

IBM DB2 Universal Database
SQL Getting Started

Version 5

Document Number S10J-8156-00

IBM DB2 Universal Database ÉÂÔ

SQL Getting Started
Version 5

 S10J-8156-00

IBM DB2 Universal Database ÉÂÔ

SQL Getting Started
Version 5

 S10J-8156-00

Before using this information and the product it supports, be sure to read the general information under Appendix C,
“Notices” on page 103.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any state-
ments provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Welcome . vii
Related Documentation for This Book . vii
Highlighting Conventions . viii

Chapter 1. Relational Databases and SQL . 1

Chapter 2. Organizing Data . 3
Tables . 3
Views . 4
Schemas . 5
Data Types . 5

Chapter 3. Creating Tables and Views . 9
Creating Tables . 9
Inserting Data . 10
Changing Data . 12
Deleting Data . 13
Creating Views . 13

Using Views to Manipulate Data . 15

Chapter 4. Using SQL Statements to Access Data 17
Connecting to a Database . 18
Investigating Errors . 18
Selecting Columns . 19
Selecting Rows . 20
Sorting Rows . 23
Removing Duplicate Rows . 24
Order of Operations . 25
Using Expressions to Calculate Values . 25
Naming Expressions . 26
Selecting Data from More Than One Table . 27
Using a Subquery . 28
Using Functions . 29

Column Functions . 29
Scalar Functions . 30

Grouping . 31
Using a WHERE Clause with a GROUP BY Clause 32
Using the HAVING Clause After the GROUP BY Clause 32

Chapter 5. Expressions and Subqueries . 35
Scalar Fullselects . 35
Casting Data Types . 36
Case Expressions . 36

 Copyright IBM Corp. 1993, 1997 iii

Table Expressions . 38
Nested Table Expressions . 38
Common Table Expressions . 39

Correlation Names . 40
Correlated Subqueries . 41

Implementing a Correlated Subquery . 43

Chapter 6. Using Operators and Predicates in Queries 47
Combining Queries by Set Operators . 47

UNION Operator . 47
EXCEPT Operator . 48
INTERSECT operator . 49

Predicates . 50
Using the IN Predicate . 50
Using the BETWEEN Predicate . 50
Using the LIKE Predicate . 51
Using the EXISTS Predicate . 51
Quantified Predicates . 52

Chapter 7. Advanced SQL . 53
Enforcing Business Rules with Constraints and Triggers 53

Keys . 53
Unique Constraints . 54
Referential Integrity Constraints . 54
Table Check Constraints . 55
Triggers . 56

Joins . 59
Complex Queries . 64

ROLLUP and CUBE Queries . 64
Recursive Queries . 64

Chapter 8. Customizing and Enhancing Data Manipulation 65
User-Defined Types . 65
User-Defined Functions . 66
Large Objects (LOBs) . 67

Manipulating Large Objects (LOBs) . 67
Special Registers . 68
Introduction to Catalog Views . 69

Selecting Rows from System Catalogs . 69

Appendix A. Sample Tables . 71
The Sample Database . 72

To Install the Sample Database . 72
To Erase the Sample Database . 72
CL_SCHED Table . 73
DEPARTMENT Table . 73
EMPLOYEE Table . 73
EMP_ACT Table . 78

iv SQL Getting Started

EMP_PHOTO Table . 80
EMP_RESUME Table . 80
IN_TRAY Table . 81
ORG Table . 81
PROJECT Table . 81
SALES Table . 83
STAFF Table . 84
STAFFG Table . 85

Sample Files with BLOB and CLOB Data Type 86
Quintana Photo . 86
Quintana Resume . 87
Nicholls Photo . 88
Nicholls Resume . 88
Adamson Photo . 89
Adamson Resume . 89
Walker Photo . 90
Walker Resume . 91

Appendix B. How the DB2 Library Is Structured 93
SmartGuides . 93
Online Help . 94
DB2 Books . 96
About the Information Center . 100

Appendix C. Notices . 103
Trademarks . 104
Trademarks of Other Companies . 104

Index . 107

Contacting IBM . 109

 Contents v

vi SQL Getting Started

 Welcome

This book is intended for novice users of Structured Query Language (SQL) and rela-
tional databases. It will:

¹ Discuss basic concepts of DB2 SQL.
¹ Explain how to perform database manipulation tasks.
¹ Demonstrate tasks through examples.

Before you try out any of the examples in this book, if you are the administrator you
should:

¹ Install and configure the server as outlined in the Quick Beginnings book for your
operating system. It is recommended that you do not put your own data into the
DB2 SAMPLE database.

¹ Create the DB2 administrator username following the instructions in the Quick
Beginnings book.

Otherwise, ensure that you have a valid user ID or username and the appropriate
authority and privileges.

This book's focus is on providing a solid understanding of DB2 SQL. An overview of
recovery objects, storage objects, system objects, controlling access to data (privileges
and authorities), performance, transactions and units of work is presented in the Admin-
istration Getting Started book.

Related Documentation for This Book

You may find the following publications useful:

Quick Beginnings Contains information required to install and use the database manager.

Administration
Getting Started

Contains information on how to administer DB2 databases through the Control Centre.

Road Map to DB2
Programming

Introduces different ways you can access DB2 and describes key DB2 features you can use
in your applications.

SQL Reference Contains SQL reference information.

Administration Guide Contains information required to design, implement, and maintain a database to be accessed
either locally or in a client/server environment.

Embedded SQL
Programming Guide

Discusses the application development process and how to code, compile, and execute appli-
cation programs that use embedded SQL to access the database.

 Copyright IBM Corp. 1993, 1997 vii

 Highlighting Conventions

The following conventions are used in this book.

Bold In examples, it indicates commands and keywords predefined by the system.

Italics Indicates one of the following:

¹ The introduction of a new term
¹ A reference to another source of information.

UPPERCASE Indicates one of the following:

¹ Commands and keywords predefined by the system
¹ Examples of specific data values or column names.

viii SQL Getting Started

Chapter 1. Relational Databases and SQL

In a relational database, data is stored in tables. A table is a collection of rows and
columns. Structured Query Language(SQL) is used to retrieve or update data by speci-
fying columns, tables and various relationships between them.

SQL is a standardized language for defining and manipulating data in a relational data-
base. SQL statements are executed by a database manager. A database manager is a
computer program that manages the data.

A partitioned relational database is a relational database where the data is managed
across multiple partitions (also called nodes). In this book we will focus our attention
on single partition databases.

You can access the sample database and try out all the examples in this book through
interactive SQL by using an interface like the command line processor (CLP) or the
command centre. A detailed description of different ways of accessing DB2 databases
is presented in the Road Map to DB2 Programming.

 Copyright IBM Corp. 1993, 1997 1

2 SQL Getting Started

 Chapter 2. Organizing Data

This chapter presents important conceptual descriptions of tables, views and schemas.
It's a high level overview showing the connection between different building blocks of a
relational database. The last section provides a brief discussion of some of the impor-
tant and more commonly used data types.

 Tables

Tables are logical structures made up of a defined number of columns and a variable
number of rows. A column is a set of values of the same data type. The rows are not
necessarily ordered within a table. To order the result set, you have to explicitly specify
ordering in the SQL statement which selects data from the table. At the intersection of
every column and row is a specific data item called a value. In Figure 1 on page 4,
'Sanders' is an example of a value in the table.

A base table is created with the CREATE TABLE statement and is used to hold user
data. A result table is a set of rows that the database manager selects or generates
from one or more base tables to satisfy a query.

Figure 1 on page 4 illustrates a section of a table. Columns and rows have been
marked.

 Copyright IBM Corp. 1993, 1997 3

Figure 1. Visualization of a Table

 Views

A view provides an alternate way of looking at the data in one or more tables. It is a
dynamic window on tables.

Views allow multiple users to see different presentations of the same data. For
example, several users may be accessing a table of data about employees. One user
may see data about some employees but not others, and another may see some data
about all employees but not their salaries. Each of these users is operating on a view
that is derived from the real table. Each view appears to be a table and has a name of
its own.

An advantage of using views is that you can use them to control access to sensitive
data. So, different people can have access to different columns or rows of the data.

4 SQL Getting Started

 Schemas

A schema is a collection of named objects and provides a logical classification of
objects in the database. A schema may contain database objects such as tables and
views.

A schema itself is also considered to be an object in the database. It is created implic-
itly when you create a table or a view. Or, you can create it explicitly using the
CREATE SCHEMA statement.

When you create an object, you can qualify its name with the name of the particular
schema. Named objects have two-part names, where the first part of the name is the
name of the schema to which the object is assigned. If you do not specify a schema
name, the object is assigned to the default schema whose name is the authorization ID
of the user executing the statement. For interactive SQL, the method used to execute
the examples in this book, authorization ID is the userid specified with the CONNECT
statement. For example, if the name of the table is STAFF, and the userid specified in
the CONNECT statement is USERID, then the qualified name is USERID.STAFF. See
“Connecting to a Database” on page 18 for details on the CONNECT statement.

Some schema names are reserved. For example, built-in functions are in the SYSIBM
schema while the preinstalled user-defined functions belong to the SYSFUN schema.
Refer to the SQL Reference for details on the CREATE SCHEMA statement.

 Data Types

Data types define acceptable values for constants, columns, host variables, functions,
expressions and special registers. This section describes the data types referred to in
the examples. For a full list and complete description of other data types refer to the
SQL Reference.

Character String

A character string is a sequence of bytes. The length of the string is the
number of bytes in the sequence. If the length is zero, the value is called
the empty string.

Fixed-Length Character String

CHAR(x) is a fixed length string. The length attribute x must be
between 1 and 254, inclusive.

 Chapter 2. Organizing Data 5

Varying-Length Character String

Varying-length character strings are of three types: VARCHAR,
LONG VARCHAR, and CLOB. VARCHAR(x) types are
varying-length strings, so a string of length 9 can be inserted
into VARCHAR(15) but will still have a string length of 9. See
“Large Objects (LOBs)” on page 67 for details on CLOB.

