

IBM DB2 Universal Database ÉÂÔ

What's New
Version 5.2

 S04L-6230-00

IBM DB2 Universal Database ÉÂÔ

What's New
Version 5.2

 S04L-6230-00

Before using this information and the product it supports, be sure to read the general information under Appendix G,
“Notices” on page 203.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any state-
ments provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Welcome to DB2 Universal Database and DB2 Connect Version 5.2 xi
Who Should Read This Book . xi
How This Book Is Structured . xii
Conventions . xiii

Chapter 1. DB2 Universal Database and DB2 Connect Upgrades 1
What's New in Version 5 . 1
What's New in Version 5.2 . 3
Year 2000 Ready . 4
Books Updated for Version 5.2 . 4

Chapter 2. Accessibility . 7
DB2 Connect Enhancements . 7

Using the TCP/IP Communications Protocol 7
Two-Phase Commit . 7
Multi-Row Stored Procedures . 8
DCE Security . 8
DCE Cell Directory Support and Host Systems 8
Enhanced Security Failure Notification . 8
Enhanced System/390 SYSPLEX Exploitation 8
Optimized Catalog Access for ODBC and JDBC Applications 9
New BIND Options . 9
Microsoft Transaction Server Support . 9
Simplified Password Management . 9
Client Information Enhancements . 9
Bidirectional Language Support . 10
Monitoring DB2 Connect Applications . 10
Two-Phase Commit Enhancements for Version 5.2 10
Simplified DB2 Syncpoint Manager Configuration 10
Additional Data Objects and Types Supported 10
DB2 Connect for Personal Communications 11

Additional Operating System Support . 11
SCO UnixWare 7 . 11
Windows 98 . 11
Windows NT . 12
Solaris . 12
Client Application Enabler . 12

Migration . 12
Migrating to Version 5 . 12
Migrating to Version 5.2 . 13

Security . 14
Authentication . 14

Communications . 14
Named Pipe Support in Windows . 14
Named Pipe Support in Windows 98 . 14

 Copyright IBM Corp. 1997, 1998 iii

Chapter 3. Extensibility . 15
SQL Enhancements . 15

Outer Join Support . 15
Additional Authorization Support . 15
REAL Data Type Support . 15
New CREATE SCHEMA and DROP SCHEMA Statements 15
User-Defined Table Functions Supported . 16
Unique Constraints Supported . 16
CUBE and ROLLUP Aggregations . 16
New RENAME TABLE Statement . 16
Friendly Arithmetic and Conversion . 16
Built-in Functions . 17
500 Table Columns . 17
DATALINK Data Type . 17
BIGINT Data Type . 18
Increasing VARCHAR Column Length . 18
Free Space on Pages . 18
Replication of Long Fields . 18
Multiple Page Size Support . 19
CURRENT SCHEMA . 19
Typed Tables and Views . 19

Command and API Enhancements . 20
LOAD and IMPORT . 20
Table Space Recovery to a Point in Time 20
Restore Subset of Table Spaces from Backup 20
Query Table Spaces . 20
FORCE . 21
Audit Function . 21
Client Information . 21
History File Information . 21
IMPORT and EXPORT . 21
LOAD and RESTORE . 22
RECONCILE . 22
RUNSTATS . 22
Log Sequence Number . 22

Application Development Enhancements . 22
Open Database Connectivity 3.0 Support . 22
Additional Support in the DB2 Precompiler and APIs 22
User-Defined Functions . 23
Precompile and Bind Enhancements . 23
Support for Java Programming . 23
Microsoft Transaction Server . 24
Extended Support for Java Applets . 24
Support for JDBC and SQLJ . 24
Perl Interface . 25

Configuration Parameters . 25
Number of Commits to Group (mincommit) 25
Default Database System Monitor Switches (dft_monswitches) 25

iv What's New

National Language Support . 26
Bidirectional CCSID Support . 26
Euro Support . 26

DB2 Extenders . 26
Partitioned Databases . 26
Commands . 27
Migration . 27

Net.Data . 27
Legato . 28

Chapter 4. Performance . 29
Query . 29

Index ANDing . 29
Star Joins . 29
Table-Level Locks . 29
Limit Fetch Size . 29
Retrieval Using Index-Only Access . 30
Correlated Predicates . 30
Summary Tables . 30
Replicated Tables . 30
Hash Joins . 31

Cache . 31
Global SQL Cache . 31
Package Lock Avoidance . 31

Recovery . 32
Faster Restart . 32

Buffer Pools . 32
Multiple Buffer Pools . 32
Extended Storage . 32
Page Size . 33
Fast Communications Manager Buffers . 33

Commands . 33
LOAD . 33

Applications . 34
DB2 Governor . 34

Client/Server . 34
Deferred Prepare . 34
Log File Storage . 35

Indexes . 35
Clustering Indexes . 35
Index-Only Access . 35

Tables . 36
APPEND Parameter for ALTER TABLE . 36

Communications . 36
Virtual Interface Architecture Support . 36
Multiple Logical Nodes . 36

Chapter 5. Scalability . 37

 Contents v

Partitioned Databases . 37
Single Partition on a Single Processor . 38
Single Partition with Multiple Processors . 38
Multiple Partitions Each with Its Own Processor 38
Multiple Partitions with Multiple Processors 38
Windows NT and Solaris . 38

Migrating from DB2 Parallel Edition . 39
Symmetric Multi-Processor (SMP) Enhancements 39

Intra-Partition Parallelism . 39
LOAD Utility . 40
BACKUP and RESTORE Utilities . 40
Index Generation . 40
Degree of Parallelism . 40

Autoloader Utility . 41

Chapter 6. Usability . 43
Graphical User Interface (GUI) . 43

Control Center . 43
SmartGuides . 44
Visual Explain . 44
Command Center . 44
Web Control Center . 45
NetQuestion Search Service and the Web Control Center 45

Connectivity and Protocol Configuration and Auto-Discovery 45
Server Communications Configuration . 46
Client Configuration Assistant . 46
Client Configuration Assistant Enhancements for Version 5.2 46

Instance Profile Manager . 47
Licensing . 47

Chapter 7. Serviceability . 49
Version 5 . 49

DB2 Database Repair Tool . 49
Messages . 49

Version 5.2 . 49
Service Level Tool . 49

Appendix A. System Monitor Guide and Reference Updates 51
System Monitoring for DB2 Connect . 51

Changed Commands . 52
Existing Data Elements . 52
New Data Elements . 54
Transaction Processor Monitoring . 67

New System Monitor Data Elements . 68
Hash Join . 68
Page Reorganization . 71
Lock Escalations . 71

Application Identification . 72

vi What's New

System Monitor Switches . 72
Changes to Number of Log Pages Written . 73
Changes to Query Number of Rows Estimate 73
Changes to Query Cost Estimate . 73

Appendix B. Call Level Interface Guide and Reference Updates 75
Data Types . 75

BIGINT . 75
DATALINK . 76
Defined Types . 76

Configuration Keywords . 77
CLISCHEMA . 77
CURRENTREFRESHAGE . 78
CURRENTSCHEMA . 79
IGNOREWARNLIST . 79
OPTIMIZESQLCOLUMNS . 79
PATCH1 and PATCH2 Values . 80

Functions . 83
SQLBuildDataLink - Build DATALINK Value . 84
SQLGetDataLinkAttr - Get Datalink Attribute Value 86

SQLDriverConnect() and NEWPWD Support 89
SQLBrowseConnect() and NEWPWD Support 89
SQLGetInfo() . 89
SQLGetLength() . 90
SQLSetConnectAttr() - Additional Connection Attributes 90
SQLSetStmtAttr() . 92

Messages . 93
SQLSTATE 22003 - Numeric value out of range 93

Microsoft Transaction Server . 93

Appendix C. Embedded SQL Programming Guide Updates 95
Running CLI/ODBC/JDBC/SQLJ Programs in a DBCS Environment 95
Host Structure Support in C/C++ . 96

Indicator Tables . 97
SQL Enhancements . 99

BIGINT Data Type . 99
Fetch-first-clause . 100
Altering Tables . 100
Recognizing Equivalence of Repeated Host Variables 100

Programming in JDBC . 101
Getting Started . 101
How Does It Work? . 102
Creating and Running JDBC Applets and Applications 104
Creating Java UDFs and Stored Procedures 106

Embedded SQL for Java (SQLJ) Programming 117
SQLJ and DB2 SQLJ Support . 117
Basic SQLJ Concepts . 122
Advanced Features . 134

 Contents vii

Comparison with ANSI/ISO Embedded . 140
SQLJ Translator Reference . 143

Sample Programs and Extra Examples . 148

Appendix D. Building Applications for Windows and OS/2 Environments
Updates . 149

Changes to the Preface: About This Book . 149
Changes to Chapter 1. About the DB2 Software Developer's Kit 149

Sample Programs . 150
Changes to Chapter 2. Setup . 164
Changes to Chapter 3. Introduction to Embedded SQL Applications 165
Changes to Chapter 7. Building DB2 Call Level Interface (CLI) Applications . . . 165
Changes to Chapter 8. Building Java Applications and Applets 167

Setting the Environment . 168
Java Sample Programs . 170
The Java Makefile . 170
JDBC Programs . 174
SQLJ Programs . 177
General Points for DB2 Java Applets . 183

Changes to Appendix. Migrating Your Applications 183

Appendix E. Web Control Center and NetQuestion 185
Web Control Center Installation and Configuration 185

Components to Install . 185
Machine Configuration . 185
Web Control Center Installation . 186
Functional Considerations . 189
Installation Tips for Web Control Center Help on UNIX Operating Systems . . 189
Differences From DB2 V5.0.0 Control Center 189
Troubleshooting . 190

Enabling the Web Control Center Remote Documentation Searches 190

Appendix F. How the DB2 Library Is Structured 193
SmartGuides . 193
Online Help . 194
DB2 Books . 195

Viewing Online Books . 199
Searching Online Books . 200
Printing the PostScript Books . 200
Ordering the Printed DB2 Books . 201

Information Center . 202

Appendix G. Notices . 203
Trademarks . 203
Trademarks of Other Companies . 204

Index . 205

viii What's New

Contacting IBM . 207

 Contents ix

x What's New

Welcome to DB2 Universal Database and DB2 Connect Version 5.2

The need for better ways to access and manipulate data has driven the evolution of
database management systems, from simple file processing systems to the newest
generation of relational database management systems. In a world that seems to grow
smaller every day, it's important to have a database that can embrace as much of that
world as possible: a database that is truly universal. With DB2, IBM gives you a data-
base that is:

¹ Universally applicable: to data warehousing, decision support, data mining, online
transaction processing (OLTP), and online analytical processing (OLAP).

¹ Universally scalable: from laptops to desktops to workgroups to the largest enter-
prise systems.

¹ Universally accessible: from a wide range of clients, across computer platforms,
and over the Internet.

¹ Universally usable: through graphical tools for controlling database functions.

¹ Universally extensible: with enhanced SQL and DB2 commands, in addition to
DB2 Extenders for text, image, audio, video, and more.

DB2 has become synonymous with open, industrial-strength database management for
business intelligence, transaction processing, and a broad range of applications for all
types of businesses. Each new release of DB2 Universal Database builds on the strong
foundation of the previous version. This book describes the new DB2 functions and
enhancements available with DB2 Universal Database and DB2 Connect Version 5 and
Version 5.2.

Note: Version 5 information is provided for customers who do not currently have DB2
Universal Database or DB2 Connect Version 5 installed. If you are already a
Version 5 user, you can skip the Version 5 sections (see “Conventions” on
page xiii for information on how to easily identify those sections).

Who Should Read This Book
This book is for current owners of DB2 who are upgrading or considering upgrading
from one of these:

¹ DB2 Version 2 or Database Server Version 4.

¹ DB2 Parallel Edition Version 1.2 (which was available on AIX only).

¹ DB2 Universal Database Version 5.

¹ DDCS Version 2 or DB2 Connect Version 5.

If you are considering DB2 Universal Database or DB2 Connect for the first time, you
should start by reading the Quick Beginnings book for your operating system to get
basic DB2 information.

 Copyright IBM Corp. 1997, 1998 xi

How This Book Is Structured
This book starts with an overview of some of the major DB2 enhancements for Version
5 and Version 5.2 and then describes these new features and enhancements.

Note: New features that were available as part of DB2 Universal Database Version 5
FixPaks and DB2 Connect Version 5 FixPaks are considered Version 5.2
enhancements.

Chapter 1, DB2 Universal Database and DB2 Connect Upgrades, describes the main
DB2 product enhancements available with DB2 Universal Database and DB2 Connect
Version 5 and Version 5.2.

Chapter 2, Accessibility, highlights how access to DB2 has been enhanced to support
an expanding range of clients and platforms, including the Web.

Chapter 3, Extensibility, outlines improvements that extend DB2’s capabilities as a
database management system through SQL enhancements, new and improved com-
mands and API’s, and additional application development support.

Chapter 4, Performance, describes the DB2 enhancements that will your queries and
applications run faster.

Chapter 5, Scalability, describes how DB2 continues to expand its support for users
from standalone workstations through to multiprocessor environments.

Chapter 6, Usability, outlines the product enhancements that make DB2 Universal
Database easier to use with each new release.

Chapter 7, Serviceability, describes improvements when it comes to solving DB2 Uni-
versal Database problems.

Appendix A, System Monitor Guide and Reference Updates, describes new information
that is available from the database system monitor.

Appendix B, Call Level Interface Guide and Reference Updates, describes new applica-
tion development information that is available using the DB2 Call Level Interface.

Appendix C, Embedded SQL Programming Guide Updates, describes new application
development information that is available using embedded SQL.

Appendix D, Building Applications for Windows and OS/2 Environments Updates,
describes new application development information for the Windows and OS/2 oper-
ating systems.

Appendix E, Web Control Center and NetQuestion, describes the new Web Control
Center and the NetQuestion search facility.

Appendix F, How the DB2 Library Is Structured, describes the DB2 library; including
books and online help.

xii What's New

Appendix G, Notices, contains notice and trademark information.

 Conventions
You will find this book easier to use if you look for these conventions:

Version 5
This icon marks new functions and enhancements available with DB2 Universal
Database Version 5.

Version 5.2
This icon marks new functions and enhancements available with DB2 Universal
Database Version 5.2.

 Welcome to DB2 Universal Database and DB2 Connect Version 5.2 xiii

xiv What's New

Chapter 1. DB2 Universal Database and DB2 Connect Upgrades

This section provides a brief summary of the enhancements for the latest versions of
DB2 Universal Database and DB2 Connect: Version 5 and Version 5.2. More detailed
information is provided in the sections that follow, including references to associated
items in other parts of the DB2 library.

Note: Some portions of the DB2 Universal Database library have not been updated for
Version 5.2. These include:

¹ Administration Getting Started

¹ Building Applications for Windows and OS/2 Environments

¹ CLI Guide and Reference

¹ Embedded SQL Programming Guide

 ¹ Master Index

¹ SQL Getting Started

¹ System Monitor Guide and Reference

 ¹ Troubleshooting Guide

In situations when a document has not been reissued for DB2 Universal Data-
base Version 5.2, then the details of any enhancements that might affect it are
included in this document (What's New). You can then use the What's New in
conjunction with the Version 5 documentation for DB2 Universal Database
Version 5.2.

What's New in Version 5

Version 5

DB2 is a relational database management system that is Web-enabled with Java
support; scalable from single processors to symmetric multiprocessors; and multimedia
capable with image, audio, and text support. Version 5 of DB2 Universal Database is
the follow-on product to DB2 Version 2 and Database Server Version 4. DB2 Universal
Database Extended Enterprise Edition Version 5 is the follow-on product to DB2 Par-
allel Edition Version 1.2 (which was available on AIX only). It includes all the features of
DB2 Version 2 and Database Server Version 4, in addition to the Version 5 enhance-
ments. This section describes some of the major changes for this version.

Exploitation of symmetric multiprocessors (SMP) for improved scalability and
performance
DB2 now exploits the ability of an SMP system to share resources across multiple

 Copyright IBM Corp. 1997, 1998 1

processors, performing your SQL queries more quickly. Commands like LOAD,
BACKUP, and RESTORE also take advantage of the multiprocessor environments.

New graphical tools on OS/2 and Windows 32-bit operating systems that make it
easy to install, configure, and administer DB2 databases
From the Control Center, you can accomplish just about any administrative task. A
number of SmartGuides walk you through common tasks, such as configuring commu-
nications and creating tables. You can also use the graphical tools to administer any
DB2 server on any of the available platforms.

From the Client Configuration Assistant, you can configure communications for clients
to access remote or local DB2 servers.

Comprehensive online help and the Information Center help you easily find the informa-
tion you need to use DB2.

Extensions to SQL, including support for Online Analytical Processing (OLAP)
With the new CUBE and ROLLUP aggregations, you can now create super groups, like
overall total and cross tabulation, for improved online analytical processing. You can
also perform outer joins, rename tables, define unique constraints on tables, and create
your own table functions. DB2 has refined its authorization support, so you can grant
authority at a more granular level; you can also create schemas to grant various attri-
butes and privileges.

Performance, capacity, and memory improvements
DB2 now provides global caching for SQL statements, creating a public repository that
improves performance. You can create multiple buffer pools of various sizes to better
control the data in memory. Client/server communications are more efficient, crash and
roll-forward recovery is faster, and LOAD features numerous performance enhance-
ments.

Security enhancements, including support for Open Software Foundation's Dis-
tributed Computing Environment (DCE)
You can now use the DCE architecture to manage users, passwords, and groups more
easily, and authenticate users more securely. DB2 also provides a Trusted Clients
option so you can choose whether to trust all clients or only those that come from an
operating system with inherent security.

Additional support for communicating with host databases using DB2 Connect
and the Distributed Relational Database Architecture (DRDA)
In addition to communicating with host systems using SNA, you can now use TCP/IP to
communicate with host systems that support this protocol. In addition, DB2 servers can
accept requests from host systems using TCP/IP, allowing you to use your DB2 work-
station server as an application server to a host application.

Enhancements to application programming for DB2
The DB2 Call Level Interface (DB2 CLI) now reflects the Microsoft Open Database
Connectivity 3.0 specifications, allowing you to connect to DB2 databases from ODBC
3.0 applications. Additions to user-defined functions (UDFs) include scrollable cursors
and the UCT_UNIQUE function to return a unique value to use in a table column. You
can also invoke external UDFs that are methods of object linking and embedding (OLE)
automation servers.

2 What's New

Other new features
The DB2 Governor can be used to control application behavior.

New table space features include point-in-time roll-forward recovery and selective
restore.

Error messages have been improved.

What's New in Version 5.2

Version 5.2

With Version 5.2, DB2 Universal Database continues the evolution of advanced data-
base technology begun in Version 5. It delivers more client/server functions, more
support for open industry standards, and improved performance and availability.

Expanded data type support
DB2 has several new features in the area of data types. To provide referential integrity
and coordinated backup/recovery for data stored in files outside the database, DB2 pro-
vides the new data type DATALINK. To support larger integer values, DB2 now sup-
ports the data type BIGINT. DB2’s object-relational functionality has been extended with
new support for user-defined structured types, with subtyping and references, that can
be used as the basis for defining tables of objects and object views. In addition, DB2
extender support is now available on all DB2 platforms.

Extensions to SQL
DB2 now supports data storage on 4 KB and 8 KB pages. You can now leave free
space on pages, alter the length of a VARCHAR column, specify the qualifier for
unqualified object references, and control the number of lines returned by a fetch.

Support for Java
You can use JDBC, Java, and SQLJ to access data from your DB2 databases. DB2’s
JDBC support lets you build Java applications and applets in a manner that is very
similar to writing a C application to access the database using DB2 CLI or ODBC.
SQLJ provides embedded static SQL for Java programmers and complements the
dynamic SQL support provided with JDBC.

Administering databases over the Web
The DB2 Control Center now lets you perform your administration tasks over the Web.
DB2’s comprehensive documentation can also be accessed from the Web.

Improved system monitoring support for DB2 Connect
The LIST DCS APPLICATIONS and GET SNAPSHOT commands have new parame-
ters for collecting information on DB2 Connect applications. These new options return
additional information about each user of DB Connect Enterprise Edition, including such
important items as the current state of the user connection and the time that state was
entered. In addition new data elements have been added that monitor DB2 Connect

 Chapter 1. DB2 Universal Database and DB2 Connect Upgrades 3

application activity. Now administrators can get an instant view of what each application
user is doing.

International Support
DB2 provides support for bidirectional languages and the euro.

Year 2000 Ready
DB2 Universal Database Version 5 and Version 5.2 are Year 2000 ready. This means
that when used in accordance with its associated documentation, DB2 Universal Data-
base is capable of correctly processing, providing and/or receiving date data within and
between the 20th and 21st centuries, provided that all products (for example, hardware,
software and firmware) used with the product properly exchange accurate date data
with it. More information about IBM and Year 2000 readiness can be found at
http://wwwyr2k.raleigh.ibm.com.

Books Updated for Version 5.2
The table that follows lists the DB2 books that have been updated for Version 5.2 You
can order them individually using the form number next to each book title or you can
order them as a set by using the form number SBOF-8921-00. See Appendix F, “How
the DB2 Library Is Structured” on page 193 for information on how to view, search,
print, and order them.

Book Form Number

Administration Guide S10J-8154

API Reference S10J-8167

Building Applications for UNIX Environments S10J-8161

Command Reference S10J-8166

DB2 Connect Enterprise Edition Quick Beginnings S10J-7888

DB2 Connect Personal Edition Quick Beginnings S10J-8162

DB2 Connect User's Guide S10J-8163

DB2 Connectivity Supplement No form number.
Available in HTML
and PostScript
formats.

DB2 Extended Enterprise Edition for Windows NT Quick Beginnings S10J-6713

DB2 File Manager Quick Beginnings S04L-6231

DB2 Replication Guide and Reference S95H-0999

Installing and Configuring DB2 Clients No form number.
Available in HTML
and PostScript
formats.

Messages Reference S10J-8168

4 What's New

Book Form Number

Quick Beginnings for UNIX S10J-8148

What's New S04L-6230

 Chapter 1. DB2 Universal Database and DB2 Connect Upgrades 5

6 What's New

 Chapter 2. Accessibility

Whether it's running on OS/2, Windows NT, or a UNIX system, DB2 Universal Data-
base gives you the reliability and availability that you require. Client access is available
from such popular operating systems as: Windows 95, Windows 98, Windows NT,
OS/2, AIX, HP-UX, SCO UnixWare 7 and Solaris. Legacy data stored on host and
AS/400 databases can be accessed with DB2 Connect.

DB2 Connect Enhancements
DB2 Connect provides a managed method to access databases stored on the following
systems:

¹ DRDA server: DB2 for MVS/ESA, DB2 for AS/400, DB2 for OS/390, DB2 for VSE
and VM systems

¹ DB2 Universal Database servers running on OS/2, Windows NT, and several UNIX
systems.

DB2 Connect provides access to those databases in a cost-effective way by imple-
menting a standard architecture for managing distributed data, known as Distributed
Relational Database Architecture (DRDA). Use of DRDA allows applications to establish
a fast connection to host and AS/400 databases without expensive host components or
proprietary gateways.

Version 5

Using the TCP/IP Communications Protocol
TCP/IP has been added as a second protocol (the other being SNA) over which DB2
Connect can communicate to host systems. Also, DB2 servers are enabled to accept
incoming DRDA connections from the host using TCP/IP. In other words, DRDA Appli-
cation Requester (AR) and DRDA Application Server (AS) functionality has been imple-
mented using TCP/IP in addition to SNA. See the DB2 Connect Enterprise Edition
Quick Beginnings and the DB2 Connect User's Guide for details.

 Two-Phase Commit
DRDA two-phase commit for the DB2 DRDA Application Requester (DB2 Connect) over
the TCP/IP communications protocol has been implemented.

In addition, applications running on the host (for example, DB2 for MVS/ESA applica-
tions) using SNA can invoke the two-phase commit processing involving both the host
and DB2 Version 5 databases. See the DB2 Connect Enterprise Edition Quick Begin-
nings and the DB2 Connect User's Guide for details.

 Copyright IBM Corp. 1997, 1998 7

See “Two-Phase Commit Enhancements for Version 5.2” on page 10 for additional
enhancements to two-phase commit in Version 5.2.

Multi-Row Stored Procedures
The ability to execute stored procedures on DB2 for OS/390 is greatly improved. Appli-
cations can now receive multiple open cursors from stored procedures executing on
DB2 for OS/390. Each cursor can have multiple rows. See the DB2 Connect Enterprise
Edition Quick Beginnings and the DB2 Connect User's Guide for details.

 DCE Security
Support is added for the Open Software Foundation's (OSF) Distributed Computing
Environment (DCE) Security component for use in authentication of database users.
This provides both a more secure authentication mechanism and more central manage-
ment of users, passwords, and groups using the DCE architecture.

In addition, DCE Cell Directory support is available for DB2 for OS/2. The supported
protocols are APPC, TCP/IP, NetBIOS, and IPX/SPX.

The restriction on AIX and other UNIX platforms that the SYSADM_GROUP must be
the primary group of the instance owner is removed. See the Administration Guide for
details.

Version 5.2

DCE Cell Directory Support and Host Systems
Users working with host and AS/400 databases servers now have additional options for
providing database location information when using DCE Cell Directory support for
implementations from IBM and Gradient. See the Administration Guide for details.

Enhanced Security Failure Notification
Users connecting to host and AS/400 databases can now get additional information on
the cause of security failures when they occur, for example as the result of an expired
password. See the DB2 Connect Quick Beginnings manuals for details.

Enhanced System/390 SYSPLEX Exploitation
DB2 Connect Enterprise Edition (EE), and the DB2 Connect component that is included
in both DB2 UDB EE and DB2 UDB Extended - Enterprise Edition (EEE), can now
provide enhanced load balancing and fault tolerance by routing connections to different
nodes on a System/390 SYSPLEX. Some additional configuration considerations apply,
and these are documented in the DB2 Connect Enterprise Edition Quick Beginnings
manual.

8 What's New

Optimized Catalog Access for ODBC and JDBC Applications
A new tool db2ocat - DB2 ODBC Catalog Optimizer is provided on Windows 32-bit
operating systems in order to help you optimize system catalog searches for ODBC
applications. DB2 Connect now offers a way to dramatically improve the performance of
ODBC and JDBC applications that make extensive use of the system catalog. This
improvement is provided using the CLISCHEMA parameter in the db2cli.ini file, which
allows applications to use an ODBC-optimized catalog instead of the regular system
catalog tables. A point-and-click application that simplifies the creation and maintenance
of ODBC-optimized catalogs can be obtained by downloading db2ocat.zip from
ftp://ftp.software.ibm.com/ps/products/db2/tools.

New BIND Options
There are two new enumerated values for the DYNAMICRULES parameter of the BIND
command. DEFINE and INVOKE are used to specify the authorization identity to be
used for the execution of a dynamic SQL statement in a user-defined function (UDF) or
stored procedure. See the Command Reference for details.

Microsoft Transaction Server Support
DB2 family databases (including host and AS/400 databases) can now fully participate
in distributed transactions managed by the Microsoft Transaction Server (MTS). See
“Microsoft Transaction Server” on page 24 and the DB2 Connect Enterprise Edition
Quick Beginnings manual for details.

Simplified Password Management
DB2 Universal Database and DB2 Connect now provide the ability to manage pass-
words without requiring users to log on to database server machines. Passwords can
be changed using the SQL CONNECT statement, by requesting a password change
from the ODBC login dialog, or by using the ATTACH command. The ability to change
user passwords is provided for Embedded SQL, ODBC, DB2 CLI, and Java (using
JDBC and SQLJ).

For OS/390 users, if an SQL CONNECT statement returns a message indicating that
the user ID's password has expired, it is now possible to change the password without
signing on to TSO. Through DRDA, DB2 for OS/390 can change the password for you.
An additional benefit is that with TCP/IP connections to the host, a separate LU defi-
nition is no longer required, as was the case with DB2 Connect Version 5.0. See the
DB2 Connect Enterprise Edition Quick Beginnings manual for details.

Client Information Enhancements
The new sqleseti - Set Client Information API allows three-tier client/server or TP
monitor applications to pass more specific information about the application end user to
DB2 for OS/390 (see “Client Information” on page 21). The new information includes
the end user name supplied by the server application, the workstation name, the appli-
cation name, and the accounting string. This information can now be reported by the
DB2 for OS/390 DISPLAY THREAD command and it is available in DB2 for OS/390
accounting records. Previously, in three-tier environments, DB2 for OS/390 could only
provide information about the server application and the individual authentication user

 Chapter 2. Accessibility 9

ID, and not about the numerous end users who multiplex SQL queries on long-running
connections. See the API Reference and “Transaction Processor Monitoring” on
page 67 for details.

Bidirectional Language Support
DB2 Connect now provides complete support for working with host and AS/400 data-
bases configured for bidirectional languages such as Arabic and Hebrew. See
“Bidirectional CCSID Support” on page 26 and the Administration Guide for details.

Monitoring DB2 Connect Applications
The capabilities of the database system monitor have been expanded to collect more
information on DB2 Connect applications. These enhancements include the ability to
collect information on DCS applications running at the gateway, SQL statements being
executed, and database connections. See “System Monitoring for DB2 Connect” on
page 51 for more information.

Two-Phase Commit Enhancements for Version 5.2
In DB2 Connect Enterprise Edition Version 5.0, two-phase commit support over SNA
connections using the DB2 Syncpoint Manager (SPM) was only available on AIX and
OS/2 (see “Two-Phase Commit” on page 7). With DB2 Connect Enterprise Edition
Version 5.2, this support is now extended to Windows NT. This support requires IBM
eNetwork Communications Server for Windows NT Version 5.01 or higher (see “DB2
Connect for Personal Communications” on page 11).

Two-phase commit for XA applications was previously only supported over SNA con-
nections, using the SPM. It is now also supported over TCP/IP connections using the
SPM.

Applications executed by Transaction Processing Monitors such as IBM TXSeries,
CICS for Open Systems, Encina Monitor, and Microsoft Transaction Server previously
had to access host systems such as DB2 for OS/390 using SNA. With DB2 Connect
Version 5.2, TCP/IP can now be used by these same applications. The DB2 Syncpoint
Manager must be used to enable this new feature.

See the DB2 Connect Quick Beginnings manuals for details.

Simplified DB2 Syncpoint Manager Configuration
DB2 Syncpoint Manager configuration has been simplified. Many steps are now auto-
mated or eliminated compared to previous releases. See the DB2 Connect Quick
Beginnings manuals for details.

Additional Data Objects and Types Supported
DB2 Connect Version 5.2 now provides support for big integer (BIGINT), large object
(LOBs), and user-defined distinct data types (UDT). See the SQL Reference for details.

10 What's New

DB2 Connect for Personal Communications
DB2 Connect for Personal Communications is a component of IBM eNetwork Personal
Communications for Windows 95 and Windows NT. It provides many of the functions
available with the DB2 Connect Personal Edition with the following limitations:

¹ Native TCP/IP connectivity to AS/400 and host DB2 database is not supported.
¹ A maximum of 6 concurrent database connections can be open at the same time.
¹ The ability to update multiple databases as part of the same transaction (two-phase

commit) is not supported.

IBM eNetwork Personal Communication customers that need these additional functions
should upgrade to DB2 Connect Personal Edition or DB2 Connect Enterprise Edition
products.

Additional Operating System Support

Version 5.2

SCO UnixWare 7
The DB2 Universal Database products listed below support the SCO UnixWare 7 oper-
ating system:

¹ DB2 Universal Database Workgroup Edition
¹ DB2 Universal Database Enterprise Edition
¹ DB2 Universal Database Developer’s Edition
¹ DB2 Connect Enterprise Edition

See the Quick Beginnings for UNIX for information on installing DB2 Universal Data-
base on SCO. For information on installing and configuring clients, see the Installing
and Configuring DB2 Clients book. Information on the compilers and pre-compilers sup-
ported by the DB2 Universal Database Developer’s Edition can be found in the Building
Applications for UNIX Environments book.

 Windows 98
The DB2 Universal Database products listed below support the Windows 98 operating
system:

¹ DB2 Universal Database Personal Edition
¹ DB2 Connect Personal Edition

For information on installing and configuring clients, see the Installing and Configuring
DB2 Clients book.

 Chapter 2. Accessibility 11

 Windows NT
DB2 Universal Database Extended Enterprise Edition supports the Windows NT oper-
ating system. See the DB2 Extended Enterprise Edition for Windows NT Quick Begin-
nings for information on installing DB2 Universal Database on Windows NT. For
information on installing and configuring clients, see the Installing and Configuring DB2
Clients book. Information on the compilers and pre-compilers supported by the DB2
Universal Database Developer’s Edition can be found in Appendix D, “Building Applica-
tions for Windows and OS/2 Environments Updates” on page 149.

 Solaris
DB2 Universal Database Extended Enterprise Edition supports the Solaris operating
system. See the DB2 Extended Enterprise Edition for UNIX Quick Beginnings for infor-
mation on installing DB2 Universal Database on Solaris. For information on installing
and configuring clients, see the Installing and Configuring DB2 Clients book.

Client Application Enabler
The DB2 Universal Database Client Application Enabler Pack now includes Version 5.2
clients for SGI, SCO UnixWare 7, and Windows 98. See the Installing and Configuring
DB2 Clients book for information on installing and configuring clients.

Note: DB2 Universal Database clients are also available in the Developer’s Edition
products.

 Migration

Version 5

Migrating to Version 5
Support is provided to allow back-level DB2 databases and directories to be converted
to a format usable by DB2 Universal Database Version 5. The following is a list of DB2
database releases that are supported in the DB2 Universal Database Version 5 data-
base migration process:

¹ DB2 for OS/2 Version 1.x and Version 2.x
¹ DB2 for AIX Version 1.x and Version 2.x
¹ DB2 for HP-UX Version 2.x
¹ DB2 for Solaris Operating Environment Version 2.x
¹ DB2 for Windows NT Version 2.x
¹ DB2 for Windows 95 Version 2.x
¹ DB2 Parallel Edition for AIX Version 1.x to Version 5

See the Quick Beginnings manuals for details.

12 What's New

With the addition of all the new features in this release, some incompatibilities have
been introduced. They are described in the Quick Beginnings manuals.

Version 5.2

Migrating to Version 5.2
Support is provided to allow back-level DB2 databases and directories to be converted
to a format usable by DB2 Universal Database Version 5.2. The following is a list of
DB2 database releases that are supported in the DB2 Universal Database Version 5.2
database migration process:

¹ DB2 for OS/2 Version 1.x and Version 2.x
¹ DB2 for AIX Version 1.x and Version 2.x
¹ DB2 for HP-UX Version 2.x
¹ DB2 for Solaris Operating Environment Version 2.x
¹ DB2 for Windows NT Version 2.x
¹ DB2 for Windows 95 Version 2.x
¹ DB2 Parallel Edition for AIX Version 1.x

See the Quick Beginnings manuals for details.

With the addition of all the new features in this release, some incompatibilities have
been introduced, including:

¹ SQLCODE -311 will be returned when the length value of a varying length string is
found to be greater than the maximum length allowed (the SQLLEN value). Prior to
Version 5.2, SQLCODE -804 was returned.

¹ SQLCODE -804 will be returned if the SQLLEN value associated with a particular
variable is negative. Prior to Version 5.2, SQLCODE -311 was returned.

For more information on incompatibilities see the Quick Beginnings manuals.

Note: No migration is required for DB2 Universal Database Version 5 customers
moving to Version 5.2. However you should run the db2upd52 command to
enable Version 5.2’s new functionality for your catalogs and existing databases.
See the Quick Beginnings manuals for details.

 Chapter 2. Accessibility 13

 Security

Version 5

 Authentication
The Trusted Clients option is now enabled on all platforms when authentication type is
CLIENT. It allows the administrator to choose whether to Trust All Clients (the default)
or trust only those clients that come from systems where there is security inherent in
the operating system. See the Quick Beginnings book for your operating system for
details.

 Communications

Version 5

Named Pipe Support in Windows
Named pipe is now a supported communication protocol for Windows 95 and Windows
NT clients. It is also supported for DB2 Universal Database servers and DB2 Connect
gateways on Windows NT.

The new command CATALOG NPIPE NODE lets you add a named pipe node entry to
the node directory. The equivalent REXX API is provided. See the Quick Beginnings for
Windows NT, Command Reference, and API Reference for details.

Version 5.2

Named Pipe Support in Windows 98
Named pipe support has been extended to Windows 98 clients (see “Named Pipe
Support in Windows”).

14 What's New

 Chapter 3. Extensibility

With each new release, DB2 extends its capabilities, which in turn expands the abilities
of the end-user, administrator, and application programmer. DB2 Common Server
included strong transaction processing. DB2 Parallel Edition could support complex
queries and very large databases. DB2 Universal Database not only incorporates the
best of DB2 Common Server and DB2 Parallel Edition, but also offers new capabilities
that enable the processing and analysis required for today’s business intelligence appli-
cations.

 SQL Enhancements

Version 5

All enhancements comply with the SQL92 Entry Level standards. Features from higher
levels of SQL92 and the future SQL3 have also been added.

See the SQL Reference for details about the enhancements described in this section.

Outer Join Support
A left, right, and full outer join operation is now supported using SQL92 syntax; that is,
a join operation whose result includes unmatched rows in addition to matching rows.

Additional Authorization Support
The following functionality has been added for authorization support:

¹ Column level UPDATE privilege.
¹ Column level REFERENCES privilege.
¹ WITH GRANT OPTION on GRANT (for tables/views/columns).
¹ PUBLIC privileges for static SQL and views.

REAL Data Type Support
A single-precision floating-point data type using the keyword REAL is now supported.
See “BIGINT Data Type” on page 18 for information on 64-bit integer support available
in Version 5.2.

New CREATE SCHEMA and DROP SCHEMA Statements
A CREATE SCHEMA statement and a DROP SCHEMA statement are now supported.
This allows privileges to be associated with the schema to control which users can
create, alter, or drop objects in the schema.

See “CURRENT SCHEMA” on page 19 for information on the Version 5.2 special reg-
ister that identifies the schema name used to qualify unqualified object references.

 Copyright IBM Corp. 1997, 1998 15

User-Defined Table Functions Supported
SQL users can now access data that is not stored in the relational format and can use
of the query capabilities of the relational database.

It is often difficult if not impossible to subject data from non-relational data stores to
relational operations. User-defined table functions are an extension to SQL that address
this issue. A table function is an external user-defined function that constructs a derived
table. The program for the function can access data from the various sources and
format it into a tabular form that is returned from the table function. Once the table
function is written, it can be used in the FROM clause of queries. Table functions can
be used not only to subject this external data to the power of SQL, but also to capture
external data permanently into relational tables.

See the Embedded SQL Programming Guide for details.

Unique Constraints Supported
Unique constraint support has been added as follows:

¹ Support for one or more UNIQUE constraints on tables in addition to PRIMARY
KEYs.

¹ Foreign keys can reference unique constraints
¹ Unique constraint checking is deferred to the end of statement
¹ Specified constraint names used as index names (applies to primary keys also).

CUBE and ROLLUP Aggregations
The GROUP BY clause has been extended to support "super groups". One type of
super group is a "ROLLUP group"; a result set that contains "sub-total" and "overall
total" rows in addition to the regular grouped rows. Another type of super group is a
"CUBE group"; a result set that contains "cross-tabulation" rows in addition to all the
rows that would be in a ROLLUP group for the same columns.

New RENAME TABLE Statement
Support is now provided for renaming an existing table while maintaining current
authorizations and indexes from the source table on the renamed table.

See “APPEND Parameter for ALTER TABLE” on page 36, “Increasing VARCHAR
Column Length” on page 18, and “Table-Level Locks” on page 29 for Version 5.2
enhancements to the ALTER TABLE statement.

Friendly Arithmetic and Conversion
Friendly arithmetic and conversion allow a query to proceed and provide some returned
results even though some data items could not be evaluated. This function enhances
compatibility with DB2 for OS/390.

16 What's New

 Built-in Functions
The following built-in functions are now available:

 ¹ COUNT_BIG

Returns the number of rows or values in a set of rows or values for tables with a
large number of rows. Use COUNT_BIG instead of COUNT when the value
returned may exceed 2 billion.

 ¹ GENERATE_UNIQUE

Returns a unique value that can be used to provide unique values in a table.

500 Table Columns
Up to 500 columns in a table are now supported on 4 KB pages. For information on
Version 5.2 enhancements that support tables with up to 1012 columns see “Multiple
Page Size Support” on page 19.

Version 5.2

DATALINK Data Type
DB2 is being enhanced with a new predefined data type, DATALINK. A DATALINK
value in a database represents an object stored in a storage system outside of the
database system. DB2 will treat the DATALINK value as if it were stored in the data-
base, even though it is not. These means that the value is robust in terms of integrity,
access control, and recovery.

The DB2 extension, called the DB2 File Manager, is important because it enables the
asset management of files stored on file servers outside of the database management
system. Using DATALINKs and the DB2 File Manager means that external files can be
backed up with the database and SQL Data Control Language statements can be used
to control permission to those files (for example, GRANT and REVOKE).

Users can create indexes on text, images, and videos, and store those attributes in
relational tables along with the DATALINK value. The DATALINK value is a pointer or a
uniform resource locator (URL) to an external file. The DB2 File Manager allows DB2
to treat this external data as if it was stored in the database.

DB2 File Manager is not available for Extended Enterprise Edition systems. The
DATALINK data type can not be used on Extended Enterprise Edition systems to refer-
ence files on a DB2 File Manager.

DATALINKs does not support Windows 3.1 clients. Clients on other operating systems
must be at the Version 5.2 level of DB2 Universal Database, except for AIX clients who
can be on Version 5 at FixPak U453782 or higher.

 Chapter 3. Extensibility 17

Detailed information on the DB2 File Manager technology and the DATALINK data type
can be found in the following:

¹ DB2 File Manager Quick Beginnings
 ¹ Administration Guide
 ¹ API Reference
 ¹ Command Reference
 ¹ Messages Reference
 ¹ SQL Reference
¹ Call Level Interface see “DATALINK” on page 76

BIGINT Data Type
An SQL data type of BIGINT is available for supporting 64-bit integers. As platforms
introduce native support for 64-bit integers, the processing of large numbers with
BIGINT is more efficient than processing with DECIMAL, and more precise than
DOUBLE or REAL. This new data type allows:

¹ Tables and views to include BIGINT columns
¹ User-defined functions and procedures to pass and return BIGINT types
¹ Applications to define BIGINT host variables and retrieve data into 64-bit integer

types (when supported by the programming language).
¹ The range for BIGINT is -9223372036854775808 to +9223372036854775807.

See “BIGINT” on page 75, “BIGINT Data Type” on page 99, the SQL Reference and
the Administration Guide for details.

Increasing VARCHAR Column Length
The length of an existing VARCHAR column in a table can be increased to up to 4000
bytes. The ALTER column-alteration parameter for the ALTER TABLE statement allows
for increasing the size of a VARCHAR column length. See the SQL Reference for
details.

Free Space on Pages
A PCTFREE parameter has been added to the ALTER TABLE and CREATE INDEX
statements. It is used to indicate the amount of free space left on each page. The free
space is necessary to allow data to be inserted on a target page, instead of being
appended to the end of a table. Free space is an important consideration when using
clustering indexes (see “Clustering Indexes” on page 35). See the SQL Reference and
the Administration Guide for details.

