available, which represents the cumulative result
set resulting from the execution of the statement for
the entire array of parameters. This is conceptually
equivalent to treating the statement along with the
entire parameter array as one atomic unit.

¹ SQL_PAS_NO_SELECT, a driver does not allow a
result-set generating statement to be executed with
an array of parameters.

SQL_POS_OPERATIONS 32-bit mask Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS 32-bit mask Indicates the degree of support for Positioned UPDATE
and Positioned DELETE statements:

 ¹ SQL_PS_POSITIONED_DELETE
 ¹ SQL_PS_POSITIONED_UPDATE
 ¹ SQL_PS_SELECT_FOR_UPDATE, indicates

whether or not the server requires the FOR
UPDATE clause to be specified on a <query
expression> in order for a column to be updateable
via the cursor.

SQL_PROCEDURE_TERM string The name a database vendor uses for a procedure

SQL_PROCEDURES string A character string of "Y" indicates that the data source
supports procedures and DB2 CLI supports the ODBC
procedure invocation syntax specified in “Using Stored
Procedures” on page 104. "N" indicates that it does not.

SQL_QUALIFIER_LOCATION 16-bit integer This InfoType has been replaced with
SQL_CATALOG_LOCATION.

A 16-bit integer value indicated the position of the
qualifier in a qualified table name. DB2 CLI always
returns SQL_QL_START for this information type.

 Chapter 5. Functions 427

SQLGetInfo

Table 105 (Page 26 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_QUALIFIER_NAME_SEPARATOR string The character(s) used as a separator between a
catalog name and the qualified name element that
follows it.

This InfoType has been replaced with
SQL_CATALOG_NAME_SEPARATOR.

SQL_QUALIFIER_TERM string The database vendor's terminology for a qualifier

The name that the vendor uses for the high order part
of a three part name.

Since DB2 CLI does not support three part names, a
zero-length string is returned.

This InfoType has been replaced with
SQL_CATALOG_TERM.

SQL_QUALIFIER_USAGE 32-bit mask This fInfoType has been replaced with
SQL_CATALOG_USAGE.

This is similar to SQL_OWNER_USAGE except that
this is used for catalog.

SQL_QUOTED_IDENTIFIER_CASE 16-bit integer Returns:

¹ SQL_IC_UPPER - quoted identifiers in SQL are
case insensitive and stored in upper case in the
system catalog.

¹ SQL_IC_LOWER - quoted identifiers in SQL are
case insensitive and are stored in lower case in the
system catalog.

¹ SQL_IC_SENSITIVE - quoted identifiers (delimited
identifiers) in SQL are case sensitive and are
stored in mixed case in the system catalog.

¹ SQL_IC_MIXED - quoted identifiers in SQL are
case insensitive and are stored in mixed case in
the system catalog.

This should be contrasted with the
SQL_IDENTIFIER_CASE InfoType which is used to
determine how (unquoted) identifiers are stored in the
system catalog.

SQL_ROW_UPDATES string A character string of "Y" indicates changes are detected
in rows between multiple fetches of the same rows, "N"
indicates that changes are not detected.

SQL_SCROLL_CONCURRENCY 32-bit mask Indicates the concurrency options supported for the
cursor.

The following bit-masks are used in conjunction with the
flag to determine which options are supported:

 ¹ SQL_SCCO_READ_ONLY
 ¹ SQL_SCCO_LOCK
 ¹ SQL_SCCO_TIMESTAMP
 ¹ SQL_SCCO_VALUES

DB2 CLI returns SQL_SCCO_LOCK. indicating that the
lowest level of locking that is sufficient to ensure the
row can be updated is used.

428 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 27 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_SCROLL_OPTIONS 32-bit mask The scroll options supported for scrollable cursors.

The following bit-masks are used in conjunction with the
flag to determine which options are supported:

 ¹ SQL_SO_FORWARD_ONLY
 ¹ SQL_SO_KEYSET_DRIVEN
 ¹ SQL_SO_STATIC
 ¹ SQL_SO_DYNAMIC
 ¹ SQL_SO_MIXED

For more information about scrollable cursors see
“Scrollable Cursors” on page 51.

SQL_SEARCH_PATTERN_ESCAPE string Used to specify what the driver supports as an escape
character for catalog functions such as (SQLTables(),
SQLColumns())

SQL_SERVER_NAME string The Name of the DB2 Instance. In contrast to
SQL_DATA_SOURCE_NAME, this is the actual name
of the database server. (Some DBMSs provide a
different name on CONNECT than the real server-name
of the database.)

SQL_SPECIAL_CHARACTERS string Contains all the characters in addition to a...z, A...Z,

0...9, and _ that the server allows in non-delimited
identifiers.

SQL_SQL_CONFORMANCE 32-bit unsigned
integer

Indicates the level of SQL-92 supported:

¹ SQL_SC_SQL92_ENTRY, entry level SQL-92
compliant.

¹ SQL_SC_FIPS127_2_TRANSITIONAL, FIPS 127-2
transitional level compliant.

¹ SQL_SC_SQL92_FULL, full level SQL-92
compliant.

¹ SQL_SC_ SQL92_INTERMEDIATE, intermediate
level SQL-92 compliant.

SQL_SQL92_DATETIME_FUNCTIONS 32-bit mask Indicates the datetime scalar functions that are
supported by DB2 CLI and the data source:

 ¹ SQL_SDF_CURRENT_DATE
 ¹ SQL_SDF_CURRENT_TIME
 ¹ SQL_SDF_CURRENT_TIMESTAMP

SQL_SQL92_FOREIGN_KEY_DELETE_RULE 32-bit mask Indicates the rules supported for a foreign key in a
DELETE statement, as defined by SQL-92:

 ¹ SQL_SFKD_CASCADE
 ¹ SQL_SFKD_NO_ACTION
 ¹ SQL_SFKD_SET_DEFAULT
 ¹ SQL_SFKD_SET_NULL

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE 32-bit mask Indicates the rules supported for a foreign key in an
UPDATE statement, as defined by SQL-92:

 ¹ SQL_SFKU_CASCADE
 ¹ SQL_SFKU_NO_ACTION
 ¹ SQL_SFKU_SET_DEFAULT
 ¹ SQL_SFKU_SET_NULL

 Chapter 5. Functions 429

SQLGetInfo

Table 105 (Page 28 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_SQL92_GRANT 32-bit mask Indicates the clauses supported in a GRANT statement,
as defined by SQL-92:

 ¹ SQL_SG_DELETE_TABLE
 ¹ SQL_SG_INSERT_COLUMN
 ¹ SQL_SG_INSERT_TABLE
 ¹ SQL_SG_REFERENCES_TABLE
 ¹ SQL_SG_REFERENCES_COLUMN
 ¹ SQL_SG_SELECT_TABLE
 ¹ SQL_SG_UPDATE_COLUMN
 ¹ SQL_SG_UPDATE_TABLE
 ¹ SQL_SG_USAGE_ON_DOMAIN
 ¹ SQL_SG_USAGE_ON_CHARACTER_SET
 ¹ SQL_SG_USAGE_ON_COLLATION
 ¹ SQL_SG_USAGE_ON_TRANSLATION
 ¹ SQL_SG_WITH_GRANT_OPTION

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS 32-bit mask Indicates the numeric value scalar functions that are
supported by DB2 CLI and the data source, as defined
in SQL-92:

 ¹ SQL_SNVF_BIT_LENGTH
 ¹ SQL_SNVF_CHAR_LENGTH
 ¹ SQL_SNVF_CHARACTER_LENGTH
 ¹ SQL_SNVF_EXTRACT
 ¹ SQL_SNVF_OCTET_LENGTH
 ¹ SQL_SNVF_POSITION

SQL_SQL92_PREDICATES 32-bit mask Indicates the predicates supported in a SELECT
statement, as defined by SQL-92.

 ¹ SQL_SP_BETWEEN
 ¹ SQL_SP_COMPARISON
 ¹ SQL_SP_EXISTS
 ¹ SQL_SP_IN
 ¹ SQL_SP_ISNOTNULL
 ¹ SQL_SP_ISNULL
 ¹ SQL_SP_LIKE
 ¹ SQL_SP_MATCH_FULL
 ¹ SQL_SP_MATCH_PARTIAL
 ¹ SQL_SP_MATCH_UNIQUE_FULL
 ¹ SQL_SP_MATCH_UNIQUE_PARTIAL
 ¹ SQL_SP_OVERLAPS
 ¹ SQL_SP_QUANTIFIED_COMPARISON
 ¹ SQL_SP_UNIQUE

SQL_SQL92_RELATIONAL_JOIN_OPERATORS 32-bit mask Indicates the relational join operators supported in a
SELECT statement, as defined by SQL-92.

 ¹ SQL_SRJO_CORRESPONDING_CLAUSE
 ¹ SQL_SRJO_CROSS_JOIN
 ¹ SQL_SRJO_EXCEPT_JOIN
 ¹ SQL_SRJO_FULL_OUTER_JOIN
¹ SQL_SRJO_INNER_JOIN (indicates support for the

INNER JOIN syntax, not for the inner join
capability)

 ¹ SQL_SRJO_INTERSECT_JOIN
 ¹ SQL_SRJO_LEFT_OUTER_JOIN
 ¹ SQL_SRJO_NATURAL_JOIN
 ¹ SQL_SRJO_RIGHT_OUTER_JOIN
 ¹ SQL_SRJO_UNION_JOIN

430 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 29 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_SQL92_REVOKE 32-bit mask Indicates which clauses the data source supports in the
REVOKE statement, as defined by SQL-92:

 ¹ SQL_SR_CASCADE
 ¹ SQL_SR_DELETE_TABLE
 ¹ SQL_SR_GRANT_OPTION_FOR
 ¹ SQL_SR_INSERT_COLUMN
 ¹ SQL_SR_INSERT_TABLE
 ¹ SQL_SR_REFERENCES_COLUMN
 ¹ SQL_SR_REFERENCES_TABLE
 ¹ SQL_SR_RESTRICT
 ¹ SQL_SR_SELECT_TABLE
 ¹ SQL_SR_UPDATE_COLUMN
 ¹ SQL_SR_UPDATE_TABLE
 ¹ SQL_SR_USAGE_ON_DOMAIN
 ¹ SQL_SR_USAGE_ON_CHARACTER_SET
 ¹ SQL_SR_USAGE_ON_COLLATION
 ¹ SQL_SR_USAGE_ON_TRANSLATION

SQL_SQL92_ROW_VALUE_CONSTRUCTOR 32-bit mask Indicates the row value constructor expressions
supported in a SELECT statement, as defined by
SQL-92.

 ¹ SQL_SRVC_VALUE_EXPRESSION
 ¹ SQL_SRVC_NULL
 ¹ SQL_SRVC_DEFAULT
 ¹ SQL_SRVC_ROW_SUBQUERY

SQL_SQL92_STRING_FUNCTIONS 32-bit mask Indicates the string scalar functions that are supported
by DB2 CLI and the data source, as defined by
SQL-92:

 ¹ SQL_SSF_CONVERT
 ¹ SQL_SSF_LOWER
 ¹ SQL_SSF_UPPER
 ¹ SQL_SSF_SUBSTRING
 ¹ SQL_SSF_TRANSLATE
 ¹ SQL_SSF_TRIM_BOTH
 ¹ SQL_SSF_TRIM_LEADING
 ¹ SQL_SSF_TRIM_TRAILING

SQL_SQL92_VALUE_EXPRESSIONS 32-bit mask Indicates the value expressions supported, as defined
by SQL-92.

 ¹ SQL_SVE_CASE
 ¹ SQL_SVE_CAST
 ¹ SQL_SVE_COALESCE
 ¹ SQL_SVE_NULLIF

SQL_SQL92_STANDARD_CLI_CONFORMANCE 32-bit mask Indicates the CLI standard or standards to which DB2
CLI conforms:

 ¹ SQL_SCC_XOPEN_CLI_VERSION1
 ¹ SQL_SCC_ISO92_CLI

 Chapter 5. Functions 431

SQLGetInfo

Table 105 (Page 30 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_STATIC_CURSOR_ATTRIBUTES1 32-bit mask Indicates the attributes of a static cursor that are
supported by DB2 CLI (subset 1 of 2):

 ¹ SQL_CA1_NEXT
 ¹ SQL_CA1_ABSOLUTE
 ¹ SQL_CA1_RELATIVE
 ¹ SQL_CA1_BOOKMARK
 ¹ SQL_CA1_LOCK_NO_CHANGE
 ¹ SQL_CA1_LOCK_EXCLUSIVE
 ¹ SQL_CA1_LOCK_UNLOCK
 ¹ SQL_CA1_POS_POSITION
 ¹ SQL_CA1_POS_UPDATE
 ¹ SQL_CA1_POS_DELETE
 ¹ SQL_CA1_POS_REFRESH
 ¹ SQL_CA1_POSITIONED_UPDATE
 ¹ SQL_CA1_POSITIONED_DELETE
 ¹ SQL_CA1_SELECT_FOR_UPDATE
 ¹ SQL_CA1_BULK_ADD
 ¹ SQL_CA1_BULK_UPDATE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_DELETE_BY_BOOKMARK
 ¹ SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_STATIC_CURSOR_ATTRIBUTES2 32-bit mask Indicates the attributes of a static cursor that are
supported by DB2 CLI (subset 2 of 2):

 ¹ SQL_CA2_READ_ONLY_CONCURRENCY
 ¹ SQL_CA2_LOCK_CONCURRENCY
 ¹ SQL_CA2_OPT_ROWVER_CONCURRENCY
 ¹ SQL_CA2_OPT_VALUES_CONCURRENCY
 ¹ SQL_CA2_SENSITIVITY_ADDITIONS
 ¹ SQL_CA2_SENSITIVITY_DELETIONS
 ¹ SQL_CA2_SENSITIVITY_UPDATES
 ¹ SQL_CA2_MAX_ROWS_SELECT
 ¹ SQL_CA2_MAX_ROWS_INSERT
 ¹ SQL_CA2_MAX_ROWS_DELETE
 ¹ SQL_CA2_MAX_ROWS_UPDATE
 ¹ SQL_CA2_MAX_ROWS_CATALOG
 ¹ SQL_CA2_MAX_ROWS_AFFECTS_ALL
 ¹ SQL_CA2_CRC_EXACT
 ¹ SQL_CA2_CRC_APPROXIMATE
 ¹ SQL_CA2_SIMULATE_NON_UNIQUE
 ¹ SQL_CA2_SIMULATE_TRY_UNIQUE
 ¹ SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY 32-bit mask Indicates whether changes made by an application with
a positioned update or delete statement can be
detected by that application:

¹ SQL_SS_ADDITIONS: Added rows are visible to the
cursor; the cursor can scroll to these rows. All DB2
servers see added rows.

¹ SQL_SS_DELETIONS: Deleted rows are no longer
available to the cursor and do not leave a hole in
the result set; after the cursor scrolls from a deleted
row, it cannot return to that row.

¹ SQL_SS_UPDATES: Updates to rows are visible to
the cursor; if the cursor scrolls from and returns to
an updated row, the data returned by the cursor is
the updated data, not the original data.

432 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 31 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_STRING_FUNCTIONS 32-bit mask Indicates which string functions are supported.

The following bit-masks are used to determine which
string functions are supported:

 ¹ SQL_FN_STR_ASCII
 ¹ SQL_FN_STR_BIT_LENGTH
 ¹ SQL_FN_STR_CHAR
 ¹ SQL_FN_STR_CHAR_LENGTH
 ¹ SQL_FN_STR_CHARACTER_LENGTH
 ¹ SQL_FN_STR_CONCAT
 ¹ SQL_FN_STR_DIFFERENCE
 ¹ SQL_FN_STR_INSERT
 ¹ SQL_FN_STR_LCASE
 ¹ SQL_FN_STR_LEFT
 ¹ SQL_FN_STR_LENGTH
 ¹ SQL_FN_STR_LOCATE
 ¹ SQL_FN_STR_LOCATE_2
 ¹ SQL_FN_STR_LTRIM
 ¹ SQL_FN_STR_OCTET_LENGTH
 ¹ SQL_FN_STR_POSITION
 ¹ SQL_FN_STR_REPEAT
 ¹ SQL_FN_STR_REPLACE
 ¹ SQL_FN_STR_RIGHT
 ¹ SQL_FN_STR_RTRIM
 ¹ SQL_FN_STR_SOUNDEX
 ¹ SQL_FN_STR_SPACE
 ¹ SQL_FN_STR_SUBSTRING
 ¹ SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function
with the string_exp1, string_exp2, and start arguments,
the SQL_FN_STR_LOCATE bitmask is returned. If an
application can only call the LOCATE scalar function
with the string_exp1 and string_exp2, the
SQL_FN_STR_LOCATE_2 bitmask is returned. If the
LOCATE scalar function is fully supported, both
bitmasks are returned.

SQL_SUBQUERIES 32-bit mask Indicates which predicates support subqueries:

¹ SQL_SQ_COMPARISION - the comparison
predicate

¹ SQL_SQ_CORRELATE_SUBQUERIES - all
predicates

¹ SQL_SQ_EXISTS - the exists predicate
¹ SQL_SQ_IN - the in predicate
¹ SQL_SQ_QUANTIFIED - the predicates containing

a quantification scalar function.

SQL_SYSTEM_FUNCTIONS 32-bit mask Indicates which scalar system functions are supported.

The following bit-masks are used to determine which
scalar system functions are supported:

 ¹ SQL_FN_SYS_DBNAME
 ¹ SQL_FN_SYS_IFNULL
 ¹ SQL_FN_SYS_USERNAME

Note: These functions are intended to be used with
the escape sequence in ODBC.

SQL_TABLE_TERM string The database vendor's terminology for a table

 Chapter 5. Functions 433

SQLGetInfo

Table 105 (Page 32 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_TIMEDATE_ADD_INTERVALS 32-bit mask Indicates whether or not the special ODBC system
function TIMESTAMPADD is supported, and, if it is,
which intervals are supported.

The following bitmasks are used to determine which
intervals are supported:

 ¹ SQL_FN_TSI_FRAC_SECOND
 ¹ SQL_FN_TSI_SECOND
 ¹ SQL_FN_TSI_MINUTE
 ¹ SQL_FN_TSI_HOUR
 ¹ SQL_FN_TSI_DAY
 ¹ SQL_FN_TSI_WEEK
 ¹ SQL_FN_TSI_MONTH
 ¹ SQL_FN_TSI_QUARTER
 ¹ SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS 32-bit mask Indicates whether or not the special ODBC system
function TIMESTAMPDIFF is supported, and, if it is,
which intervals are supported.

The following bitmasks are used to determine which
intervals are supported:

 ¹ SQL_FN_TSI_FRAC_SECOND
 ¹ SQL_FN_TSI_SECOND
 ¹ SQL_FN_TSI_MINUTE
 ¹ SQL_FN_TSI_HOUR
 ¹ SQL_FN_TSI_DAY
 ¹ SQL_FN_TSI_WEEK
 ¹ SQL_FN_TSI_MONTH
 ¹ SQL_FN_TSI_QUARTER
 ¹ SQL_FN_TSI_YEAR

434 CLI Guide and Reference

SQLGetInfo

Table 105 (Page 33 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_TIMEDATE_FUNCTIONS 32-bit mask Indicates which time and date functions are supported.

The following bit-masks are used to determine which
date functions are supported:

 ¹ SQL_FN_TD_CURRENT_DATE
 ¹ SQL_FN_TD_CURRENT_TIME
 ¹ SQL_FN_TD_CURRENT_TIMESTAMP
 ¹ SQL_FN_TD_CURDATE
 ¹ SQL_FN_TD_CURTIME
 ¹ SQL_FN_TD_DAYNAME
 ¹ SQL_FN_TD_DAYOFMONTH
 ¹ SQL_FN_TD_DAYOFWEEK
 ¹ SQL_FN_TD_DAYOFYEAR
 ¹ SQL_FN_TD_EXTRACT
 ¹ SQL_FN_TD_HOUR
 ¹ SQL_FN_TD_JULIAN_DAY
 ¹ SQL_FN_TD_MINUTE
 ¹ SQL_FN_TD_MONTH
 ¹ SQL_FN_TD_MONTHNAME
 ¹ SQL_FN_TD_NOW
 ¹ SQL_FN_TD_QUARTER
 ¹ SQL_FN_TD_SECOND
 ¹ SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
 ¹ SQL_FN_TD_TIMESTAMPADD
 ¹ SQL_FN_TD_TIMESTAMPDIFF
 ¹ SQL_FN_TD_WEEK
 ¹ SQL_FN_TD_YEAR

Note: These functions are intended to be used with
the escape sequence in ODBC.

SQL_TXN_CAPABLE 16-bit integer Indicates whether transactions can contain DDL or DML
or both.

¹ SQL_TC_NONE = transactions not supported.
¹ SQL_TC_DML = transactions can only contain

DML statements (SELECT, INSERT, UPDATE,
DELETE, etc.) DDL statements (CREATE TABLE,
DROP INDEX, etc.) encountered in a transaction
cause an error.

¹ SQL_TC_DDL_COMMIT = transactions can only
contain DML statements. DDL statements
encountered in a transaction cause the transaction
to be committed.

¹ SQL_TC_DDL_IGNORE = transactions can only
contain DML statements. DDL statements
encountered in a transaction are ignored.

¹ SQL_TC_ALL = transactions can contain DDL and
DML statements in any order.

 Chapter 5. Functions 435

SQLGetInfo

Table 105 (Page 34 of 34). Information Returned By SQLGetInfo

InfoType Format Description and Notes

SQL_TXN_ISOLATION_OPTION 32-bit mask The transaction isolation levels available at the currently
connected database server.

The following masks are used in conjunction with the
flag to determine which options are supported:

 ¹ SQL_TXN_READ_UNCOMMITTED
 ¹ SQL_TXN_READ_COMMITTED
 ¹ SQL_TXN_REPEATABLE_READ
 ¹ SQL_TXN_SERIALIZABLE
 ¹ SQL_TXN_NOCOMMIT
 ¹ SQL_TXN_VERSIONING

For descriptions of each level refer to
SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION 32-bit mask Indicates if the server supports the UNION operator:

¹ SQL_U_UNION - supports the UNION clause
¹ SQL_U_UNION_ALL - supports the ALL keyword in

the UNION clause

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME string The user name used in a particular database. This is
the identifier specified on the SQLConnect() call.

SQL_XOPEN_CLI_YEAR string Indicates the year of publication of the X/Open
specification with which the version of the driver fully
complies.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 106 (Page 1 of 2). SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information was returned as a string and its length
exceeded the length of the application buffer as specified in
BufferLength. The argument StringLengthPtr contains the actual
(not truncated) length of the requested information. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The type of information requested in InfoType requires an open
connection. Only SQL_ODBC_VER does not require an open
connection.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

436 CLI Guide and Reference

SQLGetInfo

Table 106 (Page 2 of 2). SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. The argument InfoValuePtr was a null pointer.

The InfoType was SQL_DRIVER_HSTMT and the value pointed to
by InfoValuePtr was not a valid handle.

HY090 Invalid string or buffer length. The value specified for argument BufferLength was less than 0.

HY096 Information type out of range. An invalid InfoType was specified.

HYC00 Driver not capable. The value specified in the argument InfoType is not supported by
either DB2 CLI or the data source.

 Restrictions
None.

 Example

 Chapter 5. Functions 437

SQLGetInfo

/* From CLI sample getinfo.c */

/* ... */

*/

/* Check to see if SQLGetInfo() is supported */

rc = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);

if (supported == SQL_TRUE) { /* get information about current connection */

rc = SQLGetInfo(hdbc, SQL_DATA_SOURCE_NAME, buffer, 255, &outlen);

printf(" Server Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DATABASE_NAME, buffer, 255, &outlen);

printf(" Database Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_SERVER_NAME, buffer, 255, &outlen);

printf(" Instance Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_NAME, buffer, 255, &outlen);

 printf(" DBMS Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_VER, buffer, 255, &outlen);

printf(" DBMS Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_NAME, buffer, 255, &outlen);

printf(" CLI Driver Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_VER, buffer, 255, &outlen);

printf("CLI Driver Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_ODBC_SQL_CONFORMANCE, &output,

 sizeof(output), &outlen);

switch (output) {

 case 0:

strcpy((char *)buffer, "Minimum Grammar");

 break;

 case 1:

strcpy((char *)buffer, "Core Grammar");

 break;

 case 2:

strcpy((char *)buffer, "Extended Grammar");

 break;

 default:

printf("Error calling getinfo!");

 return (SQL_ERROR);

 }

printf("ODBC SQL Conformance Level: %s\n", buffer);

 }

else printf("SQLGetInfo is not supported!\n") ;

438 CLI Guide and Reference

SQLGetInfo

 References
¹ “SQLGetTypeInfo - Get Data Type Information” on page 461

 Chapter 5. Functions 439

SQLGetLength

SQLGetLength - Retrieve Length of A String Value

 Purpose

SQLGetLength() is used to retrieve the length of a large object value, referenced by a
large object locator that has been returned from the server (as a result of a fetch, or an
SQLGetSubString() call) during the current transaction.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLGetLength (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER Locator,

 SQLINTEGER FAR *StringLength,

 SQLINTEGER FAR *IndicatorValue);

 Function Arguments

Table 107. SQLGetLength Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Must be set to the LOB locator value.

SQLINTEGER * StringLength output The length of the returned information in rgbValue in
bytesa if the target C buffer type is intended for a
binary or character string variable and not a locator
value.

If the pointer is set to NULL then the SQLSTATE
HY009 is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

 Usage
SQLGetLength() can be used to determine the length of the data value represented by a
LOB locator. It is used by applications to determine the overall length of the referenced

440 CLI Guide and Reference

SQLGetLength

LOB value so that the appropriate strategy to obtain some or all of the LOB value can
be chosen.

The Locator argument can contain any valid LOB locator which has not been explicitly
freed using a FREE LOCATOR statement nor implicitly freed because the transaction
during which it was created has terminated.

The statement handle must not have been associated with any prepared statements or
catalog function calls.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 108 (Page 1 of 2). SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.

40003
08S01

Communication link failure.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. Pointer to StringLength was NULL.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

 Chapter 5. Functions 441

SQLGetLength

Table 108 (Page 2 of 2). SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

0F001 The LOB token variable does
not currently represent any
value.

The value specified for Locator has not been associated with a
LOB locator.

 Restrictions
This function is not available when connected to a DB2 server that does not support
Large Objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETLENGTH and check the fExists output argument to determine if the
function is supported for the current connection.

 Example
Refer to “Example” on page 446.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLGetPosition - Return Starting Position of String” on page 443
¹ “SQLGetSubString - Retrieve Portion of A String Value” on page 457

442 CLI Guide and Reference

SQLGetPosition

SQLGetPosition - Return Starting Position of String

 Purpose

SQLGetPosition() is used to return the starting position of one string within a LOB
value (the source). The source value must be a LOB locator, the search string can be a
LOB locator or a literal string.

The source and search LOB locators can be any that have been returned from the
database from a fetch or a SQLGetSubString() call during the current transaction.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLGetPosition (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLINTEGER SearchLocator,

 SQLCHAR FAR *SearchLiteral,

 SQLINTEGER SearchLiteralLength,

 SQLUINTEGER FromPosition,

SQLUINTEGER FAR *LocatedAt,

 SQLINTEGER FAR *IndicatorValue);

 Function Arguments

Table 109 (Page 1 of 2). SQLGetPosition Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator.

SQLINTEGER SearchLocator input If the SearchLiteral pointer is NULL and if
SearchLiteralLength is set to 0, then SearchLocator
must be set to the LOB locator associated with the
search string; otherwise, this argument is ignored.

SQLCHAR * SearchLiteral input This argument points to the area of storage that
contains the search string literal.

If SearchLiteralLength is 0, this pointer must be
NULL.

 Chapter 5. Functions 443

SQLGetPosition

Table 109 (Page 2 of 2). SQLGetPosition Arguments

Data Type Argument Use Description

SQLINTEGER SearchLiteralLength input The length of the string in SearchLiteral(in bytes). a

If this argument value is 0, then the argument
SearchLocator is meaningful.

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the
first byte within the source string at which the search
is to start. to be returned by the function. For
DBCLOBs, this is the first character. The start byte or
character is numbered 1.

SQLUINTEGER * LocatedAt output For BLOBs and CLOBs, this is the byte position at
which the string was located or, if not located, the
value zero. For DBCLOBs, this is the character
position.

If the length of the source string is zero, the value 1
is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

 Usage
SQLGetPosition() is used in conjunction with SQLGetSubString() in order to obtain any
portion of a string in a random manner. In order to use SQLGetSubString(), the location
of the substring within the overall string must be known in advance. In situations where
the start of that substring can be found by a search string, SQLGetPosition() can be
used to obtain the starting position of that substring.

The Locator and SearchLocator (if used) arguments can contain any valid LOB locator
which has not been explicitly freed using a FREE LOCATOR statement or implicitly
freed because the transaction during which it was created has terminated.

The Locator and SearchLocator must have the same LOB locator type.

The statement handle must not have been associated with any prepared statements or
catalog function calls.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

444 CLI Guide and Reference

SQLGetPosition

 Diagnostics

Table 110. SQLGetPosition SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and either of the LOB locator
values is not valid.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

42818 The operands of an operator
or function are not
compatible.

The length of the pattern is longer than 4000 bytes.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. The pointer to the LocatedAt argument was NULL.

The argument value for FromPosition was not greater than 0.

LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value of SearchLiteralLength was less than 1, and not
SQL_NTS.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

0F001 The LOB token variable does
not currently represent any
value.

The value specified for Locator or SearchLocator is not currently a
LOB locator.

 Restrictions
This function is not available when connected to a DB2 server that does not support
Large Objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETPOSITION and check the fExists output argument to determine if
the function is supported for the current connection.

 Chapter 5. Functions 445

SQLGetPosition

 Example

446 CLI Guide and Reference

SQLGetPosition

/* From CLI sample lookres.c */

/* ... */

SQLCHAR * stmt2 = "SELECT resume FROM emp_resume "

"WHERE empno = ? AND resume_format = 'ascii'" ;

/* ... */

/* Get CLOB locator to selected Resume */

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_OUTPUT,

 emp_no.type,

 SQL_CHAR,

 emp_no.length,

 0,

 emp_no.s,

 emp_no.length,

 &emp_no.ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\n>Enter an employee number:\n") ;

gets((char *) emp_no.s) ;

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt,

 1,

 SQL_C_CLOB_LOCATOR,

 &ClobLoc1,

 0,

 &pcbValue

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFetch(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 /*

Search CLOB locator to find "Interests"

Get substring of resume (from position of interests to end)

 */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &lhstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Get total length */

rc = SQLGetLength(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 &SLength,

&Ind) ;

 Chapter 5. Functions 447

SQLGetPosition

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

/* Get Starting postion */

rc = SQLGetPosition(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 0,

(SQLCHAR *) "Interests",

 9,

 1,

 &Pos1,

 &Ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

rc = SQLFreeStmt(lhstmt, SQL_CLOSE) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

buffer = (SQLCHAR *) malloc(SLength - Pos1 + 1) ;

/* Get just the "Interests" section of the Resume CLOB */

/* (From Pos1 to end of CLOB) */

rc = SQLGetSubString(lhstmt,

 SQL_C_CLOB_LOCATOR,

 ClobLoc1,

 Pos1,

SLength - Pos1,

 SQL_C_CHAR,

 buffer,

SLength - Pos1 + 1,

 &OutLength,

 &Ind

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, lhstmt, rc) ;

/* Print Interest section of Employee's resume */

printf("\nEmployee #: %s\n %s\n", emp_no.s, buffer) ;

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLExtendedFetch - Extended Fetch (Fetch Array of Rows)” on page 313
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLGetLength - Retrieve Length of A String Value” on page 440
¹ “SQLGetSubString - Retrieve Portion of A String Value” on page 457

448 CLI Guide and Reference

SQLGetSQLCA

SQLGetSQLCA - Get SQLCA Data Structure

 Purpose

SQLGetSQLCA() is used to return the SQLCA associated with the preparation, and
execution of an SQL statement, fetching of data, or the closing of a cursor. The SQLCA
may return information in addition to what is available using SQLError().

Note: SQLGetSQLCA() must not be used as a replacement for SQLGetDiagField() and
SQLGetDiagRec().

For a detailed description of the SQLCA structure, refer to the SQLCA appendix in
theSQL Reference

An SQLCA is not available if a function is processed strictly on the application side,
such as allocating a statement handle. In this case, an empty SQLCA is returned with
all values set to zero.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLGetSQLCA (SQLHENV EnvironmentHandle, /* henv */

SQLHDBC ConnectionHandle, /* hdbc */

SQLHSTMT StatementHandle, /* hstmt */

struct sqlca FAR *SqlcaPtr); /* pSqlca */

 Function Arguments

Table 111. SQLGetSQLCA Arguments

Data Type Argument Use Description

SQLHENV EnvironmentHandle input Environment Handle. To obtain the SQLCA
associated with an environment, pass a valid
environment handle. Set ConnectionHandle and
StatementHandle to SQL_NULL_HDBC and
SQL_NULL_HSTMT respectively.

SQLHDBC ConnectionHandle input Connection Handle. To obtain the SQLCA associated
with a connection, pass a valid database connection
handle, and set StatementHandle to
SQL_NULL_HSTMT. The EnvironmentHandle
argument is ignored.

SQLHSTMT StatementHandle input Statement Handle. To obtain the SQLCA associated
with a statement, pass a valid statement handle. The
EnvironmentHandle and ConnectionHandle
arguments are ignored.

SQLCA * sqlCA output SQL Communication Area

 Chapter 5. Functions 449

SQLGetSQLCA

 Usage
The handles are used in the same way as for the SQLError() function. To obtain the
SQLCA associated with:

¹ An environment, pass a valid environment handle. Set ConnectionHandle and
StatementHandle to SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

¹ A connection, pass a valid database connection handle, and set StatementHandle
to SQL_NULL_HSTMT. The EnvironmentHandle argument is ignored.

¹ A statement, pass a valid statement handle. The EnvironmentHandle and
ConnectionHandle arguments are ignored.

If diagnostic information generated by one DB2 CLI function is not retrieved before a
function other than SQLError() is called with the same handle, the information for the
previous function call is lost. This is true whether or not diagnostic information is
generated for the second DB2 CLI function call.

If a DB2 CLI function is called that does not result in interaction with the DBMS, then
the SQLCA will contain all zeroes. Meaningful information will usually be returned for
the following functions:

 ¹ SQLBrowseConnect()

 ¹ SQLCancel(),
 ¹ SQLCloseCursor()

 ¹ SQLColAttribute()

 ¹ SQLColumnPrivileges()

 ¹ SQLColumns()

 ¹ SQLConnect(), SQLDisconnect()
 ¹ SQLCopyDesc()

 ¹ SQLDataSources()

 ¹ SQLDescribeCol()

 ¹ SQLDescribeParam()

 ¹ SQLEndTran()

 ¹ SQLExecDirect(), SQLExecute()
 ¹ SQLFetch()

 ¹ SQLFetchScroll()

 ¹ SQLForeignKeys()

 ¹ SQLFreeHandle()

¹ SQLGetData() (if LOB column is involved)
 ¹ SQLMoreResults()

 ¹ SQLPrepare()

 ¹ SQLPrimaryKeys()

 ¹ SQLProcedureColumns()

 ¹ SQLProcedures()

 ¹ SQLRowCount()

¹ SQLSetConnectAttr() (for SQL_ATTR_AUTOCOMMIT, and
SQL_ATTR_DB2EXPLAIN)

 ¹ SQLStatistics()

 ¹ SQLTables()

 ¹ SQLTablePrivileges()

450 CLI Guide and Reference

SQLGetSQLCA

 ¹ SQLTransact()

If the database connection is to a DB2 Universal Database Version 2 server or later,
there are two fields in the SQLCA that may be of particular interest:

¹ The SQLERRD(3) field (example, sqlca.errd[2]):

– After PREPARE, contains an estimate of the number of rows that will be
returned to the user when the statement is executed. An application can inform
the user of this information to help assess whether the appropriate query has
been issued.

– After INSERT, DELETE, UPDATE, contains the actual number of rows
affected.

– After Compound SQL processing, contains an accumulation of all
sub-statement rows affected by INSERT, UPDATE or DELETE statements.

¹ The SQLERRD(4) field (example, sqlca.errd[3]):

– After a PREPARE, contains a relative cost estimate of the resources required
to process the statement.

This is the number that is compared to the DB2ESTIMATE configuration
keyword as described in “Configuration Keywords” on page 144, and the
SQL_ATTR_DB2ESTIMATE connection attribute as described in the function
description, “SQLSetConnectAttr - Set Connection Attributes” on page 519.

– After Compound SQL processing, contains a count of the number of
successful sub-statements.

Note: The accuracy of the information returned in the SQLERRD(3) and SQLERRD(4)
fields is dependent on many factors such as the use of parameter markers and
expressions within the statement. The main factor which can be controlled is the
accuracy of the database statistics. That is, when the statistics were last
updated, (for example, for DB2 Universal Database, the last time the RUNSTATS

command was run.)

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
None.

 Restrictions
None.

 Chapter 5. Functions 451

SQLGetSQLCA

 Example
/* From CLI sample getsqlca.c */

/* ... */

/* execute the SQL statement in "sqlstr" */

rc = SQLPrepare(hstmt, sqlstr, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf(" Relative Cost=[%ld] Estimated # rows=[%ld]\n"

" Continue with execution(Y or N)?\n",

 sqlca.sqlerrd[3], sqlca.sqlerrd[2]);

 gets((char *)prompt);

if (prompt[0] == 'n' || prompt[0] =='N')

 return(0);

if (rc != SQL_SUCCESS)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecute(hstmt);

 References
¹ “SQLGetDiagRec - Get Multiple Fields Settings of Diagnostic Record” on

page 391

452 CLI Guide and Reference

SQLGetStmtAttr

SQLGetStmtAttr - Get Current Setting of a Statement Attribute

 Purpose

SQLGetStmtAttr() returns the current setting of a statement attribute.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLGetStmtAttr (SQLHSTMT StatementHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

 Function Arguments

Table 112 (Page 1 of 2). SQLGetStmtAttr Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the value of the
attribute specified in Attribute.

SQLINTEGER BufferLength input If Attribute is an ODBC-defined attribute and ValuePtr
points to a character string or a binary buffer, this
argument should be the length of *ValuePtr. If
Attribute is an ODBC-defined attribute and *ValuePtr
is an integer, BufferLength is ignored.

If Attribute is a DB2 CLI attribute, the application
indicates the nature of the attribute by setting the
BufferLength argument. BufferLength can have the
following values:

¹ If *ValuePtr is a pointer to a character string,
then BufferLength is the length of the string or
SQL_NTS.

¹ If *ValuePtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength. This places a negative value in
BufferLength.

¹ If *ValuePtr is a pointer to a value other than a
character string or binary string, then
BufferLength should have the value
SQL_IS_POINTER.

¹ If *ValuePtr is contains a fixed-length data type,
then BufferLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

 Chapter 5. Functions 453

SQLGetStmtAttr

Table 112 (Page 2 of 2). SQLGetStmtAttr Arguments

Data Type Argument Use Description

SQLSMALLINT *StringLengthPtr output A pointer to a buffer in which to return the total
number of bytes (excluding the null termination
character) available to return in *ValuePtr. If this is a
null pointer, no length is returned. If the attribute
value is a character string, and the number of bytes
available to return is greater than or equal to
BufferLength, the data in *ValuePtr is truncated to
BufferLength minus the length of a null termination
character and is null terminated by the DB2 CLI.

 Usage
A call to SQLGetStmtAttr() returns in *ValuePtr the value of the statement attribute
specified in Attribute. That value can either be a 32-bit value or a null-terminated
character string. If the value is a null-terminated string, the application specifies the
maximum length of that string in the BufferLength argument, and DB2 CLI returns the
length of that string in the *StringLengthPtrPtr buffer. If the value is a 32-bit value, the
BufferLength and StringLengthPtr arguments are not used.

In order to allow DB2 CLI Version 5 applications calling SQLGetStmtAttr() to work with
DB2 CLI Version 2, a call to SQLGetStmtAttr() is mapped to SQLGetStmtOption().

The following statement attributes are read-only, so can be retrieved by
SQLGetStmtAttr(), but not set by SQLSetStmtAttr(). For a list of attributes that can be
set and retrieved, see “SQLSetStmtAttr - Set Options Related to a Statement” on
page 589.

 ¹ SQL_ATTR_IMP_PARAM_DESC
 ¹ SQL_ATTR_IMP_ROW_DESC
 ¹ SQL_ATTR_ROW_NUMBER

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 113 (Page 1 of 2). SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

454 CLI Guide and Reference

SQLGetStmtAttr

Table 113 (Page 2 of 2). SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_ROW_NUMBER and the
cursor was not open, or the cursor was positioned before the start
of the result set or after the end of the result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of DB2 CLI

HY109 Invalid cursor position. The Attribute argument was SQL_ATTR_ROW_NUMBER and the
the row had been deleted or could not be fetched.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid DB2
CLI attribute for the version of DB2 CLI, but was not supported by
the data source.

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLGetConnectAttr - Get Current Attribute Setting” on page 359
¹ “SQLSetConnectAttr - Set Connection Attributes” on page 519
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

 Chapter 5. Functions 455

SQLGetStmtOption

SQLGetStmtOption - Return Current Setting of A Statement Option

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLGetStmtOption() has been deprecated and replaced
with SQLGetStmtAttr(); see “SQLGetStmtAttr - Get Current Setting of a
Statement Attribute” on page 453 for more information.

Although this version of DB2 CLI continues to support SQLGetStmtOption(), we
recommend that you begin using SQLGetStmtAttr() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

456 CLI Guide and Reference

SQLGetSubString

SQLGetSubString - Retrieve Portion of A String Value

 Purpose

SQLGetSubString() is used to retrieve a portion of a large object value, referenced by a
large object locator that has been returned from the server (returned by a fetch or a
previous SQLGetSubString() call) during the current transaction.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLGetSubString (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLUINTEGER FromPosition,

 SQLUINTEGER ForLength,

 SQLSMALLINT TargetCType,

SQLPOINTER DataPtr, /* rgbValue */

SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER FAR *StringLength,

 SQLINTEGER FAR *IndicatorValue);

 Function Arguments

Table 114 (Page 1 of 2). SQLGetSubString Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator value.

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the
first byte to be returned by the function. For
DBCLOBs, this is the first character. The start byte or
character is numbered 1.

 Chapter 5. Functions 457

SQLGetSubString

Table 114 (Page 2 of 2). SQLGetSubString Arguments

Data Type Argument Use Description

SQLUINTEGER ForLength input This is the length of the string to be returned by the
function. For BLOBs and CLOBs, this is the length in
bytes. For DBCLOBs, this is the length in characters.

If FromPosition is less than the length of the source
string but FromPosition + ForLength - 1 extends
beyond the end of the source string, the result is
padded on the right with the necessary number of
characters (X'00' for BLOBs, single byte blank
character for CLOBs, and double byte blank
character for DBCLOBs).

SQLSMALLINT TargetCType input The C data type of the DataPtr. The target must
always be either a LOB locator C buffer type
(SQL_C_CLOB_LOCATOR,
(SQL_C_BLOB_LOCATOR,
(SQL_C_DBCLOB_LOCATOR) or a C string variable
(SQL_C_CHAR for CLOB, SQL_C_BINARY for BLOB,
and SQL_C_DBCHAR for DBCLOB).

SQLPOINTER DataPtr output Pointer to the buffer where the retrieved string value
or a LOB locator is to be stored.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by DataPtr in
bytes.

SQLINTEGER * StringLength output The length of the returned information in DataPtr in
bytesa if the target C buffer type is intended for a
binary or character string variable and not a locator
value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

 Usage
SQLGetSubString() is used to obtain any portion of the string that is represented by the
LOB locator. There are two choices for the target:

¹ The target can be an appropriate C string variable.

¹ A new LOB value can be created on the server and the LOB locator for that value
can be assigned to a target application variable on the client.

SQLGetSubString() can be used as an alternative to SQLGetData for getting data in
pieces. In this case a column is first bound to a LOB locator, which is then used to
fetch the LOB as a whole or in pieces.

458 CLI Guide and Reference

SQLGetSubString

The Locator argument can contain any valid LOB locator which has not been explicitly
freed using a FREE LOCATOR statement nor implicitly freed because the transaction
during which it was created has terminated.

The statement handle must not have been associated with any prepared statements or
catalog function calls.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 115 (Page 1 of 2). SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of data to be returned is longer than BufferLength.
Actual length available for return is stored in StringLength.

07006 Invalid conversion. The value specified for TargetCType was not SQL_C_CHAR,
SQL_C_BINARY, SQL_C_DBCHAR or a LOB locator.

The value specified for TargetCType is inappropriate for the
source (for example SQL_C_DBCHAR for a BLOB column).

22011 A substring error occurred. FromPosition is greater than the of length of the source string.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. The value specified for FromPosition or for ForLength was not a
positive integer.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Chapter 5. Functions 459

SQLGetSubString

Table 115 (Page 2 of 2). SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value of BufferLength was less than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

0F001 No locator currently assigned The value specified for Locator is not currently a LOB locator.

 Restrictions
This function is not available when connected to a DB2 server that does not support
Large Objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETSUBSTRING and check the fExists output argument to determine if
the function is supported for the current connection.

 Example
Refer to “Example” on page 446.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLFetch - Fetch Next Row” on page 320
¹ “SQLGetData - Get Data From a Column” on page 366
¹ “SQLGetLength - Retrieve Length of A String Value” on page 440
¹ “SQLGetPosition - Return Starting Position of String” on page 443

460 CLI Guide and Reference

SQLGetTypeInfo

SQLGetTypeInfo - Get Data Type Information

 Purpose

SQLGetTypeInfo() returns information about the data types that are supported by the
DBMSs associated with DB2 CLI. The information is returned in an SQL result set. The
columns can be received using the same functions that are used to process a query.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLGetTypeInfo (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT DataType); /* fSqlType */

 Function Arguments

Table 116. SQLGetTypeInfo Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT DataType input The SQL data type being queried. The supported
types are:

 ¹ SQL_ALL_TYPES
 ¹ SQL_BINARY
 ¹ SQL_BLOB
 ¹ SQL_CHAR
 ¹ SQL_CLOB
 ¹ SQL_DATE
 ¹ SQL_DBCLOB
 ¹ SQL_DECIMAL
 ¹ SQL_DOUBLE
 ¹ SQL_FLOAT
 ¹ SQL_GRAPHIC
 ¹ SQL_INTEGER
 ¹ SQL_LONGVARBINARY
 ¹ SQL_LONGVARCHAR
 ¹ SQL_LONGVARGRAPHIC
 ¹ SQL_NUMERIC
 ¹ SQL_REAL
 ¹ SQL_SMALLINT
 ¹ SQL_TIME
 ¹ SQL_TIMESTAMP
 ¹ SQL_VARBINARY
 ¹ SQL_VARCHAR
 ¹ SQL_VARGRAPHIC

If SQL_ALL_TYPES is specified, information about
all supported data types would be returned in
ascending order by TYPE_NAME. All unsupported
data types would be absent from the result set.

 Chapter 5. Functions 461

SQLGetTypeInfo

 Usage
Since SQLGetTypeInfo() generates a result set and is equivalent to executing a query, it
will generate a cursor and begin a transaction. To prepare and execute another
statement on this statement handle, the cursor must be closed.

If SQLGetTypeInfo() is called with an invalid DataType, an empty result set is returned.

If either the LONGDATACOMPAT keyword or the SQL_ATTR_LONGDATA_COMPAT
connection attribute is set, then SQL_LONGVARBINARY, SQL_LONGVARCHAR and
SQL_LONGVARGRAPHIC will be returned for the DATA_TYPE argument instead of
SQL_BLOB, SQL_CLOB and SQL_DBCLOB.

The columns of the result set generated by this function are described below.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change. The data types
returned are those that can be used in a CREATE TABLE, ALTER TABLE, DDL
statement. Non-persistent data types such as the locator data types are not part of the
returned result set. User defined data types are not returned either.

Table 117 (Page 1 of 3). Columns Returned by SQLGetTypeInfo

Column Number/Name Data Type Description

1 TYPE_NAME VARCHAR(128) NOT
NULL

Character representation of the SQL data type name,
e.g. VARCHAR, BLOB, DATE, INTEGER

2 DATA_TYPE SMALLINT NOT NULL SQL data type define values, e.g. SQL_VARCHAR,
SQL_BLOB, SQL_DATE, SQL_INTEGER.

3 COLUMN_SIZE INTEGER If the data type is a character or binary string, then this
column contains the maximum length in bytes; if it is a
graphic (DBCS) string, this is the number of double byte
characters for the column.

For date, time, timestamp data types, this is the total
number of characters required to display the value when
converted to character.

For numeric data types, this is the total number of digits.

4 LITERAL_PREFIX VARCHAR(128) Character that DB2 recognizes as a prefix for a literal of
this data type. This column is null for data types where a
literal prefix is not applicable.

5 LITERAL_SUFFIX VARCHAR(128) Character that DB2 recognizes as a suffix for a literal of
this data type. This column is null for data types where a
literal prefix is not applicable.

462 CLI Guide and Reference

SQLGetTypeInfo

Table 117 (Page 2 of 3). Columns Returned by SQLGetTypeInfo

Column Number/Name Data Type Description

6 CREATE_PARAMS VARCHAR(128) The text of this column contains a list of keywords,
separated by commas, corresponding to each parameter
the application may specify in parenthesis when using
the name in the TYPE_NAME column as a data type in
SQL. The keywords in the list can be any of the
following: LENGTH, PRECISION, SCALE. They appear
in the order that the SQL syntax requires that they be
used.

A NULL indicator is returned if there are no parameters
for the data type definition, (such as INTEGER).

Note: The intent of CREATE_PARAMS is to enable an
application to customize the interface for a DDL
builder. An application should expect, using this,
only to be able to determine the number of
arguments required to define the data type and
to have localized text that could be used to label
an edit control.

7 NULLABLE SMALLINT NOT NULL Indicates whether the data type accepts a NULL value

¹ Set to SQL_NO_NULLS if NULL values are
disallowed.

¹ Set to SQL_NULLABLE if NULL values are allowed.

8 CASE_SENSITIVE SMALLINT NOT NULL Indicates whether the data type can be treated as case
sensitive for collation purposes; valid values are
SQL_TRUE and SQL_FALSE.

9 SEARCHABLE SMALLINT NOT NULL Indicates how the data type is used in a WHERE clause.
Valid values are:

¹ SQL_UNSEARCHABLE : if the data type cannot be
used in a WHERE clause.

¹ SQL_LIKE_ONLY : if the data type can be used in a
WHERE clause only with the LIKE predicate.

¹ SQL_ALL_EXCEPT_LIKE : if the data type can be
used in a WHERE clause with all comparison
operators except LIKE.

¹ SQL_SEARCHABLE : if the data type can be used
in a WHERE clause with any comparison operator.

10 UNSIGNED_ATTRIBUTE SMALLINT Indicates where the data type is unsigned. The valid
values are: SQL_TRUE, SQL_FALSE or NULL. A NULL
indicator is returned if this attribute is not applicable to
the data type.

11 FIXED_PREC_SCALE SMALLINT NOT NULL Contains the value SQL_TRUE if the data type is exact
numeric and always has the same precision and scale;
otherwise, it contains SQL_FALSE.

12 AUTO_INCREMENT SMALLINT Contains SQL_TRUE if a column of this data type is
automatically set to a unique value when a row is
inserted; otherwise, contains SQL_FALSE.

 Chapter 5. Functions 463

SQLGetTypeInfo

Table 117 (Page 3 of 3). Columns Returned by SQLGetTypeInfo

Column Number/Name Data Type Description

13 LOCAL_TYPE_NAME VARCHAR(128) This column contains any localized (native language)
name for the data type that is different from the regular
name of the data type. If there is no localized name, this
column is NULL.

This column is intended for display only. The character
set of the string is locale-dependent and is typically the
default character set of the database.

14 MINIMUM_SCALE INTEGER The minimum scale of the SQL data type. If a data type
has a fixed scale, the MINIMUM_SCALE and
MAXIMUM_SCALE columns both contain the same
value. NULL is returned where scale is not applicable.

15 MAXIMUM_SCALE INTEGER The maximum scale of the SQL data type. NULL is
returned where scale is not applicable. If the maximum
scale is not defined separately in the DBMS, but is
defined instead to be the same as the maximum length
of the column, then this column contains the same value
as the COLUMN_SIZE column.

16 SQL_DATA_TYPE SMALLINT NOT NULL The value of the SQL data type as it appears in the
SQL_DESC_TYPE field of the descriptor. This column is
the same as the DATA_TYPE column (except for interval
and datetime data types which DB2 CLI does not
support).

17 SQL_DATETIME_SUB SMALLINT This field is always NULL (DB2 CLI does not support
interval and datetime data types).

18 NUM_PREC_RADIX INTEGER If the data type is an approximate numeric type, this
column contains the value 2 to indicate that
COLUMN_SIZE specifies a number of bits. For exact
numeric types, this column contains the value 10 to
indicate that COLUMN_SIZE specifies a number of
decimal digits. Otherwise, this column is NULL.

19 INTERVAL_PRECISION SMALLINT This field is always NULL (DB2 CLI does not support
interval data types).

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

464 CLI Guide and Reference

SQLGetTypeInfo

Table 118. SQLGetTypeInfo SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.
StatementHandle had not been closed.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY004 SQL data type out of range. An invalid DataType was specified.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
The following ODBC specified SQL data types (and their corresponding DataType
define values) are not supported by any IBM RDBMS:

Data Type DataType

TINY INT SQL_TINYINT

BIG INT SQL_BIGINT

BIT SQL_BIT

 Example

 Chapter 5. Functions 465

SQLGetTypeInfo

/* From CLI sample typeinfo.c */

/* ... */

rc = SQLGetTypeInfo(hstmt, SQL_ALL_TYPES);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) typename.s, 128, &typename.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_DEFAULT, (SQLPOINTER) & datatype,

 sizeof(datatype), &datatype_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 3, SQL_C_DEFAULT, (SQLPOINTER) & precision,

 sizeof(precision), &precision_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_DEFAULT, (SQLPOINTER) & nullable,

 sizeof(nullable), &nullable_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 8, SQL_C_DEFAULT, (SQLPOINTER) & casesens,

 sizeof(casesens), &casesens_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 printf("Datatype Datatype Precision Nullable Case\n");

 printf("Typename (int) Sensitive\n");

printf("------------------------- -------- ---------- -------- ---------\n");

/* LONG VARCHAR FOR BIT DATA 99 2147483647 FALSE FALSE */

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("%-25s ", typename.s);

printf("%8d ", datatype);

printf("%10ld ", precision);

printf("%-8s ", truefalse[nullable]);

 printf("%-9s\n", truefalse[casesens]);

} /* endwhile */

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLSetColAttributes - Set Column Attributes” on page 518
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLGetInfo - Get General Information” on page 402

466 CLI Guide and Reference

SQLMoreResults

SQLMoreResults - Determine If There Are More Result Sets

 Purpose

SQLMoreResults() determines whether there is more information available on the
statement handle which has been associated with:

¹ array input of parameter values for a query, or
¹ a stored procedure that is returning result sets.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLMoreResults (SQLHSTMT StatementHandle); /* hstmt */

 Function Arguments

Table 119. SQLMoreResults Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

 Usage
This function is used to return multiple results set in a sequential manner upon the
execution of:

¹ a parameterized query with an array of input parameter values specified with
SQLParamOptions() and SQLBindParameter(), or

¹ a stored procedure containing SQL queries, the cursors of which have been left
open so that the result sets remain accessible when the stored procedure has
finished execution.

Refer to “Using Arrays to Input Parameter Values” on page 63 and “Returning Result
Sets from Stored Procedures” on page 108 for more information.

After completely processing the first result set, the application can call
SQLMoreResults() to determine if another result set is available. If the current result set
has unfetched rows, SQLMoreResults() discards them by closing the cursor and, if
another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns
SQL_NO_DATA_FOUND.

If SQLFreeStmt() is called with the SQL_CLOSE or SQL_DROP option, all pending
result sets on this statement handle are discarded.

 Chapter 5. Functions 467

SQLMoreResults

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NO_DATA_FOUND

 Diagnostics

Table 120. SQLMoreResults SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

In addition SQLMoreResults() can return the SQLSTATEs associated with SQLExecute().

 Restrictions
The ODBC specification of SQLMoreResults() also allow counts associated with the
execution of parameterized INSERT, UPDATE, and DELETE statements with arrays of
input parameter values to be returned. However, DB2 CLI does not support the return
of such count information.