Graphic String

A graphic string is a sequence of double-byte character data.

Fixed-Length Graphic String

GRAPHIC(x) is a fixed length string. The length attribute x
must be between 1 and 127, inclusive.

Varying-Length Graphic String

Varying-length graphic strings are of three types:
VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB. See
“Large Objects (LOBs)” on page 67 for details on DBCLOB.

Binary String

A binary string is a sequence of bytes. It is used to hold nontraditional data
such as pictures. Binary Large OBject (BLOB) is a binary string. See
“Large Objects (LOBs)” on page 67 for more information.

Numbers

All numbers have a sign and a precision. The precision is the number of
bits or digits excluding the sign.

SMALLINT A SMALLINT (small integer) is a two byte integer with a preci-
sion of 5 digits.

INTEGER An INTEGER (large integer) is a four byte integer with a preci-
sion of 10 digits.

REAL A REAL (single-precision floating-point number) is a 32 bit
approximation of a real number.

DOUBLE A DOUBLE (double-precision floating-point number) is a 64 bit
approximation of a real number. DOUBLE is also referred to as
FLOAT.

DECIMAL(p,s)

A DECIMAL is a decimal number. The position of the decimal
point is determined by the precision (p) and the scale (s) of the
number. Precision is the total number of digits and has to be
less than 32. Scale is the number of digits in the fractional part
and is always smaller than or equal to the value of precision.
The decimal value defaults to precision of 5 and scale of 0 if
precision and scale are not specified.

6 SQL Getting Started

Datetime Values

Datetime values are representations of dates, times, and timestamps.
Datetime values can be used in certain arithmetic and string operations
and are compatible with certain strings, however they are neither strings
nor numbers.1

Date A date is a three-part value (year, month, and day).

Time A time is a three-part value (hour, minute, and second) desig-
nating a time of day using a 24-hour clock.

Timestamp A timestamp is a seven-part value (year, month, day, hour,
minute, second, and microsecond) designating a date and
time.

The null value is a special value that is distinct from all non-null values. It means the
absence of any other value for that column in the row. The null value exists for all data
types.

The following table highlights characteristics of data types used in the examples. All
numeric data types are defined in a certain range. The range of numeric data types is
also included in this table. You can use this table as a quick reference for proper data
type usage.

Data Type Type Characteristic Example or Range

CHAR(15) fixed-length
character
string

Maximum length of 254 'Sunny day '

VARCHAR(15) varying-
length char-
acter string

Maximum length of 4000 'Sunny day'

SMALLINT number 2 bytes in length
precision of 5 digits

range is -32768 to 32767

INTEGER number 4 bytes in length
precision of 10 digits

range is -2147483648 to
2147483647

REAL number single-precision
floating point
32 bit approximation

range is
-3.402E+38 to -1.175E-37
or 1.175E-37 to -3.402E+38
or zero

DOUBLE number double-precision
floating point
64 bit approximation

range is
-1.79769E+308 to -2.225E-307
or 2.225E-307 to 1.79769E+308
or zero

DECIMAL(5,2) number precision is 5
scale is 2

range is
-10**31+1 to 10**31-1

1 In this book we refer to ISO representations of datetime values.

 Chapter 2. Organizing Data 7

See the data type compatibility table in the SQL Reference for more information.

Data Type Type Characteristic Example or Range

DATE datetime three-part value 1991-10-27

TIME datetime three-part value 13.30.05

TIMESTAMP datetime seven-part value 1991-10-27-13.30.05.000000

8 SQL Getting Started

Chapter 3. Creating Tables and Views

This chapter describes how you can create and manipulate tables and views in DB2
Universal Database. The relationship of tables and views is explored through diagrams
and examples.

This chapter covers:

¹ Creating Tables and Creating Views

 ¹ Inserting Data

 ¹ Changing Data

 ¹ Deleting Data

¹ Using Views to Manipulate Data

 Creating Tables

Create your own tables using the CREATE TABLE statement, specifying the column
names and types, as well as constraints. Constraints are discussed in “Enforcing Busi-
ness Rules with Constraints and Triggers” on page 53.

The following statement creates a table named PERS, which is similar to the STAFF
table but has an additional column for date of birth.

CREATE TABLE PERS

 (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

DEPT SMALLINT WITH DEFAULT 10,

 JOB CHAR(5),

 YEARS SMALLINT,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 BIRTH_DATE DATE)

This statement creates a table with no data in it. The next section describes how to
insert data into a new table.

As shown in the example, you specify both a name and a data type for each column.
Data types are discussed in “Data Types” on page 5. NOT NULL is optional and may
be specified to indicate that null values are not allowed in a column. Default values are
also optional.

 Copyright IBM Corp. 1993, 1997 9

There are many other options you can specify in a CREATE TABLE statement, such as
unique constraints or referential constraints. For more information about all of the
options, see the CREATE TABLE statement in the SQL Reference.

 Inserting Data

When you create a new table, it does not contain any data. To enter new rows into a
table, you use the INSERT statement. This statement has two general forms:

¹ With one form, you use a VALUES clause to specify values for the columns of one
or more rows. The next three examples insert data into tables using this general
form.

¹ With the other form, rather than specifying VALUES, you specify a fullselect to
identify columns from rows contained in other tables and/or views.

Fullselect is a select statement used in INSERT or CREATE VIEW statements, or fol-
lowing a predicate. A fullselect that is enclosed in parenthesis is commonly referred to
as a subquery.

Depending on the default options that you have chosen when creating your table, for
every row you insert, you either supply a value for each column or accept a default
value. The default values for the various data types are discussed in the SQL Refer-
ence.

The following statement uses a VALUES clause to insert one row of data into the
PERS table:

INSERT INTO PERS

VALUES (12, 'Harris', 20, 'Sales', 5, 18000, 1000, '1950-1-1')

The following statement uses a VALUES clause to insert three rows into the PERS
table where only the IDs, the names, and the jobs are known. If a column is defined as
NOT NULL and it does not have a default value, you must specify a value for it. The
NOT NULL clause on a column definition in a CREATE TABLE statement can be
extended with the words WITH DEFAULT. If a column is defined as NOT NULL WITH
DEFAULT or a constant default such as WITH DEFAULT 10, and you do not specify
the column in the column list, the default value is inserted into that column in the
inserted row. For example, in the CREATE TABLE statement, a default value was only
specified for DEPT column and it was defined to be 10. Hence, the department number
(DEPT) is set to 10 and all other columns to null.

INSERT INTO PERS (NAME, JOB, ID)

VALUES ('Swagerman', 'Prgmr', 500),

('Limoges', 'Prgmr', 510),

('Li', 'Prgmr', 520)

10 SQL Getting Started

The following statement returns the result of the insertions:

 SELECT *

 FROM PERS

 ID NAME DEPT JOB YEARS SALARY COMM BIRTH_DATE

------ --------- ------ ----- ------ --------- --------- ----------

 12 Harris 20 Sales 5 18000.00 1000.00 01/01/1950

500 Swagerman 10 Prgmr - - - -

510 Limoges 10 Prgmr - - - -

520 Li 10 Prgmr - - - -

Note that, in this case, values were not specified for every column. NULL values are
displayed as a –. For this to work, the list of column names has to correspond both in
order and in data type to the values provided in the VALUES clause. If the list of
column names is omitted (as it was in the first example), the list of data values after
VALUES must be in the same order as the columns in the table into which they are
inserted, and the number of values must equal the number of columns in the table.

Each value must be compatible with the data type of the column into which it is
inserted. If a column is defined as nullable and a value for that column is not specified,
then the value NULL is given to that column in the inserted row.

The following example inserts the null value into YEARS, COMM and BIRTH_DATE
since values have not been specified for those columns in the row.

INSERT INTO PERS (ID, NAME, JOB, DEPT, SALARY)

VALUES(410, 'Perna', 'Sales', 20, 20000)

The second form of the INSERT statement is very handy for populating a table with
values from rows in another table. As mentioned, rather than specifying VALUES, you
specify a fullselect to identify columns from rows contained in other tables and/or views.

The following example selects data from the STAFF table for members of department
38 and inserts it into the PERS table:

INSERT INTO PERS (ID, NAME, DEPT, JOB, YEARS, SALARY)

SELECT ID, NAME, DEPT, JOB, YEARS, SALARY

 FROM STAFF

WHERE DEPT = 38

After this insertion, the following SELECT statement produces a result equal to the
fullselect in the INSERT statement.

SELECT ID, NAME, DEPT, JOB, YEARS, SALARY

 FROM PERS

WHERE DEPT = 38

The result is:

 Chapter 3. Creating Tables and Views 11

ID NAME DEPT JOB YEARS SALARY

------ --------- ------ ----- ------ ---------

 30 Marenghi 38 Mgr 5 17506.75

 40 O'Brien 38 Sales 6 18006.00

 60 Quigley 38 Sales - 16808.30

 120 Naughton 38 Clerk - 12954.75

 180 Abrahams 38 Clerk 3 12009.75

 Changing Data

Use the UPDATE statement to change the data in a table. With this statement, you can
change the value of one or more columns in each row that satisfies the search condi-
tion of the WHERE clause.

The following example updates information on the employee whose ID is 410:

 UPDATE PERS

SET JOB='Prgmr', SALARY = SALARY + 300

WHERE ID = 410

The SET clause specifies the columns to be updated and provides the values.

The WHERE clause is optional and it specifies the rows to be updated. If the WHERE
clause is omitted, the database manager updates each row in the table or view with the
values you supply.

In this example, first the table (PERS) is named, then a condition is specified for row
that is to be updated. The information for employee number 410, has changed: the
employee's job title changed to Prgmr, and the employee's salary increased by $300.

You can change data in more than one row by including a WHERE clause that applies
to two or more rows. The following example increases the salary of every salesperson
by 15%:

 UPDATE PERS

SET SALARY = SALARY * 1.15

WHERE JOB = 'Sales'

12 SQL Getting Started

 Deleting Data

Use the DELETE statement to delete rows of data from a table based on the search
condition specified in the WHERE clause. The following example deletes the row in
which the employee ID is 120:

DELETE FROM PERS

WHERE ID ═ 120

The WHERE clause is optional and it specifies the rows to be deleted. If the WHERE
clause is omitted, the database manager deletes all rows in the table or view.