An INDEXFREESPACE parameter has been added to the LOAD command to specify
the percentage of free space to leave on each index page when loading an index. See
the Command Reference for details.

Replication of Long Fields
The Long Field Manager log records have been updated so that data capture capability
can be extended to LONG VARCHAR/LONG VARGRAPHIC columns. See the API Ref-
erence for details.

18 What's New

An additional clause has been added to the DATA CAPTURE parameter of the ALTER
TABLE statement to indicate when a LONG VARCHAR or LONG VARGRAPHIC
column is included. See the SQL Reference for details.

Multiple Page Size Support
Information can be stored on page sizes of 4 KB and 8 KB. A page size of 4 KB sup-
ports table spaces of up to 64 GB and tables of up to 500 columns (see “500 Table
Columns” on page 17). A page size of 8 KB allows table spaces of 128 GB, tables of
1012 columns, and row lengths of 8101 bytes. Page size is set during buffer pool cre-
ation. Once the buffer pool page size is fixed, then table spaces and tables can be
created. See the SQL Reference and the Administration Guide for details.

 CURRENT SCHEMA
The CURRENT SCHEMA special register contains the default qualifier to be used for
unqualified object references for dynamic SQL statements issued within a specific DB2
connection. The qualifier can be changed by the SET SCHEMA statement. See the
SQL Reference for details.

The QUALIFIER option of the BIND command controls the schema name used to
qualify unqualified database object references for static SQL statements. See the
Command Reference for details.

Note: For compatibility with DB2 for OS/390, CURRENT SCHEMA is synonymous
with the CURRENT SQLID special register.

Typed Tables and Views
A new CREATE TYPE statement supports the definition of user-defined structured
types that enhance DB2’s object management capabilities. Subtyping is supported, so
a structured type can either be created on its own or as a subtype of another structured
type (thereby inheriting the attributes of that type). For example, an employee table
might have some employees who are part of the subtype part-time. In this way, DB2
users can now create structured type hierarchies that are similar to class hierarchies in
Java or C++. In addition, the creation of a structured type T also makes a corre-
sponding reference type, REF(T), available for use as an attribute or column type when
defining structured types, tables, and views.

The CREATE TABLE statement has been extended so that a structured type can be
used as the basis for defining a table of objects of that type. Rows in such a table have
an object ID column plus columns that correspond to each attribute of the type speci-
fied in the type-based version of the CREATE TABLE statement. To manage a table (or
more properly, table hierarchy) that contains instances of a type plus one or more of its
subtypes, the CREATE TABLE statement allows a typed table to be created UNDER
another typed table; as a subtable of that table.

The CREATE VIEW statement has been similarly extended so that a structured type
can be used as the basis for defining an object view or an object view hierarchy.

 Chapter 3. Extensibility 19

The SQL language has been extended with new functionality in its SELECT, INSERT,
UPDATE, and DELETE statements to support queries and updates to table hierarchies
(and subsets thereof), and the expression portion of SQL has been extended with
support for a dereference operator (->) that enables users to traverse references using
a C++ like path notation. More details on all of these new features can be found in the
SQL Reference.

See “IMPORT and EXPORT” on page 21 and “RUNSTATS” on page 22 for commands
that can be used on table hierarchies. See the Administration Guide and the SQL Ref-
erence for more information on structured types and table and view hierarchies. See
“Defined Types” on page 76 for information about the Call Level Interface (CLI) impact
of these extensions.

Command and API Enhancements

Version 5

LOAD and IMPORT
A new option has been added for handling decimal data. MODIFIED BY
IMPLIEDDECIMALPOINT allows LOAD and IMPORT to insert an implied decimal point
based on the column definition. Another new option, MODIFIED BY BINARYNUMERIC,
allows all numeric data to be imported in binary or packed decimal format. See the
Command Reference for details.

Table Space Recovery to a Point in Time
A selected subset of table spaces can now be rolled forward to a specified point in
time. You can also restore a subset of the table spaces from a table space backup.
See the Administration Guide and Command Reference for details.

Restore Subset of Table Spaces from Backup
You can now selectively choose the table spaces to be restored from the full database
backup image. See the Administration Guide and the Command Reference for details.

Query Table Spaces
Various APIs and commands for querying table spaces and table space containers
have been enhanced.

The LIST TABLESPACES command is enhanced to display the additional information
when SHOW DETAIL is specified.

See the Command Reference and the API Reference for details.

20 What's New

 FORCE
The FORCE command has been modified so that on a DB2 Universal Database
Extended Enterprise Edition system, any application can be forced from any database
partition using the agent ID (an identifier that uniquely identifies an application). See the
Command Reference for details.

Version 5.2

 Audit Function
The DB2 audit function generates, and allows you to maintain an audit trail for a series
of predefined database events. The records generated from this facility are kept in an
audit log file. These records can be used to detect and deter penetration of the DB2
system. With analysis, the records can reveal usage patterns that identify system
misuse. For details on the audit function and the db2audit command see the Adminis-
tration Guide.

 Client Information
The sqleseti - Set Client Information API allows an application to set client information
associated with a specific connection. A successful API call means that the client infor-
mation has accepted and will be propagated on subsequent connections. See the API
Reference for details.

The sqleqryi - Query Client Information API allows you to query current client informa-
tion. If a specific connection is requested, then the latest values for that connection are
returned. If all connections are specified, then the values associated with all con-
nections specified by the last sqleseti API are returned. See the API Reference for
details.

History File Information
Administration information is now available in the history file. The administrative events
recorded will contain ROLLFORWARD, ALTER TABLESPACE, REORG, RUNSTATS,
and DROP TABLE information. See the API Reference for details on obtaining this
information with the sqluhops - Open Recovery History File Scan API. For information
on extracting information with the LIST HISTORY command see the Command Refer-
ence.

IMPORT and EXPORT
New parameters have been added to provide support for transferring objects between
table hierarchies (see “Typed Tables and Views” on page 19). Data residing in typed
tables can be exported and imported as an entire table hierarchy, a subhierarchy, or a
single typed table or subtable. See the Administration Guide for more details on table
hierarchies.

 Chapter 3. Extensibility 21

See the Command Reference for information on the changes to the IMPORT and
EXPORT commands. See the API Reference for information on the changes to
sqluexpr - EXPORT and sqluimpr - IMPORT APIs.

LOAD and RESTORE
New parameters have been added to the LOAD and RESTORE commands extending
support to the new DATALINK data type. See the Command Reference for details.

 RECONCILE
The RECONCILE command validates the references to files for the DATALINK data in
a table. See the Command Reference for details.

 RUNSTATS
Statistics support has been extended to hierarchical data (see “Typed Tables and
Views” on page 19). Statistics are still collected using the RUNSTATS command and
updated through regular UPDATE commands on the system catalog tables. See the
RUNSTATS command in the Command Reference and the sqlustat - Runstats API in
the API Reference for details.

Log Sequence Number
The db2flsn - Find Log Sequence Number command allows users to determine which
log file contains the log record identified by a given log sequence number (LSN).
Locating an LSN is of particular interest to users of IBM DataPropagator Relational
(DPROPR) and the sqlurlog - Asynchronous Read Log API. See the Command Refer-
ence for details.

Application Development Enhancements

Version 5

Open Database Connectivity 3.0 Support
The DB2 Call Level Interface (DB2 CLI) has been updated to the latest Microsoft ODBC
3.0 specifications. This enables ODBC 3.0 applications to run with DB2. Scrollable
Cursor support has also been added. See the CLI Guide and Reference for details.

Additional Support in the DB2 Precompiler and APIs
The following support has been added:

¹ DB2 API for REXX called SQLDB2. It provides REXX support for new and existing
DB2 APIs that do not return any data except for the SQLCA.

22 What's New

¹ The TARGET option of the DB2 PREP command and the precompiler API now
support BORLAND_C and BORLAND_CPLUSPLUS to create DB2 applications
with the Borland C++ compiler on OS/2.

¹ Support for the 32–bit version of Micro Focus COBOL on the OS/2 operating
system.

See the API Reference for a full description of DB2 APIs. See the Embedded SQL
Programming Guide for a description of the precompiler options.

 User-Defined Functions
Enhancements have been made for table functions and scalar functions:

¹ A new CREATE FUNCTION specification of DBINFO | NO DBINFO enables the
function creator to specify whether the UDF receives additional information as an
argument.

¹ A new AS LOCATOR clause has been added to the parameter/result data type
specified in the CREATE FUNCTION statement. It is valid for large object (LOB)
types and for distinct types based on the LOB types. Instead of passing the entire
LOB value across the DB2 / UDF interface, a locator is passed. Five new APIs are
available to UDFs in NOT FENCED mode only, enabling the UDFs to directly
manipulate the locators and (subsets of) the LOB values which they represent.

Depending on how a UDF needs to process a LOB value, this can result in a great
improvement in both performance and in memory utilization.

¹ UDF run-time support is extended with OLE automation (controller part) to invoke
external UDFs that are methods of OLE automation servers. OLE automation is the
standard protocol for interoperability on Windows operating systems.

See the Embedded SQL Programming Guide and the SQL Reference for details.

Precompile and Bind Enhancements
The precompile and bind enhancements are categorized as follows:

Long Host Variable Names
Long host variable names that correspond to the variable name length of
the programming language are now supported. Host variable names can
now be up to 255 characters in length for all DB2-supported languages.

SQL Statement Flagging
The grammar and all syntax rules (that do not require catalog access) of
SQL statements are now checked and those not compliant with the SQL92
Entry Level standard are flagged.

Support for Java Programming
DB2 enables you to develop applications and applets that access and manipulate DB2
databases. DB2 makes this possible by providing support for the Sun Microsystem's
Java Database Connectivity (JDBC) API. DB2 provides this support through a DB2
JDBC driver that comes with DB2. The JDBC API provides a standard way to access
databases from Java code. Your Java code passes SQL statements as function argu-

 Chapter 3. Extensibility 23

ments to the DB2 JDBC driver. The driver handles the JDBC API calls from your Java
code.

You can also use the Java programming language to develop user-defined functions
and stored procedures which run on the server.

See the Embedded SQL Programming Guide and DB2 Connect documentation for
details.

See “Extended Support for Java Applets” and “Support for JDBC and SQLJ” for infor-
mation on Java support in DB2 Universal Database Version 5.2.

Version 5.2

Microsoft Transaction Server
Applications running under Microsoft Transaction Server (MTS) on Windows NT,
Windows 95, and Windows 98 operating systems can use MTS to coordinate two-
phase commit with multiple DB2 Universal Database databases and other
MTS-compliant resource managers. See the Administration Guide and “Microsoft Trans-
action Server” on page 93 for details.

See the DB2 Connect Enterprise Edition Quick Beginnings manual for information on
how host and AS/400 databases can participate in distributed transactions managed by
MTS.

MTS support is enabled by setting the tp_mon_name configuration parameter (see the
Administration Guide).

Extended Support for Java Applets
The DB2 Java Database Connectivity (JDBC) Applet Server can now be started as a
Windows NT service. It must be registered as a service before it is made available in
the services section of the control panel. See “JDBC Applet and Application Support”
on page 102 and the Quick Beginnings documentation for details.

Support for JDBC and SQLJ
DB2 Universal Database provides support for Java Database Connectivity (JDBC) and
for Java Embedded SQL (SQLJ).

JDBC support consists of:

¹ Support for Java UDFs and stored procedures on the server.
¹ Support for client applications and applets written in Java that use JDBC to access

DB2.

See “Programming in JDBC” on page 101 for details.

24 What's New

SQLJ support allows you to run Java embedded SQL applications and applets on the
client against DB2 databases on the server. It also provides support for Java embedded
SQL UDFs and stored procedures on the server. See “Embedded SQL for Java (SQLJ)
Programming” on page 117 for details.

 Perl Interface
The Database Independent Interface for Perl (Perl DBI) is an Application Programming
Interface (API) that provides database access for the Perl language. The DBI defines a
set of functions, variables, and conventions that provide a consistent database interface
independent of the actual database being used. A specific database driver is required
to work in conjunction with the DBI in order to access a particular database.

In Version 5.2 of DB2 Universal Database, support for the Perl DBI is provided on the
AIX, HP-UX, and Solaris platforms. This support is available with the DBD::DB2 data-
base driver. The driver and documentation can be obtained through FTP and the Web.
For more information, see http://www.software.ibm.com/data/db2/perl.

 Configuration Parameters

Version 5.2

Number of Commits to Group (mincommit)
This parameter has been modified so that changes to this value take effect imme-
diately. You no longer have to wait for all applications to disconnect from the database.
See the Administration Guide for details.

Default Database System Monitor Switches (dft_monswitches)
This parameter has been modified so that changes to its values take effect imme-
diately. You no longer have to manually stop and restart the database manager. See
the Administration Guide and “System Monitor Switches” on page 72 for details.

 Chapter 3. Extensibility 25

National Language Support

Version 5.2

Bidirectional CCSID Support
Bidirectional (BiDi) layout transformations are implemented in DB2 Universal Database
Version 5.2 using the new Coded Character Set Identifiers (CCSID) definitions. For the
new BiDi-specific CCSIDs, DB2 Universal Database performs layout transformations
instead of or in addition to code page conversions. The following cases exist:

¹ When using RA protocol (workstation-to-workstation connections), conversions are
done by the DB2 Universal Database server or DB2 Connect gateway. Layout
transformations will be performed by the same machine that does code page con-
version.

¹ For DRDA connections code page conversions are performed by the receiver.
Since host platforms may not support BiDi-specific CCSIDs at the same time as
DB2 Universal Database, DB2 will provide layout transformations in both directions
(DB2 Universal Database as the client or the server).

See the Administration Guide for details.

 Euro Support
DB2 Universal Database is a EuroReady product. Code page 850 and the Microsoft
Windows ANSI code pages have been modified to include the euro. DB2 Universal
Database Version 5.2 uses these definitions by default. If you would like to continue to
use the previous definition of these code pages, you should contact DB2 Universal
Database Service. See the Administration Guide for more details.

 DB2 Extenders
DB2 Extenders give you the ability to store, access, and manipulate text, images,
audio, and video in a DB2 database.

Version 5.2

 Partitioned Databases
DB2 Extenders Version 5.2 adds support for DB2 Universal Database Extended Enter-
prise Edition on Windows NT, Solaris, and AIX operating systems. When DB2 runs a
query in parallel, any DB2 Extender user-defined function (UDF) in the query is run in

26 What's New

parallel on the individual partitions. The Query by Image Content (QBIC) feature of the
DB2 Image Extender will manage the parallel operation of the QBIC UDFs. See the
DB2 Universal Database Extender Administration and Programming guides for details.

 Commands
DB2 Extender’s support for DB2 Extended Enterprise Edition adds the following
commands:

¹ REDISTRIBUTE NODEGROUP completes the redistribution process so that redis-
tributed data can be used with DB2 Extenders.

¹ RECREATE QBIC CATALOG recovers a QBIC catalog on a specified node.

¹ DMBNCRT adds a node to a DB2 Extender instance.

¹ DMBNDROP drops a node from a DB2 Extender instance.

¹ DMBNLIST lists all the partitions for a DB2 Extender instance.

The following DB2 Extender commands have changed:

¹ START SERVER, STOP SERVER, and GET SERVER STATUS process all nodes
for the connected database.

¹ DMBSTART and DMBSTOP start or stop all nodes or a specified node for the
extender instance.

¹ DMBICRT creates a partitioned DB2 Extender instance.

See the DB2 Universal Database Extender Administration and Programming guides for
details.

 Migration
Users using DB2 Extenders Version 5 can migrate their data for use with DB2
Extenders Version 5.2, but the data will not be partitioned.

 Net.Data

Version 5.2

Net.Data is an application that allows Web developers to easily build dynamic Internet
applications using Web Macros. Net.Data Web Macros have the simplicity of HTML with
the power of dynamic SQL. Net.Data Version 2 offers the following new features:

¹ FastCGI: combines the best aspects of Common Gateway Interface (CGI) and
vendor API’s to optimize Net.Data applications.

¹ Cache Manager: the new cache improves response time for end users.

 Chapter 3. Extensibility 27

¹ Macro file enhancements: capabilities have been extended by adding looping
constructs and nested IFs.

¹ Java: new servlets help in the development and management of macros in Java
environments.

Information on using Net.Data with DB2 can be found on the Web at
http://www.software.ibm.com/data/net.data.

 Legato

Version 5.2

The Legato NetWorker BusinesSuite Module for DB2 provides on-line, non-disruptive
backup for DB2 Universal Database on AIX. In addition to providing high-speed on-line
backup, customers will have the ability to centrally manage and back up multiple DB2
servers. The following key points apply:

¹ The BusinesSuite module for DB2 is 1.0.

¹ NetWorker server software is NW for UNIX 4.2.5 (or higher), and NW for Windows
NT 4.4 (or higher).

¹ For invocation the user must use the LOAD option on BACKUP or RESTORE,
specifying the liblgto.a library which is shipped in the sqllib/lib directory. For
example:

db2 backup db sample LOAD /u/dmcinnis/sqllib/lib/liblgto.a

Note: This is an AIX only feature and the liblgto.a library is always installed in the
db2instance’s sqllib/lib directory.

28 What's New

 Chapter 4. Performance

Applications not only need to be up, they need to be up and running-fast. That's why
DB2 Universal Database improves its performance with each new release.

 Query

Version 5

 Index ANDing
The performance has been improved for queries that use columns which are key
columns of different indexes over the same table. DB2 uses dynamic bitmap technology
to efficiently combine multiple indexes.

 Star Joins
The performance of queries involving star joins has been improved. Star queries are
characterized as multiway joins between several small dimension tables and a large
fact table. DB2's new star join algorithm exploits dynamic bitmaps to join a large fact
table with a series of relatively small dimension tables, minimizing data I/O.

Version 5.2

 Table-Level Locks
Users with the appropriate authority can now specify the size (granularity) of locks used
when a table is accessed. By default row-level locks are used when tables are created.
Changes to the ALTER TABLE statement allow locking to be pushed up to the table
level. Using table-level locks may improve the performance of queries by reducing the
number of locks that need to be obtained and released. See the Administration Guide
and the SQL Reference for details.

Limit Fetch Size
The new Fetch First N Rows Only feature allows users to limit the size of the result set
of a query to a specified value. This feature improves the performance of queries that
have potentially large results, when only a limited number of rows are of interest. For
example, a user might be interested in viewing only information on the 10 highest paid
employees in an organization. In this case the user could issue a SELECT statement

 Copyright IBM Corp. 1997, 1998 29

with a FETCH of only the first 10 rows. See “Fetch-first-clause” on page 100 and the
SQL Reference for details.

Retrieval Using Index-Only Access
Index-only access means that queries can be satisfied by accessing only the index,
providing that the SELECT matches the included columns. See “Index-Only Access” on
page 35 for more information.

 Correlated Predicates
The DB2 Universal Database optimizer has been enhanced with regards to choosing an
execution plan for queries that contain joins with more than one join predicate joining
two tables. The dependence or independence of predicates can affect the performance
of optimizer’s chosen plan. The new DB2_CORRELATED_PREDICATES registry vari-
able helps the optimizer detect and compensate for the correlation of join predicates.
When this variable is true, the optimizer will use the KEYCARD information of unique
index statistics to detect cases of correlation and dynamically adjust the combined
selectivities of the correlated predicates. This results in a more accurate estimate of the
join size and cost. See the Administration Guide for details.

 Summary Tables
Summary tables can be used to improve query performance. You can create a
summary table that holds a derived result and keeps that result updated. For example,
you could monitor the highest salary in your company (select max(salary) from

employee) and keep that information up-to-date in a summary table. Then, whenever a
user requests the highest employee salary, the result from the summary table is
returned, rather than recalculating it from the employee table.

Summary tables can be created to hold the results of simple queries, or a collection of
joins involving multiple tables. See the Administration Guide and the SQL Reference for
details.

Note: The REFRESH IMMEDIATE option is not available in Version 5.2. It will return
SQLCODE SQL0628N if used. You can use the REFRESH TABLE statement to
update your summary tables.

 Replicated Tables
DB2 Extended Enterprise Edition users can specify that the data stored in a table is
physically replicated on each database partition of the nodegroup for the table space
where the table is defined. Replicated tables are particularly useful for joins in which
you have a large fact table and small dimension tables. A list of all customers or a list
of all transactions (orders and sales) could be large fact tables, while a list of countries
might be a small dimension table. If the customer table and the transaction table are
stored on separate database partitions, and both are involved in joins with the country
table, then the country table is a good candidate for replication in your multi-node envi-
ronment. To create a replicated table, you use the CREATE TABLE statement with the
REPLICATED parameter. See the SQL Reference and the Administration Guide for
details.

30 What's New

 Hash Joins
A hash join will first compare hash codes before comparing predicates for tables
involved in a join. In a hash join, one table (selected by the optimizer) is scanned and
rows are copied into memory buffers drawn from the sort heap allocation. The memory
buffers are divided into partitions based on a hash code computed from the columns of
the join predicates. Rows of the other table involved in the join are matched to rows
from the first table by comparing the hash code. If the hash codes match, the actual
join predicate columns are compared.

Hash join requires one or more predicates in the form table1.columnX=table2.columnY,
and for which the column types are the SAME. For columns of type CHAR, the length
must be the same. For columns of type DECIMAL, the precision and scale must be the
same. The column type cannot be a LONG field column, or a large object (LOB)
column.

For more details on hash joins see the Administration Guide. For information on moni-
toring hash joins see “Hash Join” on page 68.

 Cache

Version 5

Global SQL Cache
The aim of the Global SQL Cache is to minimize the amount of catalog access required
for sections of static SQL statements and to maximize the sharing of sections for
dynamic DML statements by eliminating many of the previous restrictions. This is done
by establishing a global cache shared by all agents connected to the same database or
partition of a database (in the case of DB2 Universal Database Extended Enterprise
Edition), in which sections for both static and dynamic SQL statements will be placed.
This global cache acts as a public repository, or library, for different sections being
used on the database at any given time.

Version 5.2

Package Lock Avoidance
The DB2_NO_PKG_LOCK registry variable allows the Global SQL Cache to operate
without the use of package locks to protect cached package entries. In Version 5
package entries in the cache (while in use) were protected from being dropped or modi-

 Chapter 4. Performance 31

fied by cache-level locks. Since acquiring a lock is expensive in terms of performance,
users now have the option of working in a no package lock mode. In this mode certain
database operations will not be allowed in order to protect cached package entries (for
example: DROP TABLE). See the Administration Guide for details.

 Recovery

Version 5

 Faster Restart
Enhancements have been made to speed up restart which means that database crash
recovery is now faster. This enhancement also applies to roll-forward recovery.

 Buffer Pools

Version 5

Multiple Buffer Pools
You can now create multiple buffer pools of various sizes (number of pages) and
assign table spaces to them using the CREATE BUFFERPOOL SQL statement. This
provides the database administrator greater control of the data in memory. See the
Administration Guide for details.

 Extended Storage
Extended storage provides a secondary level of storage for buffer pools. This allows a
user to access memory beyond the maximum allowed for each process. Support now
exists for very large physical memory (64-bit memory support). DB2 exploits 64-bit
systems and 32-bit systems capable of supporting greater than 4 GB of real memory.
See the Administration Guide for details.

32 What's New

Version 5.2

 Page Size
DB2 Universal Database supports the storage of information on page sizes of 4 KB and
8 KB (see “Multiple Page Size Support” on page 19). In order to use the new 8K page
size a buffer pool and attached table space with a page size of 8K must be created.
See the CREATE BUFFERPOOL and CREATE TABLESPACE statements in the SQL
Reference for details.

Fast Communications Manager Buffers
The DB2_FORCE_FCM_BP environment variable allows DB2 Extended Enterprise
Edition for AIX customers to create their FCM buffers in a separate shared memory
segment. This allows for faster communications (see “Multiple Logical Nodes” on
page 36).

 Commands

Version 5

 LOAD
In addition to SMP exploitation of load, LOAD performance for DEL and ASC data has
been improved for the simple column types CHAR and INT. Other performance
improvements have been made for other data formats and column types.

LOAD now has a new MODIFIED BY option called FASTPARSE which provides further
performance improvements. See the Command Reference for details.

 Chapter 4. Performance 33

 Applications

Version 5

 DB2 Governor
The DB2 Governor lets you set rules that indicate how it is to handle application
behavior. For example, it monitors the resources used by executing applications and if
specified limits are exceeded, it reprioritizes query execution or issues the force
command to terminate them.

In addition, the governor can be used to generate accounting records for executing
applications that can be used for chargeback accounting. See the Administration Guide
for details.

 Client/Server

Version 5

 Deferred Prepare
Deferred prepare provides a performance enhancement when accessing DB2 and
DRDA databases by combining the SQL PREPARE statement flow with the associated
OPEN, DESCRIBE, or EXECUTE statement flow to minimize the inter-process or
network flow.

When deferred prepare is enabled, DB2 defers sending out SQL PREPARE statements
until the associated OPEN, DESCRIBE, or EXECUTE statement is issued by the appli-
cation. See the CLI Guide and Reference for details.

A PREPARE that is not eligible for deferral can be sent immediately, and have its
cursor opened at the same time. PREPARE statements that normally cannot be
deferred or pre-OPEN can also be optimized if the appropriate option is set in the
sqlesetc - Set Client API or precompiler option. See the Command Reference for
details.

34 What's New

Version 5.2

Log File Storage
The newlogpath configuration parameter allows users to change the location where log
files are stored. Log files can now be stored on raw devices (Windows NT, AIX, and
Solaris). This can speed up database operation as there will be less overhead in code
path length for each I/O call to read or write the log, and there is no need to initialize
the new log path to guarantee the disk space. See the Administration Guide for details.

 Indexes

Version 5.2

 Clustering Indexes
A clustering index allows data records to be clustered on pages based on the sequence
of a particular index, and maintains that clustering as much as possible over the course
of insert and update activity. Clustering increases the efficiency of data retrieval when it
involves accessing sequential value ranges for a particular index (the clustering index).
Without a clustering index, data can still be arranged on pages based on a particular
index (using REORG), but there is no mechanism to maintain the arrangement as data
is added and removed without additional REORGs. See the Administration Guide and
the SQL Reference for details.

 Index-Only Access
The CREATE INDEX statement now allows users to specify additional columns to be
appended to the set of index key columns. The new INCLUDE parameter identifies
columns that are included in the index, but are not part of the unique index key. This
means improved performance because queries can be satisfied by accessing only the
index, without reading the base table. See the Administration Guide and the SQL Refer-
ence for details.

 Chapter 4. Performance 35

 Tables

Version 5.2

APPEND Parameter for ALTER TABLE
An APPEND parameter has been added to the ALTER TABLE statement. It is used to
indicate whether data is appended to the end of a table or inserted where free space is
available. Specifying APPEND ON can improve performance, as it allows for faster
inserts and eliminates the maintenance of free space information. See “Altering Tables”
on page 100 and the SQL Reference for details.

 Communications

Version 5.2

Virtual Interface Architecture Support
The Virtual Interface Architecture (VIA) communication architecture is supported for
inter-node communications. VIA enables high-speed communication amongst clusters
of Windows NT SMP machines. The DB2VIAENABLE registry variable specifies if the
VIA communications protocol is used. See the Administration Guide for details.

Multiple Logical Nodes
Direct communication is available between nodes on the same host (multiple logical
nodes). In previous releases the DB2 Fast Communication Manager used a dedicated
communication daemon (FCM daemon) to service communications requests whether
they were local or remote. Now the FCM daemon can be bypassed when the remote
nodes reside on the same physical machine. This enables high-speed communication
amongst multiple logical nodes for Extended Enterprise Edition users on AIX. The
DB2_FORCE_FCM_BP environment variable allows direct communication between
multiple logical nodes (MLNs). See the Administration Guide for details.

36 What's New

 Chapter 5. Scalability

DB2 Universal Database supports you whether you are working on a local database or
on a database that is distributed across the largest parallel system. That's important,
because as you start using DB2 Universal Database you can be confident that if you
need more capacity or processing power, you have a scalable database system that is
capable of handling your growing needs.

 Partitioned Databases
DB2 has extended the strength of its database manager to the parallel, multinode envi-
ronment. DB2 Universal Database Extended Enterprise Edition allows a database to be
partitioned across multiple, independent computers connected by a LAN. Each data-
base partition or node (node was the term used in DB2 Parallel Edition for AIX) is a
part of a database that consists of its own data, indexes, configuration files, and trans-
action logs. To the end-user and application developer, the database still appears as a
single entity on a single processor. There are two main benefits that this provides. First,
this enables an application to use a database that is simply too large for a single
processor to handle efficiently. Second, SQL operations can operate in parallel on the
individual database partitions, thereby speeding up the execution time of a single query
or utility.

There are two types of query parallelism:

¹ Intra-partition parallelism refers to the ability to break up a query into many parts.
This usually means subdividing what is usually considered a single database oper-
ation, for example an SQL query, into multiple parts, many or all of which can be
executed in parallel within a single database partition.

¹ Inter-partition parallelism refers to the ability to break up a query into multiple parts
across multiple partitions of a partitioned database, on one or more machines.

As your needs change you may find that your configuration is no longer appropriate.
DB2 Universal Database lets you scale your configuration. Whether you are adding
memory, storage, processors, database partitions, or changing environments (moving to
SMP or MPP) DB2 can meet your current and future needs.

DB2 Universal Database offers many options on how best to match your hardware and
application requirements with a specific DB2 product configuration.

 Copyright IBM Corp. 1997, 1998 37

Version 5

Single Partition on a Single Processor
This environment consists of memory and disk, but contains only a single CPU. It has
been given many names: standalone database, client/server database, serial database,
and single node/non-parallel environment.

Single Partition with Multiple Processors
This environment is typically made up of several equally powerful processors within the
same machine (symmetric multiprocessor or SMP). Resources such as memory and
disk space are shared. Machines with multiple processors have more memory and
disks than those with a single processor.

Multiple Partitions Each with Its Own Processor
In this environment there are many database partitions, but each is on a separate
machine and that has its own processor, memory, and disks. Machines are connected
by a communication facility. This environment is known as a massively parallel proc-
essing (MPP) environment or a shared-nothing configuration.

Version 5.2

Multiple Partitions with Multiple Processors
In a multipartition environment each partition can have multiple processors. This config-
uration combines the advantages of SMP and MPP parallelism. Queries can be per-
formed in a single partition across multiple processors, or they can be performed in
parallel across multiple partitions. This environment is called an SMP cluster.

Windows NT and Solaris
In addition to AIX, DB2 Universal Database Extended Enterprise Edition is now avail-
able for the Windows NT and Solaris operating systems.

38 What's New

Migrating from DB2 Parallel Edition

Version 5.2

While enhancements to SQL commands and DB2 application programming interfaces
(APIs) have been made and new commands and APIs have been added to support the
parallel environment, most data manipulation language (DML) commands are
unchanged and you need not change your programs or SQL statements to run in the
parallel environment. DB2 Extended Enterprise Edition Quick Beginnings for your oper-
ating system provides installing, migrating, and configuring information.

The DB2 Parallel Edition Version 1.2 features that are now available in DB2 Version 5.2
are documented in the DB2 Version 5.2 product documentation. Some restrictions apply
to the DB2 Parallel Edition Version 1.2 features that are available in DB2 Version 5.2.
They are documented in the following manuals:

 ¹ Administration Guide
 ¹ SQL Reference
 ¹ API Reference
 ¹ Command Reference
¹ System Monitor Guide and Reference

Symmetric Multi-Processor (SMP) Enhancements
The multiple processors available in an SMP environment allow database operations to
be completed significantly more quickly than with databases assigned to only a single
processor.

Version 5

 Intra-Partition Parallelism
The I/O parallelism provided in DB2 Version 2 has been enhanced. It now exploits CPU
parallelism in a single SQL query. Technology is introduced which exploits multiple
processors of a symmetric multiprocessor (SMP) to speed up the execution of a single
SQL query. Prior to this work, SMP exploitation was limited to that between multiple
queries and to parallel I/O. A key purpose of this technology is to exploit the fact that
disks, memory, and processors can be shared uniformly by multiple processors in an
SMP system. This provides two important benefits:

¹ It allows workload to be divided more evenly among the processors, thereby
achieving better scalability. This is possible since all processors have the choice to

 Chapter 5. Scalability 39

work on all data. This is analogous to a single queue serviced by multiple bank
tellers.

¹ It provides flexibility in designing query execution strategies that is not possible with
a shared nothing approach. For example, a correlated subquery can be executed
by the same processor that executes the parent query.

See the Administration Guide for more information.

 LOAD Utility
Support now exists for the LOAD utility to exploit multiple processors in SMP machines.

While loading data into a table in a multinode nodegroup, the data files must have been
processed by the splitter utility (db2split), which writes a header to each file. Only ASC
and DEL files may be used to load in a table that exists on a multinode nodegroup. In
addition, you now have the option to pick a set of partitions, which may be the same or
different from the partitions being loaded, to participate in the parallel split process. See
the Command Reference for more information.

As well, you can specify the degree of LOAD parallelism desired for CPU and disk I/O.
See the Command Reference and the API Reference for more information.

BACKUP and RESTORE Utilities
Backup and restore of multiple table spaces on SMP machines are performed in par-
allel. See the Command Reference for more information.

Version 5.2

 Index Generation
Multiple processors of an SMP are now used to speed up the process of generating an
index. An index can be generated with the CREATE INDEX statement, the addition of a
primary key or unique constraint to a table, or the REORG TABLE command. See the
Command Reference for more information.

Degree of Parallelism
If a query is run with DEGREE = ANY, the database manager chooses the degree of
intra-partition parallelism based on a number of factors including the number of
processors and the characteristics of the query. The actual degree used at run time
may be lower than the number of processors depending on these factors.

The degree of parallelism is determined by the SQL optimizer when the statement is
compiled and may be adjusted before query execution depending on the database
activity. The degree of parallelism may be lower than that chosen by the SQL optimizer
if the system is heavily utilized. This occurs since intra-partition parallelism aggressively

40 What's New

uses system resources to reduce the elapsed time of the query which may adversely
affect the performance of other database users. See the Administration Guide for
details.

 Autoloader Utility

Version 5.2

In a partitioned database, large amounts of data are divided across many partitions.
Partitioning keys are used to determine the particular database partition where each
portion of the data resides. Data must pass through a splitting phase before it can be
loaded at the correct database partition. This split and load process is accomplished by
the Autoloader utility.

The Autoloader utility has been improved for users of DB2 Extended Enterprise Edition
on AIX, and is now available for users of DB2 Extended Enterprise Edition on Windows
NT and Solaris. operating systems

The Autoloader utility uses a hashing algorithm to partition the data into as many output
sockets as there are database partitions in the nodegroup in which the table was
defined. It then loads these output sockets concurrently across the set of database par-
titions in the nodegroup. A key feature of the Autoloader utility is that it uses sockets for
all data transfer required in the split and load process. It also allows the use of multiple
database partitions for the splitting phase, thereby improving performance significantly.
See the Administration Guide for details.

 Chapter 5. Scalability 41

42 What's New

 Chapter 6. Usability

The strengths of a database management system are not obvious if that system is hard
to use. DB2 Universal Database has significantly enhanced its user interface and
administration tools to provide greater ease of use.

Graphical User Interface (GUI)

Version 5

 Control Center
The Control Center (called Database Director in previous releases) has been signif-
icantly enhanced to provide greater ease of use. An administrator of a DB2 database is
provided with the tools necessary to set up, manage, monitor, and tune the database.
You can manage a stand-alone database, or multiple remote databases from a single
point of control. In addition to management of database instances, databases, and table
spaces, Control Center now includes management functions for schemas, tables, views,
indexes, users, user groups, user-defined types, user-defined functions, triggers, and
stored procedures, as well as the ability to discover databases on the systems being
managed. The ability to explain SQL graphically has been enhanced.

Also new in Version 5 is a built-in Scheduler that allows a job to run unattended at a
given time, every x hours / days / weeks / months, multiple times a week, or multiple
times a month.

The Control Center now includes support for data replication setup, allowing registration
of replication sources and definition of replication subscriptions. This function is part of
the DB2 base engine.

Monitoring capabilities provide early warning of potential problems, or automated
actions to correct problems discovered without human intervention.

The Control Center runs on OS/2, Windows NT, Windows 95, and Windows 98 oper-
ating systems, from which you can administer DB2 databases on OS/2, Windows NT,
AIX, HP-UX, and the Solaris Operating Environment and other UNIX operating systems.

In addition to the function described above, there is support for the management of
DB2 Universal Database Extended Enterprise Edition objects. There are additional per-
formance monitoring views to monitor these objects.

 Copyright IBM Corp. 1997, 1998 43

See the online help that accompanies the database administrative tools for instructions
for using the tools. See the Administration Getting Started for an introduction to DB2
database administration using the database administrative tools.

See “Web Control Center” on page 45 for information on the Control Center support
available in Version 5.2.

 SmartGuides
The Control Center has been further enhanced through the inclusion of SmartGuides,
which step you through a task. SmartGuides are included for database performance
configuration, create/restore/backup database, create table space, and create table.

 Visual Explain
The new Portable Snapshot function in Visual Explain makes the explain snapshot from
any operating system usable by Visual Explain on any other operating system. For
example, an HP-UX snapshot can be viewed with a Windows NT client.

See the online help that accompanies Visual Explain for instructions on how to use the
tool.

 Command Center
The Command Center provides an interactive window that lets you perform tasks such
as:

¹ Execute SQL statements, DB2 commands and operating system commands.

¹ See the execution result of the one or many SQL statements and DB2 commands
in a result window. You can scroll through the results and save the output to a file.

¹ Save a sequence of SQL statements and DB2 commands to a script file. You can
then schedule the script to run as a job. When a saved script is modified, all jobs
dependent on the saved script inherit the new modified behavior.

¹ Recall and execute a script file.

¹ See the execution plan and statistics associated with an SQL statement before
execution. You do this by invoking Visual Explain with a simple click of a button in
the interactive window.

¹ Get quick access to the database administrative tools such as the Control Center
and the Scheduler from the main tool bar.

¹ Display all the command scripts known to the system through the Script Center,
with summary information listed for each.

For complete information on all the commands see the Command Reference and SQL
Reference. The DB2 Client Application Enabler contains a subset of the Command
Center functions. See the Quick Beginnings book for your operating system for details.

See the online help that accompanies the Command Center for instructions on how to
use the tool.

44 What's New

The Command Line Processor (CLP) continues to be available on all operating
systems.

Version 5.2

Web Control Center
The Web Control Center is the Java port of the DB2 Universal Database Control
Center. It eliminates the need to install the Client Application Enabler on your adminis-
trative workstations and gives you the ability to administer DB2 Universal Database
over an intranet.

The Web Control Center’s design is almost identical to that of Version 5, but it provides
you with a more flexible network centric administration environment. It is implemented
as a Java applet that uses DB2’s JDBC support. It runs from any Java-enabled Web
browser that supports the Java Development Kit 1.1.5. See “Web Control Center Instal-
lation and Configuration” on page 185 for details on installing, configuring, and using
the Web Control Center.

NetQuestion Search Service and the Web Control Center
The NetQuestion Search Service, in combination with the Web Control Center, gives
easy access to the DB2 Universal Database information library. See “Enabling the Web
Control Center Remote Documentation Searches” on page 190 for details on installing
and using the search function.

Connectivity and Protocol Configuration and Auto-Discovery

Version 5

The task of connecting a client to databases on servers is now simplified. Many of the
steps performed on the server and the client are now automated.

From the server, DB2 auto-discovers the protocols it has detected on the workstation.
You select the appropriate protocol and tell DB2 to configure the server and client.

From the client, it is now much simpler to make a new database connectable. You can
ask DB2 to auto-discover the databases available, and then you can select a database
from that list and ask DB2 to configure it for connection.

 Chapter 6. Usability 45

Server Communications Configuration
From an instance in the Control Center, the Setup Communications option lets you con-
figure a DB2 server instance and update the communications protocol settings to
support connections to the instance's databases from remote clients. You can set up
communications for a new instance, or maintain the communication configuration of an
existing instance. Many of the required steps are automated. You simply need to select
the communication protocols you wish to have the server instance support.

Server Communications Configuration is available on OS/2, Windows NT, Windows 95,
and Windows 98 operating systems. See the Quick Beginnings book for your operating
system for details.

Client Configuration Assistant
This assistant leads you through the steps necessary to configure and manage a DB2
client, while at the same time automating some of the steps required. Once a database
has been configured for connection using either the automated or manual method, you
can perform other actions on it:

¹ DB2 connection testing
¹ Connection information maintenance
¹ DB2 CLI/ODBC administration

 ¹ Application binding
 ¹ Database removal.

Connections can be configured to both DB2 Common Server databases and DRDA
databases.

The Assistant is available on OS/2, Windows NT, Windows 95, and Windows 98 oper-
ating systems. The Client Configuration Assistant does not configure remote clients.
See the Quick Beginnings book for your operating system for details.

Version 5.2

Client Configuration Assistant Enhancements for Version 5.2
The Client Configuration Assistant (CCA) can be used to configure TCP/IP connections
to DB2 for VM and DB2 for AS/400 database servers. You can also use it to configure
Communications Server for NT (CS/NT) and IBM Personal Communications SNA
stacks if you are using an SNA network. See the DB2 Connect Quick Beginnings
manuals for details.

46 What's New

Instance Profile Manager

Version 5

The DB2 environment variables are consolidated into the DB2 Instance Profile Registry.

This helps you by:

¹ Supporting multiple environment profiles (one per instance)
¹ Providing a machine-wide default (global) profile
¹ Supporting a machine-wide default DB2 instance name
¹ Eliminating the need to reboot the machine when a variable is modified
¹ Supporting user/application overrides
¹ Centralizing control of environment variables
¹ Providing a command line tool to modify the externalized variables
¹ Enabling remote administration via the command line and the graphical tools.

A new command, DB2SET, displays, sets, or removes DB2 profile variables. See the
Command Reference for details.

 Licensing

Version 5

The usability surrounding entering a license key has been improved. In addition, a data-
base administrator can now enable or disable counting concurrent users on some oper-
ating systems (OS/2, Windows NT, Windows 95, and AIX). See the Quick Beginnings
book for your operating system for details.

 Chapter 6. Usability 47

48 What's New

 Chapter 7. Serviceability

Technical support for DB2 Universal Database is improved through the addition of new
and more precise messages and enhancements to its problem solving tools.

 Version 5

Version 5

DB2 Database Repair Tool
Enhancements have been made to the DB2 Database Repair Tool (DB2DART), an
analysis and repair tool, which provides improved DB2 serviceability. See the Trouble-
shooting Guide for additional details.

 Messages
The messages have been improved so that the location of the reported problem is
defined more precisely, and so that they are clearer and more helpful. See the Trouble-
shooting Guide for additional details.

 Version 5.2

Version 5.2

Service Level Tool
The db2level tool will return information on the level of DB2 Universal Database being
run. It will include items such as:

¹ Internal build level (for example c980310)
¹ PTF number (for example WR09024).

This type of information will be helpful when users call DB2 Service.

 Copyright IBM Corp. 1997, 1998 49

50 What's New

Appendix A. System Monitor Guide and Reference Updates

The System Monitor Guide and Reference has not been updated for DB2 Universal
Database Version 5.2. The following sections document any Version 5.2 changes and
enhancements to the system monitor and should be used in conjunction with the
Version 5 edition of the System Monitor Guide and Reference by Version 5.2 users.
These include:

¹ “System Monitoring for DB2 Connect”: You can now use the system monitor to
collect more information on your DB2 Connect applications. New parameters have
been added to the GET SNAPSHOT and LIST DCS APPLICATIONS commands
that will return new and enhanced data elements that provide DB2 Connect appli-
cation details.