 Example

468 CLI Guide and Reference

SQLMoreResults

/* From CLI sample ordrep.c */

/* ... */

SQLCHAR * stmt =

/* Common Table expression (or Define Inline View) */

"WITH order (ord_num, cust_num, prod_num, quantity, amount) AS ("

"SELECT c.ord_num, c.cust_num, l.prod_num, l.quantity, "

"price(char(p.price, '.'), p.units, char(l.quantity, '.')) "

"FROM ord_cust c, ord_line l, product p "

"WHERE c.ord_num = l.ord_num "

"AND l.prod_num = p.prod_num "

"AND cast (cust_num as integer) = ? "

 "), "

"totals (ord_num, total) AS ("

"SELECT ord_num, sum(decimal(amount, 10, 2)) "

"FROM order GROUP BY ord_num "

 ") "

/* The 'actual' SELECT from the inline view */

"SELECT order.ord_num, cust_num, prod_num, quantity, "

"DECIMAL(amount,10,2) amount, total "

"FROM order, totals "

"WHERE order.ord_num = totals.ord_num" ;

/* Array of customers to get list of all orders for */

SQLINTEGER Cust[] = {

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, 140, 150, 160, 170, 180, 190, 200,

210, 220, 230, 240, 250,

 } ;

/* Row-Wise (Includes buffer for both column data and length) */

typedef struct {

SQLINTEGER Ord_Num_L ;

SQLINTEGER Ord_Num ;

SQLINTEGER Cust_Num_L ;

SQLINTEGER Cust_Num ;

SQLINTEGER Prod_Num_L ;

SQLINTEGER Prod_Num ;

SQLINTEGER Quant_L ;

 SQLDOUBLE Quant ;

SQLINTEGER Amount_L ;

 SQLDOUBLE Amount ;

SQLINTEGER Total_L ;

 SQLDOUBLE Total ;

 } ord_info ;

ord_info ord_array[row_array_size] ;

SQLUINTEGER num_rows_fetched ;

SQLUSMALLINT row_status_array[row_array_size], i, j ;

/* ... */

/* Get details and total for each order Row-Wise */

 Chapter 5. Functions 469

SQLMoreResults

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_PARAMSET_SIZE,

(SQLPOINTER) row_array_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

 Cust,

 0,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLExecDirect(hstmt, stmt, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER) row_set_size,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set Size of One row, Used for Row-Wise Binding Only */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_BIND_TYPE,

(SQLPOINTER) sizeof(ord_info) ,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER) row_status_array,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

(SQLPOINTER) &num_rows_fetched,

470 CLI Guide and Reference

SQLMoreResults

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind column 1 to the Ord_num Field of the first row in the array */

rc = SQLBindCol(hstmt,

 1,

 SQL_C_LONG,

(SQLPOINTER) & ord_array[0].Ord_Num,

 0,

 &ord_array[0].Ord_Num_L

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Bind remaining columns ... */

/* ... */

 /*

NOTE: This sample assumes that an order will never have more

rows than row_set_size. A check should be added below to call

SQLExtendedFetch multiple times for each result set.

 */

while (SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0) != SQL_NO_DATA) {

printf("**************************************\n") ;

printf("Orders for Customer: %ld\n", ord_array[0].Cust_Num) ;

printf("**************************************\n") ;

i = 0 ;

while (i < num_rows_fetched) {

if (row_status_array[i] == SQL_ROW_SUCCESS ||

row_status_array[i] == SQL_ROW_SUCCESS_WITH_INFO

) {

printf("\nOrder #: %ld\n", ord_array[i].Ord_Num) ;

printf(" Product Quantity Price\n") ;

printf(" -------- ---------------- ------------\n") ;

j = i ;

while (ord_array[j].Ord_Num == ord_array[i].Ord_Num) {

printf(" %8ld %16.7lf %12.2lf\n",

 ord_array[i].Prod_Num,

 ord_array[i].Quant,

 ord_array[i].Amount

) ;

 i++ ;

if (i >= num_rows_fetched) break ;

if (row_status_array[i] != SQL_ROW_SUCCESS)

if (row_status_array[i] != SQL_ROW_SUCCESS_WITH_INFO)

 break ;

 }

printf(" ============\n") ;

 printf(" %12.2lf\n",

 ord_array[j].Total

) ;

 }

 Chapter 5. Functions 471

SQLMoreResults

else i++ ;

 }

 }

 References
¹ “SQLParamOptions - Specify an Input Array for a Parameter” on page 483

472 CLI Guide and Reference

SQLNativeSql

SQLNativeSql - Get Native SQL Text

 Purpose

SQLNativeSql() is used to show how DB2 CLI interprets vendor escape clauses. If the
original SQL string passed in by the application contained vendor escape clause
sequences, then DB2 CLI will return the transformed SQL string that would be seen by
the data source (with vendor escape clauses either converted or discarded, as
appropriate).

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLNativeSql (SQLHDBC ConnectionHandle, /* hdbc */

SQLCHAR FAR *InStatementText, /* szSqlStrIn */

SQLINTEGER TextLength1, /* cbSqlStrIn */

SQLCHAR FAR *OutStatementText, /* szSqlStr */

SQLINTEGER BufferLength, /* cbSqlStrMax */

SQLINTEGER FAR *TextLength2Ptr); /* pcbSqlStr */

 Function Arguments

Table 121. SQLNativeSql Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection Handle

SQLCHAR * InStatementText input Input SQL string

SQLINTEGER TextLength1 input Length of InStatementText

SQLCHAR * OutStatementText output Pointer to buffer for the transformed output string

SQLINTEGER BufferLength input Size of buffer pointed by OutStatementText

SQLINTEGER * TextLength2Ptr output The total number of bytes (excluding the
null-terminator) available to return in
OutStatementText. If the number of bytes available to
return is greater than or equal to BufferLength, the
output SQL string in OutStatementText is truncated
to BufferLength - 1 bytes.

 Usage
This function is called when the application wishes to examine or display the
transformed SQL string that would be passed to the data source by DB2 CLI.
Translation (mapping) would only occur if the input SQL statement string contains
vendor escape clause sequence(s). For more information on vendor escape clause
sequences, refer to “Using Vendor Escape Clauses” on page 123.

 Chapter 5. Functions 473

SQLNativeSql

DB2 CLI can only detect vendor escape clause syntax errors; since DB2 CLI does not
pass the transformed SQL string to the data source for preparation, syntax errors that
are detected by the DBMS are not generated at this time. (The statement is not
passed to the data source for preparation because the preparation may potentially
cause the initiation of a transaction.)

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 122. SQLNativeSql SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer OutStatementText was not large enough to contain the
entire SQL string, so truncation occurred. The argument
TextLength2Ptr contains the total length of the untruncated SQL
string. (Function returns with SQL_SUCCESS_WITH_INFO)

08003 Connection is closed. The ConnectionHandle does not reference an open database
connection.

37000 Invalid SQL syntax. The input SQL string in InStatementText contained a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. The argument InStatementText is a NULL pointer.

The argument OutStatementText is a NULL pointer.

HY090 Invalid string or buffer length. The argument TextLength1 was less than 0, but not equal to
SQL_NTS.

The argument BufferLength was less than 0.

 Restrictions
None.

 Example

474 CLI Guide and Reference

SQLNativeSql

/* From CLI sample native.c */

/* ... */

SQLCHAR in_stmt[1024], out_stmt[1024] ;

SQLSMALLINT pcPar ;

SQLINTEGER indicator ;

/* ... */

/* Prompt for a statement to prepare */

printf("Enter an SQL statement: \n");

 gets((char *)in_stmt);

/* prepare the statement */

rc = SQLPrepare(hstmt, in_stmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 SQLNumParams(hstmt, &pcPar);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

SQLNativeSql(hstmt, in_stmt, SQL_NTS, out_stmt, 1024, &indicator);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

if (indicator == SQL_NULL_DATA) printf("Invalid statement\n") ;

 else {

printf("Input Statement: \n %s \n", in_stmt) ;

printf("Output Statement: \n %s \n", in_stmt) ;

printf("Number of Parameter Markers = %d\n", pcPar) ;

 }

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “Using Vendor Escape Clauses” on page 123

 Chapter 5. Functions 475

SQLNumParams

SQLNumParams - Get Number of Parameters in A SQL Statement

 Purpose

SQLNumParams() returns the number of parameter markers in an SQL statement.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLNumParams (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT FAR *ParameterCountPtr); /* pcpar */

 Function Arguments

Table 123. SQLNumParams Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT * ParameterCountPtr Output Number of parameters in the statement.

 Usage
This function can only be called after the statement associated with StatementHandle
has been prepared. If the statement does not contain any parameter markers,
ParameterCountPtr is set to 0.

An application can call this function to determine how many SQLBindParameter() (or
SQLBindFileToParam()) calls are necessary for the SQL statement associated with the
statement handle.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 124 (Page 1 of 2). SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

476 CLI Guide and Reference

SQLNumParams

Table 124 (Page 2 of 2). SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. ParameterCountPtr is null.

HY010 Function sequence error. This function was called before SQLPrepare() was called for the
specified StatementHandle

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example
Refer to “Example” on page 474.

 References
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLPrepare - Prepare a Statement” on page 486

 Chapter 5. Functions 477

SQLNumResultCols

SQLNumResultCols - Get Number of Result Columns

 Purpose

SQLNumResultCols() returns the number of columns in the result set associated with the
input statement handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLColAttribute(), or one of the bind column
functions.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLNumResultCols (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT FAR *ColumnCountPtr); /* pccol */

 Function Arguments

Table 125. SQLNumResultCols Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLSMALLINT * ColumnCountPtr output Number of columns in the result set

 Usage
The function sets the output argument to zero if the last statement or function executed
on the input statement handle did not generate a result set.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 126 (Page 1 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

478 CLI Guide and Reference

SQLNumResultCols

Table 126 (Page 2 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. ColumnCountPtr was a null pointer.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Authorization
None.

 Example
Refer to “Example” on page 279.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindFileToCol - Bind LOB File Reference to LOB Column” on page 200
¹ “SQLSetColAttributes - Set Column Attributes” on page 518
¹ “SQLDescribeCol - Return a Set of Attributes for a Column” on page 276
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLGetData - Get Data From a Column” on page 366
¹ “SQLPrepare - Prepare a Statement” on page 486

 Chapter 5. Functions 479

SQLParamData

SQLParamData - Get Next Parameter For Which A Data Value Is Needed

 Purpose

SQLParamData() is used in conjunction with SQLPutData() to send long data in pieces. It
can also be used to send fixed length data as well. For a description of the exact
sequence of this input method, refer to “Sending/Retrieving Long Data in Pieces” on
page 61.

Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLParamData (SQLHSTMT StatementHandle, /* hstmt */

SQLPOINTER FAR *ValuePtrPtr); /* prgbValue */

 Function Arguments

Table 127. SQLParamData Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLPOINTER * ValuePtrPtr output Pointer to a buffer in which to return the address of
the ParameterValuePtr buffer specified in
SQLBindParameter() (for parameter data) or the
address of the TargetValuePtr buffer specified in
SQLBindCol() (for column data), as contained in the
SQL_DESC_DATA_PTR descriptor record field.

 Usage
SQLParamData() returns SQL_NEED_DATA if there is at least one
SQL_DATA_AT_EXEC parameter for which data still has not been assigned. This
function returns an application provided value in ValuePtrPtr supplied by the application
during the previous SQLBindParameter() call. SQLPutData() is called one or more times
(in the case of long data) to send the parameter data. SQLParamData() is called to
signal that all the data has been sent for the current parameter and to advance to the
next SQL_DATA_AT_EXEC parameter. SQL_SUCCESS is returned when all the
parameters have been assigned data values and the associated statement has been
executed successfully. If any errors occur during or before actual statement execution,
SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or SQLCancel()
calls can be made. All other function calls using this statement handle will fail. In
addition, all function calls referencing the parent hdbc of StatementHandle will fail if
they involve changing any attribute or state of that connection; that is, that following
function calls on the parent hdbc are also not permitted:

 ¹ SQLAllocConnect()

480 CLI Guide and Reference

SQLParamData

 ¹ SQLAllocStmt()
 ¹ SQLSetConnectAttr()
 ¹ SQLNativeSql()
 ¹ SQLTransact()

Should they be invoked during an SQL_NEED_DATA sequence, these function will
return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters will not be affected.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NEED_DATA
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE
 ¹ SQL_NEED_DATA

 Diagnostics
SQLParamData() can return any SQLSTATE returned by the SQLExecDirect() and
SQLExecute() functions. In addition, the following diagnostics can also be generated:

Table 128 (Page 1 of 2). SQLParamData SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables
would result in incompatible data conversion.

22026 String data, length mismatch The SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was 'Y' and less data was sent for a long parameter
(the data type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or other long data type) than was
specified with the StrLen_or_IndPtr argument in
SQLBindParameter().

The SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was 'Y' and less data was sent for a long column
(the data type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or other longdata type) than was
specified in the length buffer corresponding to a column in a row
of data that was updated with SQLSetPos().

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to a deadlock or timeout.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no specific SQLSTATE was defined. The error message
returned by SQLError() in the argument szErrorMsg describes the
error and its cause.

 Chapter 5. Functions 481

SQLParamData

Table 128 (Page 2 of 2). SQLParamData SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. SQLParamData() was called out of sequence. This call is only valid
after an SQLExecDirect() or an SQLExecute(), or after an
SQLPutData() call.

Even though this function was called after an SQLExecDirect() or
an SQLExecute() call, there were no SQL_DATA_AT_EXEC
parameters (left) to process.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()

operation was not valid.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

HY509 Error deleting a file. Error encountered while trying to delete a temporary file.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example
Refer to “Example” on page 513.

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLPutData - Passing Data Value for A Parameter” on page 510
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

482 CLI Guide and Reference

SQLParamOptions

SQLParamOptions - Specify an Input Array for a Parameter

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLParamOptions() has been deprecated and replaced with
SQLSetStmtAttr(); see “SQLSetStmtAttr - Set Options Related to a Statement”
on page 589 for more information.

Although this version of DB2 CLI continues to support SQLParamOptions(), we
recommend that you begin using SQLSetStmtAttr() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

 Purpose

SQLParamOptions() provides the ability to set multiple values for each parameter set by
SQLBindParameter(). This allows the application to perform batched processing of the
same SQL statement with one set of prepare, execute and SQLBindParameter() calls.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLParamOptions (SQLHSTMT StatementHandle, /* hstmt */

SQLUINTEGER Crow, /* crow */

SQLUINTEGER FAR *FetchOffsetPtr); /* pirow */

 Function Arguments

Table 129. SQLParamOptions Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLUINTEGER Crow Input Number of values for each parameter. If this is
greater than 1, then the rgbValue argument in
SQLBindParameter() points to an array of parameter
values, and pcbValue points to an array of lengths.

SQLUINTEGER * FetchOffsetPtr Output
(deferred)

Pointer to the buffer for the current parameter array
index. As each set of parameter values is processed,
FetchOffsetPtr is set to the array index of that set. If
a statement fails, FetchOffsetPtr can be used to
determine how many statements were successfully
processed. Nothing is returned if the FetchOffsetPtr
pointer is NULL.

 Chapter 5. Functions 483

SQLParamOptions

 Usage
As a statement executes, FetchOffsetPtr is set to the index of the current array of
parameter values. If an error occurs during execution for a particular element in the
array, execution halts and SQLExecute(), SQLExecDirect() or SQLParamData() returns
SQL_ERROR.

The contents of FetchOffsetPtr have the following uses:

¹ When SQLParamData() returns SQL_NEED_DATA, the application can access the
value in FetchOffsetPtr to determine which set of parameters is being assigned
values.

¹ When SQLExecute() or SQLExecDirect() returns an error, the application can
access the value in FetchOffsetPtr to find out which element in the parameter value
array failed.

¹ When SQLExecute(), SQLExecDirect(), SQLParamData(), or SQLPutData()
succeeds, the value in FetchOffsetPtr is set to the input value in Crow to indicate
that all elements of the array have been processed successfully.

The output argument FetchOffsetPtr indicates how many sets of parameters were
successfully processed. If the statement processed is a query, FetchOffsetPtr indicates
the array index associated with the current result set returned by SQLMoreResults() and
is incremented each time SQLMoreResults() is called.

In environments where the underlying support allows Compound SQL (DB2 Universal
Database, or DRDA environments with DB2 Connect V2.3), all the data in the array(s)
together with the execute request are packaged together as one network flow.

When connected to DB2 Universal Database V2.1 or later, the application has the
option of choosing ATOMIC or NOT ATOMIC Compound SQL. With ATOMIC
Compound SQL (which is the default), either all the elements of the array are
processed successfully, or none at all. With NOT ATOMIC Compound SQL, execution
will continue even if an error is detected with one of the intermediate array elements.
The application can choose to select the type of Compound SQL by setting the
SQL_ATTR_PARAMOPT_ATOMIC attribute of the SQLSetStmtAttr() call.

For DRDA environments, the underlying Compound SQL support is always NOT
ATOMIC COMPOUND SQL (and therefore the default in DRDA scenarios).

If the application is not sure what the current value of the
SQL_ATTR_PARAMOPT_ATOMIC attribute, it should call SQLGetStmtOption().

When connected to servers that do not support compound SQL, DB2 CLI prepares the
statement, and executes it repeatedly for the array of parameter markers.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR

484 CLI Guide and Reference

SQLParamOptions

 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 130. SQLParamOptions SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY107 Row value out of range. The value in the argument Crow was less than 1.

 Restrictions
None.

 Example
Refer to “Array Input Example” on page 68.

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLMoreResults - Determine If There Are More Result Sets” on page 467
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

 Chapter 5. Functions 485

SQLPrepare

SQLPrepare - Prepare a Statement

 Purpose

SQLPrepare() associates an SQL statement with the input statement handle and sends
the statement to the DBMS to be prepared. The application can reference this prepared
statement by passing the statement handle to other functions.

If the statement handle has been previously used with a query statement (or any
function that returns a result set), SQLFreeStmt() must be called to close the cursor,
before calling SQLPrepare().

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLPrepare (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *StatementText, /* szSqlStr */

SQLINTEGER TextLength); /* cbSqlStr */

 Function Arguments

Table 131. SQLPrepare Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle.

SQLCHAR * StatementText input SQL statement string

SQLINTEGER TextLength input Length of contents of StatementText argument.

This must be set to either the exact length of the
SQL statement in szSqlstr, or to SQL_NTS if the
statement text is null-terminated.

 Usage
If the SQL statement text contains vendor escape clause sequences, DB2 CLI will first
modify the SQL statement text to the appropriate DB2 specific format before submitting
it to the database for preparation. If the application does not generate SQL statements
that contain vendor escape clause sequences (see “Using Vendor Escape Clauses” on
page 123); then the SQL_ATTR_NOSCAN statement attribute should be set to
SQL_NOSCAN at the connection level so that DB2 CLI does not perform a scan for
any vendor escape clauses.

Once a statement has been prepared using SQLPrepare(), the application can request
information about the format of the result set (if the statement was a query) by calling:

 ¹ SQLNumResultCols()

 ¹ SQLDescribeCol()

486 CLI Guide and Reference

SQLPrepare

 ¹ SQLColAttribute()

The SQL statement string may contain parameter markers and SQLNumParams() can be
called to determine the number of parameter markers in the statement. A parameter
marker is represented by a “?” character, and is used to indicate a position in the
statement where an application supplied value is to be substituted when SQLExecute()
is called. The bind parameter functions, SQLBindParameter(), SQLSetParam() and
SQLBindFileToParam() are used to bind (associate) application values with each
parameter marker and to indicate if any data conversion should be performed at the
time the data is transferred.

All parameters must be bound before calling SQLExecute(), for more information refer to
“SQLExecute - Execute a Statement” on page 310.

Refer to the PREPARE section of the SQL Reference for information on rules related to
parameter markers.

Once the application has processed the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

The SQL statement cannot be a COMMIT or ROLLBACK. SQLTransact() must be
called to issue COMMIT or ROLLBACK. For more information about supported SQL
statements in DB2 Universal Database, refer to Table 220 on page 709.

If the SQL statement is a Positioned DELETE or a Positioned UPDATE, the cursor
referenced by the statement must be defined on a separate statement handle under the
same connection handle and same isolation level.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 132 (Page 1 of 3). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

StatementText contained an UPDATE or DELETE statement
which did not contain a WHERE clause.

01508 Statement disqualified for
blocking.

The statement was disqualified for blocking for reasons other than
storage.

21S01 Insert value list does not
match column list.

StatementText contained an INSERT statement and the number of
values to be inserted did not match the degree of the derived
table.

 Chapter 5. Functions 487

SQLPrepare

Table 132 (Page 2 of 3). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

21S02 Degrees of derived table
does not match column list.

StatementText contained a CREATE VIEW statement and the
number of names specified is not the same degree as the derived
table defined by the query specification.

22018 Invalid character value for
cast specification.

*StatementText contained an SQL statement that contained a
literal or parameter and the value was incompatible with the data
type of the associated table column.

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an
ESCAPE in the WHERE clause, and the length of the escape
character following ESCAPE was not equal to 1.

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value
ESCAPE escape character” in the WHERE clause, and the
character following the escape character in the pattern value was
not one of “%” or “_”.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a Positioned DELETE or a Positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx a Invalid SQL syntax. StatementText contained one or more of the following:

 ¹ a COMMIT
 ¹ a ROLLBACK
¹ an SQL statement that the connected database server could

not prepare
¹ a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to deadlock or timeout.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

42xxx a Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already
exists.

StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

S0002 Database object does not
exist.

StatementText contained an SQL statement that references a
table name or a view name which did not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the
specified index name did not exist.

488 CLI Guide and Reference

SQLPrepare

Table 132 (Page 3 of 3). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a
column name which did not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. StatementText was a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to
SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the
37 class.

Note: Not all DBMSs report all of the above diagnostic messages at prepare time.
Therefore an application must also be able to handle these conditions when
calling SQLExecute().

 Authorization
None.

 Chapter 5. Functions 489

SQLPrepare

 Example

490 CLI Guide and Reference

SQLPrepare

/* From CLI sample prepare.c */

/* ... */

SQLCHAR * sqlstmt =

"SELECT deptname, location from org where division = ? " ;

/* ... */

/* prepare statement for multiple use */

rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* bind division to parameter marker in sqlstmt */

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_CHAR,

 10,

 0,

 division.s,

 11,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* bind deptname to first column in the result set */

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,

 &deptname.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location.s, 14,

 &location.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\nEnter Division Name or 'q' to quit:\n");

printf("(Eastern, Western, Midwest, Corporate)\n");

 gets((char *)division.s);

while (division.s[0] != 'q') {

rc = SQLExecute(hstmt);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Departments in %s Division:\n", division.s);

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

printf("%-14.14s %-13.13s \n", deptname.s, location.s) ;

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFreeStmt(hstmt, SQL_CLOSE) ;

 Chapter 5. Functions 491

SQLPrepare

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("\nEnter Division Name or 'q' to quit:\n");

printf("(Eastern, Western, Midwest, Corporate)\n");

 gets((char *)division.s);

 }

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLBindFileToParam - Bind LOB File Reference to LOB Parameter” on page 206
¹ “SQLSetColAttributes - Set Column Attributes” on page 518
¹ “SQLDescribeCol - Return a Set of Attributes for a Column” on page 276
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLNumParams - Get Number of Parameters in A SQL Statement” on page 476
¹ “SQLNumResultCols - Get Number of Result Columns” on page 478
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

492 CLI Guide and Reference

SQLPrimaryKeys

SQLPrimaryKeys - Get Primary Key Columns of A Table

 Purpose

SQLPrimaryKeys() returns a list of column names that comprise the primary key for a
table. The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLPrimaryKeys (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3); /* cbTableName */

 Function Arguments

Table 133. SQLPrimaryKeys Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3 part table name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 input Length of CatalogName

SQLCHAR * SchemaName input Schema qualifier of table name.

SQLSMALLINT NameLength2 input Length of SchemaName

SQLCHAR * TableName input Table name.

SQLSMALLINT NameLength3 input Length of TableName

 Usage
SQLPrimaryKeys() returns the primary key columns from a single table, Search patterns
cannot be used to specify the schema qualifier or the table name.

The result set contains the columns listed in Table 134 on page 494, ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME and ORDINAL_POSITION.

Since calls to SQLPrimaryKeys() in many cases map to a complex and, thus, expensive
query against the system catalog, they should be used sparingly, and the results saved
rather than repeating calls.

 Chapter 5. Functions 493

SQLPrimaryKeys

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 134. Columns Returned By SQLPrimaryKeys

Column Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
not NULL

Name of the specified table.

4 COLUMN_NAME VARCHAR(128)
not NULL

Primary Key column name.

5 ORDINAL_POSITION SMALLINT not
NULL

Column sequence number in the primary key, starting with 1.

6 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is returned.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 135 (Page 1 of 2). SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

494 CLI Guide and Reference

SQLPrimaryKeys

Table 135 (Page 2 of 2). SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example

 References
¹ “SQLForeignKeys - Get the List of Foreign Key Columns” on page 341
¹ “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 614

 Chapter 5. Functions 495

SQLProcedureColumns

SQLProcedureColumns - Get Input/Output Parameter Information for A
Procedure

 Purpose

SQLProcedureColumns() returns a list of input and output parameters associated with a
procedure. The information is returned in an SQL result set, which can be retrieved
using the same functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLProcedureColumns(SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szProcCatalog */

SQLSMALLINT NameLength1, /* cbProcCatalog */

SQLCHAR FAR *SchemaName, /* szProcSchema */

SQLSMALLINT NameLength2, /* cbProcSchema */

SQLCHAR FAR *ProcName, /* szProcName */

SQLSMALLINT NameLength3, /* cbProcName */

SQLCHAR FAR *ColumnName, /* szColumnName */

SQLSMALLINT NameLength4); /* cbColumnName */

 Function Arguments

Table 136 (Page 1 of 2). SQLProcedureColumns Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName input Buffer that may contain a pattern-value to qualify the
result set by schema name.

For DB2 for MVS/ESA V 4.1, all the stored
procedures are in one schema; the only acceptable
value for the SchemaName argument is a null
pointer. For DB2 Universal Database, SchemaName
can contain a valid pattern value. For more
information about valid search patterns, refer to
“Querying System Catalog Information” on page 49.

SQLSMALLINT NameLength2 input Length of SchemaName

SQLCHAR * ProcName input Buffer that may contain a pattern-value to qualify the
result set by procedure name.

SQLSMALLINT NameLength3 input Length of ProcName

496 CLI Guide and Reference

SQLProcedureColumns

Table 136 (Page 2 of 2). SQLProcedureColumns Arguments

Data Type Argument Use Description

SQLCHAR * ColumnName input Buffer that may contain a pattern-value to qualify the
result set by parameter name. This argument is to be
used to further qualify the result set already restricted
by specifying a non-empty value for ProcName
and/or SchemaName.

SQLSMALLINT NameLength4 input Length of ColumnName

 Usage
DB2 Universal Database version 5 introduced two system catalog views used to store
information about all stored procedures on the server (SYSCAT.PROCEDURES and
SYSCAT.PROCPARMS). See Appendix G, “Catalog Views for Stored Procedures” on
page 703 for information on these views.

Before version 5, DB2 CLI used the pseudo catalog table for stored procedure
registration. By default, DB2 CLI will use the new system catalog views. If the
application expects to use the pseudo catalog table then the CLI/ODBC configuration
keyword PATCH1 should be set to 262144. See “Replacement of the Pseudo Catalog
Table for Stored Procedures” on page 647 for more information.

If the stored procedure is at a DB2 for MVS/ESA V 4.1 server or later, the name of the
stored procedures must be registered in the server's SYSIBM.SYSPROCEDURES
catalog table.

For versions of other DB2 servers that do not provide facilities for a stored procedure
catalog, an empty result set will be returned.

DB2 CLI will return information on the input, input/output, and output parameters
associated with the stored procedure, but cannot return information on the descriptor
information for any result sets returned.

SQLProcedureColumns() returns the information in a result set, ordered by
PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and
COLUMN_TYPE. Table 137 on page 498 lists the columns in the result set.
Applications should be aware that columns beyond the last column may be defined in
future releases.

Since calls to SQLProcedureColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,

 Chapter 5. Functions 497

SQLProcedureColumns

SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column types
will be reported as LONG VARCHAR, LONG VARBINARY or LONG VARGRAPHIC
types.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change. There were
changes to these columns between version 2 and version 5. See “Changes to
SQLProcedureColumns() Return Values” on page 649 for more information if you are
running a version 2 DB2 CLI application that uses SQLProcedureColumns(), against a
version 5 or later server.

Table 137 (Page 1 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

1 PROCEDURE_CAT VARCHAR(128) The is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME.
(This is also NULL for DB2 for MVS/ESA V 4.1
SQLProcedureColumns() result sets.)

3 PROCEDURE_NAME VARCHAR(128) Name of the procedure.

4 COLUMN_NAME VARCHAR(128) Name of the parameter.

5 COLUMN_TYPE SMALLINT not
NULL

Identifies the type information associated with this row. The
values can be:

¹ SQL_PARAM_TYPE_UNKNOWN : the parameter type
is unknown.

Note: This is not returned.

¹ SQL_PARAM_INPUT : this parameter is an input
parameter.

¹ SQL_PARAM_INPUT_OUTPUT : this parameter is an
input / output parameter.

¹ SQL_PARAM_OUTPUT : this parameter is an output
parameter.

¹ SQL_RETURN_VALUE : the procedure column is the
return value of the procedure.

Note: This is not returned.

¹ SQL_RESULT_COL : this parameter is actually a
column in the result set.

Note: This is not returned.

6 DATA_TYPE SMALLINT not
NULL

SQL data type.

7 TYPE_NAME VARCHAR(128)
not NULL

Character string representing the name of the data type
corresponding to DATA_TYPE.

498 CLI Guide and Reference

SQLProcedureColumns

Table 137 (Page 2 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

8 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or
binary string, then this column contains the maximum length
in bytes; if it is a graphic (DBCS) string, this is the number of
double byte characters for the parameter.

For date, time, timestamp data types, this is the total number
of bytes required to display the value when converted to
character.

For numeric data types, this is either the total number of
digits, or the total number of bits allowed in the column,
depending on the value in the NUM_PREC_RADIX column
in the result set.

See also Table 197 on page 686.

9 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to
store data from this parameter if SQL_C_DEFAULT were
specified on the SQLBindCol(), SQLGetData() and
SQLBindParameter() calls. This length excludes any
null-terminator. For exact numeric data types, the length
accounts for the decimal and the sign.

See Table 199 on page 688.

10 DECIMAL_DIGITS SMALLINT The scale of the parameter. NULL is returned for data types
where scale is not applicable.

See Table 198 on page 687.

11 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an approximate
numeric data type, this column contains the value 2, then the
COLUMN_SIZE column contains the number of bits allowed
in the parameter.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE and
DECIMAL_DIGITS columns contain the number of decimal
digits allowed for the parameter.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not
applicable.

12 NULLABLE SMALLINT not
NULL

SQL_NO_NULLS if the parameter does not accept NULL
values.

SQL_NULLABLE if the parameter accepts NULL values.

13 REMARKS VARCHAR(254) May contain descriptive information about the parameter.

 Chapter 5. Functions 499

SQLProcedureColumns

Table 137 (Page 3 of 3). Columns Returned By SQLProcedureColumns

Column Number/Name Data Type Description

14 COLUMN_DEF VARCHAR The default value of the column.

If NULL was specified as the default value, then this column
is the word NULL, not enclosed in quotation marks. If the
default value cannot be represented without truncation, then
this column contains TRUNCATED, with no enclosing single
quotation marks. If no default value was specified, then this
column is NULL.

The value of COLUMN_DEF can be used in generating a
new column definition, except when it contains the value
TRUNCATED.

15 SQL_DATA_TYPE SMALLINT not
NULL

The value of the SQL data type as it appears in the
SQL_DESC_TYPE field of the descriptor. This column is the
same as the DATA_TYPE column except for datetime data
types (DB2 CLI does not support interval data types).

For datetime data types, the SQL_DATA_TYPE field in the
result set will be SQL_DATETIME, and the
SQL_DATETIME_SUB field will return the subcode for the
specific datetime data type (SQL_CODE_DATE,
SQL_CODE_TIME or SQL_CODE_TIMESTAMP).

16 SQL_DATETIME_SUB SMALLINT The subtype code for datetime data types. For all other data
types this column returns a NULL (including interval data
types which DB2 CLI does not support).

17 CHAR_OCTET_LENGTH INTEGER The maximum length in bytes of a character data type
column. For all other data types, this column returns a
NULL.

18 ORDINAL_POSITION INTEGER NOT
NULL

Contains the ordinal position of the parameter given by
COLUMN_NAME in this result set. This is the ordinal
position of the argument to be provided on the CALL
statement. The leftmost argument has an ordinal position of
1.

19 IS_NULLABLE Varchar ¹ “NO” if the column does not include NULLs.
¹ “YES” if the column can include NULLs.
¹ zero-length string if nullability is unknown.

ISO rules are followed to determine nullability.

An ISO SQL-compliant DBMS cannot return an empty string.

The value returned for this column is different than the value
returned for the NULLABLE column. (See the description of
the NULLABLE column.)

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedureColumns() result set in ODBC.

500 CLI Guide and Reference

SQLProcedureColumns

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 138. SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table
contains a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid String or Buffer Length The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for procedure
name.

The connected server does not support schema as a qualifier for
procedure name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Chapter 5. Functions 501

SQLProcedureColumns

 Restrictions
SQLProcedureColumns() does not return information about the attributes of result sets
that may be returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures,
SQLProcedureColumns() will return an empty result set.

 Example

502 CLI Guide and Reference

SQLProcedureColumns

/* From CLI sample proccols.c */

/* ... */

printf("Enter Procedure Schema Name Search Pattern:\n");

 gets((char *)proc_schem.s);

printf("Enter Procedure Name Search Pattern:\n");

 gets((char *)proc_name.s);

rc = SQLProcedureColumns(hstmt, NULL, 0, proc_schem.s, SQL_NTS,

proc_name.s, SQL_NTS, (SQLCHAR *)"%", SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

 &proc_schem.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

 &proc_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 5, SQL_C_SHORT, (SQLPOINTER) &arg_type,

 0, &arg_type_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 8, SQL_C_LONG, (SQLPOINTER) & length,

 0, &length_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 10, SQL_C_SHORT, (SQLPOINTER) &scale,

 0, &scale_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 13, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

 &remarks.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

sprintf((char *)cur_name, "%s.%s", proc_schem.s, proc_name.s);

if (strcmp((char *)cur_name, (char *)pre_name) != 0) {

 printf("\n%s\n", cur_name);

 }

strcpy((char *)pre_name, (char *)cur_name);

 Chapter 5. Functions 503

SQLProcedureColumns

 printf(" %s", column_name.s);

 switch (arg_type)

{ case SQL_PARAM_INPUT : printf(", Input"); break;

case SQL_PARAM_OUTPUT : printf(", Output"); break;

case SQL_PARAM_INPUT_OUTPUT : printf(", Input_Output"); break;

 }

printf(", %s", type_name.s);

printf(" (%ld", length);

if (scale_ind != SQL_NULL_DATA) {

printf(", %d)\n", scale);

} else {

 printf(")\n");

 }

if (remarks.ind > 0) {

printf("(remarks), %s)\n", remarks.s);

 }

} /* endwhile */

 References
¹ “SQLProcedures - Get List of Procedure Names” on page 505

504 CLI Guide and Reference

SQLProcedures

SQLProcedures - Get List of Procedure Names

 Purpose

SQLProcedures() returns a list of procedure names that have been registered at the
server, and which match the specified search pattern.

The information is returned in an SQL result set, which can be retrieved using the same
functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLProcedures (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szProcCatalog */

SQLSMALLINT NameLength1, /* cbProcCatalog */

SQLCHAR FAR *SchemaName, /* szProcSchema */

SQLSMALLINT NameLength2, /* cbProcSchema */

SQLCHAR FAR *ProcName, /* szProcName */

SQLSMALLINT NameLength3); /* cbProcName */

 Function Arguments

Table 139. SQLTables Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName Input Buffer that may contain a pattern-value to qualify the
result set by schema name.

For DB2 for MVS/ESA V 4.1, all the stored
procedures are in one schema; the only acceptable
value for the SchemaName argument is a null
pointer. For DB2 Universal Database, SchemaName
can contain a valid pattern value. For more
information about valid search patterns, refer to
“Querying System Catalog Information” on page 49.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * ProcName Input Buffer that may contain a pattern-value to qualify the
result set by table name.

SQLSMALLINT NameLength3 Input Length of ProcName.

 Chapter 5. Functions 505

SQLProcedures

 Usage
DB2 Universal Database version 5 introduced two system catalog views used to store
information about all stored procedures on the server (SYSCAT.PROCEDURES and
SYSCAT.PROCPARMS). See Appendix G, “Catalog Views for Stored Procedures” on
page 703 for information on these views. SQLProcedures() returns a list of stored
procedures from these views.

Before version 5, DB2 CLI used the pseudo catalog table for stored procedure
registration. By default, DB2 CLI will use the new system catalog views. If the
application expects to use the pseudo catalog table then the CLI/ODBC configuration
keyword PATCH1 should be set to 262144. See “Replacement of the Pseudo Catalog
Table for Stored Procedures” on page 647 for more information.

If the stored procedure is at a DB2 for MVS/ESA V 4.1 server or later, the name of the
stored procedures must be registered in the server's SYSIBM.SYSPROCEDURES
catalog table.

For other versions of DB2 servers that do not provide facilities for a stored procedure
catalog, an empty result set will be returned.

The result set returned by SQLProcedures() contains the columns listed in Table 140 in
the order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEMA, and PROCEDURE_NAME.

Since calls to SQLProcedures() in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results saved
rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column types
will be reported as LONG VARCHAR, LONG VARBINARY, or LONG VARGRAPHIC
types.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 140 (Page 1 of 2). Columns Returned By SQLProcedures

Column Number/Name Data Type Description

1 PROCEDURE_CAT VARCHAR(128) This is always null.

506 CLI Guide and Reference

SQLProcedures

Table 140 (Page 2 of 2). Columns Returned By SQLProcedures

Column Number/Name Data Type Description

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME.

3 PROCEDURE_NAME VARCHAR(128)
NOT NULL

The name of the procedure.

4 NUM_INPUT_PARAMS INTEGER not
NULL

Number of input parameters.

This column should not be used, it is reserved for future use
by ODBC.

It was used in versions of DB2 CLI before version 5. For
backward compatibility it can be used with the old
DB2CLI.PROCEDURES pseudo catalog table (by setting the
PATCH1 CLI/ODBC Configuration keyword). See
“Replacement of the Pseudo Catalog Table for Stored
Procedures” on page 647 for more information.

5 NUM_OUTPUT_PARAMS INTEGER not
NULL

Number of output parameters.

This column should not be used, it is reserved for future use
by ODBC.

It was used in versions of DB2 CLI before version 5. For
backward compatibility it can be used with the old
DB2CLI.PROCEDURES pseudo catalog table (by setting the
PATCH1 CLI/ODBC Configuration keyword). See
“Replacement of the Pseudo Catalog Table for Stored
Procedures” on page 647 for more information.

6 NUM_RESULT_SETS INTEGER not
NULL

Number of result sets returned by the procedure.

This column should not be used, it is reserved for future use
by ODBC.

It was used in versions of DB2 CLI before version 5. For
backward compatibility it can be used with the old
DB2CLI.PROCEDURES pseudo catalog table (by setting the
PATCH1 CLI/ODBC Configuration keyword). See
“Replacement of the Pseudo Catalog Table for Stored
Procedures” on page 647 for more information.

7 REMARKS VARCHAR(254) Contains the descriptive information about the procedure.

8 PROCEDURE_TYPE SMALLINT Defines the procedure type:

¹ SQL_PT_UNKNOWN: It cannot be determined whether
the procedure returns a value.

¹ SQL_PT_PROCEDURE: The returned object is a
procedure; that is, it does not have a return value.

¹ SQL_PT_FUNCTION: The returned object is a function;
that is, it has a return value.

DB2 CLI always returns SQL_PT_PROCEDURE.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

 Chapter 5. Functions 507

SQLProcedures

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 141. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for procedure
name.

The connected server does not supported schema as a qualifier
for procedure name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

508 CLI Guide and Reference

SQLProcedures

 Restrictions
If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures,
SQLProcedureColumns() will return an empty result set.

 Example
/* From CLI sample procs.c */

/* ... */

printf("Enter Procedure Schema Name Search Pattern:\n");

 gets((char *)proc_schem.s);

rc = SQLProcedures(hstmt, NULL, 0, proc_schem.s, SQL_NTS, (SQLCHAR *)"%", SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,

 &proc_schem.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,

 &proc_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,

 &remarks.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 printf("PROCEDURE SCHEMA PROCEDURE NAME \n");

printf("------------------------- ------------------------- \n");

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf("%-25s %-25s\n", proc_schem.s, proc_name.s);

if (remarks.ind != SQL_NULL_DATA) {

printf(" (Remarks) %s\n", remarks.s);

 }

} /* endwhile */

 References
¹ “SQLProcedureColumns - Get Input/Output Parameter Information for A Procedure”

on page 496

 Chapter 5. Functions 509

SQLPutData

SQLPutData - Passing Data Value for A Parameter

 Purpose

SQLPutData() is called following an SQLParamData() call returning SQL_NEED_DATA to
supply parameter data values. This function can be used to send large parameter
values in pieces.

The information is returned in an SQL result set, which can be retrieved using the same
functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLPutData (SQLHSTMT StatementHandle, /* hstmt */

SQLPOINTER DataPtr, /* rgbValue */

SQLINTEGER StrLen_or_Ind); /* cbValue */

 Function Arguments

Table 142. SQLPutData Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLPOINTER DataPtr Input Pointer to the actual data, or portion of data, for a
parameter. The data must be in the form specified in
the SQLBindParameter() call that the application used
when specifying the parameter.

SQLPOINTER StrLen_or_Ind Input Pointer to the length of DataPtr. Specifies the amount
of data sent in a call to SQLPutData() .

The amount of data can vary with each call for a
given parameter. The application can also specify
SQL_NTS or SQL_NULL_DATA for StrLen_or_Ind.

StrLen_or_Ind is ignored for all fixed length C buffer
types, such as date, time, timestamp, and all numeric
C buffer types.

For cases where the C buffer type is SQL_C_CHAR
or SQL_C_BINARY, or if SQL_C_DEFAULT is
specified as the C buffer type and the C buffer type
default is SQL_C_CHAR or SQL_C_BINARY, this is
the number of bytes of data in the DataPtr buffer.

 Usage
For a description on the SQLParamData() and SQLPutData() sequence, refer to
“Sending/Retrieving Long Data in Pieces” on page 61.

510 CLI Guide and Reference

SQLPutData

The application calls SQLPutData() after calling SQLParamData() on a statement in the
SQL_NEED_DATA state to supply the data values for an SQL_DATA_AT_EXEC
parameter. Long data can be sent in pieces via repeated calls to SQLPutData(). After all
the pieces of data for the parameter have been sent, the application calls
SQLParamData() again to proceed to the next SQL_DATA_AT_EXEC parameter, or, if all
parameters have data values, to execute the statement.

SQLPutData() cannot be called more than once for a fixed length C buffer type, such as
SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),

SQLCancel(), or another SQLPutData() if the input data is character or binary data. As
with SQLParamData(), all other function calls using this statement handle will fail. In
addition, all function calls referencing the parent hdbc of StatementHandle will fail if
they involve changing any attribute or state of that connection; that is, the following
function calls on the parent hdbc are also not permitted:

 ¹ SQLAllocConnect()
 ¹ SQLAllocStmt()
 ¹ SQLSetConnectAttr()
 ¹ SQLNativeSql()
 ¹ SQLTransact()

Should they be invoked during an SQL_NEED_DATA sequence, these function will
return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters will not be affected.

If one or more calls to SQLPutData() for a single parameter results in SQL_SUCCESS,
attempting to call SQLPutData() with StrLen_or_Ind set to SQL_NULL_DATA for the
same parameter results in an error with SQLSTATE of 22005. This error does not result
in a change of state; the statement handle is still in a Need Data state and the
application can continue sending parameter data.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
Some of the following diagnostics conditions may also be reported on the final
SQLParamData() call rather than at the time the SQLPutData() is called.

 Chapter 5. Functions 511

SQLPutData

Table 143. SQLPutData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter was truncated without the
loss of significant digits.

Timestamp data sent for a date or time column was truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data was sent for a binary or char data than the data source
can support for that column.

22003 Numeric value out of range. The data sent for a numeric parameter cause the whole part of
the number to be truncated when assigned to the associated
column.

SQLPutData() was called more than once for a fixed length
parameter.

22005 Error in assignment. The data sent for a parameter was incompatible with the data type
of the associated table column.

22007 Invalid datetime format. The data value sent for a date, time, or timestamp parameters
was invalid.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. The argument DataPtr was a NULL pointer, and the argument
StrLen_or_Ind was neither 0 nor SQL_NULL_DATA.

HY010 Function sequence error. The statement handle StatementHandle must be in a need data
state and must have been positioned on an
SQL_DATA_AT_EXEC parameter via a previous SQLParamData()
call.

HY090 Invalid string or buffer length. The argument DataPtr was not a NULL pointer, and the argument
StrLen_or_Ind was less than 0, but not equal to SQL_NTS or
SQL_NULL_DATA.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

512 CLI Guide and Reference

SQLPutData

 Restrictions
A new value for pStrLen_or_Ind, SQL_DEFAULT_PARAM, was introduced in ODBC
2.0, to indicate that the procedure is to use the default value of a parameter, rather
than a value sent from the application. Since DB2 stored procedure arguments do not
have the concept of default values, specification of this value for pStrLen_or_Ind
argument will result in an error when the CALL statement is executed since the
SQL_DEFAULT_PARAM value will be considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be used
with the pStrLen_or_Ind argument. The macro is used to specify the sum total length of
the entire data that would be sent for character or binary C data via the subsequent
SQLPutData() calls. Since the DB2 ODBC driver does not need this information, the
macro is not needed. An ODBC application calls SQLGetInfo() with the
SQL_NEED_LONG_DATA_LEN option to check if the driver needs this information.
The DB2 ODBC driver will return 'N' to indicate that this information is not needed by
SQLPutData().

 Example

 Chapter 5. Functions 513

SQLPutData

/* From CLI sample picin2.c */

/* ... */

SQLCHAR * stmt =

"INSERT INTO emp_photo (empno, photo_format, picture) VALUES (?, ?, ?)" ;

/* ... */

/* Prepare the statement */

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

6, 0, Empno, 7, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

10, 0, Photo_Format, 11, NULL);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 /*

* This paramter will use SQLPutData, rgbValue is set to Param Number,

* pcbValue is set to SQL_DATA_AT_EXEC

 */

PicLength = SQL_DATA_AT_EXEC;

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_BLOB,

BUFSIZ, 0, (SQLPOINTER)input_param, BUFSIZ, &PicLength);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* ... */

if ((rc = SQLExecute(hstmt)) == SQL_NEED_DATA) {

PicFile = fopen((char *)FName, "rb");

if (PicFile == NULL) {

printf(">---- ERROR Opening File -------");

/* Cancel the DATA AT EXEC state for hstmt */

rc = SQLCancel(hstmt);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Commit, free resources, disconnect and exit */

 }

 else {

while ((rc = SQLParamData(hstmt, (SQLPOINTER) &prgbValue)

) == SQL_NEED_DATA

) {

printf("Getting data for %s\n", prgbValue);

 /*

if more than 1 parms used DATA_AT_EXEC then prgbValue would

have to be checked to determine which param needed data

 */

while (feof(PicFile) == 0) {

n = fread(fbuffer, sizeof(char), BUFSIZ, PicFile);

rc = SQLPutData(hstmt, fbuffer, n);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

FileSize = FileSize + n;

if (FileSize > 102400u) {

/* BLOB column defined as 100K MAX */

printf(">---- ERROR: File > 100K -------");

514 CLI Guide and Reference

SQLPutData

 exit(terminate(hdbc, SQL_ERROR));

 }

 }

printf("Read a total of %u bytes from %s\n", FileSize, FName);

 }

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 }

 }

else CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 References
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLParamData - Get Next Parameter For Which A Data Value Is Needed” on

page 480
¹ “SQLCancel - Cancel Statement” on page 232

 Chapter 5. Functions 515

SQLRowCount

SQLRowCount - Get Row Count

 Purpose

SQLRowCount() returns the number of rows in a table that were affected by an UPDATE,
INSERT, or DELETE statement executed against the table, or a view based on the
table.

SQLExecute() or SQLExecDirect() must be called before calling this function.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLRowCount (SQLHSTMT StatementHandle, /* hstmt */

SQLINTEGER FAR *RowCountPtr); /* pcrow */

 Function Arguments

Table 144. SQLRowCount Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLINTEGER * RowCountPtr output Pointer to location where the number of rows
affected is stored.

 Usage
If the last executed statement referenced by the input statement handle was not an
UPDATE, INSERT, or DELETE statement, or if it did not execute successfully, then the
function sets the contents of RowCountPtr to -1.

Any rows in other tables that may have been affected by the statement (for example,
cascading deletes) are not included in the count.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

516 CLI Guide and Reference

SQLRowCount

Table 145. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function was called prior to calling SQLExecute() or
SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Authorization
None.

 Example
Refer to “Example” on page 279.

 References
¹ “SQLExecDirect - Execute a Statement Directly” on page 303
¹ “SQLExecute - Execute a Statement” on page 310
¹ “SQLNumResultCols - Get Number of Result Columns” on page 478

 Chapter 5. Functions 517

SQLSetColAttributes

SQLSetColAttributes - Set Column Attributes

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLSetColAttributes() has been deprecated.

Although this version of DB2 CLI continues to support SQLSetColAttributes(),
we recommend that you stop using it in your DB2 CLI programs so that they
conform to the latest standards. All arguments you pass to
SQLSetColAttributes() will be ignored, and the function call will always return
SQL_SUCCESS.

Now that DB2 CLI uses deferred prepare by default, there is no need for the
functionality of SQLSetColAttributes(). See “Deferred Prepare now on by
Default” on page 649 for more details.

518 CLI Guide and Reference

SQLSetConnectAttr

SQLSetConnectAttr - Set Connection Attributes

 Purpose

SQLSetConnectAttr() sets attributes that govern aspects of connections.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLSetConnectAttr(SQLHDBC ConnectionHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER StringLength);

 Function Arguments

Table 146 (Page 1 of 2). SQLSetConnectAttr Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to set, listed in Attribute Values on
page 522.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, *ValuePtr will be
a 32-bit unsigned integer value or point to a
null-terminated character string. Note that if the
Attribute argument is a driver-specific value, the
value in *ValuePtr may be a signed integer.

 Chapter 5. Functions 519

SQLSetConnectAttr

Table 146 (Page 2 of 2). SQLSetConnectAttr Arguments

Data Type Argument Use Description

SQLINTEGER StringLength input If Attribute is an ODBC-defined attribute and ValuePtr
points to a character string or a binary buffer, this
argument should be the length of *ValuePtr. If
Attribute is an ODBC-defined attribute and ValuePtr
is an integer, StringLength is ignored.

If Attribute is a DB2 CLI attribute, the application
indicates the nature of the attribute by setting the
StringLength argument. StringLength can have the
following values:

¹ If ValuePtr is a pointer to a character string, then
StringLength is the length of the string or
SQL_NTS.

¹ If ValuePtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
StringLength. This places a negative value in
StringLength.

¹ If ValuePtr is a pointer to a value other than a
character string or a binary string, then
StringLength should have the value
SQL_IS_POINTER.

¹ If ValuePtr contains a fixed-length value, then
StringLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

 Usage
Setting Statement Attributes using SQLSetConnectAttr() no Longer Supported

The ability to set statement attributes using SQLSetConnectAttr() is no longer
supported. To support applications written before version 5, some statement attributes
can be set using SQLSetConnectAttr() in this release of DB2 CLI. All applications that
rely on this behavior, however, should be updated to use SQLSetStmtAttr() instead.
See “Setting a Subset of Statement Attributes using SQLSetConnectAttr()” on page 647
for more information.

For version 2 applications that continue to set statement attributes using
SQLSetConnectAttr(), if an error is returned when a statement attribute is set on one of
multiple active statements, the statement attribute is established as the default for
statements later allocated on the connection, but it is undefined whether statement
attributes previously set on the same call to SQLSetConnectAttr() remain set after the
function is aborted and the error is returned. This is one reason why
SQLSetConnectAttr() should not be used to set statement attributes.

If SQLSetConnectAttr() is called to set a statement attribute that sets the header field of
a descriptor, the descriptor field is set for the application descriptors currently
associated with all statements on the connection. However, the attribute setting does

520 CLI Guide and Reference

SQLSetConnectAttr

not affect any descriptors that may be associated with the statements on that
connection in the future.

Connection Attributes

The currently defined attributes and the version of DB2 CLI in which they were
introduced are shown below; it is expected that more will be defined to take advantage
of different data sources.

An application can call SQLSetConnectAttr() at any time between the time the
connection is allocated or freed. All connection and statement attributes successfully set
by the application for the connection persist until SQLFreeHandle() is called on the
connection.

Some connection attributes can be set only before a connection has been made; others
can be set only after a connection has been made, while some cannot be set once a
statement is allocated. The following table indicates when each of the connection
attributes can be set.

Table 147 (Page 1 of 2). When Connection Attributes can be Set

Attribute
Before
connection

After
connection

After
statements
allocated

SQL_ATTR_ACCESS_MODE Yes Yes Yes a

SQL_ATTR_ASYNC_ENABLE Yes Yes No b

SQL_ATTR_AUTO_IPD (read only) No Yes Yes

SQL_ATTR_AUTOCOMMIT Yes Yes Yes c

SQL_ATTR_CONNECTTYPE Yes No No

SQL_ATTR_CURRENT_SCHEMA Yes Yes Yes

SQL_ATTR_DB2ESTIMATE No Yes Yes

SQL_ATTR_DB2EXPLAIN No Yes Yes

SQL_ATTR_LOGIN_TIMEOUT Yes No No

SQL_ATTR_LONGDATA_COMPAT Yes Yes Yes

SQL_ATTR_MAXCONN Yes No No

SQL_ATTR_QUIET_MODE Yes Yes Yes

SQL_ATTR_SYNC_POINT Yes No No

SQL_ATTR_TRANSLATE_LIB (Windows 3.1
only)

Yes Yes Yes

SQL_ATTR_TRANSLATE_OPTION Yes Yes Yes

SQL_ATTR_TXN_ISOLATION No Yes c Yes a

SQL_ATTR_WCHARTYPE Yes Yes c Yes c

 Chapter 5. Functions 521

SQLSetConnectAttr

Some connection attributes support substitution of a similar value if the data source
does not support the value specified in *ValuePtr. In such cases, DB2 CLI returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed.). For
example, if the application attempts to set SQL_ATTR_ASYNC_ENABLE to
SQL_ASYNC_ENABLE_ON and the server does not support this then DB2 CLI
substitutes the value SQL_ASYNC_ENABLE_OFF instead. To determine the
substituted value, an application calls SQLGetConnectAttr().

The format of information set through *ValuePtr depends on the specified Attribute.
SQLSetConnectAttr() will accept attribute information in one of two different formats: a
null-terminated character string or a 32-bit integer value. The format of each is noted in
the attribute's description. Character strings pointed to by the ValuePtr argument of
SQLSetConnectAttr() have a length of StringLength bytes.

The StringLength argument is ignored if the length is defined by the attribute, as is the
case for all attributes introduced before DB2 CLI Version 5.

Attribute Values

The following version 2 connection attributes (that were set using
SQLSetConnectOption()) have been renamed for version 5:

Table 147 (Page 2 of 2). When Connection Attributes can be Set

Attribute
Before
connection

After
connection

After
statements
allocated

a Will only affect subsequently allocated statements.

b Attribute must be set before there is an active statement.

c Attribute can be set only if there are no open transactions on the connection.

Table 148 (Page 1 of 2). Renamed Connection Attributes

Version 2 name Version 5 and later name

SQL_ACCESS_MODE SQL_ATTR_ACCESS_MODE

SQL_AUTOCOMMIT SQL_ATTR_AUTOCOMMIT

SQL_CONNECTTYPE SQL_ATTR_CONNECTTYPE

SQL_CURRENT_SCHEMA SQL_ATTR_CURRENT_SCHEMA

SQL_DB2ESTIMATE SQL_ATTR_DB2ESTIMATE

SQL_DB2EXPLAIN SQL_ATTR_DB2EXPLAIN

SQL_LOGIN_TIMEOUT SQL_ATTR_LOGIN_TIMEOUT

SQL_LONGDATA_COMPAT SQL_ATTR_LONGDATA_COMPAT

SQL_MAXCONN SQL_ATTR_MAXCONN

SQL_QUIET_MODE SQL_ATTR_QUIET_MODE

SQL_SCHEMA SQL_ATTR_SCHEMA

522 CLI Guide and Reference

SQLSetConnectAttr

Attribute *ValuePtr Contents

SQL_ATTR_ACCESS_MODE (DB2 CLI v2)
A 32-bit integer value which can be either:

¹ SQL_MODE_READ_ONLY: the application is indicating that it will not be
performing any updates on data from this point on. Therefore, a less
restrictive isolation level and locking can be used on transactions; that is
uncommitted read (SQL_TXN_READ_UNCOMMITTED).

DB2 CLI does not ensure that requests to the database are read-only. If
an update request is issued, DB2 CLI will process it using the transaction
isolation level it has selected as a result of the SQL_MODE_READ_ONLY
setting.