You can use the DELETE statement to delete more than one row. The following
example deletes all rows in which the employee DEPT is 20:

DELETE FROM PERS

WHERE DEPT ═ 20

When you delete a row, you remove the entire row, not specific column values from it.

To delete the definition of a table as well as its contents, issue the DROP TABLE state-
ment as described in the SQL Reference.

 Creating Views

As discussed in “Views” on page 4, a view provides an alternate way of looking at data
in one or more tables. Through creating views, you can restrict the information you
want various users to look at. The following diagram shows the relationship between
views and tables.

 Chapter 3. Creating Tables and Views 13

Figure 2. Relationship Between Tables and Views

In Figure 2, View_A restricts access to only columns AC1 and AC2 of TABLE_A.
View_AB allows access to column AC3 in TABLE_A and BC2 in TABLE_B. By creating
View_A, you restrict the access users can have to TABLE_A, and by creating
VIEW_AB you restrict access to certain columns as well as create an alternate way of
looking at the data.

The following statement creates a view of the non-managers in department 20 in the
STAFF table, where salary and commission do not show through from the base table.

CREATE VIEW STAFF_ONLY

AS SELECT ID, NAME, DEPT, JOB, YEARS

 FROM STAFF

WHERE JOB <> 'Mgr' AND DEPT=20

After creating the view, the following statement displays the contents of the view:

 SELECT *

 FROM STAFF_ONLY

This statement produces the following result:

14 SQL Getting Started

ID NAME DEPT JOB YEARS

------ --------- ------ ----- ------

 20 Pernal 20 Sales 8

 80 James 20 Clerk -

 190 Sneider 20 Clerk 8

Earlier, we joined the STAFF and ORG tables to produce a result that listed the name
of each department and the name of the manager of that department. The following
statement creates a view that can be repetitively used for the same purpose:

CREATE VIEW DEPARTMENT_MGRS

AS SELECT NAME, DEPTNAME

 FROM STAFF, ORG

 WHERE MANAGER = ID

You can put additional constraints on inserts and updates of a table through a view by
using the WITH CHECK OPTION clause when you create a view. This clause causes
the database manager to validate that any updates of or insertions into the view
conform to the view definition, and to reject those that do not. If you omit this clause,
inserts and updates are not checked against the view definition. For details on how
WITH CHECK OPTION works refer to the CREATE VIEW statement in the SQL Refer-
ence.

Using Views to Manipulate Data
Like the SELECT statement, INSERT, DELETE, and UPDATE statements can be
applied to a view just as though it were a real table. The statements manipulate the
data in the underlying base table(s). So when you access the view again, it is evaluated
using the most current base table(s). If you do not use the WITH CHECK OPTION,
data that you modify using a view may not appear in the repeated accesses of the
view, as the data may no longer fit the original view definition.

The following is an example of an update applied to the view FIXED_INCOME:

View Definition for FIXED_INCOME:

CREATE VIEW FIXED_INCOME (LNAME, DEPART, JOBTITLE, NEWSALARY)

AS SELECT NAME, DEPT, JOB, SALARY

 FROM PERS

WHERE JOB <> 'Sales' WITH CHECK OPTION

 UPDATE FIXED_INCOME

SET NEWSALARY ═ 19000
WHERE LNAME = 'Li'

The update in the previous view is equivalent to (except for the check option) to
updating the base table PERS:

 Chapter 3. Creating Tables and Views 15

 UPDATE PERS

SET SALARY ═ SALARY * 1.10
WHERE NAME = 'Li'

 AND JOB <> 'Sales'

Note that because the view is created using the WITH CHECK OPTION for the con-
straint JOB <> 'Sales' in CREATE VIEW FIXED_INCOME, the following update will not
be allowed when Limoges moves over to sales:

 UPDATE FIXED_INCOME

SET JOBTITLE = 'Sales'

WHERE LNAME = 'Limoges'

Columns defined by expressions such as SALARY + COMM or SALARY * 1.25 cannot
be updated. If a view is defined containing one or more such columns, the owner does
not receive the UPDATE privilege on these columns. INSERT statements are not per-
mitted on views containing such columns, but DELETE statements are.

Consider a PERS table with none of the columns defined as NOT NULL. You could
insert rows into the PERS table through the FIXED_INCOME view even though it does
not contain the ID, YEARS, COMM or BIRTHDATE from underlying table PERS.
Columns not visible through the view are set to NULL or the default value, as appro-
priate.

However, the PERS table does have column ID defined as NOT NULL. If you try to
insert a row through the FIXED_INCOME view, the system attempts to insert NULL
values into all the PERS columns that are “invisible” through the view. Because the ID
column is not included in the view and does not permit null values, the system does not
permit the insertion through the view.

For rules and restrictions on modifying views refer to the CREATE VIEW statement in
the SQL Reference.

16 SQL Getting Started

Chapter 4. Using SQL Statements to
Access Data

This section describes how to connect to a database, and retrieve data using SQL
statements.

In the examples, we present the statement to be entered followed in most cases by the
results that will be displayed when that statement is issued against the sample data-
base. Note that although we show the statements in uppercase, you can enter them in
any mixture of upper and lowercase characters (except where they are enclosed in
either single quotes (') or quotes ('')).

The SAMPLE database, included with DB2 Universal Database, consists of several
tables, as listed in Appendix A. Create the database following the instructions in the
Administration Getting Started book.

Depending on how your database has been set up, it may be necessary to qualify the
table names used, by prefixing them with the schema name and a period. For exam-
ples in this book, the default schema is assumed to be USERID. So you could refer to
the table ORG as USERID.ORG. Ask your administrator whether or not this is neces-
sary.

This chapter covers:

¹ Connecting to a Database

 ¹ Investigating Errors

¹ Selecting Columns and Selecting Rows

¹ Sorting Rows and Removing Duplicate Rows

¹ Order of Operations

¹ Using Expressions to Calculate Values

 ¹ Naming Expressions

¹ Selecting Data from More Than One Table

¹ Using a Subquery

 ¹ Using Functions

 ¹ Grouping

 Copyright IBM Corp. 1993, 1997 17

Connecting to a Database

You need to connect to a database before you can use SQL statements to query or
manipulate it. The CONNECT statement associates a database connection with a user
name.

For example, to connect to the SAMPLE database, type the following command in the
DB2 command line processor :

CONNECT TO SAMPLE USER USERID USING PASSWORD

(Be sure to choose values for USER and USING that are valid on the server system.)

In this example, USER is USERID and USING is PASSWORD.

The following message tells you that you have made a successful connection:

Database Connection Information

Database product = DB2/2 5.0.0

SQL authorization ID = USERID

Local database alias = SAMPLE

When a connection is set through the CONNECT statement an explicit connection is
established. In an implicit connection the default server has been set. In this case you
can use CONNECT or you can just start issuing statements and a connection will auto-
matically be established.

Once you are connected, you can start manipulating the database. For details on
implicit and explicit connections refer to the CONNECT statement in the SQL
Reference.

 Investigating Errors

Whenever you make a mistake typing in any of the examples or if an error occurs
during execution of an SQL statement, the database manager returns an error
message. The error message consists of a message identifier, a brief explanation, and
an SQLSTATE.

SQLSTATEs are error codes common to the DB2 family of products. SQLSTATEs
conform to the ISO/ANSI SQL92 standard.

18 SQL Getting Started

For example, if the username or password had been incorrect in the CONNECT state-
ment, the database manager would have returned a message identifier of SQL1403N
and an SQLSTATE of 08004. The message is as follows:

SQL1403N The username and/or password supplied is

 incorrect. SQLSTATE=08004

You can get more information about the error message by typing a question mark (?)
then the message identifier or the SQLSTATE:

 ? SQL1403N

OR

 ? SQL1403

OR

 ? 08004

Note that the second last line in the description of the error SQL1403N states that the
SQLCODE is -1403. SQLCODE is a produce specific error code. Message identifiers
ending with N (Notification) or C (Critical) represent an error and have negative
SQLCODEs. Message identifiers ending with W (Warning) represent a warning and
have positive SQLCODEs.

 Selecting Columns

Use the SELECT statement to select specific columns from a table. In the statement
specify a list of column names separated by commas. This list is referred to as a select
list.

The following statement selects department names (DEPTNAME) and department
numbers (DEPTNUMB) from the ORG table of the SAMPLE database:

SELECT DEPTNAME, DEPTNUMB

 FROM ORG

The above statement produces the following result:

 DEPTNAME DEPTNUMB

 -------------- --------

 Head Office 10

 New England 15

 Mid Atlantic 20

 South Atlantic 38

 Great Lakes 42

 Plains 51

 Pacific 66

 Mountain 84

 Chapter 4. Using SQL Statements to Access Data 19

By using an asterisk (*) you can select all the columns from the table. The next
example lists all columns and rows from the ORG table:

 SELECT *

 FROM ORG

This statement produces the following result:

 DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

-------- -------------- ------- ---------- -------------

10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

 51 Plains 140 Midwest Dallas

 66 Pacific 270 Western San Francisco

 84 Mountain 290 Western Denver

 Selecting Rows

To select specific rows from a table, after the SELECT statement use the WHERE
clause to specify the condition or conditions that a row must meet to be selected. A
criterion for selecting rows from a table is a search condition.

A search condition consists of one or more predicates. A predicate specifies a condition
that is true or false (or unknown) about a row. You can specify conditions in the
WHERE clause by using the following basic predicates:

When you construct search conditions, be careful to perform arithmetic operations only
on numeric data types, and to make comparisons only among compatible data types.
For example, you can't compare strings to numbers.