¹ “New System Monitor Data Elements” on page 68: New data elements have been
added to help you monitor hash joins, page reorganizations, and lock escalation.

¹ “Application Identification” on page 72: Application identification can be different
depending on your version of DB2.

¹ “System Monitor Switches” on page 72: Certain DB2 configuration parameters can
now be updated dynamically, including the default database system monitor
switches.

¹ “Changes to Number of Log Pages Written” on page 73: The Number of Log
Pages Written data element does not measure pages written by DB2.

System Monitoring for DB2 Connect
This section lists the system monitor data elements that can be monitored for DB2
Connect in DB2 Universal Database Version 5.2. These data elements fall into two
groupings:

existing Data elements that were available in Version 5, but not for DB2 Connect.
Starting with Version 5.2, these elements can be used to monitor DB2
Connect activity.

new Data elements with DB2 Connect implications that have been added to
the system monitor in Version 5.2.

These DB2 Connect data elements (both existing and new) will be returned in the fol-
lowing data structures. These data structures also fall into two categories:

changed These data structures existed in Version 5, but have been modified in
Version 5.2 to include data elements for DB2 Connect. They are:

 ¹ sqlm_db2
 ¹ sqlm_appl
 ¹ sqlm_dcs_applinfo.

 Copyright IBM Corp. 1997, 1998 51

new These data structures that return DB2 Connect data elements have been
added to the system monitor in Version 5.2:

 ¹ sqlm_dcs_appl
 ¹ sqlm_dcs_appl_stats
 ¹ sqlm_dcs_appl_xid
 ¹ sqlm_dcs_applid_info
 ¹ sqlm_dcs_dbase
 ¹ sqlm_dcs_stmt
 ¹ sqlm_tpmon_info

Note: The data structures are defined in the sqlmon.h header file.

 Changed Commands
The following commands associated with system monitoring have been enhanced to
return more DB2 Connect information:

GET SNAPSHOT
Depending on the specified clause, information can be collected on:

¹ A specific DCS database
¹ All DCS databases
¹ All DCS applications
¹ All DCS applications currently connected to a specific DCS database
¹ A specific DCS application running on the DB2 Connect gateway.

LIST DCS APPLICATIONS
The EXTENDED parameter returns additional DCS information:

¹ DCS application status
¹ Status change time

 ¹ Client platform
 ¹ Client protocol
¹ Client code page
¹ Process ID of the client application
¹ Host coded character set ID (CCSID).
¹ Database alias at the gateway
¹ DCS database name

RESET MONITOR
The DCS parameter has been added to this command to indicate that monitor data
should only be reset for DCS databases.

For command details see the Command Reference.

Existing Data Elements
The following table lists the Version 5 system monitor data elements that can collect
DB2 Connect information starting in Version 5.2. These data elements will be returned
in the data structures listed in the API Structure column in Version 5.2, in addition to
their original Version 5 data structures.

Note: You should refer to the Version 5 System Monitor Guide and Reference for
detailed information on these data elements.

52 What's New

Data Element API Element Name Level API Structure

Database Identification and Status

Database Name db_name DCS Database
DCS Application

sqlm_dcs_dbase
sqlm_dcs_applid_info

Application Identification and Status

Application Handle
(agent ID)

agent_id DCS Application sqlm_dcs_applid_info

ID of Code Page
Used by Application

codepage_id DCS Application sqlm_dcs_applid_info

Application Status
Change Time

status_change_time DCS Application sqlm_dcs_applid_info

User Login ID execution_id DCS Application sqlm_dcs_applid_info

Client Process ID client_pid DCS Application sqlm_dcs_applid_info

Client Operating Plat-
form

client_platform DCS Application sqlm_dcs_applid_info

Client Communication
Protocol

client_protocol DCS Application sqlm_dcs_applid_info

Previous Unit of Work
Completion
Timestamp

prev_uow_stop_time DCS Application sqlm_dcs_appl

Unit of Work Start
Timestamp

uow_start_time DCS Application sqlm_dcs_appl

Unit of Work Stop
Timestamp

uow_stop_time DCS Application sqlm_dcs_appl

Unit of Work Com-
pletion Status

uow_comp_status DCS Application sqlm_dcs_appl

Application Idle Time appl_idle_time DCS Application sqlm_dcs_appl

SQL Statement Activity

Failed Statement
Operations

failed_sql_stmts DCS Database
DCS Application

sqlm_dcs_dbase
sqlm_dcs_appl_stats

Commit Statements
Attempted

commit_sql_stmts DCS Database
DCS Application

sqlm_dcs_dbase
sqlm_dcs_appl_stats

Rollback Statements
Attempted

rollback_sql_stmts DCS Database
DCS Application

sqlm_dcs_dbase
sqlm_dcs_appl_stats

SQL Statement Details

Statement Operation stmt_operation DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

Package Name package_name DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

Section Number section_number DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

 Appendix A. System Monitor Guide and Reference Updates 53

Data Element API Element Name Level API Structure

Application Creator creator DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

Statement Operation
Start Timestamp

stmt_start DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

Statement Operation
Stop Timestamp

stmt_stop DCS Application
DCS Statement

sqlm_dcs_appl
sqlm_dcs_stmt

SQL Dynamic State-
ment Text

n/a DCS Statement sqlm_dcs_stmt

Number of Successful
Fetches

fetch_count DCS Statement sqlm_dcs_stmt

Query Cost Estimate query_cost_estimate DCS Statement sqlm_dcs_stmt

Query Number of
Rows Estimate

query_card_estimate DCS Statement sqlm_dcs_stmt

SQL Snapshot Monitor Elements

Last Reset Timestamp last_reset DCS Database
DCS Application

sqlm_dcs_dbase
sqlm_dcs_appl

New Data Elements
This section lists all the new Version 5.2 data elements that can be monitored for DB2
Connect. You should refer to the Version 5 System Monitor Guide and Reference for
instructions on how to collect information with the DB2 system monitor.

DCS Database Name

Description: The name of the DCS database as catalogued in the DCS directory.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
DCS Database
DCS Application

API Structure(s)
sqlm_dcs_dbase
sqlm_dcs_applid_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

dcs_db_name
information

Related Information ¹ “Host Database Name” on page 55
¹ “Database Alias at the Gateway” on page 55

54 What's New

Host Database Name

Description: The real name of the host database for which information is being col-
lected or to which the application is connected. This is the name that was given to the
database when it was created.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
DCS Database
DCS Application

API Structure(s)
sqlm_dcs_dbase
sqlm_dcs_applid_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

host_db_name
information

Related Information ¹ “DCS Database Name” on page 54
¹ “Database Alias at the Gateway” on page 55

Database Alias at the Gateway

Description: The alias used at the DB2 Connect gateway to connect to the host data-
base.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applid_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

gw_db_alias
information

Related Information ¹ “DCS Database Name” on page 54
¹ “Host Database Name” on page 55

 Appendix A. System Monitor Guide and Reference Updates 55

DB2 Connect Gateway First Connect Timestamp

Description: The date and time of the first connection to the host database from the
DB2 Connect gateway.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
DCS Database
DCS Application

API Structure(s)
sqlm_dcs_dbase
sqlm_dcs_appl

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

gw_con_time
timestamp

Related Information ¹ None

Maximum Number of Concurrent Connections

Description: The maximum number of concurrent connections to a host database that
have been handled by the DB2 Connect gateway since the first database connection.

Usage: This element will help you understand the level of activity at the DB2 Connect
gateway and the associated use of system resources.

Snapshot Information Level
DCS Database

API Structure(s)
sqlm_dcs_dbase

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

gw_connections_top
water mark

Related Information ¹ “Total Number of Attempted Connections for DB2
Connect” on page 57

¹ “Current Number of Connections for DB2 Connect”
on page 57

56 What's New

Total Number of Attempted Connections for DB2 Connect

Description: The total number of connections for DB2 Connect attempted at the DB2
Connect gateway since the db2start command or the last reset.

Usage: This element will help you understand the level of activity at the DB2 Connect
gateway and the associated use of system resources.

Snapshot Information Level
Database Manager
DCS Database

API Structure(s)
sqlm_db2
sqlm_dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

gw_total_cons
water mark

Related Information ¹ “Maximum Number of Concurrent Connections” on
page 56

¹ “Current Number of Connections for DB2 Connect”
on page 57

Current Number of Connections for DB2 Connect

Description: The current number of connections to host databases being handled by
the DB2 Connect gateway.

Usage: This element will help you understand the level of activity at the DB2 Connect
gateway and the associated use of system resources.

Snapshot Information Level
Database Manager
DCS Database

API Structure(s)
sqlm_db2
sqlm_dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

gw_cur_cons
gauge

Related Information ¹ “Maximum Number of Concurrent Connections” on
page 56

¹ “Total Number of Attempted Connections for DB2
Connect” on page 57

 Appendix A. System Monitor Guide and Reference Updates 57

Number of Connections Waiting for the Host to Reply

Description: The current number of connections to host databases being handled by
the DB2 Connect gateway that are waiting for a reply from the host.

Usage: This value can change frequently. It should be sampled at regular intervals
over an extended period in order to obtain a realistic view of gateway usage.

Snapshot Information Level
Database Manager
DCS Database

API Structure(s)
sqlm_db2
sqlm_dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

gw_cons_wait_host
gauge

Related Information ¹ “Current Number of Connections for DB2 Connect”
on page 57

¹ “Number of Connections Waiting for the Client to
Send Request” on page 58

Number of Connections Waiting for the Client to Send Request

Description: The current number of connections to host databases being handled by
the DB2 Connect gateway that are waiting for the client to send a request.

Usage: This value can change frequently. It should be sampled at regular intervals
over an extended period in order to obtain a realistic view of gateway usage.

Snapshot Information Level
Database Manager
DCS Database

API Structure(s)
sqlm_db2
sqlm_dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

gw_cons_wait_client
gauge

Related Information ¹ “Current Number of Connections for DB2 Connect”
on page 57

¹ “Number of Connections Waiting for the Host to
Reply” on page 58

58 What's New

Elapsed Time Spent on DB2 Connect Gateway Processing

Description: The time (in microseconds) at the DB2 Connect gateway to process an
application request (since the connection was established), or to process a single state-
ment.

Usage: Use this element to determine what portion of the overall processing time is
due to DB2 Connect gateway processing.

Snapshot Information Level
DCS Application
DCS Statement

API Structure(s)
sqlm_dcs_appl
sqlm_dcs_stmt

Monitor Switch
Statement
Statement

Resettable Yes (at application)
No (at other levels)

API Element Name
Element Type

gw_exec_time
time

Related Information ¹ None

Number of SQL Statements Attempted

Description: The number of SQL statements that have been attempted since the
latter of: application start up, database activation, or last reset.

Usage: Use this element to measure database activity at the database or application
level. To calculate the SQL statement throughput for a given period, you can divide this
element by the elapsed time between two snapshots.

Snapshot Information Level
DCS Database
DCS Application

API Structure(s)
sqlm_dcs_dbase
sqlm_dcs_appl

Monitor Switch
Basic
Basic

Resettable Yes

API Element Name
Element Type

sql_stmts
counter

Related Information ¹ Snapshot Time

 Appendix A. System Monitor Guide and Reference Updates 59

Number of Open Cursors

Description: The number of cursors currently open for an application.

Usage: Use this element to assess how much memory is being allocated. The amount
of memory allocated by the DB2 client, DB2 Connect, or the database agent on the
target database is related to the number of cursors that are currently open. Knowing
this information can help with capacity planning. For example, each open cursor that is
doing blocking has a buffer size of RQRIOBLK. If deferred_prepare is enabled, then two
buffers will be allocated.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_appl

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

open_cursors
gauge

Related Information ¹ None

DCS Application Status

Description: The status of a DCS application at the DB2 Connect gateway.

Usage: Use this element for problem determination on DCS applications. Values are:

SQLM_DCS_CONNECTPEND_OUTBOUND
The application has initiated a database con-
nection from the DB2 Connect gateway to a host
database, but the request has not completed yet.

SQLM_DCS_UOWWAIT_OUTBOUND
The DB2 Connect gateway is waiting for the host
database to reply to the application’s request.

SQLM_DCS_UOWWAIT_INBOUND
(1) The connection from the DB2 Connect
gateway to the host database has been estab-
lished and the gateway is waiting for SQL
requests from the application.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applinfo

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

dcs_appl_status
information

Related Information ¹ “Host Coded Character Set ID” on page 61
¹ “Outbound Communication Protocol” on page 61
¹ “Outbound Communication Address” on page 62
¹ “Inbound Communication Address” on page 62

60 What's New

(2) The DB2 Connect gateway is waiting on behalf
of the unit of work in the application. This usually
means that the application’s code is being exe-
cuted.

Host Coded Character Set ID

Description: This is the coded character set identifier (CCSID) of the host database.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_applid_info

Monitor Switch
Basic

Resettable No

API Element Name
Element Type

host_ccsid
information

Related Information ¹ “DCS Application Status” on page 60
¹ “Outbound Communication Protocol” on page 61
¹ “Outbound Communication Address” on page 62
¹ “Inbound Communication Address” on page 62

Outbound Communication Protocol

Description: The communication protocol used between the DB2 Connect gateway
and the host.

Usage: Use this element for problem determination on DCS applications. Valid values
are:

 ¹ SQLM_PROT_APPC
 ¹ SQLM_PROT_TCPIP

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_applinfo
sqlm_dcs_applid_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

outbound_comm_protocol
information

Related Information ¹ “DCS Application Status” on page 60
¹ “Host Coded Character Set ID” on page 61
¹ “Outbound Communication Address” on page 62
¹ “Inbound Communication Address” on page 62

 Appendix A. System Monitor Guide and Reference Updates 61

Outbound Communication Address

Description: This is the communication address of the target database. For example,
it could be an SNA net ID and LU partner name, or an IP address and port number for
TCP/IP.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_applinfo
sqlm_dcs_applid_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

outbound_comm_address
information

Related Information ¹ “DCS Application Status” on page 60
¹ “Host Coded Character Set ID” on page 61
¹ “Outbound Communication Protocol” on page 61
¹ “Inbound Communication Address” on page 62

Inbound Communication Address

Description: This is the communication address of the client. For example, it could be
an SNA net ID and LU partner name, or an IP address and port number for TCP/IP.

Usage: Use this element for problem determination on DCS applications.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_applinfo
sqlm_dcs_applid_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

inbound_comm_address
information

Related Information ¹ “DCS Application Status” on page 60
¹ “Host Coded Character Set ID” on page 61
¹ “Outbound Communication Protocol” on page 61
¹ “Outbound Communication Address” on page 62

62 What's New

Inbound Number of Bytes Received

Description: The number of bytes received by the DB2 Connect gateway from the
client, excluding communication protocol overhead (for example, TCP/IP or SNA
headers).

Usage: Use this element to measure the throughput from the client to the DB2
Connect gateway.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_appl
sqlm_dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes

API Element Name
Element Type

inbound_bytes_received
counter

Related Information ¹ “Outbound Number of Bytes Sent” on page 63
¹ “Outbound Number of Bytes Received” on page 64
¹ “Inbound Number of Bytes Sent” on page 64

Outbound Number of Bytes Sent

Description: The number of bytes sent by the DB2 Connect gateway to the host,
excluding communication protocol overhead (for example, TCP/IP or SNA headers).

Usage: Use this element to measure the throughput from the DB2 Connect gateway
to the host database.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_appl
sqlm_dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes

API Element Name
Element Type

outbound_bytes_sent
counter

Related Information ¹ “Inbound Number of Bytes Received” on page 63
¹ “Outbound Number of Bytes Received” on page 64
¹ “Inbound Number of Bytes Sent” on page 64

 Appendix A. System Monitor Guide and Reference Updates 63

Outbound Number of Bytes Received

Description: The number of bytes received by the DB2 Connect gateway from the
host, excluding communication protocol overhead (for example, TCP/IP or SNA
headers).

Usage: Use this element to measure the throughput from the host databases to the
DB2 Connect gateway.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_appl
sqlm_dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes

API Element Name
Element Type

outbound_bytes_received
counter

Related Information ¹ “Inbound Number of Bytes Received” on page 63
¹ “Outbound Number of Bytes Sent” on page 63
¹ “Inbound Number of Bytes Sent” on page 64

Inbound Number of Bytes Sent

Description: The number of bytes sent by the DB2 Connect gateway to the client,
excluding communication protocol overhead (for example, TCP/IP or SNA headers).

Usage: Use this element to measure the throughput from the DB2 Connect gateway
to the client.

Snapshot Information Level
DCS Application

API Structure(s)
sqlm_dcs_appl
sqlm_dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes

API Element Name
Element Type

inbound_bytes_sent
counter

Related Information ¹ “Inbound Number of Bytes Received” on page 63
¹ “Outbound Number of Bytes Sent” on page 63
¹ “Outbound Number of Bytes Received” on page 64

64 What's New

 Transaction ID

Description: A unique transaction identifier (across all databases) generated by a
transaction manager in a two-phase commit transaction.

Usage: This identifier can be used to correlate the transaction generated by the trans-
action manager with the transactions executed against multiple databases. It can be
used to help diagnose transaction manager problems by tying database transactions
involving a two-phase commit protocol with the transactions originated by the trans-
action manager.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_appl_xid
sqlm_appl_xid

Monitor Switch
Unit of Work
Unit of Work

Resettable No

API Element Name
Element Type

xid
information

Related Information ¹ None

TP Monitor Client User ID

Description: The client user ID generated by a transaction manager and provided to
the server, if the sqleseti API is used.

Usage: Use this element in application server or TP monitor environments to identify
the end-user for whom the transaction is being executed.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_tpmon_info
sqlm_tpmon_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

tpmon_client_userid
information

Related Information ¹ “TP Monitor Client Workstation Name” on page 66
¹ “TP Monitor Client Application Name” on page 66
¹ “TP Monitor Client Accounting String” on page 67

 Appendix A. System Monitor Guide and Reference Updates 65

TP Monitor Client Workstation Name

Description: Identifies the client’s system or workstation (for example CICS
EITERMID), if the sqleseti API was issued in this connection.

Usage: Use this element to identify the user’s machine by node ID, terminal ID, or
similar identifiers.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_tpmon_info
sqlm_tpmon_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

tpmon_client_wkstn
information

Related Information ¹ “TP Monitor Client User ID” on page 65
¹ “TP Monitor Client Application Name” on page 66
¹ “TP Monitor Client Accounting String” on page 67

TP Monitor Client Application Name

Description: Identifies the the server transaction program performing the transaction,
if the sqleseti API was issued in this connection.

Usage: Use this element for problem determination and accounting purposes.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_tpmon_info
sqlm_tpmon_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name
Element Type

tpmon_client_app
information

Related Information ¹ “TP Monitor Client User ID” on page 65
¹ “TP Monitor Client Workstation Name” on page 66
¹ “TP Monitor Client Accounting String” on page 67

66 What's New

TP Monitor Client Accounting String

Description: The data passed to the target database for logging and diagnostic pur-
poses, if the sqleseti API was issued in this connection.

Note: Two variables in the sqlm_tpmon_info data structure are used to determine the
TP monitor client accounting string:

acc_str_length length of the accounting string

acc_str_offset relative offset from the start of the sqlm_tpmon_info data
structure

Usage: Use this element for problem determination and accounting purposes.

Snapshot Information Level
Application
DCS Application

API Structure(s)
sqlm_tpmon_info
sqlm_tpmon_info

Monitor Switch
Basic
Basic

Resettable No

API Element Name

Element Type

acc_str_length
acc_str_offset
information

Related Information ¹ “TP Monitor Client User ID” on page 65
¹ “TP Monitor Client Workstation Name” on page 66
¹ “TP Monitor Client Application Name” on page 66

Transaction Processor Monitoring
In a transaction monitor or application server (multi-tier) environment, application users
do not issue SQL requests directly. Instead, they request the transaction processor
monitor (for example, CICS, TUXEDO, or ENCINA running on a UNIX, OS/2, or
Windows NT server) or application server to execute a business transaction. Each busi-
ness transaction is an application part that issues SQL requests to the database server.
Because the SQL requests are issued by an intermediate server, the database server
has no information about the original client that caused the execution of the SQL
request.

Developers of transaction processor monitor (TP monitor) transactions or application
server code can use the sqleseti - Set Client Information API to provide information
about the original client to the database server. This information can be found in the
following data elements:

¹ “TP Monitor Client User ID” on page 65
¹ “TP Monitor Client Workstation Name” on page 66
¹ “TP Monitor Client Application Name” on page 66
¹ “TP Monitor Client Accounting String” on page 67.

 Appendix A. System Monitor Guide and Reference Updates 67

New System Monitor Data Elements
In addition to the new data elements for DB2 Connect (see “New Data Elements” on
page 54), Version 5.2 adds data elements to help you monitor:

 ¹ Hash joins
 ¹ Page reorganizations
 ¹ Lock escalations

 Hash Join
Hash join is an additional option for the optimizer (see “Hash Joins” on page 31 for
more details).

Total Hash Joins

Description: The total number of hash joins executed.

Usage: At the database or application level, use this value in conjunction with Hash
Join Overflows and Hash Join Small Overflows to determine if a significant percentage
of hash joins would benefit from modest increases in the sort heap size.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

total_hash_joins
counter

Related Information ¹ “Hash Join Threshold” on page 69
¹ “Total Hash Loops” on page 69
¹ “Hash Join Overflows” on page 70
¹ “Hash Join Small Overflows” on page 70

68 What's New

Hash Join Threshold

Description: The total number of times that a hash join heap request was limited due
to concurrent use of shared or private sort heap space.

Usage: If this value is large (greater than 5% of “Hash Join Overflows” on page 70),
the sort heap threshold should be increased.

Snapshot Information Level
Database Manager

API Structure(s)
sqlm_db2

Monitor Switch
Basic

Resettable Yes

API Element Name
Element Type

post_threshold_hash_joins
counter

Related Information ¹ “Total Hash Joins” on page 68
¹ “Total Hash Loops” on page 69
¹ “Hash Join Overflows” on page 70
¹ “Hash Join Small Overflows” on page 70

Total Hash Loops

Description: The total number of times that a single partition of a hash join was larger
than the available sort heap space.

Usage: Values for this data element indicate inefficient execution of hash joins. This
might indicate that the sort heap size is too small or the sort heap threshold is too
small. Use this value in conjunction with the other hash join variables to tune the sort
heap size (sortheap) and sort heap threshold (sheapthres) configuration parameters.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

total_hash_loops
counter

Related Information ¹ “Total Hash Joins” on page 68
¹ “Hash Join Threshold” on page 69
¹ “Hash Join Overflows” on page 70
¹ “Hash Join Small Overflows” on page 70

 Appendix A. System Monitor Guide and Reference Updates 69

Hash Join Overflows

Description: The number of times that hash join data exceeded the available sort
heap space.

Usage: At the database level, if the percentage of Hash Join Small Overflows is
greater than 10% of this value, then you should consider increasing the sort heap size.
Values at the application level can be used to evaluate hash join performance for indi-
vidual applications.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

hash_join_overflows
counter

Related Information ¹ “Total Hash Joins” on page 68
¹ “Hash Join Threshold” on page 69
¹ “Total Hash Loops” on page 69
¹ “Hash Join Small Overflows” on page 70

Hash Join Small Overflows

Description: The number of times that hash join data exceeded the available sort
heap space by less than 10%.

Usage: If this value and Hash Join Overflows are high, then you should consider
increasing the sort heap threshold. If this value is greater than 10% of Hash Join Over-
flows, then you should consider increasing the sort heap size.

Snapshot Information Level
Database
Application

API Structure(s)
sqlm_dbase
sqlm_appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Event Record(s)
sqlm_db_event
sqlm_conn_event

API Element Name
Element Type

hash_join_small_overflows
counter

Related Information ¹ “Total Hash Joins” on page 68
¹ “Hash Join Threshold” on page 69
¹ “Total Hash Loops” on page 69
¹ “Hash Join Overflows” on page 70

70 What's New

 Page Reorganization
When a new row is being inserted or an existing row is being updated, resulting in an
increased record size, the page where this record is to be placed may have enough
free space, but that space could be fragmented. In these cases the page may require
reorganization, which moves all fragmented space to a contiguous area, where the new
record can be written. Such a page reorganization (page reorg) is very expensive to
perform.

 Page Reorganizations

Description: The number of page reorgs executed for a table.

Usage: Too many page reorgs can result in less than optimal insert performance. You
can use the REORG TABLE utility to reorganize a table and eliminate fragmentation.
You can also use the APPEND parameter for the ALTER TABLE statement to indicate
that all inserts are appended at the end of a table and so avoid page reorgs.

In situations where updates to rows causes the row length to increase, the page may
have enough space to accommodate the new row, but a page reorg may be required to
defragment that space. Or if the page does not have enough space for the new larger
row, an overflow record is created being created causing Accesses to Overflowed
Records during reads. You can avoid both situations by using fixed length columns
instead of varying length columns.

Snapshot Information Level
Table

API Structure(s)
sqlm_table

Monitor Switch
Table

Resettable Yes

Event Type
Table

Event Record(s)
sqlm_table_event

API Element Name
Element Type

page_reorgs
counter

Related Information ¹ Rows Inserted
 ¹ Rows Updated

 Lock Escalations
Lock escalation occurs when the number of locks used by a given application exceeds
the configured limit or the number of locks configured for all applications is exhausted.
During lock escalation a few highly restrictive locks are used to replace many less
restrictive locks. Although this reduces the total number of locks used, it also increases
the number of lock waits and potentially causes deadlocks.

 Appendix A. System Monitor Guide and Reference Updates 71

 Lock Escalations

Description: Indicates whether a lock request was made as part of a lock escalation.

Usage: Use this element to better understand the cause of deadlocks. If you experi-
ence a deadlock that involves applications doing lock escalation, you may want to
increase the amount of lock memory or change the percentage of locks that any one
application can request.

Snapshot Information Level
Lock
Lock

API Structure(s)
sqlm_lock
sqlm_lock_wait

Monitor Switch
Lock
Lock

Resettable No

Event Type
Deadlock

Event Record(s)
sqlm_dlconn_event

API Element Name
Element Type

lock_escalation
information

Related Information ¹ other lock data elements

 Application Identification
The Application Handle (agent ID) data element has different behavior depending on
your version of DB2. When taking snapshots from DB2 Version 1 or Version 2 to a DB2
Universal Database (Version 5 or greater) database, the agent_id returned is not usable
as an application identifier. In these cases an agent_id is still returned for back-level
compitability, but internally the DB2 Universal Database server will not recognize the
value as an agent_id.

System Monitor Switches
DB2 Universal Database Version 5.2 provides support for dynamically updating certain
database configuration parameters, including dft_monswitches (Default Database
System Monitor Switches).

The section Monitor Switches Control Data Collected by the Database Manger in the
System Monitor Guide and Reference should now indicate that switches can be set
without stopping the database management system. These switches can now be
dynamically updated, but the application doing the update must be explicitly attached to
the instance for the updates to take effect.

Note: Any existing snapshot applications will not be affected. In order to pick up the
new default values for dft_monswitches, a monitoring application must terminate
and reestablish its instance connection.

72 What's New

Changes to Number of Log Pages Written
The following note is being added to the Number of Log Pages Written data element
(log_writes).

Note: When log pages are written to disk, the last page might not be full. In such
cases, the partial log page remains in the log buffer, and additional log records
are written to the page. Therefore log pages might be written to disk by the
logger more than once. You should not use this data element to measure the
number of pages produced by DB2.

Changes to Query Number of Rows Estimate
The Query Number of Rows Estimate data element (query_card _estimate) now returns
information for the following SQL statements when you are monitoring DB2 Connect.

¹ INSERT, UPDATE, and DELETE

Indicates the number of rows affected.

 ¹ PREPARE

Estimate of the number of rows that will be returned. Only collected if the DRDA
server is DB2 Universal Database, DB2 for VM and VSE, or DB2 for OS/400.

 ¹ FETCH

Set to the number of rows fetched. Only collected if the DRDA server is DB2 for
OS/400.

If information is not collected for a DRDA server, then the data element is set to zero.

Changes to Query Cost Estimate
The Query Cost Estimate data element (query_cost _estimate) now returns information
for the following SQL statements when you are monitoring DB2 Connect.

 ¹ PREPARE

Represents the relative cost of the prepared SQL statement.

 ¹ FETCH

Contains the length of the row retrieved. Only collected if the DRDA server is DB2
for OS/400.

If information is not collected for a DRDA server, then the data element is set to zero.

Note: If the DRDA server is DB2 for OS/390, this estimate could be higher than 2**32
- 1 (the maximum integer number that can be expressed through an unsigned
long variable). In that case, the value returned by the System Monitor for this
data element will be 2**32 - 1.

 Appendix A. System Monitor Guide and Reference Updates 73

74 What's New

Appendix B. Call Level Interface Guide and Reference Updates

The CLI Guide and Reference has not been refreshed for DB2 Universal Database
Version 5.2. The following sections document any Version 5.2 changes and enhance-
ments to the call level interface and should be used in conjunction with the Version 5
edition of the CLI Guide and Reference by Version 5.2 users. These include:

¹ “Data Types”: You can use the new DB2 Universal Database data types with the
DB2 Call Level Interface (CLI).

¹ “Configuration Keywords” on page 77: Changes and additions have been made to
some CLI/ODBC configuration keywords.

¹ “Functions” on page 83: Enhancements have been made to certain CLI functions.

¹ “Messages” on page 93: Some DB2 messages affecting CLI have changed.

¹ “Microsoft Transaction Server” on page 93: Support has been extended to the
Microsoft Transaction Server.

 Data Types
The following data types are available with DB2 Universal Database Version 5.2 and
can be used with the call level interface (CLI):

 ¹ “BIGINT”
¹ “DATALINK” on page 76
¹ “Defined Types” on page 76

 BIGINT
The following tables are updated in the CLI Guide and Reference as a result of the
added support for the BIGINT data type. See the SQL Reference for more information
on this new data type.

Table 3, "SQL Symbolic and Default Data Types":

¹ SQL Data Type: BIGINT
¹ Symbolic SQL Data Type: SQL_BIGINT
¹ Default Symbolic C Data Type: SQL_C_BIGINT

Table 4, "C Data Types":

¹ C Symbolic Data Type: SQL_C_BIGINT
¹ C Type: SQLBIGINT
¹ Base C Type: long int (or __int64)

Table 22, "SQLBindParameter Arguments", under SQLBindParameter():

¹ Add SQL_C_BIGINT to the row for argument "ValueType".
¹ Add SQL_BIGINT to the row for argument "ParameterType".

Table 116, "SQLGetTypeInfo Arguments, under SQLGetTypeInfo():
Add SQL_BIGINT to the list of supported types for argument "DataType".

 Copyright IBM Corp. 1997, 1998 75

 DATALINK
The following additions apply to Chapter 2. Writing a DB2 CLI Application of the CLI
Guide and Reference as a result of support for the new DATALINK data type.

Three tables require an extra row each:

Table 3. SQL Symbolic and Default Data Types

¹ SQL Data Type field: DATALINK
¹ Symbolic SQL Data Type field: SQL_DATALINK
¹ Default Symbolic C Data Type: SQL_C_DATALINK

Table 4. C Data Types

¹ C Symbolic Data Type field: SQL_C_DATALINK
¹ C Type field: SQLCHAR
¹ Base C type field: unsigned char

Table 7. Supported Data Conversions
The SQL Data Type SQLDATALINK only converts with
SQL_C_DATALINK.

 Defined Types
The following section is added to Chapter 3. Using Advanced Features.

Using Reference Types
In addition to the distinct types, user defined structured types can also be defined and
used as the type for a table or view. Tables or views that are defined using a structured
type are called typed tables or typed views. Structured types can be defined in a hier-
archy with subtypes and supertypes. These structured types are created using the
CREATE TYPE statement. Rows of a typed table or view are identified with an object
identifier (OID) that is a reference type. A reference type is defined to have a target
type, which must be a structured type. When the root structured type (the structured
type without a supertype) is defined, the representation type for the reference type is
defined as based on a built-in data type. Similar to user defined types (UDTs), a refer-
ence type shares its internal representation with an existing type, but is considered to
be a separate and incompatible type for most operations.

Reference types provide a means of referring to rows in typed tables or typed views.
Applications continue to work with C data types for application variables, and only need
to consider the reference types when constructing C statements.

This means:

¹ All SQL to C data type conversion rules that apply to the reference type’s under-
lying SQL built-in type apply to the reference type.

¹ The reference type will have the same default C Type as the underlying SQL
built-in type.

76 What's New

¹ SQLDescribeCol() will return the representation (built-in) type information. The
target type name can be obtained by calling SQLColAttribute() with the input
descriptor type set to SQL_DESC_REFERENCE_TYPE.

¹ SQL predicates that involve parameter markers must be explicitly cast to the refer-
ence type. This is required since the application can only deal with the built-in
types, so before any operation can be performed using the parameter, it must be
cast from the C built-in type to the reference type; otherwise an error will occur
when the statement is prepared.

For complete rules and a description of reference types refer to the SQL Reference.

 Configuration Keywords
The following changes and additions have been made to the CLI/ODBC configuration
keywords.

 ¹ “CLISCHEMA”
¹ “CURRENTREFRESHAGE” on page 78
¹ “CURRENTSCHEMA” on page 79
¹ “IGNOREWARNLIST” on page 79
¹ “OPTIMIZESQLCOLUMNS” on page 79
¹ “PATCH1 and PATCH2 Values” on page 80

For specific details on setting CLI/ODBC configuration keywords, see the Quick Begin-
nings manual for your platform.

 CLISCHEMA
Keyword Description: The DB2 ODBC catalog view to use.

db2cli.ini Keyword Syntax: CLISCHEMA=ODBC catalog view

Default Setting: None - No ODBC catalog view is used

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC Set-
tings notebook. To set these keywords use either the UPDATE CLI CON-
FIGURATION command in the Command Line Processor, or modify the
db2cli.ini file directly.

Equivalent Connection Attribute: SQL_ATTR_CLISCHEMA

Usage Notes:

The DB2 ODBC catalog is designed to improve the performance of schema calls for
lists of tables in ODBC applications that connect to host DBMSs through DB2 Connect.

The DB2 ODBC catalog, created and maintained on the host DBMS, contains rows
representing objects defined in the real DB2 catalog, but these rows include only the
columns necessary to support ODBC operations. The tables in the DB2 ODBC catalog
are pre-joined and specifically indexed to support fast catalog access for ODBC appli-
cations.

 Appendix B. Call Level Interface Guide and Reference Updates 77

System administrators can create multiple DB2 ODBC catalog views, each containing
only the rows that are needed by a particular user group. Each end user can then
select the DB2 ODBC catalog view they wish to use (by setting this keyword).

Use of the CLISCHEMA setting is completely transparent to the ODBC application; you
can use this option with any ODBC application.

While this keyword has some similar effects as the SYSSCHEMA keyword,
CLISCHEMA should be used instead (where applicable).

CLISCHEMA improves data access efficiency: The user-defined tables used with
SYSSCHEMA were mirror images of the DB2 catalog tables, and the ODBC driver still
had to join rows from multiple tables to produce the information required by the ODBC
user. Using CLISCHEMA also results in less contention on the catalog tables.

 CURRENTREFRESHAGE
Keyword Description: Set the value of the CURRENT REFRESH AGE special reg-

ister.

db2cli.ini Keyword Syntax: CURRENTREFRESHAGE=ANY | a numeric constant

Default Setting: 0 - summary tables defined with REFRESH DEFERRED will not be
used to optimize the processing of a query

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC Set-
tings notebook. To set these keywords use either the UPDATE CLI CON-
FIGURATION command in the Command Line Processor, or modify the
db2cli.ini file directly.

Usage Notes:

For information on Summary Tables and the SET CURRENT REFRESH AGE state-
ment, see the SQL Reference.

This keyword can be set to one of the following values:

0
Indicates that summary tables defined with REFRESH DEFERRED will not be
used to optimize the processing of a query (default).

99999999999999
Indicates that any summary tables defined with REFRESH DEFERRED or
REFRESH IMMEDIATE may be used to optimize the processing of a query. This
value represents 9999 years, 99 months, 99 days, 99 hours, 99 minutes, and 99
seconds.

ANY
This is a shorthand for 99999999999999.

78 What's New

 CURRENTSCHEMA
Keyword Description: Issue a SET CURRENT SCHEMA statement upon a successful

connect.

db2cli.ini Keyword Syntax: CURRENTSCHEMA=schema

Default Setting: No statement is issued.

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC Set-
tings notebook. To set these keywords use either the UPDATE CLI CON-
FIGURATION command in the Command Line Processor, or modify the
db2cli.ini file directly.

Usage Notes:

Upon a successful connect, if this keyword is set then a SET CURRENT SCHEMA
statement is sent to the server. This allows the application to name SQL objects without
having to qualify them with a schema name.

See the SET SCHEMA statement in the SQL Reference for more information.

 IGNOREWARNLIST
Keyword Description: Ignore specified sqlstates.

db2cli.ini Keyword Syntax: IGNOREWARNLIST="'sqlstate1', 'sqlstate2', ..."

Default Setting: Warnings are returned as normal

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC Set-
tings notebook. To set these keywords use either the UPDATE CLI CON-
FIGURATION command in the Command Line Processor, or modify the
db2cli.ini file directly.

Usage Notes:

On rare occasions an application may not correctly handle some warning messages,
but does not want to ignore all warning messages. This keyword can be used to indi-
cate which warnings are not to be passed on to the application. The
IGNOREWARNINGS keyword should be used if all database manager warnings are to
be ignored.

If an sqlstate is included in both IGNOREWARNLIST and WARNINGLIST, it will be
ignored altogether.

Each sqlstate must be in uppercase, delimited with single quotes and separated by
commas. The entire string must also be enclosed in double quotes. For example:

IGNOREWARNLIST="'01000', '01004','01504'"

 OPTIMIZESQLCOLUMNS
Keyword Description: Optimize SQLColumns() call with explicit Schema and Table

Name.

 Appendix B. Call Level Interface Guide and Reference Updates 79

db2cli.ini Keyword Syntax: OPTIMIZESQLCOLUMNS=1 | 0

Default Setting: 1 - Optimization on

DB2 CLI/ODBC Settings Tab: This keyword cannot be set using the CLI/ODBC Set-
tings notebook. To set these keywords use either the UPDATE CLI CON-
FIGURATION command in the Command Line Processor, or modify the
db2cli.ini file directly.

Equivalent Connection Attribute: SQL_ATTR_OPTIMIZESQLCOLUMNS

Usage Notes:

If OPTIMIZESQLCOLUMNS is on (set to 1), then all calls to SQLColumns() will be opti-
mized if an explicit (no wildcard specified) Schema Name, explicit Table Name, and %
(ALL columns) for Column Name are specified. The DB2 CLI/ODBC Driver will optimize
this call so that the system tables will not be scanned.

If the call is optimized then the COLUMN_DEF information (which contains the default
string for the columns) is not returned. If the application needs the COLUMN_DEF infor-
mation then OPTIMIZESQLCOLUMNS should be set to 0.

PATCH1 and PATCH2 Values
The DB2 CLI/ODBC driver default behavior can be modified by specifying values for
both the PATCH1 and PATCH2 keyword through either the db2cli.ini file or through the
SQLDriverConnect() or SQLBrowseConnect() CLI API.

The PATCH1 keyword is specified by adding together all keywords that the user wants
to set. For example, if patch 1, 2, and 8 were specified, then PATCH1 would have a
value of 11. Following is a description of each keyword value and its effect on the
driver:

1 This makes the driver search for "count(exp)" and replace it with
"count(distinct exp)". This is needed because some versions of DB2
support the "count(exp)" syntax, and that syntax is generated by some
ODBC applications. Needed by Microsoft applications when the server
does not support the "count(exp)" syntax.

2 Some ODBC applications are trapped when SQL_NULL_DATA is returned
in the SQLGetTypeInfo() function for either the LITERAL_PREFIX or
LITERAL_SUFFIX column. This forces the driver to return an empty string
instead. Needed by Impromptu 2.0.

4 This forces the driver to treat the input time stamp data as date data if the
time and the fraction part of the time stamp are zero. Needed by Microsoft
Access.

8 This forces the driver to treat the input time stamp data as time data if the
date part of the time stamp is 1899-12-30. Needed by Microsoft Access.

16 Not used.

80 What's New

32 This forces the driver to not return information about
SQL_LONGVARCHAR, SQL_LONGVARBINARY, and
SQL_LONGVARGRAPHIC columns. To the application it appears as
though long fields are not supported. Needed by Lotus 123.

64 This forces the driver to NULL terminate graphic output strings. This is
needed by Microsoft Access in a double byte environment.

128 This forces the driver to let the query "SELECT Config, nValue FROM
MSysConf" go to the server. Currently the driver returns an error with asso-
ciated SQLSTATE value of S0002 (table not found). Needed if the user has
created this configuration table in the database and wants the application
to access it.

256 This forces the driver to return the primary key columns first in the
SQLStatistics() call. Currently, the driver returns the indexes sorted by
index name, which is standard ODBC behavior.

512 This forces the driver to return FALSE in SQLGetFunctions() for both
SQL_API_SQLTABLEPRIVILEGES and
SQL_API_SQLCOLUMNPRIVILEGES.

1024 This forces the driver to return SQL_SUCCESS instead of
SQL_NO_DATA_FOUND in SQLExecute() or SQLExecDirect() if the exe-
cuted UPDATE or DELETE statement affects no rows.

2048 Not used.

4096 This forces the driver to not issue a COMMIT after closing a cursor when in
autocommit mode.

8192 This forces the driver to return an extra result set after invoking a stored
procedure. This result set is a one row result set consisting of the output
values of the stored procedure. Can be accessed by Powerbuild applica-
tions.

32768 This forces the driver to make Microsoft Query applications work with DB2
MVS synonyms.

65536 This forces the driver to manually insert a "G" in front of character literals
which are in fact graphic literals. This patch should always be supplied
when working in a double byte environment.

131072 This forces the driver to return a time stamp column as a CHAR(26)
column instead. Needed by Microsoft applications when the time stamp
column is part of a unique index.

262144 This forces the driver to use the pseudo-catalog table db2cli.procedures
instead of the SYSCAT.PROCEDURES and SYSCAT.PROCPARMS
tables.

524288 This forces the driver to use SYSTEM_TABLE_SCHEMA instead of
TABLE_SCHEMA when doing a system table query to a DB2/400 Version
3.x system. This results in better performance.

 Appendix B. Call Level Interface Guide and Reference Updates 81

1048576 This forces the driver to treat a zero length string through SQLPutData() as
SQL_NULL_DATA.

2097152 This forces the driver to report that SQLParamOptions() is not supported.

The PATCH2 keyword differs from the PATCH1 keyword. In this case, multiple patches
are specified using comma separators. For example, if patch 1, 4, and 5 were specified,
then PATCH2 would have a value of "1,4,5". Following is a description of each keyword
value and its effect on the driver:

1 This forces the driver to convert the name of the stored procedure in a
CALL statement to uppercase.

2 Not used.

3 This forces the driver to convert all arguments to schema calls to upper-
case.

4 This forces the driver to return the Version 2.1.2 like result set for schema
calls (that is, SQLColumns(), SQLProcedureColumns(), and so on), instead
of the Version 5 like result set.