¹ SQL_MODE_READ_WRITE : the application is indicating that it will be
making updates on data from this point on. DB2 CLI will go back to using
the default transaction isolation level for this connection.

SQL_MODE_READ_WRITE is the default.

There must not be any outstanding transactions on this connection.

SQL_ATTR_ASYNC_ENABLE (DB2 CLI v5)

A 32-bit integer value that specifies whether a function called with a statement
on the specified connection is executed asynchronously:

¹ SQL_ASYNC_ENABLE_OFF = Off (the default)
¹ SQL_ASYNC_ENABLE_ON = On

Setting SQL_ASYNC_ENABLE_ON enables asynchronous execution for all
future statement handles allocated on this connection. This also enables
asynchronous execution for existing statement handles associated with this
connection. An error is returned if asynchronous execution is turned on while
there is an active statement on the connection.

This attribute can be set whether SQLGetInfo(), called with the InfoType
SQL_ASYNC_MODE, returns SQL_AM_CONNECTION or
SQL_AM_STATEMENT.

Once a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLGetDiagField(), or SQLGetDiagRec() can
be called on the statement or the connection associated with StatementHandle,
until the original function returns a code other than SQL_STILL_EXECUTING.
Any other function called on StatementHandle or the connection associated

Table 148 (Page 2 of 2). Renamed Connection Attributes

Version 2 name Version 5 and later name

SQL_SYNC_POINT SQL_ATTR_SYNC_POINT

SQL_TXN_ISOLATION SQL_ATTR_TXN_ISOLATION

SQL_WCHARTYPE SQL_ATTR_WCHARTYPE

 Chapter 5. Functions 523

SQLSetConnectAttr

with StatementHandle returns SQL_ERROR with an SQLSTATE of HY010
(Function sequence error). Functions can be called on other statements.

In general, applications should execute functions asynchronously only on
single-threaded operating systems. On multi-threaded operating systems,
applications should execute functions on separate threads, rather than
executing them asynchronously on the same thread. Applications that only
operate on multi-threaded operating systems do not need to support
asynchronous execution. For more information, see “Writing Multi-Threaded
Applications” on page 40 and “Asynchronous Execution of CLI” on page 118.

The following functions can be executed asynchronously:

 SQLColAttribute() SQLGetTypeInfo()

 SQLColumnPrivileges() SQLMoreResults()

 SQLColumns() SQLNumParams()

 SQLCopyDesc() SQLNumResultCols()

 SQLDescribeCol() SQLParamData()

 SQLDescribeParam() SQLPrepare()

 SQLExecDirect() SQLPrimaryKeys()

 SQLExecute() SQLProcedureColumns()

 SQLFetch() SQLProcedures()

 SQLFetchScroll() SQLPutData()

 SQLForeignKeys() SQLSetPos()

 SQLGetData() SQLSpecialColumns()

 SQLGetDescField() 1* SQLStatistics()

 SQLGetDescRec() 1* SQLTablePrivileges()

 SQLGetDiagField() SQLTables()

 SQLGetDiagRec()

1* These functions can be called asynchronously only if the descriptor

is an implementation descriptor, not an application descriptor.

SQL_ATTR_AUTO_IPD (DB2 CLI v5)

A read-only 32-bit integer value that specifies whether automatic population of
the IPD after a call to SQLPrepare() is supported:

¹ SQL_TRUE = Automatic population of the IPD after a call to SQLPrepare()

is supported by the server.

¹ SQL_FALSE = Automatic population of the IPD after a call to
SQLPrepare() is not supported by the server. Servers that do not support
prepared statements will not be able to populate the IPD automatically.

If SQL_TRUE is returned for the SQL_ATTR_AUTO_IPD connection attribute,
the statement attribute SQL_ATTR_ENABLE_AUTO_IPD can be set to turn
automatic population of the IPD on or off. If SQL_ATTR_AUTO_IPD is
SQL_FALSE, SQL_ATTR_ENABLE_AUTO_IPD cannot be set to SQL_TRUE.

The default value of SQL_ATTR_ENABLE_AUTO_IPD is equal to the value of
SQL_ATTR_AUTO_IPD.

This connection attribute can be returned by SQLGetConnectAttr(), but cannot
be set by SQLSetConnectAttr().

524 CLI Guide and Reference

SQLSetConnectAttr

SQL_ATTR_AUTOCOMMIT (DB2 CLI v2)
A 32-bit integer value that specifies whether to use auto-commit or manual
commit mode:

¹ SQL_AUTOCOMMIT_OFF: the application must manually, explicitly
commit or rollback transactions with SQLTransact() calls.

¹ SQL_AUTOCOMMIT_ON : DB2 CLI operates in auto-commit mode. Each
statement is implicitly committed. Each statement, that is not a query, is
committed immediately after it has been executed. Each query is
committed immediately after the associated cursor is closed.

SQL_AUTOCOMMIT_ON is the default.

Note: If this is a coordinated distributed unit of work connection, then the
default is SQL_AUTOCOMMIT_OFF

When specifying auto-commit, the application can have only one
outstanding statement per connection. For example, there must not be two
open cursors, or unpredictable results may occur. An open cursor must be
closed before another query is executed.

Since in many DB2 environments, the execution of the SQL statements and
the commit may be flowed separately to the database server, autocommit can
be expensive. It is recommended that the application developer take this into
consideration when selecting the auto-commit mode.

Note: Changing from manual commit to auto-commit mode will commit any
open transaction on the connection.

DB2 CLI Version 1 applications assume the default is manual commit mode.
Refer to “Incompatibilities” on page 645.

SQL_ATTR_CONN_CONTEXT (DB2 CLI v5)

Indicates which context the connection should use. An SQLPOINTER to either:

¹ a valid context (allocated by the sqleBeginCtx() DB2 API) to set the
context

¹ a NULL pointer to reset the context

This attribute can only be used when the application is using the DB2 context
APIs to manage multi-threaded applications. By default, DB2 CLI manages
contexts by allocating one context per connection handle, and enusuring that
any executing thread is attached to the correct context.

For more information about when an application may have to manage
contexts, refer to “Writing Multi-Threaded Applications” on page 40.

For more information about contexts, refer to the sqleBeginCtx() API in the
API Reference.

SQL_ATTR_CONNECTION_TIMEOUT (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

 Chapter 5. Functions 525

SQLSetConnectAttr

A 32-bit integer value corresponding to the number of seconds to wait for any
request on the connection to complete before returning to the application.

DB2 CLI always behaves as if ValuePtr was set to 0 (the default); there is no
time out.

SQL_ATTR_CONNECTTYPE (DB2 CLI v2)
A 32-bit integer value that specifies whether this application is to operate in a
coordinated or uncoordinated distributed environment. If the processing needs
to be coordinated, then this option must be considered in conjunction with the
SQL_ATTR_SYNC_POINT connection option. The possible values are:

¹ SQL_CONCURRENT_TRANS : The application can have concurrent
multiple connections to any one database or to multiple databases. Each
connection has its own commit scope. No effort is made to enforce
coordination of transaction. If an application issues a commit using the
environment handle on SQLTransact() and not all of the connections
commit successfully, the application is responsible for recovery.

The current setting of the SQL_ATTR_SYNC_POINT option is ignored.

This is the default.

¹ SQL_COORDINATED_TRANS: The application wishes to have commit
and rollbacks coordinated among multiple database connections. This
option setting corresponds to the specification of the Type 2 CONNECT in
embedded SQL and must be considered in conjunction with the
SQL_ATTR_SYNC_POINT connection option. In contrast to the
SQL_CONCURRENT_TRANS setting described above, the application is
permitted only one open connection per database.

Note: This connection type results in the default for
SQL_ATTR_AUTOCOMMIT connection option to be
SQL_AUTOCOMMIT_OFF.

This option must be set before making a connect request; otherwise, the
SQLSetConnectOption() call will be rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. The first
connection determines the acceptable attributes for the subsequent
connections. We recommend that the application set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather than on
a per connection basis. ODBC applications written to take advantage of
coordinated DB2 transactions must set these attributes at the connection level
for each connection as SQLSetEnvAttr() is not supported in ODBC.

The default connect type can also be set using the CONNECTTYPE DB2
CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on page 138 for
more information.

Note: This is an IBM defined extension.

526 CLI Guide and Reference

SQLSetConnectAttr

SQL_ATTR_CURRENT_CATALOG (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A null-terminated character string containing the name of the catalog to be
used by the data source.

SQL_ATTR_CURRENT_SCHEMA (DB2 CLI v2)
A null-terminated character string containing the name of the schema to be
used by DB2 CLI for the SQLColumns() call if the szSchemaName pointer is set
to null.

To reset this option, specify this option with a zero length or a null pointer for
the ValuePtr argument.

This option is useful when the application developer has coded a generic call
to SQLColumns() that does not restrict the result set by schema name, but
needs to constrain the result set at isolated places in the code.

This option can be set at any time and will be effective on the next
SQLColumns() call where the szSchemaName pointer is null.

Note: This is an IBM defined extension.

SQL_ATTR_DB2ESTIMATE (DB2 CLI v2)
A 32-bit integer that specified whether DB2 CLI will display a dialog window to
report estimates returned by the optimizer at the end of SQL query
preparation.

¹ 0 : Estimates are not returned.

This is the default.

¹ very large positive integer: The threshold above which DB2 CLI will pop up
a window to report estimates. This positive integer value is compared
against the SQLERRD(4) field in the SQLCA associated with the
PREPARE. If the DB2ESTIMATE value is greater, the estimates window
will appear.

The graphical window will display optimizer estimates, along with push
buttons to allow the user to choose whether they wish to continue with
subsequent execution of this query or to cancel it.

The recommended value for this option is 60000.

This option is used in conjunction with SQL_ATTR_QUIET_MODE and is
applicable only to applications with graphical user interfaces. The application
can implement this feature directly without using this option by calling
SQLGetSQLCA() after an SQLPrepare() for a query and then displaying the
appropriate information, thus allowing a more integrated overall interface.

The new SQL_ATTR_DB2ESTIMATE setting is effective on the next statement
preparation for this connection.

Note: This is an IBM defined extension.

 Chapter 5. Functions 527

SQLSetConnectAttr

SQL_ATTR_DB2EXPLAIN (DB2 CLI v2)
A 32-bit integer that specifies whether Explain snapshot and/or Explain mode
information should be generated by the server:

¹ SQL_DB2EXPLAIN_OFF: Both the Explain Snapshot and the Explain
table option facilities are disabled (a SET CURRENT EXPLAIN
SNAPSHOT=NO and a SET CURRENT EXPLAIN MODE=NO are sent to
the server).

¹ SQL_DB2EXPLAIN_SNAPSHOT_ON: The Explain Snapshot facility is
enabled, and the Explain table option facility is disabled (a SET
CURRENT EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN
MODE=NO are sent to the server).

¹ SQL_DB2EXPLAIN_MODE_ON: The Explain Snapshot facility is disabled,
and the Explain table option facility is enabled (a SET CURRENT
EXPLAIN SNAPSHOT=NO and a SET CURRENT EXPLAIN MODE=YES
are sent to the server).

¹ SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON: Both the Explain Snapshot
and the Explain table option facilities are enabled (a SET CURRENT
EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN MODE=YES
are sent to the server).

Before the explain information can be generated, the explain tables must be
created. See the SQL Reference for additional information.

This statement is not under transaction control and is not affected by a
ROLLBACK. The new SQL_ATTR_DB2EXPLAIN setting is effective on the
next statement preparation for this connection.

The current authorization ID must have INSERT privilege for the Explain
tables.

This value can also be set using the DB2EXPLAIN DB2 CLI/ODBC
configuration keyword. See “Configuring db2cli.ini” on page 138 for more
information.

Note: This is an IBM defined extension.

SQL_ATTR_LOGIN_TIMEOUT (DB2 CLI v2)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A 32-bit integer value corresponding to the number of seconds to wait for a
login request to complete before returning to the application. The only
permitted value for the ValuePtr argument is 0, which means the connection
attempt will wait until either a connection is established or the underlying
communication layer times out.

SQL_ATTR_LONGDATA_COMPAT (DB2 CLI v2)
A 32-bit integer value indicating whether the character, double byte character
and binary large object data types should be reported respectively as
SQL_LONGVARCHAR, SQL_LONGVARGRAPHIC or SQL_LONGBINARY,

528 CLI Guide and Reference

SQLSetConnectAttr

enabling existing applications to access large object data types seamlessly.
The option values are:

¹ SQL_LD_COMPAT_NO : The large object data types are reported as
themselves (SQL_BLOB, SQL_CLOB, SQL_DBCLOB). This is the default.

¹ SQL_LD_COMPAT_YES: The large object data types (BLOB, CLOB and
DBCLOB) are mapped to SQL_LONGVARBINARY,
SQL_LONGVARCHAR and SQL_LONVARGRAPHIC; SQLGetTypeInfo()
returns one entry each for SQL_LONGVARBINARY
SQL_LONGVARCHAR.

Note: This is an IBM defined extension.

SQL_ATTR_MAXCONN (DB2 CLI v2)
A 32-bit integer value corresponding to the maximum concurrent connections
that an application may desire to set up. The default value is 0, which means
no maximum - the application is allowed to set up as many connections as the
system resources permit. The integer value must be 0 or a positive number.

This can be used as a governor for the maximum number of connections on a
per application basis.

On OS/2, Windows 95, and Windows NT, if the NetBIOS protocol is in use,
this value corresponds to the number of connections (NetBIOS sessions) that
will be concurrently set up by the application. The range of values for OS/2
NetBIOS is 1 to 254. Specifying 0 (the default) will result in 5 reserved
connections. Reserved NetBIOS sessions cannot be used by other
applications. The number of connections specified by this parameter will be
applied to any adaptor that the DB2 NetBIOS protocol uses to connect to the
remote server (adapter number is specified in the node directory for a NetBIOS
node).

The value that is in effect when the first connection is established is the value
that will be used. Once the first connection has been established, attempts to
change this value will be rejected. We recommended that the application set
SQL_ATTR_MAXCONN at the environment level rather then on a connection
basis. ODBC applications must set this attribute at the connection level since
SQLSetEnvAttr() is not supported in ODBC.

The maximum concurrent connections can also be set using the MAXCONN
DB2 CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on
page 138 for more information.

Note: This is an IBM defined extension.

SQL_ATTR_METADATA_ID (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

An SQLUINTEGER value that determines how the string arguments of catalog
functions are treated.

 Chapter 5. Functions 529

SQLSetConnectAttr

SQL_ATTR_ODBC_CURSORS (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A 32-bit option specifying how the Driver Manager uses the ODBC cursor
library.

SQL_ATTR_PACKET_SIZE (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A 32-bit integer value specifying the network packet size in bytes.

SQL_ATTR_QUIET_MODE (DB2 CLI v2)
A 32-bit platform specific window handle.

If the application has never made a call to SQLSetConnectOption() with this
option, then DB2 CLI would return a null parent window handle on
SQLGetConnectOption() for this option and use a null parent window handle to
display dialogue boxes. For example, if the end user has asked for (via an
entry in the DB2 CLI initialization file) optimizer information to be displayed,
DB2 CLI would display the dialogue box containing this information using a null
window handle. (For some platforms, this means the dialogue box would be
centered in the middle of the screen.)

If ValuePtr is a null pointer, then DB2 CLI does not display any dialogue
boxes. In the above example where the end user has asked for the optimizer
estimates to be displayed, DB2 CLI would not display these estimates because
the application explicitly wants to suppress all such dialogue boxes.

If ValuePtr is not a null pointer, then it should be the parent window handle of
the application. DB2 CLI uses this handle to display dialogue boxes. (For some
platforms, this means the dialogue box would be centered with respect to the
active window of the application.)

Note: This connection option cannot be used to suppress the
SQLDriverConnect() dialogue box (which can be suppressed by setting
the fDriverCompletion argument to SQL_DRIVER_NOPROMPT).

SQL_ATTR_SYNC_POINT (DB2 CLI v2)
A 32-bit integer value that allows the application to choose between one-phase
coordinated transactions and two-phase coordinated transactions. The possible
values are:

¹ SQL_ONEPHASE : One-phase commit is used to commit the work done
by each database in a multiple database transaction. To ensure data
integrity, each transaction must not have more than one database
updated. The first database that has updates performed in a transaction
becomes the only updater in that transaction, all other databases
accessed are treated as read-only. Any update attempts to these
read-only database within this transaction are rejected. This is the default.

530 CLI Guide and Reference

SQLSetConnectAttr

¹ SQL_TWOPHASE: Two-phase commit is used to commit the work done
by each database in a multiple database transaction. This requires the use
of a Transaction Manager to coordinate two phase commits amongst the
databases that support this protocol. Multiple readers and multiple
updaters are allowed within a transaction.

Refer to the SQL Reference for more information on distributed unit of work
(transactions).

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_SYNCPOINT values. The first
connection determines the acceptable attributes for the subsequent
connections. We recommend that the application set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather than on
a per connection basis. ODBC applications written to take advantage of
coordinated DB2 transactions must set these attributes at the connection level
as SQLSetEnvAttr() is not supported in ODBC.

The type of coordinated transaction can also be set using the SYNCPOINT
DB2 CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on
page 138 for more information.

Note: This is an IBM extension. In embedded SQL, there is an additional
sync point setting called SYNCPOINT NONE. This is more restrictive
than the SQL_CONCURRENT_TRANS setting of the
SQL_ATTR_CONNECTTYPE option because SYNCPOINT NONE
does not allow for multiple connections to the same database. As a
result, it is not necessary for DB2 CLI to support SYNCPOINT NONE.

SQL_ATTR_TRACE (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A 32-bit integer value telling DB2 CLI whether to perform tracing.

Instead of using the attribute, the DB2 CLI trace facility can be set using the
TRACE DB2 CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on
page 138 for more information.

SQL_ATTR_TRACEFILE (DB2 CLI v5)

This connection attribute is defined by ODBC, but is not supported by DB2
CLI. Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

A null-terminated character string containing the name of the trace file.

Instead of using this attribute, the DB2 CLI trace file name is set using the
TRACEFILENAME DB2 CLI/ODBC configuration keyword. See “Configuring
db2cli.ini” on page 138 for more information.

 Chapter 5. Functions 531

SQLSetConnectAttr

SQL_ATTR_TRANSLATE_LIB (DB2 CLI v5)

This connection attribute is defined by ODBC, but is only supported by DB2
CLI on Windows 3.1. Any attempt to set or get this attribute on other platforms
will result in an SQLSTATE of HYC00 (Driver not capable).

Indicate the directory where the DB2 Client Application Enabler for Windows or
the Software Developers Kit for Windows has been installed. DB2TRANS.DLL
is the DLL that contains codepage mapping tables.

This option is used on 16-bit versions of Windows when connecting to DB2 for
OS/2 Version 1, or when using a version of DDCS for OS/2 prior to Version
2.3 in conjunction with the TRANSLATEOPTION, to provide proper mapping of
NLS SBCS characters (such as the umlaut character in German) to the
corresponding characters in the Windows codepage 1004.

Note: This option is useful when a Windows application connects to a
downlevel server that does not support unequal codepage conversion
(such as DB2 Version 1).

This option can also be set using the TRANSLATEDLL DB2 CLI/ODBC
configuration keyword. See “Configuring db2cli.ini” on page 138 for more
information.

SQL_ATTR_TRANSLATE_OPTION (DB2 CLI v5)

This connection attribute is defined by ODBC, but is only supported by DB2
CLI on Windows 3.1. Any attempt to set or get this attribute on other platforms
will result in an SQLSTATE of HYC00 (Driver not capable).

Defines the codepage number of the database in DB2 Version 1 (it can be
obtained by querying the database configuration parameters). Specifying
TRANSLATEDLL and TRANSLATEOPTION enables the translation of
characters from codepage number database codepage number to the Windows
1004 codepage.

There are two supported values for database codepage number: 437 and 850.
If you specify any other values, a warning is returned on the connect request
indicating that translation is not possible.

Note: This option is useful when a Windows application connects to a
downlevel server that does not support unequal codepage conversion
(such as DB2 Version 1).

This option can also be set using the TRANSLATEOPTION DB2 CLI/ODBC
configuration keyword. See “Configuring db2cli.ini” on page 138 for more
information.

SQL_ATTR_TXN_ISOLATION (DB2 CLI v2)
A 32-bit bitmask that sets the transaction isolation level for the current
connection referenced by ConnectionHandle. The valid values for ValuePtr can
be determined at runtime by calling SQLGetInfo() with fInfoType set to
SQL_TXN_ISOLATION_OPTIONS. The following values are accepted by DB2
CLI, but each server may only support a subset of these isolation levels:

532 CLI Guide and Reference

SQLSetConnectAttr

¹ SQL_TXN_READ_UNCOMMITTED - Dirty reads, reads that cannot be
repeated, and phantoms are possible.

¹ SQL_TXN_READ_COMMITTED - Dirty reads are not possible. Reads that
cannot be repeated, and phantoms are possible.

This is the default.
¹ SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be

repeated are not possible. Phantoms are possible.
¹ SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads,

non-repeatable reads, and phantoms are not possible.
¹ SQL_TXN_NOCOMMIT - Any changes are effectively committed at the

end of a successful operation; no explicit commit or rollback is allowed.
This is analogous to autocommit. This is not an SQL92 isolation level, but
an IBM defined extension, supported only by DB2 for AS/400.

In IBM terminology,

¹ SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;
¹ SQL_TXN_READ_COMMITTED is Cursor Stability;
¹ SQL_TXN_REPEATABLE_READ is Read Stability;
¹ SQL_TXN_SERIALIZABLE is Repeatable Read.

For a detailed explanation of Isolation Levels, refer to the SQL Reference.

This option cannot be specified while there is an open cursor on any hstmt, or
an outstanding transaction for this connection; otherwise, SQL_ERROR is
returned on the function call (SQLSTATE S1011).

Note: There is an IBM extension that permits the setting of transaction
isolation levels on a per statement handle basis. See the
SQL_STMTTXN_ISOLATION option in the function description for
SQLSetStmtOption().

SQL_ATTR_WCHARTYPE (DB2 CLI v2)
A 32-bit integer that specifies, in a double-byte environment, which wchar_t
(SQLDBCHAR) character format you want to use in your application. This
option provides you the flexibility to choose between having your wchar_t data
in multi-byte format or in wide-character format. There two possible values for
this option:

¹ SQL_WCHARTYPE_CONVERT: character codes are converted between
the graphic SQL data in the database and the application application
variable. This allows your application to fully exploit the ANSI C
mechanisms for dealing with wide character strings (L-literals, 'wc' string
functions, etc.) without having to explicitly convert the data to multi-byte
format before communicating with the database. The disadvantage is that
the implicit conversions may have an impact on the runtime performance
of your application, and may increase memory requirements. If you want
WCHARTYPE CONVERT behavior then define the C preprocessor macro
SQL_WCHART_CONVERT at compile time. This ensures that certain
definitions in the DB2 header files use the data type wchar_t instead of
sqldbchar.

 Chapter 5. Functions 533

SQLSetConnectAttr

¹ SQL_WCHARTYPE_NOCONVERT : no implicit character code conversion
occurs between the application and the database. Data in the application
variable is sent to and received from the database as unaltered DBCS
characters. This allows the application to have improved performance, but
the disadvantage is that the application must either refrain from using
wide-character data in wchar_t (SQLDBCHAR) application variables, or it
must explicitly call the wcstombs() and mbstowcs() ANSI C functions to
convert the data to and from multi-byte format when exchanging data with
the database.

This is the default.

For additional information on the use of multi-byte application variables, refer to
the Embedded SQL Programming Guide

Note: This is an IBM defined extension.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics
DB2 CLI can return SQL_SUCCESS_WITH_INFO to provide information about the
result of setting an option.

When Attribute is a statement attribute, SQLSetConnectAttr() can return any
SQLSTATEs returned by SQLSetStmtAttr().

Table 149 (Page 1 of 2). SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 General error. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr and
substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08002 Connection in use. The argument Attribute was SQL_ATTR_ODBC_CURSORS and
DB2 CLI was already connected to the data source.

08003 Connection is closed. An Attribute value was specified that required an open connection,
but the ConnectionHandle was not in a connected state.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_CURRENT_QUALIFIER
and a result set was pending.

534 CLI Guide and Reference

SQLSetConnectAttr

Table 149 (Page 2 of 2). SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string value.

HY010 Function sequence error. An asynchronously executing function was called for a
StatementHandle associated with the ConnectionHandle and was
still executing when SQLSetConnectAttr() was called.

SQLExecute() or SQLExecDirect()was called for a
StatementHandle associated with the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before data
was sent for all data-at-execution parameters or columns.

SQLBrowseConnect() was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO
orSQL_SUCCESS.

HY011 Operation invalid at this time. The argument Attribute was SQL_ATTR_TXN_ISOLATION and a
transaction was open.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (DB2 CLI returns this SQLSTATE only for connection
and statement attributes that accept a discrete set of values, such
as SQL_ATTR_ACCESS_MODE or
SQL_ATTR_ASYNC_ENABLE. For all other connection and
statement attributes, DB2 CLI must verify the value specified in
ValuePtr.)

The Attribute argument was SQL_ATTR_TRACEFILE or
SQL_ATTR_TRANSLATE_LIB, and *ValuePtr was an empty
string.

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not
SQL_NTS.

HY092 Option type out of range.; The value specified for the argument Attribute was not valid for
this version of DB2 CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the DB2 CLI
driver, but was not supported by the data source.

 Restrictions
None.

 Chapter 5. Functions 535

SQLSetConnectAttr

 Example
See SQLConnect().

 References
¹ “SQLGetConnectAttr - Get Current Attribute Setting” on page 359
¹ “SQLGetStmtAttr - Get Current Setting of a Statement Attribute” on page 453
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589
¹ “SQLAllocHandle - Allocate Handle” on page 185

536 CLI Guide and Reference

SQLSetConnection

SQLSetConnection - Set Connection Handle

 Purpose

This function is needed if the application needs to deterministically switch to a particular
connection before continuing execution. It should only be used when the application is
mixing DB2 CLI function calls with embedded SQL function calls and multiple
connections are involved.

Specification: DB2 CLI 2.1

 Syntax
SQLRETURN SQLSetConnection (SQLHDBC ConnectionHandle); /* hdbc */

 Function Arguments

Table 150. SQLSetConnection Arguments

Data Type Argument Use Description

SQLHDBC ConnectionHandle input The connection handle associated with the
connection the application wishes to switch to.

 Usage
In DB2 CLI version 1 it was possible to mix DB2 CLI calls with calls to routines
containing embedded SQL as long as the connect request was issued via the DB2 CLI
connect function. The embedded SQL routine would simply use the existing DB2 CLI
connection.

Although this is still true, there is a potential complication: DB2 CLI allows multiple
concurrent connections. This means that it is no longer clear which connection an
embedded SQL routine would use upon being invoked. In practice, the embedded
routine would use the connection associated with the most recent network activity.
However, from the application's perspective, this is not always deterministic and it is
difficult to keep track of this information. SQLSetConnection() is used to allow the
application to explicitly specify which connection is active. The application can then call
the embedded SQL routine.

SQLSetConnection() is not needed at all if the application makes purely DB2 CLI calls.
This is because each statement handle is implicitly associated with a connection handle
and there is never any confusion as to which connection a particular DB2 CLI function
applies.

For more information on using embedded SQL within DB2 CLI applications refer to
“Mixing Embedded SQL and DB2 CLI” on page 116.

 Chapter 5. Functions 537

SQLSetConnection

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 151. SQLSetConnection SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with
an open connection to a database server.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation defined SQLSTATE was defined. The
error message returned by SQLError in the argument szErrorMsg
describes the error and its cause.

 Restrictions
None.

 Example
Refer to “Mixed Embedded SQL and DB2 CLI Example” on page 116.

 References
¹ “SQLConnect - Connect to a Data Source” on page 262
¹ “SQLDriverConnect - (Expanded) Connect to a Data Source” on page 288

538 CLI Guide and Reference

SQLSetConnectOption

SQLSetConnectOption - Set Connection Option

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLSetConnectOption() has been deprecated and replaced
with SQLSetConnectAttr(); see “SQLSetConnectAttr - Set Connection Attributes”
on page 519 for more information.

Although this version of DB2 CLI continues to support SQLSetConnectOption(),
we recommend that you begin using SQLSetConnectAttr() in your DB2 CLI
programs so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLSetConnectOption(

 *hdbc,

 SQL_AUTOCOMMIT,

 SQL_AUTOCOMMIT_OFF);

for example, would be rewritten using the new function as:

 SQLSetConnectAttr(

 *hdbc,

 SQL_ATTR_AUTOCOMMIT,

 SQL_AUTOCOMMIT_OFF,

 0);

In versions of DB2 before DB2 Universal Database version 5, SQLSetConnectOption()

could be used to set certain statement attributes as well as connection attributes. This
behavior has since been removed; SQLSetConnectAttr() cannot be used to set
statement attributes. See “Setting a Subset of Statement Attributes using
SQLSetConnectAttr()” on page 647 for complete details on migrating a version 2
application that made use of this feature.

 Chapter 5. Functions 539

SQLSetCursorName

SQLSetCursorName - Set Cursor Name

 Purpose

SQLSetCursorName() associates a cursor name with the statement handle. This function
is optional since DB2 CLI implicitly generates a cursor name when each statement
handle is allocated.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLSetCursorName (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CursorName, /* szCursor */

SQLSMALLINT NameLength); /* cbCursor */

 Function Arguments

Table 152. SQLSetCursorName Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName input Cursor name

SQLSMALLINT NameLength input Length of contents of CursorName argument

 Usage
DB2 CLI always generates and uses an internally generated cursor name when a query
is prepared or executed directly. SQLSetCursorName() allows an application defined
cursor name to be used in an SQL statement (a Positioned UPDATE or DELETE). DB2
CLI maps this name to the internal name. The name will remain associated with the
statement handle, until the handle is dropped, or another SQLSetCursorName() is
called on this statement handle.

Although SQLGetCursorName() will return the name set by the application (if one was
set), error messages associated with positioned UPDATE and DELETE statements will
refer to the internal name. For this reason, we recommend that you do not use
SQLSetCursorName(), but instead use the internal name which can be obtained by
calling SQLGetCursorName().

Cursor names must follow these rules:

¹ All cursor names within the connection must be unique.

¹ Each cursor name must be less than or equal to 18 bytes in length. Any attempt to
set a cursor name longer than 18 bytes results in truncation of that cursor name to
18 bytes. (No warning is generated.)

540 CLI Guide and Reference

SQLSetCursorName

¹ Since internally generated names begin with SQLCUR or SQL_CUR, the
application must not input a cursor name starting with either SQLCUR or
SQL_CUR in order to avoid conflicts with internal names.

¹ Since a cursor name is considered an identifier in SQL, it must begin with an
English letter (a-z, A-Z) followed by any combination of digits (0-9), English letters
or the underscore character (_).

¹ To permit cursor names containing characters other than those listed above (such
as National Language Set or Double Bytes Character Set characters), the
application must enclose the cursor name in double quotes (").

¹ Unless the input cursor name is enclosed in double quotes, all leading and trailing
blanks from the input cursor name string will be removed.

For efficient processing, applications should not include any leading or trailing spaces in
the CursorName buffer. If the CursorName buffer contains a delimited identifier,
applications should position the first double quote as the first character in the
CursorName buffer.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 153 (Page 1 of 2). SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name. The cursor name specified by the argument CursorName was
invalid. The cursor name either begins with "SQLCUR" or
"SQL_CUR" or violates the cursor naming rules (Must begin with
a-z or A-Z followed by any combination of English letters, digits, or
the '_' character.

The cursor name specified by the argument CursorName already
exists.

The cursor name length is greater than the value returned by
SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN
argument.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. CursorName was a null pointer.

 Chapter 5. Functions 541

SQLSetCursorName

Table 153 (Page 2 of 2). SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. There is an open or positioned cursor on the statement handle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The argument NameLength was less than 0, but not equal to
SQL_NTS.

 Authorization
None.

 Example

542 CLI Guide and Reference

SQLSetCursorName

/* From CLI sample setcurs.c */

/* ... */

SQLCHAR * sqlstmt =

"SELECT name, job FROM staff WHERE job = 'Clerk' FOR UPDATE OF job" ;

/* ... */

/* allocate second statement handle for update statement */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt2) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Set Cursor for the SELECT statement's handle */

rc = SQLSetCursorName(hstmt1, (SQLCHAR *)"JOBCURS", SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

/* bind name to first column in the result set */

rc = SQLBindCol(hstmt1, 1, SQL_C_CHAR, (SQLPOINTER) name.s, 10,

 &name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

/* bind job to second column in the result set */

rc = SQLBindCol(hstmt1, 2, SQL_C_CHAR, (SQLPOINTER) job.s, 6,

 &job.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

printf("Job Change for all clerks\n");

while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS) {

printf("Name: %-9.9s Job: %-5.5s \n", name.s, job.s);

printf("Enter new job or return to continue\n");

 gets((char *)newjob);

if (newjob[0] != '\0') {

 sprintf((char *)updstmt,

"UPDATE staff set job = '%s' where current of JOBCURS",

 newjob);

rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt2, rc) ;

 }

 }

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt1, rc) ;

 References
¹ “SQLGetCursorName - Get Cursor Name” on page 363

 Chapter 5. Functions 543

SQLSetDescField

SQLSetDescField - Set a Single Field of a Descriptor Record

 Purpose

SQLSetDescField() sets the value of a single field of a descriptor record.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLSetDescField (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT FieldIdentifier,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength);

 Function Arguments

Table 154 (Page 1 of 2). SQLSetDescField Arguments

Data Type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record containing the field
that the application seeks to set. Descriptor records
are numbered from 0, with record number 0 being
the bookmark record. The RecNumber argument is
ignored for header fields.

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to
be set. For more information, see FieldIdentifier
Arguments on page 553.

SQLPOINTER ValuePtr input Pointer to a buffer containing the descriptor
information, or a four-byte value. The data type
depends on the value of FieldIdentifier. If ValuePtr is
a four-byte value, either all four of the bytes are
used, or just two of the four are used, depending on
the value of the FieldIdentifier argument.

544 CLI Guide and Reference

SQLSetDescField

Table 154 (Page 2 of 2). SQLSetDescField Arguments

Data Type Argument Use Description

SQLINTEGER BufferLength input If FieldIdentifier is an ODBC-defined field and
ValuePtr points to a character string or a binary
buffer, this argument should be the length of
*ValuePtr. If FieldIdentifier is an ODBC-defined field
and ValuePtr is an integer, BufferLength is ignored.

If FieldIdentifier is a driver-defined field, the
application indicates the nature of the field by setting
the BufferLength argument. BufferLength can have
the following values:

¹ ValuePtr is a pointer to a character string, then
BufferLength is the length of the string or
SQL_NTS.

¹ If ValuePtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength

¹ This places a negative value in BufferLength.

¹ If ValuePtr is a pointer to a value other than a
character string or a binary string, then
BufferLength should have the value
SQL_IS_POINTER.

¹ If ValuePtr contains a fixed-length value, then
BufferLength is either SQL_IS_INTEGER,
SQL_IS_UINTEGER, SQL_IS_SMALLINT, or
SQL_IS_USMALLINT, as appropriate.

 Usage
An application can call SQLSetDescField() to set any descriptor field one at a time. One
call to SQLSetDescField() sets a single field in a single descriptor. This function can be
called to set any field in any descriptor type, provided the field can be set (see the table
later in this section).

Note: If a call to SQLSetDescField() fails, the contents of the descriptor record
identified by the RecNumber argument are undefined.

Other functions can be called to set multiple descriptor fields with a single call of the
function. The SQLSetDescRec() function sets a variety of fields that affect the data type
and buffer bound to a column or parameter (the TYPE, DATETIME_INTERVAL_CODE,
OCTET_LENGTH, PRECISION, SCALE, DATA_PTR, OCTET_LENGTH_PTR, and
INDICATOR_PTR fields) SQLBindCol() or SQLBindParameter() can be used to make a
complete specification for the binding of a column or parameter. These functions set a
specific group of descriptor fields with one function call.

SQLSetDescField() can be called to change the binding buffersby adding an offset to
the binding pointers (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, or

 Chapter 5. Functions 545

SQLSetDescField

SQL_DESC_OCTET_LENGTH_PTR). This changes the binding buffers without calling
SQLBindCol()or SQLBindParameter(). This allows an application to change
SQL_DESC_DATA_PTR without changing other fields, for instance
SQL_DESC_DATA_TYPE.

Descriptor header fields are set by calling SQLSetDescField() with a RecNumber of 0,
and the appropriate FieldIdentifier. Many header fields contain statement attributes, so
may also be set by a call to SQLSetStmtAttr(). This allows applications to set a
statement attribute without first obtaining a descriptor handle. A RecNumber of 0 is also
used to set bookmark fields.

Note: The statement attribute SQL_ATTR_USE_BOOKMARKS should always be set
before calling SQLSetDescField() to set bookmark fields. While this is not
mandatory, it is strongly recommended.

Sequence of Setting Descriptor Fields

When setting descriptor fields by calling SQLSetDescField(), the application must follow
a specific sequence:

1. The application must first set the SQL_DESC_TYPE,
SQL_DESC_CONCISE_TYPE, or SQL_DESC_DATETIME_INTERVAL_CODE
field.

2. After one of these fields has been set, the application can set an attribute of a data
type, and the driver sets data type attribute fields to the appropriate default values
for the data type. Automatic defaulting of type attribute fields ensures that the
descriptor is always ready to use once the application has specified a data type. If
the application explicitly sets a data type attribute, it is overriding the default
attribute.

3. After one of the fields listed in Step 1 has been set, and data type attributes have
been set, the application can set SQL_DESC_DATA_PTR. This prompts a
consistency check of descriptor fields. If the application changes the data type or
attributes after setting the SQL_DESC_DATA_PTR field, then the driver sets
SQL_DESC_DATA_PTR to a null pointer, unbinding the record. This forces the
application to complete the proper steps in sequence, before the descriptor record
is usable.

Initialization of Descriptor Fields

When a descriptor is allocated, the fields in the descriptor can be initialized to a default
value, be initialized without a default value, or be undefined for the type of descriptor.
The following tables indicate the initialization of each field for each type of descriptor,
with “D” indicating that the field is initialized with a default, and “ND” indicating that the
field is initialized without a default. If a number is shown, the default value of the field is
that number. The tables also indicate whether a field is read/write (R/W) or read-only
(R).

The fields of an IRD have a default value only after the statement has been prepared or
executed and the IRD has been populated, not when the statement handle or descriptor

546 CLI Guide and Reference

SQLSetDescField

has been allocated. Until the IRD has been populated, any attempt to gain access to a
field of an IRD will return an error.

Some descriptor fields are defined for one or more, but not all, of the descriptor types
(ARDs and IRDs, and APDs and IPDs). When a field is undefined for a type of
descriptor, it is not needed by any of the functions that use that descriptor. Because a
descriptor is a logical view of data, rather than an actual data structure, these extra
fields have no effect on the defined fields (for more information, see “Using Descriptors”
on page 78).

The fields that can be accessed by SQLGetDescField() cannot necessarily be set by
SQLSetDescField(). Fields that can be set by SQLSetDescField() are listed in the
following tables.

The initialization of header fields is as follows:

Table 155 (Page 1 of 2). Initialization of Header Fields

SQL_DESC_ALLOC_TYPE (SQLSMALLINT)

R/W: ARD: R
 APD: R
 IRD: R
 IPD: R

Default: ARD: SQL_DESC_ALLOC_AUTO
for implicit or
SQL_DESC_ALLOC_USER for
explicit

 APD: SQL_DESC_ALLOC_AUTO
for implicit or
SQL_DESC_ALLOC_USER for
explicit

 IRD: SQL_DESC_ALLOC_AUTO
 IPD: SQL_DESC_ALLOC_AUTO

SQL_DESC_ARRAY_SIZE (SQLUINTEGER)

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: a

 APD: a

 IRD: Unused
 IPD: Unused

SQL_DESC_ARRAY_STATUS_PTR (SQLUSMALLINT *)

R/W: ARD: R/W
 APD: R/W
 IRD: R/W
 IPD: R/W

Default: ARD: Null ptr
APD: Null ptr
IRD: Null ptr
IPD: Null ptr

SQL_DESC_BIND_OFFSET_PTR (SQLINTEGER *)

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: Null ptr
APD: Null ptr

 IRD: Unused
 IPD: Unused

SQL_DESC_BIND_TYPE (SQLINTEGER)

 Chapter 5. Functions 547

SQLSetDescField

a These fields are defined only when the IPD is automatically populated by
DB2 CLI. If the fields are not automatically populated then they are
undefined. If an application attempts to set these fields, SQLSTATE HY091
(Descriptor type out of range.) will be returned.

The initialization of record fields is as follows:

Table 155 (Page 2 of 2). Initialization of Header Fields

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: SQL_BIND_BY_COLUMN
 APD: SQL_BIND_BY_COLUMN
 IRD: Unused
 IPD: Unused

SQL_DESC_COUNT (SQLSMALLINT)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: 0
 APD: 0
 IRD: D
 IPD: 0

SQL_DESC_ROWS_PROCESSED_PTR (SQLUINTEGER *)

R/W: ARD: Unused
 APD: Unused
 IRD: R/W
 IPD: R/W

Default: ARD: Unused
 APD: Unused

IRD: Null Ptr
IPD: Null Ptr

Table 156 (Page 1 of 6). Initialization of Record Fields

SQL_DESC_AUTO_UNIQUE_VALUE (SQLINTEGER)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_BASE_COLUMN_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_BASE_TABLE_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_CASE_SENSITIVE (SQLINTEGER)

548 CLI Guide and Reference

SQLSetDescField

Table 156 (Page 2 of 6). Initialization of Record Fields

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: Unused
 APD: Unused
 IRD: D

IPD: D a

SQL_DESC_CATALOG_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_CONCISE_TYPE (SQLSMALLINT)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: SQL_C_DEFAULT
 APD: SQL_C_DEFAULT
 IRD: D
 IPD: ND

SQL_DESC_DATA_PTR (SQLPOINTER)

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: Null ptr
APD: Null ptr

 IRD: Unused
IPD: Unused b

SQL_DESC_DATETIME_INTERVAL_CODE (SQLSMALLINT)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_DATETIME_INTERVAL_PRECISION (SQLINTEGER)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_DISPLAY_SIZE (SQLINTEGER)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_FIXED_PREC_SCALE (SQLSMALLINT)

 Chapter 5. Functions 549

SQLSetDescField

Table 156 (Page 3 of 6). Initialization of Record Fields

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: Unused
 APD: Unused
 IRD: D

IPD: D a

SQL_DESC_INDICATOR_PTR (SQLINTEGER *)

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: Null ptr
APD: Null ptr

 IRD: Unused
 IPD: Unused

SQL_DESC_LABEL (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_LENGTH (SQLUINTEGER)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_LITERAL_PREFIX (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_LITERAL_SUFFIX (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_LOCAL_TYPE_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: Unused
 APD: Unused
 IRD: D

IPD: D a

SQL_DESC_NAME (SQLCHAR *)

550 CLI Guide and Reference

SQLSetDescField

Table 156 (Page 4 of 6). Initialization of Record Fields

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_NULLABLE (SQLSMALLINT)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: ND
 APD: ND
 IRD: N
 IPD: ND

SQL_DESC_NUM_PREC_RADIX (SQLINTEGER)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_OCTET_LENGTH (SQLINTEGER)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_OCTET_LENGTH_PTR (SQLINTEGER *)

R/W: ARD: R/W
 APD: R/W
 IRD: Unused
 IPD: Unused

Default: ARD: Null ptr
APD: Null ptr

 IRD: Unused
 IPD: Unused

SQL_DESC_PARAMETER_TYPE (SQLSMALLINT)

R/W: ARD: Unused
 APD: Unused
 IPD: Unused
 IRD: R/W

Default: ARD: Unused
 APD: Unused
 IPD: Unused
 IRD: D=SQL_PARAM_INPUT

SQL_DESC_PRECISION (SQLSMALLINT)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_SCALE (SQLSMALLINT)

 Chapter 5. Functions 551

SQLSetDescField

Table 156 (Page 5 of 6). Initialization of Record Fields

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_SCHEMA_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_SEARCHABLE (SQLSMALLINT)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_TABLE_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

SQL_DESC_TYPE (SQLSMALLINT)

R/W: ARD: R/W
 APD: R/W
 IRD: R
 IPD: R/W

Default: ARD: SQL_C_DEFAULT
 APD: SQL_C_DEFAULT
 IRD: D
 IPD: ND

SQL_DESC_TYPE_NAME (SQLCHAR *)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: Unused
 APD: Unused
 IRD: D

IPD: D a

SQL_DESC_UNNAMED (SQLSMALLINT)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R/W

Default: ARD: ND
 APD: ND
 IRD: D
 IPD: ND

SQL_DESC_UNSIGNED (SQLSMALLINT)

552 CLI Guide and Reference

SQLSetDescField

a These fields are defined only when the IPD is automatically populated by
DB2 CLI. If the fields are not automatically populated then they are
undefined. If an application attempts to set these fields, SQLSTATE HY091
(Descriptor type out of range.) will be returned.

b The SQL_DESC_DATA_PTR field in the IPD can be set to force a
consistency check. In a subsequent call to SQLGetDescField() or
SQLGetDescRec(), DB2 CLI is not required to return the value that
SQL_DESC_DATA_PTR was set to.

FieldIdentifier Argument

The FieldIdentifier argument indicates the descriptor field to be set. A descriptor
contains the descriptor header, consisting of the header fields described in the next
section, and zero or more descriptor records, consisting of the record fields described in
the following section.

Header Fields

Each descriptor has a header consisting of the following fields.

SQL_DESC_ALLOC_TYPE [All] This read-only SQLSMALLINT header field specifies
whether the descriptor was allocated automatically by DB2 CLI or explicitly by the
application. The application can obtain, but not modify, this field. The field is set to
SQL_DESC_ALLOC_AUTO if the descriptor was automatically allocated. It is set to
SQL_DESC_ALLOC_USER if the descriptor was explicitly allocated by the application.

SQL_DESC_ARRAY_SIZE [Application descriptors] In ARDs, this SQLUINTEGER
header field specifies the number of rows in the rowset. This is the number of rows to
be returned by a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos(). The default
value is 1. The field is also set through the SQL_ATTR_ROW_ARRAY_SIZE statement
attribute.

In APDs, this SQLUINTEGER header field specifies the number of values for each
parameter.

Table 156 (Page 6 of 6). Initialization of Record Fields

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: R

Default: ARD: Unused
 APD: Unused
 IRD: D

IPD: D a

SQL_DESC_UPDATABLE (SQLSMALLINT)

R/W: ARD: Unused
 APD: Unused
 IRD: R
 IPD: Unused

Default: ARD: Unused
 APD: Unused
 IRD: D
 IPD: Unused

 Chapter 5. Functions 553

SQLSetDescField

The default value of this field is 1. If SQL_DESC_ARRAY_SIZE is greater than 1,
SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR of the APD or ARD point to arrays. The cardinality
of each array is equal to the value of this field.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROWSET_SIZE attribute. This field in the APD can also be set by calling
SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute.

SQL_DESC_ARRAY_STATUS_PTR [All] For each descriptor type, this
SQLUSMALLINT * header field points to an array of SQLUSMALLINT values. These
arrays are named as follows:

¹ row status array (IRD)
¹ parameter status array (IPD)
¹ row operation array (ARD)
¹ parameter operation array (APD)

In the IRD, this header field points to a row status array containing status values after a
call to SQLFetch(), SQLFetchScroll(), or SQLSetPos(). The array has as many
elements as there are rows in the rowset. The application must allocate an array of
SQLUSMALLINTs and set this field to point to the array. The field is set to a null
pointer by default. DB2 CLI will populate the array, unless the
SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in which case no
status values are generated and the array is not populated.

Note: Behavior is undefined if the application sets the elements of the row status array
pointed to by the SQL_DESC_ARRAY_STATUS_PTR field of the IRD. The
array is initially populated by a call to SQLFetch(), SQLFetchScroll(), or
SQLSetPos(). If the call did not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the array pointed to by this field
are undefined.

The elements in the array can contain the following values:

¹ SQL_ROW_SUCCESS: The row was successfully fetched and has not changed
since it was last fetched.

¹ SQL_ROW_SUCCESS_WITH_INFO: The row was successfully fetched and has
not changed since it was last fetched. However, a warning was returned about the
row.

¹ SQL_ROW_ERROR: An error occurred while fetching the row.

¹ SQL_ROW_UPDATED: The row was successfully fetched and has been updated
since it was last fetched. If the row is fetched again, its status is
SQL_ROW_SUCCESS.

¹ SQL_ROW_DELETED: The row has been deleted since it was last fetched.

¹ SQL_ROW_ADDED: The row was inserted by SQLSetPos(). If the row is fetched
again, its status is SQL_ROW_SUCCESS.

554 CLI Guide and Reference

SQLSetDescField

¹ SQL_ROW_NOROW: The rowset overlapped the end of the result set and no row
was returned that corresponded to this element of the row status array.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_STATUS_PTR attribute.

In the IPD, this header field points to a parameter status array containing status
information for each set of parameter values after a call to SQLExecute() or
SQLExecDirect(). If the call to SQLExecute() or SQLExecDirect() did not return
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the array pointed to
by this field are undefined. The application must allocate an array of SQLUSMALLINTs
and set this field to point to the array. The driver will populate the array, unless the
SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in which case no
status values are generated and the array is not populated.

The elements in the array can contain the following values:

¹ SQL_PARAM_SUCCESS: The SQL statement was successfully executed for this
set of parameters.

¹ SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was successfully
executed for this set of parameters; however, warning information is available in
the diagnostics data structure.

¹ SQL_PARAM_ERROR: An error occurred in processing this set of parameters.
Additional error information is available in the diagnostics data structure.

¹ SQL_PARAM_UNUSED: This parameter set was unused, possibly due to the fact
that some previous parameter set caused an error that aborted further processing.

¹ SQL_PARAM_DIAG_UNAVAILABLE: Diagnostic information is not available. An
example of this is when DB2 CLI treats arrays of parameters as a monolithic unit
and so does not generate this level of error information.

This field in the APD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_PARAM_STATUS_PTR attribute.

In the ARD, this header field points to a row operation array of values that can be set
by the application to indicate whether this row is to be ignored for SQLSetPos()
operations.

The elements in the array can contain the following values:

¹ SQL_ROW_PROCEED: The row is included in the bulk operation using
SQLSetPos(). (This setting does not guarantee that the operation will occur on the
row. If the row has the status SQL_ROW_ERROR in the IRD row status array,
DB2 CLI may not be able to perform the operation in the row.)

¹ SQL_ROW_IGNORE: The row is excluded from the bulk operation using
SQLSetPos().

If no elements of the array are set, all rows are included in the bulk operation. If the
value in the SQL_DESC_ARRAY_STATUS_PTR field of the ARD is a null pointer, all

 Chapter 5. Functions 555

SQLSetDescField

rows are included in the bulk operation; the interpretation is the same as if the pointer
pointed to a valid array and all elements of the array were SQL_ROW_PROCEED. If an
element in the array is set to SQL_ROW_IGNORE, the value in the row status array for
the ignored row is not changed.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_OPERATION_PTR attribute.

In the APD, this header field points to a parameter operation array of values that can
be set by the application to indicate whether this set of parameters is to be ignored
when SQLExecute() or SQLExecDirect() is called. The elements in the array can
contain the following values:

¹ SQL_PARAM_PROCEED: The set of parameters is included in the SQLExecute()

or SQLExecDirect() call.

¹ SQL_PARAM_IGNORE: The set of parameters is excluded from the SQLExecute()

or SQLExecDirect() call.

If no elements of the array are set, all sets of parameters in the array are used in the
SQLExecute() or SQLExecDirect() calls. If the value in the
SQL_DESC_ARRAY_STATUS_PTR field of the APD is a null pointer, all sets of
parameters are used; the interpretation is the same as if the pointer pointed to a valid
array and all elements of the array were SQL_PARAM_PROCEED.

This field in the APD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_PARAM_OPERATION_PTR attribute.

SQL_DESC_BIND_OFFSET_PTR [Application descriptors] This SQLINTEGER *
header field points to the bind offset. It is set to a null pointer by default. If this field is
not a null pointer, DB2 CLI dereferences the pointer and adds the dereferenced value
to each of the deferred fields that has a non-null value in the descriptor record
(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR) at fetch time, and uses the new pointer values
when binding.

The bind offset is always added directly to the values in the SQL_DESC_DATA_PTR,
SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR fields. If the
offset is changed to a different value, the new value is still added directly to the value in
each descriptor field. The new offset is not added to the field value plus any earlier
offset.

This field is a deferred field: it is not used at the time it is set, but is used at a later time
by DB2 CLI to retrieve data.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_BIND_OFFSET_PTR attribute. This field in the ARD can also be
set by calling SQLSetStmtAttr() with the SQL_ATTR_PARAM_BIND_OFFSET_PTR
attribute.

556 CLI Guide and Reference

SQLSetDescField

See the description of row-wise binding in the “SQLFetchScroll” and
“SQLBindParameter” sections.

SQL_DESC_BIND_TYPE [Application descriptors] This SQLINTEGER header field
sets the binding orientation to be used for either binding columns or parameters.

In ARDs, this field specifies the binding orientation when SQLFetchScroll() is called on
the associated statement handle.

To select column-wise binding for columns, this field is set to SQL_BIND_BY_COLUMN
(the default).

This field in the ARD can also be set by calling SQLSetStmtAttr() with
SQL_ATTR_ROW_BIND_TYPE Attribute.

In APDs, this field specifies the binding orientation to be used for dynamic parameters.

To select column-wise binding for parameters, this field is set to
SQL_BIND_BY_COLUMN (the default).

This field in the APD can also be set by calling SQLSetStmtAttr() with
SQL_ATTR_PARAM_BIND_TYPE Attribute.

SQL_DESC_COUNT [All] This SQLSMALLINT header field specifies the one-based
index of the highest-numbered record that contains data. When DB2 CLI sets the data
structure for the descriptor, it must also set the COUNT field to show how many records
are significant. When an application allocates an instance of this data structure, it does
not have to specify how many records to reserve room for. As the application specifies
the contents of the records, DB2 CLI takes any required action to ensure that the
descriptor handle refers to a data structure of the adequate size.

SQL_DESC_COUNT is not a count of all data columns that are bound (if the field is in
an ARD), or all parameters that are bound (in an APD), but the number of the
highest-numbered record. If a column or a parameter with a number that is less than
the number of the highest-numbered column is unbound (by calling SQLBindCol() with
the Target ValuePtr argument set to a null pointer, or SQLBindParameter() with the
Parameter ValuePtr argument set to a null pointer), SQL_DESC_COUNT is not
changed. If additional columns or parameters are bound with numbers greater than the
highest-numbered record that contains data, DB2 CLI automatically increases the value
in the SQL_DSEC_COUNT field. If all columns or parameters are unbound by calling
SQLFreeStmt() with the SQL_UNBIND option, SQL_DESC_COUNT is set to 0.

The value in SQL_DESC_COUNT can be set explicitly by an application by calling
SQLSetDescField(). If the value in SQL_DESC_COUNT is explicitly decreased, all
records with numbers greater than the new value in SQL_DESC_COUNT are removed,
unbinding the columns. If the value in SQL_DESC_COUNT is explicitly set to 0, and the
field is in an APD, all parameter columns are unbound. If the value in
SQL_DESC_COUNT is explicitly set to 0, and the field is in an ARD, all data buffers
except a bound bookmark column are released.

 Chapter 5. Functions 557

SQLSetDescField

The record count in this field of an ARD does not include a bound bookmark column.

SQL_DESC_ROWS_PROCESSED_PTR [Implementation descriptors] In an IRD, this
SQLUINTEGER * header field points to a buffer containing the number of rows fetched
after a call to SQLFetch() or SQLFetchScroll(), or the number of rows affected in a
bulk operation performed by a call to SQLSetPos().

In an IPD, this SQLUINTEGER * header field points to a buffer containing the number
of the row as each row of parameters is processed. No row number will be returned if
this is a null pointer.

SQL_DESC_ROWS_PROCESSED_PTR is valid only after SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO has been returned after a call to SQLFetch() or
SQLFetchScroll()(for an IRD field) or SQLExecute() or SQLExecDirect() (for an IPD
field). If the return code is not one of the above, the location pointed to by
SQL_DESC_ROWS_PROCESSED_PTR is undefined. If the call that fills in the buffer
pointed to by this field did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO,
the contents of the buffer are undefined, unless it returns SQL_NO_DATA, in which
case the value in the buffer is set to 0.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROWS_FETCHED_PTR attribute. This field in the ARD can also be set by
calling SQLSetStmtAttr() with the SQL_ATTR_PARAMS_PROCESSED_PTR attribute.

The buffer pointed to by this field is allocated by the application. It is a deferred output
buffer that is set by DB2 CLI. It is set to a null pointer by default.

Record Fields

Each descriptor contains one or more records consisting of fields that define either
column data or dynamic parameters, depending on the type of descriptor. Each record
is a complete definition of a single column or parameter.