If you are selecting rows based on a character value, that value must be enclosed in
single quotation marks (for example, WHERE JOB = 'Clerk') and each character value

Predicate Function

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

IS NULL/IS NOT NULL tests for null values

20 SQL Getting Started

must be typed exactly as it exists in the database. If the data value is lowercase in the
database and you type it as uppercase, no rows will be selected. If you are selecting
rows based on a numeric value, that value must not be enclosed in quotation marks
(for example, WHERE DEPT = 20).

The following example selects only the rows for department 20 from the STAFF table:

SELECT DEPT, NAME, JOB

 FROM STAFF

WHERE DEPT = 20

This statement produces the following result:

 DEPT NAME JOB

------ --------- -----

 20 Sanders Mgr

 20 Pernal Sales

 20 James Clerk

 20 Sneider Clerk

The next example uses AND to specify more than one condition. You can specify as
many conditions as you want. The example selects clerks in department 20 from the
STAFF table:

SELECT DEPT, NAME, JOB

 FROM STAFF

WHERE JOB = 'Clerk'

AND DEPT = 20

This statement produces the following result:

 DEPT NAME JOB

------ --------- -----

 20 James Clerk

 20 Sneider Clerk

A null value occurs where no value is entered and the column does not support a
default value. It can also occur where the value is specifically set to null. It can occur
only in columns that are defined to support null values. Defining and supporting null
values in tables are discussed in “Creating Tables” on page 9.

Use the predicate IS NULL, and IS NOT NULL to check for a null value.

The following statement lists employees whose commission is not known:

SELECT ID, NAME

 FROM STAFF

WHERE COMM IS NULL

This statement produces the following result:

 Chapter 4. Using SQL Statements to Access Data 21

 ID NAME

 ------ ---------

 10 Sanders

 30 Marenghi

 50 Hanes

 100 Plotz

 140 Fraye

 160 Molinare

 210 Lu

 240 Daniels

 260 Jones

 270 Lea

 290 Quill

The value zero is not the same as the null value. The following statement selects
everyone in a table whose commission is zero:

SELECT ID, NAME

 FROM STAFF

WHERE COMM = 0

Because there are no values of zero in the COMM column in the sample table, the
result set returned is empty.

The next example selects all rows where the value of YEARS in the STAFF table is
greater than 9:

SELECT NAME, SALARY, YEARS

 FROM STAFF

WHERE YEARS > 9

This statement produces the following result:

 NAME SALARY YEARS

--------- --------- ------

 Hanes 20659.80 10

 Lu 20010.00 10

 Jones 21234.00 12

 Quill 19818.00 10

 Graham 21000.00 13

22 SQL Getting Started

 Sorting Rows

You may want the information returned in a specific order. Use the ORDER BY clause
to sort the information by the values in one or more columns.

The following statement displays the employees in department 84 ordered by number of
years employed:

SELECT NAME, JOB, YEARS

 FROM STAFF

WHERE DEPT = 84

ORDER BY YEARS

This statement produces the following result:

 NAME JOB YEARS

--------- ----- ------

 Davis Sales 5

 Gafney Clerk 5

 Edwards Sales 7

 Quill Mgr 10

Specify ORDER BY as the last clause in the entire SELECT statement. Columns
named in this clause can be expressions or any column of the table. The column
names in the ORDER BY clause do not have to be specified in the select list.

You can order rows in ascending or descending order by explicitly specifying either
ASC or DESC within the ORDER BY clause. If neither is specified, the rows are auto-
matically ordered in ascending sequence. The following statement displays the
employees in department 84 in descending order by number of years employed:

SELECT NAME, JOB, YEARS

 FROM STAFF

WHERE DEPT = 84

ORDER BY YEARS DESC

This statement produces the following result:

 NAME JOB YEARS

--------- ----- ------

 Quill Mgr 10

 Edwards Sales 7

 Davis Sales 5

 Gafney Clerk 5

You can order rows by character values as well as numeric values. The following state-
ment displays the employees in department 84 in alphabetical order by name:

 Chapter 4. Using SQL Statements to Access Data 23

SELECT NAME, JOB, YEARS

 FROM STAFF

WHERE DEPT = 84

ORDER BY NAME

This statement produces the following result:

 NAME JOB YEARS

--------- ----- ------

 Davis Sales 5

 Edwards Sales 7

 Gafney Clerk 5

 Quill Mgr 10

Removing Duplicate Rows

When using the SELECT statement, you may not want duplicate information to be
returned. For example, STAFF has a DEPT column in which several department
numbers are listed more than once, and a JOB column in which several job
descriptions are listed more than once.

To eliminate duplicate rows, use the DISTINCT option on the SELECT clause. For
example, if you insert DISTINCT into the statement, each job within a department is
listed only once:

SELECT DISTINCT DEPT, JOB

 FROM STAFF

WHERE DEPT < 30

ORDER BY DEPT, JOB

This statement produces the following result:

 DEPT JOB

 ------ -----

 10 Mgr

 15 Clerk

 15 Mgr

 15 Sales

 20 Clerk

 20 Mgr

 20 Sales

DISTINCT has eliminated all rows that contain duplicate data in the set of columns
specified in the SELECT statement.

24 SQL Getting Started

Order of Operations

It is important to take into accout the order of operations. Output of one clause is the
input to the next one as stated in the list below. An example where order of operations
is a consideration is presented in “Naming Expressions” on page 26.

Also, note that this explanation allows for a more intuitive way of thinking about queries.
It is not necessarily the way the operations are performed internally. The sequence of
operations is as follows:

 1. FROM clause

 2. WHERE clause

3. GROUP BY clause

 4. HAVING clause

 5. SELECT clause

Using Expressions to Calculate Values

An expression is a calculation or function that you include in a statement. The following
statement calculates what the salaries for each employee in department 38 would be if
each received a $500 bonus:

SELECT DEPT, NAME, SALARY + 500

 FROM STAFF

WHERE DEPT = 38

ORDER BY 3

This result is:

 DEPT NAME 3

------ --------- ----------------

 38 Abrahams 12509.75

 38 Naughton 13454.75

 38 Quigley 17308.30

 38 Marenghi 18006.75

 38 O'Brien 18506.00

Note that the column name for the third column is a number. This is a system gener-
ated number, since SALARY+500 does not specify a column name. Later on this
number is used in the ORDER BY clause to refer to the third column. “Naming
Expressions” on page 26 talks about how to give meaningful names to expressions.

 Chapter 4. Using SQL Statements to Access Data 25

You can form arithmetic expressions using the basic arithmetic operators for addition
(+), subtraction (−), multiplication (*) and division (/).

The operators can operate on values from several different types of operands, some of
which are:

¹ Column names (as in RATE * HOURS)
¹ Constant values (as in RATE * 1.07)
¹ Scalar functions (as in LENGTH(NAME) + 1).

 Naming Expressions

The optional AS clause lets you assign a meaningful name to an expression, which
makes referring back to the expression easier. You can use an AS clause to provide a
name for any item in the select list.

The following statement displays all employees whose salary plus commission is less
than $13, 000. The expression SALARY + COMM is named PAY:

SELECT NAME, JOB, SALARY + COMM AS PAY

 FROM STAFF

WHERE (SALARY + COMM) < 13000

ORDER BY PAY

This statement produces the following result:

 NAME JOB PAY

--------- ----- ----------

 Yamaguchi Clerk 10581.50

 Burke Clerk 11043.50

 Scoutten Clerk 11592.80

 Abrahams Clerk 12246.25

 Kermisch Clerk 12368.60

 Ngan Clerk 12714.80

By using the AS clause, you can refer to a particular column name rather than the
system generated number in the ORDER BY clause. In this example we compare
(SALARY + COMM) with 13000 in the WHERE clause, instead of using the name PAY.
This is a result of the order of operations. The WHERE clause is evaluated before
(SALARY + COMM) is given the name PAY. Hence, PAY cannot be used in the predi-
cate.

26 SQL Getting Started

Selecting Data from More Than One Table

You can use the SELECT statement to produce reports that contain information from
two or more tables. This is commonly referred to as a join. For example, you can join
data from the STAFF and ORG tables to form a new table. To join two tables, specify
the columns you want to be displayed in the SELECT clause, the table names in a
FROM clause and the search condition in the WHERE clause. The WHERE clause is
optional.

The next example associates the name of each manager with a department name. You
need to select information from two tables since the employee information (STAFF
table) and the departmental information (ORG table) are stored separately. The fol-
lowing query selects the NAME and DEPTNAME columns for STAFF and ORG tables,
respectively. The search condition narrows down the selection to rows where the values
in the MANAGER column are the same as the values in the ID column:

SELECT DEPTNAME, NAME

FROM ORG, STAFF

WHERE MANAGER = ID

Figure 3 demonstrates how columns in two different tables are compared. The boxed
values indicate a match where the search condition has been satisfied.

ID NAME

STAFF
DEPT J

10

20

30

40

50

60

Sanders

Pernal

Marenghi

O'Brien

Hanes

Quigley

20

20

38

38

15

38

15

Mg

Sa

Mg

Sa

Mg

Sa

Sa

ORG
DEPTNUMB DEPTNAME MANAGER D

10

15

20

38

42

51

Head Office

New England

Mid Atlantic

South Atlantic

Great Lakes

Plains

160

50

10

30

100

140

270

Co

Ea

Ea

Ea

Mi

Mi

We

MANAGER=ID ?

Figure 3. Selecting from STAFF and ORG tables

The SELECT statement produces the following result:

 Chapter 4. Using SQL Statements to Access Data 27

 DEPTNAME NAME

 -------------- ---------

 Mid Atlantic Sanders

South Atlantic Marenghi

 New England Hanes

 Great Lakes Plotz

 Plains Fraye

 Head Office Molinare

 Pacific Lea

 Mountain Quill

The result lists the name of each manager and his or her department.

Using a Subquery

When you write a SELECT statement, you can place another SELECT statement within
the WHERE clause. Each additional SELECT starts a subquery.

A subquery can, in turn, include another subquery whose value is substituted into its
WHERE clause. In addition, a WHERE clause can include subqueries in more than one
search condition. The subquery can refer to tables and columns that are different than
the ones used in the main query.