5 This forces the driver to not optimize the processing of input VARCHAR
columns, where the pointer to the data and the pointer to the length are
consecutive in memory.

6 This forces the driver to return a message that scrollable cursors are not
supported. This is needed by Visual Basic programs if the DB2 client is
Version 5 and the server is DB2 UDB Version 5.

7 This forces the driver to map all GRAPHIC column data types to the CHAR
column data type. This is needed in a double byte environment.

8 This forces the driver to ignore catalog search arguments in schema calls.

9 This flag prevents an autocommit from occurring when the cursor is closed
at the server when the last block of data is returned. The commit will occur
when the cursor is closed by the application.

10 This setting should only be used in an EUC (Extended Unix Code) environ-
ment. It ensures that the CLI driver provides data for character variables
(CHAR, VARCHAR, etc...) in the proper format for the JDBC driver. The
data in these character types will not be usable in JDBC without this
setting.

11 Pretend to support SQL_CATALOG_LOCATION,
SQL_CATALOG_NAME_SEPARATOR, and
SQL_MAX_CATALOG_NAME_LEN. Workaround for MS InterDev.

12 Remove extraneous double quotes (") from calls to schema functions.
Workaround for MS InterDev.

13 Do not append keywords from the db2cli.ini file to the output string of
SQLDriverConnect().

82 What's New

14 Do not return an error and ignore the schema argument for
SQLProcedures() and SQLProcedureColumns().

15 Ignore locale specific decimal separator and force a period for conversions
between Character and:

 ¹ Decimal
 ¹ Float
 ¹ Double

 Functions
The following CLI functions have been added or enhanced:

¹ “SQLBuildDataLink - Build DATALINK Value” on page 84
¹ “SQLGetDataLinkAttr - Get Datalink Attribute Value” on page 86
¹ “SQLDriverConnect() and NEWPWD Support” on page 89
¹ “SQLBrowseConnect() and NEWPWD Support” on page 89
¹ “SQLGetInfo()” on page 89
¹ “SQLGetLength()” on page 90
¹ “SQLSetConnectAttr() - Additional Connection Attributes” on page 90
¹ “SQLSetStmtAttr()” on page 92

 Appendix B. Call Level Interface Guide and Reference Updates 83

SQLBuildDataLink

SQLBuildDataLink - Build DATALINK Value

 Purpose

SQLBuildDataLink() returns a DATALINK value built from input arguments.

Specification: DB2 CLI 5.2 ISO CLI

 Syntax
SQLRETURN SQLBuildDataLink(SQLHSTMT StatementHandle,

 SQLCHAR FAR *LinkType,

 SQLINTEGER LinkTypeLength,

 SQLCHAR FAR *DataLocation,

 SQLINTEGER DataLocationLength,

 SQLCHAR FAR *Comment,

 SQLINTEGER CommentLength,

 SQLCHAR FAR *DataLinkValue,

 SQLINTEGER BufferLength,

 SQLINTEGER FAR *StringLengthPtr);

 Function Arguments

Table 1. SQLBuildDataLink Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Used only for diagnostic reporting.

SQLCHAR * LinkType input Always set to SQL_DATALINK_URL.

SQLINTEGER LinkTypeLength input The length of the LinkType value.

SQLCHAR * DataLocation input The complete URL value to be assigned.

SQLINTEGER DataLocationLength input The length of the DataLocation value.

SQLCHAR * Comment input The comment, if any, to be assigned.

SQLINTEGER CommentLength input The length of the Comment value.

SQLCHAR * DataLinkValue output The DATALINK value that is created by the function.

SQLINTEGER BufferLength input Length of the DataLinkValue buffer.

SQLINTEGER *StringLengthPtr output A pointer to a buffer in which to return the total
number of bytes (excluding the null-termination char-
acter) available to return in *DataLinkValue. If
DataLinkValue is a null pointer, no length is returned.
If the number of bytes available to return is greater
than BufferLength minus the length of the null-
termination character, then SQLSTATE 01004 is
returned. In this case, subsequent use of the
DATALINK value may fail.

84 What's New

SQLBuildDataLink

 Usage
The function is used to build a DATALINK value. The maximum length of the string,
including the null termination character, will be BufferLength bytes.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_SUCCESS_WITH_INFO
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 2. SQLGetDatLinkAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

01004 Data truncated. The data returned in *DataLinkValue was truncated to be
BufferLength minus the length of the null termination character.
The length of the untruncated string value is returned in
*StringLengthPtr. (Function returns SQL_SUCCESS_WITH_INFO.)

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support exe-
cution or completion of the function.

HY090 Invalid string or buffer length. The value specified one of the arguments (LinkTypeLength,
DataLocationLength, or CommentLength) was less than 0 but not
equal to SQL_NTS or BufferLength is less than 0.

 Restrictions
None.

 References
¹ “SQLGetDataLinkAttr - Get Datalink Attribute Value” on page 86

 Appendix B. Call Level Interface Guide and Reference Updates 85

SQLGetDataLinkAttr

SQLGetDataLinkAttr - Get Datalink Attribute Value

 Purpose

SQLGetDataLinkAttr() returns the current value of an attribute of a datalink value.

Specification: DB2 CLI 5.2 ISO CLI

 Syntax
SQLRETURN SQLGetDataLinkAttr(SQLHSTMT StatementHandle,

 SQLSMALLINT Attribute,

 SQLCHAR FAR *DataLink,

 SQLINTEGER DataLinkLength,

 SQLPOINTER *ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER FAR *StringLengthPtr);

 Function Arguments

Table 3 (Page 1 of 2). SQLGetDataLinkAttr Arguments

Data Type Argument Use Description

SQLHSTMT StatementHandle input Used only for diagnostic reporting.

SQLSMALLINT Attribute input Identifies the attribute of the DataLink that is to be
extracted. Possible values are:

SQL_ATTR_DATALINK_COMMENT
SQL_ATTR_DATALINK_LINKTYPE
SQL_ATTR_DATALINK_URLCOMPLETE

(complete URL to access a file)
SQL_ATTR_DATALINK_URLPATH

(to access a file within a file server)
SQL_ATTR_DATALINK_URLPATHONLY

(file path only)
SQL_ATTR_DATALINK_URLSCHEME
SQL_ATTR_DATALINK_URLSERVER

SQLCHAR * DataLink input The DATALINK value from which the attribute is to
be extracted.

SQLINTEGER DataLinkLength input The length of the DATALINK value.

SQLPOINTER * ValuePtr output A pointer to memory in which to return the value of
the attribute specified by Attribute.

SQLINTEGER BufferLength input Length of the Attribute buffer.

86 What's New

SQLGetDataLinkAttr

Table 3 (Page 2 of 2). SQLGetDataLinkAttr Arguments

Data Type Argument Use Description

SQLINTEGER *StringLength output A pointer to a buffer in which to return the total
number of bytes (excluding the null-termination char-
acter) available to return in *Attribute. If Attribute is a
null pointer, no length is returned. If the number of
bytes available to return is greater than BufferLength
minus the length of the null-termination character,
then SQLSTATE HY090 is returned.

 Usage
The function is used with a DATALINK value that was retrieved from the database or
built using SQLBuildDataLink. The AttrType value determines the attribute from the
DATALINK value that is returned. The maximum length of the string, including the null
termination character, will be BufferLength bytes.

 Return Codes
 ¹ SQL_SUCCESS
 ¹ SQL_NO_DATA
 ¹ SQL_ERROR
 ¹ SQL_INVALID_HANDLE

 Diagnostics

Table 4. SQLGetDatLinkAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

HY000 General error. An error occurred for which there was no specific SQLSTATE.
The error message returned by SQLGetDiagRec() in the
*MessageText buffer describes the error and its cause.

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of the null termination character. The length of
the untruncated string value is returned in *StringLengthPtr. (Func-
tion returns SQL_SUCCESS_WITH_INFO.)

HY001 Memory allocation failure. DB2 CLI was unable to allocate memory required to support exe-
cution or completion of the function.

HY009 Invalid argument value. The value specified for the argument *DataLink was a null pointer
or was not valid.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0
or the values specified for the argument DataLinkLength was less
than 0 and not equal to SQL_NTS.

HY092 Option type out of range. The value specified for the argument AttrType was not valid.

 Appendix B. Call Level Interface Guide and Reference Updates 87

SQLGetDataLinkAttr

 Restrictions
None.

 References
¹ “SQLBuildDataLink - Build DATALINK Value” on page 84

88 What's New

SQLGetDataLinkAttr

SQLDriverConnect() and NEWPWD Support
A new attribute-keyword, NEWPWD, has been added to the SQLDriverConnect() func-
tion. The syntax diagram in the 'Usage' section has been updated to include the new
keyword, and to fix the mistake in the Version 5 book (the separator should be a semi-
colon, not a comma).

 ┌ ┐─;───
55─ ───6 ┴──┬ ┬─DSN───────────────────── ─═──attribute─ ───────────────────────────5%
 ├ ┤─UID─────────────────────
 ├ ┤─PWD─────────────────────
 ├ ┤─NEWPWD──────────────────
 └ ┘─DB2 CLI-defined-keyword─

This new entry is defined as follows:

NEWPWD New password used as part of a change password request.

The application can either specify the new string to use, for example,
NEWPWD=anewpass;; or specify NEWPWD=; and rely on a dialog box
generated by the DB2 CLI driver to prompt for the new password (set the
DriverCompletion argument to anything other than
SQL_DRIVER_NOPROMPT).

SQLBrowseConnect() and NEWPWD Support
The attribute-keyword NEWPWD has been added. It has the same description as
“SQLDriverConnect() and NEWPWD Support.”

 SQLGetInfo()
The following change must be made to the description of the values for
SQL_GETDATA_EXTENSIONS in SQLGetInfo(). The version 5.0 CLI Guide and Refer-
ence incorrectly states that SQL_GD_BLOCK is supported; this is not the case.

The Description and Notes section for SQL_GETDATA_EXTENSIONS should read as
follows:

SQL_GETDATA_EXTENSIONS 32-bit mask Indicates whether extensions to the
SQLGetData() function are supported. The following extensions are cur-
rently identified and supported by DB2 CLI:

¹ SQL_GD_ANY_COLUMN, SQLGetData() can be called for unbound
columns that precede the last bound column.

¹ SQL_GD_ANY_ORDER, SQLGetData() can be called for columns in
any order.

ODBC also defines the following extensions which are not returned by DB2
CLI:

 ¹ SQL_GD_BLOCK
 ¹ SQL_GD_BOUND

 Appendix B. Call Level Interface Guide and Reference Updates 89

SQLGetDataLinkAttr

 SQLGetLength()
The description of the StringLength argument has been updated as follows:

The length of the large object (LOB, CLOB, etc...) referenced by the Locator argument.
This value is in bytes, even for DBCLOB data.

SQLSetConnectAttr() - Additional Connection Attributes
The following connection attributes have been added to SQLSetConnectAttr():

¹ SQL_ATTR_ENLIST_IN_DTC - For Microsoft Transaction Server (MTS) Support
 ¹ SQL_ATTR_INFO_USERID
 ¹ SQL_ATTR_INFO_WRKSTNNAME
 ¹ SQL_ATTR_INFO_APPLNAME
 ¹ SQL_ATTR_INFO_ACCTSTR

In Chapter 5 "Functions", in the section SQLSetConnectAttr(), Table 147 "When Con-
nection Attributes can be Set" has been updated to include the following new rows:

Also, in the section "Attribute *ValuePtr Contents" for SQLSetConnectAttr(), the fol-
lowing new information has been added:

SQL_ATTR_ENLIST_IN_DTC (DB2 CLI v5)

An SQLPOINTER which can be either:

¹ non-null transaction pointer:

Change the state of the connection from non-distributed transaction
state to distributed transaction state. The connection will be enlisted
with the Distributed Transaction Coordinator (DTC).

 ¹ null:

Change the state of the connection from distributed transaction state to
a non-distributed transaction state.

Each time this attribute is used with a non-null transaction pointer, the pre-
vious transaction is assumed to be ended and a new transaction is initi-
ated. The application must call the ITransaction member function
Endtransaction before calling this API with a non-null pointer. Otherwise the

Table 5. When Connection Attributes can be Set

Attribute
Before
connection

After con-
nection

After state-
ments allo-
cated

SQL_ATTR_ENLIST_IN_DTC No Yes Yes

SQL_ATTR_INFO_USERID No Yes Yes

SQL_ATTR_INFO_WRKSTNNAME No Yes Yes

SQL_ATTR_INFO_APPLNAME No Yes Yes

SQL_ATTR_INFO_ACCTSTR No Yes Yes

90 What's New

SQLGetDataLinkAttr

previous transaction will be aborted. The application can enlist mutiple con-
nections with the same transaction pointer.

Note: This connection attribute is specified by MTS automatically for each
transaction and is not coded by the user application.

 There must not be concurrent SQL statements executing on 2 different
connections into the same database within the same distributed unit of
work (DUOW).

SQL_ATTR_INFO_USERID (DB2 CLI v5)

A null-terminated character string used to identify the client user ID sent to
the host database server when using DB2 Connect.

Usage notes:

¹ When the value is being set, some servers may not handle the entire
length provided and may truncate the value.

DB2 for OS/390 servers support up to a length of 16 characters.

¹ This user-id is not to be confused with the authentication user-id. This
user-id is for identification purposes only and is not used for any
authorization.

¹ To ensure that the data is converted correctly when transmitted to a
DRDA server, use only the characters A to Z, 0 to 9, and the under-
score(_) or period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_WRKSTNNAME (DB2 CLI v5)

A null-terminated character string used to identify the client workstation
name sent to the host database server when using DB2 Connect.

Usage notes:

¹ When the value is being set, some servers may not handle the entire
length provided and may truncate the value.

DB2 for OS/390 servers support up to a length of 18 characters.

¹ To ensure that the data is converted correctly when transmitted to a
DRDA server, use only the characters A to Z, 0 to 9, and the under-
score(_) or period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_APPLNAME (DB2 CLI v5)

A null-terminated character string used to identify the client application
name sent to the host database server when using DB2 Connect.

Usage notes:

¹ When the value is being set, some servers may not handle the entire
length provided and may truncate the value.

 Appendix B. Call Level Interface Guide and Reference Updates 91

SQLGetDataLinkAttr

DB2 for OS/390 servers support up to a length of 32 characters.

¹ To ensure that the data is converted correctly when transmitted to a
DRDA server, use only the characters A to Z, 0 to 9, and the under-
score(_) or period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_ACCTSTR (DB2 CLI v5)

A null-terminated character string used to identify the client accounting
string sent to the host database server when using DB2 Connect.

Usage notes:

¹ When the value is being set, some servers may not handle the entire
length provided and may truncate the value.

DB2 for OS/390 servers support up to a length of 200 characters.

¹ To ensure that the data is converted correctly when transmitted to a
DRDA server, use only the characters A to Z, 0 to 9, and the under-
score(_) or period (.).

Note: This is an IBM defined extension.

 SQLSetStmtAttr()
The original Version 5 documentation for the the SQLSetStmtAttr() function concerning
the SQL_ATTR_CURSOR_TYPE statement contained one mistake. If
SQL_ATTR_CURSOR_TYPE is set to either SQL_CURSOR_KEYSET_DRIVEN or
SQL_CURSOR_DYNAMIC (neither supported by DB2 CLI) then the value used will be
SQL_CURSOR_STATIC, not SQL_CURSOR_FORWARD_ONLY as originally docu-
mented.

The complete documentation is as follows:

SQL_ATTR_CURSOR_TYPE (DB2 CLI v2)

A 32-bit integer value that specifies the cursor type. The supported values
are:

¹ SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.
¹ SQL_CURSOR_STATIC = The data in the result set is static, and can

be scrolled through forwards or backwards. Absolute row numbers can
also be specified.

The default value is SQL_CURSOR_FORWARD_ONLY.

This option cannot be specified for an open cursor.

For more detailed information, the application should call SQLGetInfo()

with an InfoType of SQL_<cursor type>_ATTRIBUTES1 and SQL_<cursor
type>_ATTRIBUTES2 (SQL_STATIC_CURSOR_ATTRIBUTES2, for
instance).

Note: The following values have also been defined by ODBC, but are not
supported by DB2 CLI:

92 What's New

 ¹ SQL_CURSOR_KEYSET_DRIVEN
 ¹ SQL_CURSOR_DYNAMIC

If either of these values is used, DB2 CLI sets the statement attri-
bute to SQL_CURSOR_STATIC and returns SQLSTATE 01S02
(Option value changed). In this case the application should call
SQLGetStmtAttr() to query the actual value.

 Messages

SQLSTATE 22003 - Numeric value out of range
Before DB2 UDB Version 5.2 when converting integer to float data types:

¹ SQL_C_SLONG, SQL_CLONG or SQL_C_ULONG to SQL_FLOAT
¹ SQL_INTEGER to SQL_C_FLOAT

a number of functions returned SQLSTATE 22003 - Numeric value out of range, if the
integer contained more significant digits than the float could handle.

This is not correct according to the ODBC or SQL standard. Beginning with DB2 UDB
v5.2, the error will not be returned in this case.

See 'Appendix E. SQLSTATE Cross Reference' of the CLI Guide and Reference for a
list of CLI functions that return this SQLSTATE.

Microsoft Transaction Server
A new connection attribute has been created in SQLSetConnectAttr() to support the
Microsoft Transaction Server (MTS). See the information on
SQL_ATTR_ENLIST_IN_DTC in “SQLSetConnectAttr() - Additional Connection
Attributes” on page 90 for more information.

 Appendix B. Call Level Interface Guide and Reference Updates 93

94 What's New

Appendix C. Embedded SQL Programming Guide Updates

The Embedded SQL Programming Guide has not been refreshed for DB2 Universal
Database Version 5.2. The following sections document any Version 5.2 changes and
enhancements and should be used in conjunction with the Version 5 edition of the
Embedded SQL Programming Guide by Version 5.2 users. These include:

¹ “Running CLI/ODBC/JDBC/SQLJ Programs in a DBCS Environment”: Provides
information on running programs that access DB2 Universal Database in a double-
byte character set (DBCS) environment.

¹ “Host Structure Support in C/C++” on page 96: The precompiler allows the
grouping of host variables.

¹ “SQL Enhancements” on page 99: SQL changes that can be incorporated into pro-
grams.

¹ “Programming in JDBC” on page 101: Using the Java programming language to
access DB2 databases.

¹ “Embedded SQL for Java (SQLJ) Programming” on page 117: Using SQLJ to
access DB2 databases.

Running CLI/ODBC/JDBC/SQLJ Programs in a DBCS Environment
Details on running Java programs that access DB2 Universal Database in a double-
byte character set (DBCS) environment can be found at
http://www.software.ibm.com/data/db2/java/dbcsjava.html. This web page currently
contains the following information:

JDBC and SQLJ programs access DB2 using the DB2 CLI/ODBC driver and therefore
use the same configuration file (db2cli.ini). The following entries must be added to this
configuration file if you run Java programs that access DB2 UDB in a DBCS
environment:

PATCH1 = 65536
This forces the driver to manually insert a "G" in front of character literals
which are in fact graphic literals. This PATCH1 value should always be set
when working in a double byte environment.

PATCH1 = 64
This forces the driver to NULL terminate graphic output strings. This is
needed by Microsoft Access in a double byte environment. If you need to
use this PATCH1 value as well then you would add the two values together
(64+65536 = 65600) and set PATCH1=65600. See Note #2 below for more
information about specifying multiple PATCH1 values.

PATCH2 = 7
This forces the driver to map all graphic column data types to char column
data type. This is needed in a double byte environment.

 Copyright IBM Corp. 1997, 1998 95

PATCH2 = 10
This setting should only be used in an EUC (Extended Unix Code) environ-
ment. It ensures that the CLI driver provides data for character variables
(CHAR, VARCHAR, etc...) in the proper format for the JDBC driver. The
data in these character types will not be usable in JDBC without this
setting.

Note:

1. Each of these keywords is set in each database specific stanza of the
db2cli.ini file. If you want to set them for multiple databases then you need
to repeat them for each database stanza in db2cli.ini.

2. To set multiple PATCH1 values you add the individual values and use the
sum. To set PATCH1 to both 64 and 65536 you would set PATCH1=65600
(64+65536). If you already have other PATCH1 values set then replace the
existing number with the sum of the existing number and the new PATCH1
values you want to add.

3. To set multiple PATCH2 values you specify them in a comma delimited
string (unlike the PATCH1 option). To set PATCH2 values 1 and 7 you
would set PATCH2="1,7"

For more information about setting these keywords see the "Running CLI/ODBC
Programs" section in the Installing and Configuring DB2 Clients manual.

Host Structure Support in C/C++
With host structure support, the C/C++ precompiler allows host variables to be grouped
into a single host structure. This provides a shorthand for referencing that same set of
host variables in an SQL statement. For example, the following host structure can be
used to access some of the columns in the STAFF table of the SAMPLE database:

 struct tag

 {

 short id;

 struct

 {

 short length;

 char data[10];

 } name;

 struct

 {

 short years;

 double salary;

 } info;

 } staff_record;

The fields of a host structure can be any of the valid host variable types. These include
all numeric, character, and large object types. Nested host structures are also sup-
ported up to 25 levels. In the example above, the field info is a sub-structure, whereas
the field name is not, as it represents a VARCHAR field. The same principle applies to

96 What's New

LONG VARCHAR, VARGRAPHIC and LONG VARGRAPHIC. Pointer to host structure
is also supported.

There are two ways to reference the host variables grouped in a host structure in an
SQL statement:

1. The host structure name can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary

 INTO :staff_record

 FROM staff

WHERE id = 10;

The precompiler converts the reference to staff_record into a list, separated by
commas, of all the fields declared within the host structure. Each field is qualified
with the host structure names of all levels to prevent naming conflicts with other
host variables or fields. This is equivalent to the following method.

2. Fully qualified host variable names can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary

INTO :staff_record.id, :staff_record.name,

 :staff_record.info.years, :staff_record.info.salary

 FROM staff

WHERE id = 10;

References to field names must be fully qualified even if there are no other host
variables with the same name. Qualified sub-structures can also be referenced. In
the example above, :staff_record.info can be used to replace
:staff_record.info.years, :staff_record.info.salary.

Since a reference to a host structure (first example) is equivalent to a comma-
separated list of its fields, there are instances where this type of reference may lead to
an error. For example:

EXEC SQL CONNECT TO :staff_record;

Here, the CONNECT statement expects a single character-based host variable. By
giving a host structure instead, the statement results in a precompile-time error:

SQL0087N Host variable "staff_record" is a structure used where structure

references are not permitted.

Other uses of host structures, which may cause an SQL0087N error to occur, include
PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables and SQLDA references.
Host structures with exactly one field are permitted in such situations, as are references
to individual fields (second example).

 Indicator Tables
An indicator table is a collection of indicator variables to be used with a host structure.
It must be declared as an array of short integers. For example:

 short ind_tab[10];

 Appendix C. Embedded SQL Programming Guide Updates 97

The example above declares an indicator table with 10 elements. The following shows
the way it can be used in an SQL statement:

EXEC SQL SELECT id, name, years, salary

INTO :staff_record INDICATOR :ind_tab

 FROM staff

WHERE id = 10;

The following lists each host structure field with its corresponding indicator variable in
the table:

staff_record.id ind_tab[0]

staff_record.name ind_tab[1]

staff_record.info.years ind_tab[2]

staff_record.info.salary ind_tab[3]

Note: An indicator table element, for example ind_tab[1], cannot be referenced indi-
vidually in an SQL statement. The keyword INDICATOR is optional. The number
of structure fields and indicators do not have to match; any extra indicators are
unused, and any extra fields do not have indicators assigned to them.

A scalar indicator variable can also be used in the place of an indicator table to provide
an indicator for the first field of the host structure. This is equivalent to having an indi-
cator table with only 1 element. For example:

 short scalar_ind;

EXEC SQL SELECT id, name, years, salary

INTO :staff_record INDICATOR :scalar_ind

 FROM staff

WHERE id = 10;

If an indicator table is specified along with a host variable instead of a host structure,
only the first element of the indicator table, for example ind_tab[0], will be used:

EXEC SQL SELECT id

INTO :staff_record.id INDICATOR :ind_tab

 FROM staff

WHERE id = 10;

If an array of short integers is declared within a host structure:

 struct tag

 {

 short i[2];

 } test_record;

The array will be expanded into its elements when test_record is referenced in an SQL
statement making :test_record equivalent to :test_record.i[0], :test_record.i[1].

98 What's New

 SQL Enhancements

BIGINT Data Type
The BIGINT data type is a newly supported SQL data type that allows applications to
define BIGINT host variables and retrieve data into 64-bit integer types when this is
supported by the programming language.

The sections below show the mapping between the BIGINT data type and C and C++,
COBOL, and Java.

BIGINT Data Type in C and C ++
The following table shows the C/C++ equivalent column type for the new BIGINT data
type. When the precompiler finds a host variable declaration, it determines the appro-
priate SQL type value. The database manager uses this value to convert the data
exchanged between the application and itself.

Table 6. BIGINT Data Type Mapped to C/C++ Declarations

SQL Column Type 1 C/C++ Data Type 2 SQL Column Type Description

BIGINT
(492 or 493)

long long
long long int
__int64

64-bit signed integer

Notes:

1. The first number under Column Type indicates that an indicator variable is not pro-
vided, and the second number indicates that an indicator variable is provided. An indi-
cator variable is needed to indicate NULL values, or to hold the length of a truncated
string. These are the values that would appear in the SQLTYPE field of the SQLDA for
these data types.

2. Windows operating systems use __int64, where __ represents 2 underscores.

BIGINT Data Type in COBOL
The table below shows the COBOL equivalent of each column type. When the precom-
piler finds a host variable declaration, it determines the appropriate SQL type value.
The database manager uses this value to convert the data exchanged between the
application and itself.

Table 7 (Page 1 of 2). BIGINT Data Type Mapped to COBOL Declarations

SQL Column Type 1 COBOL Data Type
SQL Column Type
Description

BIGINT
(492 or 493)

01 name PIC S9(18) COMP-5. 64-bit signed integer

 Appendix C. Embedded SQL Programming Guide Updates 99

Table 7 (Page 2 of 2). BIGINT Data Type Mapped to COBOL Declarations

SQL Column Type 1 COBOL Data Type
SQL Column Type
Description

Notes:

1. The first number under Column Type indicates that an indicator variable is not pro-
vided, and the second number indicates that an indicator variable is provided. An indi-
cator variable is needed to indicate NULL values, or to hold the length of a truncated
string. These are the values that would appear in the SQLTYPE field of the SQLDA for
these data types.

BIGINT Data Type in Java
When you call UDFs and stored procedures that are implemented as Java methods,
DB2 converts SQL types to and from Java types for you. The table below shows how
BIGINT is converted.

Table 8. BIGINT Data Type and Java Objects

SQL Type Java Type (UDF)
Java Type (Stored Pro-
cedure)

BIGINT (492 or 493) long long

 Fetch-first-clause
Use the FETCH FIRST clause with the SELECT statement to set a maximum number
of rows that can be retrieved. It lets the database manager know that the application
does not want to retrieve more than a specific number of rows, regardless of how many
rows there might be in the result table when this clause is specified.

For more detailed information on how to specify the FETCH FIRST clause and the
SELECT statement, refer to the SQL Reference.

 Altering Tables
When a table is created, the default for append mode is OFF, meaning when the table
has data inserted, the data is placed where free space is available in data pages.

If you want new table data appended to the end of the last table page, change the
append option on the ALTER TABLE statement to ON.

Recognizing Equivalence of Repeated Host Variables
Users are strongly advised not to change the SQLDA after binding a DB2 embedded
SQL program. If there are two or more occurences of a host variable in an SQL state-
ment, the SQLDA will have duplicate entries for the variable, but only the first instance
of the variable will be used by DB2. If a variable reference is change to a different
variable, it will have no affect on the program. In general, users are advised not to
change the output from the precompiler.

100 What's New

Programming in JDBC
This section deals with using JDBC and Java to access data from your DB2 databases.
For information on SQLJ, refer to “Embedded SQL for Java (SQLJ) Programming” on
page 117.

DB2 together with JDBC provides support for:

¹ Developing Java applications and applets that access DB2 databases through the
Java Development Kit (JDK) Version 1.1. The JDK includes the Java Database
Connectivity (JDBC) API from Sun Microsystems. See the Web Page at
http://www.software.ibm.com/data/db2/java for information on this specification.

¹ Creating user-defined functions (UDFs) and stored procedures in Java.

This section describes how to access DB2 databases using JDBC. The specific topics
discussed are:

 ¹ Getting Started
¹ How Does It Work?
¹ Creating and Running JDBC Applets and Applications
¹ Creating Java UDFs and Stored Procedures

 Getting Started
You can use DB2’s JDBC support to build both:

¹ Java applications, which rely on the DB2 Client Application Enabler (CAE) to
connect to DB2.

¹ Java applets, that do not require any DB2 component code on the client.

If your application or applet uses JDBC, you need to familiarize yourself with the JDBC
specification, JDBC: A Java SQL API, available from Sun Microsystems. This specifi-
cation describes how to call JDBC APIs to access a database and manipulate data in
that database.

You should also read through this section to learn about DB2’s extensions to JDBC and
its few limitations (refer to “Extensions” on page 105). If you plan to create UDFs or
stored procedures in Java, refer to “Creating and Using Java User-Defined Functions”
on page 108 and “Creating and Using Java Stored Procedures” on page 110, as there
are considerations that are different for Java than for other languages.

To help you begin coding your program, sample applications and applets are provided
in the sqllib/samples/java directory. (All instances of sqllib/samples/java in this
book also refer to the %DB2PATH%\samples\java directory on Windows and OS/2, where
%DB2PATH% is the path where DB2 is installed.) If you have created the SAMPLE
database, you can also run the samples. See the SQL Reference for information about
the SAMPLE database.

 Appendix C. Embedded SQL Programming Guide Updates 101

How Does It Work?
There are two independent components to DB2’s Java enablement:

¹ Support for client applications and applets written in Java using JDBC to access
DB2 (see “JDBC Applet and Application Support”).

¹ Support for Java UDFs and stored procedures on the server (see “Java UDFs and
Stored Procedures” on page 103)

JDBC Applet and Application Support
Figure 1 illustrates how the JDBC applet driver works. The driver consists of a JDBC
client and a JDBC server. The JDBC client driver is loaded on the Web browser along
with the applet. When a connection to a DB2 database is requested by the applet, the
client opens a TCP/IP socket to the JDBC server on the machine where the Web
server is running. After a connection is set up, the client sends each of the subsequent
database access requests from the applet to the JDBC server though the TCP/IP con-
nection. The JDBC server then makes corresponding CLI (ODBC) calls to perform the
task. Upon completion, the JDBC server sends the results back to the client through the
connection.

Remote

DB2

Database

Web Server Host

HTTPd

JDBC Server

Web Browser

JDBC
Client

HTTP

TCP/IP
Socket

CLI

Local

DB2

Database

Java/
JDBC
Applet

Figure 1. DB2’s JDBC Applet Implementation

Figure 2 on page 103 illustrates how a DB2 JDBC application works. You can think of
a DB2 JDBC application as a DB2 CLI application, only you write it using the Java
language. Calls to JDBC are translated to calls to DB2 CLI, through Java native
methods. This dependency requires that the DB2 CAE component be installed at the

102 What's New

client. A JDBC request flows through DB2 CLI to the DB2 server through the normal
CAE communication flow.

Remote

DatabaseJDBC
Java

Application

DB2 Client
with Client
Application

Enabler

Figure 2. DB2’s JDBC Application Implementation

Writing a Java JDBC application or applet is very similar to writing a C application using
DB2 CLI or ODBC to access the database. The primary difference between applications
and applets is that an application requires the DB2 CAE to be installed on the client,
and uses the CAE to communicate with DB2; the applet depends on a Java-enabled
Web browser, and does not require any DB2 code installed on the client.

You need to treat applets differently than applications, as applets are delivered over the
network (intranet or Internet). You must install the DB2 server or client on the same
machine as your Web server. The JDBC applet and application support is installed as
part of DB2.

Java UDFs and Stored Procedures
Creating Java UDFs and stored procedures is very similar to creating UDFs and stored
procedures in other supported programming languages. Once you have created and
registered them, you can call them from programs in any language. Typically, you may
call JDBC APIs from your stored procedures, but you can not call them from UDFs.

Note: DB2 does not support Java stored procedures and Java user-defined functions
(UDFs) accessing DB2 databases on HP-UX and SCO UnixWare servers.

To run your UDFs and stored procedures, DB2 calls the Java interpreter on the server.
DB2 does not include a Java interpreter; your database administrator must install and
configure the appropriate Java Development Kit (JDK) on your DB2 server before
starting up the database.

The runtime libraries for the Java interpreter must be available in the system search
paths (PATH or LIBPATH or LD_LIBRARY_PATH, and CLASSPATH). For more infor-
mation on setting up the Java environment on OS/2 and Windows, see Appendix D,
“Building Applications for Windows and OS/2 Environments Updates” on page 149. For
more information on setting up the Java environment on UNIX platforms see Building
Applications for UNIX Environments.

DB2 loads or starts the Java interpreter on the first call to a Java UDF or stored proce-
dure (see “Creating and Using Java User-Defined Functions” on page 108 or “Creating
and Using Java Stored Procedures” on page 110). For unfenced UDFs and stored pro-
cedures, DB2 loads one Java interpreter per database instance, and runs it inside the

 Appendix C. Embedded SQL Programming Guide Updates 103

database engine's address space for best performance. For fenced UDFs, DB2 uses a
distinct interpreter inside the db2udf process; similarly, fenced stored procedures use a
distinct interpreter inside the db2dari process. In all cases, the Java interpreter stays
loaded until the embedding process ends.

Creating and Running JDBC Applets and Applications
Whether you're writing an application or applet, you would typically call JDBC APIs to:

1. Import the appropriate Java packages and classes (java.sql.*).

2. Load the appropriate JDBC driver (COM.ibm.db2.jdbc.app.DB2Driver for applica-
tions; COM.ibm.db2.jdbc.net.DB2Driver for applets).

3. Connect to the database, specifying the location with a URL (as defined in Sun’s
JDBC specification) and using the db2 subprotocol. For applets, you must also
provide the userid, password, host name, and the port number for the applet
server; for applications, the Client Application Enabler provides the required values.

4. Pass SQL statements to the database.

5. Receive the results.

6. Close the connection.

After coding your program, compile it as you would any other Java program. You don't
need to perform any special precompile or bind steps.

Distributing and Running a JDBC Applet
Like other Java applets, you distribute your JDBC applet over the network (intranet or
Internet). Typically you would imbed the applet in a hypertext markup language (HTML)
page. For example, to call the sample applet DB2Applt.java, (provided in
sqllib/samples/java) you might use the tag:

<applet code="DB2Applt.class" width=325 height=275 archive="db2java.zip">

To run your applet, you need only a Java-enabled Web browser on the client machine.
When you load your HTML page, the applet tag downloads the Java applet to your
machine which then downloads the Java class files, including the
COM.ibm.db2.jdbc.net class which is DB2’s JDBC driver. When your applet calls the
JDBC API to connect to DB2, the JDBC driver establishes separate communications
with the DB2 database through the JDBC applet server residing on the Web server.

For your applets to run, you need to ensure that the correct files are installed in the
proper places, as follows:

1. Install DB2 (server or client) on the same machine as your Web server. The Java
applet and JDBC support is installed as part of DB2.

2. Create your own HTML file, or use a modified version of the supplied
DB2Applt.html file and move it to the same directory as your class file. Copy your
.class file, or for the sample, sqllib/samples/java/samples.zip and the
sqllib/java/db2java.zip file to this directory.

3. Start DB2's JDBC applet server on your Web server by typing:

104 What's New

 db2jstrt portno

where portno is an unused TCP/IP port number that applets can use.

4. On your client machine, start your Web browser and load your HTML file to run
your applet.

Distributing and Running a JDBC Application
Distribute your JDBC application as you would any other Java application. As the
application uses DB2’s CAE to communicate with the DB2 server, you have no special
security concerns; authority verification is performed by the CAE.

To run your application on a client machine, you must also have installed on that
machine:

¹ The Java interpreter, which you need to run any Java code.
¹ DB2's Client Application Enabler, which also includes the DB2 JDBC driver.

Start your application from the GUI or command line, like any other application.

A sample application, DB2Appl.java, is provided in the sqllib/samples/java directory.
If you have created the SAMPLE database, you can also run the sample by adding
samples/java/samples.zip to your CLASSPATH environment variable, changing to the
sqllib/samples/java directory, and entering the following command:

 java DB2Appl

See the SQL Reference for information on the SAMPLE database.

 Extensions
DB2 Universal Database supports the JDK Version 1.1 JDBC specification. You may
have to modify applications and applets that are written to the JDBC Version 1.0 to
work properly with DB2 Version 5.

There are also special considerations for graphical and large objects (LOBs).

Using Graphical and Large Objects: The JDBC specification does not explicitly
mention large objects (LOBs) or graphic types.

Treat LOBs as the corresponding LONGVAR type. Because LOB types are declared in
SQL with a maximum length, ensure that you do not return arrays or strings longer than
the declared limit. This consideration applies to SQL string types as well.

For GRAPHIC and DBCLOB types, treat them as the corresponding CHAR types. The
following JDBC APIs behave as described below:

setString Converts from Unicode to database format.1

setAsciiStream Converts from local code page to database format.2

setUnicodeStream Converts from Unicode to database format.1

getString Converts from database format to Unicode.1

 Appendix C. Embedded SQL Programming Guide Updates 105

getAsciiStream Converts from database format to local code page format.2

getUnicodeStream Converts from database format to Unicode.1

Notes:

1. The DB2 client first converts the data from the database format to the client
format; DB2 then converts the data to Unicode

2. The DB2 client performs this type conversion. See your DB2 client informa-
tion for supported code pages and conversions.

Creating Java UDFs and Stored Procedures
Along with supporting client-side Java code, DB2 also supports creating user-defined
functions (UDF) and stored procedures in Java that reside on the server. This Java
support does not alter the support for UDFs and stored procedures in other program-
ming languages.

UDFs and stored procedures written in Java provide the same capability as existing
UDFs and stored procedures; they are simply methods in Java classes. Once you
create and register these UDFs and stored procedures, place the Java classes in the
correct file location, described in “Where to Put Java Classes” on page 108. You can
then call them from a program in any language. DB2 calls the Java interpreter to run
them; they run as if they are a part of a Java application, and therefore are not subject
to applet security restrictions.

DB2 handles type conversion (see “Mapping Between SQL Types and Java Objects”)
between SQL types and Java objects for you, as it does for other programming lan-
guages. Because SQL string and LOB types are declared in SQL with a maximum
length, ensure that your Java methods do not return arrays or strings that are longer
than the declared limit. DB2 detects many possible errors in data conversion and
signals them by throwing an exception.

Because you can overload Java methods, two methods with the same name but dif-
ferent argument lists can coexist in the same Java class. Make sure that your Java
methods that implement UDFs and stored procedures have the exact signature
expected, that is, the list of formal arguments and the method name.

Mapping Between SQL Types and Java Objects
When you call UDFs and stored procedures that are implemented as Java methods,
DB2 converts SQL types to and from Java types for you as described in Table 9 on
page 107. Several of these classes are provided in the Java package
COM.ibm.db2.app.

106 What's New

Table 9. DB2 SQL Types and Java Objects

SQL Type Java Type (UDF)
Java Type (Stored Pro-
cedure)

SMALLINT (500/501) short short

INTEGER (496/497) Int Int

BIGINT (492/493) long long

FLOAT (480/481) double double

REAL (480/481)1 float float

DECIMAL(p,s) (484/485) BigDecimal BigDecimal

NUMERIC(p,s) (504/505) BigDecimal BigDecimal

CHAR(n) (452/453) String String

CHAR(n) FOR BIT DATA (452/453) Blob Blob

C null-terminated string (400/401)2 n/a String

VARCHAR(n)(448/449) String String

VARCHAR(n) FOR BIT DATA (448/449) Blob Blob

LONG VARCHAR (456/457) Clob Clob

LONG VARCHAR FOR BIT DATA
(456/457)

Blob Blob

GRAPHIC(n) (468/469) String String

C null-terminated graphic string
(460/461)2

n/a String

VARGRAPHIC(n) (464/465) String String

LONG VARGRAPHIC (472/473)3 Clob Clob

BLOB(n)(404/405)3 Blob Blob

CLOB(n) (408/409)3 Clob Clob

DBCLOB(n) (412/413)3 Clob Clob

DATE (384/385)4 String String

TIME (388/389)4 String String

TIMESTAMP (392/393)4 String String

Notes:

1. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).
2. Parenthesized types, such as the C null-terminated graphic string, occur in stored pro-

cedures when the calling application uses embedded SQL with some host variable
types.

3. The Blob and Clob classes are provided in the COM.ibm.db2.app package. Their inter-
faces include routines to generate an InputStream and OutputStream for reading from
and writing to a Blob, and a Reader and Writer for a Clob. Refer to “Classes for Java
Stored Procedures and UDFs” on page 112 for descriptions of the classes.

4. SQL DATE, TIME, and TIMESTAMP values use the ISO string encoding in Java, as
they do for UDFs coded in C.

 Appendix C. Embedded SQL Programming Guide Updates 107

Instances of classes COM.ibm.db2.app.Blob and COM.ibm.db2.app.Clob represent the
LOB data types (BLOB, CLOB, and DBCLOB). These classes provide a limited inter-
face to read LOBs passed as inputs, and write LOBs returned as outputs. Reading and
writing of LOBs occur through standard Java I/O stream objects. For the Blob class, the
routines getInputStream() and getOutputStream() return an InputStream or
OutputStream object through which the BLOB content may be processed bytes-at-a-
time. For a Clob, the routines getReader() and getWriter() will return a Reader or Writer
object through which the CLOB or DBCLOB content may be processed characters-at-a-
time.

If such an object is returned as an output using the set() method, code page conver-
sions may be applied in order to represent the Java Unicode characters in the database
code page.

Where to Put Java Classes
Store all Java class files that implement UDFs or stored procedures in the
sqllib/function directory. If you declare a class to be part of a Java package, create
the corresponding subdirectories under sqllib/function and place the files in the
correct subdirectory. For example, if you create a class ibm.tests.test1, store the
corresponding Java byte-code file (named test1.class) in sqllib/function/ibm/tests.

The Java interpreter that DB2 invokes uses the CLASSPATH environment variable to
locate Java files. DB2 adds the entries sqllib/function and sqllib/java/db2java.zip
to the front of your CLASSPATH setting.

To set your environment so that the Java interpreter can find where you have stored
the Java class files you may need to set the jdk11_path configuration parameter, or
else use the default value. Also, you may need to set the java_heap_sz configuration
parameter to increase the heap size for your application. See the Administration Guide
for more information on these configuration parameters.

Creating and Using Java User-Defined Functions
You can create and use UDFs in Java just as you would in other languages, with only a
few minor differences. After you code the UDF, you register it with the database using
the CREATE FUNCTION statement. See the SQL Reference for information on regis-
tering a Java UDF using this statement. You can then call it from any DB2 application
in any language, including Java. The UDF can be fenced or unfenced, and you can
also use options to modify how the UDF is run. See “Changing How a Java UDF Runs”
on page 110.

Some sample Java UDFs are provided in DB2Udf.java in the sqllib/samples/java

directory. To register and invoke the sample UDFs, follow the instructions in the
DB2Udf.java file.