SQL_DESC_AUTO_UNIQUE_VALUE [IRDs] This read-only SQLINTEGER record field
contains SQL_TRUE if the column is an auto-incrementing column, or SQL_FALSE if
the column is not an auto-incrementing column. This field is read-only, but the
underlying auto-incrementing column is not necessarily read-only.

SQL_DESC_BASE_COLUMN_NAME [IRDs] This read-only SQLCHAR record field
contains the base column name for the result set column. If a base column name does
not exist (as in the case of columns that are expressions), then this variable contains
an empty string.

SQL_DESC_BASE_TABLE_NAME [IRDs] This read-only SQLCHAR record field
contains the base table name for the result set column. If a base table name cannot be
defined or is not applicable, then this variable contains an empty string.

SQL_DESC_CASE_SENSITIVE [Implementation descriptors] This read-only
SQLINTEGER record field contains SQL_TRUE if the column or parameter is treated

558 CLI Guide and Reference

SQLSetDescField

as case-sensitive for collations and comparisons, or SQL_FALSE if the column is not
treated as case-sensitive for collations and comparisons, or if it is a non-character
column.

SQL_DESC_CATALOG_NAME [IRDs] This read-only SQLCHAR record field contains
the catalog or qualifier name for the base table that contains the column. The return
value is driver-dependent if the column is an expression or if the column is part of a
view. If the data source does not support catalogs (or qualifiers) or the catalog or
qualifier name cannot be determined, this variable contains an empty string.

SQL_DESC_CONCISE_TYPE [All] This SQLSMALLINT header field specifies the
concise data type for all data types, including the datetime and interval data types.

The values in the SQL_DESC_CONCISE_TYPE and SQL_DESC_TYPE fields are
interdependent. Each time one of the fields is set, the other must also be set.
SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or
SQLBindParameter(), or SQLSetDescField(). SQL_DESC_TYPE can be set by a call to
SQLSetDescField() or SQLSetDescRec().

If SQL_DESC_CONCISE_TYPE is set to a concise data type other than an interval or
datetime data type, the SQL_DESC_TYPE field is set to the same value, and the
SQL_DESC_DATETIME_INTERVAL_CODE field is set to 0.

If SQL_DESC_CONCISE_TYPE is set to the concise datetime or interval data type, the
SQL_DESC_TYPE field is set to the corresponding verbose type (SQL_DATETIME or
SQL_INTERVAL), and the SQL_DESC_DATETIME_INTERVAL_CODE field is set to
the appropriate subcode.

SQL_DESC_DATA_PTR [Application descriptors and IPDs] This SQLPOINTER
record field points to a variable that will contain the parameter value (for APDs) or the
column value (for ARDs). The descriptor record (and either the column or parameter
that it represents) is unbound if TargetValuePtr in a call to either SQLBindCol() or
SQLBindParameter() is a null pointer, or the SQL_DESC_DATA_PTR field in a call to
SQLSetDescField() or SQLSetDescRec() is set to a null pointer. Other fields are not
affected if the SQL_DESC_DATA_PTR field is set to a null pointer. If the call to
SQLFetch() or SQLFetchScroll()that fills in the buffer pointed to by this field did not
return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the buffer are
undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later time
by DB2 CLI to retrieve data.

Whenever the SQL_DESC_DATA_PTR field is set, DB2 CLI checks that the value in
the SQL_DESC_TYPE field contains a the valid DB2 CLI or ODBC data types, and that
all other fields affecting the data types are consistent. See Consistency Checks on
page 565.

 Chapter 5. Functions 559

SQLSetDescField

SQL_DESC_DATETIME_INTERVAL_CODE [All] This SQLSMALLINT record field
contains the subcode for the specific datetime data type when the SQL_DESC_TYPE
field is SQL_DATETIME. This is true for both SQL and C data types.

This field can be set to the following for datetime data types:

This field can also be set to other values (not listed here) for interval data types, which
DB2 CLI does not support.

SQL_DESC_DATETIME_INTERVAL_PRECISION [All] This SQLINTEGER record field
contains the interval leading precision if the TYPE field is SQL_INTERVAL (which DB2
CLI does not support).

SQL_DESC_DISPLAY_SIZE [IRDs] This read-only SQLINTEGER record field contains
the maximum number of characters required to display the data from the column. The
value in this field is not the same as the descriptor field LENGTH because the LENGTH
field is undefined for all numeric types.

SQL_DESC_FIXED_PREC_SCALE [Implementation descriptors] This read-only
SQLSMALLINT record field is set to SQL_TRUE if the column is an exact numeric
column and has a fixed precision and non-zero scale (such as the MONEY data type),
or SQL_FALSE if the column is not an exact numeric column with a fixed precision and
scale.

SQL_DESC_INDICATOR_PTR [Application descriptors] In ARDs, this SQLINTEGER
* record field points to the indicator variable. This variable contains SQL_NULL_DATA if
the column value is a NULL. For APDs, the indicator variable is set to
SQL_NULL_DATA to specify NULL dynamic arguments. Otherwise, the variable is zero
(unless the values in SQL_DESC_INDICATOR_PTR and
SQL_DESC_OCTET_LENGTH_PTR are the same pointer).

If the SQL_DESC_INDICATOR_PTR field in an ARD is a null pointer, DB2 CLI is
prevented from returning information about whether the column is NULL or not. If the
column is NULL and INDICATOR_PTR is a null pointer, SQLSTATE 22002, “Indicator
variable required but not supplied,” is returned when DB2 CLI attempts to populate the
buffer after a call to SQLFetch() or SQLFetchScroll(). If the call to SQLFetch() or
SQLFetchScroll() did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the
contents of the buffer are undefined.

The SQL_DESC_INDICATOR_PTR field determines whether the field pointed to by
SQL_DESC_OCTET_LENGTH_PTR is set. If the data value for a column is NULL, DB2

Table 157. Datetime Subcodes

Datetime types DATETIME_INTERVAL_CODE

SQL_TYPE_DATE/SQL_C_TYPE_DATE SQL_CODE_DATE

SQL_TYPE_TIME/SQL_C_TYPE_TIME SQL_CODE_TIME

SQL_TYPE_TIMESTAMP/SQL_C_TYPE_TIMESTAMP SQL_CODE_TIMESTAMP

560 CLI Guide and Reference

SQLSetDescField

CLI sets the indicator variable to SQL_NULL_DATA. The field pointed to by
SQL_DESC_OCTET_LENGTH_PTR is then not set. If a NULL value is not encountered
during the fetch, the buffer pointed to by SQL_DESC_INDICATOR_PTR is set to zero,
and the buffer pointed to by SQL_DESC_OCTET_LENGTH_PTR is set to the length of
the data.

If the INDICATOR_PTR field in an APD is a null pointer, the application cannot use this
descriptor record to specify NULL arguments.

This field is a deferred field: it is not used at the time it is set, but is used at a later time
by DB2 CLI to store data.

SQL_DESC_LABEL [IRDs] This read-only SQLCHAR record field contains the column
label or title. If the column does not have a label, this variable contains the column
name. If the column is unnamed and unlabeled, this variable contains an empty string.

SQL_DESC_LENGTH [All] This SQLUINTEGER record field is either the maximum or
actual character length of a character string or a binary data type. It is the maximum
character length for a fixed-length data type, or the actual character length for a
variable-length data type. Its value always excludes the null termination character that
ends the character string. Note that this field is a count of characters, not a count of
bytes.

The value in this field may be different from the value for length defined in DB2 CLI
Version 2.

SQL_DESC_LITERAL_PREFIX [IRDs] This read-only SQLCHAR record field contains
the character or characters that DB2 CLI recognizes as a prefix for a literal of this data
type. This variable contains an empty string for a data type for which a literal prefix is
not applicable.

SQL_DESC_LITERAL_SUFFIX [IRDs] This read-only SQLCHAR record field contains
the character or characters that DB2 CLI recognizes as a suffix for a literal of this data
type. This variable contains an empty string for a data type for which a literal suffix is
not applicable.

SQL_DESC_LOCAL_TYPE_NAME [Implementation descriptors] This read-only
SQLCHAR record field contains any localized (native language) name for the data type
that may be different from the regular name of the data type. If there is no localized
name, then an empty string is returned. This field is for display purposes only.

SQL_DESC_NAME [Implementation descriptors] This SQLCHAR record field in a
row descriptor contains the column alias, if it applies. If the column alias does not
apply, the column name is returned. In either case, the UNNAMED field is set to
SQL_NAMED. If there is no column name or a column alias, an empty string is
returned in the NAME field and the UNNAMED field is set to SQL_UNNAMED.

An application can set the SQL_DESC_NAME field of an IPD to a parameter name or
alias to specify stored procedure parameters by name. (The SQL_DESC_NAME field

 Chapter 5. Functions 561

SQLSetDescField

of an IRD is a read-only field; SQLSTATE HY091 (Invalid descriptor field identifier) will
be returned if an application attempts to set it.

In IPDs, this field is undefined if dynamic parameters are not supported. If named
parameters are supported and the version of DB2 CLI is capable of describing
parameters, then the parameter name is returned in this field.

SQL_DESC_NULLABLE [Implementation descriptors] In IRDs, this read-only
SQLSMALLINT record field is SQL_NULLABLE if the column can have NULL values;
SQL_NO_NULLS if the column does not have NULL values; or
SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts NULL
values. This field pertains to the result set column, not the base column.

In IPDs, this field is always set to SQL_NULLABLE, since dynamic parameters are
always nullable, and cannot be set by an application.

SQL_DESC_NUM_PREC_RADIX [All] This SQLINTEGER field contains a value of 2 if
the data type in the SQL_DESC_TYPE field is an approximate numeric data type,
because the SQL_DESC_PRECISION field contains the number of bits. This field
contains a value of 10 if the data type in the SQL_DESC_TYPE field is an exact
numeric data type, because the SQL_DESC_PRECISION field contains the number of
decimal digits. This field is set to 0 for all non-numeric data types.

SQL_DESC_OCTET_LENGTH [All] This SQLINTEGER record field contains the
length, in bytes, of a character string or binary data type. For fixed-length character
types, this is the actual length in bytes. For variable-length character or binary types,
this is the maximum length in bytes. This value always excludes space for the null
termination character for implementation descriptors and always includes space for the
null termination character for application descriptors. For application data, this field
contains the size of the buffer. For APDs, this field is defined only for output or
input/output parameters.

SQL_DESC_OCTET_LENGTH_PTR [Application descriptors] This SQLINTEGER *
record field points to a variable that will contain the total length in bytes of a dynamic
argument (for parameter descriptors) or of a bound column value (for row descriptors).

For an APD, this value is ignored for all arguments except character string and binary;
if this field points to SQL_NTS, the dynamic argument must be null-terminated. To
indicate that a bound parameter will be a data-at-execute parameter, an application
sets this field in the appropriate record of the APD to a variable that, at execute time,
will contain the value SQL_DATA_AT_EXEC. If there is more than one such field,
SQL_DESC_DATA_PTR can be set to a value uniquely identifying the parameter to
help the application determine which parameter is being requested.

If the OCTET_LENGTH_PTR field of an ARD is a null pointer, DB2 CLI does not return
length information for the column. If the SQL_DESC_OCTET_LENGTH_PTR field of an
APD is a null pointer, DB2 CLI assumes that character strings and binary values are
null terminated. (Binary values should not be null terminated, but should be given a
length, in order to avoid truncation.)

562 CLI Guide and Reference

SQLSetDescField

If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by this
field did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of
the buffer are undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later time
by DB2 CLI to buffer data.

SQL_DESC_PARAMETER_TYPE [IPDs] This SQLSMALLINT record field is set to
SQL_PARAM_INPUT for an input parameter, SQL_PARAM_INPUT_OUTPUT for an
input/output parameter, or SQL_PARAM_OUTPUT for an output parameter. Set to
SQL_PARAM_INPUT by default.

For an IPD, the field is set to SQL_PARAM_INPUT by default if the IPD is not
automatically populated by DB2 CLI (the SQL_ATTR_ENABLE_AUTO_IPD statement
attribute is SQL_FALSE). An application should set this field in the IPD for parameters
that are not input parameters.

SQL_DESC_PRECISION [All] This SQLSMALLINT record field contains the number of
digits for an exact numeric type, the number of bits in the mantissa (binary precision)
for an approximate numeric type, or the numbers of digits in the fractional seconds
component for the SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, or
SQL_INTERVAL_SECOND data type. This field is undefined for all other data types.

The value in this field may be different from the value for precision defined in DB2 CLI
Version 2.

SQL_DESC_SCALE [All] This SQLSMALLINT record field contains the defined scale
for DECIMAL and NUMERIC data types. The field is undefined for all other data types.

The value in this field may be different from the value for scale defined in DB2 CLI
Version 2. For more information, see Appendix D, “Data Types.”

SQL_DESC_SCHEMA_NAME [IRDs] This read-only SQLCHAR record field contains
the schema name of the base table that contains the column. For many DBMS's, this is
the owner name. If the data source does not support schemas (or owners) or the
schema name cannot be determined, this variable contains an empty string.

SQL_DESC_SEARCHABLE [IRDs] This read-only SQLSMALLINT record field is set to
one of the following values:

¹ SQL_PRED_NONE if the column cannot be used in a WHERE clause. (This is the
same as the SQL_UNSEARCEABLE value in DB2 CLI Version 2.)

¹ SQL_PRED_CHAR if the column can be used in a WHERE clause, but only with
the LIKE predicate. (This is the same as the SQL_LIKE_ONLY value in DB2
Version 2.)

¹ SQL_PRED_BASIC if the column can be used in a WHERE clause with all the
comparison operators except LIKE. (This is the same as the SQL_EXCEPT_LIKE
value in DB2 CLI Version 2.)

 Chapter 5. Functions 563

SQLSetDescField

¹ SQL_PRED_SEARCHABLE if the column can be used in a WHERE clause with
any comparison operator.

SQL_DESC_TABLE_NAME [IRDs] This read-only SQLCHAR record field contains the
name of the base table that contains this column.

SQL_DESC_TYPE [All] This SQLSMALLINT record field specifies the concise SQL or
C data type for all data types except datetime and interval data types. For the datetime
and interval data types, this field specifies the verbose data type, i.e., SQL_DATETIME
or SQL_INTERVAL.

Whenever this field contains SQL_DATETIME or SQL_INTERVAL, the
SQL_DESC_DATETIME_INTERVAL_CODE field must contain the appropriate subcode
for the concise type. For datetime data types, SQL_DESC_TYPE contains
SQL_DATETIME, and the SQL_DESC_DATETIME_INTERVAL_CODE field contains a
subcode for the specific datetime data type. For interval data types, SQL_DESC_TYPE
contains SQL_INTERVAL, and the SQL_DESC_DATETIME_INTERVAL_CODE field
contains a subcode for the specific interval data type.

The values in the SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields are
interdependent. Each time one of the fields is set, the other must also be set.
SQL_DESC_TYPE can be set by a call to SQLSetDescField() or SQLSetDescRec().
SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or
SQLBindParameter(), or SQLSetDescField().

If SQL_DESC_TYPE is set to a concise data type other than an interval or datetime
data type, the SQL_DESC_CONCISE_TYPE field is set to the same value, and the
SQL_DESC_DATETIME_INTERVAL_CODE field is set to 0.

If SQL_DESC_TYPE is set to the verbose datetime or interval data type
(SQL_DATETIME or SQL_INTERVAL), and the
SQL_DESC_DATETIME_INTERVAL_CODE field is set to the appropriate subcode, the
SQL_DESC_CONCISE TYPE field is set to the corresponding concise type. Trying to
set SQL_DESC_TYPE to one of the concise datetime or interval types will return
SQLSTATE HY021 (Inconsistent descriptor information).

When the SQL_DESC_TYPE field is set by a call to SQLSetDescField(), the following
fields are set to the following default values. The values of the remaining fields of the
same record are undefined:

Table 158 (Page 1 of 2). Default Values

SQL_DESC_TYPE Other fields Implicitly Set

SQL_CHAR,
SQL_VARCHAR

SQL_DESC_LENGTH is set to 1. SQL_DESC_PRECISION is set to 0.

SQL_DECIMAL,
SQL_NUMERIC

SQL_DESC_SCALE is set to 0. SQL_DESC_PRECISION is set to the
precision for the respective data type.

SQL_FLOAT SQL_DESC_PRECISION is set to the default precision for
SQL_FLOAT.

564 CLI Guide and Reference

SQLSetDescField

When an application calls SQLSetDescField() to set fields of a descriptor, rather than
calling SQLSetDescRec(), the application must first declare the data type. If the values
implicitly set are unacceptable, the application can then call SQLSetDescField() to set
the unacceptable value explicitly.

SQL_DESC_TYPE_NAME [Implementation descriptors] This read-only SQLCHAR
record field contains the data-source-dependent type name (for example, “CHAR”,
“VARCHAR”, and so on). If the data type name is unknown, this variable contains an
empty string.

SQL_DESC_UNNAMED [Implementation descriptors] This SQLSMALLINT record
field in a row descriptor is set to either SQL_NAMED or SQL_UNNAMED. If the NAME
field contains a column alias, or if the column alias does not apply, the UNNAMED field
is set to SQL_NAMED. If there is no column name or a column alias, the UNNAMED
field is set to SQL_UNNAMED.

An application can set the SQL_DESC_UNNAMED field of an IPD to SQL_UNNAMED.
SQLSTATE HY091 (Invalid descriptor field identifier) is returned if an application
attempts to set the SQL_DESC_UNNAMED field of an IPD to SQL_NAMED. The
SQL_DESC_UNNAMED field of an IRD is read-only; SQLSTATE HY091 (Invalid
descriptor field identifier) will be returned if an application attempts to set it.

SQL_DESC_UNSIGNED [Implementation descriptors] This read-only SQLSMALLINT
record field is set to SQL_TRUE if the column type is unsigned or non-numeric, or
SQL_FALSE if the column type is signed.

SQL_DESC_UPDATABLE [IRDs] This read-only SQLSMALLINT record field is set to
one of the following values:

¹ SQL_ATTR_READ_ONLY if the result set column is read-only.
¹ SQL_ATTR_WRITE if the result set column is read-write.
¹ SQL_ATTR_READWRITE_UNKNOWN if it is not known whether the result set

column is updatable or not.

SQL_DESC_UPDATABLE describes the updatability of the column in the result set, not
the column in the base table. The updatability of the column in the base table on which
this result set column is based may be different than the value in this field. Whether a
column is updatable can be based on the data type, user privileges, and the definition
of the result set itself. If it is unclear whether a column is updatable,
SQL_UPDT_READWRITE_UNKNOWN should be returned.

Consistency Checks

Table 158 (Page 2 of 2). Default Values

SQL_DESC_TYPE Other fields Implicitly Set

SQL_DATETIME This datatype is not supported by DB2 CLI.

SQL_INTERVAL This datatype is not supported by DB2 CLI.

 Chapter 5. Functions 565

SQLSetDescField

A consistency check is performed by DB2 CLI automatically whenever an application
passes in a value for the SQL_DESC_DATA_PTR field of the ARD, APD, or IPD. If any
of the fields is inconsistent with other fields, SQLSetDescField() will return SQLSTATE
HY021, “Inconsistent descriptor information.” For more information see
SQLSetDescRec(), Consistency Checks on page 569.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 159 (Page 1 of 2). SQLSetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr (if
ValuePtr was a pointer) or the value in ValuePtr (if ValuePtr was a
four-byte value), or *ValuePtr was invalid because of SQL
constraints or requirements, so DB2 CLI substituted a similar
value. (Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The FieldIdentifier argument was a header field, and the
RecNumber argument was not 0.

The RecNumber argument was 0 and the DescriptorHandle was
an IPD.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. Given the specified FieldIdentifier value, an invalid value (such as
a null pointer) was specified in *ValuePtr. (DB2 CLI returns this
SQLSTATE only for descriptor fields that accept a discrete set of
values. For descriptor fields for which the ValuePtr argument is a
pointer, DB2 CLI must verify the value specified in *ValuePtr.)

566 CLI Guide and Reference

SQLSetDescField

Table 159 (Page 2 of 2). SQLSetDescField SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle with which the DescriptorHandle was associated
and returned SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters or columns.

HY016 Cannot modify an
implementation row
descriptor.

The DescriptorHandle argument was associated with an IRD, and
the FieldIdentifier argument was not
SQL_DESC_ARRAY_STATUS_PTR.

HY021 Inconsistent descriptor
information.

The TYPE field, or any other field associated with the TYPE field
in the descriptor, was not valid or consistent. The TYPE field was
not a valid DB2 CLI C type.

Descriptor information checked during a consistency check was
not consistent. (see Consistency Checks on page 565)

HY091 Descriptor type out of range. The value specified for the FieldIdentifier argument was not a DB2
CLI defined field and was not a defined value.

The value specified for the RecNumber argument was greater
than the value in the SQL_DESC_COUNT field.

The FieldIdentifier argument was SQL_DESC_ALLOC_TYPE.

HY092 Option type out of range. The value specified for the Attribute argument was not valid.

HY105 Invalid parameter type. The value specified for the SQL_DESC_PARAMETER_TYPE field
was invalid. (For more information, see the InputOutputType
Argument section in SQLBindParameter().)

 Restrictions
None.

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data”

on page 568
¹ “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
¹ “SQLGetDescRec - Get Multiple Field Settings of Descriptor Record” on page 378
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

 Chapter 5. Functions 567

SQLSetDescRec

SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data

 Purpose

The SQLSetDescRec() function sets multiple descriptor fields that affect the data type
and buffer bound to a column or parameter data.

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLSetDescRec (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT Type,

 SQLSMALLINT SubType,

 SQLINTEGER Length,

 SQLSMALLINT Precision,

 SQLSMALLINT Scale,

 SQLPOINTER DataPtr,

 SQLINTEGER *StringLengthPtr,

 SQLINTEGER *IndicatorPtr);

 Function Arguments

Table 160 (Page 1 of 2). SQLSetDescRec Arguments

Data Type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle. This must not be an IRD handle.

SQLSMALLINT RecNumber input Indicates the descriptor record that contains the fields
to be set. Descriptor records are numbered from 0,
with record number 0 being the bookmark record.
This argument must be equal to or greater than 0. If
RecNumber is greater than the value of
SQL_DESC_COUNT, RecNumber is changed to the
value of SQL_DESC_COUNT.

SQLSMALLINT Type input The value to which to set the SQL_DESC_TYPE field
for the descriptor record.

SQLSMALLINT SubType input For records whose type is SQL_DATETIME or
SQL_INTERVAL, this is the value to which to set the
SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLINTEGER Length input The value to which to set the
SQL_DESC_OCTET_LENGTH field for the descriptor
record.

SQLSMALLINT Precision input The value to which to set the PRECISION field for
the descriptor record.

SQLSMALLINT Scale input The value to which to set the SCALE field for the
descriptor record.

568 CLI Guide and Reference

SQLSetDescRec

Table 160 (Page 2 of 2). SQLSetDescRec Arguments

Data Type Argument Use Description

SQLPOINTER DataPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_DATA_PTR field for the descriptor
record. DataPtr can be set to a null pointer to set the
SQL_DESC_DATA_PTR field to a null pointer.

SQLINTEGER StringLengthPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_OCTET_LENGTH_PTR field for the
descriptor record. StringLengthPtr can be set to a
null pointer to set the
SQL_DESC_OCTET_LENGTH_PTR field to a null
pointer.

SQLINTEGER IndicatorPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_INDICATOR_PTR field for the descriptor
record. IndicatorPtr can be set to a null pointer to set
the SQL_DESC_INDICATOR_PTR field to a null
pointer.

 Usage
An application can call SQLSetDescRec() to set the following fields for a single column or
parameter:

 ¹ SQL_DESC_TYPE
 ¹ SQL_DESC_OCTET_LENGTH
 ¹ SQL_DESC_PRECISION
 ¹ SQL_DESC_SCALE
 ¹ SQL_DESC_DATA_PTR
 ¹ SQL_DESC_OCTET_LENGTH_PTR
 ¹ SQL_DESC_INDICATOR_PTR

(SQL_DESC_DATETIME_INTERVAL_CODE is also defined by ODBC but is not
supported by DB2 CLI.)

Note: If a call to SQLSetDescRec() fails, the contents of the descriptor record identified
by the RecNumber argument are undefined.

When binding a column or parameter, SQLSetDescRec() allows you to change multiple
fields affecting the binding without calling SQLBindCol() or SQLBindParameter(), or
making multiple calls to SQLSetDescField(). SQLSetDescRec() can set fields on a
descriptor not currently associated with a statement. Note that SQLBindParameter() sets
more fields than SQLSetDescRec(), can set fields on both an APD and an IPD in one
call, and does not require a descriptor handle.

The statement attribute SQL_ATTR_USE_BOOKMARKS should always be set before
calling SQLSetDescRec() with a RecNumber argument of 0 to set bookmark fields. While
this is not mandatory, it is strongly recommended.

Consistency Checks

 Chapter 5. Functions 569

SQLSetDescRec

A consistency check is performed by DB2 CLI automatically whenever an application
sets the SQL_DESC_DATA_PTR field of the APD, ARD, or IPD. Calling
SQLSetDescRec() always prompts a consistency check. If any of the fields is
inconsistent with other fields, SQLSetDescRec() will return SQLSTATE HY021,
“Inconsistent descriptor information.”

Application Descriptors

Whenever an application sets the SQL_DESC_DATA_PTR field of an APD, ARD, or
IPD, DB2 CLI checks that the value of the SQL_DESC_TYPE field and the values
applicable to that SQL_DESC_TYPE field are valid and consistent. This check is
always perform when SQLBindParameter() or SQLBindCol() is called, or when
SQLSetDescRec() is called for an APD, ARD, or IPD. This consistency check includes
the following checks on application descriptor fields:

¹ The SQL_DESC_TYPE field must be one of the valid C or SQL types. The
SQL_DESC_CONCISE_TYPE field must be one of the valid C or SQL types.

¹ If the SQL_DESC_TYPE field indicates a numeric type, the
SQL_DESC_PRECISION and SQL_DESC_SCALE fields are verified to be valid.

¹ If the SQL_DESC_CONCISE_TYPE field is a time data type the
SQL_DESC_PRECISION field is verified to be a valid seconds precision.

The SQL_DESC_DATA_PTR field of an IPD is not normally set; however, an
application can do so to force a consistency check of IPD fields. A consistency check
cannot be performed on an IRD. The value that the SQL_DESC_DATA_PTR field of
the IPD is set to is not actually stored, and cannot be retrieved by a call to
SQLGetDescField() or SQLGetDescRec(); the setting is made only to force the
consistency check.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 161 (Page 1 of 2). SQLSetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

570 CLI Guide and Reference

SQLSetDescRec

Table 161 (Page 2 of 2). SQLSetDescRec SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index. The RecNumber argument was set to 0, and the DescriptorHandle
was an IPD handle.

The RecNumber argument was less than 0.

The RecNumber argument was greater than the maximum number
of columns or parameters that the data source can support, and
the DescriptorHandle argument was an APD, IPD, or ARD.

The RecNumber argument was equal to 0, and the
DescriptorHandle argument referred to an implicitly allocated APD.
(This error does not occur with an explicitly allocated application
descriptor, because it is not known whether an explicitly allocated
application descriptor is an APD or ARD until execute time.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle with which the DescriptorHandle was associated
and returned SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY016 Cannot modify an
implementation row
descriptor.

The DescriptorHandle argument was associated with an IRD.

HY021 Inconsistent descriptor
information.

The Type field, or any other field associated with the TYPE field in
the descriptor, was not valid or consistent.

Descriptor information checked during a consistency check was
not consistent. (See Consistency Checks on page 565 in
SQLSetDescField().)

 Restrictions
None.

 Chapter 5. Functions 571

SQLSetDescRec

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLSetDescField - Set a Single Field of a Descriptor Record” on page 544
¹ “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
¹ “SQLGetDescRec - Get Multiple Field Settings of Descriptor Record” on page 378
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLBindParameter - Bind A Parameter Marker to a Buffer or LOB Locator” on

page 210

572 CLI Guide and Reference

SQLSetEnvAttr

SQLSetEnvAttr - Set Environment Attribute

 Purpose

SQLSetEnvAttr() sets an environment attribute for the current environment.

Specification: DB2 CLI 2.1 ISO CLI

 Syntax
SQLRETURN SQLSetEnvAttr (SQLHENV EnvironmentHandle, /* henv */

 SQLINTEGER Attribute,

SQLPOINTER ValuePtr, /* Value */

 SQLINTEGER StringLength);

 Function Arguments

Table 162. SQLSetEnvAttr Arguments

Data Type Argument Use Description

SQLHENV EnviornmentHandle Input Environment handle.

SQLINTEGER Attribute Input Environment attribute to set, refer to Table 163 on
page 574 for the list of attributes and their
descriptions.

SQLPOINTER ValuePtr Input The desired value for Attribute.

SQLINTEGER StringLength Input Length of ValuePtr in bytes if the attribute value is a
character string; if Attribute does not denote a string,
then DB2 CLI ignores StringLength.

 Usage
Once set, the attribute's value affects all connections under this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

 Chapter 5. Functions 573

SQLSetEnvAttr

Table 163 (Page 1 of 5). Environment Attributes

Attribute Contents

SQL_ATTR_CONNECTION_POOLING32-bit integer value that enables or disables connection pooling at the
environment level. The following values are used:

¹ SQL_CP_OFF = Connection pooling is turned off. This is the default.

¹ SQL_CP_ONE_PER_DRIVER = A single, global connection pool is
supported for each DB2 CLI application. Every connection in a pool is
associated with the application.

¹ SQL_CP_ONE_PER_HENV = A single connection pool is supported for each
environment. Every connection in a pool is associated with one environment.

Connection pooling is enabled by calling SQLSetEnvAttr() to set the
SQL_ATTR_CONNECTION_POOLING attribute to SQL_CP_ONE_PER_DRIVER
or SQL_CP_ONE_PER_HENV. This call must be made before the application
allocates the shared environment for which connection pooling is to be enabled.
The environment handle in the call to SQLSetEnvAttr() is set to null, which
makes SQL_ATTR_CONNECTION_POOLING a process-level attribute. After
connection pooling is enabled, the application then allocates an implicit shared
environment by calling SQLAllocHandle() with the InputHandle argument set to
SQL_HANDLE_ENV.

After connection pooling has been enabled and a shared environment has been
selected for an application, SQL_ATTR_CONNECTION_POOLING cannot be
reset for that environment, since SQLSetEnvAttr() is called with a null
environment handle when setting this attribute. If this attribute is set while
connection pooling is already enabled on a shared environment, the attribute only
affects shared environments that are allocated subsequently.

574 CLI Guide and Reference

SQLSetEnvAttr

Table 163 (Page 2 of 5). Environment Attributes

Attribute Contents

SQL_ATTR_CONNECTTYPE A 32-bit integer value that specifies whether this application is to operate in a
coordinated or uncoordinated distributed environment. If the processing needs to
be coordinated, then this option must be considered in conjunction with the
SQL_ATTR_SYNC_POINT connection option. The possible values are:

¹ SQL_CONCURRENT_TRANS : The application can have concurrent multiple
connections to any one database or to multiple databases. Each connection
has its own commit scope. No effort is made to enforce coordination of
transaction. If an application issues a commit using the environment handle
on SQLTransact() and not all of the connections commit successfully, the
application is responsible for recovery.

The current setting of the SQL_ATTR_SYNC_POINT attribute is ignored.

This is the default.

¹ SQL_COORDINATED_TRANS: The application wishes to have commit and
rollbacks coordinated among multiple database connections. This option
setting corresponds to the specification of the Type 2 CONNECT in
embedded SQL and must be considered in conjunction with the
SQL_ATTR_SYNC_POINT connection option. In contrast to the
SQL_CONCURRENT_TRANS setting described above, the application is
permitted only one open connection per database.

This attribute must be set before allocating any connection handles, otherwise,
the SQLSetEnvAttr() call will be rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. This
attribute can also be set using the SQLSetConnectAttr function. We recommend
that the application set the SQL_ATTR_CONNECTTYPE attribute at the
environment level rather than on a per connection basis. ODBC applications
written to take advantage of coordinated DB2 transactions must set these
attributes at the connection level for each connection using SQLSetConnectAttr()
as SQLSetEnvAttr() is not supported in ODBC.

Note: This is an IBM defined extension.

SQL_ATTR_CP_MATCH A 32-bit value that determines how a connection is chosen from a connection
pool. When SQLConnect() or SQLDriverConnect()is called, DB2 CLI (or the

Driver Manager when used) determines which connection is reused from the

pool. DB2 CLI (or the Driver Manager) attempts to match the connection

options in the call and the connection attributes set by the application

to the keywords and connection attributes of the connections in the pool.

The value of this attribute determines the level of precision of the

matching criteria.

The following values are used to set the value of this attribute:

¹ SQL_CP_STRICT_MATCH = Only connections that exactly match the
connection options in the call and the connection attributes set by the
application are reused. This is the default.

¹ SQL_CP_RELAXED_MATCH = Connections with matching connection string
keywords can be used. Keywords must match, but not all connection
attributes must match.

 Chapter 5. Functions 575

SQLSetEnvAttr

Table 163 (Page 3 of 5). Environment Attributes

Attribute Contents

SQL_ATTR_MAXCONN A 32-bit integer value corresponding to the number that maximum concurrent
connections that an application may desire to set up. The default value is 0,
which means no maximum - the application is allowed to set up as many
connections as the system resources permit. The integer value must be 0 or a
positive number.

This can be used as a governor for the maximum number of connections on a
per application basis.

On OS/2, if the NetBIOS protocol is in use, this value corresponds to the number
of connections (NetBIOS sessions) that will be concurrently set up by the
application. The range of values for OS/2 NetBIOS is 1 to 254. Specifying 0 (the
default) will result in 5 reserved connections. Reserved NetBIOS sessions
cannot be used by other applications. The number of connections specified by
this parameter will be applied to any adaptor that the DB2 NetBIOS protocol uses
to connect to the remote server (adapter number is specified in the node
directory for a NetBIOS node).

The value that is in effect when the first connection is established is the value
that will be used. Once the first connection has been established, attempts to
change this value will be rejected. We recommended that the application set
SQL_ATTR_MAXCONN at the environment level rather then on a connection
basis. ODBC applications must set this attribute at the connection level since
SQLSetEnvAttr() is not supported in ODBC.

Note: This is an IBM defined extension.

SQL_ATTR_ODBC_VERSION A 32-bit integer that determines whether certain functionality exhibits ODBC 2.x
(DB2 CLI v2) behavior or ODBC 3.0 (DB2 CLI v5) behavior.

It is recommended that all DB2 CLI applications set this environment attribute.
ODBC applications must set this environment attribute before calling any function
that has an SQLHENV argument, or the call will return SQLSTATE HY010
(Function sequence error.).

The following values are used to set the value of this attribute:

¹ SQL_OV_ODBC3: Causes the following ODBC 3.0 (DB2 CLI v5) behavior:

– DB2 CLI returns and expects ODBC 3.0 (DB2 CLI v5) codes for date,
time, and timestamp.

– DB2 CLI returns ODBC 3.0(DB2 CLI v5) SQLSTATE codes when
SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() accepts a search
pattern.

¹ SQL_OV_ODBC2 Causes the following ODBC 2.x (DB2 CLI v2) behavior:

– DB2 CLI returns and expects ODBC 2.x (DB2 CLI v2) codes for date,
time, and timestamp.

– DB2 CLI returns ODBC 2.0 DB2 CLI v2) SQLSTATE codes when
SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() does not accept a
search pattern.

576 CLI Guide and Reference

SQLSetEnvAttr

Table 163 (Page 4 of 5). Environment Attributes

Attribute Contents

SQL_ATTR_OUTPUT_NTS A 32-bit integer value which controls the use of null-termination in output
arguments. The possible values are:

¹ SQL_TRUE: DB2 CLI uses null termination to indicate the length of output
character strings.

This is the default.

¹ SQL_FALSE: DB2 CLI does not use null termination in output character
strings.

The CLI functions affected by this attribute are all functions called for the
environment (and for any connections and statements allocated under the
environment) that have character string parameters.

This attribute can only be set when there are no connection handles allocated
under this environment.

SQL_ATTR_SYNC_POINT A 32-bit integer value that allows the application to choose between one-phase
coordinated transactions and two-phase coordinated transactions. The possible
values are:

¹ SQL_ONEPHASE: One-phase commit is used to commit the work done by
each database in a multiple database transaction. To ensure data integrity,
each transaction must not have more than one database updated. The first
database that has updates performed in a transaction becomes the only
updater in that transaction, all other databases accessed are treated as
read-only. Any update attempts to these read-only database within this
transaction are rejected.

¹ SQL_TWOPHASE: Two-phase commit is used to commit the work done by
each database in a multiple database transaction. This requires the use of a
Transaction Manager to coordinate two phase commits amongst the
databases that support this protocol. Multiple readers and multiple updaters
are allowed within a transaction.

Refer to the SQL Reference for more information on distributed unit of work
(transactions).

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. This
attribute can also be set using the SQLSetConnectAttr() function. We recommend
that the application set these two attributes at the environment level rather than
on a per connection basis. ODBC applications written to take advantage of
coordinated DB2 transactions must set these attributes at the connection level for
each connection using SQLSetConnectAttr() as SQLSetEnvAttr() is not
supported in ODBC.

Note: This is an IBM extension. In embedded SQL, there is an additional sync
point setting called SYNCPOINT NONE. This is more restrictive than the
SQL_CONCURRENT_TRANS setting of the
SQL_ATTR_CONNECTTYPE attribute because SYNCPOINT NONE does
not allow for multiple connections to the same database. As a result, it is
not necessary for DB2 CLI to support SYNCPOINT NONE.

SQL_CONNECTTYPE This Attribute has been replaced with SQL_ATTR_CONNECTTYPE.

SQL_MAXCONN This Attribute has been replaced with SQL_ATTR_MAXCONN.

 Chapter 5. Functions 577

SQLSetEnvAttr

Table 163 (Page 5 of 5). Environment Attributes

Attribute Contents

SQL_SYNC_POINT This Attribute has been replaced with SQL_ATTR_SYNC_POINT.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 164. SQLSetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY009 Invalid argument value. Given the fOption value, an invalid value was specified for the
argument vParam.

HY011 Operation invalid at this time. Applications cannot set environment attributes while connection
handles are allocated on the environment handle.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was specified
in *ValuePtr.

HY090 Invalid string or buffer length The StringLength argument was less than 0, but was not
SQL_NTS.

HY092 Option type out of range. An invalid Attribute value was specified.

HYC00 Driver not capable. The specified Attribute is not supported by DB2 CLI.

Given specified Attribute value, the value specified for the
argument ValuePtr is not supported.

 Restrictions
None.

 Example
See also “Distributed Unit of Work Example” on page 47.

578 CLI Guide and Reference

SQLSetEnvAttr

/* From CLI sample seteattr.c */

/* ... */

int main() {

SQLHANDLE henv ;

SQLRETURN rc ;

SQLINTEGER output_nts = SQL_TRUE ;

/* ... */

/* allocate an environment handle */

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

printf("Setting Environment option SQL_ATTR_OUTOUT_NTS\n") ;

rc = SQLSetEnvAttr(henv,

 SQL_ATTR_OUTPUT_NTS,

(SQLPOINTER) output_nts,

 SQL_FALSE

) ;

CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc) ;

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

return(SQL_SUCCESS) ;

} /* end main */

 References
¹ “SQLGetEnvAttr - Retrieve Current Environment Attribute Value” on page 394

 Chapter 5. Functions 579

SQLSetParam

SQLSetParam - Bind A Parameter Marker to a Buffer or LOB Locator

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLSetParam() has been deprecated and replaced with
SQLBindParameter(); see “SQLBindParameter - Bind A Parameter Marker to a
Buffer or LOB Locator” on page 210 for more information.

Although this version of DB2 CLI continues to support SQLSetParam(), we
recommend that you begin using SQLBindParameter() in your DB2 CLI
programs so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Equivalent Function: SQLBindParam()

The CLI function SQLBindParam() is exactly the same as the function SQLSetParam().
Both take the same number and type of arguments, behave the same, and return the
same return codes.

580 CLI Guide and Reference

SQLSetPos

SQLSetPos - Set the Cursor Position in a Rowset

 Purpose

SQLSetPos() sets the cursor position in a rowset.

Specification: DB2 CLI 5.0 ODBC 1

 Syntax
SQLRETURN SQLSetPos (SQLHSTMT StatementHandle,

 SQLUSMALLINT RowNumber,

 SQLUSMALLINT Operation,

 SQLUSMALLINT LockType);

 Function Arguments

Table 165. SQLSetPos Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT RowNumber input Position of the row in the rowset on which to perform
the operation specified with the Operation argument.
If RowNumber is 0, the operation applies to every
row in the rowset.

For additional information, see RowNumber
Argument on page 582.

SQLUSMALLINT Operation input Operation to perform:

 ¹ SQL_POSITION
 ¹ SQL_REFRESH

For additional information, see Operation Argument
on page 582.

ODBC also specifies the following operations which
DB2 CLI does not support:

 ¹ SQL_UPDATE
 ¹ SQL_DELETE
 ¹ SQL_ADD

SQLUSMALLINT LockType input Specifies how to lock the row after performing the
operation specified in the Operation argument.

 ¹ SQL_LOCK_NO_CHANGE

ODBC also specifies the following operations which
DB2 CLI does not support:

 ¹ SQL_LOCK_EXCLUSIVE
 ¹ SQL_LOCK_UNLOCK

For additional information, see LockType Argument
on page 583.

 Chapter 5. Functions 581

SQLSetPos

 Usage
RowNumber Argument

The RowNumber argument specifies the number of the row in the rowset on which to
perform the operation specified by the Operation argument. If RowNumber is 0, the
operation applies to every row in the rowset. Except for the SQL_ADD,
SQL_DELETE_BY_BOOKMARK, SQL_UPDATE_BY_BOOKMARK, and
SQL_REFRESH_BY_BOOKMARK operations, RowNumber must be a value from 0 to
the number of rows in the rowset. For the SQL_ADD operation, RowNumber can be
any value; generally it is either 0 (to add as many rows as there are in the rowset) or
the number of rows in the rowset plus 1 (to add the data from an extra row of buffers
allocated for this purpose).

Note In the C language, arrays are 0-based, while the RowNumber argument is
1-based. For example, to update the fifth row of the rowset, an application modifies the
rowset buffers at array index 4, but specifies an RowNumber of 5.

All operations position the cursor on the row specified by RowNumber (except for
SQL_ADD, SQL_UPDATE_BY_BOOKMARK, SQL_DELETE_BY_BOOKMARK, and
SQL_REFRESH_BY_BOOKMARK, which DB2 CLI does not support, and which do not
change the cursor position). The following operations require a cursor position:

¹ Positioned update and delete statements.
¹ Calls to SQLGetData().
¹ Calls to SQLSetPos() with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE

options.

An application can specify a cursor position when it calls SQLSetPos(). Generally, it
calls SQLSetPos() with the SQL_POSITION or SQL_REFRESH operation to position the
cursor before executing a positioned update or delete statement or calling
SQLGetData().

Operation Argument

DB2 CLI does not support SQL_ADD, SQL_UPDATE or SQL_DELETE, which are
defined by ODBC. The following operations, however, are supported. To determine
which options are supported by a data source, an application calls SQLGetInfo() with
the SQL_POS_OPERATIONS information type.

SQL_POSITION

DB2 CLI positions the cursor on the row specified by RowNumber.

The contents of the row status array pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored for
the SQL_POISTION Operation.

SQL_REFRESH

DB2 CLI positions the cursor on the row specified by RowNumber and
refreshes data in the rowset buffers for that row. For more information

582 CLI Guide and Reference

SQLSetPos

about how DB2 CLI returns data in the rowset buffers, see the descriptions
of row-wise and column-wise binding in SQLFetchScroll().

SQLSetPos() with an Operation of SQL_REFRESH simply updates the
status and content of the rows within the current fetched rowset. This
includes refreshing the bookmarks. The data in the buffers is refreshed, but
not refetched, so the membership in the rowset is fixed.

A successful refresh with SQLSetPos() will change a row status of
SQL_ROW_ADDED to SQL_ROW_SUCCESS (if the row status array
exists).

A refresh with SQLSetPos() will change a row status of
SQL_ROW_UPDATED to the row's new status (if the row status array
exists).

If an error occurs in a SQLSetPos() operation on a row, the row status is
set to SQL_ROW_ERROR (if the row status array exists).

For a cursor opened with a SQL_ATTR_CONCURRENCY statement
attribute of SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES, a
refresh with SQLSetPos() will update the optimistic concurrency values used
by the data source to detect that the row has changed. This occurs for
each row that is refreshed.

The contents of the row status array are ignored for the SQL_REFRESH
Operation.

LockType Argument

The LockType argument provides a way for applications to control concurrency.
Generally, data sources that support concurrency levels and transactions will only
support the SQL_LOCK_NO_CHANGE value of the LockType argument.

Although the LockType argument is specified for a single statement, the lock accords
the same privileges to all statements on the connection. In particular, a lock that is
acquired by one statement on a connection can be unlocked by a different statement
on the same connection.

ODBC defines the following LockType arguments. DB2 CLI supports
SQL_LOCK_NO_CHANGE. To determine which locks are supported by a data source,
an application calls SQLGetInfo() with the SQL_LOCK_TYPES information type.

Table 166. Operation Values

LockType Argument Lock Type

SQL_LOCK_NO_CHANGE Ensures that the row is in the same locked or unlocked state as it
was before SQLSetPos() was called. This value of LockType allows
data sources that do not support explicit row-level locking to use
whatever locking is required by the current concurrency and
transaction isolation levels.

SQL_LOCK_EXCLUSIVE Not supported by DB2 CLI. Locks the row exclusively.
SQL_LOCK_UNLOCK Not supported by DB2 CLI. Unlocks the row.

 Chapter 5. Functions 583

SQLSetPos

Status and Operation Arrays

The following status and operation arrays are used when calling SQLSetPos():

¹ The row status array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR
field in the IRD and the SQL_ATTR_ROW_STATUS_ARRAY statement attribute)
contains status values for each row of data in the rowset. The status values are set
in this array after a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos. This array
is pointed to by the SQL_ATTR_ROW_STATUS_PTR statement attribute.

¹ The row operation array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR
field in the ARD and the SQL_ATTR_ROW_OPERATION_ARRAY statement
attribute) contains a value for each row in the rowset that indicates whether a call
to SQLSetPos() for a bulk operation is ignored or performed. Each element in the
array is set to either SQL_ROW_PROCEED (the default) or SQL_ROW_IGNORE.
This array is pointed to by the SQL_ATTR_ROW_OPERATION_PTR statement
attribute.

The number of elements in the status and operation arrays must equal the number of
rows in the rowset (as defined by the SQL_ATTR_ROW_ARRAY_SIZE statement
attribute).

For information about the row status array, see “SQLFetch - Fetch Next Row” on
page 320.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_NEED_DATA
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 167 (Page 1 of 4). SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_REFRESH, and string or
binary data returned for a column or columns with a data type of
SQL_C_CHAR or SQL_C_BINARY resulted in the truncation of
non-blank character or non-NULL binary data

584 CLI Guide and Reference

SQLSetPos

Table 167 (Page 2 of 4). SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

01S01 Error in row. The RowNumber argument was 0 and an error occurred in one or
more rows while performing the operation specified with the
Operation argument.

(SQL_SUCCESS_WITH_INFO is returned if an error occurs on
one or more, but not all, rows of a multirow operation, and
SQL_ERROR is returned if an error occurs on a single-row
operation.)

01S07 Fractional truncation. The Operation argument was SQL_REFRESH, the data type of
the application buffer was not SQL_C_CHAR or SQL_C_BINARY,
and the data returned to application buffers for one or more
columns was truncated. For numeric data types, the fractional part
of the number was truncated. For time and timestamp data types,
the fractional portion of the time was truncated.

07006 Invalid conversion. The data value of a column in the result set could not be
converted to the data type specified by TargetType in the call to
SQLBindCol().

07009 Invalid descriptor index. The argument Operation was SQL_REFRESH or SQL_UPDATE
and a column was bound with a column number greater than the
number of columns in the result set.

21S02 Degrees of derived table
does not match column list.

The argument Operation was SQL_UPDATE and no columns
were updateable because all columns were either unbound,
read-only, or the value in the bound length/indicator buffer was
SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column
resulted in the truncation of non-blank (for characters) or non-null
(for binary)characters or bytes.

22003 Numeric value out of range. The argument Operation was SQL_UPDATE and the assignment
of a numeric value to a column in the result set caused the whole
(as opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_REFRESH, and returning the
numeric value for one or more bound columns would have caused
a loss of significant digits.

22007 Invalid datetime format. The argument Operation was SQL_UPDATE, and the assignment
of a date or timestamp value to a column in the result set caused
the year, month, or day field to be out of range.

The argument Operation was SQL_REFRESH, and returning the
date or timestamp value for one or more bound columns would
have caused the year, month, or day field to be out of range.

 Chapter 5. Functions 585

SQLSetPos

Table 167 (Page 3 of 4). SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

22008 Datetime field overflow. The Operation argument was SQL_UPDATE, and the
performance of datetime arithmetic on data being sent to a column
in the result set resulted in a datetime field (the year, month, day,
hour, minute, or second field) of the result being outside the
permissible range of values for the field, or being invalid based on
the natural rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_REFRESH, and the
performance of datetime arithmetic on data being retrieved from
the result set resulted in a datetime field (the year, month, day,
hour, minute, or second field) of the result being outside the
permissible range of values for the field, or being invalid based on
the natural rules for datetimes based on the Gregorian calendar.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY008 Operation was cancelled Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The
function was called without first calling SQLExecDirect(),
SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

A Version 2 DB2 CLI application called SQLSetPos() for a
StatementHandle before SQLFetchScroll() was called or after
SQLFetch() was called, and before SQLFreeStmt() was called with
the SQL_CLOSE option.

HY011 Operation invalid at this time. A Version 2 DB2 CLI application set the
SQL_ATTR_ROW_STATUS_PTR statement attribute; then
SQLSetPos() was called before SQLFetch(), SQLFetchScroll(), or
SQLExtendedFetch() was called.

586 CLI Guide and Reference

SQLSetPos

Table 167 (Page 4 of 4). SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The Operation argument was SQL_ADD, SQL_UPDATE, or
SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,
and the column length value was not 0, SQL_DATA_AT_EXEC,
SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or
equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD, SQL_UPDATE, or
SQL_UPDATE_BY_BOOKMARK, a data value was not a null
pointer, and the column length value was less than 0, but not
equal to SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,
SQL_NTS, or SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A value in a length/indicator buffer was SQL_DATA_AT_EXEC;
the SQL type was either SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a other, data-source-specific data
type; and the SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was “Y”.

HY092 Option type out of range. The Operation argument was SQL_UPDATE_BY_BOOKMARK,
SQL_DELETE_BY_BOOKMARK, or
SQL_REFRESH_BY_BOOKMARK, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

HY107 Row value out of range. The value specified for the argument RowNumber was greater
than the number of rows in the rowset.

HY109 Invalid cursor position. The cursor associated with the StatementHandle was defined as
forward only, so the cursor could not be positioned within the
rowset. See the description for the SQL_ATTR_CURSOR_TYPE
attribute in SQLSetStmtAttr().

The Operation argument was SQL_UPDATE, SQL_DELETE, or
SQL_REFRESH, and the row identified by the RowNumber
argument had been deleted or had not be fetched.

The RowNumber argument was 0 and the Operation argument
was SQL_POSITION.

HYC00 Driver not capable. DB2 CLI or the data source does not support the operation
requested in the Operation argument or the LockType argument.

HYT00 Timeout expired The query timeout period expired before the data source returned
the result set. The timeout period is set through SQLSetStmtAttr()
with an Attribute of SQL_ATTR_QUERY_TIMEOUT.

 Restrictions
None.

 Chapter 5. Functions 587

SQLSetPos

 Example
See the README file in the sqllib\samples\cli (or sqllib/samples/cli) subdirectory for a
list of appropriate samples.

 References
¹ “SQLBindCol - Bind a Column to an Application Variable or LOB Locator” on

page 191
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLFetchScroll - Fetch Rowset and Return Data for All Bound Columns” on

page 331
¹ “SQLGetDescField - Get Single Field Settings of Descriptor Record” on page 373
¹ “SQLGetDescRec - Get Multiple Field Settings of Descriptor Record” on page 378
¹ “SQLSetDescField - Set a Single Field of a Descriptor Record” on page 544
¹ “SQLSetDescRec - Set Multiple Descriptor Fields for a Column or Parameter Data”

on page 568
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589

588 CLI Guide and Reference

SQLSetStmtAttr

SQLSetStmtAttr - Set Options Related to a Statement

 Purpose

SQLSetStmtAttr() sets options related to a statement. To set an option for all
statements associated with a specific connection, an application can call
SQLSetConnectAttr().

Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

 Syntax
SQLRETURN SQLSetStmtAttr (SQLHSTMT StatementHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER StringLength);

 Function Arguments

Table 168 (Page 1 of 2). SQLSetStmtAttr Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Option to set, listed in Statement Attributes on
page 591

SQLHSTMT *ValuePtr input If Attribute is an ODBC-defined attribute and ValuePtr
points to a character string or a binary buffer, this
argument should be the length of *ValuePtr. If
Attribute is an ODBC-defined attribute and ValuePtr
is an integer, StringLength is ignored.

If Attribute is a DB2 CLI attribute, the application
indicates the nature of the attribute by setting the
StringLength argument. StringLength can have the
following values:

¹ If ValuePtr is a pointer to a character string, then
StringLength is the length of the string or
SQL_NTS.

¹ If ValuePtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
StringLength. This places a negative value in
StringLength.

¹ If ValuePtr is a pointer to a value other than a
character string or a binary string, then
StringLength should have the value
SQL_IS_POINTER.

¹ If ValuePtr contains a fixed-length value, then
StringLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

 Chapter 5. Functions 589

SQLSetStmtAttr

Table 168 (Page 2 of 2). SQLSetStmtAttr Arguments

Data Type Argument Use Description

SQLINTEGER StringLength input If ValuePtr points to a character string or a binary
buffer, this argument should be the length of
*ValuePtr. If ValuePtr is a pointer, but not to a string
or binary buffer, then StringLength should have the
value SQL_IS_POINTER. If ValuePtr is not a pointer,
then StringLength should have the value
SQL_IS_NOT_POINTER.

 Usage
Statement attributes for a statement remain in effect until they are changed by another
call to SQLSetStmtAttr() or the statement is dropped by calling SQLFreeHandle().
Calling SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or
SQL_RESET_PARAMS options does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source does
not support the value specified in *ValuePtr. In such cases, DB2 CLI returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For
example, if Attribute is SQL_ATTR_CONCURRENCY, *ValuePtr is
SQL_CONCUR_ROWVER, and the data source does not support this, DB2 CLI
substitutes SQL_CONCUR_VALUES and returns SQL_SUCCESS_WITH_INFO. To
determine the substituted value, an application calls SQLGetStmtAttr().

The format of information set with ValuePtr depends on the specified Attribute.
SQLSetStmtAttr() accepts attribute information in one of two different formats: a
null-terminated character string or a 32-bit integer value. The format of each is noted in
the attribute's description. This format applies to the information returned for each
attribute in SQLGetStmtAttr(). Character strings pointed to by the ValuePtr argument of
SQLSetStmtAttr() have a length ofStringLength.

Setting Statement Attributes by Setting Descriptors

Many statement attributes also corresponding to a header field of one or more
descriptors. These attributes may be set not only by a call to SQLSetStmtAttr(), but
also by a call to SQLSetDescField(). Setting these options by a call to
SQLSetStmtAttr(), rather than SQLSetDescField(), has the advantage that a descriptor
handle does not have to be fetched.

Note: Calling SQLSetStmtAttr() for one statement can affect other statements. This
occurs when the APD or ARD associated with the statement is explicitly
allocated and is also associated with other statements. Because
SQLSetStmtAttr() modifies the APD or ARD, the modifications apply to all
statements with which this descriptor is associated. If this is not the desired
behavior, the application should dissociate this descriptor from the other
statement (by calling SQLSetStmtAttr() to set the

590 CLI Guide and Reference

SQLSetStmtAttr

SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC field to a
different descriptor handle) before calling SQLSetStmtAttr() again.

When a statement attribute that is also a descriptor field is set by a call to
SQLSetStmtAttr(), the corresponding field in the descriptor that is associated with the
statement is also set. The field is set only for the applicable descriptors that are
currently associated with the statement identified by the StatementHandle argument,
and the attribute setting does not affect any descriptors that may be associated with
that statement in the future. When a descriptor field that is also a statement attribute is
set by a call to SQLSetDescField(), the corresponding statement attribute is also set.

Statement attributes determine which descriptors a statement handle is associated with.
When a statement is allocated (see SQLAllocHandle()), four descriptor handles are
automatically allocated and associated with the statement. Explicitly allocated descriptor
handles can be associated with the statement by calling SQLAllocHandle() with an
fHandleType of SQL_HANDLE_DESC to allocate a descriptor handle, then calling
SQLSetStmtAttr() to associate the descriptor handle with the statement.

The following statement attributes correspond to descriptor header fields:

Table 169. Statement Attributes

Statement Attribute Header Field Desc.

SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR APD
SQL_ATTR_PARAM_BIND_TYPE SQL_DESC_BIND_TYPE APD
SQL_ATTR_PARAM_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IPD
SQL_ATTR_PARAMS_PROCESSED_PTR SQL_DESC_ROWS_PROCESSED_PTR IPD
SQL_ATTR_PARAMSET_SIZE SQL_DESC_ARRAY_SIZE APD
SQL_ATTR_ROW_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR ARD
SQL_ATTR_ROW_BIND_TYPE SQL_DESC_BIND_TYPE ARD
SQL_ATTR_ROW_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IRD
SQL_ATTR_ROWS_FETCHED_PTR SQL_DESC_ROWS_PROCESSED_PTR IRD
SQL_ATTR_ROWSET_SIZE SQL_DESC_ARRAY_SIZE ARD

Statement Attributes

The currently defined attributes and the version of DB2 CLI in which they were
introduced are shown below; it is expected that more will be defined to take advantage
of different data sources.

Note: All statement attributes from DB2 CLI version 2 have been renamed. In version
2 they began with SQL_ but now begin with SQL_ATTR_

SQL_ATTR_APP_PARAM_DESC (DB2 CLI v5)

The handle to the APD for subsequent call to SQLExecute() and
SQLExecDirect() on the statement handle. The initial value of this attribute
is the descriptor implicitly allocated when the statement was initially
allocated. If this value of this attribute is set to SQL_NULL_DESC, an
explicitly allocated APD handle that was previously associated with the
statement handle is dissociated from it, and the statement handle reverts to
the implicitly allocated APD handle.

 Chapter 5. Functions 591

SQLSetStmtAttr

This attribute cannot be set to a descriptor handle that was implicitly
allocated for another statement or to another descriptor handle that was
implicitly set on the same statement; implicitly allocated descriptor handles
cannot be associated with more than one statement or descriptor handle.

This attribute cannot be set at the connection level.

SQL_ATTR_APP_ROW_DESC (DB2 CLI v5)

The handle to the ARD for subsequent fetches on the statement handle.
The initial value of this attribute is the descriptor implicitly allocated when
the statement was initially allocated. If this value of this attribute is set to
SQL_NULL_DESC, an explicitly allocated ARD handle that was previously
associated with the statement handle is dissociated from it, and the
statement handle reverts to the implicitly allocated ARD handle.

This attribute cannot be set to a descriptor handle that was implicitly
allocated for another statement or to another descriptor handle that was
implicitly set on the same statement; implicitly allocated descriptor handles
cannot be associated with more than one statement or descriptor handle.

This attribute cannot be set at the connection level.

SQL_ATTR_ASYNC_ENABLE (DB2 CLI v2)

A 32-bit integer value that specifies whether a function called with the
specified statement is executed asynchronously:

¹ SQL_ASYNC_ENABLE_OFF = Off (the default)
¹ SQL_ASYNC_ENABLE_ON = On

Once a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLSetStmtAttr(), SQLGetDiagField(),
SQLGetDiagRec(), or SQLGetFunctions() can be called on the statement or
the connection associated with the statement, until the original function
returns a code other than SQL_STILL_EXECUTING. Any other function
called on the statement or the connection associated with the statement
returns SQL_ERROR with an SQLSTATE of HY010 (Function sequence
error). Functions can be called on other statements.

Because DB2 CLI supports statement level asynchronous-execution, the
statement attribute SQL_ATTR_ASYNC_ENABLE may be set. Its initial
value is the same as the value of the connection level attribute with the
same name at the time the statement handle was allocated.

In general, applications should execute functions asynchronously only on
single-threaded operating systems. On multi-threaded operating systems,
applications should execute functions on separate threads, rather than
executing them asynchronously on the same thread. DB2 CLI applications
that only operate on multi-threaded operating systems do not need to
support asynchronous execution. See “Writing Multi-Threaded Applications”
on page 40 and “Asynchronous Execution of CLI” on page 118 for more
information.

The following functions can be executed asynchronously:

592 CLI Guide and Reference

SQLSetStmtAttr

 SQLColAttribute() SQLGetTypeInfo()

 SQLColumnPrivileges() SQLMoreResults()

 SQLColumns() SQLNumParams()

 SQLCopyDesc() SQLNumResultCols()

 SQLDescribeCol() SQLParamData()

 SQLDescribeParam() SQLPrepare()

 SQLExecDirect() SQLPrimaryKeys()

 SQLExecute() SQLProcedureColumns()

 SQLFetch() SQLProcedures()

 SQLFetchScroll() SQLPutData()

 SQLForeignKeys() SQLSetPos()

 SQLGetData() SQLSpecialColumns()

 SQLGetDescField() 1* SQLStatistics()

 SQLGetDescRec() 1* SQLTablePrivileges()

 SQLGetDiagField() SQLTables()

 SQLGetDiagRec()

1* These functions can be called asynchronously only if the descriptor

is an implementation descriptor, not an application descriptor.

Asynchronous executing can also be set using the ASYNCENABLE DB2
CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on page 138
for more information.

SQL_ATTR_BIND_TYPE (DB2 CLI v2)

A 32-bit integer value that sets the binding orientation to be used when
SQLExtendedFetch() is called with this statement handle. Column-wise
binding is selected by supplying the value SQL_BIND_BY_COLUMN for
the argument vParam. Row-wise binding is selected by supplying a value
for vParam specifying the length of the structure or an instance of a buffer
into which result columns will be bound.

For row-wise binding, the length specified in vParam must include space
for all of the bound columns and any padding of the structure or buffer to
ensure that when the address of a bound column is incremented with the
specified length, the result will point to the beginning of the same column in
the next row. (When using the sizeof operator with structures or unions in
ANSI C, this behavior is guaranteed.)

Column-wise binding is the default for this option.

SQL_ATTR_CONCURRENCY (DB2 CLI v2)

A 32-bit integer value that specifies the cursor concurrency:

¹ SQL_CONCUR_READ_ONLY = Cursor is read-only. No updates are
allowed.

¹ SQL_CONCUR_LOCK = Cursor uses the lowest level of locking
sufficient to ensure that the row can be updated.

¹ SQL_CONCUR_ROWVER = Cursor uses optimistic concurrency
control, comparing row versions, such as SQLBase ROWID or Sybase
TIMESTAMP.

 Chapter 5. Functions 593

SQLSetStmtAttr

¹ SQL_CONCUR_VALUES = Cursor uses optimistic concurrency
control, comparing values.

The default value for SQL_ATTR_CONCURRENCY is
SQL_CONCUR_READ_ONLY.

This attribute can also be set through the Concurrency argument in
SQLSetScrollOptions(). This attribute cannot be specified for an open
cursor.

If the SQL_ATTR_CURSOR_TYPE Attribute is changed to a type that does
not support the current value of SQL_ATTR_CONCURRENCY, the value of
SQL_ATTR_CONCURRENCY will be changed at execution time, and a
warning issued when SQLExecDirect() or SQLPrepare() is called.

If the driver supports the SELECT FOR UPDATE statement, and such a
statement is executed while the value of SQL_ATTR_CONCURRENCY is
set to SQL_CONCUR_READ_ONLY, an error will be returned. If the value
of SQL_ATTR_CONCURRENCY is changed to a value that the driver
supports for some value of SQL_ATTR_CURSOR_TYPE, but not for the
current value of SQL_ATTR_CURSOR_TYPE, the value of
SQL_ATTR_CURSOR_TYPE will be changed at execution time, and
SQLSTATE 01S02 (Option value changed) is issued when
SQLExecDirect() or SQLPrepare() is called.

If the specified concurrency is not supported by the data source, the DB2
CLI substitutes a different concurrency and returns SQLSTATE 01S02
(Option value changed). For SQL_CONCUR_VALUES, DB2 CLI substitutes
SQL_CONCUR_ROWVER, and vice versa. For SQL_CONCUR_LOCK, the
DB2 CLI substitutes, in order, SQL_CONCUR_ROWVER or
SQL_CONCUR_VALUES. The validity of the substituted value is not
checked until execution time.

SQL_ATTR_CURSOR_HOLD (DB2 CLI v2)

A 32-bit integer which specifies whether the cursor associated with this
StatementHandle is preserved in the same position as before the COMMIT
operation, and whether the application can fetch without executing the
statement again.

¹ SQL_CURSOR_HOLD_ON (this is the default)
 ¹ SQL_CURSOR_HOLD_OFF

The default value when an StatementHandle is first allocated is
SQL_CURSOR_HOLD_ON.

This option cannot be specified while there is an open cursor on this
StatementHandle.

Cursor hold can also be set using the CURSORHOLD DB2 CLI/ODBC
configuration keyword. See “Configuring db2cli.ini” on page 138 for more
information.

Note: This option is an IBM extension.

594 CLI Guide and Reference

SQLSetStmtAttr

SQL_ATTR_CURSOR_TYPE (DB2 CLI v2)

A 32-bit integer value that specifies the cursor type. The supported values
are:

¹ SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.
¹ SQL_CURSOR_STATIC = The data in the result set is static.

The default value is SQL_CURSOR_FORWARD_ONLY.

This option cannot be specified for an open cursor.

Note: The following values have also been defined by ODBC, but are not
supported by DB2 CLI:

 ¹ SQL_CURSOR_KEYSET_DRIVEN
 ¹ SQL_CURSOR_DYNAMIC

If these values are used, DB2 CLI defaults to
SQL_CURSOR_FORWARD_ONLY and returns SQLSTATE 01S02
(Option value changed).

SQL_ATTR_DEFERRED_PREPARE (DB2 CLI v5)

Specifies whether the PREPARE request is deferred until the
corresponding execute request is issued.

¹ SQL_DEFERRED_PREPARE_OFF = Disable deferred prepare. The
PREPARE request will be executed the moment it is issued.

¹ SQL_DEFERRED_PREPARE_ON (default) = Enable deferred
prepare. Defer the execution of the PREPARE request until the
corresponding execute request is issued. The two requests are then
combined into one command/reply flow (instead of two) to minimize
network flow and to improve performance.

If the target DB2 database or the DDCS gateway does not support
deferred prepare, the client disables deferred prepare for that
connection.

The default behavior has changed from DB2 version 2. Deferred prepare is
now the default and must be explicitly turned off if required.

Note: When deferred prepare is enabled, the row and cost estimates
normally returned in the SQLERRD(3) and SQLERRD(4) of the
SQLCA of a PREPARE statement may become zeros. This may be
of concern to users who want to use these values to decide
whether or not to continue the SQL statement.

This option is turned off if the CLI/ODBC option DB2ESTIMATE is set to a
value other than zero.

Deferred prepare can also be set using the DEFERREDPREPARE DB2
CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on page 138
for more information.

Note: This is an IBM defined extension.

 Chapter 5. Functions 595

SQLSetStmtAttr

SQL_ATTR_EARLYCLOSE (DB2 CLI v5)

Specifies whether or not the temporary cursor on the server can be
automatically closed, without closing the cursor on the client, when the last
record is sent to the client.

¹ SQL_EARLYCLOSE_OFF = Do not close the temporary cursor on the
server early.

¹ SQL_EARLYCLOSE_ON = Close the temporary cursor on the server
early (default).

This saves the CLI/ODBC driver a network request by not issuing the
statement to explicitly close the cursor because it knows that it has
already been closed.

Having this option on will speed up applications that make use of
many small result sets.

The EARLYCLOSE feature is not used if either:
– The statement disqualifies for blocking.
– The cursor type is anything other than

SQL_CURSOR_FORWARD_ONLY.

The early close feature can also be set using the EARLYCLOSE DB2
CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on page 138
for more information.

Note: This is an IBM defined extension.

SQL_ATTR_ENABLE_AUTO_IPD (DB2 CLI v5)

A 32-bit integer value that specifies whether automatic population of the
IPD is performed:

¹ SQL_TRUE = Turns on automatic population of the IPD after a call to
SQLPrepare().

¹ SQL_FALSE = Turns off automatic population of the IPD after a call to
SQLPrepare().

The default value of the statement attribute
SQL_ATTR_ENABLE_AUTO_IPD is equal to the value of the connection
attribute SQL_ATTR_AUTO_IPD.

If the connection attribute SQL_ATTR_ AUTO_IPD is SQL_FALSE, the
statement attribute SQL_ATTR_ENABLE_AUTO_IPD cannot be set to
SQL_TRUE.

SQL_ATTR_FETCH_BOOKMARK_PTR (DB2 CLI v5)

A pointer that points to a binary bookmark value. When SQLFetchScroll()

is called with fFetchOrientation equal to SQL_FETCH_BOOKMARK, DB2
CLI picks up the bookmark value from this field. This field defaults to a null
pointer.

596 CLI Guide and Reference

SQLSetStmtAttr

SQL_ATTR_IMP_PARAM_DESC (DB2 CLI v5)

The handle to the IPD. The value of this attribute is the descriptor allocated
when the statement was initially allocated. The application cannot set this
attribute.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_IMP_ROW_DESC (DB2 CLI v5)

The handle to the IRD. The value of this attribute is the descriptor allocated
when the statement was initially allocated. The application cannot set this
attribute.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_KEYSET_SIZE (DB2 CLI v5)

A 32-bit integer value that specifies the number of rows in the keyset for a
keyset-driven cursor. If the keyset size is 0 (the default), the cursor is fully
keyset-driven. If the keyset size is greater than 0, the cursor is mixed
(keyset-driven within the keyset and dynamic outside of the keyset). The
default keyset size is 0.

If the specified size exceeds the maximum keyset size, DB2 CLI
substitutes that size and returns SQLSTATE 01S02 (Option value
changed).

SQLFetchScroll() returns an error if the keyset size is greater than 0 and
less than the rowset size.

SQL_ATTR_MAX_LENGTH (DB2 CLI v2)

A 32-bit integer value corresponding to the maximum amount of data that
can be retrieved from a single character or binary column. If data is
truncated because the value specified for SQL_MAX_LENGTH is less than
the amount of data available, a SQLGetData() call or fetch will return
SQL_SUCCESS instead of returning SQL_SUCCESS_WITH_INFO and
SQLSTATE 01004 (Data Truncated). The default value for vParam is 0; 0
means that DB2 CLI will attempt to return all available data for character or
binary type data.

SQL_ATTR_MAX_ROWS (DB2 CLI v2)

A 32-bit integer value corresponding to the maximum number of rows to
return to the application from a query. The default value for vParam is 0; 0
means all rows are returned.

SQL_ATTR_METADATA_ID (DB2 CLI v5)

A 32-bit integer value that determines how the string arguments of catalog
functions are treated.

¹ SQL_TRUE, the string argument of catalog functions are treated as
identifiers. The case if not significant. For non-delimited strings, DB2

 Chapter 5. Functions 597

SQLSetStmtAttr

CLI removes any trailing spaces, and the string is folded to upper
case. For delimited strings, DB2 CLI removes any leading or trailing
spaces, and takes whatever is between the delimiters literally. If one of
these arguments is set to a null pointer, the function returns
SQL_ERROR and SQLSTATE HY009 (Invalid use of null pointer).

¹ SQL_FALSE , the string arguments of catalog functions are not treated
as identifiers. The case is significant. They can either contain a string
search pattern or not, depending on the argument.

This is the default value.

The TableType argument of SQLTables(), which takes a list of values, is
not affected by this attribute.

SQL_ATTR_NODESCRIBE (DB2 CLI v2)

This statement attribute is no longer required for DB2 CLI version 5 and
later. Now that DB2 CLI uses deferred prepare by default, there is no need
for the functionality of SQLSetColAttributes(). See “Deferred Prepare now
on by Default” on page 649 for more details.

A 32-bit integer which specifies whether DB2 CLI should automatically
describe the column attributes of the result set or wait to be informed by
the application via SQLSetColAttributes().

Note: This is an IBM defined extension.

SQL_ATTR_NOSCAN (DB2 CLI v2)

A 32-bit integer value that specified whether DB2 CLI will scan SQL strings
for escape clauses. The two permitted values are:

¹ SQL_NOSCAN_OFF - SQL strings are scanned for escape clause
sequences. This is the default.

¹ SQL_NOSCAN_ON - SQL strings are not scanned for escape clauses.
Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never uses vendor
escape sequences in the SQL strings that it sends. This will eliminate
some of the overhead processing associated with scanning.

SQL_ATTR_PARAM_BIND_OFFSET_PTR (DB2 CLI v5)

A 32-bit integer * value that points to an offset added to pointers to change
binding of dynamic parameters. If this field is non-null, DB2 CLI
dereferences the pointer, adds the dereferenced value to each of the
deferred fields in the descriptor record (SQL_DESC_DATA_PTR,
SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR),
and uses the new pointer values when binding. It is set to null by default.

The bind offset is always added directly to the SQL_DESC_DATA_PTR,
SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR
fields. If the offset is changed to a different value, the new value is still
added directly to the value in the descriptor field. The new offset is not
added to the field value plus any earlier offsets.

598 CLI Guide and Reference

SQLSetStmtAttr

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR
field in the APD header.

SQL_ATTR_PARAM_BIND_TYPE (DB2 CLI v5)

A 32-bit integer value that indicates the binding orientation to be used for
dynamic parameters.

This field is set to SQL_PARAMETER_BIND_BY_COLUMN (the default)
to select column-wise binding.

To select row-wise binding, this field is set to the length of the structure or
an instance of a buffer that will be bound to a set of dynamic parameters.
This length must include space for all of the bound parameters and any
padding of the structure or buffer to ensure that when the address of a
bound parameter is incremented with the specified length, the result will
point to the beginning of the same parameter in the next set of parameters.
When using the sizeof operator in ANSI C, this behavior is guaranteed.

Setting this statement attribute sets the SQL_DESC_ BIND_TYPE field in
the APD header.

SQL_ATTR_PARAM_OPERATION_PTR (DB2 CLI v5)

A 16-bit unsigned integer * value that points to an array of 16-bit unsigned
integer values used to ignore a parameter during execution of a SQL
statement. Each value is set to either SQL_PARAM_PROCEED (for the
parameter to be executed) or SQL_PARAM_IGNORE (for the parameter to
be ignored).

A set of parameters can be ignored during processing by setting the status
value in the array pointed to by SQL_DESC_ARRAY_STATUS_PTR in the
APD to SQL_PARAM_IGNORE. A set of parameters is processed if its
status value is set to SQL_PARAM_PROCEED, or if no elements in the
array are set.

This statement attribute can be set to a null pointer, in which case DB2 CLI
does not return parameter status values. This attribute can be set at any
time, but the new value is not used until the next time SQLExecDirect() or
SQLExecute() is called.

Setting this statement attribute sets the
SQL_DESC_ARRAY_STATUS_PTR field in the APD.

SQL_ATTR_PARAM_STATUS_PTR (DB2 CLI v5)

A 16-bit unsigned integer * value that points to an array of UWORD values
containing status information for each row of parameter values after a call
to SQLExecute() or SQLExecDirect(). This field is required only if
PARAMSET_SIZE is greater than 1.

The status values can contain the following values:

¹ SQL_PARAM_SUCCESS: The SQL statement was successfully
executed for this set of parameters.

 Chapter 5. Functions 599

SQLSetStmtAttr

¹ SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was
successfully executed for this set of parameters; however, warning
information is available in the diagnostics data structure.

¹ SQL_PARAM_ERROR: There was an error in processing this set of
parameters. Additional error information is available in the diagnostics
data structure.

¹ SQL_PARAM_UNUSED: This parameter set was unused, possibly due
to the fact that some previous parameter set caused an error that
aborted further processing.

¹ SQL_PARAM_DIAG_UNAVAILABLE: DB2 CLI treats arrays of
parameters as a monolithic unit and so does not generate this level of
error information.

This statement attribute can be set to a null pointer, in which case DB2 CLI
does not return parameter status values. This attribute can be set at any
time, but the new value is not used until the next time SQLFetch(),
SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the
SQL_DESC_ARRAY_STATUS_PTR field in the IPD header.

SQL_ATTR_PARAMOPT_ATOMIC (DB2 CLI v2)

This is a 32-bit integer value which determines, when SQLParamOptions()

has been used to specify multiple values for parameter markers, whether
the underlying processing should be done via ATOMIC or NOT-ATOMIC
Compound SQL. The possible values are:

¹ SQL_ATOMIC_YES - The underlying processing makes use of
ATOMIC Compound SQL. This is the default.

¹ SQL_ATOMIC_NO - The underlying processing makes use of
NON-ATOMIC Compound SQL.

ATOMIC Compound SQL is not possible with: DB2 for common server
prior to Version 2.1 or DRDA servers. Specifying SQL_ATOMIC_YES
when connected to one of the above servers results in an error
(SQLSTATE is S1C00).

SQL_ATTR_PARAMS_PROCESSED_PTR (DB2 CLI v5)

A 32-bit unsigned integer * record field that points to a buffer in which to
return the current row number. As each row of parameters is processed,
this is set to the number of that row. No row number will be returned if this
is a null pointer.

Setting this statement attribute sets the
SQL_DESC_ROWS_PROCESSED_PTR field in the IPD header.

SQL_ATTR_PARAMSET_SIZE (DB2 CLI v5)

A 32-bit unsigned integer value that specifies the number of values for
each parameter. If SQL_ATTR_PARAMSET_SIZE is greater than 1,
SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

600 CLI Guide and Reference

SQLSetStmtAttr

SQL_DESC_OCTET_LENGTH_PTR of the APD point to arrays. The
cardinality of each array is equal to the value of this field.

Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in
the APD header.

SQL_ATTR_QUERY_TIMEOUT (DB2 CLI v2)

A 32-bit integer value that is the number of seconds to wait for an SQL
statement to execute between returning to the application. DB2 CLI only
supports the value of 0 except on Windows 3.1; 0 means there is no time
out.

Note: On Windows 3.1, this option can be set and used to terminate long
running queries. If this is specified, the underlying Windows 3.1
connectivity code will display a dialog box to inform the user that
the specified number of seconds have elapsed and prompt the user
to continue or interrupt the query.

This option is not valid for platforms other than Windows 3.1,
S1C00 is returned.

SQL_ATTR_RETRIEVE_DATA (DB2 CLI v2)

A 32-bit integer value:

¹ SQL_RD_ON = SQLFetchScroll() and in DB2 CLI Version 5 and later,
SQLFetch(), retrieve data after it positions the cursor to the specified
location. This is the default.

¹ SQL_RD_OFF = SQLFetchScroll() and in DB2 CLI Version 5 and
later, SQLFetch(), do not retrieve data after it positions the cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can
verify if a row exists or retrieve a bookmark for the row without incurring
the overhead of retrieving rows.

SQL_ATTR_ROW_ARRAY_SIZE (DB2 CLI v5)

A 32-bit integer value that specifies the number of rows in the rowset. This
is the number of rows returned by each call to SQLFetch() or
SQLFetchScroll(). The default value is 1.

If the specified rowset size exceeds the maximum rowset size supported by
the data source, DB2 CLI substitutes that value and returns SQLSTATE
01S02 (Option value changed).

This option can be specified for an open cursor and can also be set
through the RowsetSize argument in SQLSetScrollOptions().

Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in
the ARD header.

SQL_ATTR_ROW_BIND_OFFSET_PTR (DB2 CLI v5)

A 32-bit integer * value that points to an offset added to pointers to change
binding of column data. If this field is non-null, DB2 CLI dereferences the
pointer, adds the dereferenced value to each of the deferred fields in the

 Chapter 5. Functions 601

SQLSetStmtAttr

descriptor record (SQL_DESC_DATA_PTR,
SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR),
and uses the new pointer values when binding. It is set to null by default.

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR
field in the ARD header.

SQL_ATTR_ROW_BIND_TYPE (DB2 CLI v5)

A 32-bit integer value that sets the binding orientation to be used when
SQLFetch() or SQLFetchScroll() is called on the associated statement.
Column-wise binding is selected by supplying the defined constant
SQL_BIND_BY_COLUMN in *ValuePtr. Row-wise binding is selected by
supplying a value in *ValuePtr specifying the length of a structure or an
instance of a buffer into which result columns will be bound.

The length specified in *ValuePtr must include space for all of the bound
columns and any padding of the structure or buffer to ensure that when the
address of a bound column is incremented with the specified length, the
result will point to the beginning of the same column in the next row.
When using the sizeof operator with structures or unions in ANSI C, this
behavior is guaranteed.

Column-wise binding is the default binding orientation for SQLFetch() and
SQLFetchScroll().

Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in
the ARD header.

SQL_ATTR_ROW_NUMBER (DB2 CLI v5)

A 32-bit integer value that is the number of the current row in the entire
result set. If the number of the current row cannot be determined or there
is no current row, DB2 CLI returns 0.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_ROW_OPERATION_PTR (DB2 CLI v5)

A 16-bit unsigned integer * value that points to an array of UDWORD
values used to ignore a row during a bulk operation using SQLSetPos().
Each value is set to either SQL_ROW_PROCEED (for the row to be
included in the bulk operation) or SQL_ROW_IGNORE (for the row to be
excluded from the bulk operation).

This statement attribute can be set to a null pointer, in which case DB2 CLI
does not return row status values. This attribute can be set at any time, but
the new value is not used until the next time SQLFetch(),
SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the
SQL_DESC_ARRAY_STATUS_PTR field in the ARD.

602 CLI Guide and Reference

SQLSetStmtAttr

SQL_ATTR_ROW_STATUS_PTR (DB2 CLI v5)

A 16-bit unsigned integer * value that points to an array of UWORD values
containing row status values after a call to SQLFetch() or
SQLFetchScroll(). The array has as many elements as there are rows in
the rowset.

This statement attribute can be set to a null pointer, in which case DB2 CLI
does not return row status values. This attribute can be set at any time, but
the new value is not used until the next time SQLFetch(),
SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the
SQL_DESC_ARRAY_STATUS_PTR field in the IRD header.

SQL_ATTR_ROWS_FETCHED_PTR (DB2 CLI v5)

A 32-bit unsigned integer * value that points to a buffer in which to return
the number of rows fetched after a call to SQLFetch() or SQLFetchScroll().

Setting this statement attribute sets the
SQL_DESC_ROWS_PROCESSED_PTR field in the IRD header.

This attribute is mapped by DB2 CLI to the RowCountPtr array in a call to
SQLExtendedFetch().

SQL_ATTR_ROWSET_SIZE (DB2 CLI v2)

DB2 CLI applications should now use SQLFetchScroll() rather than
SQLExtendedFetch(). Applications should also use the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE to set the number of rows in the rowset.
See “Specifying the Rowset Returned from the Result Set” on page 52 for
more information.

A 32-bit integer value that specifies the number of rows in the rowset. A
rowset is the array of rows returned by each call to SQLExtendedFetch().
The default value is 1, which is equivalent to making a single SQLFetch().
This option can be specified even when the cursor is open and becomes
effective on the next SQLExtendedFetch() call.

SQL_ATTR_SIMULATE_CURSOR (DB2 CLI v5)

This statement attribute is not supported by DB2 CLI but is defined by
ODBC.

A 32-bit integer value that specifies whether drivers that simulate
positioned update and delete statements guarantee that such statements
affect only one single row.

SQL_ATTR_STMTTXN_ISOLATION (DB2 CLI v2) See SQL_ATTR_TXN_ISOLATION
below.

SQL_ATTR_TXN_ISOLATION (DB2 CLI v2)

A 32-bit integer value that sets the transaction isolation level for the current
StatementHandle.

 Chapter 5. Functions 603

SQLSetStmtAttr

This option cannot be set if there is an open cursor on this statement
handle (SQLSTATE 24000).

The value SQL_ATTR_STMTTXN_ISOLATION is synonymous with
SQL_ATTR_TXN_ISOLATION. However, since the ODBC Driver Manager
will reject the setting of SQL_ATTR_TXN_ISOLATION as a statement
option, ODBC applications that need to set translation isolation level on a
per statement basis must use the manifest constant
SQL_ATTR_STMTTXN_ISOLATION instead on the SQLSetStmtAttr() call.

The transaction isolation level can also be set using the TXNISOLATION
DB2 CLI/ODBC configuration keyword. See “Configuring db2cli.ini” on
page 138 for more information.

Note: It is an IBM extension to allow setting this option at the statement
level.

SQL_ATTR_USE_BOOKMARKS (DB2 CLI v5)

A 32-bit integer value that specifies whether an application will use
bookmarks with a cursor:

¹ SQL_UB_OFF = Off (the default)

¹ SQL_UB_VARIABLE = An application will use bookmarks with a
cursor, and DB2 CLI will provide variable-length bookmarks if they are
supported.

To use bookmarks with a cursor, the application must specify this option
with the SQL_UB_VARIABLE value before opening the cursor.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 170 (Page 1 of 2). SQLSetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr, or the
value specified in *ValuePtr was invalid because of SQL
constraints or requirements, so DB2 CLI substituted a similar
value. (Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to
which it was connected failed before the function completed
processing.

604 CLI Guide and Reference

SQLSetStmtAttr

Table 170 (Page 2 of 2). SQLSetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. The Attribute was SQL_ATTR_CONCURRENCY,
SQL_ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR,
or SQL_ATTR_USE_BOOKMARKS and the cursor was open.

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support
execution or completion of the function.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string attribute.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY, SQL_
ATTR_CURSOR_TYPE, SQL_ ATTR_SIMULATE_CURSOR, or
SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

HY017 Invalid use of an
automatically allocated
descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or
SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was
SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was
an implicitly allocated descriptor handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (DB2 CLI returns this SQLSTATE only for connection
and statement attributes that accept a discrete set of values, such
as SQL_ATTR_ACCESS_MODE or
SQL_ATTR_ASYNC_ENABLE. For all other connection and
statement attributes, the driver must verify the value specified in
*ValuePtr.)

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not
SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of DB2 CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the DB2 CLI
driver, but was not supported by the data source.

 Chapter 5. Functions 605

SQLSetStmtAttr

 Restrictions
None.

 Example
See SQLFetchScroll().

 References
¹ “SQLCancel - Cancel Statement” on page 232
¹ “SQLGetConnectAttr - Get Current Attribute Setting” on page 359
¹ “SQLGetStmtAttr - Get Current Setting of a Statement Attribute” on page 453
¹ “SQLSetConnectAttr - Set Connection Attributes” on page 519
¹ “SQLSetDescField - Set a Single Field of a Descriptor Record” on page 544

606 CLI Guide and Reference

SQLSetStmtOption

SQLSetStmtOption - Set Statement Option

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLSetStmtOption() has been deprecated and replaced
with SQLSetStmtAttr(); see “SQLSetStmtAttr - Set Options Related to a
Statement” on page 589 for more information.

Although this version of DB2 CLI continues to support SQLSetStmtOption(), we
recommend that you begin using SQLSetStmtAttr() in your DB2 CLI programs
so that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

 SQLSetStmtOption(

 hstmt,

 SQL_ROWSET_SIZE,

 RowSetSize);

for example, would be rewritten using the new function as:

 SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) RowSetSize,

 0);

 Chapter 5. Functions 607

SQLSpecialColumns

SQLSpecialColumns - Get Special (Row Identifier) Columns

 Purpose

SQLSpecialColumns() returns unique row identifier information (primary key or unique
index) for a table. The information is returned in an SQL result set, which can be
retrieved using the same functions that are used to process a result set generated by a
query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLSpecialColumns(SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT IdentifierType, /* fColType */

SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3, /* cbTableName */

SQLUSMALLINT Scope, /* fScope */

SQLUSMALLINT Nullable); /* fNullable */

 Function Arguments

Table 171 (Page 1 of 2). SQLSpecialColumns Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle

SQLUSMALLINT IdentifierType Input Type of unique row identifier to return. Only the
following type is supported:

 ¹ SQL_BEST_ROWID

Returns the optimal set of column(s) which can
uniquely identify any row in the specified table.

Note: For compatibility with ODBC applications,
SQL_ROWVER is also recognized, but not
supported; therefore, if SQL_ROWVER is
specified, an empty result will be returned.

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part table name. This must be
a null pointer or a zero length string.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be a set to 0.

SQLCHAR * SchemaName Input Schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * TableName Input Table name.

SQLSMALLINT NameLength3 Input Length of NameLength3.

608 CLI Guide and Reference

SQLSpecialColumns

Table 171 (Page 2 of 2). SQLSpecialColumns Arguments

Data Type Argument Use Description

SQLUSMALLINT Scope Input Minimum required duration for which the unique row
identifier will be valid.

Scope must be one of the following:

¹ SQL_SCOPE_CURROW: The row identifier is
guaranteed to be valid only while positioned on
that row. A later re-select using the same row
identifier values may not return a row if the row
was updated or deleted by another transaction.

¹ SQL_SCOPE_TRANSACTION: The row
identifier is guaranteed to be valid for the
duration of the current transaction.

¹ SQL_SCOPE_SESSION: The row identifier is
guaranteed to be valid for the duration of the
connection.

The duration over which a row identifier value is
guaranteed to be valid depends on the current
transaction isolation level. For information and
scenarios involving isolation levels, refer to the IBM
DB2 SQL Reference.

SQLUSMALLINT Nullable Input Determines whether to return special columns that
can have a NULL value.

Must be one of the following:

¹ SQL_NO_NULLS - The row identifier column set
returned cannot have any NULL values.

¹ SQL_NULLABLE - The row identifier column set
returned may include columns where NULL
values are permitted.

 Usage
If multiple ways exist to uniquely identify any row in a table (i.e. if there are multiple
unique indexes on the specified table), then DB2 CLI will return the best set of row
identifier column set based on its internal criterion.

If there is no column set which allow any row in the table to be uniquely identified, an
empty result set is returned.

The unique row identifier information is returned in the form of a result set where each
column of the row identifier is represented by one row in the result set. Table 172 on
page 610 shows the order of the columns in the result set returned by
SQLSpecialColumns(), sorted by SCOPE.

Since calls to SQLSpecialColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

 Chapter 5. Functions 609

SQLSpecialColumns

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_COLUMN_NAME_LEN to determine the actual length of the
COLUMN_NAME column supported by the connected DBMS.

Although new columns may be added and the names of the columns changed in future
releases, the position of the current columns will not change.

Table 172 (Page 1 of 2). Columns Returned By SQLSpecialColumns

Column
Number/Name Data Type Description

1 SCOPE SMALLINT The duration for which the name in COLUMN_NAME is
guaranteed to point to the same row. Valid values are the
same as for the Scope argument: Actual scope of the row
identifier. Contains one of the following values:

 ¹ SQL_SCOPE_CURROW
 ¹ SQL_SCOPE_TRANSACTION
 ¹ SQL_SCOPE_SESSION

Refer to Scope in Table 171 on page 608 for a description of
each value.

2 COLUMN_NAME VARCHAR(128)
not NULL

Name of the column that is (or part of) the table's primary key.

3 DATA_TYPE SMALLINT not
NULL

SQL data type of the column. One of the values in the
Symbolic SQL Data Type column in Table 3 on page 28.

4 TYPE_NAME VARCHAR(128)
not NULL

DBMS character string represented of the name associated
with DATA_TYPE column value.

5 COLUMN_SIZE INTEGER If the DATA_TYPE column value denotes a character or
binary string, then this column contains the maximum length
in bytes; if it is a graphic (DBCS) string, this is the number of
double byte characters for the parameter.

For date, time, timestamp data types, this is the total number
of bytes required to display the value when converted to
character.

For numeric data types, this is either the total number of
digits, or the total number of bits allowed in the column,
depending on the value in the NUM_PREC_RADIX column in
the result set.

See also Table 197 on page 686.

6 BUFFER_LENGTH INTEGER The maximum number of bytes for the associated C buffer to
store data from this column if SQL_C_DEFAULT were
specified on the SQLBindCol(), SQLGetData() and
SQLBindParameter() calls. This length does not include any
null-terminator. For exact numeric data types, the length
accounts for the decimal and the sign.

See also Table 199 on page 688.

610 CLI Guide and Reference

SQLSpecialColumns

Table 172 (Page 2 of 2). Columns Returned By SQLSpecialColumns

Column
Number/Name Data Type Description

7 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data types
where scale is not applicable. See also Table 198 on
page 687.

8 PSEUDO_COLUMN SMALLINT Indicates whether or not the column is a pseudo-column DB2
Call Level Interface will only return:

 ¹ SQL_PC_NOT_PSEUDO

DB2 DBMSs do not support pseudo columns. ODBC
applications may receive the following values from other
non-IBM RDBMS servers:

 ¹ SQL_PC_UNKNOWN
 ¹ SQL_PC_PSEUDO

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 173 (Page 1 of 2). SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. TableName is null.

 Chapter 5. Functions 611

SQLSpecialColumns

Table 173 (Page 2 of 2). SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the length arguments was less than 0, but not
equal to SQL_NTS.

The value of one of the length arguments exceeded the maximum
length supported by the DBMS for that qualifier or name.

HY097 Column type out of range. An invalid IdentifierType value was specified.

HY098 Scope type out of range. An invalid Scope value was specified.

HY099 Nullable type out of range. An invalid Nullable values was specified.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example

612 CLI Guide and Reference

SQLSpecialColumns

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_index_columns(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

/* ... */

rc = SQLSpecialColumns(hstmt, SQL_BEST_ROWID, NULL, 0, schema, SQL_NTS,

tablename, SQL_NTS, SQL_SCOPE_CURROW, SQL_NULLABLE);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,

 &column_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) type_name.s, 129,

 &type_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 5, SQL_C_LONG, (SQLPOINTER) & precision,

 sizeof(precision), &precision_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT, (SQLPOINTER) & scale,

 sizeof(scale), &scale_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Primary Key or Unique Index for %s.%s\n", schema, tablename);

/* Fetch each row, and display */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {

printf(" %s, %s ", column_name.s, type_name.s);

if (precision_ind != SQL_NULL_DATA) {

printf(" (%ld", precision);

} else {

 printf("(\n");

 }

if (scale_ind != SQL_NULL_DATA) {

printf(", %d)\n", scale);

} else {

 printf(")\n");

 }

 }

 References
¹ “SQLColumns - Get Column Information for a Table” on page 255
¹ “SQLStatistics - Get Index and Statistics Information For A Base Table” on

page 614
¹ “SQLTables - Get Table Information” on page 625

 Chapter 5. Functions 613

SQLStatistics

SQLStatistics - Get Index and Statistics Information For A Base Table

 Purpose

SQLStatistics() retrieves index information for a given table. It also returns the
cardinality and the number of pages associated with the table and the indexes on the
table. The information is returned in a result set, which can be retrieved using the same
functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLStatistics (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3, /* cbTableName */

SQLUSMALLINT Unique, /* fUnique */

SQLUSMALLINT Reserved); /* fAccuracy */

 Function Arguments

Table 174 (Page 1 of 2). SQLStatistics Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3 part table name. This must be
a null pointer or a zero length string.

SQLSMALLINT NameLength1 Input Length of NameLength1. This must be set to 0.

SQLCHAR * SchemaName Input Schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * TableName Input Table name.

SQLSMALLINT NameLength3 Input Length of NameLength3.

SQLUSMALLINT Unique Input Type of index information to return:

 ¹ SQL_INDEX_UNIQUE

Only unique indexes will be returned.
 ¹ SQL_INDEX_ALL

All indexes will be returned.

614 CLI Guide and Reference

SQLStatistics

Table 174 (Page 2 of 2). SQLStatistics Arguments

Data Type Argument Use Description

SQLUSMALLINT Reserved Input Indicate whether the CARDINALITY and PAGES
columns in the result set contain the most current
information:

¹ SQL_ENSURE : This value is reserved for future
use, when the application requests the most up
to date statistics information. New applications
should not use this value . Existing applications
specifying this value will receive the same results
as SQL_QUICK.

¹ SQL_QUICK : Statistics which are readily
available at the server are returned. The values
may not be current, and no attempt is made to
ensure that they be up to date.

 Usage
SQLStatistics() returns two types of information:

¹ Statistics information for the table (if it is available):

– when the TYPE column in the table below is set to SQL_TABLE_STAT, the
number of rows in the table and the number of pages used to store the table.

– when the TYPE column indicates an index, the number of unique values in the
index, and the number of pages used to store the indexes.

¹ Information about each index, where each index column is represented by one row
of the result set. The result set columns are given in Table 175 on page 616 in the
order shown; the rows in the result set are ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME and ORDINAL_POSITION.

Since calls to SQLStatistics() in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results saved
rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_OWNER_SCHEMA_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

 Chapter 5. Functions 615

SQLStatistics

Table 175 (Page 1 of 2). Columns Returned By SQLStatistics

Column Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
not NULL

Name of the table.

4 NON_UNIQUE SMALLINT Indicates whether the index prohibits duplicate values:

¹ SQL_TRUE if the index allows duplicate values.
¹ SQL_FALSE if the index values must be unique.
¹ NULL is returned if the TYPE column indicates that this row

is SQL_TABLE_STAT (statistics information on the table
itself).

5 INDEX_QUALIFIER VARCHAR(128) The string that would be used to qualify the index name in the
DROP INDEX statement. Appending a period (.) plus the
INDEX_NAME results in a full specification of the index.

6 INDEX_NAME VARCHAR(128) The name of the index. If the TYPE column has the value
SQL_TABLE_STAT, this column has the value NULL.

7 TYPE SMALLINT not
NULL

Indicates the type of information contained in this row of the
result set:

¹ SQL_TABLE_STAT - Indicates this row contains statistics
information on the table itself.

¹ SQL_INDEX_CLUSTERED - Indicates this row contains
information on an index, and the index type is a clustered
index.

¹ SQL_INDEX_HASHED - Indicates this row contains
information on an index, and the index type is a hashed
index.

¹ SQL_INDEX_OTHER - Indicates this row contains
information on an index, and the index type is other than
clustered or hashed.

8 ORDINAL_POSITION SMALLINT Ordinal position of the column within the index whose name is
given in the INDEX_NAME column. A NULL value is returned for
this column if the TYPE column has the value of
SQL_TABLE_STAT.

9 COLUMN_NAME VARCHAR(128) Name of the column in the index. A NULL value is returned for
this column if the TYPE column has the value of
SQL_TABLE_STAT.

10 ASC_OR_DESC CHAR(1) Sort sequence for the column; "A" for ascending, "D" for
descending. NULL value is returned if the value in the TYPE
column is SQL_TABLE_STAT.

11 CARDINALITY INTEGER ¹ If the TYPE column contains the value SQL_TABLE_STAT,
this column contains the number of rows in the table.

¹ If the TYPE column value is not SQL_TABLE_STAT, this
column contains the number of unique values in the index.

¹ A NULL value is returned if information is not available from
the DBMS.

616 CLI Guide and Reference

SQLStatistics

Table 175 (Page 2 of 2). Columns Returned By SQLStatistics

Column Number/Name Data Type Description

12 PAGES INTEGER ¹ If the TYPE column contains the value SQL_TABLE_STAT,
this column contains the number of pages used to store the
table.

¹ If the TYPE column value is not SQL_TABLE_STAT, this
column contains the number of pages used to store the
indexes.

¹ A NULL value is returned if information is not available from
the DBMS.

13 FILTER_CONDITION VARCHAR(128) If the index is a filtered index, this is the filter condition. Since
DATABASE 2 servers do not support filtered indexes, NULL is
always returned. NULL is also returned if TYPE is
SQL_TABLE_STAT.

For the row in the result set that contains table statistics (TYPE is set to
SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,
INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC are set
to NULL. If the CARDINALITY or PAGES information cannot be determined, then NULL
is returned for those columns.

Note: The accuracy of the information returned in the SQLERRD(3) and SQLERRD(4)
fields is dependent on many factors such as the use of parameter markers and
expressions within the statement. The main factor which can be controlled is the
accuracy of the database statistics. That is, when the statistics were last
updated, (for example, for DB2 Universal Database, the last time the RUNSTATS

command was run).

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 176 (Page 1 of 2). SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

 Chapter 5. Functions 617

SQLStatistics

Table 176 (Page 2 of 2). SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. TableName is null.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HY100 Uniqueness option type out of
range.

An invalid Unique value was specified.

HY101 Accuracy option type out of
range.

An invalid Reserved value was specified.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Restrictions
None.

 Example

618 CLI Guide and Reference

SQLStatistics

/* From CLI sample browser.c */

/* ... */

SQLRETURN list_stats(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

/* ... */

rc = SQLStatistics(hstmt, NULL, 0, schema, SQL_NTS,

tablename, SQL_NTS, SQL_INDEX_UNIQUE, SQL_QUICK);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_SHORT,

&non_unique, 2, &non_unique_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 6, SQL_C_CHAR,

index_name.s, 129, &index_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 7, SQL_C_SHORT,

&type, 2, &type_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 9, SQL_C_CHAR,

column_name.s, 129, &column_name.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 11, SQL_C_LONG,

&cardinality, 4, &card_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 12, SQL_C_LONG,

&pages, 4, &pages_ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Statistics for %s.%s\n", schema, tablename);

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

{ if (type != SQL_TABLE_STAT)

{ printf(" Column: %-18s Index Name: %-18s\n",

 column_name.s, index_name.s);

 }

 else

 { printf(" Table Statistics:\n");

 }

if (card_ind != SQL_NULL_DATA)

printf(" Cardinality = %13ld", cardinality);

 else

printf(" Cardinality = (Unavailable)");

 Chapter 5. Functions 619

SQLStatistics

if (pages_ind != SQL_NULL_DATA)

printf(" Pages = %13ld\n", pages);

 else

printf(" Pages = (Unavailable)\n");

 }

 References
¹ “SQLColumns - Get Column Information for a Table” on page 255
¹ “SQLSpecialColumns - Get Special (Row Identifier) Columns” on page 608

620 CLI Guide and Reference

SQLTablePrivileges

SQLTablePrivileges - Get Privileges Associated With A Table

 Purpose

SQLTablePrivileges() returns a list of tables and associated privileges for each table.
The information is returned in an SQL result set, which can be retrieved using the same
functions that are used to process a result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLTablePrivileges (SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3); /* cbTableName */

 Function Arguments

Table 177. SQLTablePrivileges Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * szTableQualifier Input Catalog qualifier of a 3 part table name. This must be
a null pointer or a zero length string.

SQLSMALLINT cbTableQualifier Input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName Input Buffer that may contain a pattern-value to qualify the
result set by schema name.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * TableName Input Buffer that may contain a pattern-value to qualify the
result set by table name.

SQLSMALLINT NameLength3 Input Length of TableName.

Note that the SchemaName and TableName arguments accept search pattern. For
more information about valid search patterns, refer to “Input Arguments on Catalog
Functions” on page 49.

 Usage
The results are returned as a standard result set containing the columns listed in the
following table. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and PRIVILEGE. If multiple privileges are associated with any given
table, each privilege is returned as a separate row.

 Chapter 5. Functions 621

SQLTablePrivileges

The granularity of each privilege reported here may or may not apply at the column
level; for example, for some data sources, if a table can be updated, every column in
that table can also be updated. For other data sources, the application must call
SQLColumnPrivileges() to discover if the individual columns have the same table
privileges.

Since calls to SQLTablePrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_OWNER_SCHEMA_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 178. Columns Returned By SQLTablePrivileges

Column
Number/Name Data Type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema contain TABLE_NAME.

3 TABLE_NAME VARCHAR(128)
not NULL

The name of the table.

4 GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

5 GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is granted.

6 PRIVILEGE VARCHAR(128) The table privilege. This may be one of the following strings:

 ¹ ALTER
 ¹ CONTROL
 ¹ INDEX
 ¹ DELETE
 ¹ INSERT
 ¹ REFERENCES
 ¹ SELECT
 ¹ UPDATE

7 IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant the privilege to
other users.

This can be "YES", "NO" or NULL.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

622 CLI Guide and Reference

SQLTablePrivileges

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 179. SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. TableName is null.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

 Chapter 5. Functions 623

SQLTablePrivileges

 Restrictions
None.

 Example
/* From CLI sample browser.c */

/* ... */

SQLRETURN list_table_privileges(SQLHANDLE hstmt,

SQLCHAR * schema,

SQLCHAR * tablename

) {

 SQLRETURN rc;

struct { SQLINTEGER ind; /* Length & Indicator variable */

SQLCHAR s[129]; /* String variable */

} grantor, grantee, privilege;

struct { SQLINTEGER ind;

 SQLCHAR s[4];

 }is_grantable;

SQLCHAR cur_name[512] = ""; /* Used when printing the */

SQLCHAR pre_name[512] = ""; /* Result set */

/* Create Table Privilges result set */

rc = SQLTablePrivileges(hstmt, NULL, 0, schema, SQL_NTS,

 tablename, SQL_NTS);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,

 &grantor.ind);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Continue Binding, then fetch and display result set */

 References
¹ “SQLTables - Get Table Information” on page 625

624 CLI Guide and Reference

SQLTables

SQLTables - Get Table Information

 Purpose

SQLTables() returns a list of table names and associated information stored in the
system catalog of the connected data source. The list of table names is returned as a
result set, which can be retrieved using the same functions that are used to process a
result set generated by a query.

Specification: DB2 CLI 2.1 ODBC 1.0

 Syntax
SQLRETURN SQLTables (SQLHSTMT StatementHandle, /* hstmt */

SQLCHAR FAR *CatalogName, /* szCatalogName */

SQLSMALLINT NameLength1, /* cbCatalogName */

SQLCHAR FAR *SchemaName, /* szSchemaName */

SQLSMALLINT NameLength2, /* cbSchemaName */

SQLCHAR FAR *TableName, /* szTableName */

SQLSMALLINT NameLength3, /* cbTableName */

SQLCHAR FAR *TableType, /* szTableType */

SQLSMALLINT NameLength4); /* cbTableType */

 Function Arguments

Table 180 (Page 1 of 2). SQLTables Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Buffer that may contain a pattern-value to qualify the
result set. Catalog is the first part of a 3 part table
name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT NameLength1 Input Length of CatalogName. This must be set to 0.

SQLCHAR * SchemaName Input Buffer that may contain a pattern-value to qualify the
result set by schema name.

SQLSMALLINT NameLength2 Input Length of SchemaName.

SQLCHAR * TableName Input Buffer that may contain a pattern-value to qualify the
result set by table name.

SQLSMALLINT NameLength3 Input Length of TableName.

 Chapter 5. Functions 625

SQLTables

Table 180 (Page 2 of 2). SQLTables Arguments

Data Type Argument Use Description

SQLCHAR * TableType Input Buffer that may contain a value list to qualify the
result set by table type.

The value list is a list of upper-case
comma-separated single quoted values for the table
types of interest. Valid table type identifiers may
include: TABLE, VIEW, SYSTEM TABLE, ALIAS,
SYNONYM. If TableType argument is a NULL pointer
or a zero length string, then this is equivalent to
specifying all of the possibilities for the table type
identifier.

If SYSTEM TABLE is specified, then both system
tables and system views (if there are any) are
returned.

SQLSMALLINT NameLength4 Input Size of NameLength4

Note that the CatalogName, SchemaName, and TableName arguments accept search
patterns. For more information about valid search patterns, refer to “Input Arguments on
Catalog Functions” on page 49.

 Usage
Table information is returned in a result set where each table is represented by one row
of the result set. To determine the type of access permitted on any given table in the
list, the application can call SQLTablePrivileges(). Otherwise, the application must be
able to handle a situation where the user selects a table for which SELECT privileges
are not granted.

To support obtaining just a list of schemas, the following special semantics for the
SchemaName argument can be applied: if SchemaName is a string containing a single
percent (%) character, and CatalogName and TableName are empty strings, then the
result set contains a list of valid schemas in the data source.

If TableType is a single percent character (%) and CatalogName, SchemaName, and
TableName are empty strings, then the result set contains a list of valid table types for
the data source. (All columns except the TABLE_TYPE column contain NULLs.)

If TableType is not an empty string, it must contain a list of upper-case,
comma-separated values for the types of interest; each value may be enclosed in
single quotes or unquoted. For example, "'TABLE','VIEW'" or "TABLE,VIEW". If the data
source does not support or does not recognize a specified table type, nothing is
returned for that type.

Sometimes, an application calls SQLTables() with null pointers for some or all of the
SchemaName, TableName, and TableType arguments so that no attempt is made to
restrict the result set returned. For some data sources that contain a large quantity of
tables, views, aliases, etc., this scenario maps to an extremely large result set and very

626 CLI Guide and Reference

SQLTables

long retrieval times. Three mechanisms are introduced to help the end user reduce the
long retrieval times: three keywords (SCHEMALIST, SYSCHEMA, TABLETYPE) can be
specified in the CLI initialization file to help restrict the result set when the application
has supplied null pointers for either or both of SchemaName and TableType. These
keywords and their usage are discussed in detail in “Configuration Keywords” on
page 144. If the application did not specify a null pointer for SchemaName or
TableType then the associated keyword specification in the CLI initialization file is
ignored.

The result set returned by SQLTables() contains the columns listed in Table 181 in the
order given. The rows are ordered by TABLE_TYPE, TABLE_CAT, TABLE_SCHEM,
and TABLE_NAME.

Since calls to SQLTables() in many cases map to a complex and thus expensive query
against the system catalog, they should be used sparingly, and the results saved rather
than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2 names
are less than 128, the application can choose to always set aside 128 characters (plus
the null-terminator) for the output buffer, or alternatively, call SQLGetInfo() with the
SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_OWNER_SCHEMA_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to determine
respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, TABLE_NAME,
and COLUMN_NAME columns supported by the connected DBMS.

Although new columns may be added and the names of the existing columns changed
in future releases, the position of the current columns will not change.

Table 181. Columns Returned By SQLTables

Column Name Data Type Description

TABLE_CAT VARCHAR(128) The name of the catalog containing TABLE_SCHEM. This column
contains a NULL value.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, or view, or alias, or synonym.

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the TABLE_NAME column.
It can have the string values 'TABLE', 'VIEW', 'INOPERATIVE
VIEW', 'SYSTEM TABLE', 'ALIAS', or 'SYNONYM'.

REMARKS VARCHAR(254) Contains the descriptive information about the table.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_ERROR

 Chapter 5. Functions 627

SQLTables

 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 182. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003
08S01

Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY008 Operation canceled. Asynchronous processing was enabled for the StatementHandle.
The function was called and before it completed execution,
SQLCancel() was called on the StatementHandle. Then the
function was called again on the StatementHandle.

The function was called and, before it completed execution,
SQLCancel() was called on the StatementHandle from a different
thread in a multithread application.

HY009 Invalid argument value. TableName is null.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called for
the StatementHandle and was still executing when this function
was called.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. Timeouts are only supported on non-multitasking
systems such as Windows 3.1 and Macintosh System 7. The
timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetConnectAttr().

628 CLI Guide and Reference

SQLTables

 Restrictions
None.

 Example
Also, refer to “Querying Environment Information Example” on page 35.

 Chapter 5. Functions 629

SQLTables

/* From CLI sample browser.c */

/* ... */

SQLRETURN init_tables(SQLHANDLE hstmt) {

SQLRETURN rc ;

 SQLUSMALLINT rowstat[MAX_TABLES];

 SQLUINTEGER pcrow;

/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

(SQLPOINTER) MAX_TABLES,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set Size of One row, Used for Row-Wise Binding Only */

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_BIND_TYPE,

(SQLPOINTER) sizeof(table_info),

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

(SQLPOINTER) rowstat,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

(SQLPOINTER) &pcrow,

 0

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

printf("Enter Search Pattern for Table Schema Name:\n");

 gets((char *)table->schem);

printf("Enter Search Pattern for Table Name:\n");

 gets((char *)table->name);

rc = SQLTables(hstmt, NULL, 0, table->schem, SQL_NTS,

table->name, SQL_NTS, NULL, 0);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) table[0].schem, 129,

 &table[0].schem_l);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) table[0].name, 129,

630 CLI Guide and Reference

SQLTables

 &table[0].name_l);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 4, SQL_C_CHAR, (SQLPOINTER) table[0].type, 129,

 &table[0].type_l);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLBindCol(hstmt, 5, SQL_C_CHAR, (SQLPOINTER) table[0].remarks, 255,

 &table[0].remarks_l);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Now fetch the result set */

 References
¹ “SQLColumns - Get Column Information for a Table” on page 255
¹ “SQLTablePrivileges - Get Privileges Associated With A Table” on page 621

 Chapter 5. Functions 631

SQLTransact

SQLTransact - Transaction Management

Status of this Function in DB2 CLI Version 5
Note:

In ODBC version 3, SQLTransact() has been deprecated and replaced with
SQLEndTran(); see “SQLEndTran - End Transactions of a Connection” on
page 294 for more information.

Although this version of DB2 CLI continues to support SQLTransact(), we
recommend that you begin using SQLEndTran() in your DB2 CLI programs so
that they conform to the latest standards.

See “DB2 CLI Functions Deprecated for Version 5” on page 646 for more
information on this and other deprecated functions.

Migrating to the New Function

The statement:

SQLTransact(henv, hdbc, SQL_COMMIT);

for example, would be rewritten using the new function as:

SQLEndTran(SQL_HANDLE_ENV, henv, SQL_COMMIT);

 Purpose

SQLTransact() commits or rolls back the current transaction in the specified connection.
SQLTransact() can also be used to request that a commit or rollback be issued for each
of the connections associated with the environment.

All changes to the database performed on the connection since connect time or the
previous call to SQLTransact() (whichever is the most recent) are committed or rolled
back.

If a transaction is active on a connection, the application must call SQLTransact()

before it can disconnect from the database.

Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

 Syntax
SQLRETURN SQLTransact (SQLHENV EnvironmentHandle, /* henv */

SQLHDBC ConnectionHandle, /* hdbc */

SQLUSMALLINT Type); /* fType */

632 CLI Guide and Reference

SQLTransact

 Function Arguments

Table 183. SQLTransact Arguments

Data Type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

If ConnectionHandle is a valid connection handle,
EnvironmentHandle is ignored.

SQLHDBC ConnectionHandle input Database connection handle.

If ConnectionHandle is set to SQL_NULL_HDBC,
then EnvironmentHandle must contain the
environment handle that the connection is associated
with.

SQLUSMALLINT Type input The desired action for the transaction. The value for
this argument must be one of:

 ¹ SQL_COMMIT
 ¹ SQL_ROLLBACK

 Usage
In DB2 CLI, a transaction begins implicitly when an application that does not already
have an active transaction, issues SQLPrepare(), SQLExecDirect(), SQLExecDirect(),
SQLGetTypeInfo(), or one of the catalog functions. The transaction ends when the
application calls SQLTransact().

If the input connection handle is SQL_NULL_HDBC and the environment handle is
valid, then a commit or rollback will be issued on each of the open connections in the
environment. SQL_SUCCESS is returned only if success is reported on all the
connections. If the commit or rollback fails for one or more of the connections,
SQLTransact() will return SQL_ERROR. To determine which connection(s) failed the
commit or rollback operation, the application needs to call SQLError() on each
connection handle in the environment.

It is important to note that unless the connection option SQL_ATTR_CONNECTTYPE
has been set to SQL_COORDINATED_TRANS (to indicate coordinated distributed
transactions), there is no attempt to provide coordinated global transaction with
one-phase or two-phase commit protocols.

Completing a transaction has the following effects:

¹ Prepared SQL statements (via SQLPrepare()) survive transactions; they can be
executed again without first calling SQLPrepare().

¹ Cursor positions are maintained after a commit unless one or more of the following
is true:

– the server is SQL/DS
– the SQL_ATTR_CURSOR_HOLD statement attribute for this handle is set to

SQL_CURSOR_HOLD_OFF.

 Chapter 5. Functions 633

SQLTransact

– The CURSORHOLD keyword in the DB2 CLI initialization file is set so that
cursor with hold is not in effect and this has not been overridden by resetting
the SQL_ATTR_CURSOR_HOLD statement attribute.

– The CURSORHOLD keyword is present in a the connection string on the
SQLDriverConnect() call that set up this connection, and it indicates cursor
with hold is not in effect, and this has not been overridden by resetting the
SQL_ATTR_CURSOR_HOLD statement attribute.

If the cursor position is not maintained due to any one of the above circumstances,
the cursor is closed and all pending results are discarded.

If the cursor position is maintained after a commit, the application must issue a
fetch to re-position the cursor (to the next row) before continuing with processing of
the remaining result set.

To determine whether cursor position will be maintained after a commit, call
SQLGetInfo() with the SQL_CURSOR_COMMIT_BEHAVIOR information type.

¹ Cursors are closed after a rollback and all pending results are discarded.

¹ Statement handles are still valid after a call to SQLTransact(), and can be reused
for subsequent SQL statements or de-allocated by calling SQLFreeStmt().

¹ Cursor names, bound parameters, and column bindings survive transactions.

If no transaction is currently active on the connection, calling SQLTransact() has no
effect on the database server and returns SQL_SUCCESS.

SQLTransact() may fail while executing the COMMIT or ROLLBACK due to a loss of
connection. In this case the application may be unable to determine whether the
COMMIT or ROLLBACK has been processed, and a database administrator's help may
be required. Refer to the DBMS product information for more information on transaction
logs and other transaction management tasks.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 184 (Page 1 of 2). SQLTransact SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The ConnectionHandle was not in a connected state.

08007 Connection failure during
transaction.

The connection associated with the ConnectionHandle failed
during the execution of the function during the execution of the
function and it cannot be determined whether the requested
COMMIT or ROLLBACK occurred before the failure.

58004 Unexpected system failure. Unrecoverable system error.

634 CLI Guide and Reference

SQLTransact

Table 184 (Page 2 of 2). SQLTransact SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function.

HY012 Invalid transaction code. The value specified for the argument Type was neither
SQL_COMMIT not SQL_ROLLBACK.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “SQLEndTran - End Transactions of a Connection” on page 294.

 References
¹ “SQLSetStmtAttr - Set Options Related to a Statement” on page 589
¹ “SQLGetInfo - Get General Information” on page 402

 Chapter 5. Functions 635

SQLTransact

636 CLI Guide and Reference

Appendix A. Programming Hints and Tips

This section provides some hints and tips to help improve DB2 CLI and ODBC
application performance and portability.

Setting Common Connection Attributes
The following connection attributes may need to be set (or considered) by DB2 CLI
applications.

 SQL_ATTR_AUTOCOMMIT
Generally this attribute should be set to SQL_AUTOCOMMIT_OFF, since each commit
request can generate extra network flow. Only leave SQL_AUTOCOMMIT on if
specifically needed.

Note: The default is SQL_AUTOCOMMIT_ON.

 SQL_ATTR_TXN_ISOLATION
This connection attribute determines the isolation level at which the connection or
statement will operate. The isolation level determines the level of concurrency possible,
and the level of locking required to execute the statement. Applications need to choose
an isolation level that maximizes concurrency, yet ensures data consistency.

Refer to the SQL Reference for a complete discussion of isolation levels and their
effect.

Setting Common Statement Attributes
The following statement attributes may need to be set by DB2 CLI applications.

 SQL_ATTR_MAX_ROWS
Setting this attribute limits the number of rows returned to the application. This can be
used to avoid an application from being overwhelmed with a very large result set
generated inadvertently, especially for applications on clients with limited memory
resources.

Note: The full result set is still generated at the server, DB2 CLI will only fetch up to
SQL_ATTR_MAX_ROWS rows.

 SQL_ATTR_CURSOR_HOLD
This statement attribute determines if the cursor for this statement will be defined with
the equivalent of the CURSOR WITH HOLD clause.

Resources associated with statement handles can be better utilized by DB2 CLI if the
statements that do not require CURSOR WITH HOLD are set to
SQL_CURSOR_HOLD_OFF.

 Copyright IBM Corp. 1993, 1997 637

Note: Many ODBC applications expect a default behavior where the cursor position is
maintained after a commit.

 SQL_ATTR_TXN_ISOLATION
DB2 CLI allows the isolation level to be set at the statement level, (however, we
recommend that the isolation level be set at the connection level). The isolation level
determines the level of concurrency possible, and the level of locking required to
execute the statement.

Resources associated with statement handles can be better utilized by DB2 CLI if
statements are set to the required isolation level, rather than leaving all statements at
the default isolation level. This should only be attempted with a thorough understanding
of the locking and isolation levels of the connected DBMS. Refer to the SQL Reference
for a complete discussion of isolation levels and their effect.

Applications should use the minimum isolation level possible to maximize concurrency.

Comparing Binding and SQLGetData
Generally it is more efficient to bind application variables or file references to result sets
than using SQLGetData(). Use SQLGetData(), or preferable, the LOB functions, when
the data value is large variable-length data that:

¹ Must be received in pieces, or
¹ May not need to be retrieved (dependent on another application action)

Increasing Transfer Efficiency
The efficiency of transferring of character data between bound application variables and
DB2 CLI can be increased if the pcbValue and rgbValue arguments are contiguous in
memory. (This allows DB2 CLI to fetch both values with one copy operation.)

For example:

struct { SQLINTEGER pcbValue;

 SQLCHAR rgbValue[MAX_BUFFER];

 } column;

Limiting Use of Catalog Functions
In general, try to limit the number of times the catalog functions are called, and limit the
number of rows returned.

The number of catalog function calls can be reduced by calling the function once, and
storing the information at the application.

The number of rows returned can be limited by specifying a:

¹ Schema name or pattern for all catalog functions
¹ Table name or pattern for all catalog functions other than SQLTables

638 CLI Guide and Reference

¹ Column name or pattern for catalog functions that return detailed column
information.

Remember, although an application may be developed and tested against a data
source with hundreds of tables, it may be ran against a database with thousands of
tables. Plan ahead.

Close any open cursors (call SQLFreeStmt() with SQL_CLOSE) for statement handles
used for catalog queries to release any locks against the catalog tables. Outstanding
locks on the catalog tables can prevent CREATE, DROP or ALTER statements from
executing.

Using Column Names of Function Generated Result Sets
The column names of the result sets generated by catalog and information functions
may change as the ODBC and CLI standards evolve. The position of the columns
however, will not change.

Any application dependency should be based on the column position (icol parameter)
and not the name.

Loading DB2 CLI Specific Functions From ODBC Applications
Call SQLGetInfo() with the SQL_DRIVER_HSTMT option to obtain the DB2 CLI
statement handle (HSTMT).

The DB2 CLI functions can then be called directly from the shared library or DLL, using
an operating system call and passing the HTSMT argument. (The ODBC driver
manager maintains its own set of statement handles which are mapped to actual driver
handles on each call. When a DB2 CLI function is called directly, this mapping must be
done explicitly by calling SQLGetInfo().

Making use of Dynamic SQL Statement Caching
Note: This section is only relevant when connecting to a server that does not have a

global statement cache. The application should not make use of dynamic SQL
statement caching when connection to a server that has a global dynamic
statement cache, such as DB2 Universal Database. See “Making use of the
Global Dynamic Statement Cache” on page 640 for more details.

To make use of dynamic caching, (when the server caches a prepared version of a
dynamic SQL statement), the application must use the same statement handle for the
same SQL statement.

For example, if an application routinely uses a set of 10 SQL statements, 10 statement
handles should be allocated and associated with each of those statements. Do not free
the statement handle while the statement may still be executed. (The transaction can
still be rolled back or committed without affecting any of the prepared statements). The

 Appendix A. Programming Hints and Tips 639

application would continue to prepare and execute the statements in a normal manner,
DB2 CLI will determine if the prepare is actually needed.

To reduce function call overhead, the statement can be prepared once, and executed
repeatedly throughout the application.

Note: If the server does not support dynamic caching, DB2 CLI will internally issue
prepares for the statement when necessary.

Making use of the Global Dynamic Statement Cache
DB2 Universal Database version 5 or later has a global dynamic statement cache
stored on the server. This cache is used to store the most popular access plans for
prepared SQL statements.

Before each statement is prepared, the server automatically searches this cache to see
if an access plan has already been created for this exact SQL statement (by this
application or any other application or client). If so, the server does not need to
generate a new access plan, but will use the one in the cache instead. There is now no
need for the application to cache connections at the client unless connecting to a server
that does not have a global dynamic statement cache (such as DB2 Common Server
v2). For information on caching connections at the client see “Caching Statement
Handles on the Client” on page 648 in the Migration section.

Optimizing Insertion and Retrieval of Data
The methods described in “Using Arrays to Input Parameter Values” on page 63 and
“Retrieving a Result Set into an Array” on page 70 use compound SQL to optimize the
network flow.

Use these methods as much as possible.

Optimizing for Large Object Data
Use LOB data types and the supporting functions for long strings whenever possible.
Unlike LONG VARCHAR, LONG VARBINARY, and LONG VARGRAPHIC types, LOB
data values can use LOB locators and functions such as SQLGetPostion() and
SQLGetSubString() to manipulate large data values at the server.

LOB values can also be fetched directly to a file, and LOB parameter values can be
read directly from a file. This saves the overhead of the application transferring data via
application buffers.

Case Sensitivity of Object Identifiers
All database object (tables, views, columns etc.) identifiers are stored in the catalog
tables in upper case unless the identifier is delimited. If an identifier is created using a
delimited name, the exact case of the name is stored in the catalog tables.

640 CLI Guide and Reference

When an identifier is referenced within an SQL statement, it is treated as case
insensitive unless it is delimited.

For example, if the following two tables are created,

CREATE TABLE MyTable (id INTEGER)

CREATE TABLE "YourTable" (id INTEGER)

two tables will exist, MYTABLE and YourTable

Both of the following statements are equivalent:

SELECT * FROM MyTable (id INTEGER)

SELECT * FROM MYTABLE (id INTEGER)

The second statement below will fail with TABLE NOT FOUND since there is no table
named YOURTABLE:

SELECT * FROM "YourTable" (id INTEGER) // executes without error

SELECT * FROM YourTable (id INTEGER) // error, table not found

All DB2 CLI catalog function arguments treat the names of objects as case sensitive,
that is, as if each name was delimited.

Using SQLDriverConnect Instead of SQLConnect
Using SQLDriverConnect() allows the application to rely on the dialog box provided by
DB2 CLI to prompt the user for the connection information.

If an application uses its own dialog boxes to query the connect information, the user
should be able to specify additional connect options in the connection string. The string
should also be stored and used as a default on subsequent connections.

Implementing an SQL Governor
Each time an SQL statement is prepared, the server estimates the cost of the
statement. The application can then decide whether to continue with the execution of
the statement.

This estimate can be obtained from the SQLCA (SQLERRD(4)), and used by the
application directly or the SQL_DB2ESTIMATE connect option can be set to a threshold
value. If the estimated cost of any statement exceeds the threshold, DB2 CLI displays a
dialog box, with a warning and a prompt to continue or cancel the execution of the
statement.

The suggested threshold value is 60000, although in general the application should
allow the end user to set the threshold value.

Note: The estimate is only an estimate of the total resources used by the server to
execute the statement, it does not indicate the time required to execute the
statement.

 Appendix A. Programming Hints and Tips 641

An estimate of the number of rows in the result is also available from the SQLCA (
SQLERRD(3)), and could also be used by the application to restrict large queries.

Note: The accuracy of the information returned in the SQLERRD(3) and SQLERRD(4)
fields is dependent on many factors such as the use of parameter markers and
expressions within the statement. The main factor which can be controlled is the
accuracy of the database statistics. That is, when the statistics were last
updated, (for example, for DB2 Universal Database, the last time the RUNSTATS

command was run.)

Turning Off Statement Scanning
DB2 CLI by default, scans each SQL statement searching for vendor escape clause
sequences.

If the application does not generate SQL statements that contain vendor escape clause
sequences (“Using Vendor Escape Clauses” on page 123), then the SQL_NO_SCAN
statement option should be set to SQL_NOSCAN_ON at the connection level so that
DB2 CLI does not perform a scan for vendor escape clauses.

Holding Cursors Across Rollbacks
Applications that need to deal with complex transaction management issues, may
benefit from establishing multiple concurrent connections to the same database. Since
each connection in DB2 CLI has its own transaction scope, any actions performed on
one connection will not affect the transactions of other connections.

For example, all open cursors within a transaction get closed if a problem causes the
transaction to be rolled back. An application can use multiple connections to the same
database to separate statements with open cursors; since the cursors are in separate
transactions, a rollback on one statement does not affect the cursors of the other
statements.

Using multiple connections may mean bringing some data across to the client on one
connection, and then sending it back to the server on the other connection. For
example:

Suppose in connection #1 you are accessing Large Object columns and have
created LOB locators that map to portions of large object values.
If in connection #2, you wish to use (e.g. insert) the portion of the LOB values
represented by the LOB locators, you would have to move the LOB values in
connection #1 first to the application, and then pass them to the tables that you are
working with in connection #2. This is because connection #2 does not know
anything about the LOB locators in connection #1.
If you only had one connection, then you could just use the LOB locators directly.
However, you would lose the LOB locators as soon as you rolled back your
transaction.

642 CLI Guide and Reference

Preparing Compound SQL Sub-Statements
In order to maximize efficiency of the compound statement, sub-statements should be
prepared before the BEGIN COMPOUND statement, and then executed within the
compound statement.

This also simplifies error handling since prepare errors can be handled outside of the
compound statement.

Casting User Defined Types (UDTs)
If a parameter marker is used in a predicate of a query statement, and the parameter is
a user defined type, the statement must use a CAST function to cast either the
parameter marker or the UDT.

For example, if the following type and table is defined:

 CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS

 CREATE TABLE CUSTOMER (

Cust_Num CNUM NOT NULL,

First_Name CHAR(30) NOT NULL,

Last_Name CHAR(30) NOT NULL,

Phone_Num CHAR(20) WITH DEFAULT,

 PRIMARY KEY (Cust_Num))

This statement would fail since the parameter marker cannot be of type CNUM and
thus the comparison fails due to incompatible types: SELECT first_name, last_name,
phone_num FROM customer where cust_num = ?

Casting the column to integer (its base SQL type), allows the comparison to work since
a parameter can be provided for type integer:

 SELECT first_name, last_name, phone_num from customer

where cast(cust_num as integer) = ?

Alternatively the parameter marker can be cast to INTEGER and the server can then
apply the INTEGER to CNUM conversion:

 SELECT first_name, last_name, phone_num FROM customer

where cust_num = cast(? as integer)

Refer to the custrep.c sample file for a full working example.

Refer to the SQL Reference for more information about:

¹ Parameter markers, refer to the PREPARE statement
¹ casting, refer to the CAST function.

 Appendix A. Programming Hints and Tips 643

Use Multiple Threads rather than Asynchronous Execution
The asyncronous SQL model should only be used on non-threaded operating systems
such a Windows 3.1. If your application cannot make use of multi-threading then see
“Asynchronous Execution of CLI” on page 118.

Asynchronous SQL should NOT be used on platforms that support multiple threads.

“Writing Multi-Threaded Applications” on page 40 describes why and how to make use
of multiple threads with DB2 CLI. Some common uses include:

¹ A thread other than the one executing can be used to call SQLCancel() (to cancel
a long running query for example).

¹ Most GUI based applications use threads in order to ensure that user interaction
can be handled on a higher priority thread than other application tasks, such as
accessing the database.

¹ Executing DB2 CLI functions on multiple threads can improve throughput.

Using Deferred Prepare to Reduce Network Flow
In DB2 CLI Version 5, deferred prepare is on by default. The PREPARE request is not
sent to the server until the corresponding execute request is issued. This minimizes
network flow and improves performance.

See “Deferred Prepare now on by Default” on page 649 for complete details.

644 CLI Guide and Reference

 Appendix B. Migrating Applications

This section covers what has changed since the previous version of DB2 CLI, any
incompatibilities and how to deal with them.

Summary of Changes
Version 5 of DB2 Universal Database contains new features which can affect the way
you create DB2 CLI applications. The SQL Reference contains a complete summary of
changes.

For a summary of DB2 CLI functions, and which version they were added, refer to “DB2
CLI Function Summary” on page 177.

There are many changes to DB2 CLI for version 5. Some of the highlights are listed
below:

¹ A number of DB2 CLI functions have been deprecated. See “DB2 CLI Functions
Deprecated for Version 5” on page 646 for more information.

¹ Some functions have been renamed (SQLColAttributes() is now
SQLColAttribute(), for example).

¹ The three functions used to allocate handles (SQLAllocConnect(), SQLAllocEnv(),
and SQLAllocStmt()) have been reduced to one multipurpose function
(SQLAllocHandle()).

¹ A number of new DB2 CLI functions have been added to support the new features
now available in DB2 CLI and ODBC (descriptors, scrollable cursors, etc...).

DB2 CLI also continues to contain extensions to access DB2 features that can not be
accessed by ODBC applications. For example:

¹ Support for random access of Large Objects (LOBs), LOB locators and file
reference buffers (sequential access is also possible).

¹ SQLCA access for detailed DB2 specific diagnostic information

¹ Control over null termination of output strings.

 Incompatibilities
All Version 1 and Version 2 applications are binary compatible, meaning they will run
with a DB2 Universal Database Version 5 product without change. In some cases, the
DB2 CLI initialization file (db2cli.ini) may require customization in order for the
applications to run. For more information about this file and the various keywords, refer
to “Configuring db2cli.ini” on page 138.

If applications are recompiled, some minor changes may be required, these changes
can be minimized by setting the DB2CLI_VER define, refer to “Setting the
DB2CLI_VER Define” on page 654 for more information. The environment attribute

 Copyright IBM Corp. 1993, 1997 645

SQL_ATTR_ODBC_VERSION can also be used to minimize the changes required. See
the attribute description in “SQLSetEnvAttr - Set Environment Attribute” on page 573
for more information.

Changes from Version 2.1.1 to 5.0.0

DB2 CLI Functions Deprecated for Version 5
Each DB2 CLI function that existed in version 2 but was deprecated in version 5 is still
listed in the function reference, with an indication of its state at the beginning of the
function description.

Although DB2 CLI version 5 continues to support all of the deprecated functions, we
recommend that you begin using the new functions in your DB2 CLI programs so that
they conform to the latest standards.

In some cases the features and arguments of the deprecated function and the
replacement function are very similar (SQLColAttributes() and SQLColAttribute()). In
these cases the description of the deprecated function has been removed.

In other cases the description of the deprecated function has been left to assist in
understanding the conversion to the new function.

The following table lists each of the deprecated function, the type of description given,
and the replacement function(s).

Table 185 (Page 1 of 2). Deprecated Functions and their Replacements

Deprecated Function Description Replacement Function

SQLAllocConnect Removed SQLAllocHandle()

SQLAllocEnv() Removed SQLAllocHandle()

SQLAllocStmt() Removed SQLAllocHandle()

SQLColAttributes() Removed SQLColAttribute()

SQLError() Unchanged SQLGetDiagField() and
SQLGetDiagRec()

SQLExtendedFetch() Unchanged SQLFetchScroll()

SQLFreeConnect() Unchanged SQLFreeHandle()

SQLFreeEnv() Unchanged SQLFreeHandle()

SQLGetConnectOption() Removed SQLGetConnectAttr()

SQLGetStmtOption() Removed SQLGetStmtAttr()

SQLParamOptions() Unchanged SQLSetStmtAttr()

SQLSetConnectOption () Removed SQLSetConnectAttr()

SQLSetParam() Removed SQLBindParameter()

SQLSetStmtOption () Removed SQLSetStmtAttr ()

646 CLI Guide and Reference

Table 185 (Page 2 of 2). Deprecated Functions and their Replacements

Deprecated Function Description Replacement Function

SQLTransact() Unchanged SQLEndTran()

Replacement of the Pseudo Catalog Table for Stored Procedures
DB2 Universal Database version 5 introduced two system catalog views used to store
information about all stored procedures on the server. Before version 5, DB2 CLI used
the pseudo catalog table for stored procedure registration. By default, DB2 CLI will use
the new system catalog views. If the application expects to use the pseudo catalog
table then the CLI/ODBC configuration keyword PATCH1 should be set to 262144.

In order for SQLProcedureColumns() and SQLProcedures() to return information about
stored procedures (from the pseudo catalog table) when the application is connected to
a version 2 DB2 common server, the pseudo catalog table for stored procedure
registration must have already been created and populated. This is the table named
PROCEDURES in the DB2CLI schema. For further information on this pseudo catalog
table, refer to and Appendix H, “Pseudo Catalog Table for Stored Procedure
Registration” on page 705. It is imperative that the exact rules in Appendix H, “Pseudo
Catalog Table for Stored Procedure Registration” on page 705 are followed when
populating this table, or the SQLProcedureColumns() and SQLProcedures() calls will
result in an error (SQLSTATE 42601).

Setting a Subset of Statement Attributes using SQLSetConnectAttr()
The SQLSetConnectAttr() function can only be used to set a subset of statement
attributes. This is being phased out, and new DB2 CLI should not rely on this feature. It
was offered using SQLSetConnectOption() in versions of DB2 CLI prior to version 5, but
it was then removed and the function was deprecated.

To support DB2 CLI applications written before version 5, SQLSetConnectAttr()

currently behaves as SQLSetConnectOption() did using the option values defined in
version 2 (the '_ATTR_' has been added for version 5):

 ¹ SQL_ATTR_ASYNC_ENABLE
 ¹ SQL_ATTR_BIND_TYPE
 ¹ SQL_ATTR_CONCURRENCY
 ¹ SQL_ATTR_CURSOR_HOLD
 ¹ SQL_ATTR_CURSOR_TYPE
 ¹ SQL_ATTR_MAX_LENGTH
 ¹ SQL_ATTR_MAX_ROWS
 ¹ SQL_ATTR_NODESCRIBE
 ¹ SQL_ATTR_NOSCAN
 ¹ SQL_ATTR_PARAMOPT_ATOMIC
 ¹ SQL_ATTR_QUERY_TIMEOUT
 ¹ SQL_ATTR_RETRIEVE_DATA
 ¹ SQL_ATTR_ROWSET_SIZE
 ¹ SQL_ATTR_STMTTXN_ISOLATION
 ¹ SQL_ATTR_TXN_ISOLATION

 Appendix B. Migrating Applications 647

Caching Statement Handles on the Client
Previous versions of DB2 did not have the global statement cache. They did, however,
provide dynamic statement caching at the server. In DB2 CLI terms this means that for
a given statement handle, once a statement has been prepared, it does not need to be
prepared again (even after commits or rollbacks), so long as the statement handle is
not freed. Applications that repeatedly execute the same SQL statement across multiple
transactions, can save a significant amount of processing time and network traffic by:

1. Associating each such statement with its own statement handle, and

2. Preparing these statements once at the beginning of the application, then

3. Executing the statements as many times as is needed throughout the application.

This is not needed in DB2 Universal Database Version 5 and later because of the
global dynamic statement cache. Preparing the first statement would create the
package in the global cache. Each subsequent prepare request would find the first
access plan in the cache and use it right away.

If an application is connected to a server that does not support dynamic statement
caching across transaction boundaries, DB2 CLI will prepare each statement internally
as needed. This means the method described above can be used for all applications,
regardless of the RDBMS.

Changes to SQLColumns() Return Values
The following table lists the changes to the columns returned by SQLColumns() from
version 2.1.1 to version 5.

For the current values see Table 37 on page 256.

To have DB2 CLI behave at it did for version 2 (same column names and order), set
the DB2 CLI/ODBC configuration keyword PATCH2. See “How to Set CLI/ODBC
Configuration Keywords” on page 138 for more information on how to set this keyword.

Table 186. Changes to Columns Returned By SQLColumns

Version 2 Column Version 5 Column Change

14 DATETIME_CODE Removed for version 5 This information is no longer returned. It was
always NULL for version 2.

No version 2 equivalent 14 SQL_DATA_TYPE This information was not returned in version 2.

No version 2 equivalent 15 SQL_DATETIME_SUB This information was not returned in version 2.

15 CHAR_OCTET_LENGTH 16 CHAR_OCTET_LENGTH The column number has changed, but the
name and description remain the same.

16 ORDINAL_POSITION 17 ORDINAL_POSITION The column number has changed, but the
name and description remain the same.

17 IS_NULLABLE 18 IS_NULLABLE The column number has changed, but the
name and description remain the same.

648 CLI Guide and Reference

Changes to SQLProcedureColumns() Return Values
The following table lists the changes to the columns returned by
SQLProcedureColumns() from version 2.1.1 to version 5.

For the current values see Table 137 on page 498.

To have DB2 CLI behave at it did for version 2 (same column names and order), set
the DB2 CLI/ODBC configuration keyword PATCH2. See “How to Set CLI/ODBC
Configuration Keywords” on page 138 for more information on how to set this keyword.

Table 187. Changes to Columns Returned By SQLProcedureColumns

Version 2 Column Version 5 Column Change

14 ORDINAL_POSITION 18 ORDINAL_POSITION The column number has changed, but the name and
description remain the same.

Changes to the InfoTypes in SQLGetInfo()
Besides adding a number of new InfoTypes to SQLGetInfo(), the following version 2
values have been renamed for version 5:

Table 188. Changes to values used by SQLGetInfo()

Version 2 InfoType Version 5 InfoType

SQL_ACTIVE_CONNECTIONS SQL_MAX_DRIVER_CONNECTIONS

SQL_ACTIVE_STATEMENTS SQL_MAX_CONCURRENT_ACTIVITIES

SQL_MAX_OWNER_NAME_LEN SQL_MAX_SCHEMA_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN SQL_MAX_CATALOG_NAME_LEN

SQL_ODBC_SQL_OPT_IEF SQL_INTEGRITY

SQL_SCHEMA_TERM SQL_OWNER_TERM

SQL_OWNER_USAGE SQL_SCHEMA_USAGE

SQL_QUALIFIER_LOCATION SQL_CATALOG_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR SQL_CATALOG_NAME_SEPARATOR

SQL_QUALIFIER_TERM SQL_CATALOG_TERM

SQL_QUALIFIER_USAGE SQL_CATALOG_USAGE

Deferred Prepare now on by Default
In DB2 CLI Version 5, deferred prepare is on by default. The PREPARE request is not
sent to the server until the corresponding execute request is issued. The two requests
are then combined into one command/reply flow (instead of two) to minimize network
flow and to improve performance. This is of greatest benefit when the application
generates queries where the answer set is very small, and the overhead of separate
requests and replies is not spread across multiple blocks of query data. In an

 Appendix B. Migrating Applications 649

environment where a DB2 Connect or DDCS gateway is used, there is a greater
opportunity for cost reduction because four request and reply combinations are reduced
to two.

DB2 CLI Version 2 applications that expect the PREPARE to be executed as soon as it
requested may not operate as expected. (An application may, for instance, rely on the
row and cost estimates that are normally returned in the SQLERRD(3) and
SQLERRD(4) of the SQLCA of a prepare statement; with deferred prepare, these
values may become zeros.) To ensure these programs work as they did with Version 2,
the DB2 CLI/ODBC configuration keyword DEFERREDPREPARE can be set to disable
deferred prepare. See “DEFERREDPREPARE” on page 154 for more information.

The statement attribute SQL_ATTR_DEFERRED_PREPARE can also be used to force
DB2 CLI to prepare the statement as soon as it is issued. See the attribute in
“SQLSetStmtAttr - Set Options Related to a Statement” on page 589 for more
information.

In version 2, a DB2 CLI application could use the function SQLSetColAttributes() to
reduce network traffic by describing the result descriptor information for every column in
the result set. With deferred prepare this is no longer of any benefit, and the
SQLSetColAttributes() function has been deprecated. If your application does call this
function it will ignore all arguments, and will always return SQL_SUCCESS.

Changes from version 2.1.0 to 2.1.1

Stored Procedures that return multi-row result sets
Previous versions of DB2 CLI did not support multi-row result sets. Version 2.1.1
provides the ability to retrieve one or more result sets from a stored procedure call by
leaving one or more cursors open, each associated with a query, when the stored
procedure exists.

Data Conversion and Values for SQLGetInfo
DB2 CLI version 2.1.1 now supports a convert function defined by ODBC using vendor
escape clauses. This function will convert between chars (CHAR, VARCHAR, LONG
VARCHAR and CLOB), and DOUBLE (or FLOAT).

DB2 CLI version 2.1.0 returned zero for all SQL_CONVERT fInfoTypes using
SQLGetInfo(). Now that version 2.1.1 supports conversion, SQLGetInfo() returns a set
of bitmasks for the fInfoTypes that start with SQL_CONVERT_
(SQL_CONVERT_INTEGER for example) which can be used for comparison with the
bitmasks that start with SQL_CVT_ (SQL_CVT_CHAR for example).

In addition to the CONVERT function, DB2 CLI version 2.1.1 provides two new date
and time functions that can be accessed using the ODBC vendor escape clause
convention:

650 CLI Guide and Reference

JULIAN_DAY(day_expr)
Returns an integer corresponding to the number of days in date_exp relative to January
1, 4712 B.C.

SECONDS_SINCE_MIDNIGHT(time_expr)
Returns an integer corresponding to the number of seconds in time_expr relative to
midnight.

Changes from version 1.x to 2.1.0
The following describes the difference between version 2.1.0 and 1.x.

AUTOCOMMIT and CURSOR WITH HOLD Defaults
Previous versions of DB2 CLI did not support autocommit (each statement is a
transaction), and was thus equivalent to having AUTOCOMMIT set to off . DB2 CLI
Version 2.1 now supports autocommit, but in order to be consistent with ODBC, the
default autocommit behavior is on .

To enable existing DB2 CLI applications to run with the same behavior as previous
versions, set the AUTOCOMMIT keyword to 0. This keyword applies to all applications;
for this reason new applications should explicitly override the keyword and set the
autocommit connection option to the required value.

Support for specifying CURSOR WITH HOLD was also added in Version 2.1, with a
default of with hold on . Since this was not supported in previous versions, with hold
was effectively set off .

Although this change does not affect the behavior of applications as much as
autocommit, the CURSORHOLD keyword should be set to 0 (cursors are not
maintained after a commit). This keyword applies to all applications, for this reason new
applications should explicitly override the keyword and set the CURSORHOLD
statement option to the required value.

Graphic Data Type Values
The #define values

 ¹ SQL_GRAPHIC
 ¹ SQL_VARGRAPHIC
 ¹ SQL_LONGVARGRAPHIC

have been changed in Version 2.1 in order that they can be used with ODBC
applications. DB2 CLI will still accept the old values, but it is recommended that existing
applications that use these valued be recompiled.

These valued are defined in the sqlcli.h header file.

 Appendix B. Migrating Applications 651

 SQLSTATES
In previous versions, DB2 CLI returned the S1009 SQLSTATE instead of the more
explicit S1090 to S1110 series of SQLSTATES defined by ODBC.

As a result of X/Open also using this range of SQLSTATES, DB2 CLI Version 2.1 will
also return the more explicit SQLSTATES.

Mixing Embedded SQL, Without CONNECT RESET
DB2 CLI's Version 2.1 support of multiple connections may affect existing applications
that mix the use of embedded SQL and DB2 CLI.

If your application:

1. Connects to a database using embedded SQL (including using the command line
processor or Administrative APIs).

2. (Does NOT issue a reset).
3. Connect to a database using DB2 CLI

the second connect will fail since it is not same type of connection as the first connect.

The application must issue a CONNECT RESET before calling a DB2 CLI connect
function.

Note: An application should always explicitly reset a connection.

Use of VARCHAR FOR BIT DATA
Character data defined with the FOR BIT DATA clause is associated with a default C
buffer type of SQL_C_BINARY. If data is defined as FOR BIT DATA, it is transferred to:

¹ SQL_C_BINARY buffers unchanged

¹ SQL_C_CHAR buffers as a character representation of the hexadecimal value of
the data. Each byte is represented by two ASCII characters, (this means the
SQL_C_CHAR buffer must be double the size of the FOR BIT DATA string.)

Existing applications that explicitly use SQL_C_CHAR with data defined as FOR BIT
DATA, will get a different result and may receive only half of the original data. The
initialization keyword, BITDATA, can be set to 0 to force DB2 CLI to treat FOR BIT
DATA in the same was as previous versions.

User Defined Types in Predicates
Existing applications may be affected if tables are modified to make use of User
Defined Types.

If a parameter marker is used in a predicate of a query statement, and the parameter is
a user defined type, the statement must use a CAST function to cast either the
parameter marker or the UDT.

For example, if the following type and table is defined:

652 CLI Guide and Reference

 CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS

 CREATE TABLE CUSTOMER (

Cust_Num CNUM NOT NULL,

First_Name CHAR(30) NOT NULL,

Last_Name CHAR(30) NOT NULL,

Phone_Num CHAR(20) WITH DEFAULT,

 PRIMARY KEY (Cust_Num))

The following statement would fail since the parameter marker cannot be of type CNUM
and thus the comparison fails due to incompatible types:

 SELECT first_name, last_name, phone_num FROM customer

where cust_num = ?

Casting the column to integer (its base SQL type), allows the comparison to work since
a parameter can be provided for type integer:

 SELECT first_name, last_name, phone_num from customer

where cast(cust_num as integer) = ?

Alternatively the parameter marker can be cast to INTEGER. This informs the server of
the parameter marker's type and allows the default INTEGER to CNUM conversion to
be applied:

 SELECT first_name, last_name, phone_num FROM customer

where cust_num = cast(? as integer)

Refer to the custrep.c sample file for a full working example.

Refer to the SQL Reference for more information about:

¹ UDT, refer to CREATE DISTINCT TYPE
¹ Parameter markers, refer to the PREPARE statement
¹ casting, refer to the CAST function.

Data Conversion Values for SQLGetInfo
In versions prior to Version 2.1, DB2 CLI returned a set of bitmasks for the fInfoTypes
which started with SQL_CONVERT_ (for example, SQL_CONVERT_INTEGER).
fInfoTypes which where used with corresponding comparison bitmasks which started
with SQL_CVT_ (for example, SQL_CVT_CHAR).

Since this fInfoType is defined by ODBC to indicate supported conversion functions,
and these functions are not supported, DB2 CLI Version 2.1 now (correctly) returns
zero for all SQL_CONVERT fInfoTypes.

Function Prototype Changes
In order to better align with X/Open and ODBC, some DB2 CLI function arguments
have changed to unsigned data types, and two new types have been introduced,
SQLUINTEGER and SQLUSMALLINT.

 Appendix B. Migrating Applications 653

DB2 CLI applications prior to version 2.1 will generate complier errors for mismatched
function arguments when compiled with version 2.1 header files unless DB2CLI_VER is
defined, see “Setting the DB2CLI_VER Define” on page 654.

We recommend that existing source files eventually be modified to declare the
necessary arguments using the SQLUINTEGER and SQLUSMALLINT types.

Setting the DB2CLI_VER Define
 The DB2CLI_VER define allows the application to specify that the DB2 CLI header
files are to remain compatible with previous versions of DB2 CLI.

DB2CLI_VER must be set to a hex value either as a compile flag, or as a #define

before the DB2 CLI header files are included. For example, using the -D compiler flag:

 -DDB2CLI_VER=0x0110

sets the DB2CLI_VER to Version 1.1.

In Version 2.1, if DB2CLI_VER is not defined it defaults to 0x0210.

654 CLI Guide and Reference

Appendix C. DB2 CLI and ODBC

This appendix discusses the support provided by the DB2 ODBC driver, and how it
differs from DB2 CLI.

Figure 18 below compares DB2 CLI and the DB2 ODBC driver.

1. an ODBC driver under the ODBC Driver Manager

2. DB2 CLI, callable interface designed for DB2 specific applications.

CAE refers to all Client Application Enabler products. DB2 refers to all DB2 Universal
Database products.

ODBC Driver Manager
Environment

DB2 CLI
Environment

Application

ODBC Driver Manager

other
ODBC
driver

A

DBMS
A

DBMS
B

Gateway
B CAE

DDCS

DB2
Server

DB2
Server

DDCS

CAE

DB2
ODBC
driver

DB2 CLI
driver

Application

other
ODBC
driver

B

DB2 (MVS)
SQL/DS
SQL/400

Other DRDA
DBMS

Figure 18. DB2 CLI and ODBC

 Copyright IBM Corp. 1993, 1997 655

In an ODBC environment, the Driver Manager provides the interface to the application.
It also dynamically loads the necessary driver for the database server that the
application connects to. It is the driver that implements the ODBC function set, with the
exception of some extended functions implemented by the Driver Manager. In this
environment DB2 CLI conforms to level 2 of ODBC 2.0, and level 1 of ODBC 3.0. In
addition it also conforms to the following ODBC 3.0 level 2 interface conformance
items:

202 Dynamic parameters described using SQLDescribeParam
203 Support for input, output, and input/output parameters as well as result

values of stored procedures
205 Advanced information on the data dictionary from SQLColumnPriviledges,

SQLForeignKeys, and SQLTablePrivileges
207 Asynchronous execution of appropriate functions
209 SQL_ATTR_CONCURRENCY statement attribute can be set to at least

one value other than SQL_CONCUR_READ_ONLY
211 Default isolation level can be changed. Transactions can be executed with

the “serialized” level of isolation.

For ODBC application development, you must obtain an ODBC Software Development
Kit (from Microsoft for Microsoft platforms, and from Visigenic Software, Inc., for
non-Microsoft platforms.) When developing ODBC applications that may connect to
DB2 servers, use this book (for information on DB2 specific extensions and diagnostic
information) in conjunction with the ODBC 3.0 Software Development Kit and
Programmer's Reference.

In environments without an ODBC driver manager, DB2 CLI is a self sufficient driver
which supports a subset of the functions provided by the ODBC driver. Table 189
summarizes the two levels of support, and Table 13 on page 177 provides a complete
list of ODBC 3.0 functions, and indicates if they are supported.

Table 189 (Page 1 of 2). DB2 CLI ODBC Support

ODBC Features DB2 ODBC Driver DB2 CLI

Core Level Functions All All

Level 1 Functions All, except for SQLBulkOperations() All, except for SQLBulkOperations()

Level 2 Functions All All, except for SQLDrivers()

Additional DB2 CLI Functions All, functions can be accessed by
dynamically loading the DB2 CLI library,
see Appendix A, “Programming Hints
and Tips” on page 637 for more
information.

 ¹ SQLSetConnection()

 ¹ SQLGetEnvAttr()

 ¹ SQLSetEnvAttr()

 ¹ SQLSetColAttributes()

 ¹ SQLGetSQLCA()

 ¹ SQLBindFileToCol()

 ¹ SQLBindFileToParam()

 ¹ SQLGetLength()

 ¹ SQLGetPosition()

 ¹ SQLGetSubString()

656 CLI Guide and Reference

Table 189 (Page 2 of 2). DB2 CLI ODBC Support

ODBC Features DB2 ODBC Driver DB2 CLI

SQL Data Types All the types listed for DB2 CLI, as well
as:

 ¹ SQL_BINARY
 ¹ SQL_VARBINARY
 ¹ SQL_LONGVARBINARY

 ¹ SQL_BINARY
 ¹ SQL_BLOB
 ¹ SQL_BLOB_LOCATOR
 ¹ SQL_CHAR
 ¹ SQL_CLOB
 ¹ SQL_CLOB_LOCATOR
 ¹ SQL_DBCLOB
 ¹ SQL_DBCLOB_LOCATOR
 ¹ SQL_DECIMAL
 ¹ SQL_DOUBLE
 ¹ SQL_FLOAT
 ¹ SQL_GRAPHIC
 ¹ SQL_INTEGER
 ¹ SQL_LONGVARBINARY
 ¹ SQL_LONGVARCHAR
 ¹ SQL_LONGVARGRAPHIC
 ¹ SQL_NUMERIC
 ¹ SQL_REAL
 ¹ SQL_SMALLINT
 ¹ SQL_TYPE_DATE
 ¹ SQL_TYPE_TIME
 ¹ SQL_TYPE_TIMESTAMP
 ¹ SQL_VARBINARY
 ¹ SQL_VARCHAR
 ¹ SQL_VARGRAPHIC

C Data Types All the types listed for DB2 CLI. ¹ SQL_C_BINARY
 ¹ SQL_C_BIT
 ¹ SQL_C_BLOB_LOCATOR
 ¹ SQL_C_CHAR
 ¹ SQL_C_CLOB_LOCATOR
 ¹ SQL_C_DATE
 ¹ SQL_C_DBCHAR
 ¹ SQL_C_DBCLOB_LOCATOR
 ¹ SQL_C_DOUBLE
 ¹ SQL_C_FLOAT
 ¹ SQL_C_LONG
 ¹ SQL_C_SHORT
 ¹ SQL_C_TIME
 ¹ SQL_C_TIMESTAMP
 ¹ SQL_C_TINYINT

Return Codes All the codes listed for DB2 CLI. ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_STILL_EXECUTING
 ¹ SQL_NEED_DATA
 ¹ SQL_NO_DATA_FOUND
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

SQLSTATES Mapped to X/Open SQLSTATES with
additional IBM SQLSTATES, with the
exception of the ODBC type 08S01.

Mapped to X/Open SQLSTATES with
additional IBM SQLSTATES

Multiple connections per application Supported Supported

Dynamic loading of driver Supported Not applicable

For more information on ODBC refer to ODBC 3.0 Software Development Kit and
Programmer's Reference.

 Appendix C. DB2 CLI and ODBC 657

ODBC Function List
Table 13 on page 177 is a complete list of all Microsoft's ODBC 3.0 functions. The
ODBC conformance level and whether it is supported by DB2 CLI is shown for each
function.

For a complete list of DB2 CLI functions, and information about X/Open and ISO
callable SQL standards, refer to “DB2 CLI Function Summary” on page 177.

 Isolation Levels
The following table map IBM RDBMs isolation levels to ODBC transaction isolation
levels. The SQLGetInfo() function, indicates which isolation levels are available.

Table 190. Isolation Levels Under ODBC

IBM Isolation Level ODBC Isolation Level

Cursor Stability SQL_TXN_READ_COMMITTED

Repeatable Read SQL_TXN_SERIALIZABLE_READ

Read Stability; SQL_TXN_REPEATABLE_READ

Uncommitted Read SQL_TXN_READ_UNCOMMITTED

No Commit (no equivalent in ODBC)

Note: SQLSetConnectOption() and SQLSetStmtOption will return SQL_ERROR with an
SQLSTATE of HY009 if you try to set an unsupported isolation level.

658 CLI Guide and Reference

Appendix D. Extended Scalar Functions

The following functions are defined by ODBC using vendor escape clauses. Each
function may be called using the escape clause syntax, or calling the equivalent DB2
function.

These functions are presented in the following categories:

¹ “String Functions” on page 660

¹ “Numeric Functions” on page 661

¹ “Date and Time Functions” on page 664

¹ “System Functions” on page 667

¹ “Conversion Function” on page 667

For more information about vendor escape clauses, refer to “ODBC Scalar Functions”
on page 126.

 The tables in the following sections indicates for which servers (and the earliest
versions) that the function can be accessed, when called from an application using DB2
CLI Version 2.1.

All errors detected by the following functions, when connected to a DB2 Version 2
server, will return SQLSTATE 38552. The text portion of the message is of the form
SYSFUN:nn where nn is one of the following reason codes:

01 Numeric value out of range
02 Division by zero
03 Arithmetic overflow or underflow
04 Invalid date format
05 Invalid time format
06 Invalid timestamp format
07 Invalid character representation of a timestamp duration
08 Invalid interval type (must be one of 1, 2, 4, 8, 16, 32, 64, 128, 256)
09 String too long
10 Length or position in string function out of range
11 Invalid character representation of a floating point number

Users that are moving from a version 2.1.0 DB2 database to a version 2.1.1 database
must run the version 2.1.1 migration utility which makes these additional functions
accessible by adding them to the SYSCAT.FUNCTIONS catalog. For example, to
update a v2.1.0 database for use with version 2.1.1, use the command:

db2 migrate database example

Where example is the name of a cataloged database.

 Copyright IBM Corp. 1993, 1997 659

 String Functions
The string functions in this section are supported by DB2 CLI and defined by ODBC
using vendor escape clauses.

¹ Character string literals used as arguments to scalar functions must be bounded by
single quotes.

¹ Arguments denoted as string_exp can be the name of a column, a string literal, or
the result of another scalar function, where the underlying data type can be
represented as SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, or SQL_CLOB.

¹ Arguments denoted as start, length, code or count can be a numeric literal or the
result of another scalar function, where the underlying data type is integer based
(SQL_SMALLINT, SQL_INTEGER).

¹ The first character in the string is considered to be at position 1.

Table 191 (Page 1 of 2). String Scalar Functions

ASCII(string_exp)
Returns the ASCII code value of the leftmost character of string_exp as an integer.

DB2 for common server 2.1

CHAR(code)
Returns the character that has the ASCII code value specified by code. The value of code should be between 0
and 255; otherwise, the return value is null.

DB2 for common server 2.1

CONCAT(string_exp1, string_exp2)
Returns a character string that is the result of concatenating string_exp2 to string_exp1.

DB2 for common server 1.1 MVS VM/VSE AS/400

DIFFERENCE(string_exp1, string_exp2)
Returns an integer value indicating the difference between the values returned by the SOUNDEX function for
string_exp1 and string_exp2.

DB2 for common server 1.1

INSERT(string_exp1, start, length, string_exp2)
Returns a character string where length number of characters beginning at start has been replaced by string_exp2
which contains length characters.

DB2 for common server 1.1 MVS VM/VSE AS/400

LCASE(string_exp)
Converts all upper case characters in string_exp to lower case.

DB2 for common server 1.0 VM/VSE

LEFT(string_exp,count)
Returns the leftmost count of characters of string_exp.

DB2 for common server 1.0 MVS VM/VSE AS/400

LENGTH(string_exp)
Returns the number of characters in string_exp, excluding trailing blanks and the string termination character.

Note: Trailing blanks were included prior to Version 2.1. Trailing blanks are still included for DB2 for MVS/ESA.
DB2 for common server 1.0 MVS VM/VSE AS/400

660 CLI Guide and Reference

Table 191 (Page 2 of 2). String Scalar Functions

LOCATE(string_exp1, string_exp2 [,start])
Returns the starting position of the first occurrence of string_exp1 within string_exp2. The search for the first
occurrence of string_exp1 begins with first character position in string_exp2 unless the optional argument, start, is
specified. If start is specified, the search begins with the character position indicated by the value of start. The first
character position in string_exp2 is indicated by the value 1. If string_exp1 is not found withing string_exp2, the
value 0 is returned.

DB2 for common server 2.1

LTRIM(string_exp)
Returns the characters of string_exp with the leading blanks removed.

DB2 for common server 2.1 VM/VSE AS/400

REPEAT(string_exp, count)
Returns a character string composed of string_exp repeated count times.

DB2 for common server 2.1 MVS VM/VSE AS/400

REPLACE(string_exp1, string_exp2, string_exp3)
Replaces all occurrences of string_exp2 in string_exp1 with string_exp3.

DB2 for common server 2.1

RIGHT(string_exp, count)
Returns the rightmost count of characters of string_exp.

DB2 for common server 1.0 MVS VM/VSE AS/400

RTRIM(string_exp)
Returns the characters of string_exp with trailing blanks removed.

DB2 for common server 2.1 VM/VSE AS/400

SOUNDEX(string_exp1)
Returns a four character code representing the sound of string_exp1. Note that different data sources use different
algorithms to represent the sound of string_exp1.

DB2 for common server 1.1

SPACE(count)
Returns a character string consisting of count spaces.

DB2 for common server 2.1

SUBSTRING(string_exp, start, length)
Returns a character string that is derived from string_exp beginning at the character position specified by start for
length characters.

DB2 for common server 1.0 MVS VM/VSE AS/400

UCASE(string_exp)
Converts all lower case characters in string_exp to upper case.

DB2 for common server 1.0 VM/VSE AS/400

 Numeric Functions
The numeric functions in this section are supported by DB2 CLI and defined by ODBC
using vendor escape clauses.

¹ Arguments denoted as numeric_exp can be the name of a column, the result of
another scalar function, or a numeric literal, where the underlying data type can be

 Appendix D. Extended Scalar Functions 661

either floating point based (SQL_NUMERIC, SQL_DECIMAL, SQL_FLOAT, SQL_REAL,
SQL_DOUBLE) or integer based (SQL_SMALLINT, SQL_INTEGER).

¹ Arguments denoted as double_exp can be the name of a column, the result of
another scalar functions, or a numeric literal where the underlying data type is
floating point based.

¹ Arguments denoted as integer_exp can be the name of a column, the result of
another scalar functions, or a numeric literal, where the underlying data type is
integer based.

Table 192 (Page 1 of 3). Numeric Scalar Functions

ABS(numeric_exp)
Returns the absolute value of numeric_exp.

DB2 for common server 2.1 AS/400

ACOS(double_exp)
Returns the arccosine of double_exp as an angle, expressed in radians.

DB2 for common server 2.1 AS/400

ASIN(double_exp)
Returns the arcsine of double_exp as an angle, expressed in radians.

DB2 for common server 2.1 AS/400

ATAN(double_exp)
Returns the arctangent of double_exp as an angle, expressed in radians.

DB2 for common server 2.1 AS/400

ATAN2(double_exp1, double_exp2)
Returns the arctangent of x and y coordinates specified by double_exp1 and double_exp2, respectively, as an
angle expressed in radians.

DB2 for common server 2.1

CEILING(numeric_exp)
Returns the smallest integer greater than or equal to numeric_exp.

DB2 for common server 2.1

COS(double_exp)
Returns the cosine of double_exp, where double_exp is an angle expressed in radians.

DB2 for common server 2.1 AS/400

COT(double_exp)
Returns the cotangent of double_exp, where double_exp is an angle expressed in radians.

DB2 for common server 2.1 AS/400

DEGREES(numeric_exp)
Returns the number of degrees converted from numeric_exp radians.

DB2 for common server 2.1 AS/400 3.6

EXP(double_exp)
Returns the exponential value of double_exp.

DB2 for common server 2.1 AS/400

662 CLI Guide and Reference

Table 192 (Page 2 of 3). Numeric Scalar Functions

FLOOR(numeric_exp)
Returns the largest integer less than or equal to numeric_exp.

DB2 for common server 2.1 AS/400 3.6

LOG(double_exp)
Returns the natural logarithm of double_exp.

DB2 for common server 2.1 AS/400

LOG10(double_exp)
Returns the base 10 logarithm of double_exp.

DB2 for common server 2.1 AS/400

MOD(integer_exp1, integer_exp2)
Returns the remainder (modulus) of integer_exp1 divided by integer_exp2.

DB2 for common server 2.1 AS/400

PI()
Returns the constant value of pi as a floating point value.

DB2 for common server 2.1 AS/400

POWER(numeric_exp, integer_exp)
Returns the value of numeric_exp to the power of integer_exp.

DB2 for common server 2.1 AS/400 3.6

RADIANS(numeric_exp)
Returns the number of radians converted from numeric_exp degrees.

DB2 for common server 2.1

RAND([integer_exp])
Returns a random floating point value using integer_exp as the optional seed value.

DB2 for common server 2.1

ROUND(numeric_exp, integer_exp.)
Returns numeric_exp rounded to integer_exp places right of the decimal point. If integer_exp is negative,
numeric_exp is rounded to | integer_exp | places to the left of the decimal point.

DB2 for common server 2.1

SIGN(numeric_exp)
Returns an indicator or the sign of numeric_exp. If numeric_exp is less than zero, -1 is returned. If numeric_exp
equals zero, 0 is returned. If numeric_exp is greater than zero, 1 is returned.

DB2 for common server 2.1

SIN(double_exp)
Returns the sine of double_exp, where double_exp is an angle expressed in radians.

DB2 for common server 2.1 AS/400

SQRT(double_exp)
Returns the square root of double_exp.

DB2 for common server 2.1 AS/400

TAN(double_exp)
Returns the tangent of double_exp, where double_exp is an angle expressed in radians.

DB2 for common server 2.1 AS/400

 Appendix D. Extended Scalar Functions 663

Table 192 (Page 3 of 3). Numeric Scalar Functions

TRUNCATE(numeric_exp, integer_exp)
Returns numeric_exp truncated to integer_exp places right of the decimal point. If integer_exp is negative,
numeric_exp is truncated to | integer_exp | places to the left of the decimal point.

DB2 for common server 2.1

Date and Time Functions
The date and time functions in this section are supported by DB2 CLI and defined by
ODBC using vendor escape clauses.

¹ Arguments denoted as timestamp_exp can be the name of a column, the result of
another scalar function, or a time,date, or timestamp literal.

¹ Arguments denoted as date_exp can be the name of a column, the result of
another scalar function, or a date or timestamp literal, where the underlying data
type can be character based, or date or timestamp based.

¹ Arguments denoted as time_exp can be the name of a column, the result of
another scalar function, or a time or timestamp literal, where the underlying data
types can be character based, or time or timestamp based.

Table 193 (Page 1 of 3). Date and Time Scalar Functions

CURDATE()
Returns the current date as a date value.

DB2 for common server 1.0 MVS VM/VSE AS/400

CURTIME()
Returns the current local time as a time value.

DB2 for common server 1.0 MVS VM/VSE AS/400

DAYNAME(date_exp)
Returns a character string containing the name of the day (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday) for the day portion of date_exp.

DB2 for common server 2.1

DAYOFMONTH (date_exp)
Returns the day of the month in date_exp as an integer value in the range of 1-31.

DB2 for common server 1.0 MVS VM/VSE AS/400

DAYOFWEEK(date_exp)
Returns the day of the week in date_exp as an integer value in the range 1-7, where 1 represents Sunday.

DB2 for common server 2.1 AS/400 3.6

DAYOFYEAR(date_exp)
Returns the day of the year in date_exp as an integer value in the range 1-366.

DB2 for common server 2.1 AS/400 3.6

HOUR(time_exp)
Returns the hour in time_exp as an integer value in the range of 0-23.

DB2 for common server 1.0 MVS VM/VSE AS/400

664 CLI Guide and Reference

Table 193 (Page 2 of 3). Date and Time Scalar Functions

JULIAN_DAY(date_exp)
Returns the number of days between date_exp and January 1, 4712 B.C. (the start of the Julian date calendar).
(When moving from a v2.1.0 to a v2.1.1 database you must run the migrate utility to access this function.)

DB2 for common server 2.1.1

MINUTE(time_exp)
Returns the minute in time_exp as integer value in the range of 0-59.

DB2 for common server 1.0 MVS VM/VSE AS/400

MONTH(date_exp)
Returns the month in date_exp as an integer value in the range of 1-12.

DB2 for common server 1.0 MVS VM/VSE AS/400

MONTHNAME(date_exp)
Returns a character string containing the name of month (January, February, March, April, May, June, July,
August, September, October, November, December) for the month portion of date_exp.

DB2 for common server 2.1

NOW()
Returns the current date and time as a timestamp value.