The following statement selects the division and location from the ORG table of the
employee whose ID in the STAFF table is 280:

SELECT DIVISION, LOCATION

 FROM ORG

WHERE DEPTNUMB ═ (SELECT DEPT
 FROM STAFF

WHERE ID ═ 280)

When processing this statement, DB2 first determines the result of the subquery. The
result is 66, since the employee with ID 280 is in department 66. Then the final result is
taken from the row of the ORG table whose DEPTNUMB column has the value of 66.
The final result is:

 DIVISION LOCATION

 ---------- -------------

 Western San Francisco

When you use a subquery, the database manager evaluates it and substitutes the
resulting value directly into the WHERE clause.

Subqueries are further discussed “Correlated Subqueries” on page 41.

28 SQL Getting Started

 Using Functions

This section gives you a brief introduction to functions that will be used in the examples
throughout the book. A database function is a relationship between a set of input data
values and a result value.

Functions can be either built-in or user-defined. DB2 Universal Database delivers many
built-in and preinstalled user-defined functions. You can find the built-in functions in the
SYSIBM schema and the preinstalled user-defined functions in the SYSFUN schema.
SYSIBM and SYSFUN are reserved schemas.

The built-in and preinstalled user-defined functions will never satisfy all requirements.
So application developers may need to create their own suite of functions specific to
their applications. User-defined functions make this possible, expanding the scope of
DB2 Universal Database to include, for example, customized business or scientific func-
tions. This is further discussed in the “User-Defined Functions” on page 66.

 Column Functions
Column functions operate on a set of values in a column to derive a single result value.
The following are just a few examples of column functions. For a full list refer to the
SQL Reference.

AVG Returns the sum of the values in a set divided by the number of
values in that set

COUNT Returns the number of rows or values in a set of rows or values

MAX Returns the largest value in a set of values

MIN Returns the smallest value in a set of values

The following statement selects the maximum salary from the STAFF table:

 SELECT MAX(SALARY)

 FROM STAFF

This statement returns the value 22959.20 from the STAFF sample table.

The next example selects the names and salaries of employees whose income is more
than the average income yet have been with the company less than the average
number of years.

SELECT NAME, SALARY

 FROM STAFF

WHERE SALARY > (SELECT AVG(SALARY) FROM STAFF)

AND YEARS < (SELECT AVG(YEARS) FROM STAFF)

 Chapter 4. Using SQL Statements to Access Data 29

This statement produces the following result:

 NAME SALARY

 --------- ---------

 Marenghi 17506.75

 Daniels 19260.25

 Gonzales 16858.20

In the above example, in the WHERE clause, the column function is stated in a sub-
query as opposed to being directly implemented (WHERE SALARY > AVG(SALARY)).
Column functions cannot be stated in the WHERE clause. This is due to the order of
operations. The WHERE clause can be thought of as being evaluated before the
SELECT clause. Consequently, when the WHERE clause is being evaluated, the
column function does not have access to the set of values. This set of values are
selected at a later time by the SELECT clause.

You can specify DISTINCT as part of the argument of a column function to eliminate
duplicate values before a function is applied. Thus, COUNT(DISTINCT WORKDEPT)
computes the number of different departments.

 Scalar Functions
A scalar function performs some operation on a value to return another value. The fol-
lowing are just a few examples of scalar functions provided by DB2 Universal Data-
base.

ABS Return the absolute value of a number

HEX Returns the hexadecimal representation of a value

LENGTH Returns the number of bytes in an argument (for a graphic string it
returns the number of double-byte characters.)

YEAR Extract the year portion of a datetime value

For a detailed list and description of scalar functions refer to the SQL Reference.

The following statement returns the department names from the ORG table together
with the length of each of these names:

SELECT DEPTNAME, LENGTH(DEPTNAME)

 FROM ORG

This statement produces the following result:

30 SQL Getting Started

 DEPTNAME 2

 -------------- -----------

 Head Office 11

 New England 11

 Mid Atlantic 12

 South Atlantic 14

 Great Lakes 11

 Plains 6

 Pacific 7

 Mountain 8

Note that since the AS clause was not used to give a meaningful name to
LENGTH(DEPTNAME), a system generated number appears in the second column.

 Grouping

DB2 Universal Database has the capability of analyzing data based on particular
columns of a table.

You can group rows according to the group defined in a GROUP BY clause. In its sim-
plest form, a group consists of columns known as grouping columns. The column
names in the SELECT clause must be either a grouping column or a column function.
Column functions return a result for each group defined by the GROUP BY clause. The
following example produces a result that lists the maximum salary for each department
number:

SELECT DEPT, MAX(SALARY) AS MAXIMUM

 FROM STAFF

GROUP BY DEPT

This statement produces the following result:

 DEPT MAXIMUM

 ------ ---------

 10 22959.20

 15 20659.80

 20 18357.50

 38 18006.00

 42 18352.80

 51 21150.00

 66 21000.00

 84 19818.00

Note that the MAX(SALARY) is calculated for each department, a group defined by the
GROUP BY clause, not the entire company.

 Chapter 4. Using SQL Statements to Access Data 31

Using a WHERE Clause with a GROUP BY
Clause

A grouping query can have a standard WHERE clause that eliminates non-qualifying
rows before the groups are formed and the column functions are computed. You have
to specify the WHERE clause before the GROUP BY clause. For example:

SELECT WORKDEPT, EDLEVEL, MAX(SALARY) AS MAXIMUM

 FROM EMPLOYEE

WHERE HIREDATE > '1979-01-01'

GROUP BY WORKDEPT, EDLEVEL

ORDER BY WORKDEPT, EDLEVEL

The result is:

WORKDEPT EDLEVEL MAXIMUM

-------- ------- -----------

 D11 17 18270.00

 D21 15 27380.00

 D21 16 36170.00

 D21 17 28760.00

 E11 12 15340.00

 E21 14 26150.00

Note that every column name specified in the SELECT statement is also mentioned in
the GROUP BY clause. Not mentioning the column names in both places will give you
an error. The GROUP BY clause returns a row for each unique combination of
WORKDEPT and EDLEVEL.

Using the HAVING Clause After the GROUP BY
Clause

You can apply a qualifying condition to groups so that the system returns a result only
for the groups that satisfy the condition. To do this, include a HAVING clause after the
GROUP BY clause. A HAVING clause can contain one or more predicates connected
by ANDs and ORs. Each predicate compares a property of the group (such as
AVG(SALARY)) with either:

¹ Another property of the group

For example:

HAVING AVG(SALARY) > 2 * MIN(SALARY)

 ¹ A constant

For example:

 HAVING AVG(SALARY) > 20000

32 SQL Getting Started

For example, the following query finds the maximum and minumum salary of depart-
ments with more than 4 employees:

SELECT WORKDEPT, MAX(SALARY) AS MAXIMUM, MIN(SALARY) AS MINIMUM

 FROM EMPLOYEE

GROUP BY WORKDEPT

HAVING COUNT(*) > 4

ORDER BY WORKDEPT

This statement produces the following result:

 WORKDEPT MAXIMUM MINIMUM

-------- ----------- -----------

 D11 32250.00 18270.00

 D21 36170.00 17250.00

 E11 29750.00 15340.00

It is possible (though unusual) for a query to have a HAVING clause but no GROUP BY
clause. In this case, DB2 treats the entire table as one group. Because the table is
treated as a single group, you can have at most one result row. If the HAVING condi-
tion is true for the table as a whole, the selected result (which must consist entirely of
column functions) is returned; otherwise no rows are returned.

 Chapter 4. Using SQL Statements to Access Data 33

34 SQL Getting Started

Chapter 5. Expressions and Subqueries

DB2 provides flexibility in expressing queries. This chapter describes a few of the
important methods available in expressing more complex queries.

This chapter gives a comprehensive description of the following:

 ¹ Scalar Fullselects

¹ Casting Data Types

 ¹ Case Expressions

 ¹ Table Expressions

 ¹ Correlation Names

 Scalar Fullselects

A scalar fullselect is a fullselect within parentheses that returns one row containing only
one column value. Scalar fullselects are useful for retrieving data values from the data-
base for use in an expression.

¹ The following example lists names of employees who have a salary greater than
the average salary of all employees:

SELECT LASTNAME, FIRSTNME

 FROM EMPLOYEE

WHERE SALARY > (SELECT AVG(SALARY)

 FROM EMPLOYEE)

¹ This example finds the average salary of the employees in two different tables:

SELECT AVG(SALARY) AS "Average_Employee",

(SELECT AVG(SALARY) AS "Average_Staff" FROM STAFF)

 FROM EMPLOYEE

 Copyright IBM Corp. 1993, 1997 35

Casting Data Types

There may be times when you need to convert values from one data type to another,
for example, from a numeric value to a character string. To convert a value to a dif-
ferent type, use the CAST specification.

Another possible use for a cast specification is to truncate a very long character string.
In the EMP_RESUME table the column RESUME is CLOB(5K). You may want to
display only the first 370 characters containing the personal information of the applicant.
To display the first 370 characters of the ASCII format of the resumes from the table
EMP_RESUME, issue the following query:

SELECT EMPNO, CAST(RESUME AS VARCHAR(370))

 FROM EMP_RESUME

WHERE RESUME_FORMAT = 'ascii'

A warning is issued informing you that values longer than 370 characters are truncated.

You can cast NULL values to other data types that are more convenient for manipu-
lation in a query. “Common Table Expressions” on page 39 is an example of using
casting for this purpose.

 Case Expressions

You can use CASE expressions in SQL statements to easily manipulate the data repre-
sentation of a table. This provides a powerful conditional expression capability that is
similar in concept to CASE statements in some programming languages.