Coding a Java UDF: In general, if you declare a UDF taking arguments of SQL types
t1, t2, and t3, returning type t4, it will be called as a Java method with the expected
Java signature:

public void name (T1 a, T2 b, T3 c, T4 d) {}

108 What's New

Where:

¹ name is the method name
¹ T1 through T4 are the Java types that correspond to SQL types t1 through t4.
¹ a, b, and c are arbitrary variable names for the input arguments.
¹ d is an arbitrary variable name that represents the UDF result being computed.

For example, given a UDF called sample!test3 that returns INTEGER and takes argu-
ments of type CHAR(5), BLOB(10K), and DATE, DB2 expects the Java implementation
of the UDF to have the following signature:

 import COM.ibm.db2.app.*;

public class sample implements UDF {

public void test3(String arg1, Blob arg2, String arg3,

int result) { ... }

 }

Java UDFs that implement table functions have more arguments. Beside the variables
representing the input, an additional variable appears for each column in the resulting
row. For example, a table function may be declared as:

public void test4(String arg1,

int result1, Blob result2, String result3);

SQL NULL values are represented by Java variables that are not initialized. These
variables have a value of zero if they are primitive types, and Java null if they are
object types, in accordance with Java rules. To tell an SQL NULL apart from an ordi-
nary zero, you can call the function isNull for any input argument:

 {

if (isNull(1)) { /* argument #1 was a SQL NULL */ }

else { /* not NULL */ }

 }

In the above example, the argument numbers start at one. The isNull() function, like
the other functions that follow, are inherited from the COM.ibm.db2.app.UDF interface.
This must be implemented by Java classes containing UDFs.

To return a result from a scalar or table UDF, use the set() method in the UDF, as
follows:

 {

 set(2, value);

 }

Where '2' is the index of an output argument, and value is a literal or variable of a
compatible type. The argument number is the index in the argument list of the selected
output. In the first example in this section, the int result variable has an index of 4; in
the second, result1 through result3 have indices of 2 through 4. An output argument
that is not set before the UDF returns will have a NULL value.

 Appendix C. Embedded SQL Programming Guide Updates 109

Like C modules used in UDFs and stored procedures, you cannot use the Java
standard I/O streams (System.in, System.out, and System.err) in Java UDFs. For an
example of a Java UDF, see the file DB2Udf.java in the sqllib/samples/java directory.

Remember that all Java class files that you use to implement a UDF must reside in the
sqllib/function directory or an appropriate subdirectory. See “Where to Put Java
Classes” on page 108.

Changing How a Java UDF Runs: Typically, DB2 calls a UDF many times, once for
each row of a result set in a query. The implementing Java class is instantiated once
per row, and the selected method of each new instance is called once.

You can change this model by declaring the UDF with the SCRATCHPAD option.
When you use this option, the Java class is instantiated only once, and the same
instance is reused for the entire query. While C-language UDFs can maintain state
between calls in a scratchpad area provided by the database engine, Java UDFs can
simply use instance variables. Note that there is still a separate Java UDF instance per
query reference to that UDF, just as there is for C UDFs. If a UDF is called in several
places in a query, each call will have its own Java object.

At the end of a query, if you specify the FINAL CALL option on the CREATE FUNC-
TION statement, the object’s public void close() method is called. If you do not
define this method, a stub function takes over and the event is ignored.

If you specify the ALLOW PARALLEL clause for a Java UDF in the CREATE FUNC-
TION statement, DB2 may elect to evaluate the UDF in parallel. If this occurs, several
distinct Java objects may be created on different partitions. Each object receives a
subset of the rows. Note that are no such object instances are created for C or C++
UDFs.

As with other UDFs, Java UDFs can be fenced or unfenced. Unfenced UDFs are run
inside the address space of the database engine; fenced UDFs are run in a separate
process. Although Java UDFs cannot inadvertently corrupt the address space of their
embedding process, they can terminate or slow down the process. Therefore, when
you are debugging UDFs written in Java, you should run them as fenced UDFs.

Refer to “COM.ibm.db2.app.UDF” on page 113 for a description of the
COM.ibm.db2.app.UDF interface. This interface describes other useful calls that you can
make within a UDF, such as setSQLstate and getDBinfo.

Creating and Using Java Stored Procedures
As with UDFs, you can create and use stored procedures in Java just like you can for
other programming languages. There are some programming considerations (as dis-
cussed in “Coding Java Stored Procedures” on page 111) that you need to know when
you write your Java code. You also need to register your Java stored procedure. Refer
to the CREATE PROCEDURE statement in the SQL Reference for information on how
to register your stored procedure.

110 What's New

Note: If you are running a database server with local clients node type, you must set
the maxdari database manager configuration parameter to a non-zero value
before you invoke a Java stored procedure.

A sample Java stored procedure, DB2Stp.java, is provided in sqllib/samples/java.

Remember that all Java class files that you use to implement a stored procedure must
reside in the sqllib/function directory or appropriate subdirectory (as discussed in
“Where to Put Java Classes” on page 108).

Coding Java Stored Procedures: Java stored procedures are public instance
methods. Within the classes, the stored procedures are identified by their method name
and signature. When you call a stored procedure, its signature is generated dynamically
based on the variable types that you pass to it.

Java stored procedures are very similar to the Java UDFs described in “Creating and
Using Java User-Defined Functions” on page 108. Like table functions, they can have
multiple outputs. They also use the same conventions for NULL values, and the same
set routine for output. The main difference is that a Java class that contains stored
procedures must implement the COM.ibm.db2.app.StoredProc interface instead of the
COM.ibm.db2.app.UDF interface. Refer to “COM.ibm.db2.app.StoredProc” on page 112
for a description of the COM.ibm.db2.app.StoredProc interface.

This interface provides the following routine to fetch a JDBC connection to the embed-
ding application context:

public java.sql.Connection getConnection()

You can use this handle to run SQL statements. Other methods of the StoredProc

interface are listed in the file sqllib/samples/java/StoredProc.java.

The following is a small stored procedure with one input and two outputs. It executes
the given SQL query, and returns the number of rows in the result, and the SQLSTATE:

 Appendix C. Embedded SQL Programming Guide Updates 111

 import COM.ibm.db2.app.*;

 import java.sql.*;

public class sample2 implements StoredProc {

public void donut(String query, int rowCount,

String sqlstate) throws Exception {

 try {

Statement s = getConnection().createStatement();

ResultSet r = s.executeQuery(query);

int counter = 0;

 while(r.next()) {

 counter ++;

 }

 r.close(); s.close();

 set(2, counter);

} catch(SQLException x) {

 set(3, x.getSQLState());

 }

 }

 }

Classes for Java Stored Procedures and UDFs
There are five classes/interfaces that you can use with Java Stored Procedures or
UDFs:

 ¹ COM.ibm.db2.app.StoredProc

 ¹ COM.ibm.db2.app.UDF

 ¹ COM.ibm.db2.app.Lob

 ¹ COM.ibm.db2.app.Blob

 ¹ COM.ibm.db2.app.Clob

The following sections describe the public aspects of these classes' behavior:

COM.ibm.db2.app.StoredProc: A Java class that contains methods intended to be
called as stored procedures must be public and must implement this Java interface.
You must declare such a class as follows:

public class <user-STP-class> implements COM.ibm.db2.app.StoredProc{ ... }

You can only call inherited methods of the COM.ibm.db2.app.StoredProc interface in the
context of the currently executing stored procedure. For example, you cannot use oper-
ations on LOB arguments, result- or status-setting calls, etc., after a stored procedure
returns. A Java exception will be thrown if you violate this rule.

Argument-related calls use a column index to identify the column being referenced.
These start at 1 for the first argument. At this time, all arguments of a stored procedure
are considered INOUT and thus are both inputs and outputs.

Any exception returned from the stored procedure is caught by the database and
returned to the caller with SQLCODE -4302, SQLSTATE 38501. A JDBC SQLException

112 What's New

or SQLWarning is handled specially and passes its own SQLCODE, SQLSTATE etc. to
the calling application verbatim.

The following methods are associated with the COM.ibm.db2.app.StoredProc class:

public StoredProc() [default constructor]

This constructor is called by the database before the stored procedure call.

public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL NULL.

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception

public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception

public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given value. The
index has to refer to a valid output argument, the data type must match, and the value
must have an acceptable length and contents. Strings with Unicode characters must be
representable in the database code page. Errors result in an exception being thrown.

public java.sql.Connection getConnection() throws Exception

This function returns a JDBC object that represents the calling application's connection
to the database. It is analogous to the result of a null SQLConnect() call in a C stored
procedure.

COM.ibm.db2.app.UDF: A Java class that contains methods intended to be called as
UDFs must be public and must implement this Java interface. You must declare such a
class as follows:

public class <user-UDF-class> implements COM.ibm.db2.app.UDF{ ... }

You can only call methods of the COM.ibm.db2.app.UDF interface in the context of the
currently executing UDF. For example, you cannot use operations on LOB arguments,
result- or status-setting calls, etc., after a UDF returns. A Java exception will be thrown
if this rule is violated.

Argument-related calls use a column index to identify the column being set. These
start at 1 for the first argument. Output arguments are numbered higher than the input
arguments. For example, a scalar UDF with three inputs uses index 4 for the output.

Any exception returned from the UDF is caught by the database and returned to the
caller with SQLCODE -4302, SQLSTATE 38501.

The following methods are associated with the COM.ibm.db2.app.UDF class:

public UDF() [default constructor]

 Appendix C. Embedded SQL Programming Guide Updates 113

This constructor is called by the database at the beginning of a series of UDF calls. It
precedes the first call to the UDF.

public void close()

This function is called by the database at the end of a UDF evaluation, if the UDF was
created with the FINAL CALL option. It is analogous to the final call for a C UDF. If a
Java UDF class does not implement this function, a no-op stub will handle and ignore
this event.

public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL NULL.

public boolean needToSet(int) throws Exception

This function tests whether an output argument with the given index needs to be set.
This may be false for a table UDF declared with DBINFO, if that column is not used by
the UDF caller.

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception

public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception

public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given value. The
index has to refer to a valid output argument, the data type must match, and the value
must have an acceptable length and contents. Strings with Unicode characters must be
representable in the database code page. Errors result in an exception being thrown.

public void setSQLstate(String) throws Exception

This function may be called from a UDF to set the SQLSTATE to be returned from this
call. A table UDF should call this function with "02000" to signal the end-of-table condi-
tion. If the string is not acceptable as an SQLSTATE, an exception will be thrown.

public void setSQLmessage(String) throws Exception

This function is similar to the setSQLstate function. It sets the SQL message result. If
the string is not acceptable (for example, longer than 70 characters), an exception will
be thrown.

public String getFunctionName() throws Exception

This function returns the name of the executing UDF.

public String getSpecificName() throws Exception

This function returns the specific name of the executing UDF.

public byte[] getDBinfo() throws Exception

114 What's New

This function returns a raw, unprocessed DBINFO structure for the executing UDF, as a
byte array. You must first declare it with the DBINFO option.

public String getDBname() throws Exception

public String getDBauthid() throws Exception

public String getDBtbschema() throws Exception

public String getDBtbname() throws Exception

public String getDBcolname() throws Exception

public String getDBver_rel() throws Exception

public String getDBplatform() throws Exception

These functions return the value of the appropriate field from the DBINFO structure of
the executing UDF.

public int[] getDBcodepg() throws Exception

This function returns the SBCS, DBCS, and composite code page numbers for the
database, from the DBINFO structure. The returned integer array has the respective
numbers as its first three elements.

public byte[] getScratchpad() throws Exception

This function returns a copy of the scratchpad of the currently executing UDF. You
must first declare the UDF with the SCRATCHPAD option.

public void setScratchpad(byte[]) throws Exception

This function overwrites the scratchpad of the currently executing UDF with the con-
tents of the given byte array. You must first declare the UDF with the SCRATCHPAD
option. The byte array must have the same size as getScratchpad() returns.

COM.ibm.db2.app.Lob: This class provides utility routines that create temporary Blob
or Clob objects for computation inside user-defined functions or stored procedures.

The following methods are associated with the COM.ibm.db2.app.Lob class:

public static COM.ibm.db2.app.Blob newBlob() throws Exception

This function creates a temporary Blob. It will be implemented using a LOCATOR if
possible.

public static COM.ibm.db2.app.Clob newClob() throws Exception

This function creates a temporary Clob. It will be implemented using a LOCATOR if
possible.

COM.ibm.db2.app.Blob: An instance of this class is passed by the database to repre-
sent a BLOB as UDF or stored procedure input, and may be passed back as output.
The application may create instances, but only in the context of an executing UDF or
stored procedure. Uses of these objects outside such a context will throw an exception.

The following methods are associated with the COM.ibm.db2.app.Blob class:

public static COM.ibm.db2.app.Blob new() throws Exception

 Appendix C. Embedded SQL Programming Guide Updates 115

This function creates a temporary Blob. It will be implemented using a LOCATOR if
possible.

public long size() throws Exception

This function returns the length (in bytes) of the BLOB.

public java.io.InputStream getInputStream() throws Exception

This function returns a new InputStream to read the contents of the BLOB. Efficient
seek/mark operations are available on that object.

public java.io.OutputStream getOutputStream() throws Exception

This function returns a new OutputStream to append bytes to the BLOB. Appended
bytes become immediately visible on all existing InputStream instances produced by
this object's getInputStream() call.

COM.ibm.db2.app.Clob: An instance of this class is passed by the database to repre-
sent a CLOB or DBCLOB as UDF or stored procedure input, and may be passed back
as output. The application may create instances, but only in the context of an executing
UDF or stored procedure. Uses of these objects outside such a context will throw an
exception.

Clob instances store characters in the database code page. Some Unicode characters
may not be representable in this code page, and may cause an exception to be thrown
during conversion. This may happen during an append operation, or during a UDF or
StoredProc set() call. This is necessary to hide the distinction between a CLOB and a
DBCLOB from the Java programmer.

The following methods are associated with the COM.ibm.db2.app.Clob class:

public static COM.ibm.db2.app.Clob new() throws Exception

This function creates a temporary Clob. It will be implemented using a LOCATOR if
possible.

public long size() throws Exception

This function returns the length (in characters) of the CLOB.

public java.io.Reader getReader() throws Exception

This function returns a new Reader to read the contents of the CLOB or DBCLOB.
Efficient seek/mark operations are available on that object.

public java.io.Writer getWriter() throws Exception

This function returns a new Writer to append characters to this CLOB or DBCLOB.
Appended characters become immediately visible on all existing Reader instances
produced by this object's GetReader() call.

116 What's New

Embedded SQL for Java (SQLJ) Programming
This section describes Embedded SQL for Java (SQLJ) programming. The specific
topics discussed are:

¹ SQLJ and DB2 SQLJ Support

¹ Basic SQLJ Concepts

 ¹ Advanced Features

¹ Comparison with ANSI/ISO Embedded

¹ SQLJ Translator Reference

SQLJ and DB2 SQLJ Support
SQLJ is embedded SQL for Java, and DB2 SQLJ support facilitates the creation,
building and running of SQLJ programs against DB2 databases.

What is SQLJ?
SQLJ consists of a set of programming extensions that define interaction between SQL
and Java. It comprises a set of clauses that extend Java programs to include static
SQL constructs. An SQLJ translator is a utility that transforms those SQLJ clauses

into standard Java code that accesses the database through a call interface. The output
of an SQLJ translator is a generated Java source program that can then be compiled
by any Java compiler. Java programs containing embedded SQL can be subjected to
static analysis of SQL statments for the purposes of syntax checking, type checking
and schema validation.

SQLJ supports only static SQL constructs. The counterpart to static SQL is dynamic

SQL, a call interface for passing strings to a database as SQL commands. No analysis
or checking of those strings is done until the database receives them at execution time.
A dynamic SQL API for Java has been specified by JavaSoft, called JDBC. For detailed
information about DB2 JDBC support, please see “Programming in JDBC” on
page 101.

SQLJ relies upon JDBC for support of dynamic SQL, and does not attempt to replicate
the features of JDBC. Rather, SQLJ contains mechanisms that enable a Java pro-
grammer to easily move between the two environments and share state information (for
example, connection contexts).

What is DB2 SQLJ Support?
DB2 SQLJ support is provided by the DB2 Software Developer's Kit (DB2 SDK). Along
with DB2 JDBC support provided by the DB2 Client Application Enabler (DB2 CAE),
DB2 SQLJ support allows you to create, build, and run embedded SQL for Java appli-
cations, applets, stored procedures and user-defined functions (UDFs). These contain
static SQL and use embedded SQL statements that are bound to a DB2 database.

The SQLJ support provided by the DB2 SDK includes:

 Appendix C. Embedded SQL Programming Guide Updates 117

¹ The SQLJ translator, sqlj, which replaces embedded SQL statements in the SQLJ
program with Java source statements, and generates a serialized profile which
contains information about the SQL operations found in the SQLJ program. The
SQLJ translator uses the sqllib/java/sqlj.zip file.

¹ The SQLJ profile printer, profp, which prints the contents of a profile generated by
the SQLJ translator in plain text.

¹ The DB2 SQLJ profile customizer, db2profc, which precompiles the SQL state-
ments stored in the generated profile, customizing them into calls to the SQLJ
runtime function, and generates a package in the DB2 database.

¹ The DB2 SQLJ profile printer, db2profp, which prints the contents of a DB2 cus-
tomized profile in plain text.

¹ The SQLJ profile auditor installer, profdb, which installs (or uninstalls) debugging
class-auditors into an existing set of binary profiles. Once installed, all RTStatement
and RTResultSet calls made during application runtime will be logged to a file (or
standard output), which can then be inspected to verify expected behavior and
trace errors. Note that only those calls made to the underlying RTStatement and
RTResultSet call interface at runtime are audited.

¹ The SQLJ runtime classes, available in sqllib/java/runtime.zip, consisting of the
following packages:

 sqlj.runtime

 sqlj.runtime.ref

 sqlj.runtime.profile

 sqlj.runtime.profile.ref

 sqlj.runtime.profile.util

 sqlj.runtime.error

¹ The DB2 SQLJ runtime function, which provides a runtime interface to the DB2
database manager.

For more information on the SQLJ translator, see “SQLJ Translator Reference” on
page 143. For more information on the db2profc and db2profp commands, see the
Command Reference. For more information on the SQLJ runtime classes, visit the DB2
Java web page at:

 http://www.software.ibm.com/data/db2/java

DB2 Trace Facilities

SQLJ programs access DB2 using the DB2 JDBC driver, which in turn uses the DB2
CLI/ODBC driver. Therefore, both the CLI/ODBC/JDBC trace facility and the DB2 trace
facility, db2trc, can be used to diagnose problems. Details on how to take the above
traces are explained in the Troubleshooting Guide.

The SQLJ runtime function includes a utility to install runtime call tracing capability into
SQLJ programs. The utility operates on the profiles associated with a program.
Suppose a program uses a profile called App_SJProfile0. Then, debugging would be
installed into the program with the command:

 profdb App_SJProfile0.ser

118 What's New

The profdb script uses the Java Virtual Machine to run the main() method of class
sqlj.runtime.profile.util.AuditorInstaller. For more details on usage and options
for the AuditorInstaller class, visit the DB2 Java web page at:

 http://www.software.ibm.com/data/db2/java

DB2 SQLJ Usage Notes

1. If you do not specify an sqlj.properties file, the following default values will be
used:

 sqlj.url=jdbc:db2:sample

 sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver

 sqlj.online=sqlj.semantics.JdbcChecker

 sqlj.offline=sqlj.semantics.OfflineChecker

 If you do specify an sqlj.properties file, make sure the following options are set:

 sqlj.url=jdbc:db2:dbname

 sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver

 sqlj.online=sqlj.semantics.JdbcChecker

 sqlj.offline=sqlj.semantics.OfflineChecker

 where dbname is the name of the database.

These options can also be set on the command line.

2. To run an SQLJ program with program name pgmname, do the following:

¹ Translate the Java source code with Embedded SQL to generate the Java
source code pgmname.java and profiles pgmname_SJProfile0.ser,
pgmname_SJProfile1.ser, ... (one profile for each connection context):

 sqlj pgmname.sqlj

¹ Compile the generated Java source code to generate the Java byte-codes
pgmname.class:

 javac pgmname.java

¹ Install DB2 SQLJ Customizers on generated profiles and create the DB2 pack-
ages in the DB2 database dbname:

db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname

-prepoptions="bindfile using pgmname0.bnd package using pgmname0"

 pgmname_SJProfile0.ser

db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname

-prepoptions="bindfile using pgmname1.bnd package using pgmname1"

 pgmname_SJProfile1.ser

 ...

¹ Execute the SQLJ program:

 java pgmname

3. To print the content of the profiles generated by the SQLJ translator in plain text:

 profp pgmname_SJProfile0.ser

 profp pgmname_SJProfile1.ser

 ...

 Appendix C. Embedded SQL Programming Guide Updates 119

4. To print the content of the DB2 customized version of the profile in plain text:

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname

 pgmname_SJProfile0.ser

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname

 pgmname_SJProfile1.ser

 ...

 where dbname is the name of the database.

5. The following pre-compile options are not applicable:

 NOLINEMACRO

 OPTLEVEL

 OUTPUT

 SQLCA

 TARGET

 WCHARTYPE

 CONNECT

 DISCONNECT

 SYNCPOINT

 SQLRULES

 SQLFLAG

6. All positioned UPDATE/DELETE SQL statements will be dynamically prepared and exe-
cuted during the runtime. The authorization identifier used for the execution of posi-
tioned UPDATE/DELETE SQL statements is the authid of the person executing the
cursor package (the DB2 package that contained the corresponding OPEN CURSOR

operation).

The DRDA precompile/bind option DYNAMICRULES BIND can be specified to indicate
that the authorization identifier used for the execution of positioned UPDATE/DELETE
SQL statement is the cursor package owner. This DRDA precompile/bind option is
not supported by DB2 Universal Database. Also, the positioned UPDATE/DELETE
SQL statement is not a valid sub-statement in a Compound SQL statement.

7. All host variables specified in compound SQL are input host variables by default.
You have to specify the parameter mode identifier OUT before the host variable in
order to mark it as an output host variable. For example:

#sql {begin compound atomic static

select count(*) into :OUT count1 from employee;

 end compound}

8. The following SQLJ syntax for the VALUES clause is used to invoke the function F
with host variable x and assign the result to host variable i:

i = { VALUES (F(:x)) };

 and will be translated by the SQLJ translator and stored as

? = VALUES (F (?))

 in the generated profile.

DB2 will customize the VALUE statement into:

VALUES(F(?)) INTO ?

120 What's New

when connecting to a DB2 Universal Database database but into:

SELECT F(?) INTO ? FROM SYSIBM.SYSDUMMY1

when connecting to a DB2 for OS/390 database.

If we run the DB2 SQLJ profile customizer, db2profc, against a DB2 Universal
Database database and generate a bindfile, we cannot use that bindfile to bind up
to a DB2 for OS/390 database when there is a VALUES clause in the bindfile. This
also applies to generating a bindfile against a DB2 for OS/390 database and trying
to bind with it to a DB2 Universal Database database.

For detailed information on building and running DB2 SQLJ programs on Windows and
OS/2, see Appendix D, “Building Applications for Windows and OS/2 Environments
Updates” on page 149. For detailed information on building and running SQLJ pro-
grams on UNIX platforms, see Building Applications for UNIX Environments.

Advantages of SQLJ over JDBC for Static SQL
Dynamic SQL provides greater flexibility than static SQL since a calling program has
the ability to construct and process SQL strings that are dynamically created at runtime.
This capability comes at a greater programming cost due to the increased complexity of
code necessary to support flexible, dynamic operations. However, many applications do
not require this level of complexity because the SQL commands they use are predeter-
mined. Embedded SQL is better suited for these applications as it enables early error
checking, allows for precompilation of SQL for faster execution at runtime, and signif-
icantly reduces program size and complexity.

Here are some major differences between the two:

¹ SQLJ source programs are smaller than equivalent JDBC programs since the
translator can implicitly handle many of the tedious programming chores that
dynamic interfaces must make explicit.

¹ SQLJ programs can use translation time database connections to type-check static
SQL code. JDBC, being a completely dynamic API, can not.

¹ SQLJ provides simplified rules for calling SQL stored procedures and functions.
The JDBC specification requires a generic call to a stored procedure (or function),
fun, to have the following syntax:

prepStmt.prepareCall("{call fun(...)}"); //for stored procedures

prepStmt.prepareCall("{? = call fun(...)}"); //for stored functions

whereas SQLJ provides simplified notations:

#sql {call fun(...) }; //Stored procedure

// Declare x

 ...

#sql x = {VALUES(fun(...)) }; // Stored function

// where VALUES is the SQL construct

 Appendix C. Embedded SQL Programming Guide Updates 121

Consistency with other Embedded SQL Languages
Programming languages containing Embedded SQL are called host languages. Java
differs from the traditional host languages C, COBOL, and FORTRAN, in ways that sig-
nificantly affect its embedding of SQL:

¹ Java has automatic storage management (also known as "garbage collection") that
simplifies the management of storage for data retrieved from databases.

¹ All Java types representing composite data, and data of varying sizes, have a dis-
tinguished value, null, which can be used to represent the SQL NULL state, giving
Java programs an alternative to NULL indicators that are a fixture of other host
languages.

¹ Java is designed to support programs that are automatically heterogeneously port-
able (also called "super portable" or simply "downloadable"). That, along with
Java's type system of classes and interfaces, enables component software. In par-
ticular, an SQLJ translator, written in Java, can call components that are special-
ized by database vendors, in order to leverage the existing authorization, schema
checking, type checking, transactional, and recovery capabilities that are traditional
of databases, and to generate code optimized for particular databases.

¹ Java is designed for binary portability in heterogeneous networks, which promises
to enable binary portability for database applications that use static SQL.

Basic SQLJ Concepts
The following kinds of SQL constructs may appear in SQLJ programs:

¹ Queries: SELECT statements and expressions.

¹ SQL Data Change Statements (DML): INSERT, UPDATE, DELETE.

¹ Data Statements: FETCH, SELECT..INTO.

¹ Transaction Control: COMMIT, ROLLBACK, etc.

¹ Data Definition Language (DDL, also known as Schema Manipulation Language):
CREATE, DROP, ALTER.

¹ Calls to stored procedures: e.g., CALL MYPROC(:x, :y, :z)

¹ Invocations of stored functions: e.g., VALUES(MYFUN(:x))

 Host Variables
Arguments to embedded SQL statements are passed through host variables, which are
variables of the host language that appear in the SQL statement. Host variables are
prefixed by a colon, :. A host variable contains an optional parameter mode identifier:
IN, OUT, or INOUT, followed by a Java host variable that is a Java identifier for a param-
eter, variable, or field. The evaluation of a Java identifier does not have side effects in a
Java program, so it may appear multiple times in the Java code generated to replace
an SQLJ clause.

The following query contains host variable, :x, (which is the Java variable, field, or
parameter x visible in the scope containing the query):

122 What's New

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

 SQLJ Clauses
Static SQL statements in SQLJ appear in SQLJ clauses. SQLJ clauses represent the
mechanism by which SQL statements in Java programs are communicated to the data-
base.

Each SQLJ clause begins with the token #sql, which is not a legal Java identifier, and
is terminated by a semicolon, and as such makes the clause and its SQL contents
recognizable to an SQLJ translator.

The simplest SQLJ clauses are executable clauses and consist of the token #sql fol-
lowed by an SQL statement enclosed in braces. For example, the following SQLJ
clause may appear wherever a Java statement may legally appear and its purpose is to
delete all of the rows in the table named TAB:

#sql { DELETE FROM TAB };

In an SQLJ executable clause, the tokens that appear inside the braces are SQL
tokens, except for the host variables. All host variables are distinguished by the colon
character so the translator can identify them. SQL tokens never occur outside the
braces of an SQLJ executable clause. For example, the following Java method inserts
its arguments into an SQL table. The method body consists of an SQLJ executable
clause containing the host variables x, y, and z:

void m (int x, String y, float z) throws SQLException

 {

#sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };

 }

In general, SQL tokens are case insensitive (except for identifiers delimited by double
quotes), and can be written in upper, lower, or mixed case. Java tokens, however, are
case sensitive. For clarity in examples, case insensitive SQL tokens are written upper-
case, and Java tokens are lowercase or mixed case. Throughout this document, the
lowercase null is used to represent the Java "null" value, and the uppercase NULL to
represent the SQL null value.

The following example SQLJ application uses static SQL to retrieve and update data
from the EMPLOYEE table of the DB2 sample database. The program declares two
cursors to retrieve data. After connecting to the database, cursor1 selects data from the
EMPLOYEE table, which is printed out. After this, the table is updated, and then
cursor2 extracts data from the updated table, which is also printed out. Finally, the
changes are rolled back before the program ends.

import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

#sql iterator App_Cursor1 (String empno, String firstnme) ;

#sql iterator App_Cursor2 (String) ;

 Appendix C. Embedded SQL Programming Guide Updates 123

class App

{

 /**********************

 ** Register Driver **

 **********************/

 static

 {

 try

 {

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 }

catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /********************

 ** Main **

 ********************/

public static void main(String argv[])

 {

 try

 {

 App_Cursor1 cursor1;

 App_Cursor2 cursor2;

String str1 = null;

String str2 = null;

 long count1;

// URL is jdbc:db2:dbname

String url = "jdbc:db2:sample";

DefaultContext ctx = DefaultContext.getDefaultContext();

if (ctx == null)

 {

 try

 {

// connect with default id/password

Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

ctx = new DefaultContext(con);

 }

catch (SQLException e)

 {

System.out.println("Error: could not get a default context");

 System.err.println(e) ;

 System.exit(1);

124 What's New

 }

 DefaultContext.setDefaultContext(ctx);

 }

// retrieve data from the database

System.out.println("Retrieve some data from the database...");

#sql cursor1 = { SELECT empno, firstnme from employee };

// display the result set

// cursor1.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (cursor1.next())

 {

str1 = cursor1.empno();

str2 = cursor1.firstnme();

System.out.print (" empno= " + str1);

System.out.print (" firstname= " + str2);

 System.out.print ("\n");

 }

 cursor1.close();

// retrieve number of employee from the database

System.out.println("\nRetrieve the number of rows in employee table...");

#sql { SELECT count(*) into :count1 from employee };

if (1 == count1)

System.out.println ("There is " + count1 + " row in employee table.");

 else

System.out.println ("There are " + count1 + " rows in employee table.");

// update the database

System.out.println("\n\nUpdate the database... ");

#sql { UPDATE employee set firstnme = 'SHILI' where empno = '000010' };

// retrieve the updated data from the database

System.out.println("\nRetrieve the updated data from the database...");

str1 = "000010";

#sql cursor2 = { SELECT firstnme from employee where empno = :str1 };

// display the result set

// cursor2.next() returns false when there are no more rows

 System.out.println("Received results:");

 while (true)

 {

#sql { FETCH :cursor2 INTO :str2 };

if (cursor2.endFetch()) break;

System.out.print (" empno= " + str1);

System.out.print (" firstname= " + str2);

 System.out.print ("\n");

 }

 cursor2.close();

 Appendix C. Embedded SQL Programming Guide Updates 125

// rollback the update

System.out.println("\n\nRollback the update...");

#sql { ROLLBACK work };

 System.out.println("Rollback done.");

 }

catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

 Connection Context
Each SQLJ executable clause requires, either explicitly or implicitly, a connection
context object that designates the database connection at which the SQL operation
specified in that clause will be executed. The connection context object is an optional
expression, delimited by brackets, that immediately follows the token #sql. For
example, in the following SQLJ clause, the connection context is the value of the Java
variable myconn:

#sql [myconn] { UPDATE TAB2 SET COL1 = :w

WHERE :v < COL2 };

The connection context object designates a database at which the SQL statements will
be executed, and the session and transaction in which they are executed. A connection
context is an object of a connection context class, which is defined by means of an
SQLJ connection clause. A connection context class has methods for opening a con-
nection to a database, given a URL or other connection string, a user name, and pass-
word. At run time, an SQLJ program must call those methods to establish a database
connection before any SQLJ clauses are executed. The following illustrates an SQLJ
connection clause that defines a connection context class named Inventory:

#sql context Inventory;

Note: The connection context object implicitly specifies a database and associated
schemas as per a JDBC Connection instance. If an SQLJ executable clause
specifies an SQL Session management statement (e.g., SET SCHEMA), then that
clause will not affect any other SQLJ executable clause. Session management
directives are only in conjunction with a connection context object and these
objects are initialized only at translation, installation, and customization times in
a vendor specific manner.

When an SQLJ clause contains an expression designating the connection context
object on which it will be executed, then that clause is said to use an explicit
connection. When the connection context object is omitted from a clause, then that
clause is said to use the default connection. Portable applications should always use
explicit connection contexts.

As an example, if an invocation of an SQLJ translator indicates that the default con-
nection context class is class Green, then all SQLJ clauses that use the default con-

126 What's New

nection will be translated as if they used the explicit connection context object
Green.getDefaultContext().

Programs may install a connection context object as the default connection by calling
setDefaultContext. For example:

Green.setDefaultContext(new Green(argv[0], autoCommit));

Note: argv[0] is assumed to contain a url naming a database, user ID, and password.
autoCommit is a boolean flag that is true if auto commit mode is on, and false
otherwise.

The default connection context object for a program is stored in a static variable of the
default connection context class. To avoid using static variables with some SQLJ pro-
grams, such as applets, reentrant libraries, and some multi-threaded programs, you can
use SQLJ clauses with explicit connection contexts objects.

When an SQLJ program is executing inside a database as a stored procedure, or is
otherwise executing in an environment that automatically provides a connection context,
calls to method ConnectionContext.getDefaultContext always returns an object
representing the schema in which the program is executing. An SQLJ program can
detect whether it is executing in an environment that implicitly supplies a connection
context by calling ConnectionContext.getDefaultContext before it calls
ConnectionContext.setDefaultContext to install a connection context object. An exe-
cution environment that automatically supplies a connection context will return a non-
null connection context object.

Schema checking using exemplar schemas. At translation time, a connection context
class plays a different role. It symbolizes the "type" of database schema to which the
SQLJ program will connect at run time. The notion of the "type of a database schema"
is informal. It includes the names, and privileges associated with tables and views, the
"shapes" of their rows, stored programs, and so forth. The type of a schema is symbol-
ized by an exemplar schema, which is simply a database schema that contains the
tables, views, programs, and privileges that would be required in order for the SQL
operations in SQLJ clauses to execute successfully. An exemplar schema may be the
actual runtime schema, or may be another schema that is a "typical" schema, in ways
relevant to the SQLJ program being translated.

The invoker of an SQLJ translator must provide a mapping of connection context
classes to exemplar schemas. An SQLJ translator connects to the exemplar schema in
order to provide syntax checking, type checking and schema checking for all SQLJ
clauses that will be executed in the connection context of the class "exemplified" by that
schema. In that way, the exemplar schema represents the database schema to which
the application will connect at runtime. It is the responsibility of the application devel-
oper to pick an exemplar schema that represents the run time schemas in relevant
ways, e.g., having tables, views, stored functions, and stored procedures with the same
names and types, and having privileges set appropriately.

If no appropriate exemplar schema is available, or if it is inconvenient to connect to a
database during SQLJ program development, then the programmer may omit the

 Appendix C. Embedded SQL Programming Guide Updates 127

exemplar schema for a connection type. SQLJ clauses to be executed on connections
of that type will not then be schema checked at translation time, and will instead be
checked later at installation or customization time.

The mapping of connection context classes to exemplar schemas is provided to an
SQLJ translator in an implementation-dependent way, typically by pairing connection
context class names with connect strings and passwords. For example, a client side
SQLJ translator may require such mapping on the command line in an invocation of the
translator. Those connect strings and passwords are then used as arguments of the
connection context class constructors that establish a database connection to the
exemplar schema.

Since the connection context is optional in an SQLJ clause, when the connection
context is absent from an SQLJ clause there is a default connection context class spec-
ified. The clause is then checked against the exemplar schema corresponding to the
class of the default connection context object for the program.

Here is a sample program demonstrating connection contexts:

import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

import COM.ibm.db2.jdbc.app.*;

import COM.ibm.db2.app.*;

public class connect

{

 /*********************

 ** Register Driver **

 *********************/

 static

 {

 try

 {

Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();

 }

catch (Exception e)

 {

System.out.println ("\n Error loading DB2 Driver...\n");

 e.printStackTrace ();

 }

 }

 /*******************

 ** Main **

 *******************/

public static void main (String args[]) throws SQLException

 {

128 What's New

// URLs used in Connect to DB

String url = "jdbc:db2:sample";

String userid = "userid"; // update with your user ID

String password = "password"; // update with your password

// Get default connection context if it exists

DefaultContext ctx = DefaultContext.getDefaultContext();

// If no default connection context, connect to database

if (ctx == null)

 {

 try

 {

Connection con = DriverManager.getConnection(url,userid,password);

// AutoCommit can be set to "true" or "false"

 con.setAutoCommit(true);

ctx = new DefaultContext(con);

 }

catch (SQLException e)

 {

System.out.println("*** Error connecting to database.\n");

 System.err.println(e) ;

 System.exit(1);

 }

// Set default context which will be used whenever connection context

// is not specified

 DefaultContext.setDefaultContext(ctx);

System.out.println("*** Connected as ADM ID successfully.\n");

 }

int SqlCode=0; // Variable to hold SQLCODE

int SqlState=0; // Variable to hold SQLSTATE

 try

 {

#sql {..... your SQL statement here};

 }

/* Here's how you can check for SQLCODEs and SQLSTATE */

catch (SQLException e)

 {

SqlCode = e.getErrorCode() // Get SQLCODE

SqlState = e.getSQLState() // Get SQLSTATE

if (SqlCode = -1234)

 {

 Appendix C. Embedded SQL Programming Guide Updates 129

// Your code here to handle -1234 SQLCODE

 }

 else

 {

// Your code here to handle other errors

 }

System.err.println(e) ; // Print the exception

 System.exit(1); // Exit

 }

// More SQL statements

 /**

* You can drop the connection context when it is no longer

* needed. This is similar to disconnecting from the database

* in a C program. If you do not drop the connection context,

* it will be dropped automatically when the program ends

 ***/

if (ctx != null) ctx.close();

 } // End main

} // End connect

Result Set Iterators
A capability central to SQL is the ability to execute queries that retrieve a "result set" of
rows from the database. An SQLJ clause may evaluate a query and return a result set
iterator object containing the result set selected by that query. Depending on the type of
the iterator object, it may be used with the FETCH..INTO idiom of Embedded SQL to
extract data into host variables, or it may retrieve, through accessor methods, column
data consisting of the names and types of columns returned by the query.

An SQLJ result set iterator is a Java object from which the data returned by an SQL
query can be retrieved. In that role, it corresponds to the cursor of Embedded SQL,
from which data are fetched. Unlike the cursor, however, an iterator is a first class
object. An iterator can be passed as a parameter to a method, and can be used outside
the SQLJ translation unit that creates it, without losing its static type for the purposes of
type-checking of component interfaces.

An iterator has one or more columns with associated Java types. Names that are Java
identifiers can optionally be provided for the iterator columns. The columns of an
iterator (which have Java types) are conceptually distinct from the columns of a query
(which have SQL types). SQLJ supports two mechanisms for matching iterator columns
to query columns. They are bind by position and bind by name.

Bind by position means that the left to right order of declaration of the iterator columns
places them in correspondence with the expressions selected in an SQL query. Tradi-
tional FETCH..INTO syntax is used to retrieve data from the iterator object into Java vari-
ables. Bind by name means that the name of each iterator column is matched to the

130 What's New

name of a column returned by the SQL query, independent of the order in which that
column appeared in the query. Named accessor methods are generated by the SQLJ
translator for each column of the iterator. The name of an accessor method matches
the name of a column returned by a query and its return type is the Java type of the
iterator column. The FETCH..INTO syntax may not be used with an iterator of this type,
as the accessor methods provide the mechanism for transferring the data.

An iterator declaration clause designates whether objects of that iterator type use bind
by position or bind by name. The two styles of accessing result set data are mutually
exclusive: an iterator class supports either bind by position or bind by name, but not
both. Program development tools may prefer to generate SQLJ programs using bind by
position, since these tools can generate SQLJ code that is "correct by construction".
People writing SQLJ programs "by hand" may prefer to use bind by name, to make
their applications resilient against changes to the program or database schema.

Positional binding to columns. The following is an example of an iterator class decla-
ration that binds by position. It declares an iterator class called ByPos, with two columns
of types String and int:

#sql public iterator ByPos (String, int);

Assume a table PEOPLE with columns FULLNAME and BIRTHYEAR:

TABLE PEOPLE (FULLNAME VARCHAR(50),

BIRTHYEAR NUMERIC(4,0))

An iterator object of type ByPos is used in conjunction with a FETCH..INTO statement to
retrieve data from table PEOPLE as illustrated in the following example:

 {

ByPos positer; // declare iterator object

String name = null;

int year = 0;

// populate it

#sql positer = { SELECT FULLNAME,

BIRTHYEAR FROM PEOPLE };

#sql { FETCH :positer INTO :name, :year };

while (!positer.endFetch())

 {

System.out.println(name + " was born in " +

 year);

#sql { FETCH :positer INTO :name, :year };

 }

 }

The predicate method endFetch() of the iterator object returns true when no more rows
are available from the iterator (specifically, it becomes true following the first FETCH
that returns no data).

The first SQLJ clause in the block above effectively executes its query and constructs
an iterator object containing the result set returned by the query, and assigns it to vari-
able positer. The type of the iterator object is derived from the assignment target,
which is of type ByPos.

 Appendix C. Embedded SQL Programming Guide Updates 131

The second SQLJ clause in that block contains a FETCH..INTO statement. The SQLJ
translator checks that the types of host variables in the INTO clause match the types of
the iterator columns that correspond by position. The types of the SQL columns in the
query are convertible to the types of the positionally corresponding iterator columns,
according to the SQL to Java type mapping of SQLJ. Those conversions are statically
checked at translation time if a database connection to an exemplar schema is provided
to the translator.

Named binding to columns. The following is an example of an iterator class declara-
tion that binds by name. It declares an iterator class called ByName, with columns named
FULLNAME and BIRTHYEAR:

#sql public iterator ByName

(String fullNAME, int birthYEAR);

That iterator class can then be used as follows:

 {

ByName namiter; // define iterator object

#sql namiter = { SELECT FULLNAME, BIRTHYEAR

FROM PEOPLE };

 String s; int i;

// advances to next row

while (namiter.next())

 {

i = namiter.birthYEAR();

// returns column named BIRTHYEAR

s = namiter.fullNAME();

// returns column named FULLNAME

System.out.println(s + " was born in " + i);

 }

 }

In this example, the first SQLJ clause constructs an iterator object of type ByName, as
that is the type of the assignment target in that clause. That iterator has generated
accessor methods birthYEAR() and fullNAME() that return the data from the result set
columns with those names. The names of the generated accessor methods are an
exact case sensitive match with their definitions on the iterator declaration clause.
Matching a specific accessor method to a specific column name in the SELECT list
expressions is performed using a case insensitive match. Two column names that differ
only in case sensitivity must use the SQL AS clause to alias one of the column names
in order to avoid ambiguity.

Method next() advances the iterator object to successive rows of the result set. It
returns true when a next row is available, and false after it fails to retrieve a next row
because the iterator contains no more rows.

A Java compiler will detect type mismatch errors in the uses of column accessor
methods. Additionally, if a connection to an exemplar schema is provided at translation

132 What's New

time, then the SQLJ translator will statically check the validity of the types and names
of the iterator columns against the SQL queries associated with it.