DB2 for common server 1.0 MVS VM/VSE AS/400

QUARTER(date_exp)
Returns the quarter in date_exp as an integer value in the range of 1-4.

DB2 for common server 2.1 AS/400 3.6

SECOND(time_exp)
Returns the second in time_exp as an integer value in the range of 0-59.

DB2 for common server 1.0 MVS VM/VSE AS/400

SECONDS_SINCE_MIDNIGHT(time_exp)
Returns the number of seconds in time_exp relative to midnight as an integer value in the range of 0-86400. If
time_exp includes a fractional seconds component, the fractional seconds component will be discarded. (When
moving from a v2.1.0 to a v2.1.1 database you must run the migrate utility to access this function.)

DB2 for common server 2.1.1

 Appendix D. Extended Scalar Functions 665

Table 193 (Page 3 of 3). Date and Time Scalar Functions

TIMESTAMPADD(interval, integer_exp, timestamp_exp)
Returns the timestamp calculated by adding integer_exp intervals of type interval to timestamp_exp. Valid values
of interval are:

 ¹ SQL_TSI_FRAC_SECOND
 ¹ SQL_TSI_SECOND
 ¹ SQL_TSI_MINUTE
 ¹ SQL_TSI_HOUR
 ¹ SQL_TSI_DAY
 ¹ SQL_TSI_WEEK
 ¹ SQL_TSI_MONTH
 ¹ SQL_TSI_QUARTER
 ¹ SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a second. If timestamp_exp specifies a time value and
interval specifies days, weeks, months, quarters, or years, the date portion of timestamp_exp is set to the current
date before calculating the resulting timestamp. If timestamp_exp is a date value and interval specifies fractional
seconds, seconds, minutes, or hours, the time portion of timestamp_exp is set to 00:00:00.000000 before
calculating the resulting timestamp. An application determines which intervals are supported by calling
SQLGetInfo() with the SQL_TIMEDATE_ADD_INTERVALS option.

DB2 for common server 2.1

TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_exp2)
Returns the integer number of intervals of type interval by which timestamp_exp2 is greater than timestamp_exp1.
Valid values of interval are:

 ¹ SQL_TSI_FRAC_SECOND
 ¹ SQL_TSI_SECOND
 ¹ SQL_TSI_MINUTE
 ¹ SQL_TSI_HOUR
 ¹ SQL_TSI_DAY
 ¹ SQL_TSI_WEEK
 ¹ SQL_TSI_MONTH
 ¹ SQL_TSI_QUARTER
 ¹ SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a second. If either timestamp expression is a time value
and interval specifies days, weeks, months, quarters, or years, the date portion of that timestamp is set to the
current date before calculating the difference between the timestamps. If either timestamp expression is a date
value and interval specifies fractional seconds, seconds, minutes, or hours, the time portion of that timestamp is
set to 0 before calculating the difference between the timestamps. An application determines which intervals are
supported by calling SQLGetInfo() with the SQL_TIMEDATE_DIFF_INTERVALS option.

DB2 for common server 2.1

WEEK(date_exp)
Returns the week of the year in date_exp as an integer value in the range of 1-53.

DB2 for common server 2.1 AS/400 3.6

YEAR(date_exp)
Returns the year in date_exp as an integer value in the range of 1-9999.

DB2 for common server 1.0 MVS VM/VSE AS/400

666 CLI Guide and Reference

For those functions that return a character string containing the name of the day of
week or the name of the month, these character strings will be National Language
Support enabled.

 System Functions
The system functions in this section are supported by DB2 CLI and defined by ODBC
using vendor escape clauses.

¹ Arguments denoted as exp can be the name of a column, the result of another
scalar function, or a literal.

¹ Arguments denoted as value can be a literal constant.

Table 194. System Scalar Functions

DATABASE()
Returns the name of the database corresponding to the connection handle (hdbc). (The name of the database is
also available via SQLGetInfo() by specifying the information type SQL_DATABASE_NAME.)

DB2 for common server 1.0 MVS VM/VSE AS/400

IFNULL(exp, value)
If exp is null, value is returned. If exp is not null, exp is returned. The possible data type(s) of value must be
compatible with the data type of exp.

DB2 for common server 1.2 MVS VM/VSE AS/400

USER()
Returns the user's authorization name. (The user's authorization name is also available via SQLGetInfo() by
specifying the information type SQL_USER_NAME.)

DB2 for common server 1.0 MVS VM/VSE AS/400

 Conversion Function
The conversion function is supported by DB2 CLI and defined by ODBC using vendor
escape clauses.

Each driver and datasource determines which conversions are valid between the
possible data types. As the driver translates the ODBC syntax into native syntax it will
reject the conversions that are not supported by the data source, even if the ODBC
syntax is valid.

Use the function SQLGetInfo() with the appropriate convert function masks to
determine which conversions are supported by the data source.

 Appendix D. Extended Scalar Functions 667

Table 195. Conversion Function

CONVERT(expr_value, data_type)

¹ data_type indicates the data type of the converted representation of expr_value, and can be either SQL_CHAR
or SQL_DOUBLE.

¹ expr_value is the value to convert. It can be of various types, depending on the conversions supported by the
driver and datasource. Use the function SQLGetInfo() with the appropriate convert function masks to
determine which conversions are supported by the data source.

(When moving from a v2.1.0 to a v2.1.1 database you must run the migrate utility to access this function.)

DB2 for common server 2.1

668 CLI Guide and Reference

SQLSTATE Cross Reference

Appendix E. SQLSTATE Cross Reference

This table is a cross-reference of all the SQLSTATEs listed in the Diagnostics section
of each function description in Chapter 5, Functions.

Note: DB2 CLI may also return SQLSTATEs generated by the server that are not
listed in this table. If the returned SQLSTATE is not listed here, refer to the
documentation for the server for additional SQLSTATE information.

Table 196 (Page 1 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

01000 Warning. ¹ SQLAllocHandle()
 ¹ SQLBrowseConnect()
 ¹ SQLCloseCursor()
 ¹ SQLColAttribute()
 ¹ SQLCopyDesc()
 ¹ SQLEndTran()
 ¹ SQLFetchScroll()
 ¹ SQLFreeHandle()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetStmtAttr()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()

01002 Disconnect error. ¹ SQLDisconnect()

01004 Data truncated. ¹ SQLBrowseConnect()
 ¹ SQLColAttribute()
 ¹ SQLDataSources()
 ¹ SQLDescribeCol()
 ¹ SQLDriverConnect()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetInfo()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLNativeSql()
 ¹ SQLPutData()

01504 The UPDATE or DELETE statement does not include a
WHERE clause.

 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

01508 Statement disqualified for blocking. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

01S00 Invalid connection string attribute. ¹ SQLBrowseConnect()
 ¹ SQLDriverConnect()

 Copyright IBM Corp. 1993, 1997 669

SQLSTATE Cross Reference

Table 196 (Page 2 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

01S01 Error in row. ¹ SQLExtendedFetch()
 ¹ SQLFetchScroll()
 ¹ SQLSetPos()

01S02 Option value changed. ¹ SQLBrowseConnect()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetDescField()
 ¹ SQLSetStmtAttr()

01S06 Attempt to fetch before the result set returned the first rowset. ¹ SQLFetchScroll()

01S07 Fractional truncation. ¹ SQLFetchScroll()
 ¹ SQLSetPos()

07001 Wrong number of parameters. ¹ SQLExecDirect()
 ¹ SQLExecute()

07002 Too many columns. ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()

07005 The statement did not return a result set. ¹ SQLColAttribute()
 ¹ SQLDescribeCol()

07006 Invalid conversion. ¹ SQLBindParameter()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetData()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetSubString()
 ¹ SQLParamData()
 ¹ SQLSetPos()

07009 Invalid descriptor index ¹ SQLBindCol()
 ¹ SQLColAttribute()
 ¹ SQLDescribeCol()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetPos()

08001 Unable to connect to data source. ¹ SQLBrowseConnect()
 ¹ SQLConnect()

08002 Connection in use. ¹ SQLBrowseConnect()
 ¹ SQLConnect()
 ¹ SQLSetConnectAttr()

670 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 3 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

08003 Connection is closed. ¹ SQLAllocHandle()
 ¹ SQLDisconnect()
 ¹ SQLEndTran()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetInfo()
 ¹ SQLNativeSql()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetConnection()
 ¹ SQLTransact()
 ¹ SQLTransact()

08004 The application server rejected establishment of the
connection.

 ¹ SQLBrowseConnect()
 ¹ SQLConnect()

08007 Connection failure during transaction. ¹ SQLEndTran()
 ¹ SQLTransact()
 ¹ SQLTransact()

08S01 Communication link failure. ¹ SQLBrowseConnect()
 ¹ SQLCopyDesc()
 ¹ SQLFetchScroll()
 ¹ SQLFreeHandle()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetStmtAttr()

0F001 The LOB token variable does not currently represent any
value.

 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetSubString()

21S01 Insert value list does not match column list. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

21S02 Degrees of derived table does not match column list. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()
 ¹ SQLSetPos()

22001 String data right truncation. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLFetchScroll()
 ¹ SQLPutData()
 ¹ SQLSetPos()

22002 Invalid output or indicator buffer specified. ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetData()

22003 Numeric value out of range. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetData()
 ¹ SQLPutData()
 ¹ SQLSetPos()

 Appendix E. SQLSTATE Cross Reference 671

SQLSTATE Cross Reference

Table 196 (Page 4 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

22005 Error in assignment. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLGetData()
 ¹ SQLPutData()

22007 Invalid datetime format. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLGetData()
 ¹ SQLPutData()
 ¹ SQLSetPos()

22008 Datetime field overflow. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLGetData()

22011 A substring error occurred. ¹ SQLGetSubString()

22012 Division by zero is invalid. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()

22015 Interval field overflow ¹ SQLSetPos()

22018 Invalid character value for cast specification. ¹ SQLFetchScroll()
 ¹ SQLPrepare()

22019 Invalid escape character ¹ SQLPrepare()

22025 Invalid escape sequence ¹ SQLPrepare()

22026 String data, length mismatch ¹ SQLParamData()

23000 Integrity constraint violation. ¹ SQLExecDirect()
 ¹ SQLExecute()

672 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 5 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

24000 Invalid cursor state. ¹ SQLCloseCursor()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLForeignKeys()
 ¹ SQLGetData()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetTypeInfo()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

24504 The cursor identified in the UPDATE, DELETE, SET, or GET
statement is not positioned on a row.

 ¹ SQLExecDirect()
 ¹ SQLExecute()

25000 25501 Invalid transaction state. ¹ SQLDisconnect()

25501 Invalid transaction state. ¹ SQLDisconnect()

28000 Invalid authorization specification. ¹ SQLBrowseConnect()
 ¹ SQLConnect()

34000 Invalid cursor name. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()
 ¹ SQLSetCursorName()

37000 Invalid SQL syntax. ¹ SQLNativeSql()

37xxx Invalid SQL syntax. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

40001 Serialization failure ¹ SQLColumnPrivileges()
 ¹ SQLEndTran()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLFetchScroll()
 ¹ SQLParamData()
 ¹ SQLPrepare()

 Appendix E. SQLSTATE Cross Reference 673

SQLSTATE Cross Reference

Table 196 (Page 6 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

40003 08S01 Communication link failure. ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLCancel()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLDescribeCol()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLForeignKeys()
 ¹ SQLFreeStmt()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetFunctions()
 ¹ SQLGetInfo()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetSubString()
 ¹ SQLGetTypeInfo()
 ¹ SQLMoreResults()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLParamOptions()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLRowCount()
 ¹ SQLSetCursorName()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

42000 Syntax error or access violation ¹ SQLSetPos()

42601 PARMLIST syntax error. ¹ SQLProcedureColumns()

42818 The operands of an operator or function are not compatible. ¹ SQLGetPosition()

42895 The value of a host variable in the EXECUTE or OPEN
statement cannot be used because of its data type.

 ¹ SQLExecDirect()
 ¹ SQLExecute()

428A1 Unable to access a file referenced by a host file variable. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()

42xxx Syntax Error or Access Rule Violation. ¹ SQLPrepare()

42xxx Syntax Error or Access Rule Violation. ¹ SQLExecDirect()
 ¹ SQLExecute()

44000 Integrity constraint violation. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLSetPos()

674 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 7 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

54028 The maximum number of concurrent LOB handles has been
reached.

 ¹ SQLExtendedFetch()
 ¹ SQLFetch()

56084 LOB data is not supported in DRDA. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()

58004 Unexpected system failure. ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLConnect()
 ¹ SQLDataSources()
 ¹ SQLDescribeCol()
 ¹ SQLDisconnect()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFreeConnect()
 ¹ SQLFreeEnv()
 ¹ SQLFreeStmt()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetFunctions()
 ¹ SQLGetInfo()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetSubString()
 ¹ SQLMoreResults()
 ¹ SQLNumResultCols()
 ¹ SQLPrepare()
 ¹ SQLRowCount()
 ¹ SQLSetCursorName()
 ¹ SQLTransact()
 ¹ SQLTransact()

HY000 General error. ¹ SQLAllocHandle()
 ¹ SQLBrowseConnect()
 ¹ SQLCloseCursor()
 ¹ SQLColAttribute()
 ¹ SQLCopyDesc()
 ¹ SQLDataSources()
 ¹ SQLDriverConnect()
 ¹ SQLEndTran()
 ¹ SQLFetchScroll()
 ¹ SQLFreeHandle()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetStmtAttr()
 ¹ SQLParamData()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetConnection()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()

 Appendix E. SQLSTATE Cross Reference 675

SQLSTATE Cross Reference

Table 196 (Page 8 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY001 Memory allocation failure. ¹ SQLAllocHandle()
 ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLBrowseConnect()
 ¹ SQLCancel()
 ¹ SQLCloseCursor()
 ¹ SQLColAttribute()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLConnect()
 ¹ SQLCopyDesc()
 ¹ SQLDataSources()
 ¹ SQLDescribeCol()
 ¹ SQLDisconnect()
 ¹ SQLEndTran()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLForeignKeys()
 ¹ SQLFreeConnect()
 ¹ SQLFreeEnv()
 ¹ SQLFreeHandle()
 ¹ SQLFreeStmt()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetEnvAttr()
 ¹ SQLGetFunctions()
 ¹ SQLGetInfo()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLGetTypeInfo()

676 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 9 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY001 Memory allocation failure. (continued) ¹ SQLMoreResults()
 ¹ SQLNativeSql()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLParamOptions()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLRowCount()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetCursorName()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()
 ¹ SQLTransact()
 ¹ SQLTransact()

HY002 Invalid column number. ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLDescribeCol()
 ¹ SQLGetData()

HY003 Program type out of range. ¹ SQLBindCol()
 ¹ SQLBindParameter()
 ¹ SQLGetData()
 ¹ SQLGetLength()
 ¹ SQLGetSubString()

HY004 SQL data type out of range. ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLGetTypeInfo()

HY007 Associated statement is not prepared. ¹ SQLCopyDesc()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()

 Appendix E. SQLSTATE Cross Reference 677

SQLSTATE Cross Reference

Table 196 (Page 10 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY008 Operation was cancelled ¹ SQLColAttribute()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLDescribeCol()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLSetPos()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

HY009 Invalid argument value. ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLColumnPrivileges()
 ¹ SQLConnect()
 ¹ SQLExecDirect()
 ¹ SQLForeignKeys()
 ¹ SQLGetData()
 ¹ SQLGetFunctions()
 ¹ SQLGetInfo()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetSubString()
 ¹ SQLNativeSql()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLPrepare()
 ¹ SQLPutData()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetCursorName()
 ¹ SQLSetDescField()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

678 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 11 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY010 Function sequence error. ¹ SQLAllocHandle()
 ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLCloseCursor()
 ¹ SQLColAttribute()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLCopyDesc()
 ¹ SQLDescribeCol()
 ¹ SQLDisconnect()
 ¹ SQLEndTran()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLForeignKeys()
 ¹ SQLFreeConnect()
 ¹ SQLFreeEnv()
 ¹ SQLFreeHandle()
 ¹ SQLFreeStmt()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetFunctions()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLGetTypeInfo()
 ¹ SQLMoreResults()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLParamOptions()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLRowCount()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetCursorName()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

HY011 Operation invalid at this time. ¹ SQLSetConnectAttr()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()

 Appendix E. SQLSTATE Cross Reference 679

SQLSTATE Cross Reference

Table 196 (Page 12 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY012 Invalid transaction code. ¹ SQLEndTran()
 ¹ SQLTransact()
 ¹ SQLTransact()

HY013 Unexpected memory handling error. ¹ SQLAllocHandle()
 ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLBrowseConnect()
 ¹ SQLCancel()
 ¹ SQLCloseCursor()
 ¹ SQLConnect()
 ¹ SQLDataSources()
 ¹ SQLDescribeCol()
 ¹ SQLDisconnect()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFreeConnect()
 ¹ SQLFreeEnv()
 ¹ SQLFreeHandle()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetDescField()
 ¹ SQLGetDescField()
 ¹ SQLGetDescRec()
 ¹ SQLGetFunctions()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLMoreResults()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLPrepare()
 ¹ SQLRowCount()
 ¹ SQLSetCursorName()
 ¹ SQLSetDescRec()
 ¹ SQLTransact()
 ¹ SQLTransact()

HY014 No more handles. ¹ SQLAllocHandle()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLForeignKeys()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

680 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 13 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY016 Cannot modify an implementation row descriptor. ¹ SQLCopyDesc()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()

HY017 Invalid use of an automatically allocated descriptor handle. ¹ SQLFreeHandle()
 ¹ SQLSetStmtAttr()

HY018 Server declined cancel request ¹ SQLCancel()

HY021 Inconsistent descriptor information ¹ SQLBindParameter()
 ¹ SQLCopyDesc()
 ¹ SQLGetDescField()
 ¹ SQLSetDescField()
 ¹ SQLSetDescRec()

HY024 Invalid attribute value. ¹ SQLSetConnectAttr()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetStmtAttr()

HY090 Invalid string or buffer length. ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLBrowseConnect()
 ¹ SQLColAttribute()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLConnect()
 ¹ SQLDataSources()
 ¹ SQLDescribeCol()
 ¹ SQLDriverConnect()
 ¹ SQLExecDirect()
 ¹ SQLForeignKeys()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetCursorName()
 ¹ SQLGetData()
 ¹ SQLGetDescField()
 ¹ SQLGetInfo()
 ¹ SQLGetPosition()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLNativeSql()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetCursorName()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

HY091 Descriptor type out of range. ¹ SQLColAttribute()
 ¹ SQLGetDescField()
 ¹ SQLSetDescField()

 Appendix E. SQLSTATE Cross Reference 681

SQLSTATE Cross Reference

Table 196 (Page 14 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HY092 Option type out of range. ¹ SQLAllocHandle()
 ¹ SQLCopyDesc()
 ¹ SQLEndTran()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFreeStmt()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetEnvAttr()
 ¹ SQLGetStmtAttr()
 ¹ SQLParamData()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetDescField()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()

HY093 Invalid parameter number. ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()

HY094 Invalid scale value. ¹ SQLBindParameter()

HY096 Information type out of range. ¹ SQLGetInfo()

HY097 Column type out of range. ¹ SQLSpecialColumns()

HY098 Scope type out of range. ¹ SQLSpecialColumns()

HY099 Nullable type out of range. ¹ SQLSpecialColumns()

HY100 Uniqueness option type out of range. ¹ SQLStatistics()

HY101 Accuracy option type out of range. ¹ SQLStatistics()

HY103 Direction option out of range. ¹ SQLDataSources()

HY104 Invalid precision value. ¹ SQLBindParameter()

HY105 Invalid parameter type. ¹ SQLBindParameter()
 ¹ SQLSetDescField()

HY106 Fetch type out of range. ¹ SQLExtendedFetch()
 ¹ SQLFetchScroll()

HY107 Row value out of range. ¹ SQLFetchScroll()
 ¹ SQLParamOptions()
 ¹ SQLSetPos()

HY109 Invalid cursor position. ¹ SQLGetStmtAttr()
 ¹ SQLSetPos()

HY110 Invalid driver completion. ¹ SQLDriverConnect()

HY111 Invalid bookmark value. ¹ SQLFetchScroll()

HY501 Invalid data source name. ¹ SQLConnect()

HY503 Invalid file name length. ¹ SQLExecDirect()
 ¹ SQLExecute()

HY506 Error closing a file. ¹ SQLCancel()
 ¹ SQLFreeStmt()
 ¹ SQLParamData()

HY509 Error deleting a file. ¹ SQLParamData()

682 CLI Guide and Reference

SQLSTATE Cross Reference

Table 196 (Page 15 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

HYC00 Driver not capable. ¹ SQLAllocHandle()
 ¹ SQLBindCol()
 ¹ SQLBindFileToCol()
 ¹ SQLBindFileToParam()
 ¹ SQLBindParameter()
 ¹ SQLColAttribute()
 ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLDescribeCol()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLFetchScroll()
 ¹ SQLForeignKeys()
 ¹ SQLGetConnectAttr()
 ¹ SQLGetData()
 ¹ SQLGetInfo()
 ¹ SQLGetLength()
 ¹ SQLGetPosition()
 ¹ SQLGetStmtAttr()
 ¹ SQLGetSubString()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLSetConnectAttr()
 ¹ SQLSetEnvAttr()
 ¹ SQLSetPos()
 ¹ SQLSetStmtAttr()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

HYT00 Timeout expired. ¹ SQLColumnPrivileges()
 ¹ SQLColumns()
 ¹ SQLConnect()
 ¹ SQLDescribeCol()
 ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLExtendedFetch()
 ¹ SQLFetch()
 ¹ SQLForeignKeys()
 ¹ SQLGetData()
 ¹ SQLGetTypeInfo()
 ¹ SQLMoreResults()
 ¹ SQLNumParams()
 ¹ SQLNumResultCols()
 ¹ SQLParamData()
 ¹ SQLPrepare()
 ¹ SQLPrimaryKeys()
 ¹ SQLProcedureColumns()
 ¹ SQLProcedures()
 ¹ SQLPutData()
 ¹ SQLSetPos()
 ¹ SQLSpecialColumns()
 ¹ SQLStatistics()
 ¹ SQLTablePrivileges()
 ¹ SQLTables()

 Appendix E. SQLSTATE Cross Reference 683

SQLSTATE Cross Reference

Table 196 (Page 16 of 16). SQLSTATE Cross Reference

SQLSTATE Description Functions

S0001 Database object already exists. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

S0002 Database object does not exist. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

S0011 Index already exists. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

S0012 Index not found. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

S0021 Column already exists. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

S0022 Column not found. ¹ SQLExecDirect()
 ¹ SQLExecute()
 ¹ SQLPrepare()

684 CLI Guide and Reference

 Appendix F. Data Conversion

This section contains tables used for data conversion between C and SQL data types.
This includes:

¹ Precision, scale, length, and display size of each data type
¹ Conversion from SQL to C data types
¹ Conversion from C to SQL data types

For a list of SQL and C data types, their symbolic types, and the default conversions,
refer to Table 3 on page 28 AND Table 4 on page 29. Supported conversions are
shown in Table 7 on page 32.

Data Type Attributes
Information is shown for the following Data Type Attributes:

 ¹ “Precision”
¹ “Scale” on page 686
¹ “Length” on page 687
¹ “Display Size” on page 688

 Precision
The precision of a numeric column or parameter refers to the maximum number of
digits used by the data type of the column or parameter. The precision of a
non-numeric column or parameter generally refers to the maximum length or the
defined length of the column or parameter. The following table defines the precision for
each SQL data type.

 Copyright IBM Corp. 1993, 1997 685

Table 197. Precision

fSqlType Precision

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column or parameter. For example, the precision of a
column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column or parameter. a

SQL_DECIMAL
SQL_NUMERIC

The defined maximum number of digits. For example, the precision of a column
defined as NUMERIC(10,3) is 10.

SQL_SMALLINT b 5

SQL_INTEGER b 10

SQL_FLOAT b 15

SQL_REAL b 7

SQL_DOUBLE b 15

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length of the column or parameter. For example, the precision of a
column defined as CHAR(10) FOR BIT DATA, is 10.

SQL_LONGVARBINARY The maximum length of the column or parameter.

SQL_DATE b 10 (the number of characters in the yyyy-mm-dd format).

SQL_TIME b 8 (the number of characters in the hh:mm:ss format).

SQL_TIMESTAMP The number of characters in the "yyy-mm-dd hh:mm:ss[.fff[fff]]” format used by the
TIMESTAMP data type. For example, if a timestamp does not use seconds or
fractional seconds, the precision is 16 (the number of characters in the
"yyyy-mm-dd hh:mm” format). If a timestamp uses thousandths of a second, the
precision is 23 (the number of characters in the "yyyy-mm-dd hh:mm:ss.fff”
format).

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

The defined length of the column or parameter. For example, the precision of a
column defined as GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

Note:

a When defining the precision of a parameter of this data type with SQLBindParameter() or
SQLSetParam(), cbParamDef should be set to the total length of the data, not the precision as
defined in this table.

b The cbParamDef argument of SQLBindParameter() or SQLSetParam() is ignored for this data type.

 Scale
The scale of a numeric column or parameter refers to the maximum number of digits to
the right of the decimal point. Note that, for approximate floating point number columns
or parameters, the scale is undefined, since the number of digits to the right of the
decimal place is not fixed. The following table defines the scale for each SQL data type.

686 CLI Guide and Reference

Table 198. Scale

fSqlType Scale

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal place. For example, the
scale of a column defined as NUMERIC(10, 3) is 3.

SQL_SMALLINT
SQL_INTEGER

0

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Not applicable.

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Not applicable.

SQL_DATE
SQL_TIME

Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal point in the "yyyy-mm-dd
hh:mm:ss[fff[fff]]” format. For example, if the TIMESTAMP data type uses the
"yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3.

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC
SQL_DBCLOB

Not applicable.

 Length
The length of a column is the maximum number of bytes returned to the application
when data is transferred to its default C data type. For character data, the length does
not include the null termination byte. Note that the length of a column may be different
than the number of bytes required to store the data on the data source. For a list of
default C data types, see the "Default C Data Types” section.

The following table defines the length for each SQL data type.

 Appendix F. Data Conversion 687

Table 199. Length

fSqlType Length

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column. For example, the length of a column defined as
CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus two. Since these data types are returned as
character strings, characters are needed for the digits, a sign, and a decimal point.
For example, the length of a column defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 2 (two bytes).

SQL_INTEGER 4 (four bytes).

SQL_REAL 4 (four bytes).

SQL_FLOAT 8 (eight bytes).

SQL_DOUBLE 8 (eight bytes).

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length of the column. For example, the length of a column defined as
CHAR(10) FOR BIT DATA is 10.

SQL_LONGVARBINARY The maximum length of the column.

SQL_DATE
SQL_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT structure).

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

The defined length of the column times 2. For example, the length of a column
defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column times 2.

 Display Size
The display size of a column is the maximum number of bytes needed to display data
in character form. The following table defines the display size for each SQL data type.

688 CLI Guide and Reference

Table 200. Display Size

fSqlType Display Size

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column. For example, the display size of a column
defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus two (a sign, precision digits, and a decimal
point). For example, the display size of a column defined as NUMERIC(10,3) is
12.

SQL_SMALLINT 6 (a sign and 5 digits).

SQL_INTEGER 11 (a sign and 10 digits).

SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a sign, and 2 digits).

SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign, and 3 digits).

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length of the column times 2 (each binary byte is represented by a 2
digit hexadecimal number). For example, the display size of a column defined as
CHAR(10) FOR BIT DATA is 20.

SQL_LONGVARBINARY The maximum length of the column times 2.

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIME 8 (a time in the format hh:mm:ss).

SQL_TIMESTAMP 19 (if the scale of the timestamp is 0) or 20 plus the scale of the timestamp (if the
scale is greater than 0). This is the number of characters in the "yyyy-mm-dd
hh:mm:ss[fff[fff]]” format. For example, the display size of a column storing
thousandths of a second is 23 (the number of characters in "yyyy-mm-dd
hh:mm:ss.fff”).

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

The defined length of the column or parameter. For example, the display size of a
column defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter. a

Converting Data from SQL to C Data Types
For a given SQL data type:

¹ the first column of the table lists the legal input values of the fCType argument in
SQLBindCol() and SQLGetData().

¹ the second column lists the outcomes of a test, often using the cbValueMax
argument specified in SQLBindCol() or SQLGetData(), which the driver performs to
determine if it can convert the data.

¹ the third and fourth columns list the values (for each outcome) of the rgbValue and
pcbValue arguments specified in the SQLBindCol() or SQLGetData() after the driver
has attempted to convert the data.

 Appendix F. Data Conversion 689

¹ the last column lists the SQLSTATE returned for each outcome by SQLFetch(),
SQLExtendedFetch(), SQLGetData() or SQLGetSubString().

The tables list the conversions defined by ODBC to be valid for a given SQL data type.

If the fCType argument in SQLBindCol() or SQLGetData() contains a value not shown in
the table for a given SQL data type, SQLFetch(), or SQLGetData() returns the
SQLSTATE 07006 (Restricted data type attribute violation).

If the fCType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLFetch(), or SQLGetData() returns
SQLSTATE HYC00 (Driver not capable).

Though it is not shown in the tables, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is NULL. For an explanation of the use of
pcbValue when multiple calls are made to retrieve data, see SQLGetData().

When SQL data is converted to character C data, the character count returned in
pcbValue does not include the null termination byte. If rgbValue is a null pointer,
SQLBindCol() or SQLGetData() returns SQLSTATE HY009 (Invalid argument value).

In the following tables:

Length of data
the total length of the data after it has been converted to the specified C data
type (excluding the null termination byte if the data was converted to a string).
This is true even if data is truncated before it is returned to the application.

Significant digits
the minus sign (if needed) and the digits to the left of the decimal point.

Display size
the total number of bytes needed to display data in the character format.

Converting Character SQL Data to C Data
The character SQL data types are:

 SQL_CHAR
 SQL_VARCHAR
 SQL_LONGVARCHAR
 SQL_CLOB

690 CLI Guide and Reference

Table 201. Converting Character SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data < cbValueMax Data Length of
data

00000

Length of data >=
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_BINARY Length of data <=
cbValueMax

Data Length of
data

00000

Length of data > cbValueMax Truncated
data

Length of
data

01004

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_FLOAT
SQL_C_TINYINT
SQL_C_BIT

Data converted without
truncation a

Data Size of the
C data type

00000

Data converted with
truncation, but without loss of
significant digits a

Data Size of the
C data type

01004

Conversion of data would
result in loss of significant
digitsa

Untouched Size of the
C data type

22003

Data is not a number a Untouched Size of the
C data type

22005

SQL_C_DATE Data value is a valid date a Data 6 b 00000

Data value is not a valid date
a

Untouched 6 b 22007

SQL_C_TIME Data value is a valid time a Data 6 b 00000

Data value is not a valid time
a

Untouched 6 b 22007

SQL_C_TIMESTAMP Data value is a valid
timestamp a

Data 16 b 00000

Data value is not a valid
timestamp a

Untouched 16 b 22007

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

Converting Graphic SQL Data to C Data
The graphic SQL data types are:

 SQL_GRAPHIC
 SQL_VARGRAPHIC
 SQL_LONGVARGRAPHIC
 SQL_DBCLOB

 Appendix F. Data Conversion 691

Table 202. Converting Graphic SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double byte
characters * 2 <=
cbValueMax

Data Length of
data(octects)

00000

Number of double byte
characters * 2 > cbValueMax

Truncated
data, to the
nearest
even byte
that is less
than
cbValueMax.

Length of
data(octects)

01004

SQL_C_DBCHAR Number of double byte
characters * 2 < cbValueMax

Data Length of
data(octects)

00000

Number of double byte
characters * 2 >=
cbValueMax

Truncated
data, to the
nearest
even byte
that is less
than
cbValueMax.

Length of
data(octects)

01004

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

Converting Numeric SQL Data to C Data
The numeric SQL data types are:

 SQL_DECIMAL
 SQL_NUMERIC
 SQL_SMALLINT
 SQL_INTEGER
 SQL_REAL
 SQL_FLOAT
 SQL_DOUBLE

692 CLI Guide and Reference

Table 203. Converting Numeric SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of
data

00000

Number of significant digits <
cbValueMax

Truncated
data

Length of
data

01004

Number of significant digits
>= cbValueMax

Untouched Length of
data

22003

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT

Data converted without
truncation a

Data Size of the
C data type

00000

Data converted with
truncation, but without loss of
significant digits a

Truncated
data

Size of the
C data type

01004

Conversion of data would
result in loss of significant
digits a

Untouched Size of the
C data type

22003

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

Converting Binary SQL Data to C Data
The binary SQL data types are:

 SQL_BINARY
 SQL_VARBINARY
 SQL_LONGVARBINARY
 SQL_BLOB

Table 204. Converting Binary SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) <
cbValueMax

Data Length of
data

N/A

(Length of data) >=
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_BINARY Length of data <=
cbValueMax

Data Length of
data

N/A

Length of data > cbValueMax Truncated
data

Length of
data

01004

 Appendix F. Data Conversion 693

Converting Date SQL Data to C Data
The date SQL data type is:

 SQL_DATE

Table 205. Converting Date SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 00000

cbValueMax < 11 Untouched 10 22003

SQL_C_DATE None a Data 6 b 00000

SQL_C_TIMESTAMP None a Data c 16 b 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.
c The time fields of the TIMESTAMP_STRUCT structure are set to zero.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

When the date SQL data type is converted to the character C data type, the resulting
string is in the "yyyy-mm-dd” format.

Converting Time SQL Data to C Data
The time SQL data type is:

 SQL_TIME

Table 206. Converting Time SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 00000

cbValueMax < 9 Untouched 8 22003

SQL_C_TIME None a Data 6 b 00000

SQL_C_TIMESTAMP None a Data c 16 b 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.
c The date fields of the TIMESTAMP_STRUCT structure are set to the current system date of the

machine that the application is running, and the time fraction is set to zero.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

When the time SQL data type is converted to the character C data type, the resulting
string is in the "hh:mm:ss” format.

694 CLI Guide and Reference

Converting Timestamp SQL Data to C Data
The timestamp SQL data type is:

 SQL_TIMESTAMP

Table 207. Converting Timestamp SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of
data

00000

19 <= cbValueMax <=
Display size

Truncated
Data b

Length of
data

01004

cbValueMax < 19 Untouched Length of
data

22003

SQL_C_DATE None a Truncated
data c

6 e 01004

SQL_C_TIME None a Truncated
data d

6 e 01004

SQL_C_TIMESTAMP None a Data 16 e 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The fractional seconds of the timestamp are truncated.
c The time portion of the timestamp is deleted.
d The date portion of the timestamp is deleted.
e This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

When the timestamp SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd hh:mm:ss[.fff[fff]]” format (regardless of the
precision of the timestamp SQL data type).

SQL to C Data Conversion Examples

 Appendix F. Data Conversion 695

Table 208. SQL to C Data Conversion Examples

SQL Data Type
SQL Data
Value C Data Type cbValueMax rgbValue

SQL
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a 00000

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a 00000

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 00000

SQL_DECIMAL 1234.56 SQL_C_SHORT ignored 1234 01004

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a 00000

SQL_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31,
0,0,0,0 b

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 --- 22003

Note:

a "\0" represents a null termination character.
b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT

structure.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

Converting Data from C to SQL Data Types
For a given C data type:

¹ the first column of the table lists the legal input values of the fSqlType argument in
SQLBindParameter() or SQLSetParam().

¹ the second column lists the outcomes of a test, often using the length of the
parameter data as specified in the pcbValue argument in SQLBindParameter() or
SQLSetParam(), which the driver performs to determine if it can convert the data.

¹ the third column lists the SQLSTATE returned for each outcome by
SQLExecDirect() or SQLExecute().

Note: Data is sent to the data source only if the SQLSTATE is 00000 (Success).

The tables list the conversions defined by ODBC to be valid for a given SQL data type.

696 CLI Guide and Reference

If the fSqlType argument in SQLBindParameter() or SQLSetParam() contains a value not
shown in the table for a given C data type, SQLSTATE 07006 is returned (Restricted
data type attribute violation).

If the fSqlType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLBindParameter() or SQLSetParam() returns
SQLSTATE HYC00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter() or
SQLSetParam() are both null pointers, that function returns SQLSTATE HY009 (Invalid
argument value).

Length of data
the total length of the data after it has been converted to the specified SQL
data type (excluding the null termination byte if the data was converted to a
string). This is true even if data is truncated before it is sent to the data source.

Column length
the maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does not
include the null termination byte.

Display size
the maximum number of bytes needed to display data in character form.

Significant digits
the minus sign (if needed) and the digits to the left of the decimal point.

Converting Character C Data to SQL Data
The character C data type is:

 SQL_C_CHAR

 Appendix F. Data Conversion 697

Table 209. Converting Character C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length 00000

Length of data > Column length 22001

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of significant
digits

22001

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

(Length of data) < Column length N/A

(Length of data) >= Column length 22001

Data value is not a hexadecimal value 22005

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22007

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22007

SQL_TIMESTAMP Data value is a valid timestamp 00000

Data value is not a valid timestamp 22007

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC
SQL_DBCLOB

Length of data / 2 <= Column length 00000

Length of data / 2 < Column length 22001

Note: SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

Converting Numeric C Data to SQL Data
The numeric C data types are:

 SQL_C_SHORT
 SQL_C_LONG
 SQL_C_FLOAT
 SQL_C_DOUBLE
 SQL_C_TINYINT
 SQL_C_BIT

698 CLI Guide and Reference

Table 210. Converting Numeric C Data to SQL Data

fSQLType Test SQLSTATE

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of significant
digits

22001

Conversion of data would result in loss of significant digits 22003

SQL_CHAR
SQL_VARCHAR

Data converted without truncation. 00000

Conversion of data would result in loss of significant digits. 22003

Note: SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

Converting Binary C Data to SQL Data
The binary C data type is:

 SQL_C_BINARY

Table 211. Converting Binary C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length N/A

Length of data > Column length 22001

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Length of data <= Column length N/A

Length of data > Column length 22001

Converting DBCHAR C Data to SQL Data
The Double Byte C data type is:

 SQL_C_DBCHAR

Table 212. Converting DBCHAR C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

 Appendix F. Data Conversion 699

Converting Date C Data to SQL Data
The date C data type is:

 SQL_C_DATE

Table 213. Converting Date C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 10 00000

Column length < 10 22003

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22007

SQL_TIMESTAMP a Data value is a valid date 00000

Data value is not a valid date 22007

Note: SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

Note: a , the time component of TIMESTAMP is set to zero.

Converting Time C Data to SQL Data
The time C data type is:

 SQL_C_TIME

Table 214. Converting Time C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 8 00000

Column length < 8 22003

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22007

SQL_TIMESTAMP a Data value is a valid time 00000

Data value is not a valid time 22007

Note: SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

Note: a The date component of TIMESTAMP is set to the system date of the machine at which the application is
running.

Converting Timestamp C Data to SQL Data
The timestamp C data type is:

 SQL_C_TIMESTAMP

700 CLI Guide and Reference

Table 215. Converting Timestamp C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR SQL_VARCHAR Column length >= Display size 00000

19 <= Column length < Display size a 22001

Column length < 19 22003

SQL_DATE Data value is a valid date b 22001

Data value is not a valid date 22007

SQL_TIME Data value is a valid time c 22001

Data value is not a valid time 22007

SQL_TIMESTAMP Data value is a valid timestamp 00000

Data value is not a valid timestamp 22007

Note:

a The fractional seconds of the timestamp are truncated.
b The time portion of the timestamp is deleted.
c The date portion of the timestamp is deleted.

SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns SQL_SUCCESS.

C to SQL Data Conversion Examples

Table 216. C to SQL Data Conversion Examples

C Data Type
C Data
Value

SQL Data
Type Column length

SQL Data
Value SQL STATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef 00000

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 00000

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT not
applicable

1234.56 00000

SQL_C_FLOAT 1234.56 SQL_INTEGER not
applicable

1234 22001

Note: SQLSTATE 00000 is not returned by SQLError(), rather it is indicated when the function returns
SQL_SUCCESS.

 Appendix F. Data Conversion 701

702 CLI Guide and Reference

SYSCAT.PROCEDURES

Appendix G. Catalog Views for Stored Procedures

The DB2 CLI functions SQLProcedures() and SQLProcedureColumns() make use of the
following two catalog tables to retrieve information about stored procedures and their
attributes.

For more information about using the CREATE PROCEDURE command to register a stored
procedure in this table, refer to SQL Reference.

 SYSCAT.PROCEDURES
Contains a row for each stored procedure that is created.

Table 217. SYSCAT.PROCEDURES Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

PROCEDURE_ID INTEGER Internal ID of stored procedure.

DEFINER CHAR(8) Authorization of the procedure definer.

PARM_COUNT SMALLINT Number of procedure parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT
DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if procedure takes no
parameters.

ORIGIN CHAR(1) Always 'E' = User defined, external

CREATE_TIME TIMESTAMP Timestamp of procedure registration.

DETERMINISTIC CHAR(1) Y=Results are deterministic.
N=Results are not deterministic.

FENCED CHAR(1) Y=Fenced
 N=Not Fenced

NULLCALL CHAR(1) Always Y=NULLCALL

LANGUAGE CHAR(8) Implementation language of procedure body.
Possible values are C and JAVA.

IMPLEMENTATION VARCHAR(254) Yes Identifies the path/module/function or class/method
that implements the procedure.

PARM_STYLE CHAR(8) DB2DARI=Language is C
DB2GENRL=Language is Java

RESULT_SETS SMALLINT Estimated upper limit of returned result sets.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

 Copyright IBM Corp. 1993, 1997 703

SYSCAT.PROCPARMS

 SYSCAT.PROCPARMS
Contains a row for each parameter of a stored procedure.

Table 218. SYSCAT.PROCPARMS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be system
generated).

ORDINAL SMALLINT The parameter's numerical position within the procedure
signature.

PARMNAME VARCHAR(18) Parameter name.

TYPESCHEMA CHAR(8) Qualified name of data type of the parameter.

TYPENAME VARCHAR(18)

LENGTH INTEGER Length of the parameter.

SCALE SMALLINT Scale of the parameter.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not applicable
or a parameter for character data declared with the FOR
BIT DATA attribute.

PARM_MODE VARCHAR(5) IN=Input, OUT=Output, INOUT=Input/output

AS_LOCATOR CHAR(1) Always 'N'

704 CLI Guide and Reference

Appendix H. Pseudo Catalog Table for Stored Procedure
Registration

For versions of DB2 CLI before DB2 Universal Database, the DB2CLI.PROCEDURES
table must be created and populated at the server before SQLProcedures() and
SQLProcedureColumns() can be called to retrieve information about stored procedures
and their attributes.

DB2 Universal Database now makes use of the SYSCAT.PROCEDURES and
SYSCAT.PROCPARAMS catalog tables which contain information about stored
procedures and therefore the DB2CLI.PROCEDURES table is no longer required.

If you are still using a version of DB2 before version 5, you can use the sample
command line processor input file STORPROC.DDL to create the DB2CLI.PROCEDURES
table. You may then modify the sample STORPROC.XMP file to insert rows into this
PROCEDURES table. Both of these files are located in the misc subdirectory of the
sqllib directory. To use the file to create the table, execute the following from a
command line:

db2 -f STORPROC.DDL -z STORPROC.LOG -t

It is the database administrator's responsibility to ensure that information has been
entered correctly into the table and to keep the table up to date. Initially, all users have
SELECT privilege for this table and only users with DBADM authority can INSERT,
DELETE or UPDATE rows in this table. As with other tables, a user with DBADM
authority can grant privileges to other users.

Legend for the DB2CLI.PROCEDURES Table:

Column Name Name of the column

Data Type Data type of the column

Nullable

Yes — Nulls are permitted
No — Nulls are not permitted

Key

Key — The column is part of a primary key
No — The column is not part of a key

Description Description of the column

Table 219 (Page 1 of 3). Columns of the PROCEDURES table in the DB2CLI schema

Column Name Data Type Nullable Key Description

PROCSCHEMA VARCHAR(18) No PK Schema name of the procedure.

PROCNAME VARCHAR(18) No PK Name of the stored procedure specified on
the SQL CALL statement.

 Copyright IBM Corp. 1993, 1997 705

Table 219 (Page 2 of 3). Columns of the PROCEDURES table in the DB2CLI schema

Column Name Data Type Nullable Key Description

DEFINER VARCHAR(8) No No Definer of the stored procedure. (The
database administrator who inserted this row
into the table.)

PKGSCHEMA VARCHAR(18) No No Schema name of the package to be used
when the stored procedure is executed.

PKGNAME VARCHAR(18) No No Name of the package to be loaded when the
stored procedure is executed.

PROC_LOCATION VARCHAR(254) No No External (full path) name of the procedure.

PARM_STYLE CHAR(1) No No The convention used to pass parameters to
the stored procedure:

¹ D for the Database Application Remote
Interface (DARI) convention used by
DB2 for common server servers.

LANGUAGE CHAR(8) No No The programming language used to create
the stored procedure. Possible values are
COBOL, C, REXX and FORTRAN for for
common servers of DB2. (The value C is
used for both C and C++ programs.) Other
products may enable other languages, for
example: PL/I and BASIC.

STAYRESIDENT CHAR(1) No No Determines whether the stored procedure
load module is deleted from memory when
the stored procedure ends:

¹ Y indicates that the load module
remains resident in memory after the
stored procedure ends.

This includes the case when the stored
procedure returns SQLZ_HOLD_PROC
to stay resident for a number of calls,
and then terminates by returning
SQLZ_DISCONNECT_PROC.

¹ A blank entry indicates that the load
module is deleted from memory after the
stored module terminates.

RUNOPTS VARCHAR(254) No No Reserved (empty string).

PARM_LIST VARCHAR(3000) No No Parameter list of the stored procedure. See
the syntax diagram following this table for
the format of this parameter list.

FENCED CHAR(1) No No An indication of whether or not the
procedure runs “fenced”:

¹ Y indicates the stored procedure is
fenced

¹ N indicates the stored procedure is not
fenced

706 CLI Guide and Reference

Table 219 (Page 3 of 3). Columns of the PROCEDURES table in the DB2CLI schema

Column Name Data Type Nullable Key Description

REMARKS VARCHAR(254) Yes No Description of the stored procedure.

RESULT_SETS SMALLINT No No The number of result sets that can be
returned.

The input format of the parameter list column, PARM_LIST, is defined in Figure 19. If
there is a syntax error in the contents of this column, a call to SQLProcedureColumns()

will result in an error.

 ┌ ┐─,───
55─ ───6 ┴┬ ┬─── ─────────────────5%
 │ │┌ ┐─IN────
 └ ┘─parm-name──┤ data-type ├─ ──┬ ┬────────────────────── ──┼ ┼───────
 └ ┘ ─FOR─ ──┬ ┬─SBCS── ─DATA─ ├ ┤─OUT───
 ├ ┤─MIXED─ └ ┘─INOUT─
 └ ┘─BIT───

data-type:
├─ ──┬ ┬─INT── ────────────────────────────────────┤
 ├ ┤─INTEGER──
 ├ ┤─SMALLINT───────────────────────────────────────
 ├ ┤ ─FLOAT─ ──┬ ┬───────────────── ────────────────────
 │ │└ ┘ ─(──integer *──)─
 ├ ┤─REAL───
 ├ ┤─DOUBLE───
 ├ ┤─DOUBLE PRECISION───────────────────────────────
 ├ ┤ ──┬ ┬─DEC───── ──┬ ┬───────────────────────────────
 │ │├ ┤─DECIMAL─ └ ┘ ─(──integer─ ──┬ ┬──────────── ─)─
 │ │├ ┤─NUM───── └ ┘ ─,──integer─
 │ │└ ┘─NUMERIC─
 ├ ┤ ──┬ ┬─CHAR────── ──┬ ┬─────────────── ──────────────
 │ │└ ┘─CHARACTER─ └ ┘─(──integer──)─
 ├ ┤─VARCHAR──(──integer──)─────────────────────────
 ├ ┤─LONG VARCHAR───────────────────────────────────
 ├ ┤ ─GRAPHIC─ ──┬ ┬─────────────── ────────────────────
 │ │└ ┘─(──integer──)─
 ├ ┤─VARGRAPHIC──(──integer──)──────────────────────
 ├ ┤─LONG VARGRAPHIC────────────────────────────────
 ├ ┤ ──┬ ┬─BLOB─── ─(──integer─ ──┬ ┬─K─ ─)───────────────
 │ │├ ┤─CLOB─── ├ ┤─M─
 │ │└ ┘─DBCLOB─ └ ┘─G─
 ├ ┤─DATE───
 ├ ┤─TIME───
 └ ┘─TIMESTAMP──────────────────────────────────────

Note: * - not supported in common server versions of DB2

Figure 19. PARMLIST String Syntax. This PARMLIST syntax diagram combines the data types supported for both
DB2 for MVS/ESA and for common server versions of DB2.

 Appendix H. Pseudo Catalog Table for Stored Procedure Registration 707

708 CLI Guide and Reference

Appendix I. Supported SQL Statements

Table 220 (Page 1 of 3). SQL Statements (DB2 Universal Database)

SQL Statement Dynamic 1

Command
Line
Processor
(CLP) Call Level Interface 3 (CLI)

ALTER { BUFFERPOOL, NODEGROUP,
TABLE, TABLESPACE }

X X X

BEGIN DECLARE SECTION2

CALL X4

CLOSE X SQLCloseCursor(), SQLFreeStmt()

COMMENT ON X X X

COMMIT X X SQLEndTran, SQLTransact()

Compound SQL X4

CONNECT (Type 1) X SQLBrowseConnect(), SQLConnect(),
SQLDriverConnect()

CONNECT (Type 2) X SQLBrowseConnect(), SQLConnect(),
SQLDriverConnect()

CREATE { ALIAS, BUFFERPOOL,
DISTINCT TYPE, EVENT MONITOR,
FUNCTION, INDEX, NODEGROUP,
PROCEDURE, SCHEMA, TABLE,
TABLESPACE, TRIGGER, VIEW }

X X X

DECLARE CURSOR2 X SQLAllocStmt()

DELETE X X X

DESCRIBE8 X SQLColAttributes(), SQLDescribeCol(),
SQLDescribParam()6

DISCONNECT X SQLDisconnect()

DROP X X X

END DECLARE SECTION2

EXECUTE SQLExecute()

EXECUTE IMMEDIATE SQLExecDirect()

EXPLAIN X X X

FETCH X SQLExtendedFetch()7 , SQLFetch(),
SQLFetchScroll()7

FREE LOCATOR X4

GRANT X X X

INCLUDE2

INSERT X X X

 Copyright IBM Corp. 1993, 1997 709

Table 220 (Page 2 of 3). SQL Statements (DB2 Universal Database)

SQL Statement Dynamic 1

Command
Line
Processor
(CLP) Call Level Interface 3 (CLI)

LOCK TABLE X X X

OPEN X SQLExecute(), SQLExecDirect()

PREPARE SQLPrepare()

RELEASE X

RENAME TABLE X X X

REVOKE X X X

ROLLBACK X X SQLEndTran(), SQLTransact()

select-statement X X X

SELECT INTO

SET CONNECTION X SQLSetConnection()

SET CONSTRAINTS X X X

SET CURRENT DEGREE X X X

SET CURRENT EXPLAIN MODE X X X, SQLSetConnectAttr()

SET CURRENT EXPLAIN SNAPSHOT X X X, SQLSetConnectAttr()

SET CURRENT FUNCTION PATH X X X

SET CURRENT PACKAGESET

SET CURRENT QUERY OPTIMIZATION X X X

SET EVENT MONITOR STATE X X X

SET transition-variable5 X X X

SIGNAL SQLSTATE5 X X X

UPDATE X X X

VALUES INTO

WHENEVER2

710 CLI Guide and Reference

Table 220 (Page 3 of 3). SQL Statements (DB2 Universal Database)

SQL Statement Dynamic 1

Command
Line
Processor
(CLP) Call Level Interface 3 (CLI)

Notes:

1. You can code all statements in this list as static SQL, but only those marked with X as dynamic SQL.
2. You cannot execute this statement.
3. An X indicates that you can execute this statement using either SQLExecDirect() or SQLPrepare() and

SQLExecute(). If there is an equivalent DB2 CLI function, the function name is listed.
4. Although this statement is not dynamic, with DB2 CLI you can specify this statement when calling either

SQLExecDirect(), or SQLPrepare() and SQLExecute().
5. You can only use this within CREATE TRIGGER statements.
6. You can only use the SQL DESCRIBE statement to describe output, whereas with DB2 CLI you can also

describe input (using the SQLDescribeParam() function).
7. You can only use the SQL FETCH statement to fetch one row at a time in one direction, whereas with the

DB2 CLI SQLExtendedFetch() and SQLFetchScroll() functions, you can fetch into arrays. Furthermore,
you can fetch in any direction, and at any position in the result set.

8. The DESCRIBE SQL statement has a different syntax than that of the CLP DESCRIBE command. For
information on the DESCRIBE SQL statement, refer to the SQL Reference. For information on the
DESCRIBE CLP command, refer to the Command Reference.

 Appendix I. Supported SQL Statements 711

712 CLI Guide and Reference

Appendix J. Example Code Listing

The example code fragments used throughout this book can all be found in the
samples/cli (or samples\cli) subdirectory of the sqllib directory. The README file
contains a complete description of each file, and describes how to use the makefile to
build all the samples.

The following table lists each of the DB2 CLI samples.

Table 221 (Page 1 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

Utility files used by most CLI samples

samputil.c Utility functions used by most samples

samputil.h Header file for samputil.c, included by most samples

General CLI Samples

adhoc.c Interactive SQL with formatted output (was typical.c)

async.c ** Run a function asynchronously (based on fetch.c)

basiccon.c Basic connection

browser.c List columns, foreign keys, index columns or stats for a table

colpriv.c List column Privileges

columns.c List all columns for table search string

compnd.c Compound SQL example

datasour.c List all available data sources

descrptr.c ** Example of descriptor usage

drivrcon.c Rewrite of basiccon.c using SQLDriverConnect

duowcon.c Multiple DUOW Connect type 2, syncpoint 1 (one phase commit)

embedded.c Show equivalent DB2 CLI calls, for embedded SQL (in comments)

fetch.c Simple example of a fetch sequence

getattrs.c List some common environment, connection and statement options/attributes

getcurs.c Show use of SQLGetCursor, and positioned update

getdata.c Rewrite of fetch.c using SQLGetData instead of SQLBindCol

getfuncs.c List all supported functions

getfuncs.h Header file for getfuncs.c

getinfo.c Use SQLGetInfo to get driver version and other information

getsqlca.c Rewrite of adhoc.c to use prepare/execute and show cost estimate

lookres.c Extract string from resume clob using locators

mixed.sqc CLI sample with functions written using embedded SQL (Note: This file must be
precompiled)

 Copyright IBM Corp. 1993, 1997 713

Table 221 (Page 2 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

multicon.c Multiple connections

native.c Simple example of calling SQLNativeSql, and SQLNumParams

prepare.c Rewrite of fetch.c, using prepare/execute instead of execdirect

proccols.c List procedure parameters using SQLProcedureColumns

procs.c List procedures using SQLProcedures

sfetch.c ** Scrollable cursor example (based on xfetch.c)

setcolat.c Set column attributes (using SQLSetColAttributes)

setcurs.c Rewrite of getcurs.c using SQLSetCurs for positioned update

seteattr.c Set environment attribute (SQL_ATTR_OUTPUT_NTS)

tables.c List all tables

typeinfo.c Display type information for all types for current data source

xfetch.c Extended Fetch, multiple rows per fetch

BLOB Samples

picin.c Loads graphic BLOBS into the emp_photo table directly from a file using
SQLBindParamToFile

picin2.c Loads graphic BLOBS into the emp_photo table using SQLPutData

showpic.c Extracts BLOB picture to file (using SQLBindColToFile), then displays the graphic.

showpic2.c Extracts BLOB picture to file using piecewise output, then displays the graphic.

Stored Procedure Samples

clicall.c Defines a CLI function which is used in the embedded SQL sample mrspcli3.sqc

inpcli.c Call embedded input stored procedure samples/c/inpsrv

inpcli2.c Call CLI input stored procedure inpsrv2

inpsrv2.c CLI input stored procedure (rewrite of embedded sample inpsrv.sqc)

mrspcli.c CLI program that calls mrspsrv.c

mrspcli2.c CLI program that calls mrspsrv2.sqc

mrspcli3.sqc An embedded SQL program that calls mrspsrv2.sqc using clicall.c

mrspsrv.c Stored procedure that returns a multi-row result set

mrspsrv2.sqc An embedded SQL stored procedure that returns a multi-row result set

outcli.c Call embedded output stored procedure samples/c/inpsrv

outcli2.c Call CLI output stored procedure inpsrv2

outsrv2.c CLI output stored procedure (rewrite of embedded sample inpsrv.sqc)

Samples using ORDER tables created by create.c (Run in the following order)

create.c Creates all tables for the order scenario

custin.c Inserts customers into the customer table (array insert)

prodin.c Inserts products into the products table (array insert)

714 CLI Guide and Reference

Embedded SQL Example

Table 221 (Page 3 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

prodpart.c Inserts parts into the prod_parts table (array insert)

ordin.c Inserts orders into the ord_line, ord_cust tables (array insert)

ordrep.c Generates order report using multiple result sets

partrep.c Generates exploding parts report (recursive SQL Query)

order.c UDF library code (declares a 'price' UDF)

order.exp Used to build order libary

Version 2 Samples unchanged

v2sutil.c samputil.c using old v2 functions

v2sutil.h samputil.h using old v2 functions

v2fetch.c fetch.c using old v2 functions

v2xfetch.c xfetch.c using old v2 functions

Note: Samples marked with a ** are new for this release.