¹ To change department numbers from the DEPTNAME column in ORG table to
meaningful words, enter the following query:

 SELECT DEPTNAME,

 CASE DEPTNUMB

WHEN 10 THEN 'Marketing'

WHEN 15 THEN 'Research'

WHEN 20 THEN 'Development'

WHEN 38 THEN 'Accounting'

 ELSE 'Sales'

 END AS FUNCTION

 FROM ORG

The result is:

36 SQL Getting Started

 DEPTNAME FUNCTION

 -------------- -----------

 Head Office Marketing

 New England Research

 Mid Atlantic Development

South Atlantic Accounting

 Great Lakes Sales

 Plains Sales

 Pacific Sales

 Mountain Sales

¹ You can use CASE expressions to protect against exceptions such as division by
zero. In the following example, if the employee has no bonus or commission
payment, the statement condition prevents an error by avoiding the division
operation:

SELECT LASTNAME, WORKDEPT FROM EMPLOYEE

 WHERE(CASE

WHEN BONUS+COMM=0 THEN NULL

 ELSE SALARY/(BONUS+COMM)

END) > 10

¹ You can use a CASE expression to produce a ratio based on the sum of a subset
of values from one column to the sum of all the values from that column in a single
statement. A statement using a CASE expression requires only a single pass
through the data. Without a CASE expression, at least two passes are required to
perform the same calculation.

The following example computes the ratio of the sum of the salaries of department
20 to the total of all salaries using a CASE expression:

SELECT CAST(CAST (SUM(CASE

WHEN DEPT ═ 20 THEN SALARY
 ELSE 0

END) AS DECIMAL(7,2))/

SUM(SALARY) AS DECIMAL (3,2))

 FROM STAFF

The result is 0.11. Note that the CAST functions ensure that the precision of the
result is preserved.

¹ You can use a CASE expression to evaluate a simple function instead of calling
the function itself, which would require additional overhead. For example:

 CASE

WHEN X<0 THEN -1

WHEN X=0 THEN 0

WHEN X>0 THEN 1

 END

This expression has the same result as the SIGN user-defined function in the
SYSFUN schema.

 Chapter 5. Expressions and Subqueries 37

 Table Expressions

If you just need the definition of a view for a single query, you can use a table
expression.

Table expressions are temporary and are only valid for the life of the SQL statement;
they cannot be shared, but they allow more flexibility than views. View definitions can
be shared by any authorized user.

This section describes how to use common table expressions and nested table
expressions in queries.

Nested Table Expressions
A nested table expression is a temporary view where the definition is nested (defined
directly) in the FROM clause of the main query.

The following query uses a nested table expression to find the average total pay, edu-
cation level and year of hire, for those with an education level greater than 16:

SELECT EDLEVEL, HIREYEAR, DECIMAL(AVG(TOTAL_PAY), 7,2)

FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, EDLEVEL,

SALARY+BONUS+COMM AS TOTAL_PAY

 FROM EMPLOYEE

WHERE EDLEVEL > 16) AS PAY_LEVEL

GROUP BY EDLEVEL, HIREYEAR

ORDER BY EDLEVEL, HIREYEAR

The result is as follows:

 EDLEVEL HIREYEAR 3

------- ----------- ---------

 17 1967 28850.00

 17 1973 23547.00

 17 1977 24430.00

 17 1979 25896.50

 18 1965 57970.00

 18 1968 32827.00

 18 1973 45350.00

 18 1976 31294.00

 19 1958 51120.00

 20 1975 42110.00

This query uses a nested table expression to first extract the year of hire from the
HIREDATE column so that it can subsequently be used in the GROUP BY clause. You
may not want to create this as a view, because you intend to perform similar queries
using different values for EDLEVEL.

38 SQL Getting Started

The scalar built-in function DECIMAL is used in this example. DECIMAL returns a
decimal representation of a number or a character string. For more details on functions
refer to the SQL Reference.

Common Table Expressions
 A common table expression is a named result table that is defined using the WITH
keyword prior to the beginning of a fullselect. It is a table expression that you create to
use throughout a complex query. Define and name it at the start of the query using a
WITH clause. Repeated references to a common table expression use the same result
set. By comparison, if you used nested table expressions or views, the result set would
be regenerated each time, with possibly different results.

The following example lists all the people in the company who have an education level
greater than 16, who make less pay on average than those people who were hired at
the same time and who have the same education. The parts of the query are described
in further detail following the query.

.1/

 WITH

 PAYLEVEL AS

(SELECT EMPNO, YEAR(HIREDATE) AS HIREYEAR, EDLEVEL,

SALARY+BONUS+COMM AS TOTAL_PAY

 FROM EMPLOYEE

WHERE EDLEVEL > 16),

 .2/

PAYBYED (EDUC_LEVEL, YEAR_OF_HIRE, AVG_TOTAL_PAY) AS

(SELECT EDLEVEL, HIREYEAR, AVG(TOTAL_PAY)

 FROM PAYLEVEL

GROUP BY EDLEVEL, HIREYEAR)

 .3/

SELECT EMPNO, EDLEVEL, YEAR_OF_HIRE, TOTAL_PAY, DECIMAL(AVG_TOTAL_PAY,7,2)

FROM PAYLEVEL, PAYBYED

 WHERE EDLEVEL=EDUC_LEVEL

 AND HIREYEAR = YEAR_OF_HIRE

 AND TOTAL_PAY < AVG_TOTAL_PAY

.1/ This is a common table expression with the name PAYLEVEL. This result table
includes the year that a person was hired, the total pay for that employee, and his
or her education level. Only rows for employees with an education level greater
than 16 are included.

.2/ This is a common table expression with the name PAYBYED (or PAY by educa-
tion). It uses the PAYLEVEL table that was created in the previous common table
expression to determine the education level, hire year, and average pay of
employees within each education level, hired in the same year. The columns
returned by this table have been given different names (EDUC_LEVEL, for

 Chapter 5. Expressions and Subqueries 39

example) from the column names used in the select list. This produces a result set
named PAYBYED that is the same as the result produced in the nested table
expression example.

.3/ Finally, we get to the actual query that produces the desired result. The two tables
(PAYLEVEL, PAYBYED) are joined to determine those individuals who have total
pay that is less than the average pay for people hired in the same year. Note that
PAYBYED is based on PAYLEVEL. So PAYLEVEL is effectively accessed twice in
the complete statement. Both times the same set of rows are used in evaluating
the query.

The final result is as follows:

EMPNO EDLEVEL YEAR_OF_HIRE TOTAL_PAY 5

------ ------- ------------ ------------- ---------

 000210 17 1979 20132.00 25896.50

 Correlation Names

A correlation name is an identifier used for distinguishing multiple uses of an object. A
correlation name can be defined in the FROM clause of a query and in the first clause
of an UPDATE or DELETE statement. It can be associated with a table, view, or a
nested table expression but only within the context that it is defined.

For example, the clause FROM STAFF S, ORG O establishes S and O as the corre-
lation names for STAFF and ORG, respectively.

SELECT NAME, DEPTNAME

FROM STAFF S, ORG O

WHERE O.MANAGER ═ S.ID

Once you have defined a correlation name, you can only use the correlation name to
qualify the object. For example, in the example above had we stated
ORG.MANAGER=STAFF.ID the statement would have failed.

You can also use a correlation name as a shorter name for referring to a database
object. Typing just S is easier than typing STAFF.

By using correlation names, you can make duplicates of an object. This is useful when
you need to compare entries of a table with itself. In the following example, table
EMPLOYEE is compared with another instance of itself to find the managers of all
employees. It displays the name of the employees who are not designers, name of their
manager and the department number.

40 SQL Getting Started

SELECT E2.FIRSTNME, E2.LASTNAME,

E2.JOB, E1.FIRSTNME, E1.LASTNAME, E1.WORKDEPT

FROM EMPLOYEE E1, EMPLOYEE E2

WHERE E1.WORKDEPT ═ E2.WORKDEPT
AND E1.JOB ═ 'MANAGER'
AND E2.JOB <> 'MANAGER'

AND E2.JOB <> 'DESIGNER'

This statement produces the following result:

 FIRSTNME LASTNAME JOB FIRSTNME LASTNAME WORKDEPT

------------ --------------- -------- ------------ --------------- --------

 DOLORES QUINTANA ANALYST SALLY KWAN C01

 HEATHER NICHOLLS ANALYST SALLY KWAN C01

 JAMES JEFFERSON CLERK EVA PULASKI D21

 MARIA PEREZ CLERK EVA PULASKI D21

 SYBIL JOHNSON CLERK EVA PULASKI D21

 DANIEL SMITH CLERK EVA PULASKI D21

 SALVATORE MARINO CLERK EVA PULASKI D21

ETHEL SCHNEIDER OPERATOR EILEEN HENDERSON E11

MAUDE SETRIGHT OPERATOR EILEEN HENDERSON E11

PHILIP SMITH OPERATOR EILEEN HENDERSON E11

JOHN PARKER OPERATOR EILEEN HENDERSON E11

 RAMLAL MEHTA FIELDREP THEODORE SPENSER E21

 JASON GOUNOT FIELDREP THEODORE SPENSER E21

 WING LEE FIELDREP THEODORE SPENSER E21

 Correlated Subqueries

A subquery that is allowed to refer to any of the previously mentioned tables is known
as a correlated subquery. We also say that the subquery has a correlated reference to
a table in the main query.

The following example is an uncorrelated subquery that lists the employee number and
name of employees in department 'A00' with a salary greater than the average salary of
the department:

SELECT EMPNO, LASTNAME

 FROM EMPLOYEE

WHERE WORKDEPT ═ 'A00'
AND SALARY > (SELECT AVG(SALARY)

 FROM EMPLOYEE

WHERE WORKDEPT ═ 'A00')

If you want to know the average salary for every department, the subquery needs to be
evaluated once for every department. You can do this by using the correlation capability
of SQL, which permits you to write a subquery that is executed repeatedly, once for

 Chapter 5. Expressions and Subqueries 41

each row of the table identified in the outer-level query. This type of correlated sub-
query is used to compute some property of each row of the outer-level table that is
needed to evaluate a predicate in the subquery.