Providing names for columns of queries. When the expressions selected by a query
are unnamed, or have SQL names that are not legal Java identifiers, then SQL column
aliases may be used to name them. Consider a table named "Trouble!" with a column
called "Not a legal Java identifier":

CREATE TABLE "Trouble!"

 (

"Not a legal Java identifier" VARCHAR(10),

 col2 FLOAT

)

The following line generates an iterator class called xY. The iterator declaration clause
may appear wherever a Java class definition may appear:

#sql iterator xY (String x, double Y);

The SQLJ clause in the following block uses column aliases to associate that column's
name with an expression in the query:

 {

 xY it;

#sql it = { SELECT "Not a legal Java identifier" AS "x",

COL2 * COL2 AS Y

FROM "Trouble!" };

while (it.next()) { System.out.println(it.x() + it.Y()); }

 }

The first line declares a local variable of that iterator class. The second line initializes
that variable to contain a result set obtained from the specified query. The while() loop
calls the column accessor methods of the iterator to obtain and print data from its rows.

Calls to Stored Procedures and Functions
Databases may contain stored procedures and stored functions. User-defined proce-
dures and functions are named schema objects that execute in the database. An SQLJ
executable clause appearing as a Java statement may call a stored procedure by
means of the CALL statement. For example:

#sql { CALL SOME_PROC(:INOUT myarg) };

Stored procedures may have IN, OUT, or IN OUT parameters. In the above case, the
value of host variable myarg is changed by the execution of that clause. An SQLJ exe-
cutable clause may call a stored function by means of the SQL VALUES construct. For
example, assume a stored function F that returns an integer. The following example
illustrates a call to that function that then assigns its result to Java local variable x:

 {

 int x;

#sql x = { VALUES(F(34)) };

 }

Note: DB2 does not support Java stored procedures and Java user-defined functions
(UDFs) accessing DB2 databases on HP-UX and SCO UnixWare servers.

 Appendix C. Embedded SQL Programming Guide Updates 133

 Advanced Features
The sections that follow discuss more advanced programming techniques including mul-
tiple connections, dynamic SQL and multi-threading.

Using Multiple SQLJ Contexts and Connections
SQLJ supports connecting to multiple schemas at the same time. The various schemas
used at runtime are modeled as distinct connection context classes in SQLJ programs,
which allows type checking using the same schemas at translation time. The following
program demonstrates the use of multiple contexts by connecting to two DB2 data-
bases, sample and sample2.

import java.sql.*;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

import COM.ibm.db2.jdbc.app.*;

import COM.ibm.db2.app.*;

public class multicon

{

 /*********************

 ** Register Driver **

 *********************/

 static

 {

 try

 {

Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();

 }

catch (Exception e)

 {

System.out.println ("\n Error loading DB2 Driver...\n");

 e.printStackTrace ();

 }

 }

 /*******************

 ** Main **

 *******************/

public static void main (String args[]) throws SQLException

 {

 /*********************************

** URLs used to connect to DBs **

 *********************************/

String url1 = "jdbc:db2:sample"; // database SAMPLE

String url2 = "jdbc:db2:sample2"; // database SAMPLE2

String userid = "userid"; // change the userid to yours

134 What's New

String password = "password"; // change the password to yours

System.out.println("*** Begin multicon ***\n");

DefaultContext ctx1 = null; // connection context 1

DefaultContext ctx2 = null; // connection context 2

 /*********************************

** Connect to SAMPLE database **

 *********************************/

 try

 {

Connection con = DriverManager.getConnection(url1,userid,password);

 con.setAutoCommit(true);

ctx1 = new DefaultContext(con);

 }

catch (SQLException e)

 {

System.out.println("*** Error: could not connect to SAMPLE db.\n");

 System.err.println(e) ;

 // System.exit(1);

 }

/* If you want to set a default connection, uncomment the next line of code

out. If you have a default connection, it will be used whenever a connection

context is not specified */

 // DefaultContext.setDefaultContext(ctx1);

System.out.println("*** Got a connection to SAMPLE db successfully.\n");

 /**********************************

** Connect to SAMPLE2 database **

 ***********************************/

 try

 {

Connection con = DriverManager.getConnection(url2,userid,password);

 con.setAutoCommit(true);

ctx2 = new DefaultContext(con);

 }

catch (SQLException e)

 {

System.out.println("*** Error: could not connect to SAMPLE2 db.\n");

 System.err.println(e) ;

 // System.exit(1);

 }

// You could also set ctx2 as default connect INSTEAD of ctx1 if you

 Appendix C. Embedded SQL Programming Guide Updates 135

// want to use default connection context

 // DefaultContext.setDefaultContext(ctx2);

System.out.println("*** Got a connection to SAMPLE2 db successfully.\n");

 /**

** Counting number of tables/views in SAMPLE database using connection ctx1 **

 **/

 short count=-1;

 try

 {

#sql [ctx1] {SELECT COUNT(*) INTO :count FROM SYSCAT.TABLES };

 }

catch (SQLException e)

 {

System.out.println("*** Error Selecting from SAMPLE's SYSCAT.TABLES.\n");

 System.err.println(e) ;

 // System.exit(1);

 }

System.out.println("*** Database SAMPLE has " + count + " tables and views.\n");

 /**

** Counting number of tables/views in SAMPLE database using connection ctx2 **

 **/

count=-1; // reset count

 try

 {

#sql [ctx2] {SELECT COUNT(*) INTO :count FROM SYSCAT.TABLES };

 }

catch (SQLException e)

 {

System.out.println("*** Error Selecting from SAMPLE2's SYSCAT.TABLES.\n");

 System.err.println(e) ;

 // System.exit(1);

 }

System.out.println("*** Database SAMPLE2 has " + count + " tables and views.\n");

if (ctx1 != null) ctx1.close(); // "disconnect" from SAMPLE

if (ctx2 != null) ctx2.close(); // "disconnect" from SAMPLE2

 } // End main

} // End multicon

136 What's New

SQL Execution Control and Status
The execution semantics of SQL operations can be queried and modified via the exe-
cution context associated with the operation. An execution context exists as an instance
of class sqlj.runtime.ExecutionContext.

The following ExecutionContext attributes control the execution environment of SQL
operations. The getXXX and setXXX methods read and change the XXX value. Once set,
they affect all SQL operations subsequently executed on that execution context.

¹ MaxRows specifies the maximum number of rows to be returned by any query.

¹ MaxFieldSize specifies the maximum number of bytes to be returned as data for
any column or output variable.

¹ QueryTimeout specifies the number of seconds to wait for an SQL operation to
complete.

The following ExecutionContext attributes describe the results of the last SQL operation
executed:

¹ UpdateCount specifies the number of rows updated, inserted or deleted during the
last operation.

¹ SQLWarnings describes any warnings that occurred during the last operation.

An execution context is associated either explicitly or implicitly with each executable
SQL operation appearing in an SQLJ program. An execution context may be supplied
explicitly as an argument to each SQL operation:

ExecutionContext execCtx = new ExecutionContext();

#sql [execCtx] { DELETE FROM emp WHERE sal > 10000 };

When explicit execution contexts are used, each SQL operation may be executed using
a different execution context instance. If an explicit connection context is also being
used, both may be passed as arguments to the SQL operation:

#sql [connCtx, execCtx] { DELETE FROM emp WHERE sal > 10000 };

If an execution context is not supplied explicitly as an argument to an SQL operation, a
default execution context is used implicitly. The default execution context for a particular
SQL operation is obtained via the getExecutionContext() method of the connection
context used in the operation. For example:

#sql [connCtx] { DELETE FROM emp WHERE sal > 10000 };

uses the execution context associated with the connection context given by connCtx.
When neither a connection context nor an execution context is explicitly supplied, the
execution context associated with the default connection context is used.

The following code demonstrates the use of some ExecutionContext methods:

 Appendix C. Embedded SQL Programming Guide Updates 137

 {

ExecutionContext execCtx = new ExecutionContext();

// Wait only 3 seconds for operations to complete

 execCtx.setQueryTimeout(3);

 try {

// delete using explicit execution context

// if operation takes longer than 3 seconds,

// SQLException is raised

#sql [execCtx] { DELETE FROM emp WHERE sal > 10000 };

 System.out.println

("removed " + execCtx.getUpdateCount() + " employees");

 }

catch(SQLException e) {

// Assume a timeout occurred

System.out.println("SQLException has occurred with" +

" exception " + e);

 }

 }

 Multi-Threading Considerations
SQLJ can be used to write multi-threaded applications. The SQLJ runtime supports
multiple threads sharing the same connection context. However, SQLJ programs are
subject to synchronization limitations imposed by the underlying DBMS implementation.
If a DBMS implementation mandates explicit synchronization of statements executed in
a specific connection, then an SQLJ program using that implementation would require a
similar synchronization of SQL operations.

Whereas connection contexts may be safely shared between threads, execution con-
texts should not be shared. If an execution context is shared, the results of an SQL
operation performed by one thread will be visible in the other thread. If both threads are
executing SQL operations, a race condition may occur in which the results of an exe-
cution in one thread are overwritten by the results of an execution in the next thread
before the first thread has processed the original results. Furthermore, if a thread
attempts to execute an SQL operation using an execution context that is currently being
used to execute an operation in another thread, a runtime exception is raised. To avoid
such problems, each thread should use a distinct execution context whenever an SQL
operation is executed on a shared connection context.

Dynamic SQL and JDBC SQLJ Interoperability
The SQLJ language provides direct support for static SQL operations that are known at
the time the program is written. If some or all of a particular SQL statement cannot be
determined until runtime, it is a dynamic operation. To perform dynamic SQL operations
from an SQLJ program, use JDBC. A ConnectionContext object contains a JDBC Con-
nection object which can be used to create JDBC Statement objects needed for
dynamic SQL operations.

138 What's New

Every SQLJ ConnectionContext class includes a constructor that takes as an argument
a JDBC Connection. This constructor is used to create an SQLJ connection context
instance that shares its underlying database connection with that of the JDBC con-
nection.

Every SQLJ ConnectionContext instance has a getConnection method that returns a
JDBC Connection instance. The JDBC Connection returned shares the underlying data-
base connection with the SQLJ connection context. It may be used to peform dynamic
SQL operations as described in the JDBC API.

Session Sharing . The interoperablity methods described above provide a conversion
between the connection abstractions used in SQLJ and those used in JDBC. Both
abstractions share the same database session (i.e., the underlying database con-
nection). Accordingly, calls to methods that affect session state on one object will also
be reflected in the other object, as it is actually the underlying shared session that is
being affected.

JDBC defines the default values for session state of newly created connections. In most
cases, SQLJ adopts these default values. However, whereas a newly created JDBC
connection has auto commit mode on by default, an SQLJ connection context requires
the auto commit mode to be specified explicitly upon construction.

Connection Resource Management . Calling the close method of a connection context
instance causes the associated JDBC connection instance and the underlying database
connection to be closed. Since connection contexts may share the underlying database
connection with other connection contexts and/or JDBC connections, it may not be
desirable to close the underlying database connection when a connection context is
closed. A programmer may wish to release the resources maintained by the connection
context (for example, statement handles) without actually closing the underlying data-
base connection. To this end, connection context classes also support a close method
which takes a boolean argument indicating whether or not to close the underlying data-
base connection: the constant CLOSE_CONNECTION if the database connection should be
closed, and KEEP_CONNECTION if it should be retained. The variant of close that takes no
arguments is a shorthand for calling close(CLOSE_CONNECTION).

If a connection context instance is not explicitly closed before it is garbage collected,
then close(KEEP_CONNECTION) is called by the finalize method of the connection context.
This allows connection related resources to to be reclaimed by the normal garbage col-
lection process while maintaining the underlying database connection for other JDBC
and SQLJ objects that may be using it. Note that if no other JDBC or SQLJ objects are
using the connection, then the database connection will also be closed and reclaimed
by the garbage collection process.

Both SQLJ connection context objects and JDBC connection objects respond to the
close method. When writing an SQLJ program, it is sufficient to call the close method
on only the connection context object. This is because closing the connection context
will also close the JDBC connection associated with it. However, it is not sufficient to
close only the JDBC connection returned by the getConnection method of a connection
context. This is because the close method of a JDBC connection will not cause the

 Appendix C. Embedded SQL Programming Guide Updates 139

containing connection context to be closed, and therefore resources maintained by the
connection context will not be released until it is garbage collected.

The isClosed method of a connection context returns true if any variant of the close
method has been called on the connection context instance. If isClosed is true, then
calling close has no effect, and calling any other method is undefined.

Comparison with ANSI/ISO Embedded
ANSI/ISO specifies a "standard embedded language", for FORTRAN, PL/1, COBOL,
ADA, MUMPS, and C. An embedded program is a mixture of embedded SQL state-
ments and host language statements.

An embedded SQL statement always has an SQL prefix, usually EXEC SQL, and a termi-
nator appropriate to its host language, for example, a semi-colon for C, or a new line
character for Fortran.

Elements of Embedded SQL fall into four groups, which are treated differently in SQLJ
than they are in other embedded languages:

¹ Executable SQL statements: SQLJ directly adopts most of the SQL schema, SQL
data and SQL transaction statements, which manipulate SQL data, definitions, and
transactions, substantially as they are specified in standard Embedded SQL.

¹ Dynamic SQL: SQLJ does not specify dynamic SQL for Java. Dynamic SQL is
handled separately by JDBC.

¹ Declarations: The declare cursor and host variable definition declarations of
Embedded SQL define names for individual data items, which are cursors or host
variables, and may be annotated by SQL attributes such as character sets
(SQL92). SQLJ replaces those by declarations of Java types for declaring iterator
classes and other data items with SQL attributes.

¹ Program control: The embedded exception declaration, SQL session statements,
SQL connection statements, and SQL diagnostics statements serve to knit together
the SQL and host language environments by managing exceptions, database con-
nections, and diagnostics. SQLJ omits all of those statements, because object-
oriented languages can directly express the types of exceptions, database
connections, and diagnostics, and can manipulate those objects using standard
programming techniques.

The following elaborates the differences summarized above between the elements of
SQLJ and other embedded languages:

SQL prefix
SQLJ clauses are analogous to the embedded statements described above.
An SQLJ clause is introduced by the SQL prefix token #sql, chosen for Java
since it is not a legal Java identifier, and so cannot conflict with other Java
syntax.

140 What's New

cursor name
is a simple identifier in Embedded SQL. The equivalent SQLJ construct is
iterator host variable, which is a Java variable which must be an instance of
a generated iterator class, or a subclass of such a class.

SQL Schema, Data, and Transaction Statements
are treated in SQLJ as SQLJ clauses and are substantially as specified by
the existing rules for embedded language.

SQL dynamic statements
including PREPARE, DESCRIBE, and EXECUTE, as well as the dynamic declare
cursor statement, are not used by SQLJ since dynamic operations are
subsumed by JDBC.

SQL connection statement
is replaced in SQLJ by direct Java construction and manipulation of con-
nection objects. That enables the capability for SQLJ programs to open mul-
tiple connections simultaneously to the same or different databases.

Explicit manipulation of connection objects is supported for Java programs
that need to avoid hidden global state (e.g., Java "static variables") that would
be used to implement the SQL connection statement. In particular, Java
applets and other multi-threaded programs are usually coded to avoid con-
tention of global state. Such programs will store connection objects in local
variables and mention them explicitly in SQLJ clauses.

SQLJ allows the possibility that a Java program can manipulate multiple con-
nection objects, connected to different databases. When a program manipu-
lates multiple connections, they are mentioned explicitly in the SQLJ clauses,
so they are regular Java objects.

Host variable definition
is specified in Embedded SQL to be preceded by an EXEC SQL BEGIN DECLARE

SECTION and terminated by an EXEC SQL END DECLARE SECTION, so that pre-
compilers (translators) can detect the host variable definitions and determine
their types by a rudimentary parse of the host program.

SQLJ does not define a host variable definition section. SQLJ translators can
take advantage of the portability and component software available for Java
in order to have greater parsing ability than traditional pre-compilers, so that
the DECLARE SECTION is not required for the purpose of confining definitions of
host variables to a small portion of the host program. Instead, any Java vari-
able, parameter, or field (of an object) may be used as a host variable.

SQL92 character sets
Java supports a UNICODE character set (ISO 10646) for String data and for
identifiers. This allows Java to represent most character data in a uniform
way. The SQLJ specification does not address the issue of character sets,
since the SQLJ specification is limited to the SQL92 Entry Level specification
that does not require them. As per SQL92, no characters may appear in
SQLJ clauses that are not defined as an SQL language character with the
exception of Java identifiers and Java host variables.

 Appendix C. Embedded SQL Programming Guide Updates 141

Embedded exception declaration
is not defined by SQLJ. In the ANSI/ISO standard it has these forms:

EXEC SQL WHENEVER exception_condition

 GOTO program_label;

EXEC SQL WHENEVER exception_condition

 CONTINUE;

The Java language does not support the goto statement, therefore the direct
transliteration of the above construct into Java is not possible. Instead, Java
provides a try..catch statement that associates a handler for certain
exceptions in the Java block in which those exceptions might be raised. For
example, assume an exception called e:

try { block_that_may_throw_exception_e }

catch (Exception e) { block_that_handles_exception_e }

In addition, Java has well developed rules for declaring and handling
exceptions, thus the EXEC SQL WHENEVER statement does not add value. Other
object-oriented languages have facilities for declaring and handling
exceptions, similar to those in Java.

JDBC has defined an exception, globally named java.sql.SQLException, as
the superclass of exceptions that are returned from SQL. SQLJ follows that
precedent in order to facilitate interoperability between static SQL and
dynamic SQL.

SQL diagnostics statement
SQLJ follows the Java methodology for handling return information tradi-
tionally found in the descriptor areas of Embedded SQL. Abnormal termi-
nation and certain runtime errors (e.g.., NULL retrieval to non-nullable
datatypes) are processed using exception handling. Other status information,
for example update count, are processed by using methods on the con-
nection context and execution context objects.

Declare cursor
declares a single name for both a query and its associated result set in the
host program. SQLJ instead distinguishes between a query and the result set
that it returns. When an SQLJ clause containing a query is evaluated, it
returns an iterator object containing the result set of rows selected by that
query. The type of the iterator is a Java class that encodes the number and
types (and names) of columns in the result set, allowing type checking of
operations on the iterator. The WITH HOLD cursor attribute has the same
effect in SQLJ.

Input parameters to SQL statements
SQLJ allows host variables for input parameters to SQL statements, as does
standard Embedded SQL.

Extracting column values from result sets
SQLJ supports two approaches to accessing column values from result sets:
by position and by name. The familiar FETCH of Embedded SQL accesses

142 What's New

columns by position. In the following example, the first column in the row is
assigned to var1, the second to var2, and the third to var3:

EXEC SQL FETCH cursor1 INTO :var1,:var2,:var3;

SQLJ supports a modified version of the FETCH statement. It also supports
access to columns by name, through generated methods with the names and
types of the columns.

OPEN cursor
Embedded SQL has an OPEN operation to open and re-open its named
cursors that represent both a query and its result set:

EXEC SQL OPEN cursor1;

SQLJ does not have an OPEN operation to open or re-open iterator objects.
SQLJ does not name a static query, nor treat it as data. Instead, a query
returns an iterator object that is manipulated as data. Of course, a pro-
grammer may, in effect, name a query by writing it in an SQLJ clause in the
body of a method. Methods are called by their names, and can return result
set objects as their values.

SQLJ Translator Reference
Use the script sqlj to run the translator as follows:

sqlj [options] filelist

Alternatively, you can run the translator by using its class name:

java sqlj.translator.Main [options] filelist

The filelist is a list of file names separated by spaces:

file1.sqlj [file2.sqlj] ... [foo1.java] [foo2.java]...

The files with the .java extension are included to resolve type references, but no output
files are created for them. The files with the .sqlj extension include SQLJ clauses. The
translator creates .java files, as well as .ser (serialized object) files for them.

The following applies to all options:

¹ The names of command line options are case sensitive. They are all completely
lowercase. The option values are usually case sensitive as well.

¹ If the same option appears more than once on the command line, or in a property
file, SQLJ uses the final option value and ignores the others. For example, if the
command line options are:

 -user=scott -user=myaccount

SQLJ uses the second value, myaccount.

Property Files

Property files can be used to supply options to the translator. Options in a property file
appear one per line. Options have the same syntactic form as those appearing on the
command line, except that the token sqlj. replaces the initial hyphen. SQLJ ignores

 Appendix C. Embedded SQL Programming Guide Updates 143

properties without the sqlj. prefix in the property file. This allows several programs to
share one properties file. Empty lines are ignored. Lines that start with # are com-
ments. Here is an example of an sqlj.properties file:

 sqlj.user=scott

 sqlj.driver=db2.jdbc.driver.DB2Driver

SQLJ processes the options in a property file in order from first to last. A later entry
overrides an earlier entry.

SQLJ looks for files called sqlj.properties to use as property files when it starts to
run. It looks for them in three places, in the following order:

¹ The Java home directory, if it exists.

¹ The user's home directory, if it exists.

¹ The current directory.

It processes each such file it finds, overriding previously set options as it encounters
new ones. Thus, options set in the sqlj.properties file in the current directory override
those set in the sqlj.properties file in the user's home or Java home directories.

SQLJ starts by setting all options to their default values, if any. It then reads any default
property files it finds, using settings it finds in them to override the original defaults.
Finally it looks for options on the command line and uses them to override the settings
it has so far. It processes options on the command line from left to right, treating prop-
erty files specified with the -props option on the command line as if their contents were
specified inline.

General Options

In the following, all options are described as if they were given on the command line.
However, all options except for -props, -help and -version may also appear in a prop-
erties file.

-help

The help option causes SQLJ to list all translator options in effect at that time.

Note: The output display contains these lines for each option:

name: Name of the option.

type: Datatype or a list of datatypes. Can also be a choice of
allowed values.

value: The current setting in effect.

description: Description of option.

set from: Where the option was set (default, property file, inline).

-version

Displays the build version.

144 What's New

-dir

The dir option specifies the directory for generated files. For example:

 -dir=java/files

If you do not specify dir, SQLJ uses the current directory. The behavior of the dir
option is similar to the behavior of the -d option of javac. Suppose we have the files
File1.sqlj and File2.sqlj. File1.sqlj has no package declaration. File2.sqlj is in
the sqlj.demo package. If sqlj is invoked with the option -dir=/src, then File1.java is
created in /src, but File2.java is created in /src/sqlj/demo. If no dir option is speci-
fied, then the output file directory is the same as that of the input file.

-warn

You can specify a list of flags for turning warnings on or off with this option. Several
values for the warn option must be combined into a single, comma-separated string.
SQLJ applies the specified flags in the order in which they appear on the command
line. Permitted flags are all, none, verbose, noverbose, null, nonull, precision,
noprecision, portable, noportable, strict, nostrict. Default value is verbose. For
instance:

 -warn=none,null,precision

first turns off all warnings, then turns nullability and precision on. The possible values
of the warn option are:

¹ all turns all warnings and informational messages on.

¹ none turns all warnings and informational messages off.

¹ precision, noprecision specifies whether or not the SQLJ translator checks for
possible loss of precision when moving values from database columns to Java host
variables. The default is precision. Note that precision checks are part of the
semantic analysis and require SQLJ to connect to the database.

¹ null, nonull specifies whether or not SQLJ checks nullable columns and nullable
Java types for conversion loss when moving values from database columns to
Java host variables. If you do not specify one of these options, SQLJ checks
nullability by default. Note that nullability checks are part of the semantic analysis
and require SQLJ to connect to the database.

¹ verbose, noverbose turns on or off informational messages about the semantic
analysis process. If you do not specify one of these options, SQLJ is verbose by
default.

¹ portable, noportable turns on or off warning messages about the portability of
SQLJ clauses. By default, SQLJ warns about non-portable constructs.

¹ strict, nostrict specifies whether SQLJ matches named iterators strictly against
the columns returned by the database, or not. If this option is on, a warning will be
issued for any column in a result set, that is not matched by a column in the cursor
to which the result set is assigned. Default is strict.

 Appendix C. Embedded SQL Programming Guide Updates 145

-props

The props option specifies the name of a property file from which to read options. For
example:

 -props=myapplic.properties

Connection Options

These options specify the database connection for online checking. All of these options
(except for driver) may be tagged with a ConnectionContext type:

 -option@ConnectionContextType=value

This permits the use of separate exemplar schemas for each of the connection con-
texts. If you omit the connection context type, when specifying one of these options, the
value will be used for any SQL statements that use the default connection context. If no
option value is given at a specific ConnectionContextType, then the option value for the
default connection context is used.

-user

The user option specifies the username for connecting to a database in order to
perform semantic analysis of the SQL expressions embedded in a SQLJ program. It
contains the username, for example:

 -user=scott

The user command line option may include a connection context type. For example:

 -user@Ctx1=scott

Whenever a username is required for the connection to a database context Ctx1, SQLJ
uses the user option that was tagged with Ctx1. If it can't find one, SQLJ issues a
message and looks for an untagged user option to use instead.

Specifying a user value indicates to SQLJ that online checking is to be performed. If
you do not specify the user option, SQLJ does not connect to the database for
semantic analysis. There is no default value for the user option.

If you have turned on online checking by default (for example, by specifying
-user=scott), then in order to disable online checking for a particular connection
context type Ctx2, you have to explicitly give an empty user name:

 -user@Ctx2=

-password

The password option specifies a password for the user. The password will be requested
interactively if it is not supplied. This option can be tagged with a connection context
type. The two forms are:

 -password=tiger

 -password@Ctx1=tiger

146 What's New

-url

This sub-option specifies a JDBC URL for establishing a database connection:

 -url=jdbc:db2:sample

Semantic Checking Options

These options specify the characteristics of offline and online SQL checking.

-offline

Offline checking assumes that there is no connection to the database so that only SQL
syntax and usage of Java types are checked. The offline option specifies the Java class
that implements the SQL checking component of SQLJ for offline checking. This option
permits customized checking for diverse databases by means of the checker class,
sqlj.semantics.OfflineChecker.

The offline option can be tagged with a connection context:

 -offline@myconnect=sqlj.semantics.OfflineChecker

-online

Online checking assumes that the database connection exists. You must have specified
a user ID by means of the user option for checking to actually occur. The online
checker passes DML statements to the database for syntactic and semantic analysis, in
addition to the features of the offline checker. The online checker also checks stored
functions and procedures for overloading by means of the checker class,
sqlj.semantics.JdbcChecker.

The online option specifies the Java class that implements the SQL checking compo-
nent of SQLJ via database connections to exemplar schemas. In a similar way to JDBC
driver registration, the checker is queried as to whether it is able to perform semantic
analysis for the given connection:

 -online=sqlj.semantics.JdbcChecker

The JDBC online checker checks the signature of stored function or procedure calls
and matches it with the JDBC types. It also determines the ResultSetMetaData for
SELECT statements. SELECT statements are executed to determine the
ResultSetMetaData. In order to reduce the size of the returned result set to 0, the WHERE
clause is added or modified to read WHERE 1=2. This option can also be tagged with a
connection context type:

 -online@myconnect=sqlj.semantics.JdbcChecker

-cache

This option can be used to turn on caching of the results of the online checking in order
to avoid database connections during subsequent precompilation runs. The analysis
results are cached in the file, SQLChecker.cache, in the current directory. The cache
may be emptied simply by removing this file.

 Appendix C. Embedded SQL Programming Guide Updates 147

The cache holds a serialized representation of all SQL statements that have been
translated without error or warning messages, with the statements' parameters, return
type, the translator settings and modes inferred about the parameters.

The cache is cumulative, adding new statements. If you are just fixing bugs in the Java
source, you will not have to re-connect to the database. The boolean value for the
cache option can be specified as yes, no, true, false, on, off, 1, or 0. Caching of
semantic analysis results is turned off by default. Example:

 -cache=true

-default-block-mode

Specifies the default mode of host variables occuring in an SQL block. It is used during
offline checking when the mode cannot be determined. During online checking, the
actual mode must correspond to the setting implied by this flag, unless the setting
unknown is used. Possible settings are unknown, inout, in, and out. The default value is
in. Example:

 -default-block-mode=unknown

-default-function-mode

Specifies the default mode of host variables occuring in arguments of a stored function
invocation. It is used during offline checking when the mode cannot be determined.
During online checking, the actual mode must correspond to the setting implied by this
flag, unless the setting unknown is used. Possible settings are unknown, inout, in, and
out. The default value is in. Example:

 -default-function-mode=unknown

-default-procedure-mode

Specifies the default mode of host variables occuring in arguments of a stored function
invocation. It is used during offline checking when the mode cannot be determined.
During online checking, the actual mode must correspond to the setting implied by this
flag, unless the setting unknown is used. Possible settings are unknown, inout, in, and
out. The default value is in. Example:

 -default-procedure-mode=out

Sample Programs and Extra Examples
The sample program information in the Version 5 book have been revised for Version
5.2. See “Sample Programs” on page 150 for details.

148 What's New

Appendix D. Building Applications for Windows and OS/2
Environments Updates

The Building Applications for Windows and OS/2 Environments has not been refreshed
for DB2 Universal Database Version 5.2. The following sections document any Version
5.2 changes and enhancements to building Windows and OS/2 applications and should
be used in conjunction with the Version 5 edition of the Building Applications for
Windows and OS/2 Environments by Version 5.2 users. The updates are arranged by
chapter.

Changes to the Preface: About This Book
The following needs to be updated in the Building Applications for Windows and OS/2
Environments as a result of DB2 Version 5.2 support for additional operating systems.
The paragraph on page vii beginning "This book explains" should be changed to the
following:

This book explains how to build applications using the DB2 Software Developer's Kits
(DB2 SDKs) for the following operating systems:

 ¹ Windows NT
 ¹ Windows 98
 ¹ Windows 95
 ¹ Windows 3.1
 ¹ OS/2

Note: Whenever this book mentions Windows NT, Windows 98, or Windows 95, all
three operating systems: Windows NT, Windows 98, and Windows 95 are
implied, except in the case of Systems Network Architecture (SNA) support,
REXX suport, or DB2 Connect, formerly known as Distributed Database Con-
nection Services (DDCS). These are supported on Windows NT only.

On page vii, add the following to the paragraph beginning "Different programming
interfaces":

Java Database Connectivity (JDBC) Is a dynamic SQL API for Java. The JDBC
API is included in the Java Development
Kits available for supported platforms.

Changes to Chapter 1. About the DB2 Software Developer's Kit
The following addition applies to page 1, in the paragraph beginning: "The DB2 SDKs
for the Windows and OS/2 platforms". Add the following list item after the list item
beginning: "DB2 Java Database Connectivity":

¹ DB2 embedded SQL for Java (SQLJ) support to develop Java embedded SQL
applications and applets.

 Copyright IBM Corp. 1997, 1998 149

The following changes apply to page 1, in the paragraph beginning: "The DB2 SDKs for
the Windows and OS/2 platforms":

Change the list item beginning "On OS/2, Windows NT" to the following:

¹ On OS/2 and Windows NT, support to develop database applications that use the
REXX language.

Change the list item beginning "A documented API" to the following:

¹ A documented API to enable other application development tools to implement pre-
compiler support for DB2 directly within their products. For example, on OS/2 the
IBM PL/I compiler uses this interface. Information on the set of precompiler service
APIs, and how to use them, is available from the anonymous FTP site,
ftp://ftp.software.ibm.com. The PostScript file, called prepapi.psbin, is located
in the directory /ps/products/db2/info. This file is in binary format. If you do not
have access to this electronic forum and would like to get a copy of this document,
you can call IBM Service as described in the Service Information Flyer.

The "Sample Programs" section on page 4 should be replaced with the following:

 Sample Programs
The DB2 SDK comes with sample programs. The file extensions for each supported
language, and the directories where the programs can be found on the supported
paltforms, are given in Table 10 on page 151. In addition, the locations and extensions
for other sample programs can be found in Table 11 on page 151.

The sample programs providing examples of embedded SQL (except for Java), and
DB2 API calls are shown in Table 12 on page 154. Log Management User Exit pro-
grams are shown in Table 13 on page 159. Command Line Processor (CLP) programs
provided by DB2 are shown in Table 14 on page 160.

Java JDBC sample programs are shown in Table 15 on page 160. Java SQLJ sample
programs are shown in Table 16 on page 161.

Object Linking and Embedding (OLE) sample programs are shown in Table 17 on
page 161. The sample programs demonstrating DB2 CLI calls are shown in Table 18
on page 162.

You can use the sample programs to learn how to code your applications.

Note: Not all sample programs have been ported to all the supported programming
languages.

150 What's New

Table 10. Sample Program File Extensions and Locations

Language Embedded SQL Programs Non-embedded SQL Programs

C File Ext. .sqc .c

Directory samples/c samples/c

samples/cli (CLI programs)

C++ File Ext. .sqC (UNIX)
.sqx (Windows & OS/2)

.C (UNIX)

.cxx (Windows & OS/2)

Directory samples/cpp samples/cpp

COBOL File Ext. .sqb .cbl

Directory samples/cobol

samples/cobol_mf

samples/cobol

samples/cobol_mf

Fortran File Ext. .sqf .f (UNIX)
.for (OS/2)

Directory samples/fortran samples/fortran

JAVA File Ext. .sqlj .java

Directory samples/java samples/java

REXX File Ext. .cmd .cmd

Directory samples/rexx samples/rexx

Table 11. Other Samples, their Extensions and Locations

Sample Group

CLP File Ext. .db2

Directory samples/clp

OLE File Ext. .bas (Microsoft Visual Basic)
.CPP (Microsoft Visual C++)

Directory samples\ole\msvb (Microsoft Visual Basic)
samples\ole\msvc (Microsoft Visual C++)

User Exit File Ext. .cad (Windows & OS/2)
.cadsm (UNIX)
.cdisk (UNIX)
.ctape (UNIX)

Directory samples/c

Note:

Embedded SQL Programs require precompilation, except for REXX
embedded SQL programs where the embedded
SQL statements are interpreted when the
program is run.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 151

Directory Delimiters On UNIX are /. On OS/2 and Windows plat-
forms, are \. In the tables, the UNIX delimiters
are used unless the directory is only available on
Windows and/or OS/2.

IBM COBOL samples Are only supplied on the OS/2, AIX, Windows NT
and Windows 95 platforms in the cobol subdirec-
tory.

Micro Focus Cobol Samples
Are supplied on all platforms except the
Macintosh and Silicon Graphics IRIX. The 16-bit
Micro Focus COBOL examples are supplied in
the cobol_16 subdirectory on OS/2, and the
cobol subdirectory on Windows 3.1. For all other
platforms, the Micro Focus COBOL samples are
in the cobol_mf subdirectory.

Fortran Samples Are only supplied on the AIX, HP-UX, Silicon
Graphics IRIX, Solaris, and OS/2 platforms.

Java Samples Are Java Database Connectivity (JDBC) applica-
tions, applets, stored procedures and UDFs, and
embedded SQL (SQLJ) applications, applets,
stored procedures and UDFs. Java samples are
available on the AIX, HP-UX, SCO UnixWare 7,
Silicon Graphics IRIX, Solaris, OS/2, Windows
NT, Windows 98, and Windows 95 platforms.

REXX Samples Are only supplied on the AIX, OS/2, and
Windows NT platforms.

CLP Samples Are Command Line Processor scripts that
execute SQL statements.

OLE Samples Are for Object Linking and Embedding (OLE) in
Microsoft Visual Basic and Microsoft Visual C++,
supplied on the Windows NT and Windows 95
platforms only.

User Exit samples Are Log Management User Exit programs used
to archive and retrieve database log files. The
files must be renamed with a .c extension and
compiled as C language programs.

You can find the sample programs in the samples subdirectory of the directory where
DB2 has been installed. There is a subdirectory for each supported language. The fol-
lowing examples show you how to locate the samples written in C or C++ on each
supported platform.

¹ On UNIX platforms.

You can find the C source code for embedded SQL and DB2 API programs in
sqllib/samples/c under your database instance directory; the C source code for

152 What's New

DB2 CLI programs is in sqllib/samples/cli. For additional information about the
sample programs in Table 12 on page 154 and Table 18 on page 162, refer to
the README file in the appropriate samples subdirectory under your database
manager instance. The README file will contain any additional samples that are not
listed in this book.

¹ On OS/2, Windows NT, Windows 98 and Windows 95 platforms.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c under the DB2 install directory; the C source code for DB2
CLI programs is in %DB2PATH%\samples\cli. The variable %DB2PATH% determines
where DB2 is installed. Depending on which drive DB2 is installed, %DB2PATH% will
point to drive:\sqllib. For additional information about the sample programs in
Table 12 on page 154 and Table 18 on page 162, refer to the README file in the
appropriate %DB2PATH%\samples subdirectory. The README file will contain any addi-
tional samples that are not listed in this book.

¹ On Windows 3.1.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c; the C source code for DB2 CLI programs is in
%DB2PATH%\samples\cli. The db2.ini file, which stores the DB2 settings, defines
the value for %DB2PATH%, which by default points to drive:\sqllib\win. The value of
%DB2PATH%, as referenced in the db2.ini file, is only recognized within the DB2
environment. For additional information about the sample programs in Table 12 on
page 154 and Table 18 on page 162, refer to the README files in these subdirecto-
ries. The README files will contain any additional samples that are not listed in this
book.

 ¹ On Macintosh.

You can find the sample programs in the DB2:samples: folder. There are sub-
folders for sample programs written in C and CLI. For additional information about
the sample programs in Table 12 on page 154 and Table 18 on page 162, refer
to the README file in the DB2:samples: folder. The README file will contain any
additional samples that are not listed in this book.

The sample programs directory is typically read-only on most platforms. Before you
alter or build the sample programs, copy them to your working directory. On the
Macintosh, copy them to your working folder.

Note: The sample programs that are shipped with DB2 Universal Database have
dependencies on the English version of the sample database and the associated
table and column names. If the sample database has been translated into
another national language on your version of DB2 Universal Database, you
need to update the name of the sample database, and the names of the tables
and the columns coded in the supplied sample programs, to the names used in
the translated sample database. Otherwise, you will experience problems
running the sample programs as shipped.

Currently, the sample database is translated into the following languages:

 ¹ Brazilian Portuguese

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 153

 ¹ French
 ¹ Korean
 ¹ Norwegian
 ¹ Simplified Chinese

In Table 12, ‘Yes’, in the Embedded SQL column, indicates that the program contains
embedded SQL. A blank indicates that the program does not contain embedded SQL,
and thus no precompiling is required.

Table 12 (Page 1 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

adhoc Yes Demonstrates dynamic SQL and the SQLDA structure to process SQL
commands interactively. SQL commands are input by the user, and output
corresponding to the SQL command is returned.

advsql Yes Demonstrates the use of advanced SQL expressions like CASE, CAST,
and scalar full selects.

asynrlog Yes Demonstrates the use of the following API:

ASYNCHRONOUS LOG READ

backrest Demonstrates the use of the following APIs:

 BACKUP DATABASE

 RESTORE DATABASE

ROLL FORWARD DATABASE

blobfile Yes Demonstrates the manipulation of a Binary Large Object (BLOB), by
reading a BLOB value from the sample database and placing it in a file,
the contents of which can be displayed using an external viewer.

bindfile Yes Demonstrates the use of the BIND API to bind an embedded SQL appli-
cation to a database.

calludf Yes Demonstrates the use of the library of User-Defined Functions (UDFs)
created by udf for the sample database tables.

client Demonstrates the use of the following APIs:

 SET CLIENT

 QUERY CLIENT

columns Yes Demonstrates the use of a cursor that is processed using dynamic SQL.
This program lists all the entries in the system table,
SYSIBM.SYSTABLES, under a desired schema name.

cursor Yes Demonstrates the use of a cursor using static SQL.

d_dbconf Demonstrates the use of the following API:

GET DATABASE CONFIGURATION DEFAULTS

d_dbmcon Demonstrates the use of the following API:

GET DATABASE MANAGER CONFIGURATION DEFAULTS

db2mon Demonstrates how to use the Database System Monitor APIs, and how to
process the output data buffer returned from the Snapshot API.

154 What's New

Table 12 (Page 2 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

dbauth Yes Demonstrates the use of the following API:

 GET AUTHORIZATIONS

dbcat Demonstrates the use of the following APIs:

 CATALOG DATABASE

CLOSE DATABASE DIRECTORY SCAN

GET NEXT DATABASE DIRECTORY ENTRY

OPEN DATABASE DIRECTORY SCAN

 UNCATALOG DATABASE

dbcmt Demonstrates the use of the following APIs:

CHANGE DATABASE COMMENT

dbconf Demonstrates the use of the following APIs:

 CREATE DATABASE

 DROP DATABASE

GET DATABASE CONFIGURATION

RESET DATABASE CONFIGURATION

UPDATE DATABASE CONFIGURATION

dbinst Demonstrates the use of the following APIs:

ATTACH TO INSTANCE

DETACH FROM INSTANCE

 GET INSTANCE

dbmconf Demonstrates the use of the following APIs:

GET DATABASE MANAGER CONFIGURATION

RESET DATABASE MANAGER CONFIGURATION

UPDATE DATABASE MANAGER CONFIGURATION

dbsnap Demonstrates the use of the following API:

DATABASE SYSTEM MONITOR SNAPSHOT

dbstart Demonstrates the use of the following API:

START DATABASE MANAGER

dbstat Yes Demonstrates the use of the following APIs:

 REORGANIZE TABLE

 RUN STATISTICS

dbstop Demonstrates the use of the following APIs:

 FORCE USERS

STOP DATABASE MANAGER

db_udcs Demonstrates the use of the following APIs in order to simulate the col-
lating behavior of a DB2 for OS/390 CCSID 500 (EBCDIC International)
collating sequence:

 CREATE DATABASE

 DROP DATABASE

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 155

Table 12 (Page 3 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

dcscat Demonstrates the use of the following APIs:

ADD DCS DIRECTORY ENTRY

CLOSE DCS DIRECTORY SCAN

GET DCS DIRECTORY ENTRY FOR DATABASE

GET DCS DIRECTORY ENTRIES

OPEN DCS DIRECTORY SCAN

UNCATALOG DCS DIRECTORY ENTRY

delet Yes Demonstrates static SQL to delete items from a database.

dmscont Demonstrates the use of the following APIs in order to create a database
with more than one database managed storage (DMS) container:

 CREATE DATABASE

 DROP DATABASE

dynamic Yes Demonstrates the use of a cursor using dynamic SQL.

ebcdicdb Demonstrates the use of the following APIs in order to simulate the col-
lating behavior of a DB2 for OS/390 CCSID 037 (EBCDIC US English)
collating sequence:

 CREATE DATABASE

 DROP DATABASE

expsamp Yes Demonstrates the use of the following APIs:

 EXPORT

 IMPORT

 in conjunction with a DRDA database.

fillcli Yes Demonstrates the client-side of a stored procedure that uses the SQLDA
to pass information specifying which table the stored procedure populates
with random data.

fillsrv Yes Demonstrates the server-side of a stored procedure example that uses
the SQLDA to receive information from the client specifying the table that
the stored procedure populates with random data.

impexp Yes Demonstrates the use of the following APIs:

 EXPORT

 IMPORT

inpcli Yes Demonstrates stored procedures using either the SQLDA structure or host
variables. This is the client program of a client/server example. (The
server program is called inpsrv.) The program fills the SQLDA with infor-
mation, and passes it to the server program for further processing. The
SQLCA status is returned to the client program. This program shows the
invocation of stored procedures using an embedded SQL CALL state-
ment.

inpsrv Yes Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
inpcli.) The program creates a table (PRESIDENTS) in the sample data-
base with the information received in the SQLDA. The server program
does all the database processing and returns the SQLCA status to the
client program.