Other files in the samples/cli directory include:

¹ README - Lists all example files.
¹ makefile - Makefile for all files

The following two example files are listed in this section.:

¹ embedded.c - compares DB2 CLI and embedded calls

¹ adhoc.c - a full interactive SQL example

Embedded SQL Example
This example is a modified version of the example contained in the X/Open SQL CLI
document. It shows embedded statements in comments, and the equivalent DB2 CLI
function calls.

 Appendix J. Example Code Listing 715

Embedded SQL Example

/* From CLI sample embedded.c */

/* ... */

#include <string.h>

#include <stdlib.h>

#include <sqlcli1.h>

#include "samputil.h" /* Header file for CLI sample code */

/* ... */

/*

 Global Variables for user id and password.

 To keep samples simple, not a recommended practice.

*/

extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1] ;

extern SQLCHAR uid[MAX_UID_LENGTH + 1] ;

extern SQLCHAR pwd[MAX_PWD_LENGTH + 1] ;

int main(int argc, char * argv[]) {

SQLHANDLE henv, hdbc, hstmt ;

SQLRETURN rc ;

SQLINTEGER id ;

SQLCHAR name[51] ;

SQLCHAR * create = "CREATE TABLE NAMEID (ID integer, NAME varchar(50))" ;

SQLCHAR * insert = "INSERT INTO NAMEID VALUES (?, ?)" ;

SQLCHAR * select = "select ID, NAME from NAMEID" ;

SQLCHAR * drop = "DROP TABLE NAMEID" ;

/* ... */

/* EXEC SQL CONNECT TO :server USER :uid USING :authentication_string; */

/* macro to initalize server, uid and pwd */

 INIT_UID_PWD ;

/* allocate an environment handle */

rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

/* allocate a connect handle, and connect */

rc = DBconnect(henv, &hdbc) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

/* allocate a statement handle */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* EXEC SQL CREATE TABLE NAMEID (ID integer, NAME varchar(50)); */

/* execute the sql statement */

rc = SQLExecDirect(hstmt, create, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* EXEC SQL COMMIT WORK; */

/* commit create table */

716 CLI Guide and Reference

Embedded SQL Example

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* EXEC SQL INSERT INTO NAMEID VALUES (:id, :name); */

/* show the use of SQLPrepare/SQLExecute method */

/* prepare the insert */

rc = SQLPrepare(hstmt, insert, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set up the first input parameter "id" */

rc = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_LONG,

 SQL_INTEGER,

 0,

 0,

(SQLPOINTER) & id,

 0,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Set up the second input parameter "name" */

rc = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_VARCHAR,

 51,

 0,

 name,

 51,

 NULL

) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* now assign parameter values and execute the insert */

id = 500 ;

strcpy(name, "Babbage") ;

rc = SQLExecute(hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* EXEC SQL COMMIT WORK; */

/* commit inserts */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* Reset input parameter. */

rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* EXEC SQL DECLARE c1 CURSOR FOR SELECT ID, NAME FROM NAMEID; */

/* EXEC SQL OPEN c1; */

/* The application doesn't specify "declare c1 cursor for" */

rc = SQLExecDirect(hstmt, select, SQL_NTS) ;

 Appendix J. Example Code Listing 717

Embedded SQL Example

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* EXEC SQL FETCH c1 INTO :id, :name; */

/* Binding first column to output variable "id" */

SQLBindCol(hstmt, 1, SQL_C_LONG, (SQLPOINTER) & id, 0, NULL) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* Binding second column to output variable "name" */

SQLBindCol(hstmt, 2, SQL_C_CHAR, name, 51, NULL) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* now execute the fetch */

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

printf("Result of Select: id = %ld name = %s\n", id, name) ;

if (rc != SQL_NO_DATA_FOUND)

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* finally, we should commit, discard hstmt, disconnect */

/* EXEC SQL COMMIT WORK; */

/* Close cursor and free bound columns. */

/* Free statement resources */

rc = SQLFreeStmt(hstmt, SQL_UNBIND) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFreeStmt(hstmt, SQL_CLOSE) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

 /* Drop table. */

rc = SQLExecDirect(hstmt, drop, SQL_NTS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* commit the transaction */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* EXEC SQL CLOSE c1; */

/* free the statement handle */

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* EXEC SQL DISCONNECT; */

/* disconnect from the database */

printf("\n>Disconnecting\n") ;

rc = SQLDisconnect(hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* free the connection handle */

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;

/* free the environment handle */

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;

if (rc != SQL_SUCCESS) return(terminate(henv, rc)) ;

return(SQL_SUCCESS) ;

}

718 CLI Guide and Reference

Interactive SQL Example

Interactive SQL Example
This example is a modified version of the example contained in the X/Open SQL CLI
document. It shows the execution of interactive SQL statements, and follows the flow
described in Chapter 2, “Writing a DB2 CLI Application” on page 9.

 Appendix J. Example Code Listing 719

Interactive SQL Example

/* From CLI sample adhoc.c */

/* ... */

/***

** process_stmt

** - allocates a statement resources

** - executes the statement

** - determines the type of statement

** - if there are no result columns, therefore non-select statement

** - if rowcount > 0, assume statement was UPDATE, INSERT, DELETE

** else

** - assume a DDL, or Grant/Revoke statement

** else

** - must be a select statement.

** - display results

** - frees the statement resources

***/

int process_stmt(SQLHANDLE hstmt, SQLCHAR * sqlstr) {

 SQLSMALLINT nresultcols;

 SQLINTEGER rowcount;

 SQLRETURN rc;

/* execute the SQL statement in "sqlstr" */

rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);

if (rc != SQL_SUCCESS)

if (rc == SQL_NO_DATA_FOUND) {

printf("\nStatement executed without error, however,\n");

printf("no data was found or modified\n");

 return (SQL_SUCCESS);

 }

else CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLNumResultCols(hstmt, &nresultcols);

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

/* determine statement type */

if (nresultcols == 0) { /* statement is not a select statement */

rc = SQLRowCount(hstmt, &rowcount);

if (rowcount > 0) /* assume statement is UPDATE, INSERT, DELETE */

printf("Statement executed, %ld rows affected\n", rowcount);

else /* assume statement is GRANT, REVOKE or a DLL statement */

printf("Statement completed successful\n") ;

 }

else print_results(hstmt) ; /* display the result set */

/* end determine statement type */

/* free statement resources */

rc = SQLFreeStmt(hstmt, SQL_UNBIND) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

720 CLI Guide and Reference

Interactive SQL Example

rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

rc = SQLFreeStmt(hstmt, SQL_CLOSE) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

return(0) ;

} /* end process_stmt */

/* From CLI sample samputil.c */

/* ... */

/* print_results */

SQLRETURN print_results(SQLHANDLE hstmt) {

 SQLCHAR colname[32] ;

SQLSMALLINT coltype ;

SQLSMALLINT colnamelen ;

SQLSMALLINT nullable ;

SQLUINTEGER collen[MAXCOLS] ;

SQLSMALLINT scale ;

 SQLINTEGER outlen[MAXCOLS] ;

 SQLCHAR * data[MAXCOLS] ;

 SQLCHAR errmsg[256] ;

 SQLRETURN rc ;

SQLSMALLINT nresultcols, i ;

 SQLINTEGER displaysize ;

rc = SQLNumResultCols(hstmt, &nresultcols) ;

CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

for (i = 0; i < nresultcols; i++) {

 SQLDescribeCol(hstmt,

(SQLSMALLINT) (i + 1),

 colname,

 sizeof(colname),

 &colnamelen,

 &coltype,

 &collen[i],

 &scale,

 NULL

) ;

/* get display length for column */

 SQLColAttribute(hstmt,

(SQLSMALLINT) (i + 1),

 SQL_DESC_DISPLAY_SIZE,

 NULL,

 0,

 NULL,

 &displaysize

) ;

 Appendix J. Example Code Listing 721

Interactive SQL Example

 /*

Set column length to max of display length,

and column name length. Plus one byte for

 null terminator.

 */

collen[i] = max(displaysize,

strlen((char *) colname)

) + 1 ;

 printf("%-*.*s",

(int) collen[i],

(int) collen[i],

 colname

) ;

/* allocate memory to bind column */

data[i] = (SQLCHAR *) malloc((int) collen[i]) ;

/* bind columns to program vars, converting all types to CHAR */

 SQLBindCol(hstmt,

(SQLSMALLINT) (i + 1),

 SQL_C_CHAR,

 data[i],

 collen[i],

 &outlen[i]

) ;

 }

printf("\n") ;

/* display result rows */

while (SQLFetch(hstmt) != SQL_NO_DATA) {

errmsg[0] = '\0' ;

for (i = 0; i < nresultcols; i++) {

/* Check for NULL data */

if (outlen[i] == SQL_NULL_DATA)

 printf("%-*.*s",

(int) collen[i],

(int) collen[i],

 "NULL"

) ;

else { /* Build a truncation message for any columns truncated */

if (outlen[i] >= collen[i]) {

sprintf((char *) errmsg + strlen((char *) errmsg),

"%d chars truncated, col %d\n",

(int) outlen[i] - collen[i] + 1,

i + 1

) ;

 }

/* Print column */

 printf("%-*.*s",

(int) collen[i],

722 CLI Guide and Reference

Interactive SQL Example

(int) collen[i],

 data[i]

) ;

 }

} /* for all columns in this row */

printf("\n%s", errmsg) ; /* print any truncation messages */

} /* while rows to fetch */

/* free data buffers */

for (i = 0; i < nresultcols; i++) {

free(data[i]) ;

 }

return(SQL_SUCCESS) ;

} /* end print_results */

 Appendix J. Example Code Listing 723

Interactive SQL Example

724 CLI Guide and Reference

Appendix K. Using the DB2 CLI/ODBC Trace Facility

Applications using either DB2 CLI or ODBC and the IBM DB2 CLI/ODBC Driver can
have all the function calls traced to a plain text file. This can help with problem
determination, datababase and application tuning or just to better understand what a
3rd party application is doing.

The trace can be enabled at runtime using the CLI/ODBC Settings notebook,
accessible from the Client Configuration Assistant if it is available, or by editing the
db2cli.ini file directly. A DB2 CLI application can also enable the trace by setting the
SQL_ATTR_TRACE and SQL_ATTR_TRACEFILE Environment or Connection
attributes. These are the same attributes used by the tracing facility in the Microsoft
ODBC Driver Manager.

Enabling the Trace Using the db2cli.ini File
The db2cli.ini file is located by default in the \sqllib\ path for Intel platforms, and the
/sqllib/cfg/ path for UNIX platforms.

The following lines must be added to enable the trace (the keywords are NOT case
sensitive):

 1. [COMMON]
 2. Trace=1

3. TraceFileName=(fully qualified filename)

or

TracePathname=(fully qualified pathname)
4. TraceFlush=(0 or 1) - optional

For example:

 [Common]

 trace=1

 tracefilename=d:\temp\clitrace.txt

Setting TRACE to 0 turns tracing off. The trace file information can be left in the
configuration file for the next time it is needed. See “TRACE” on page 168 for more
information.

If the application does not exit or exits abnormally, the trace file will probably not be
complete. Setting TRAEFLUSH to 1 will cause a flush to disk on every function call
(which will increase the overhead of tracing dramatically). See “TRACEFLUSH” on
page 169 for more information.

Locating the Resulting Files

 Copyright IBM Corp. 1993, 1997 725

If you used a fully qualified filename with the TRACEFILENAME keyword, you should
have no problem locating the file. If you used a relative pathname, it will depend on
what the operating system considers the current path of the application.

If you used a pathname instead of a filename with the TRACEPATHNAME keyword,
you will need to check the directory for a set of files created with the name set to the
process id of the application and an extension that is a sequence number for each
unique thread (eg. 65397.0, 65397.1, 65397.2 etc.). The file date and timestamp can
be used to help locate the relevant file.

If you used a relative pathname, it will depend on what the operating system considers
the current path of the application.

If there is no output file:

¹ Verify that the keywords are set correctly in db2cli.ini.

¹ Ensure the application is restarted (specifically, SQLAllocEnv() must be called to
read the db2cli.ini file and initialize the trace).

¹ Ensure the application has write access to the specified filename.

¹ Check if the DB2CLIINIPATH environment variable is specified. This environment
variable changes the location from which the db2cli.ini file will be read.

¹ ODBC applications will not access the IBM DB2 CLI/ODBC Driver until the first
connect call. No trace entires will be written to the file until the application makes
this connect call. See “ODBC Driver Manager Tracing” on page 733 for more
details.

Reading the Trace Information
The purpose of the trace is to display the sequence of calls, the input and output
arguments and the return code for each function called. The trace is intended for
people familiar (or looking to become familiar) with the DB2 CLI or ODBC function calls.
Two things that are useful for anyone is the the SQL statement text being executed and
any error messages that the application may not be reporting.

To locate:

 ¹ SQL statements:

Search the trace file for the strings "SQLExecDirect" and "SQLPrepare", you will
find the SQL Statement on the same line that contains the text and the "–––>"
input arrow (although your editor may wrap the line).

¹ Errors: (queried by the application)

Search the trace file for "SQLError", the message text will be shown on the line
that contains the string and the output arrow "<–––".

¹ Errors: (Ignored by the application)

726 CLI Guide and Reference

Search for "Unretrieved error message=" This indicates that a previous call got an
SQL_ERROR or SQL_SUCCESS_WITH_INFO return code, but that the application
did not query for the error information.

Note: An application may expect some error messages, you should look at all the
error messages in the trace file and try to determine the serious ones.

Detailed Trace File Format
Refer to the example trace file below. Note that the line numbers have been added for
this discussion, and do NOT appear in the trace.

¹ Line 1: The build date and product signature is shown to aid IBM Service.

¹ Lines 2-3: First of a common two line sequence showing the arguments on input
(–––>) to the function call. Integer arguments may be mapped to a defined value
like "SQL_HANDLE_ENV", output arguments are usually shown as pointers, with
an "&" prefix.

¹ Lines 4-5: Two line sequence showing ouput (<–––) results of the function call.
Only output arguments are shown, and the return code on the second line following
the (–––>). Match this with the preceding input lines.

¹ Line 7: Example of an elapsed time on input. This is the time in the application
between CLI function calls, shown in seconds. (Note: the granularity or accuracy of
these timmings vary between platforms).

¹ Line 8: Example of an elasped time on output. This is the time in DB2 CLI spent
executing the function.

¹ Lines 18-20: Both SQLDriverConnect() and SQLConnect() display the keywords set
on both the input connection string and set in the db2cli.ini file.

¹ Line 23: The output statement handle is shown as 1:1, the first number represents
the connection handle, the second the statement handle on that connection. This
also applies to descriptor handles, but not to connection or environment handles,
where the first number is always zero.

¹ Line 29: Example of SQL statement text for SQLPrepare().

¹ Line 43-44: Deferred arguments from SQLBindParameter() calls (lines 33 - 40). This
is the data sent for each of the sql parameter markers (?) in the prepared
statement (line 29).

¹ Lines 79-81: The ouptut from the SQLFetch() call. (iCol = Column, rgbValue = data
in char format, pcbValue=Length).

¹ Line 110: SQLError() output, showing message text. The pfNativeError is either the
DB2 SQLCODE or -9999 if the error originated from DB2 CLI instead of the
database server.

¹ Line 123: Shows an unretrived error message. This is shown whenever a function
is called using a handle which had a previous error, but was never retrieved by the
application. It is effectively "lost" (to the application) at this point but is captured in
the trace.

 Appendix K. Using the DB2 CLI/ODBC Trace Facility 727

Example Trace File
This example has line numbers added to aid the discussion, line numbers do NOT
appear in the trace.

728 CLI Guide and Reference

1 Build Date: 97/05/13 - Product: QDB2/6000 (4) - Driver Version: 05.00.0000

2 SQLAllocHandle(fHandleType=SQL_HANDLE_ENV, hInput=0:0, phOutput=&2ff7f388)

3 –––> Time elapsed - +1.399700E-002 seconds

4 SQLAllocHandle(phOutput=0:1)

5 <––– SQL_SUCCESS Time elapsed - +6.590000E-003 seconds

6 SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1, phOutput=&2ff7f378)

7 –––> Time elapsed - +1.120000E-002 seconds

8 SQLAllocHandle(phOutput=0:1)

9 <––– SQL_SUCCESS Time elapsed - +8.979000E-003 seconds

10 SQLSetConnectOption(hDbc=0:1, fOption=SQL_ATTR_AUTOCOMMIT, vParam=0)

11 –––> Time elapsed - +6.638000E-003 seconds

 12 SQLSetConnectOption()

13 <––– SQL_SUCCESS Time elapsed - +1.209000E-003 seconds

14 SQLDriverConnect(hDbc=0:1, hwnd=0:0, szConnStrIn="DSN=loopback;

uid=clitest1;pwd=*******", cbConnStrIn=-3, szConnStrOut=&2ff7e7b4,

 cbConnStrOutMax=250, pcbConnStrOut=&2ff7e7ae,

 fDriverCompletion=SQL_DRIVER_NOPROMPT)

15 –––> Time elapsed - +1.382000E-003 seconds

 16 SQLDriverConnect(szConnStrOut="DSN=LOOPBACK;UID=clitest1;PWD=*******;",

 pcbConnStrOut=38)

17 <––– SQL_SUCCESS Time elapsed - +7.675910E-001 seconds

18 (DSN="LOOPBACK")

19 (UID="clitest1")

20 (PWD="*******")

21 SQLAllocHandle(fHandleType=SQL_HANDLE_STMT, hInput=0:1, phOutput=&2ff7f378)

22 –––> Time elapsed - +1.459900E-002 seconds

23 SQLAllocHandle(phOutput=1:1)

24 <––– SQL_SUCCESS Time elapsed - +7.008300E-002 seconds

25 SQLExecDirect(hStmt=1:1, pszSqlStr="create table test(id integer, name char(20),

created date)", cbSqlStr=-3)

26 –––> Time elapsed - +1.576899E-002 seconds

 27 SQLExecDirect()

28 <––– SQL_SUCCESS Time elapsed - +1.017835E+000 seconds

29 SQLPrepare(hStmt=1:1, pszSqlStr="insert into test values (?, ?, current date)",

 cbSqlStr=-3)

30 –––> Time elapsed - +5.008000E-003 seconds

 31 SQLPrepare()

32 <––– SQL_SUCCESS Time elapsed - +7.896000E-003 seconds

 Appendix K. Using the DB2 CLI/ODBC Trace Facility 729

33 SQLBindParameter(hStmt=1:1, iPar=1, fParamType=SQL_PARAM_INPUT,

fCType=SQL_C_LONG, fSQLType=SQL_INTEGER, cbColDef=4, ibScale=0,

rgbValue=&20714d88, cbValueMax=4, pcbValue=&20714d54)

34 –––> Time elapsed - +2.870000E-003 seconds

 35 SQLBindParameter()

36 <––– SQL_SUCCESS Time elapsed - +3.803000E-003 seconds

37 SQLBindParameter(hStmt=1:1, iPar=2, fParamType=SQL_PARAM_INPUT,

fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=20, ibScale=0,

rgbValue=&20714dd8, cbValueMax=21, pcbValue=&20714da4)

38 –––> Time elapsed - +2.649000E-003 seconds

 39 SQLBindParameter()

40 <––– SQL_SUCCESS Time elapsed - +3.882000E-003 seconds

41 SQLExecute(hStmt=1:1)

42 –––> Time elapsed - +3.681000E-003 seconds

43 (iPar=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4, piIndicatorPtr=4)

44 (iPar=2, fCType=SQL_C_CHAR, rgbValue="-3", pcbValue=2, piIndicatorPtr=2)

 45 SQLExecute()

46 <––– SQL_SUCCESS Time elapsed - +4.273490E-001 seconds

47 SQLExecute(hStmt=1:1)

48 –––> Time elapsed - +5.483000E-003 seconds

49 (iPar=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4, piIndicatorPtr=4)

50 (iPar=2, fCType=SQL_C_CHAR, rgbValue="-3", pcbValue=2, piIndicatorPtr=2)

 51 SQLExecute()

52 <––– SQL_SUCCESS Time elapsed - +1.299300E-002 seconds

53 SQLExecute(hStmt=1:1)

54 –––> Time elapsed - +3.702000E-003 seconds

55 (iPar=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4, piIndicatorPtr=4)

56 (iPar=2, fCType=SQL_C_CHAR, rgbValue="-3", pcbValue=2, piIndicatorPtr=2)

 57 SQLExecute()

58 <––– SQL_SUCCESS Time elapsed - +1.265700E-002 seconds

59 SQLExecDirect(hStmt=1:1, pszSqlStr="select * from test", cbSqlStr=-3)

60 –––> Time elapsed - +2.983000E-003 seconds

 61 SQLExecDirect()

62 <––– SQL_SUCCESS Time elapsed - +2.469180E-001 seconds

63 SQLBindCol(hStmt=1:1, iCol=1, fCType=SQL_C_LONG, rgbValue=&20714e38,

cbValueMax=4, pcbValue=&20714e04)

64 –––> Time elapsed - +5.069000E-003 seconds

 65 SQLBindCol()

730 CLI Guide and Reference

66 <––– SQL_SUCCESS Time elapsed - +2.660000E-003 seconds

67 SQLBindCol(hStmt=1:1, iCol=2, fCType=SQL_C_CHAR, rgbValue=&20714e88,

cbValueMax=21, pcbValue=&20714e54)

68 –––> Time elapsed - +2.492000E-003 seconds

 69 SQLBindCol()

70 <––– SQL_SUCCESS Time elapsed - +2.795000E-003 seconds

71 SQLBindCol(hStmt=1:1, iCol=3, fCType=SQL_C_CHAR, rgbValue=&20714ee8,

cbValueMax=21, pcbValue=&20714eb4)

72 –––> Time elapsed - +2.490000E-003 seconds

 73 SQLBindCol()

74 <––– SQL_SUCCESS Time elapsed - +2.749000E-003 seconds

75 SQLFetch(hStmt=1:1)

76 –––> Time elapsed - +2.660000E-003 seconds

 77 SQLFetch()

78 <––– SQL_SUCCESS Time elapsed - +9.200000E-003 seconds

79 (iCol=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4)

80 (iCol=2, fCType=SQL_C_CHAR, rgbValue="-3 ", pcbValue=20)

81 (iCol=3, fCType=SQL_C_CHAR, rgbValue="1997-05-23", pcbValue=10)

82 SQLFetch(hStmt=1:1)

83 –––> Time elapsed - +4.942000E-003 seconds

 84 SQLFetch()

85 <––– SQL_SUCCESS Time elapsed - +7.860000E-003 seconds

86 (iCol=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4)

87 (iCol=2, fCType=SQL_C_CHAR, rgbValue="-3 ", pcbValue=20)

88 (iCol=3, fCType=SQL_C_CHAR, rgbValue="1997-05-23", pcbValue=10)

89 SQLFetch(hStmt=1:1)

90 –––> Time elapsed - +4.872000E-003 seconds

 91 SQLFetch()

92 <––– SQL_SUCCESS Time elapsed - +7.669000E-003 seconds

93 (iCol=1, fCType=SQL_C_LONG, rgbValue=10, pcbValue=4)

94 (iCol=2, fCType=SQL_C_CHAR, rgbValue="-3 ", pcbValue=20)

95 (iCol=3, fCType=SQL_C_CHAR, rgbValue="1997-05-23", pcbValue=10)

96 SQLFetch(hStmt=1:1)

97 –––> Time elapsed - +5.103000E-003 seconds

 98 SQLFetch()

99 <––– SQL_NO_DATA_FOUND Time elapsed - +6.044000E-003 seconds

100 SQLCloseCursor(hStmt=1:1)

101 –––> Time elapsed - +2.682000E-003 seconds

 Appendix K. Using the DB2 CLI/ODBC Trace Facility 731

 102 SQLCloseCursor()

103 <––– SQL_SUCCESS Time elapsed - +6.794000E-003 seconds

104 SQLExecDirect(hStmt=1:1, pszSqlStr="select * foo bad sql", cbSqlStr=-3)

105 –––> Time elapsed - +2.967000E-003 seconds

 106 SQLExecDirect()

107 <––– SQL_ERROR Time elapsed - +1.103700E-001 seconds

108 SQLError(hEnv=0:0, hDbc=0:0, hStmt=1:1, pszSqlState=&2ff6f19c, pfNativeError=&2ff6ed00

pszErrorMsg=&2ff6ed9c, cbErrorMsgMax=1024, pcbErrorMsg=&2ff6ed0a)

109 –––> Time elapsed - +2.267000E-003 seconds

110 SQLError(pszSqlState="42601", pfNativeError=-104,

pszErrorMsg="[IBM][CLI Driver][DB2/6000] SQL0104N An unexpected token "foo bad s

was found following "select * ". Expected tokens may include: "<space>". SQLST

111 ", pcbErrorMsg=163)

112 <––– SQL_SUCCESS Time elapsed - +5.299000E-003 seconds

113 SQLError(hEnv=0:0, hDbc=0:0, hStmt=1:1, pszSqlState=&2ff6f19c,

pfNativeError=&2ff6ed00, pszErrorMsg=&2ff6ed9c, cbErrorMsgMax=1024,

 pcbErrorMsg=&2ff6ed0a)

114 –––> Time elapsed - +2.753000E-003 seconds

 115 SQLError()

116 <––– SQL_NO_DATA_FOUND Time elapsed - +2.502000E-003 seconds

117 SQLExecDirect(hStmt=1:1, pszSqlStr="select * foo bad sql", cbSqlStr=-3)

118 –––> Time elapsed - +3.292000E-003 seconds

 119 SQLExecDirect()

120 <––– SQL_ERROR Time elapsed - +6.012500E-002 seconds

121 SQLFreeHandle(fHandleType=SQL_HANDLE_STMT, hHandle=1:1)

122 –––> Time elapsed - +2.867000E-003 seconds

123 (Unretrieved error message="SQL0104N An unexpected token "foo bad sql"

was found following "select * ". Expected tokens may include: "<space>". SQLST

 124 ")

 125 SQLFreeHandle()

126 <––– SQL_SUCCESS Time elapsed - +4.936600E-002 seconds

127 SQLEndTran(fHandleType=SQL_HANDLE_DBC, hHandle=0:1, fType=SQL_ROLLBACK)

128 –––> Time elapsed - +2.968000E-003 seconds

 129 SQLEndTran()

130 <––– SQL_SUCCESS Time elapsed - +1.643370E-001 seconds

131 SQLDisconnect(hDbc=0:1)

132 –––> Time elapsed - +2.559000E-003 seconds

 133 SQLDisconnect()

732 CLI Guide and Reference

134 <––– SQL_SUCCESS Time elapsed - +8.253310E-001 seconds

135 SQLFreeHandle(fHandleType=SQL_HANDLE_DBC, hHandle=0:1)

136 –––> Time elapsed - +4.247000E-003 seconds

 137 SQLFreeHandle()

138 <––– SQL_SUCCESS Time elapsed - +4.742000E-003 seconds

139 SQLFreeHandle(fHandleType=SQL_HANDLE_ENV, hHandle=0:1)

140 –––> Time elapsed - +2.023000E-003 seconds

 141 SQLFreeHandle()

142 <––– SQL_SUCCESS Time elapsed - +4.420000E-003 seconds

Tracing Muli-Threaded or Muli-Process Applications
For the trace to be of any use for multi-threaded or multi-process applications, you will
need to use the TRACEPATHNAME keyword. (Otherwise the trace will be garbled if
multiple threads or processes are writing to it simultaneously). See
“TRACEPATHNAME” on page 169.

The files are created in the path specified with the name set to the process id of the
application and an extension that is a sequence number for each unique thread (eg.
65397.0, 65397.1, 65397.2 etc.).

By having each thread write to its own file, no semaphores are needed to control
access to the tracefile, which means tracing dosn't change the behavior of a
multi-thread application. (Of course, tracing may effect the timing of a multi-threaded
application).

ODBC Driver Manager Tracing
It is useful to understand the difference between the ODBC trace provided by the
ODBC Driver Manager and the DB2 CLI/ODBC driver (IBM ODBC Driver Tracing).

The first thing that is noticable is that the output file formats are different. The important
distinction is that the ODBC trace will show the calls made by the application to the
Driver Manager. The DB2 CLI trace shows the calls received from the ODBC Driver
manager.

The ODBC driver manager may map application function calls to either different
functions, different arguments or may delay the call.

One or more of the following may apply:

¹ Applications written using ODBC 2.0 functions that have been replaced in ODBC
3.0, will have the old functions mapped to the new ones by the ODBC Driver
Manager.

¹ Some function arguments may have their values mapped from ODBC 2.0 values to
equivalent ODBC 3.0 values.

 Appendix K. Using the DB2 CLI/ODBC Trace Facility 733

¹ The Microsoft cursor library will map calls such SQLExtendedFetch() to multiple
calls to fetch, and other suporting functions.

For these reasons you may need to enable and compare the output of both traces to
get a clear picture of what is happening.

For more information refer to the Microsoft ODBC 3.0 Software Development Kit and
Programmer's Reference.

734 CLI Guide and Reference

Appendix L. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task
information, DB2 books, troubleshooting information, sample programs, and DB2
information on the Web. “About the Information Center” on page 742 has more details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1997 735

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in
interactive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes
prerequisite
information you need
to know, and
describes how to use
the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in
interactive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

736 CLI Guide and Reference

Type of Help Contents How to Access...

SQL Help Explains the syntax of
SQL statements.

From the command line processor in
interactive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in
interactive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix L. How the DB2 Library Is Structured 737

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 742 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 742 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

Order To order a hardcopy book from IBM, use the form number.

738 CLI Guide and Reference

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration
concepts and tasks, and walks you through the
primary administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a
callable SQL interface that is compatible with the
Microsoft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all
supported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for
customers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA
Application Requesters with DB2 Universal Database
servers, and customers who want to use DRDA
Application Servers with DB2 Connect (formerly
DDCS) application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes
discussions about programming techniques and
performance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix L. How the DB2 Library Is Structured 739

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software
Developer's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools
supplied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about
release-to-release incompatibilities, product limits, and
catalog views.

S10J-8165

db2s0x50

System Monitor Guide and
Reference

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to
understand database activity, improve performance,
and determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in
consultation with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and
enhancements in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Windows or OS/2 system.

S10J-8160

db2a1x50

740 CLI Guide and Reference

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all
supported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix L. How the DB2 Library Is Structured 741

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the
language of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center
The Information Center provides quick access to DB2 product information. The
Information Center is available on OS/2, Windows 95, and the Windows NT operating
systems. You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software
Developer's Kit. If the Software Developer's Kit is not installed,
this tab is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

742 CLI Guide and Reference

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix L. How the DB2 Library Is Structured 743

744 CLI Guide and Reference

 Appendix M. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This book incorporates text which is copyright The X/Open Company Limited. The text
was taken by permission from:

X/Open CAE Specification, March 1995,
Data Management: SQL Call Level Interface (CLI)
(ISBN: 1-85912-081-4, C451).

 Copyright IBM Corp. 1993, 1997 745

X/Open Preliminary Specification, March 1995,
Data Management: Structured Query Language (SQL), Version 2
(ISBN: 1-85912-093-8, P446).

This book incorporates text which is copyright 1992, 1993, 1994, 1997 by Microsoft
Corporation. The text was taken by permission from Microsoft's ODBC 2.0
Programmer's Reference and SDK Guide ISBN 1-55615-658-8, and from Microsoft's
ODBC 3.0 Software Development Kit and Programmer's Reference ISBN
1-57231-516-4.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

746 CLI Guide and Reference

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

 Appendix M. Notices 747

748 CLI Guide and Reference

 Bibliography

¹ IBM SQL Reference Version 2, SC26-8416

¹ ODBC 2.0 Programmer's Reference and SDK Guide
ISBN 1-55615-658-8

¹ ODBC 3.0 Software Development Kit and
Programmer's Reference ISBN 1-57231-516-4

¹ X/Open CAE Specification, March 1995, Data
Management: SQL Call Level Interface (CLI) (ISBN:
1-85912-081-4, C451).

¹ X/Open Preliminary Specification, March 1995, Data
Management: Structured Query Language (SQL),
Version 2 (ISBN: 1-85912-093-8, P446).

¹ IBM DB2 SQL Reference S10J-8165

¹ IBM DATABASE 2 for MVS/ESA SQL Reference
SC26-3270-00

¹ SQL/DS SQL Reference for IBM VM Systems and
VSE SH09-8087-03

¹ DB2 for OS/400 SQL Reference Version 3
SC41-9608-00

 Copyright IBM Corp. 1993, 1997 749

750 CLI Guide and Reference

 Index

Special Characters
_ 50
.INI file

db2cli.ini 138
ODBC 140

% 50

A
ABS Scalar function 662
Absolute value Scalar function 662
ACOS Scalar function 662
APD descriptor 78
APPENDAPINAME, keyword 146
application

sample 713
tasks 9

application parameter descriptor 78
application row descriptor 78
ARD descriptor 78
array input 63
array output 70
ASCII Scalar function 660
ASIN Scalar function 662
Assign File Reference, function 206
ASYNCENABLE, keyword 146
Asynchronous CLI 118
Asynchronous ODBC, enabling 146
ATAN Scalar function 662
ATAN2 Scalar function 662
ATOMIC Compound SQL 90
attributes

connection 37
environment 37
querying and setting 37
statement 37

B
BINARY

conversion to C 693
Bind A Buffer To A Parameter Marker, function 210,

225
Bind Column, function 191
Bind File Reference, function 200

Bind Files and Package Names 137
BindFileToParam, function 209
binding DB2 CLI packages 127
binding, application variables

columns 20
columns with offset 73
parameter markers 18
parameter markers with offset 68

BITDATA, keyword 146
BLOB 95

conversion to C 693
browser.c 50

C
Call Level Interface (CLI)

advantages of using 4, 5
comparing embedded SQL and DB2 CLI 3
overview 2

CALL Statement 105
Cancel statement, function 232, 234
case sensitivity 34
catalog functions 49
catalog views

PROCEDURE PARAMETERS 704
PROCEDURES 703

catalogs, querying 49
CEILING Scalar function 662
CHAR

conversion to C 690
display size 688
length 687
precision 685
scale 686

CHAR Scalar function 660
character strings 33, 34
CLI 2

See also Call Level Interface (CLI)
CLI Stored Procedures 104
CLI/ODBC keywords 138
CLOB 95

conversion to C 690
Column binding offsets 73
Column Information, function 255
Column Privileges, function 249, 254
column-wise array insert 64

 Copyright IBM Corp. 1993, 1997 751

column-wise binding 70, 72
commit 22
common server 659
Compile and link options 143
Compound SQL 89
CONCAT Scalar function 660
concise descriptor functions 85
configuring

ODBC driver 130, 132
Connect 288

See also SQLDriverConnect
Connect, function 262
connection attributes (options) 37
connection handle 3

allocating 11
freeing 11

Connection Pooling 574
connection string 38
CONNECTTYPE, keyword 147
CONVERT Scalar function 668
coordinated distributed transactions 43
copying descriptors 85
core level functions 1
COS Scalar function 662
COT Scalar function 662
CURDATE Scalar function 664
CURRENTFUNCTIONPATH, keyword 147
CURRENTPACKAGESET, keyword 148
CURRENTSQLID, keyword 149
cursor 21

use in CLI 3
CURSORHOLD, keyword 149
Cursors

holding across rollbacks 642
scrollable 51

CURTIME Scalar function 664
custin.c 68

D
data conversion 689, 696, 701

C data types 27
data types 27
default data types 27
description 30
display size of SQL data types 688
length of SQL data types 687
Precision of SQL data types 685
scale of SQL data types 686
SQL data types 27

data source information, querying 34
data types

C 27, 30
generic 30
ODBC 30
SQL 27

data-at-execute 61
DATABASE Scalar function 667
DATE

conversion to C 694
display size 688
length 687
precision 685
scale 686

DAYNAME Scalar function 664
DAYOFMONTH Scalar function 664
DAYOFWEEK Scalar function 664
DAYOFYEAR Scalar function 664
DB2 CLI

function list 177
DB2CLI_VER 654
db2cli.ini 38, 138
DB2DEGREE, keyword 150
DB2ESTIMATE, keyword 150
DB2EXPLAIN, keyword 151
DB2OPTIMIZATION, keyword 152
DBALIAS, keyword 152
DBCLOB 95

conversion to C 691
DBNAME, keyword 153
DECIMAL

conversion to C 692
display size 688
length 687
precision 685
scale 686

DEFAULTPROCLIBRARY, keyword 153
deferred arguments 18
deferred prepare, migration 649
DEFERREDPREPARE, keyword 154
DEGREES Scalar function 662
deprecated function

list of functions 646
SQLAllocConnect 183, 350
SQLAllocEnv 184
SQLAllocStmt 190
SQLAllocTransact 632
SQLBindParam 580
SQLColAttributes 248
SQLError 298

752 CLI Guide and Reference

deprecated function (continued)
SQLExtendedFetch 313
SQLFreeConnect 348
SQLFreeStmt 356
SQLGetConnectOption 362
SQLGetStmtOption 456
SQLParamOptions 483
SQLSetConnectOption 539
SQLSetParam 580
SQLSetStmtOption 607

Describe Column Attributes, function 276
descriptor handle 3, 78
Descriptors

4 different types 78
concise functions 85
consistency checks 81
copying 85
descriptor records 80
general 78
header fields 79

diagnostics 24
DIFFERENCE Scalar function 660
DISABLEMULTITHREAD, keyword 155
Disconnect, function 286, 287
display size of SQL data types 688
distributed transactions 43
Distributed Unit of Work 43
DOUBLE

conversion to C 692
display size 688
length 687
precision 685
scale 686

driver manager 655
driver, CLI 655
driver, ODBC 655
DriverConnect, function 288, 293

E
EARLYCLOSE, keyword 155
Embedded SQL 715

Mixing with DB2 CLI 116
END COMPOUND, CLI extension 90
environment attributes (options) 37
environment handle 3

allocating 11
freeing 11

environment information, querying 34

Escape Clauses, Vendor 123
establishing coordinated transactions 46
examples

array INSERT 68
browser.c 50
catalog functions 50
Compound SQL 93
stored procedure 110
User Defined Type 102

execute direct 17
execute statement 17
Execute statement Directly, function 303
Execute statement, function 310
EXP Scalar function 662

F
FAR pointers 175
Fetch, function 320
Fetching Data in Pieces 62
Flags, for compiling and linking 143
FLOAT

conversion to C 692
display size 688
length 687
precision 685
scale 686

FLOOR Scalar function 663
Foreign Key Column Names, function 347
Foreign Keys Columns, function 341
FREE LOCATOR statement 96
function list, ODBC 658
functions

by category 177

G
GATEWAYVERSION, keyword 156
Get Column Names for a Table, function 261
Get Cursor Name, function 363
Get Data Sources, function 271, 275
Get Data, function 366
Get Functions, function 396, 401
Get Index and Statistics Information for a Table,

function 614, 620
Get Info, function 402, 439
Get List of Procedure Names 505
Get List of Procedure Names, function 509
Get Number of Result Columns 478

 Index 753

Get Parameters for a Procedure, function 504
Get Row Count, function 516
Get Special (Row Identifier) Columns, function 613
Get Special Column Names, function 608
Get SQLCA Data Structure, function 449, 452
Get Table Information, function 625, 631
Get Type Information, function 461
global dynamic statement cache 18
GRANTEELIST, keyword 156
GRANTORLIST, keyword 157
GRAPHIC

conversion to C 691
GRAPHIC, keyword 157

H
handle

connection handle 3, 11
descriptor handle 3, 78
environment handle 3, 11
statement handle 3

HOUR Scalar function 664

I
IFNULL Scalar function 667
IGNOREWARNINGS, keyword 158
implementation parameter descriptor 78
implementation row descriptor 78
initialization 9, 10
initialization file 38
initialization file, ODBC 140
INSERT Scalar function 660
installing DB2 CLI

for application development 141
INTEGER

conversion to C 692
display size 688
length 687
precision 685
scale 686

introduction, to CLI 1
INVALID_HANDLE 25
IPD descriptor 78
IRD descriptor 78
isolation levels, ODBC 658

J
JULIAN_DAY Scalar function 665

K
KEEPCONNECT, keyword 158
KEEPSTATEMENT, keyword 159

L
Large Objects

Binary (BLOB) 95
Character (CLOB) 95
Double Byte Character (DBCLOB) 95
LONGDATACOMPAT 100
using in ODBC applications 100

LCASE Scalar function 660
LEFT Scalar function 660
length of SQL data types 687
LENGTH Scalar function 660
Link options 143
LOB locator 95
LOBMAXCOLUMNSIZE, keyword 159
LOBS 95

See also Large Objects
LOCATE Scalar function 661
locator, LOB 95
LOG Scalar function 663
LOG10 Scalar function 663
long data

retrieving in pieces 61
sending in pieces 61

LONGDATACOMPAT 100
LONGDATACOMPAT, keyword 160
LONGVARBINARY

conversion to C 693
LONGVARCHAR

conversion to C 690
display size 688
length 687
precision 685
scale 686

LONGVARGRAPHIC
conversion to C 691

Lower case conversion Scalar function 660
LTRIM Scalar function 661

754 CLI Guide and Reference

M
MAXCONN, keyword 160
metadata characters 50
Microsoft ODBC 655
Microsoft ODBC Driver Manager 129
midnight, seconds since Scalar function 665
MINUTE Scalar function 665
Mixing Embedded SQL and DB2 CLI 116
MOD Scalar function 663
MODE, keyword 161
MONTH Scalar function 665
MONTHNAME Scalar function 665
More Result Sets, function 467, 472
multi-threaded application 40
MULTICONNECT, keyword 161
multiple connections 642
multiple SQL statements 89

N
native error code 26
Native SQL Text, function 473, 475
NOT ATOMIC Compound SQL 90
NOW Scalar function 665
null connect 110
null-terminated strings 33
null-termination of strings 33
Number of Parameters, function 476, 477
Number of Result Columns, function 478
NUMERIC

conversion to C 692
display size 688
length 687
precision 685
scale 686

O
ODBC 17

and DB2 CLI 1, 655
core level functions 1
function list 658
isolation levels 658
odbc.ini file 140
odbcinst.ini file 140
registering the driver manager 129
running programs 127

ODBC vendor escape clauses 124

odbcad32.exe 129
offset

binding columns 73
binding parameter markers 68

OPTIMIZEFORNROWS, keyword 162
options

connection 37
environment 37
querying and setting 37
statement 37

P
Parallelism, Setting degree of 150
parameter binding offsets 68
Parameter Data, function 480, 482
parameter markers 3

array input 63
parameter markers, binding 18
PATCH1, keyword 162
PATCH2, keyword 162
pattern-values 50
PI Scalar function 663
pointers, FAR 175
POPUPMESSAGE, keyword 163
portability 4
POWER Scalar function 663
precision of SQL data types 685
prepare statement 17
Prepare statement, function 486, 492
prerequisites for DB2 CLI

for application development 141
Primary Key Columns, function 493, 495
Procedure Parameter Information, function 496
Put Data for a Parameter, function 510, 515
PWD, keyword 163

Q
QUARTER Scalar function 665
Query Statements 20
querying data source information 34
querying environment information 34
querying system catalog information 49

R
RADINS Scalar function 663
RAND Scalar function 663

 Index 755

REAL
conversion to C 692
display size 688
length 687
precision 685
scale 686

reentrant (multi-threaded) 40
registering

ODBC driver manager 129
registering stored procedures 107
REPEAT Scalar function 661
REPLACE Scalar function 661
Retrieve Length of String Value, function 440
Retrieve Portion of A String Value, function 457
retrieving multiple rows 70
return codes 25
Return Starting Position of String, function 443
RIGHT Scalar function 661
rollback 22
ROUND Scalar function 663
row-wise array insert 65
Row-Wise Binding 71, 72
rowset

scrollable cursors 51
RTRIM Scalar function 661
runtime support 127

S
sample application 713
scale of SQL data types 686
SCHEMALIST, keyword 164
Scrollable Cursors 51
search arguments 50
SECOND Scalar function 665
SECONDS_SINCE_MIDNIGHT Scalar function 665
SELECT 20
Set Cursor Name, function 540
SIGN Scalar function 663
SIN Scalar function 663
SMALLINT

conversion to C 692
display size 688
length 687
precision 685
scale 686

SOUNDEX Scalar function 661
SPACE Scalar function 661
SQL

dynamically prepared 3

SQL (continued)
parameter markers 18
preparing and executing statements 17
Query Statements 20
SELECT 20
statements

DELETE 21
UPDATE 21

VALUES 20
SQL Access Group 1
SQL_ATTR_ACCESS_MODE 523
SQL_ATTR_APP_PARAM_DESC 591
SQL_ATTR_ASYNC_ENABLE 523, 592
SQL_ATTR_AUTO_IPD 524
SQL_ATTR_AUTOCOMMIT 525
SQL_ATTR_BIND_TYPE 593
SQL_ATTR_CONCURRENCY 593
SQL_ATTR_CONN_CONTEXT 525
SQL_ATTR_CONNECTION_POOLING 574
SQL_ATTR_CONNECTION_TIMEOUT 525
SQL_ATTR_CONNECTTYPE 43, 526, 575
SQL_ATTR_CP_MATCH 575
SQL_ATTR_CURRENT_CATALOG 527
SQL_ATTR_CURRENT_SCHEMA 527
SQL_ATTR_CURSOR_HOLD 594
SQL_ATTR_CURSOR_TYPE 595
SQL_ATTR_DB2ESTIMATE 527
SQL_ATTR_DB2EXPLAIN 528
SQL_ATTR_DEFERRED_PREPARE 595
SQL_ATTR_EARLYCLOSE 596
SQL_ATTR_ENABLE_AUTO_IPD 596
SQL_ATTR_FETCH_BOOKMARK 596
SQL_ATTR_IMP_PARAM_DESC 597
SQL_ATTR_KEYSET_SIZE 597
SQL_ATTR_LOGIN_TIMEOUT 528
SQL_ATTR_LONGDATA_COMPAT 100, 528
SQL_ATTR_MAX_LENGTH 597
SQL_ATTR_MAX_ROWS 597
SQL_ATTR_MAXCONN 529, 576
SQL_ATTR_METADATA_ID 529, 597
SQL_ATTR_NODESCRIBE 598
SQL_ATTR_NOSCAN 598
SQL_ATTR_ODBC_CURSORS 530
SQL_ATTR_ODBC_VERSION 576
SQL_ATTR_OUTPUT_NTS 577
SQL_ATTR_PACKET_SIZE 530
SQL_ATTR_PARAM_BIND_OFFSET_PTR 598
SQL_ATTR_PARAM_BIND_TYPE 599
SQL_ATTR_PARAM_OPERATION_PTR 599

756 CLI Guide and Reference

SQL_ATTR_PARAM_STATUS_PTR 599
SQL_ATTR_PARAMOPT_ATOMIC 600
SQL_ATTR_PARAMS_PROCESSED_PTR 600
SQL_ATTR_PARAMSET_SIZE 600
SQL_ATTR_QUERY_TIMEOUT 601
SQL_ATTR_QUIET_MODE 530
SQL_ATTR_RETRIEVE_DATA 601
SQL_ATTR_ROW_ARRAY_SIZE 72, 601
SQL_ATTR_ROW_BIND_OFFSET_PTR 601
SQL_ATTR_ROW_BIND_TYPE 602
SQL_ATTR_ROW_DESC 592, 597
SQL_ATTR_ROW_NUMBER 602
SQL_ATTR_ROW_OPERATION_PTR 602
SQL_ATTR_ROW_STATUS_PTR 603
SQL_ATTR_ROWS_FETCHED_PTR 603
SQL_ATTR_ROWSET_SIZE 603
SQL_ATTR_SIMULATE_CURSOR 603
SQL_ATTR_STMTTXN_ISOLATION 603
SQL_ATTR_SYNC_POINT 530, 577
SQL_ATTR_TRACE 531
SQL_ATTR_TRACEFILE 531
SQL_ATTR_TRANSLATE_LIB 532
SQL_ATTR_TRANSLATE_OPTION 532
SQL_ATTR_TXN_ISOLATION 532, 603
SQL_ATTR_USE_BOOKMARKS 604
SQL_ATTR_WCHARTYPE 533
SQL_C_BINARY

conversion from SQL 699
SQL_C_BIT

conversion from SQL 698
SQL_C_CHAR

conversion from SQL 697
SQL_C_DATE

conversion from SQL 700
SQL_C_DBCHAR

conversion from SQL 699
SQL_C_DOUBLE

conversion from SQL 698
SQL_C_FLOAT

conversion from SQL 698
SQL_C_LONG

conversion from SQL 698
SQL_C_SHORT

conversion from SQL 698
SQL_C_TIME

conversion from SQL 700
SQL_C_TIMESTAMP

conversion from SQL 700
SQL_C_TINYINT

conversion from SQL 698

SQL_CONCURRENT_TRANS 43
SQL_COORDINATED_TRANS 43
SQL_DATA_AT_EXEC 61
SQL_DESC_AUTO_UNIQUE_VALUE 240
SQL_DESC_BASE_COLUMN_NAME 240
SQL_DESC_BASE_TABLE_NAME 240
SQL_DESC_CASE_SENSITIVE 240
SQL_DESC_CATALOG_NAME 240
SQL_DESC_CONCISE_TYPE 240
SQL_DESC_COUNT 240
SQL_DESC_DISPLAY_SIZE 240
SQL_DESC_DISTINCT_TYPE 241
SQL_DESC_FIXED_PREC_SCALE 241
SQL_DESC_LABEL 241
SQL_DESC_LENGTH 241
SQL_DESC_LITERAL_PREFIX 241
SQL_DESC_LITERAL_SUFFIX 241
SQL_DESC_LOCAL_TYPE_NAME 241
SQL_DESC_NAME 242
SQL_DESC_NULLABLE 242
SQL_DESC_NUM_PREX_RADIX 242
SQL_DESC_OCTECT_LENGTH 242
SQL_DESC_PRECISION 243
SQL_DESC_SCALE 243
SQL_DESC_SCHEMA_NAME 243
SQL_DESC_SEARCHABLE 243
SQL_DESC_TABEL_NAME 243
SQL_DESC_TYPE 244
SQL_DESC_TYPE_NAME 244
SQL_DESC_UNNAMED 244
SQL_DESC_UNSIGNED 244
SQL_DESC_UPDATABLE 244
SQL_ERROR 25
SQL_NEED_DATA 25
SQL_NO_DATA_FOUND 25
SQL_NTS 33
SQL_ONEPHASE 44
SQL_STILL_EXECUTING 25
SQL_SUCCESS 25
SQL_SUCCESS_WITH_INFO 25
SQL_TWOPHASE 44
SQLAllocConnect, deprecated function 183, 350
SQLAllocEnv, deprecated function 184
SQLAllocStmt, deprecated function 190
SQLAllocStmt, function

overview 15
SQLAllocTransact, deprecated function 632
SQLBindCol, function

description 191, 199
overview 15, 20

 Index 757

SQLBindFileToCol, function
description 200

SQLBindFileToParam, function
description 206, 209

SQLBindParam, deprecated function 580
SQLBindParameter, function

description 210, 225
overview 20

SQLCancel, function
description 232, 234
use in data-at-execute 61

SQLColAttributes, deprecated function 248
SQLColAttributes, function

overview 15, 20
SQLColumnPrivileges, function

description 249, 254
SQLColumns, function

description 255, 261
SQLConnect, function

description 262, 267
SQLDataSources, function

description 271, 275
overview 15

SQLDescribeCol, function
description 276, 282
overview 15, 20

SQLDisconnect, function
description 286, 287

SQLDriverConnect, function
description 288, 293

SQLDriverConnect() 38
SQLERRD() 649
SQLError, deprecated function 298
SQLExecDirect, function

description 303, 309
overview 15, 17

SQLExecute, function
description 310, 312
overview 15, 17

SQLExtendedFetch, deprecated function 313
SQLFetch, function

description 320, 330
overview 15, 20

SQLForeignKeys, function
description 341, 347

SQLFreeConnect, deprecated function 348
SQLFreeStmt, deprecated function 356
SQLFreeStmt, function

overview 15

SQLGetConnectOption, deprecated function 362
SQLGetCursorName, function

description 363, 365
SQLGetData, function

description 366, 372
overview 15, 20

SQLGetEnvAttr, function 394, 395
SQLGetFunctions, function

description 396, 401
SQLGetInfo, function

description 402, 439
SQLGetLength, function

description 440
SQLGetPosition, function

description 443
SQLGetSQLCA, function

description 449, 452
SQLGetStmtOption, deprecated function 456
SQLGetSubString, function

description 457
SQLGetTypeInfo, function

description 461, 466
SQLMoreResults, function

description 467, 472
use of 67

SQLNativeSql, function
description 473, 475

SQLNumParams, function
description 476, 477

SQLNumResultCols, function
description 478, 479
overview 15, 20

SQLParamData, function
description 480, 482
use in data-at-execute 61

SQLParamOptions, deprecated function 483
SQLPrepare, function

description 486, 492
overview 15, 17, 20

SQLPrimaryKeys, function
description 493, 495

SQLProcedureColumns, function
description 496, 504

SQLProcedures, function
description 505, 509

SQLPutData, function
description 510, 515
use in data-at-execute 61

SQLRowCount, function
description 516, 517

758 CLI Guide and Reference

SQLRowCount, function (continued)
overview 15

SQLSetConnection, function 537, 538
SQLSetConnectOption, deprecated function 539
SQLSetCursorName, function

description 540, 543
SQLSetEnvAttr, function 573, 579
SQLSetParam, deprecated function 580
SQLSetParam, function

overview 15, 17, 18, 20
SQLSetStmtOption, deprecated function 607
SQLSpecialColumns, function

description 608, 613
SQLSTATE

07002 248
function cross reference 669
in CLI 3

SQLSTATE, format of 25
SQLSTATEFILTER, keyword 164
SQLSTATEs 25
SQLStatistics, function

description 614, 620
SQLTablePrivileges, function

description 621, 624
SQLTables, function

description 625, 631
SQLTransact, function

overview 15, 20, 22
SQRT Scalar function 663
statement attributes (options) 37
statement cache 18
statement handle 3

allocating 17
freeing 24
maximum number of 17

Stored Procedures
argumemts 107
catalog table 107
catalog table for stored procedures 703
example 110
ODBC escape clause 125
registering 107
returning result sets 108
SYSCAT.PROCEDURES 703
SYSCAT.PROCEDURES table 108
SYSCAT.PROCPARMS 703
using the SQLDA 107
using with DB2 CLI 104

string arguments 33, 34

sub-statements 89
SUBSTRING Scalar function 661
SYNCPOINT, keyword 165
SYSCAT.PROCEDURES 703
SYSCAT.PROCEDURES table 108
SYSCAT.PROCPARMS 703
SYSSCHEMA, keyword 165
system catalog

DB2CLI.PROCEDURES 705
pseudo table for stored procedures 705

system catalogs, querying 49

T
Table Privileges, function 621, 624
TABLETYPE, keyword 166
TAN Scalar function 663
TEMPDIR, keyword 167
termination 9, 10
threads (multi-threaded) 40
TIME

conversion to C 694
display size 688
length 687
precision 685
scale 686

TIMESTAMP
conversion to C 695
display size 688
length 687
precision 685
scale 686

TIMESTAMPADD Scalar function 666
TIMESTAMPDIFF Scalar function 666
TRACE, keyword 168
TRACEFILENAME, keyword 168
TRACEFLUSH, keyword 169
TRACEPATHNAME, keyword 169
transact isolation levels, ODBC 658
transaction management 22
transaction processing 9
TRANSLATEDLL, keyword 170
TRANSLATEOPTION, keyword 170
Triggers 37
TRUNCATE Scalar function 664
truncation 34
TXNISOLATION, keyword 171

 Index 759

U
UCASE Scalar function 661
UDFs 37
UDTs 101
UID, keyword 171
UNDERSCORE, keyword 172
User Defined Functions 37
User Defined Types 101
USER Scalar function 667

V
VALUES 20
VARBINARY

conversion to C 693
VARCHAR

conversion to C 690
display size 688
length 687
precision 685
scale 686

VARGRAPHIC
conversion to C 691

Vendor Escape Clauses 123

W
WARNINGLIST, keyword 172
WEEK Scalar function 666
writing DB2 CLI applications 9

X
X/Open CAE 26
X/Open Company 1
X/Open SQL CLI 1

Y
YEAR Scalar function 666

760 CLI Guide and Reference

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the
Troubleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM
software remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order
products or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools
concerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 761

ÉÂÔÙ

Part Number: 10J8159

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S10J-8159-00

1
0
J
8
1
5
9