This example shows all the employees whose salary is higher than the average salary
of their department:

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT

FROM EMPLOYEE E1

WHERE SALARY > (SELECT AVG(SALARY)

FROM EMPLOYEE E2

WHERE E2.WORKDEPT = E1.WORKDEPT)

ORDER BY E1.WORKDEPT

In this query, the subquery is evaluated once for every department. The result is:

 EMPNO LASTNAME WORKDEPT

------ --------------- --------

 000010 HAAS A00

 000110 LUCCHESSI A00

 000030 KWAN C01

 000060 STERN D11

 000220 LUTZ D11

 000200 BROWN D11

 000170 YOSHIMURA D11

 000150 ADAMSON D11

 000070 PULASKI D21

 000270 PEREZ D21

 000240 MARINO D21

 000090 HENDERSON E11

 000280 SCHNEIDER E11

 000100 SPENSER E21

 000340 GOUNOT E21

 000330 LEE E21

To write a query with a correlated subquery, use the same basic format of an ordinary
outer query with a subquery. However, in the FROM clause of the outer query, just
after the table name, place a correlation name. The subquery may then contain column
references qualified by the correlation name. For example, if E1 is a correlation name,
then E1.WORKDEPT means the WORKDEPT value of the current row of the table in
the outer query. The subquery is (conceptually) reevaluated for each row of the table in
the outer query.

By using a correlated subquery, you let the system do the work for you and reduce the
amount of code you need to write within your application.

Unqualified correlated references are allowed in DB2. For example, the table
EMPLOYEE has a column named LASTNAME and table SALES has a column named
SALES_PERSON, but no column named LASTNAME.

42 SQL Getting Started

SELECT LASTNAME, FIRSTNME, COMM

 FROM EMPLOYEE

WHERE 3 > (SELECT AVG(SALES)

 FROM SALES

WHERE LASTNAME ═ SALES_PERSON)

In this example, the system checks the innermost FROM clause for a LASTNAME
column. Not finding one, it then checks the next innermost FROM clause (which in this
case is the outer FROM clause). While not always necessary, qualifying correlated ref-
erences is recommended to improve the readability of the query and to ensure that you
are getting the result that you intend.

Implementing a Correlated Subquery
When would you want to use a correlated subquery? The use of a column function is
sometimes a clue.

Let's say you want to list the employees whose level of education is higher than the
average for their department.

First, you must determine the select-list items. The problem says “List the employees.”
This implies that the EMPNO from the EMPLOYEE table should be sufficient to
uniquely identify employees. The problem also states the level of education (EDLEVEL)
and the employees' departments (WORKDEPT) as conditions. While the problem does
not explicitly ask for columns to be displayed, including them in the select-list will help
illustrate the solution. A part of the query can now be constructed:

SELECT LASTNAME, WORKDEPT, EDLEVEL

 FROM EMPLOYEE

Next, a search condition (WHERE clause) is needed. The problem statement says,
“...whose level of education is higher than the average for that employee's department.”
This means that for every employee in the table, the average education level for that
employee's department must be computed. This statement fits the description of a cor-
related subquery. Some property (average level of education of the current employee's
department) is being computed for each row. A correlation name is needed for the
EMPLOYEE table:

SELECT LASTNAME, WORKDEPT, EDLEVEL

FROM EMPLOYEE E1

The subquery needed is simple. It computes the average level of education for each
department. The complete SQL statement is:

SELECT LASTNAME, WORKDEPT, EDLEVEL

FROM EMPLOYEE E1

WHERE EDLEVEL > (SELECT AVG(EDLEVEL)

 FROM EMPLOYEE E2

WHERE E2.WORKDEPT = E1.WORKDEPT)

 Chapter 5. Expressions and Subqueries 43

The result is:

 LASTNAME WORKDEPT EDLEVEL

--------------- -------- -------

 HAAS A00 18

 KWAN C01 20

 PULASKI D21 16

 HENDERSON E11 16

 LUCCHESSI A00 19

 PIANKA D11 17

 SCOUTTEN D11 17

JONES D11 17

 LUTZ D11 18

 MARINO D21 17

 JOHNSON D21 16

 SCHNEIDER E11 17

MEHTA E21 16

 GOUNOT E21 16

Suppose that instead of listing the employee's department number, you list the depart-
ment name. The information you need (DEPTNAME) is in a separate table (DEPART-
MENT). The outer-level query that defines a correlation variable can also be a join
query (see “Selecting Data from More Than One Table” on page 27 for details).

When you use joins in an outer-level query, list the tables to be joined in the FROM
clause, and place the correlation name next to any of these table names.

To modify the query to list the department's name instead of its number, replace
WORKDEPT by DEPTNAME in the select-list. The FROM clause must now also
include the DEPARTMENT table, and the WHERE clause must express the appropriate
join condition.

This is the modified query:

SELECT LASTNAME, DEPTNAME, EDLEVEL

FROM EMPLOYEE E1, DEPARTMENT

WHERE E1.WORKDEPT = DEPARTMENT.DEPTNO

AND EDLEVEL > (SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2

WHERE E2.WORKDEPT = E1.WORKDEPT)

The above examples show that the correlation name used in a subquery must be
defined in the FROM clause of some query that contains the correlated subquery.
However, this containment may involve several levels of nesting.

Suppose that some departments have only a few employees and therefore their
average education level may be misleading. You might decide that in order for the
average level of education to be a meaningful number to compare an employee
against, there must be at least five employees in a department. So now we have to list
the employees whose level of education is higher than the average for that employee's
department, and only consider departments with at least five employees.

44 SQL Getting Started

The problem implies another subquery because, for each employee in the outer-level
query, the total number of employees in that person's department must be counted:

 SELECT COUNT(*)

FROM EMPLOYEE E3

WHERE E3.WORKDEPT = E1.WORKDEPT

Only if the count is greater than or equal to 5 is an average to be computed:

 SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2

WHERE E2.WORKDEPT ═ E1.WORKDEPT
AND 5 <═ (SELECT COUNT(*)

 FROM EMPLOYEE E3

WHERE E3.WORKDEPT ═ E1.WORKDEPT)

Finally, only those employees whose level of education is greater than the average for
that department are included:

SELECT LASTNAME, DEPTNAME, EDLEVEL

FROM EMPLOYEE E1, DEPARTMENT

WHERE E1.WORKDEPT ═ DEPARTMENT.DEPTNO
AND EDLEVEL >

 (SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2

WHERE E2.WORKDEPT = E1.WORKDEPT

AND 5 <=

 (SELECT COUNT(*)

FROM EMPLOYEE E3

WHERE E3.WORKDEPT = E1.WORKDEPT))

This statement produces the following result:

 LASTNAME DEPTNAME EDLEVEL

--------------- ----------------------------- -------

 PIANKA MANUFACTURING SYSTEMS 17

 LUTZ MANUFACTURING SYSTEMS 18

 JONES MANUFACTURING SYSTEMS 17

 SCOUTTEN MANUFACTURING SYSTEMS 17

 PULASKI ADMINISTRATION SYSTEMS 16

 JOHNSON ADMINISTRATION SYSTEMS 16

 MARINO ADMINISTRATION SYSTEMS 17

 HENDERSON OPERATIONS 16

 SCHNEIDER OPERATIONS 17

 Chapter 5. Expressions and Subqueries 45

46 SQL Getting Started

Chapter 6. Using Operators and Predicates
in Queries

In DB2 Universal Database you can combine queries with different set operators and
construct complex conditional statements with quantified predicates.

This chapter explains how to:

¹ Combine different tables with UNION, EXCEPT and INTERSECT set operators

¹ Construct complex conditions for queries with quantified predicates. Basic predi-
cates were discussed briefly in “Selecting Rows” on page 20.

Combining Queries by Set Operators

The UNION, EXCEPT, and INTERSECT set operators enable you to combine two or
more outer-level queries into a single query. Each of the queries connected by these
set operators is executed and the individual results are combined. Depending on the
operator, a different result is produced.

 UNION Operator
The UNION operator derives a result table by combining two other result tables (for
example TABLE1 and TABLE2) and eliminating any duplicate rows in the tables. When
ALL is used with UNION (that is, UNION ALL), duplicate rows are not eliminated. In
either case, each row of the derived table is a row from either TABLE1 or TABLE2.

In the following example of the UNION operator, the query returns the names of all
persons that have a salary greater than $21, 000, or that have managerial responsibil-
ities and have been working for less than 8 years:

.1/

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000

 UNION

 .2/

SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

ORDER BY ID

 Copyright IBM Corp. 1993, 1997 47

The result of the individual queries are as follows:

.1/

 ID NAME

 ------ ---------

 140 Fraye

 160 Molinare

 260 Jones

 .2/

 ID NAME

 ------ ---------

 10 Sanders

 30 Marenghi

 100 Plotz

 140 Fraye

 160 Molinare

 240 Daniels

The database manager combines the results of both queries, eliminates the duplicates,
and returns the final result in ascending order.

 ID NAME

 ------ ---------

 10 Sanders

 30 Marenghi

 100 Plotz

 140 Fraye

 160 Molinare

 240 Daniels

 260 Jones

If you use the ORDER BY clause in a query with any set operator, you must write it
after the last query. The system applies the ordering to the combined answer set. If the
column name in the two tables is different, the combined result table does not have
names for the corresponding columns. Instead, the columns are numbered in the order
in which they appear. So, if you want the result table to be ordered, you have to specify
the column number in the ORDER BY clause.

 EXCEPT Operator
The EXCEPT operator derives a result table by including all rows that are in TABLE1
but not in TABLE2, and eliminating all duplicate rows. When you use ALL with EXCEPT
(EXCEPT ALL), the duplicate rows are not eliminated.

In the following example of the EXCEPT operator, the query returns the names of all
persons that earn over $21, 000 but do not have the position of a manager and have
been there 8 years or more.

48 SQL Getting Started

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000

 EXCEPT

SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The result of the individual queries is listed in the section on UNION. The above state-
ment produces the following result:

 ID NAME

 ------ ---------

 260 Jones

 INTERSECT operator
The INTERSECT operator derives a result table by including only rows that exist in
both TABLE1 and TABLE2 and eliminating all duplicate rows. When you use ALL with
INTERSECT (INTERSECT ALL), the duplicate rows are not eliminated.