156 What's New

Table 12 (Page 4 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

joinsql Yes An example using advanced SQL join expressions.

largevol Yes Demonstrates parallel query processing in a partitioned environment, and
the use of an NFS file system to automate the merging of the result sets.

lobeval Yes Demonstrates the use of LOB locators and deferring the evaluation of the
actual LOB data.

lobfile Yes Demonstrates the use of LOB file handles.

lobloc Yes Demonstrates the use of LOB locators.

lobval Yes Demonstrates the use of LOBs.

makeapi Yes Demonstrates the use of the following APIs:

 BIND

 PRECOMPILE PROGRAM

START DATABASE MANAGER

STOP DATABASE MANAGER

migrate Demonstrates the use of the following API:

 MIGRATE DATABASE

monreset Demonstrates the use of the following API:

RESET DATABASE SYSTEM MONITOR DATA AREAS

monsz Demonstrates the use of the following APIs:

ESTIMATE DATABASE SYSTEM MONITOR BUFFER SIZE

DATABASE SYSTEM MONITOR SNAPSHOT

nodecat Demonstrates the use of the following APIs:

 CATALOG NODE

CLOSE NODE DIRECTORY SCAN

GET NEXT NODE DIRECTORY ENTRY

OPEN NODE DIRECTORY SCAN

 UNCATALOG NODE

openftch Yes Demonstrates fetching, updating, and deleting of rows using static SQL.

outcli Yes Demonstrates stored procedures using the SQLDA structure. This is the
client program of a client/server example. (The server program is called
outsrv.) This program allocates and initializes a one variable SQLDA, and
passes it to the server program for further processing. The filled SQLDA is
returned to the client program along with the SQLCA status. This program
shows the invocation of stored procedures using an embedded SQL CALL
statement.

outsrv Yes Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
outcli.) The program fills the SQLDA with the median SALARY of the
employees in the STAFF table of the sample database. The server program
does all the database processing (finding the median). The server
program returns the filled SQLDA and the SQLCA status to the client
program.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 157

Table 12 (Page 5 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

qload Yes Demonstrates the use of the following API:

 LOAD QUERY

rebind Yes Demonstrates the use of the following API:

 REBIND PACKAGE

rechist Demonstrates the use of the following APIs:

CLOSE RECOVERY HISTORY FILE SCAN

GET NEXT RECOVERY HISTORY FILE ENTRY

OPEN RECOVERY HISTORY FILE SCAN

PRUNE RECOVERY HISTORY FILE ENTRY

UPDATE RECOVERY HISTORY FILE ENTRY

recursql Yes Demonstrates the use of advanced SQL recursive queries.

regder Demonstrates the use of the following APIs:

 REGISTER

 DEREGISTER

restart Demonstrates the use of the following API:

 RESTART DATABASE

sampudf Yes Demonstrates the use of User-Defined Types (UDTs) and User-Defined
Functions (UDFs). The UDFs declared in this program are all sourced
UDFs.

setact Demonstrates the use of the following API:

SET ACCOUNTING STRING

setrundg Demonstrates the use of the following API:

SET RUNTIME DEGREE

static Yes Uses static SQL to retrieve information.

sws Demonstrates the use of the following API:

DATABASE MONITOR SWITCH

tabscont Demonstrates the use of the following APIs:

TABLESPACE CONTAINER QUERY

OPEN TABLESPACE CONTAINER QUERY

FETCH TABLESPACE CONTAINER QUERY

CLOSE TABLESPACE CONTAINER QUERY

SET TABLESPACE CONTAINER QUERY

tabspace Demonstrates the use of the following APIs:

 TABLESPACE QUERY

SINGLE TABLESPACE QUERY

OPEN TABLESPACE QUERY

FETCH TABLESPACE QUERY

GET TABLESPACE STATISTICS

CLOSE TABLESPACE QUERY

tabsql Yes Demonstrates the use of advanced SQL table expressions.

158 What's New

Table 12 (Page 6 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

tblcli Demonstrates a call to a table function (client-side) to display weather
information for a number of cities.

tblsrv Demonstrates a table function (server-side) that processes weather infor-
mation for a number of cities.

thdsrver Yes Demonstrates the use of posix threads APIs for thread creation and man-
agement. The program maintains a pool of contexts. A generate_work
function is executed from main, and creates dynamic SQL statements that
are executed by worker threads. When a context becomes available, a
thread is created and dispatched to do the specified work. The work gen-
erated consists of statements to delete entries from either the STAFF or
EMPLOYEE tables of the sample database. This program is only available
on UNIX platforms.

tload Yes Demonstrates the use of the following APIs:

 EXPORT

QUIESCE TABLESPACE FOR TABLES

 LOAD

trigsql Yes An example using advanced SQL triggers and constraints.

udf Yes Creates a library of User-Defined Functions (UDFs) made specifically for
the sample database tables, but can be used with tables of compatible
column types.

updat Yes Uses static SQL to update a database.

util Demonstrates the use of the following APIs:

GET ERROR MESSAGE

GET SQLSTATE MESSAGE

INSTALL SIGNAL HANDLER

 INTERRUPT

 This program also contains code to output information from an SQLDA.

varinp Yes An example of variable input to Embedded Dynamic SQL statement calls
using parameter markers.

Table 13 (Page 1 of 2). Log Management User Exit Sample Programs.

Sample File
Name

File Description

db2uext2.cadsm This is a sample User Exit utilizing ADSTAR DSM (ADSM) APIs to archive and retrieve data-
base log files. The sample provides an audit trail of calls (stored in a separate file for each
option) including a timestamp and parameters received. It also provides an error trail of calls in
error including a timestamp and an error isolation string for problem determination. These
options can be disabled. The file must be renamed db2uext2.c and compiled as a C program.
Available on supported UNIX platforms only. The Windows NT version is db2uext2.cad. The
OS/2 version is db2uexit.cad.

db2uext2.cad This is the Windows NT version of db2uext2.cadsm. The file must be renamed db2uext2.c and
compiled as a C program.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 159

Table 13 (Page 2 of 2). Log Management User Exit Sample Programs.

Sample File
Name

File Description

db2uexit.cad This is the OS/2 version of db2uext2.cadsm. The file must be renamed db2uexit.c and com-
piled as a C program.

db2uext2.cdisk This is a sample User Exit utilizing the AIX system copy command to archive and retrieve data-
base log files. The sample provides an audit trail of calls (stored in a separate file for each
option) including a timestamp and parameters received. It also provides an error trail of calls in
error including a timestamp and an error isolation string for problem determination. These
options can be disabled. The file must be renamed db2uext2.c and compiled as a C program.
Available on supported UNIX platforms only.

db2uext2.ctape This is a sample User Exit utilizing the SUN system tape commands to archive and retrieve
database log files. All limitations of the SUN system tape commands are limitations of this user
exit. The sample provides an audit trail of calls (stored in a separate file for each option)
including a timestamp and parameters received. It also provides an error trail of calls in error
including a timestamp and an error isolation string for problem determination. These options can
be disabled. The file must be renamed db2uext2.c and compiled as a C program. Available on
supported UNIX platforms only.

Table 14. Command Line Processor (CLP) Sample Programs.

Sample
Program Name

Program Description

const Creates a table with a CHECK CONSTRAINT clause.

cte Demonstrates a common table expression. The equivalent sample program demonstrating this
advanced SQL statement is tabsql.

flt Demonstrates a recursive query. The equivalent sample program demonstrating this advanced
SQL statement is recursql.

join Demonstrates an outer join of tables. The equivalent sample program demonstrating this
advanced SQL statement is joinsql.

stock Demonstrates the use of triggers. The equivalent sample program demonstrating this advanced
SQL statement is trigsql.

testdata Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table with ran-
domly generated test data.

thaisort This script is particularly for Thai users. Thai sorting is by phonetic order requiring pre-
sorting/swapping of the leading vowel and its consonant, as well as post-sorting in order to view
the data in the correct sort order. The file implements Thai sorting by creating UDF functions
presort and postsort, and creating a table; then it calls the functions against the table to sort the
table data. To run this program, you first have to build the user-defined function program, udf,
from the C source file, udf.c.

Table 15 (Page 1 of 2). Java Database Connectivity (JDBC) Sample Programs

Sample Program
Name Program Description

DB2Appl.java A JDBC application that queries the sample database using the invoking user's privileges.

160 What's New

Table 15 (Page 2 of 2). Java Database Connectivity (JDBC) Sample Programs

Sample Program
Name Program Description

DB2Applt.java A JDBC applet that queries the sample database using a user and server specified as applet
parameters.

DB2Applt.html An HTML file that embeds the applet sample program, DB2Applt. It needs to be customized
with server and user information.

DB2Stp.java A Java stored procedure that updates the EMPLOYEE table on the server, and returns new
salary and payroll information to the client.

DB2Udf.java A Java UDF that demonstrates several tasks, including integer division, manipulation of Char-
acter Large OBjects (CLOBs), and the use of Java instance variables.

Table 16. Embedded SQL for Java (SQLJ) Sample Programs

Sample Program
Name Program Description

App.sqlj An SQLJ application that uses static SQL to retrieve and update data from the EMPLOYEE
table of the sample database.

Applt.sqlj An SQLJ applet that queries the sample database using a user and server specified as
applet parameters.

Applt.html An HTML file that embeds the applet sample program, Applt. It needs to be customized with
server and user information.

Stp.sqlj An embedded SQL (SQLJ) stored procedure that updates the EMPLOYEE table on the
server, and returns new salary and payroll information to the client.

CatUdf.sqlj An SQLJ program that demonstrates cataloging Java UDFs and creating a sample table,
udftest, for testing them.

Udf.sqlj An SQLJ program that demonstrates calling Java UDFs against the sample table, udftest.

DropUdf.sqlj An SQLJ program that demonstrates dropping Java UDFs and the sample table, udftest.

Table 17 (Page 1 of 2). Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented in Visual
Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging (implemented in
Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice documents as
e-mail attachments (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the STAFF table of
the sample database (implemented in Visual Basic).

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 161

Table 17 (Page 2 of 2). Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

salaryclt A client program that invokes the median salary OLE automation stored procedure salarysrv
(implemented in Visual Basic and in Visual C++).

Table 18 (Page 1 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

Utility files used by most CLI samples

samputil.c Utility functions used by most samples

samputil.h Header file for samputil.c, included by most samples

General CLI Samples

adhoc.c Interactive SQL with formatted output (was typical.c)

async.c ** Run a function asynchronously (based on fetch.c)

basiccon.c Basic connection

browser.c List columns, foreign keys, index columns or stats for a table

colpriv.c List column Privileges

columns.c List all columns for table search string

compnd.c Compound SQL example

datasour.c List all available data sources

descrptr.c ** Example of descriptor usage

drivrcon.c Rewrite of basiccon.c using SQLDriverConnect

duowcon.c Multiple DUOW Connect type 2, syncpoint 1 (one phase commit)

embedded.c Show equivalent DB2 CLI calls, for embedded SQL (in comments)

fetch.c Simple example of a fetch sequence

getattrs.c List some common environment, connection and statement options/attributes

getcurs.c Show use of SQLGetCursor, and positioned update

getdata.c Rewrite of fetch.c using SQLGetData instead of SQLBindCol

getfuncs.c List all supported functions

getfuncs.h Header file for getfuncs.c

getinfo.c Use SQLGetInfo to get driver version and other information

getsqlca.c Rewrite of adhoc.c to use prepare/execute and show cost estimate

lookres.c Extract string from resume clob using locators

mixed.sqc CLI sample with functions written using embedded SQL (Note: This file must be precom-
piled)

multicon.c Multiple connections

native.c Simple example of calling SQLNativeSql, and SQLNumParams

162 What's New

Table 18 (Page 2 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

prepare.c Rewrite of fetch.c, using prepare/execute instead of execdirect

proccols.c List procedure parameters using SQLProcedureColumns

procs.c List procedures using SQLProcedures

sfetch.c ** Scrollable cursor example (based on xfetch.c)

setcolat.c Set column attributes (using SQLSetColAttributes)

setcurs.c Rewrite of getcurs.c using SQLSetCurs for positioned update

seteattr.c Set environment attribute (SQL_ATTR_OUTPUT_NTS)

tables.c List all tables

typeinfo.c Display type information for all types for current data source

xfetch.c Extended Fetch, multiple rows per fetch

BLOB Samples

picin.c Loads graphic BLOBS into the emp_photo table directly from a file using
SQLBindParamToFile

picin2.c Loads graphic BLOBS into the emp_photo table using SQLPutData

showpic.c Extracts BLOB picture to file (using SQLBindColToFile), then displays the graphic.

showpic2.c Extracts BLOB picture to file using piecewise output, then displays the graphic.

Stored Procedure Samples

clicall.c Defines a CLI function which is used in the embedded SQL sample mrspcli3.sqc

inpcli.c Call embedded input stored procedure samples/c/inpsrv

inpcli2.c Call CLI input stored procedure inpsrv2

inpsrv2.c CLI input stored procedure (rewrite of embedded sample inpsrv.sqc)

mrspcli.c CLI program that calls mrspsrv.c

mrspcli2.c CLI program that calls mrspsrv2.sqc

mrspcli3.sqc An embedded SQL program that calls mrspsrv2.sqc using clicall.c

mrspsrv.c Stored procedure that returns a multi-row result set

mrspsrv2.sqc An embedded SQL stored procedure that returns a multi-row result set

outcli.c Call embedded output stored procedure samples/c/inpsrv

outcli2.c Call CLI output stored procedure inpsrv2

outsrv2.c CLI output stored procedure (rewrite of embedded sample inpsrv.sqc)

Samples using ORDER tables created by create.c (Run in the following order)

create.c Creates all tables for the order scenario

custin.c Inserts customers into the customer table (array insert)

prodin.c Inserts products into the products table (array insert)

prodpart.c Inserts parts into the prod_parts table (array insert)

ordin.c Inserts orders into the ord_line, ord_cust tables (array insert)

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 163

Table 18 (Page 3 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

ordrep.c Generates order report using multiple result sets

partrep.c Generates exploding parts report (recursive SQL Query)

order.c UDF library code (declares a 'price' UDF)

order.exp Used to build order library

Version 2 Samples unchanged

v2sutil.c samputil.c using old v2 functions

v2sutil.h samputil.h using old v2 functions

v2fetch.c fetch.c using old v2 functions

v2xfetch.c xfetch.c using old v2 functions

Note: Samples marked with a ** are new for this release.

Other files in the samples/cli directory include:

¹ README - Lists all example files.
¹ makefile - Makefile for all files

Changes to Chapter 2. Setup
The following will be updated. On page 19, change the title, first three paragraphs, and
first sentence of the fourth paragraph of "Setting the Windows NT and Windows 95
Environment" to the following:

Setting the Windows NT, Windows 98, and Windows 95 Environment

When you install the DB2 SDK for Windows NT, the install program updates the
Windows NT configuration registry with the environment variables INCLUDE, LIB, PATH,

DB2PATH, and DB2INSTANCE. The default instance is DB2.

When you install the DB2 SDK for Windows 98 or the DB2 SDK for Windows 95, the
install program updates the autoexec.bat file.

You can override these environment variables to set the values for the machine or the
currently logged-on user. To override these values, use any of the following:

¹ The Windows 98, Windows 95 or Windows 3.1 command window
¹ The Windows NT control panel
¹ The Windows 98 or Windows 95 autoexec.bat file

Note: Exercise caution when changing these environment variables. Do not change
the DB2PATH environment variable.

These environment variables can be updated for running most Windows NT, Windows
98 and Windows 95 programs.

164 What's New

Changes to Chapter 3. Introduction to Embedded SQL Applications
The following change applies to page 30. Replace the note beginning "Of the samples
given in Table 7" with the following:

Note: Of the samples given in Table 7 on page 29, the C++ directory,
%DB2PATH%\samples\cpp, contains C++ versions of updat, outsrv and outcli. It
also has several other embedded SQL sample programs including stored proce-
dures. See the README file in the %DB2PATH%\samples\cpp directory for more
information.

Changes to Chapter 7. Building DB2 Call Level Interface (CLI) Applications
On page 128, replace the first part of the section "Windows NT and Windows 95" with
the following:

Windows NT, Windows 98 and Windows 95

Note: All applications on Windows NT, Windows 98 and Windows 95, both embedded
SQL and non-embedded SQL, must be built in a DB2 command window, and
not from an operating system command prompt.

Microsoft Visual C++ is used in the following batch file, clibld.bat.

rem clibld batch file - Windows NT, Windows 98 and Windows 95 - Microsoft Visual C++

rem Build a CLI sample C program.

rem Compile the program.

cl -Z7 -Od -c -W1 -D_X86=1 -DWIN32 -I:%DB2PATH%\include clisampl.c

rem Compile common utility functions used by most CLI sample programs.

cl -Z7 -Od -c -W1 -D_X86=1 -DWIN32 -I:%DB2PATH%\include samputil.c

rem Link the program.

link -debug:full -debugtype:cv -OUT:clisampl.exe clisampl.obj samputil.obj db2cli.lib

Compile and Link Options for clibld

The batch file contains the following compile options:

cl The Microsoft Visual C++ compiler.

-Z7 C7 style CodeView information generated.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W1 Set warning level.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 165

On page 131, replace the first part of the section "OS/2" with the following:

OS/2

IBM VisualAge C++ is used in the following command file, clibld.cmd.

rem clibld command file - OS/2 - IBM VisualAge C++ compiler

rem Build a CLI sample C program.

rem Compile the program.

icc -C+ -O- -Ti+ clisampl.c

rem Compile common utility functions used by most CLI sample programs.

icc -C+ -O- -Ti+ samputil.c

rem Link the program.

ilink /NOFREE /NOI /DEBUG /ST:32000 /PM:VIO clisampl.obj

 samputil.obj,clisampl.exe,NUL,db2cli.lib;

Compile and Link Options for clibld

The batch file contains the following link options:

link Use the 32-bit linker to link edit.

-debug:full Include debugging information.

-debugtype:cv Indicate the debugger type.

-OUT:clisampl.exe

Specify the executable.

clisampl.obj Include the object file.

samputil.obj Include the utility object file for error checking.

db2cli.lib Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

Compile and Link Options for clibld

The command file contains the following compile options:

icc The IBM VisualAge C++ compiler.
-C+ Perform compile only; no link. This book assumes that compile and link are

separate steps.
-O- No optimization. It is easier to use a debugger with optimization off.
-Ti+ Generate debugger information

166 What's New

Compile and Link Options for clibld

The command file contains the following link options:

ilink Use the ilink linker to link edit.
/NOFREE No free format.
/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.
/ST:32000 Specify a stack size of at least 32 000.
/PM:VIO Enable the program to run in an OS/2 window.
clisampl.obj Include the object file.
samputil.obj Include the utility object file for error checking.
clisampl.exe Specify the executable.
NUL Specify a NUL option.
db2cli.lib Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

Changes to Chapter 8. Building Java Applications and Applets
The following replaces the entire chapter.

You can develop Java programs to access DB2 databases with the appropriate Java
Development Kit (JDK) on Windows NT, Windows 98, Windows 95, and OS/2. The
JDK includes Java Database Connectivity (JDBC), a dynamic SQL API for Java.

DB2 JDBC support is provided by the DB2 Client Application Enabler (DB2 CAE). With
this support you can build and run JDBC applications and applets. These contain
dynamic SQL only, and use a Java call interface to pass SQL statements to DB2.

The DB2 Software Developer's Kit (DB2 SDK) provides support for Java embedded
SQL (SQLJ). With DB2 SQLJ support and DB2 JDBC support you can build and run
SQLJ applications and applets. These contain static SQL and use embedded SQL
statements that are bound to a DB2 database.

The SQLJ support provided by the DB2 SDK includes:

¹ The SQLJ translator, sqlj, which replaces embedded SQL statements in the SQLJ
program with Java source statements, and generates a serialized profile which
contains information about the SQL operations found in the SQLJ program. The
SQLJ translator uses the %DB2PATH%\java\sqlj.zip file.

¹ The DB2 SQLJ profile customizer, db2profc, which precompiles the SQL state-
ments stored in the generated profile, customizing them into calls to the SQLJ
runtime function, and generates a package in the DB2 database. For more informa-
tion on the db2profc command, see the Command Reference.

¹ The DB2 SQLJ runtime function, which provides a runtime interface to the DB2
database manager.

Building and running different types of Java programs requires support from different
components of DB2:

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 167

¹ To build JDBC applications requires the DB2 Client Application Enabler (DB2
CAE). To run JDBC applications requires the DB2 CAE in order to connect to DB2.

¹ To build SQLJ applications requires the DB2 CAE and the DB2 SDK. To run SQLJ
applications requires the DB2 CAE in order to connect to DB2.

¹ To build JDBC applets requires the DB2 CAE. No DB2 component is required to
run JDBC applets on a client machine.

¹ To build SQLJ applets requires the DB2 CAE and the DB2 SDK. No DB2 compo-
nent is required to run SQLJ applets on a client machine.

For more information on DB2 programming in Java, see “Programming in JDBC” on
page 101. This covers creating and running JDBC applications, applets, stored proce-
dures and UDFs. For information on SQLJ applications, applets, stored procedures and
UDFs, see “Embedded SQL for Java (SQLJ) Programming” on page 117.

For the latest, updated DB2 Java information, visit the Web Page at
http://www.software.ibm.com/data/db2/java.

Setting the Environment

Windows NT, Windows 98 and Windows 95
To build Java applications on a supported Windows platform with DB2 JDBC support,
you need to install and configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for Win32 from Sun Microsystems
(refer to http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for Windows NT and Windows 95 from the
DB2 Client Pack. It must be Version 2.1.2 or later.

To run DB2 Java stored procedures or UDFs, you also need to update the DB2 data-
base manager configuration on the server to include the path where the JDK is installed
on that machine. You can do this by entering the following on the server command line:

db2 update dbm cfg using JDK11_PATH c:\jdk11

where c:\jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct value for
the JDK11_PATH field by entering the following command on the server:

db2 get dbm cfg

You may want to pipe the output to a file for easier viewing. The JDK11_PATH field
appears near the beginning of the output. For more information on these commands,
see the Command Reference.

To run Java programs on a supported Windows platform with DB2 JDBC support, the
following environment variables are automatically updated when DB2 is installed, to
ensure that:

¹ CLASSPATH includes "." and the file %DB2PATH%\java\db2java.zip

168 What's New

¹ PATH includes the directory %DB2PATH%\bin

To build SQLJ programs, CLASSPATH is also updated to include the file:

 %DB2PATH%\java\sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:

 %DB2PATH%\java\runtime.zip

 OS/2
To build Java applications on OS/2 with DB2 JDBC support, you need to install and
configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for OS/2 from IBM (refer to
http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for OS/2 from the DB2 Client Pack. It must be
Version 2.1.2 or later.

The JDK must be installed in an HPFS drive to allow long filenames with extensions
greater than three characters, such as .java. Your Java working directory must also
be on an HPFS drive. If you will be running Java stored procedures or UDFs on an
OS/2 server, DB2 must be installed on an HPFS drive on the server in order to allow
the stored procedure or UDF .class files to be placed in the %DB2PATH%\function direc-
tory.

To run DB2 Java stored procedures or UDFs, you need to update the DB2 database
manager configuration on the server to include the path where the JDK is installed on
that machine. You can do this by entering the following on the server command line:

db2 update dbm cfg using JDK11_PATH c:\jdk11

where c:\jdk11 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct value for
the JDK11_PATH field by entering the following command on the server:

db2 get dbm cfg

You may want to pipe the output to a file for easier viewing. The JDK11_PATH field
appears near the beginning of the output. For more information on these commands,
see the Command Reference.

To run Java programs on OS/2 with DB2 JDBC support, the following environment vari-
ables are automatically updated when DB2 is installed, to ensure that:

¹ CLASSPATH includes "." and the file %DB2PATH%\java\db2java.zip

¹ PATH includes the directory %DB2PATH%\bin

¹ LIBPATH includes the directory %DB2PATH%\dll

To build SQLJ programs, CLASSPATH is also updated to include the file:

 %DB2PATH%\java\sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 169

 %DB2PATH%\java\runtime.zip

Java Sample Programs
DB2 provides sample programs, used in the following sections, to demonstrate building
and running JDBC programs that exclusively use dynamic SQL, and SQLJ programs
that use static SQL. The Java samples are located in the %DB2PATH%\samples\java
directory. The directory also contains a README and a makefile. Please see the
section “The Java Makefile” on page 170.

Before modifying or building the sample programs, it is recommended that you copy
them from the %DB2PATH%\samples\java directory to a separate working directory.

On OS/2, your working directory must be on an HPFS drive. Since DB2 sample pro-
grams are provided on OS/2 to be compatible with FAT drives, filenames have at most
a three character extension. To comply with this restriction, Java sample files have
been truncated. After copying the Java files to your working directory, you can rename
the truncated files by the following commands:

move *.jav *.java

move *.htm *.html

move *.sql *.sqlj

To run these sample programs, you must first create and populate the sample database
by entering:

 db2sampl

General Points for Building and Running DB2 Java Programs

1. You must build and run DB2 Java applications and applets from a window where
your environment variables are set. You can do this by running db2profile. Refer
to Chapter 2, "Setup", on page 19 if you need more information.

2. To build DB2 SQLJ programs, or to run any DB2 Java programs, the database
manager on the server must be started. Start the database manager, if it is not
already running, by entering the following command on the server:

 db2start

The Java Makefile
The makefile provided for the Java sample programs is presented below. The makefile
will only work if a compatible make executable program is resident on your system in a
directory included in your PATH variable. A suitable make utility may be provided by
another language compiler. Please read the comment at the beginning of the text of the
makefile for more information.

The make commands used to build specific Java sample programs are cited in the
sections that follow. There is one change from makefiles normally used for other lan-
guages. The make clean command removes all files produced by the java compiler:

170 What's New

.java files and core dumps; the make cleanall command removes these files as well
as any files produced by the SQLJ translator.

The makefiles for the supported Windows platforms and for OS/2 are identical except
for the header information,

for Windows platforms:

IBM DB2 Universal Database Version 5

for Windows NT, Windows 98 and Windows 95

Makefile for DB2 Java samples

and for OS/2:

IBM DB2 Universal Database Version 5 for OS/2

Makefile for DB2 java samples

The rest of the makefile is as follows:

The makefile will only work if a compatible make executable program is

resident on your system in a directory included in your PATH variable.

Such a make utility may be provided by another language compiler. If you

do not have a compatible make utility you cannot use this makefile, but

you can still compile and run these programs by entering the commands

at the command line, as explained in the README.

To build your applications using this makefile, you can use one of

the following commands:

make all - builds all the programs in this directory

make <prog_name> - builds a program designated by <prog_name>

make clean - removes all files produced by the java compiler

from your working directory (such as .class files)

make cleanall - removes all files from your working directory produced

by both the sqlj translator and java compiler.

This file assumes the DB2 instance path is defined by the variable HOME.

It also assumes that DB2 is installed under the DB2 instance.

If these conditions are not true, redefine DB2INSTANCEPATH

DB2INSTANCEPATH = $(HOME)

Use the java compiler

CC= javac

To connect to another database update the DATASOURCE variable.

User ID and password are optional. If you want to use them,

update TESTUID with your user ID, and TESTPWD with your password.

DATASOURCE=sample

TESTUID=

TESTPWD=

COPY = copy

ERASE = del

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 171

Note: 'all' contains RunCatUdf, which executes the 'java CatUdf' command,

as this must be run before the 'make Udf' command.

all : DB2Appl DB2Applt DB2Stp DB2Udf App Applt Stp CatUdf RunCatUdf Udf DropUdf

RunCatUdf :

 java CatUdf

clean :

 $(ERASE) *.class

 $(ERASE) core

cleanall : clean

 $(ERASE) App.java

 $(ERASE) Applt.java

 $(ERASE) Stp.java

 $(ERASE) CatUdf.java

 $(ERASE) Udf.java

 $(ERASE) DropUdf.java

 $(ERASE) *.ser

Build and run the following JDBC application with these commands:

#

make DB2Appl

java DB2Appl

#

DB2Appl.class : DB2Appl.java

DB2Appl : DB2Appl.class

 $(CC) DB2Appl.java

After following the setup instructions in the README, you can

build and run the following JDBC applet with these commands:

#

make DB2Applt

appletviewer DB2Applt.html

#

DB2Applt.class : DB2Applt.java

DB2Applt : DB2Applt.class

 $(CC) DB2Applt.java

Build and run the following JDBC stored procedure with these commands:

#

make DB2Stp

java DB2Stp

#

DB2Stp.class : DB2Stp.java

DB2Stp : DB2Stp.class

 $(CC) DB2Stp.java

$(COPY) DB2StpSample.class $(DB2PATH)\function

Build and run the following JDBC UDF with these commands:

#

172 What's New

make DB2Udf

java DB2Udf

#

DB2Udf.class : DB2Udf.java

DB2Udf : DB2Udf.class

 $(CC) DB2Udf.java

$(COPY) DB2UdfSample.class $(DB2PATH)\function

Build and run the following SQLJ application with these commands:

#

make App

java App

#

App.java : App.sqlj

 sqlj App.sqlj

App.class : App.java App_SJProfile0.ser

App : App.class

 $(CC) App.java

db2profc -url=jdbc:db2:sample -prepoptions="package using App" App_SJProfile0

After following the setup instructions in the README, you can

build and run the following SQLJ applet with these commands:

#

make Applt

appletviewer Applt.html

Applt.java : Applt.sqlj

 sqlj Applt.sqlj

Applt.class : Applt.java Applt_SJProfile0.ser

Applt : Applt.class

 $(CC) Applt.java

db2profc -url=jdbc:db2:sample -prepoptions="package using Applt" Applt_SJProfile0

Build and run the following SQLJ stored procedure with these commands:

#

make Stp

java Stp

#

Stp.java : Stp.sqlj

 sqlj Stp.sqlj

Stp.class : Stp.java Stp_SJProfile0.ser

Stp : Stp.class

 $(CC) Stp.java

db2profc -url=jdbc:db2:sample -prepoptions="package using Stp" Stp_SJProfile0

$(COPY) Stpsrv.class $(DB2PATH)\function

$(COPY) Stp_Cursor1.class $(DB2PATH)\function

$(COPY) Stp_Cursor2.class $(DB2PATH)\function

$(COPY) Stp_SJProfileKeys.class $(DB2PATH)\function

$(COPY) Stp_SJProfile0.ser $(DB2PATH)\function

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 173

The following SQLJ User-Defined Function application requires three programs.

Build and run the UDF programs with these commands:

#

nmake CatUdf

java CatUdf

nmake Udf

java Udf

nmake DropUdf

java DropUdf

#

Note: 'java CatUdf' must be executed before 'nmake Udf'. The 'make all'

command calls RunCatUdf, which executes 'java CatUdf', before calling Udf.

#

CatUdf.java : CatUdf.sqlj

 sqlj CatUdf.sqlj

CatUdf.class : CatUdf.java CatUdf_SJProfile0.ser

CatUdf : CatUdf.class

 $(CC) CatUdf.java

db2profc -url=jdbc:db2:sample -prepoptions="package using CatUdf" CatUdf_SJProfile0

Udf.java : Udf.sqlj

 sqlj Udf.sqlj

Udf.class : Udf.java Udf_SJProfile0.ser

Udf : Udf.class

 $(CC) Udf.java

db2profc -url=jdbc:db2:sample -prepoptions="package using Udf" Udf_SJProfile0

$(COPY) Udfsrv.class $(DB2PATH)\function

DropUdf.java : DropUdf.sqlj

 sqlj DropUdf.sqlj

DropUdf.class : DropUdf.java DropUdf_SJProfile0.ser

DropUdf : DropUdf.class

 $(CC) DropUdf.java

db2profc -url=jdbc:db2:sample -prepoptions="package using DropUdf" DropUdf_SJProfile0

 JDBC Programs

 Applications
DB2Appl demonstrates a dynamic SQL Java application using the JDBC Application
driver to access a DB2 database.

Command Line . To build and run this application by commands entered at the
command line:

1. Compile DB2Appl.java with this command:

javac DB2Appl.java

to produce the file: DB2Appl.class.

2. Run the java interpreter on the application with this command:

174 What's New

java DB2Appl

makefile . To build this application with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build the application with this command:

make DB2Appl

3. Run the java interpreter on the application with this command:

java DB2Appl

 Applets
DB2Applt demonstrates a dynamic SQL Java applet using the JDBC applet driver to
access a DB2 database.

Command Line . To build and run this applet by commands entered at the command
line:

1. Ensure that a web server is installed on your DB2 machine (server or client).

2. Modify the DB2Applt.html file according to the instructions there.

3. Start the JDBC applet server on the TCP/IP port specified in DB2Applt.html; for
example, if in DB2Applt.html, you specified:

param name=port value='6789'

then you would enter:

db2jstrt 6789

4. Compile DB2Applt.java with this command:

javac DB2Applt.java

to produce the file DB2Applt.class.

5. Ensure that your working directory is accessible by your web browser. If it is not,
copy DB2Applt.class and DB2Applt.html into a directory that is accessible.

6. Copy the file %DB2PATH%\java\db2java.zip into the same directory as
DB2Applt.class and DB2Applt.html.

7. On your client machine, start your web browser (which supports JDK 1.1) and load
DB2Applt.html.

As an alternative to steps (1), (5) and (7), you can use the applet viewer that comes
with the Java Development Kit by entering the following command in the working direc-
tory of your client machine:

appletviewer DB2Applt.html

makefile . To build this applet with the makefile, and then run it:

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 175

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Ensure that a web server is installed on your DB2 machine (server or client).

3. Modify the DB2Applt.html file according to the instructions there.

4. Start the JDBC applet server on the TCP/IP port specified in DB2Applt.html; for
example, if in DB2Applt.html, you specified:

param name=port value='6789'

then you would enter:

db2jstrt 6789

5. Build the applet with this command:

make DB2Applt

6. Ensure that your working directory is accessible by your web browser. If it is not,
copy DB2Applt.class and DB2Applt.html into a directory that is accessible.

7. Copy the file %DB2PATH%\java\db2java.zip into the same directory as
DB2Applt.class and DB2Applt.html.

8. On your client machine, start your web browser (which supports JDK 1.1) and load
DB2Applt.html.

As an alternative to steps (2), (6) and (8), you can use the applet viewer that comes
with the Java Development Kit by entering the following command in the working direc-
tory of your client machine:

appletviewer DB2Applt.html

 Stored Procedures
DB2Stp demonstrates how to write a dynamic SQL Java stored procedure using the
JDBC Application driver to access a DB2 database.

Command Line . To build and run this stored procedure by commands entered at the
command line:

1. Compile DB2Stp.java with this command:

javac DB2Stp.java

This will produce the files DB2Stp.class and DB2StpSample.class.

2. Copy DB2StpSample.class to the %DB2PATH%\function directory.

3. Run the java interpreter on the stored procedure with this command:

java DB2Stp

makefile . To build this stored procedure with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build the stored procedure with this command:

176 What's New

make DB2Stp

3. Run the java interpreter on the stored procedure with this command:

java DB2Stp

 User-Defined Functions
DB2Udf demonstrates implementing dynamic SQL user-defined functions using the
JDBC Application driver to access a DB2 database.

Command Line . To build and run this UDF program by commands entered at the
command line:

1. Compile DB2Udf.java with this command:

javac DB2Udf.java

This will produce the files DB2Udf.class and DB2UdfSample.class.

2. Copy DB2UdfSample.class to the %DB2PATH%\function directory.

3. Run the java interpreter on the UDF program with this command:

java DB2Udf

makefile . To build this UDF program with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build the UDF program with this command:

make DB2Udf

3. Run the java interpreter on the UDF program with this command:

java DB2Udf

 SQLJ Programs

 Applications
App demonstrates an SQLJ application that accesses a DB2 database.

Command Line . To build and run this application by commands entered at the
command line:

1. Translate App.sqlj with this command:

sqlj App.sqlj

This will produce the files App.java and App_SJProfile0.ser.

2. Compile App.java with this command:

javac App.java

This will produce the files: App.class, App_Cursor1.class, App_Cursor2.class and
App_SJProfileKeys.class.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 177

3. Customize the generated profile and create the package App in the sample data-
base with this command:

db2profc -url=jdbc:db2:sample prepoptions="package using App" App_SJProfile0

4. Run the application with this command:

java App

makefile . To build this application with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build the application with this command:

make App

3. Run the application with this command:

java App

 Applets
Applt demonstrates an SQLJ applet that accesses a DB2 database.

Command Line . To build and run this applet by commands entered at the command
line:

1. Ensure that a web server is installed on your DB2 machine (server or client).

2. Modify the Applt.html file according to the instructions there.

3. Start the JDBC applet server on the TCP/IP port specified in Applt.html; for
example, if in Applt.html, you specified:

param name=port value='6789'

then you would enter:

db2jstrt 6789

4. Translate Applt.sqlj with this command:

sqlj Applt.sqlj

This will produce the files: Applt.java and Applt_SJProfile0.ser.

5. Compile Applt.java with this command:

javac Applt.java

This will produce the files: Applt.class, Applt_Cursor1.class,
Applt_Cursor2.class and Applt_SJProfileKeys.class.

6. Customize the generated profile and create the package Applt in the sample data-
base with this command:

db2profc -url=jdbc:db2:sample -prepoptions="package using Applt" Applt_SJProfile0

7. Ensure that your working directory is accessible by your web browser. If it is not,
copy the following files into a directory that is accessible:

178 What's New

Applt.html Applt.class,

Applt_Cursor1.class, Applt_Cursor2.class,

Applt_SJProfileKeys.class, Applt_SJProfile0.ser

8. Copy the files %DB2PATH%\java\db2java.zip and %DB2PATH%\java\runtime.zip into
the same directory as your other Applt files.

9. On your client machine, start your web browser (which must support JDK 1.1) and
load Applt.html.

As an Alternative to steps (1), (7) and (9), you can use the applet viewer that comes
with the Java Development Kit by entering the following command in the working direc-
tory of your client machine:

appletviewer Applt.html

makefile . To build this applet with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Ensure that a web server is installed on your DB2 machine (server or client).

3. Modify the Applt.html file according to the instructions there.

4. Start the JDBC applet server on the TCP/IP port specified in Applt.html. For
example, if in Applt.html, you specified:

param name=port value='6789'

then you would enter:

db2jstrt 6789

5. Build the applet with this command:

make Applt

6. Ensure that your working directory is accessible by your web browser. If it is not,
copy the following files into a directory that is accessible:

Applt.html, Applt.class,

Applt_Cursor1.class, Applt_Cursor2.class,

Applt_SJProfileKeys.class, Applt_SJProfile0.ser

7. Copy the files %DB2PATH%\java\db2java.zip and %DB2PATH%\java\runtime.zip into
the same directory as your other Applt files.

8. On your client machine, start your web browser (which must support JDK 1.1) and
load Applt.html.

As an Alternative to steps (2), (6) and (8), you can use the applet viewer that comes
with the Java Development Kit by entering the following command in the working direc-
tory of your client machine:

appletviewer Applt.html

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 179

 Stored Procedures
Stp demonstrates an SQLJ stored procedure that accesses a DB2 database.

Command Line . To build and run this stored procedure by commands entered at the
command line:

1. Translate Stp.sqlj with this command:

sqlj Stp.sqlj

This will produce the files Stp.java and Stp_SJProfile0.ser.

2. Compile Stp.java with this command:

javac Stp.java

This will produce the files: Stp.class, Stpsrv.class, Stp_Cursor1.class,
Stp_Cursor2.class and Stp_SJProfileKeys.class.

3. Customize the generated profile and create the package Stp in the sample data-
base with this command:

db2profc -url=jdbc:db2:sample -prepoptions="package using Stp" Stp_SJProfile0

4. Copy these files to the %DB2PATH%\function directory: Stpsrv.class,
Stp_Cursor1.class, Stp_Cursor2.class, Stp_SJProfileKeys.class and
Stp_SJProfile0.ser.

5. Run the stored procedure with this command:

java Stp

makefile . To build this stored procedure with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build the stored procedure with this command:

make Stp

3. Run the stored procedure with this command:

java Stp

 User-Defined Functions
The %DB2PATH%\samples\java directory includes a UDF application consisting of three
SQLJ programs:

¹ CatUdf demonstrates cataloging Java user-defined functions (UDFs) and creating a
sample table, udftest, for testing them.

¹ Udf demonstrates calling Java UDFs against the sample table, udftest.

¹ DropUdf demonstrates dropping Java UDFs and the sample table, udftest.

CatUdf .

180 What's New

Command Line . To build and run this SQLJ program by commands entered at the
command line:

1. Translate CatUdf.sqlj with this command:

sqlj CatUdf.sqlj

This will produce the files CatUdf.java and CatUdf_SJProfile0.ser.

2. Compile CatUdf.java with this command:

javac CatUdf.java

This will produce the files CatUdf.class and CatUdf_SJProfileKeys.class.

3. Customize the generated profile and create the package CatUdf in the sample data-
base with this command:

db2profc -url=jdbc:db2:sample -prepoptions="package using CatUdf" CatUdf_SJProfile0

4. Run CatUdf with this command:

java CatUdf

5. Next, run the Udf program.

makefile . To build and run this SQLJ program with the makefile:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build and run CatUdf with this command:

make CatUdf

3. Next, run the Udf program.

Udf .

Command Line . To build and run this SQLJ program by commands entered at the
command line:

1. Translate Udf.sqlj with this command:

sqlj Udf.sqlj

This will produce the files Udf.java and Udf_SJProfile0.ser.

2. Compile Udf.java with this command:

javac Udf.java

This will produce the files: Udf.class, Udf_Cursor1.class, Udf_Cursor2.class,
Udf_Cursor4.class, Udf_Cursor5.class, Udf_SJProfileKeys.class and
Udfsrv.class.

Note: There is no file Udf_Cursor3.class.

3. Customize the generated profile and create the package Udf in the sample data-
base with this command:

db2profc -url=jdbc:db2:sample -prepoptions="package using Udf" Udf_SJProfile0

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 181

4. Copy the Udfsrv.class file into %DB2PATH%\function.

5. Run Udf with this command:

java Udf

6. Next, run the DropUdf program.

makefile . To build this SQLJ program with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build Udf with this command:

make Udf

3. Run Udf with this command:

java Udf

4. Next, run the DropUdf program.

DropUdf .

Command Line . To build and run this SQLJ program by commands entered at the
command line:

1. Translate DropUdf.sqlj with this command:

sqlj DropUdf.sqlj

This will produce the files DropUdf.java and DropUdf_SJProfile0.ser.

2. Compile DropUdf.java with this command:

javac DropUdf.java

This will produce the files: DropUdf.class and DropUdf_SJProfileKeys.class.

3. Customize the generated profile and create the package DropUdf in the sample
database with this command:

db2profc -url=jdbc:db2:sample -prepoptions="package using DropUdf"

 DropUdf_SJProfile0

4. Run DropUdf with this command:

java DropUdf

makefile . To build this SQLJ program with the makefile, and then run it:

1. Ensure your environment includes a compatible make utility as specified in the
section “The Java Makefile” on page 170.

2. Build DropUdf with this command:

make DropUdf

3. Run DropUdf with this command:

java DropUdf

182 What's New

General Points for DB2 Java Applets
1. For a larger JDBC or SQLJ applet that consists of several Java classes, you may

choose to package all its classes in a single Jar file. For an SQLJ applet, you
would also have to package its serialized profiles along with its classes. If you
choose to do this, add your Jar file into the archive parameter in the "applet" tag.
For details, see the JDK Version 1.1 documentation.

2. You may wish to place the file %DB2PATH%\java\db2java.zip (and for SQLJ applets,
also the file %DB2PATH%\java\runtime.zip) into a directory that is shared by several
applets that may be loaded from your Web site. In this case, you may need to add
a codebase parameter into the "applet" tag in the HTML file to identify that direc-
tory. For details, see the JDK Version 1.1 documentation.

3. For information on running DB2 Java applets on a webserver, specifically the
Domino Go Webserver, see:

 http://www.software.ibm.com/data/db2/db2lotus/gojava.htm

Changes to Appendix. Migrating Your Applications
The following new appendix is added for Version 5.2.

When you upgrade to DB2 Universal Database Version 5 from a previous installation of
DB2, DB2 Client Application Enabler, or DB2 Software Developer's Kit, your database
and node directories are migrated automatically. To migrate your existing databases,
use the tools described in the Administration Guide.

You do not need to recompile your applications because binary compatibility is provided
between DB2 Universal Database Version 5 and previous versions of DB2. If, however,
you want to recompile, you may need to recode some of your applications.

In DB2 Universal Database Version 5, all character array items with string semantics
have type char, instead of other variations, such as unsigned char. Any applications
you code with DB2 Universal Database Version 5 should follow this practice.

If you have DB2 Version 1 applications which use unsigned char, your compiler might
produce warnings or errors because of type clashes between unsigned char in Version
1 applications and char in Version 5 function prototypes. If this occurs, use the compiler
option -DSQLOLDCHAR to eliminate the problem.

Refer to the SQL Reference for a list of incompatibilities between DB2 Universal Data-
base Version 5 and previous versions of DB2. Refer to the API Reference for a list of
API incompatibilities between DB2 Universal Database and previous versions of DB2.

 Appendix D. Building Applications for Windows and OS/2 Environments Updates 183

184 What's New

Appendix E. Web Control Center and NetQuestion

The DB2 Universal Database Control Center can now be used from the Web. This can
centralize your administration activities by consolidating these activities for all your data-
bases through a single interface. The Web Control Center, in combination with its
search service, gives your DB2 administration activities the flexibility available in a
Web-based network or intranet. See the following sections for details:

¹ “Web Control Center Installation and Configuration”: Provides information on
installing and configuring the Web Control Center.

¹ “Enabling the Web Control Center Remote Documentation Searches” on page 190:
Provides information on enabling remote searching of the DB2 product documenta-
tion.

Web Control Center Installation and Configuration
The Web Control Center is the Java version of the DB2 Universal Database Control
Center. From a tools perspective, it is modeled on the DB2 Release 5 Control Center,
but it provides you with a more flexible network-centric database administration environ-
ment. The Web Control Center is implemented as a Java applet that uses DB2's JDBC
support.

Information on supported Web browsers and operating systems can be found on the
Web at http://www.software.ibm.com/data/db2/library/browsers.html

Components to Install
To get started with the Web Control Center, you need to install DB2 Universal Data-
base Server Version 5.2, where the server is any of:

 ¹ Workgroup Edition
 ¹ Enterprise Edition
¹ Enterprise - Extended Edition (EEE)

To run the Web Control Center, you need:

¹ A Web browser; for supported browsers see the Web at
http://www.software.ibm.com/data/db2/library/browsers.html

¹ A Web server (optional). See “Machine Configuration” for details on when you need
a Web server.

 Machine Configuration
You can set up your Web Control Center (Web CC) in a number of different ways. The
following table identifies four scenarios, each showing a different way of installing the
required components. These scenarios are referenced throughout the Web Control
Center Setup section that follows the table.

 Copyright IBM Corp. 1997, 1998 185

Scenario Machine A Machine B Machine C

1 - Standalone Browser
Web CC applet
JDBC server
DB2 server

2 - Two Tier1 Browser
Web CC applet
JDBC server
CAE3

 DB2 server

3 - Two Tier2 Browser Web CC applet
Web server
JDBC server
DB2 server

4 - Three Tier Browser Web CC applet
Web server
JDBC server
CAE

DB2 server

Note:

1. Browser and JDBC server on one machine.
 2. Standalone browser.

3. Client Application Enabler.

In Scenarios 1 and 2, there is no requirement for a Web server because the Web
Control Center (Web CC) applet and the browser are on the same machine.

In Scenarios 3 and 4, the Web Control Center applet code is remote, which enables
code sharing across several browsers. This means that you can access the Web
Control Center from browsers on different machines. Since the applet has not been
implemented as a trusted applet, the Web server and the JDBC server must reside on
the same machine.

Web Control Center Installation
This section describes how to install the Web Control Center and how you can cus-
tomize it for your environment.

Web Control Center Setup
1. Start the DB2 servers:

¹ On the Windows NT operating system, start the db2 security server. Click on
Start- >Control Panel- >Services . Select the db2 security server and click on
the Start push button.

Note: This step is not required if your security server is autostarted.

¹ On Windows NT or OS/2 operating systems, enter the db2start command on
the machine with the DB2 Universal Database server.

On the UNIX operating system, logon to the account where you want to run
the JDBC server and issue the db2start command.

186 What's New

¹ On the Windows NT or OS/2 operating system containing the JDBC server,
enter:

start db2jd 6790

On the UNIX operating system containing the JDBC server, enter:

db2jd 6790 &

The port number 6790 is an example; any 4-digit number that is not already in
use can be used. The default port number is 6789.

Note: The first time you start the JDBC server, it will create several node
directory entries, together with various files for administration purposes.
In Scenario 1 and 3, all of these administration files and directory
entries will be created in the current DB2 instance.

¹ On the UNIX operating system, logon to the administration server account and
issue the db2admin start command.

If you are using a UNIX operating system for Scenario 1 or 3, you can do this
startup on either the Client Application Enabler or the DB2 Universal Database
server.

2. You can start working with the Web Control Center without an existing database by
creating a sample database. Enter the db2sampl command on the DB2 Universal
Database server. On a UNIX operating system, ensure that you are logged on to
the DB2 instance before you enter the db2sampl command.

3. Load the HTML page to start the Web Control Center:

¹ If you are running Scenarios 1 or 2, then you do not need a Web server set up
on your machine.

a. Start the DB2 Web Control Center Launch page. In your Web browser,
select File->Open Page . The Open Page dialog box appears.

On a Windows or OS/2 operating system
Enter x:/sqllib/java/prime/db2webcc.htm, where x: represents
the drive where DB2 is installed.

On a UNIX operating system
Enter INSTHOME/sqllib/java/prime/db2webcc.htm, where INSTHOME

represents the home directory of the instance.

Click on the Open push button.

b. The DB2 Web Control Center Launch page appears. When the control
panel appears, click on the Launch push button.

¹ If you are running Scenarios 3 or 4, then you must have a Web server set up
on the machine that contains the Web Control Center applet code and the
JDBC server. The Web server must allow access to the sqllibdirectory.

a. Start the Web Control Center Launch page through your Web server. In
your browser, select File->Open Page . The Open Page dialog box
appears. Enter the URL of your Web server and the main Web Control

 Appendix E. Web Control Center and NetQuestion 187

Center page and click on the Open push button. For example:
http://yourserver/java/prime/db2webcc.htm.

b. The DB2 Web Control Center Launch page appears. When the control
panel appears, select the Remote radio button, and enter the address of
your Web server in the host entry field. For example:
yourserver.yourdomain.com.

c. Enter the number of the db2jd port. For example: 6790.

d. Click on the Launch push button.

4. The Control Center Sign On window opens. Enter your user ID and password.
This user ID must have an account on the machine that is running the JDBC
server. Your initial logon will be used for all database connections. It can be
changed from the Control Center pull-down menu. A unique user profile will be
assigned to each user ID. Click on OK.

5. The DB2 Control Center window opens.

Customizing Your Web Control Center HTML File
If you want the Web Control Center started automatically the next time you open the
db2webcc.htm file:

¹ For Scenarios 1 or 2, modify the prompted parameter tag in db2webcc.htm from

PARAM name="prompted" value="true"

to

PARAM name="prompted" value="false"

¹ For Scenarios 3 or 4, modify the prompted, host, and port parameter tags in
db2webcc.htm to

PARAM name="prompted" value="false"

PARAM name="host" value="yourserver"

PARAM name="port" value="6790"

where yourserver is the host name and 6790 is the port value of the machine you
want to connect to.

Configuring Your Web Server to Work with the Web Control Center
Consult the setup documentation that came with your Web server for general Web
server configuration information.

To configure your Web server for use with the Web Control Center, use sqllib as your
home directory. If you choose to use a virtual directory, substitute this directory for the
home directory. For example, if you name your virtual directory temp then you should
use sqllib/temp.

If you do not have the DB2 documentation installed and you would like information on
configuring your Web server to work with DB2’s online documentation, see the Web at
http://www.software.ibm.com/data/pubs/papers/db2html.html.

188 What's New

 Functional Considerations
If you are using the Web Control Center over the Internet, be aware that there is no
encryption of the data flow between the JDBC server and the browser.

To use the color options of Visual Explain on Netscape, you must set your operating
system to support more than 256 colors.

DB2 does not support the installation of the Web Control Center on a FAT drive for
OS/2, because an OS/2 FAT drive does not support long filenames required by Java.

Every activity will be associated with an explicit DB2 connection or attachment. For
security purposes, every DB2 activity will be validated.

When you are using the Web Control Center under Scenarios 3 or 4, the local system
is Machine B.

Installation Tips for Web Control Center Help on UNIX Operating Systems
When installing the Web Control Center online help on UNIX operating systems you
should keep the following in mind:

¹ You should install the Web Control Center help and the product documentation at
the same time. If you install the Web Control Center help and the DB2 online
product documentation separately, you can expect the second installation to take
some time. This is true regardless of which is installed first.

¹ You must select the Web Control Center help for any non-English language explic-
itly. Installing the product messages for a particular language does not mean that
the Web Control Center help for that language is automatically installed. However,
if you install the Web Control Center help for a particular language, the product
messages for that language are installed automatically.

¹ If you install the product documentation after editing the search form, you must edit
your search form again. Installing the product documentation resets the search
form to its default configuration.

¹ If you install the Web Control Center using SMIT rather than db2installer, you must
run the db2insthtml command to set up document search. For more information on
using SMIT to install The Web Control Center on UNIX operating systems, refer to
the DB2 for UNIX Quick Beginnings or the DB2 EEE for UNIX Quick Beginnings
manuals.

Differences From DB2 V5.0.0 Control Center
Each user has a profile of their own preferences stored on the machine were the JDBC
server exists.

You cannot start a new Control Center from the existing Control Center.

The Event Analyzer and Snapshot Monitor are not included as part of the DB2 Web
Control Center for Version 5.2.

 Appendix E. Web Control Center and NetQuestion 189

 Troubleshooting
If you are having problems running the Web Control Center applet:

¹ Verify that you are using a supported browser and operating system as outlined at
http://www.software.ibm.com/data/db2/library/browsers.html.

¹ Check your browser’s Java Console window for diagnostic and trace information for
the Web Control Center.

If you are having problems connecting to the JDBC or Web server:

¹ Ensure the JDBC server (db2jd) is running.

¹ Verify the port number.

¹ Verify the server name.

¹ Ensure that you are using the db2webcc.htm file from the machine running the
JDBC server.

¹ Ensure that you have an account on the machine running the JDBC server.

¹ Remember that the Web Control Center works within the Client Application
Enabler's locale.

Enabling the Web Control Center Remote Documentation Searches
The Web Control Center allows users to view and search DB2 information (online
books and help) that may be stored on a remote system. Viewing information uses a
browser and the Web server, while enabling search requires some changes to your
local HTML search form and IBM Internet Connection Server (ICS) Lite configuration
file. To enable remote searching of the product documentation:

1. Edit the HTML search form.

On a Windows or OS/2 operating system
This file is x:\sqllib\doc\html\db2srch.htm, where x: is the drive where
DB2 is installed.

On an AIX operating system
This file is /usr/lpp/db2_05_00/doc/%L/html/db2srch.htm, where %L is your
locale.

On other UNIX operating systems
This file is /opt/IBMdb2/V5.0/doc/%L/html/db2srch.htm, where %L is your
locale.

Note: These paths are the defaults and can vary depending on paths set during
the installation of DB2.

2. Change the action= attribute of the <form > tag. Replace localhost:49213 with
hostname:49214, where hostname represents the machine where the documenta-
tion files are installed.

3. Edit your ICS Lite configuration file.

190 What's New

On a Windows or OS/2 operating system, this file is httpd.cnf in the directory
netqos2, imnnq_nt, or imnnq95, depending on the operating system. On Windows
98, the directory is imnnq_95.

On a UNIX operating system, this file is httpdlite.conf. For AIX operating
systems, this file is in the /etc/IMNSearch directory. For Solaris and HP-UX oper-
ating systems, it is in the /opt/IMNSearch directory.

¹ Copy the original ICS Lite configuration file to another file name in the same
directory as the original (db2webcc.cnf is recommended as the new file name).

Note: By creating a copy of this configuration file, you can avoid affecting
other products installed on your system that rely on the search server.

¹ Replace the value of the Hostname line in db2webcc.cnf (or whatever you
named the copy of the ICS Lite configuration file) with the same
hostname:49214 as you did in the HTML search form.

¹ Add the following line to db2webcc.cnf:

 MaxActiveThreads 40

This setting will increase ICS Lite’s performance when multiple requests are
arriving over the network. You can set the value of MaxActiveThreads to
greater than 40, but as this value increases more memory is consumed.

¹ Edit your Start HTML Search Server icon’s properties so that it calls the new
db2webcc.cnf file. Add the name

 db2webcc.cnf

as the last argument in the icon’s target field. If you put the new configuration
file in a directory that was different from the original, you must specify the full
path name.

On Windows NT and OS/2 operating systems, if you you have Start HTML
Search Server icons in your Startup folder and your DB2 program folder, you
should edit the properties for both icons. For information on editing an icon’s
properties consult your operating system’s documentation.

¹ For each index that is installed on the machine, run the nqmap command to
set the base location for the documentation files. The exact directory to use
depends on your hostname. On a UNIX operating system, it also depends on
the locale of the HTML files for that particular language.

For example, if your server was named yourserver, the index you were
mapping was Administration (DB2ADM), and your locale (%L) was set to
English (EN):

OS/2 and Windows:
nqmap DB2ADMEN "http://yourserver/doc/html/" DB2ADMEN

AIX:
/usr/IMNSearch/cli/imnmap DB2ADMEN "http://yourserver/doc/%L/html/"
DB2ADMEN

 Appendix E. Web Control Center and NetQuestion 191

Note: For double-byte character (DBCS) indexes, replace imnmap with
imqmap.

Solaris and HP-UX:
/opt/IMNSearch/cli/nqmap DB2ADMEN "http://yourserver/doc/%L/html/"
DB2ADMEN

¹ Repeat these commands for each installed index.

– For the Application Development index, substitute DB2APDXX

– For the DB2 Connect index, substitute DB2CONXX

– For the Web Control Center Help, substitute DB2HLPXX

 In these examples XX is the index's locale.

¹ Stop the search server and start it again.

– On Windows NT or OS/2 operating systems, select the appropriate icon in
your DB2 program folder.

192 What's New

Appendix F. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To access product information online, you can use the Information Center. You can
view task information, DB2 books, troubleshooting information, sample programs, and
DB2 information on the Web. See “Information Center” on page 202 for details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available through the Control Center. The
following table lists the SmartGuides.

Note: Not all SmartGuides are available for the partitioned database environment.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance Config-
uration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1997, 1998 193

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help. You can also access DB2 information through the Information
Center. For information see “Information Center” on page 202.

Type of Help Contents How to Access...

Command Help Explains the syntax of com-
mands in the command line
processor.

From the command line processor in interactive mode,
enter:

? command

where command is a keyword or the entire command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database dis-
plays help for the CATALOG DATABASE command.

Control Center Help Explains the tasks you can
perform in a window or
notebook. The help includes
prerequisite information you
need to know, and
describes how to use the
window or notebook con-
trols.

From a window or notebook, click on the Help push
button or press the F1 key.

Message Help Describes the cause of a
message, and any action
you should take.

From the command line processor in interactive mode,
enter:

? XXXnnnnn

where XXXnnnnn is a valid message identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want to save
the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive mode,
enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help about the
SELECT statement.

194 What's New

Type of Help Contents How to Access...

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive mode,
enter:

? sqlstate or ? class-code

where sqlstate is a valid five-digit SQL state and the
class-code is first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL
state, while ? 08 displays help for the 08 class code.

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

Cross-platform books These books contain the common DB2 information for
UNIX-based and Intel-based platforms.

Platform-specific books These books are for DB2 on a specific platform. For example,
for DB2 on OS/2, on Windows NT, and on the UNIX-based platforms, there
are separate Quick Beginnings books.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

If you want to read the English version of the books, they are always provided in the
directory that contains the English documentation.

You can obtain DB2 books and access information in a variety of different ways:

View See “Viewing Online Books” on page 199.
Search See “Searching Online Books” on page 200.
Print See “Printing the PostScript Books” on page 200.
Order See “Ordering the Printed DB2 Books” on page 201.

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration con-
cepts and tasks, and walks you through the primary
administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x51

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x51

 Appendix F. How the DB2 Library Is Structured 195

Book Name Book Description Form Number

File Name

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a call-
able SQL interface that is compatible with the Micro-
soft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x51

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, migrating, installing, configuring,
and using information for DB2 Connect Enterprise
Edition. Also contains installation and setup informa-
tion for all supported clients.

S10J-7888

db2cyx51

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x51

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x51

DB2 Connectivity Supplement Provides setup and reference information for cus-
tomers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA Appli-
cation Requesters with DB2 Universal Database
servers, and customers who want to use DRDA Appli-
cation Servers with DB2 Connect (formerly DDCS)
application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x51

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes dis-
cussions about programming techniques and perform-
ance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software Devel-
oper's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx51

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Messages Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x51

196 What's New

Book Name Book Description Form Number

File Name

DB2 Replication Guide and Ref-
erence

Provides planning, configuring, administering, and
using information for the IBM Replication tools sup-
plied with DB2.

S95H-0999

db2e0x52

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about release-to-
release incompatibilities, product limits, and catalog
views.

S10J-8165

db2s0x51

System Monitor Guide and Ref-
erence

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to under-
stand database activity, improve performance, and
determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in consulta-
tion with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and enhance-
ments in DB2 Universal Database, Version 5.2,
including information about Java-based tools.

S04L-6230

db2q0x51

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a UNIX system.

S10J-8161

db2axx51

Building Applications for
Windows and OS/2 Environ-
ments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Windows or OS/2 system.

S10J-8160

db2a1x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, migrating, configuring,
and using information for DB2 Universal Database
Personal Edition on OS/2, Windows 95, and the
Windows NT operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

 Appendix F. How the DB2 Library Is Structured 197

Book Name Book Description Form Number

File Name

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, migrating, configuring,
and using information for DB2 Universal Database on
OS/2. Also contains installing and setup information
for all supported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, migrating,
and using information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx51

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, migrating,
and using information for DB2 Universal Database on
the Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

DB2 Extended Enterprise Edition
for UNIX Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for UNIX.

This book supercedes the DB2 Extended Enterprise
Edition Quick Beginnings for AIX book, and is suitable
for use with all versions of DB2 Extended Enterprise
Edition that run on UNIX-based platforms.

S99H-8314

db2v3x51

DB2 Extended Enterprise Edition
for Windows NT Quick Begin-
nings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for Windows NT.

S09L-6713

db2v6x51

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the lan-
guage of a book:

Language Identifier Language Identifier
Brazilian Portuguese B Japanese J
Bulgarian U Korean K
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Simp. Chinese C
French F Slovenia L
German G Spanish Z
Greek A Swedish S
Hungarian H Trad. Chinese T

198 What's New

2. For late breaking information that could not be included in the DB2 books:

¹ On UNIX-based platforms, see the Release.Notes file. This file is located in
the DB2DIR/Readme/%L directory, where %L is the locale name and DB2DIR
is:

– /usr/lpp/db2_05_00 on AIX
– /opt/IBMdb2/V5.0 on HP-UX, Solaris, SCO UnixWare 7, and SGI.

¹ On other platforms, see the RELEASE.TXT file. This file is located in the direc-
tory where the product is installed.

Italian I Turkish M

Viewing Online Books
The manuals included with this product are in Hypertext Markup Language (HTML)
softcopy format. Softcopy format enables you to search or browse the information, and
provides hypertext links to related information. It also makes it easier to share the
library across your site.

You can use any HTML Version 3.2-compliant browser to view the online books.

To view online books:

¹ If you are running DB2 administration tools, use the Information Center. See
“Information Center” on page 202 for details.

¹ Use the open file function of your Web browser. The page you open contains
descriptions of and links to DB2 books:

– On UNIX-based platforms, open the following page:

 file:/INSTHOME/sqllib/doc/%L/html/index.htm

where %L is the locale name.

– On other platforms, open the following page:

 sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online Books
icon. Depending on the system you are using, the icon is in the main product
folder or the Windows Start menu.

Note: The DB2 Online Books icon is only available if you do not install the
Information Center.

Setting up a Document Server
By default the DB2 information is installed on your local system. This means that each
person who needs access to the DB2 information must install the same files. To have
the DB2 information stored in a single location, use the following instructions:

1. Copy all files and sub-directories from \sqllib\doc\html on your local system to a
web server. Each book has its own sub-directory containing all the necessary

 Appendix F. How the DB2 Library Is Structured 199

HTML and GIF files that make up the book. Ensure that the directory structure
remains the same.

2. Configure the web server to look for the files in the new location. For information,
see Setting up DB2 Online Documentation on a Web Server at:

 http://www.software.ibm.com/data/pubs/papers/db2html.html

3. If you are using the Java version of the Information Center, you can specify a base
URL for all HTML files. You should use the URL for the list of books.

4. Once you are able to view the book files, you should bookmark commonly viewed
topics such as:

¹ List of books
¹ Tables of contents of frequently used books
¹ Frequently referenced articles like the ALTER TABLE topic

 ¹ Search form.

For information about setting up a search, see the What's New book.

Searching Online Books
To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the HTML books.
Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the Index to find a
specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then use the find
function of the Web browser to find a specific topic in the book.

¹ Use the bookmark function of the Web browser to quickly return to a specific topic.

¹ Use the search function of the Information Center to find specific topics. See
“Information Center” on page 202 for details.

Printing the PostScript Books
If you prefer to have printed copies of the manuals, you can decompress and print
PostScript versions. For the file name of each book in the library, see the table in “DB2
Books” on page 195.

Note: Specify the full path name for the file you intend to print.

On OS/2 and Windows platforms:

1. Copy the compressed PostScript files to a hard drive on your system. The files
have a file extension of .exe and are located in the x:\doc\language\books\ps direc-
tory, where x: is the letter representing the CD-ROM drive and language is the
two-character country code that represents your language (for example, EN for
English).

2. Decompress the file that corresponds to the book that you want. The result from
this step is a printable PostScript file with a file extension of .psz.

200 What's New

3. Ensure that your default printer is a PostScript printer capable of printing Level 1
(or equivalent) files.

4. Enter the following command from a command line:

 print filename.psz

On UNIX-based platforms:

1. Mount the CD-ROM. Refer to your Quick Beginnings manual for the procedures to
mount the CD-ROM.

2. Change to /cdrom/doc/%L/ps directory on the CD-ROM, where /cdrom is the mount
point of the CD-ROM and %L is the name of the desired locale. The manuals will
be installed in the previously-mentioned directory with file names ending with .ps.Z.

3. Decompress and print the manual you require using the following command:

 ¹ For AIX:

zcat filename | qprt -P PSPrinter_queue

¹ For HP-UX, Solaris, or SCO UnixWare 7:

zcat filename | lp -d PSPrinter_queue

¹ For Silicon Graphics IRIX and SINIX:

zcat < filename | lp -d PSPrinter_queue

where filename is the name of the full path name and extension of the compressed
PostScript file and PSprinter_queue is the name of the PostScript printer queue.

For example, to print the English version of Quick Beginnings for UNIX on AIX, you
can use the following command:

zcat /cdrom/doc/en/ps/db2ixe50.ps.Z | qprt -P ps1

Ordering the Printed DB2 Books
You can order the printed DB2 manuals either as a set, or individually. There are three
sets of books available. The form number for the entire set of DB2 books is
SBOF-8915-00. The form number for the set of books updated for Version 5.2 is
SBOF-8921-00. The form number for the books listed under the heading "Cross-Platform
Books" is SBOF-8914-00.

Note: These form numbers only apply if you are ordering books that are printed in the
English language.

You can also order books individually by the form number listed in “DB2 Books” on
page 195. To order printed versions, contact your IBM authorized dealer or marketing
representative, or phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in
Canada.

 Appendix F. How the DB2 Library Is Structured 201

 Information Center
The Information Center provides quick access to DB2 product information. You must
install the DB2 administration tools to obtain the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu
¹ Help menu of the Control Center

 ¹ db2ic command.

The Information Center provides the following kinds of information. Click on the appro-
priate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software Devel-
oper's Kit. If the Software Developer's Kit is not installed, this tab
is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides some search capabilities so you can look for specific
topics, and filter capabilities to limit the scope of your searches.

For a full text search, follow the Search DB2 Books link in each HTML file, or use the
search feature of the help viewer.

The HTML search server is usually started automatically. If a search in the HTML infor-
mation does not work, you may have to start the search server via its icon on the
Windows or OS/2 desktop.

Refer to the release notes if you experience any other problems when searching the
HTML information.

202 What's New

 Appendix G. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly des-
ignated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1997, 1998 203

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corpo-
ration under license.

SCO is a trademark of The Santa Cruz Operation.

SINIX is a trademark of Siemens Nixdorf.

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

204 What's New

 Index

A
acc_str_length element 67
acc_str_offset element 67
agent_id 72
ALLOW PARALLEL clause 110
ALTER TABLE 18, 29, 36, 100
appending to a table 36
applets, Java 101
application design

using Java 101
application handle 72
application identification 72
Application Program Interface (API)

for JDBC applications 105
applications, Java 101
audit trail 21
authentication 14
authorization (SQL) 15
auto-discovery 45
autoloader utility 41

B
bidirectional languages 10, 26
BigDecimal Java type 106
BIGINT data type 18, 75, 99
BIND 9
Blob 106
BLOB SQL data type 106
buffer pools

extended storage 32
multiple 32
page size 33

C
C null-terminated graphic string SQL data type 106
C null-terminated string SQL data type 106
cache, global 31
catalog access 9
CHAR SQL data type 106
CHAR type 105
classes

for Java Stored Procedures and UDFs 112
CLASSPATH environment variable 108

CLI functions 83
Client Application Enabler

requirement for Java 101
client application enabler (cae) 12
client configuration assistant 46
client information, getting 9, 21
client/server

deferred prepare 34
log file storage 35

CLISCHEMA 77
CLOB SQL data type 106
clustering indexes 35
code page

considerations for Java applications 106
coding Java stored procedures 111
coding Java UDFs 108
column length (VARCHAR) 18
columns, table 17, 19
COM.ibm.db2.app.Blob 115
COM.ibm.db2.app.Clob 116
COM.ibm.db2.app.Lob 115
COM.ibm.db2.app.StoredProc 111, 112
COM.ibm.db2.app.UDF 108, 113
COM.ibm.db2.jdbc.app.DB2Driver 104
COM.ibm.db2.jdbc.net.DB2Driver 104
command center 44
communications configuration, server 46
configuration assistant, client 46
configuration keywords

CLISCHEMA 77
CURRENTREFRESHAGE 78
CURRENTSCHEMA 79
IGNOREWARNLIST 79
OPTIMIZESQLCOLUMNS 79
PATCH1 80
PATCH2 80

configuration parameters
dft_monswitches 25, 72
mincommit 25
newlogpath 35

configuration, server communications 46
connectivity 45
considerations for Java applications 105
control center 43, 45
correlated predicates 30
COUNT_BIG 17

 Copyright IBM Corp. 1997, 1998 205

CREATE FUNCTION statement
Java UDFs 110

CREATE INDEX 18, 35, 40
CREATE PROCEDURE statement 110
create schema 15
creating

Java stored procedures 110
Java UDFs 108

CUBE group 16
CURRENSCHEMA 79
current number of connections for DB2 Connect, monitor

element 57
CURRENT SCHEMA 19
CURRENT SQLID 19
CURRENTREFRESHAGE 78

D
data elements, system monitor 36

changed 52
new 54, 68, 71

data types
See also SQL data types
BIGINT 18, 75, 99
conversion between DB2 and Java 106
DATALINK 17, 76
LONG VARCHAR 18
LONG VARGRAPHIC 18
REAL 15
supported 106
VARCHAR 18

database access
using Java 101

database alias at the gateway, monitor element 55
database director

See control center
database repair tool 49
datalinks 17, 22, 76
DataPropagator 22
DATE SQL data type 106
DB2 Connect

bidirectional languages 10
BIND 9
catalog access 9
client information 9
data types 10
DCE cell directory 8
DCE security 8
description 7
DYNAMICRULES 9

DB2 Connect (continued)
for Personal Communications 11
Microsoft Transaction Server 9, 24
monitoring 10, 51
password, changing 9
security failure notification 8
stored procedures 8
syncpoint manager 10
sysplex 8
TCP/IP 7
two-phase commit 7, 10

DB2 Connect gateway first connect timestamp, monitor
element 56

DB2 library
books 195
Information Center 202
language identifier for books 198
late breaking information 199
online help 194
ordering printed books 201
printing PostScript books 200
searching online books 200
setting up document server 199
SmartGuides 193
structure of 193
viewing online books 199

DB2_FORCE_FCM_BP 36
DB2_NO_PKG_LOCK 31
db20cat 9
DB2Appl.java

application example 105
db2audit 21
db2flsn 22
db2level 49
DB2Udf.java 108
db2upd52 13
DBCLOB SQL data type 106
DBCLOB type 105
DCE

cell directory 8
security 8

DCS application status, monitor element 60
DCS database name, monitor element 54
dcs_appl_status element 60
dcs_db_name element 54
DDCS 7

See also DB2 Connect
DECIMAL SQL data type 106
deferred prepare 34

206 What's New

defined type 19, 76
degree of parallelism 40
DEGREE=ANY 40
dft_monswitches configuration parameter 25, 72
distributing Java applets 104
distributing Java applications 105
documentation, searching 190
double Java type 106
DOUBLE SQL data type 106
DRDA 7

See also DB2 Connect
drop schema 15

E
elapsed time spent on DB2 Connect gateway proc-

essing, monitor element 59
euro 26
examples

DB2Appl.java 105
Java applet tagging 104

EXPORT 21
extended storage 32
extenders

commands 27
migration 27
partitioned databases 26

F
Fast Communications Manager (FCM) 33, 36
fetch size, limiting 29, 100
finalize Java method 110
FLOAT SQL data type 106
FOR BIT DATA SQL data type 106
FORCE command 21
free space on pages 18
friendly arithmetic 16
functions, CLI 83

G
GENERATE_UNIQUE 17
get client information API 21
GET SNAPSHOT 52
getAsciiStream JDBC API 105
getString JDBC API 105
getUnicodeStream JDBC API 105
governor 34

GRAPHIC type 105
graphical objects

considerations for Java 105
groups (SQL) 16
GUI

command center 44
control center 43
smartguides 44
visual explain 44

gw_con_time element 56
gw_connections_top element 56
gw_cons_wait_client element 58
gw_cons_wait_host element 58
gw_cur_cons element 57
gw_db_alias element 55
gw_exec_time element 59
gw_total_cons element 57

H
hash code 31
hash join 31, 68
hash join overflows, monitor element 70
hash join small overflows, monitor element 70
hash join threshold, monitor element 69
hash_join_overflows element 70
hash_join_small_overflows element 70
hierarchical data 19, 21, 22
history file 21
host coded character set ID, monitor element 61
host database name, monitor element 55
host variables, repeated 100
host_ccsid element 61
host_db_name element 55
HTML page

tagging example 104

I
IBM eNetwork 11
IGNOREWARNLIST 79
IMPORT 20, 21
inbound communication address, monitor element 62
inbound number of bytes received, monitor element 63
inbound number of bytes sent, monitor element 64
inbound_bytes_received element 63
inbound_bytes_sent element 64
inbound_comm_address element 62
incompatibilities 13

 Index 207

index ANDing 29
index-only access 30, 35
indexes, clustering 35
information search service 45
Int Java type 106
INTEGER SQL data type 106

J
Java

applets 24, 101
applications 101
programming 23, 24, 101
SQLJ 24

Java applet
distributing and running 104

Java application
code page conversion 106
distributing and running 105
extensions 105
limitations 105
overloading Java methods 106
SCRATCHPAD consideration 110
signature for stored procedure 111
signature for UDFs 108
stored procedure example 111
using graphical and large objects 105
using stored procedures 106
using UDFs 106

Java class files
CLASSPATH environment variable 108
java_heap_size configuration parameter 108
jdk11_path configuration parameter 108
where to place 108

Java data types
BigDecimal 106
Blob 106
double 106
Int 106
short 106
String 106

Java Database Connectivity (JDBC) 101
drivers

COM.ibm.db2.jdbc.app.DB2Driver 104
COM.ibm.db2.jdbc.net.DB2Driver 104

Java Database Connectivity (JDBC) APIs
getAsciiStream 105
getString 105
getUnicodeStream 105
setAsciiStream 105

Java Database Connectivity (JDBC) APIs (continued)
setString 105
setUnicodeStream 105

Java Development Kit (JDK) 101
Java I/O streams

System.err 108
System.in 108
System.out 108

Java interpreter
overview of DB2 support 103

Java language
getting started 101
overview of DB2 support 102
using in DB2 applications 101

Java packages and classes 104
COM.ibm.db2.app 106

java_heap_size configuration parameter 108
JDBC 24, 101
jdk11_path configuration parameter 108
join 29, 31

L
Legato 28
licensing 47
limit fetch size 29, 100
LIST DCS APPLICATIONS 52
LOAD 18, 20, 22, 33, 40
LOBs (Large Objects)

considerations for Java 105
lock escalations 71
lock escalations, monitor element 72
lock_escalation element 72
locks, package 31
locks, table level 29
log file storage 35
log pages written 73
log sequence number 22
LONG VARCHAR 18
LONG VARCHAR SQL data type 106
LONG VARGRAPHIC 18
LONG VARGRAPHIC SQL data type 106
LONGVAR type 105

M
maxdari configuration parameter 110
maximum number of concurrent connections, monitor

element 56

208 What's New

messages 49
Microsoft Transaction Server 9, 24, 93
migration

extenders 27
from parallel edition 39
to Version 5 12
to Version 5.2 13

mincommit configuration parameter 25
MTS

See Microsoft Transaction Server
multiple logical nodes (MLNs) 36

N
named pipe (Windows) 14
national language support

bidirectional 26
euro 26

Net.Data 27
number of connections waiting for the client to send

request, monitor element 58
number of connections waiting for the host to reply,

monitor element 58
number of log pages written 73
number of open cursors, monitor element 60
number of SQL statements attempted, monitor

element 59
NUMERIC SQL data type 106

O
ODBC 22
open_cursors element 60
operating systems

SCO Unixware 7 11
SGI 12
Solaris 12
Windows 98 11
Windows NT 12

optimizer 30, 40
OPTIMIZESQLCOLUMNS 79
outbound communication address, monitor element 62
outbound communication protocol, monitor element 61
outbound number of bytes received, monitor

element 64
outbound number of bytes sent, monitor element 63
outbound_bytes_received element 64
outbound_bytes_sent element 63
outbound_comm_address element 62

outbound_comm_protocol element 61
outer join 15
overloading Java methods 106

P
package locks 31
page reorganization 71
page reorganizations, monitor element 71
page size 19, 33
page_reorgs element 71
parallel environments 37
parallelism, degree of 40
partitioned databases 26, 37
password, changing (through DRDA) 9
PATCH1 80
PATCH2 80
PCTFREE (free space) 18
performance

cache 31
clustering indexes 35
correlated predicates 30
deferred prepare 34
extended storage 32
faster restart 32
governor 34
hash join 31
index ANDing 29
index-only access 35
limit fetch size 29
LOAD 33
log file storage 35
multiple buffer pools 32
page size 33
replicated tables 30
star joins 29
summary tables 30
table level locks 29

perl support 25
post_threshold_hash_joins element 69
predicates, correlated 30
PREPARE 34
profile manager 47

Q
query

correlated predicates 30
index ANDing 29
limit fetch size 29

 Index 209

query (continued)
parallel 39
replicated tables 30
star joins 29
summary tables 30
table level locks 29

query cost estimate 73
query number of rows estimate 73

R
REAL data type 15
REAL SQL data type 106
RECONCILE 22
Reference Types 76
registering Java stored procedures 110
RENAME TABLE 16
repair tool 49
repeated host variables 100
replicated tables 30
replication 18
restart 32
RESTORE 22
ROLLFORWARD command 20
ROLLUP group 16
rows, typed 19, 76
running Java applets 104
running Java applications 105

S
sample programs

Java stored procedures 110
Java UDFs 108

schema 15, 19
SCO Unixware 7 11
scratchpad and UDFs 110
SCRATCHPAD keyword 110
search documentation 45, 190
search service, information 45
security 8, 14
security failure notification 8
SELECT 29, 30
server communications configuration 46
service 49
service level 49
set client information API 9, 21
setAsciiStream JDBC API 105
setString JDBC API 105

setting up document server 199
setUnicodeStream JDBC API 105
SGI 12
short Java type 106
SMALLINT SQL data type 106
smartguides 44
SMP

See symmetric multi-processor
Solaris 12
SQL

ALTER TABLE 18, 36, 100
authorization 15
CREATE INDEX 18
CUBE group 16
friendly arithmetic 16
optimizer 30, 40
outer join 15
RENAME TABLE 16
ROLLUP group 16
schema, creating 15
schema, dropping 15
SET SCHEMA 19
unique constraints 16
user defined table functions 16

SQL Data Types
BLOB 106
C null-terminated graphic string 106
C null-terminated string 106
CHAR 106
CLOB 106
DATE 106
DBCLOB 106
DECIMAL 106
DOUBLE 106
FLOAT 106
FOR BIT DATA 106
INTEGER 106
LONG VARCHAR 106
LONG VARGRAPHIC 106
NUMERIC 106
REAL 106
SMALLINT 106
TIME 106
TIMESTAMP 106
VARCHAR 106
VARGRAPHIC 106

sql_stmts element 59
SQLCODE -311 13
SQLCODE -804 13

210 What's New

sqleqryi - query client information 21
sqleseti - set client information 9, 21
SQLJ 24, 117
SQLSTATE 22003 93
sqlurlog API 22
star joins 29
statistics support 22
stored procedures 8

coding in Java 111
creating and using in Java 110
creating in Java 106
example in Java 111
Java interpreter 103
Java support 102
registering in Java 110

String 106
summary tables 30
switches, system monitor 72
symmetric multi-processor

cluster 38
index generation 40
intra-query parallelism 39
LOAD 40

syncpoint manager 10
sysplex 8
system monitor

changed commands 52
changed data elements 52
DB2 Connect 51
new data elements 68
new DB2 Connect data elements 54
switches 72

System.err Java I/O stream 108
System.in Java I/O stream 108
System.out Java I/O stream 108

T
table columns 17, 19
table functions

in Java 108
table functions, user defined 16
table level locks 29
table, appending to 36
TCP/IP 7
TIME SQL data type 106
TIMESTAMP SQL data type 106
total hash joins, monitor element 68
total hash loops, monitor element 69

total number of attempted connections for DB2 Connect,
monitor element 57

total_hash_joins element 68
total_hash_loops element 69
TP monitor client accounting string, monitor element 67
TP monitor client application name, monitor element 66
TP monitor client user ID, monitor element 65
TP monitor client workstation name, monitor

element 66
tpmon_client_app element 66
tpmon_client_userid element 65
tpmon_client_wkstn element 66
transaction ID, monitor element 65
transaction processor 67
two-phase commit 7, 10
typed rows 19, 76
typed tables 19, 76

U
UDFs (User-defined functions)

coding in Java 108
creating and using in Java 108
creating in Java 106

UDFs(user-defined functions)
Java interpreter 103
Java support 102

user defined functions 23, 26
user defined table functions 16
using

Java stored procedures 110
Java UDFs 108

V
VARCHAR column length 18
VARCHAR SQL data type 106
VARGRAPHIC SQL data type 106
Version 5 enhancements

authentication 14
authorization (SQL) 15
auto-discovery 45
connectivity 45
control center 43
DCE security 8
decimal data 20
deferred prepare 34
extended storage 32
faster restart 32
friendly arithmetic (SQL) 16

 Index 211

Version 5 enhancements (continued)
global cache 31
governor 34
groups (SQL) 16
index ANDing 29
java 23
licensing 47
multiple buffer pools 32
named pipe (Windows) 14
ODBC 22
outer join 15
partitioned databases 37
REAL data type 15
renaming tables (SQL) 16
schema 15
star joins 29
stored procedures 8
table columns 17
TCP/IP 7
two-phase commit 7
unique constraints (SQL) 16
user defined functions 23
user defined table functions 16

Version 5.2 enhancements
appending to a table 36
audit trail 21
autoloader utility 41
bidirectional languages 10, 26
BIGINT data type 18
BIND 9
catalog access 9
client application enabler 12
client configuration assistant 46
clustering indexes 35
column length (VARCHAR) 18
configuration parameters 25
correlated predicates 30
CURRENT SCHEMA register 19
data types, DB2 Connect 10
DATALINK data type 17, 22
DCE cell directory 8
euro 26
extenders 26
free space on pages 18
hash join 31
history file 21
incompatibilities 13
index-only access 35
java 24
Legato 28

Version 5.2 enhancements (continued)
limit fetch size 29, 100
log file storage 35
log sequence number 22
LONG VARCHAR 18
LONG VARGRAPHIC 18
Microsoft Transaction Server 9, 24
monitoring DB2 Connect 10
multiple logical nodes 36
named pipe (Windows) 14
Net.Data 27
NetQuestion 45
package locks 31
password, changing 9
RECONCILE 22
replicated tables 30
SCO UnixWare 7 11
security failure notification 8
Solaris 12
sqleqryi - get client information 21
sqleseti - set client information 9, 21
summary tables 30
syncpoint manager 10
sysplex 8
table columns 19
table-level locks 29
two-phase commit 10
typed tables 19, 21, 22
virtual interface architecture 36
web control center 45
Windows 98 11
Windows NT 12

virtual interface architecture 36
visual explain 44

W
web control center

configuring 185, 188
considerations 189
customizing 188
installing 185
sample configurations 185
setup 186
Version 5.2 45

Windows 98 11
Windows NT 12

212 What's New

X
XA applications 10
xid 65

Y
year 2000 4

 Index 213

214 What's New

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the Trou-
bleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM soft-
ware remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order pro-
ducts or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
accessing the following page:

http://www.ibm.com/support/

then performing a search using the keyword “handbook.”

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools con-
cerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1997, 1998 215

ÉÂÔÙ

Part Number: 04L6230

Printed in U.S.A.

S04L-6230-00

0
4
L
6
2
3
0