In the following example of the INTERSECT operator, the query returns the name and
ID of employees that earn more than $21, 000, have managerial responsibilites and
have been working for fewer than 8 years.

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000

 INTERSECT

SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The result of the individual queries is listed in the section on UNION. The outcome of
the two queries with INTERSECT is:

 ID NAME

 ------ ---------

 140 Fraye

 160 Molinare

When using the UNION, EXCEPT, and INTERSECT operators, keep the following in
mind:

¹ All corresponding items in the select-lists of the queries for the operators must be
compatible. See the data type compatibility table in the SQL Reference for more
information.

¹ An ORDER BY clause, if used, must be placed after the last query with a set oper-
ator. The column name can only be used in the ORDER BY clause if the column
has the same name for the corresponding items in the select list of the queries for
every operator.

¹ Operations between columns that have the same data type and the same length
produce a column with that type and length. See rules for result data types in the
SQL Reference for the results of the UNION, EXCEPT, and INTERSECT set oper-
ators.

 Chapter 6. Using Operators and Predicates in Queries 49

 Predicates

Predicates let you construct conditions so that only those rows that meet these condi-
tions are processed. Basic predicates are discussed in “Selecting Rows” on page 20.
IN, BETWEEN, LIKE, EXISTS and quantified predicates are discussed in this section.

Using the IN Predicate
Use the IN predicate to compare a value with several other values. For example:

 SELECT NAME

 FROM STAFF

WHERE DEPT IN (20, 15)

This example is equivalent to:

 SELECT NAME

 FROM STAFF

WHERE DEPT ═ 20 OR DEPT ═ 15

You can use the IN and NOT IN operators when a subquery returns a set of values.
For example, the following query lists the surnames of employees responsible for
projects MA2100 and OP2012:

 SELECT LASTNAME

 FROM EMPLOYEE

WHERE EMPNO IN

 (SELECT RESPEMP

 FROM PROJECT

WHERE PROJNO = 'MA2100'

OR PROJNO = 'OP2012')

The subquery is evaluated once, and the resulting list is substituted directly into the
outer-level query. For example, the subquery above selects employee numbers 10 and
330, the outer-level query is evaluated as if its WHERE clause were:

WHERE EMPNO IN (10, 330)

The list of values returned by the subquery can contain zero, one, or more values.

Using the BETWEEN Predicate
Use the BETWEEN predicate to compare a value with a range of values. The range is
inclusive and it considers the two expressions in the BETWEEN predicate for the com-
parisons.

50 SQL Getting Started

The following example finds the names of employees who earn between $10, 000 and
$20, 000:

 SELECT LASTNAME

 FROM EMPLOYEE

WHERE SALARY BETWEEN 10000 AND 20000

This is equivalent to:

 SELECT LASTNAME

 FROM EMPLOYEE

WHERE SALARY >═ 10000 AND SALARY <═ 20000

The next example finds the names of employees who earn less than $10, 000 or more
than $20, 000:

 SELECT LASTNAME

 FROM EMPLOYEE

WHERE SALARY NOT BETWEEN 10000 AND 20000

Using the LIKE Predicate
Use the LIKE predicate to search for strings that have certain patterns. The pattern is
specified through percentage signs and underscores.

¹ The underscore character (_) represents any single character.

¹ The percent sign (%) represents a string of zero or more characters.

¹ Any other character represents itself.

The following example selects employee names that are seven letters long starting with
the letter 'S':

 SELECT NAME

 FROM STAFF

WHERE NAME LIKE 'S_ _ _ _ _ _'

The next example selects names of employees that do not start with the letter 'S':

 SELECT NAME

 FROM STAFF

WHERE NAME NOT LIKE 'S%'

Using the EXISTS Predicate
You can use a subquery to test for the existence of a row that satisfies some condition.
In this case, the subquery is linked to the outer-level query by the predicate EXISTS or
NOT EXISTS.

 Chapter 6. Using Operators and Predicates in Queries 51

When you link a subquery to an outer query by an EXISTS predicate, the subquery
does not return a value. Rather, the EXISTS predicate is true if the answer set of the
subquery contains one or more rows, and false if it contains no rows.

The EXISTS predicate is often used with correlated subqueries. The example below
lists the departments that currently have no entries in the PROJECT table:

SELECT DEPTNO, DEPTNAME

FROM DEPARTMENT X

WHERE NOT EXISTS

 (SELECT *

 FROM PROJECT

WHERE DEPTNO = X.DEPTNO)

ORDER BY DEPTNO

You may connect the EXISTS and NOT EXISTS predicates to other predicates by
using AND and OR in the WHERE clause of the outer-level query.

 Quantified Predicates
A quantified predicate compares a value with a collection of values. If a fullselect
returns more than one value, you must modify the comparison operators in your predi-
cate by attaching the suffix ALL, ANY, or SOME. These suffixes determine how the set
of values returned is to be treated in the outer-level predicate. The > comparison oper-
ator is used as an example (the remarks below apply to the other operators as well):

expression > ALL (fullselect)
The predicate is true if the expression is greater than each individual value
returned by the fullselect. If the fullselect returns no values, the predicate is true.
The result is false if the specified relationship is false for at least one value. Note
that the <>ALL quantified predicate is equivalent to the NOT IN predicate.

The following example uses a subquery and a > ALL comparison to find the name
and profession of all employees who earn more than all managers:

SELECT LASTNAME, JOB

 FROM EMPLOYEE

WHERE SALARY > ALL

 (SELECT SALARY

 FROM EMPLOYEE

 WHERE JOB='MANAGER')

expression > ANY (fullselect)
The predicate is true if the expression is greater than at least one of the values
returned by the fullselect. If the fullselect returns no values, the predicate is false.
Note that the =ANY quantified operator is equivalent to the IN predicate.

expression > SOME (fullselect)
SOME is synonymous with ANY.

For more information on predicates and operators, refer to the SQL Reference.

52 SQL Getting Started

 Chapter 7. Advanced SQL

This chapter covers several features of DB2 Universal Database that allow you to
design queries more effectively, while customizing them to your needs. Topics in this
chapter are based upon your thorough understanding of the material up to this point.

This chapter covers:

¹ Enforcing Business Rules with Constraints and Triggers

 ¹ Joins

¹ ROLLUP and CUBE Queries and Recursive Queries

Enforcing Business Rules with Constraints
and Triggers

In the business world we quite often need to make sure certain rules are always
enforced. For instance, an employee working on a project has to be on the payroll list.
Or, we want certain events to happen systematically. For instance, if a salesperson
makes a sale, their commission should be increased.

DB2 Universal Database offers a useful suite of methods to this end. Unique con-
straints is the rule that forbids duplicate values in one or more columns of a table. Ref-
erential integerity constraints ensure the data consistency across the specified tables.
Table check constraints are conditions that are defined as part of the table definition
that restrict the values used in one or more columns. Triggers allow you to define a set
of actions that are executed, or triggered, by a delete, insert, or update operation on a
specified table. Triggers can be used for writing to other tables, for modifying of input
values, and for the issuing alert messages.

The first section provides a conceptual overview of keys. Later, referential integerity,
constraints, and triggers are explored through examples and diagrams.

 Keys
A key is a set of columns that you can use to identify or access a particular row or
rows.

 Copyright IBM Corp. 1993, 1997 53

A key composed of more than one column is called a composite key. In a table with a
composite key, the ordering of the columns within the composite key is not constrained
by their ordering within the table.

 Unique Keys
A unique key is defined to have no two of its values the same. The columns of a
unique key cannot contain null values. The constraint is enforced by the database
manager during the execution of INSERT and UPDATE statements. A table can have
mulitple unique keys. Unique keys are optional and can be defined in CREATE TABLE
or ALTER TABLE statements.

 Primary Keys
A primary key is a unique key that is a part of the definition of the table. A table cannot
have more than one primary key, and the columns of a primary key cannot contain null
values. Primary keys are optional and can be defined in CREATE TABLE or ALTER
TABLE statements.

 Foreign Keys
A foreign key is specified in the definition of a referential constraint. A table can have
zero or more foreign keys. The value of the composite foreign key is null if any compo-
nent of the value is null. Foreign keys are optional and can be defined in CREATE
TABLE statements or ALTER TABLE statements.

 Unique Constraints
A unique constraint ensures that values of a key are unique within a table. Unique con-
straints are optional, and you can define them using the CREATE TABLE or ALTER
TABLE statements by specifying the PRIMARY KEY or UNIQUE clause. For example,
you can define a unique constraint on the employee number column of a table to
ensure that every employee has a unique number.

Referential Integrity Constraints
By defining unique constraints and foreign keys you can define relationships between
tables and consequently enforce certain business rules. The combination of unique key
and foreign key constraints is commonly referred to as referential integrity constraints. A
unique constraint referenced by a foreign key is called a parent key. A foreign key
refers to or is related to a specific parent key. For example, a rule might state that
every employee (EMPLOYEE table) must belong to an existing department (DEPART-

54 SQL Getting Started

MENT table). So, we define department number in the EMPLOYEE table as foreign
key, and department number in the DEPARTMENT table as the primary key. The fol-
lowing diagram provides a visual description of referential integrity constraints.

Dept.
No.

Dept.
No.

Employee Name

Department Name

John Doe

Jane Doe

Program Development

Invalid Record

Sales

Barb Smith

Training

Fred Vickers

Communications

015

Department Table

Employee Table

Foreign Key

Primary Key

001

001

002

002

003

003
027

Figure 4. Foreign and Primary Constraints Define Relationships and Protect Data

Table Check Constraints
Table check constraints specify conditions that are evaluated for each row of a table.
You can specify check constraints on individual columns. You can add them by using
the CREATE or ALTER TABLE statements.

The following statement creates a table with the following constraints:

¹ The values of the department number must lie in the range 10 to 100
¹ The job of an employee can only be one of the following: “Sales”, “Mgr”, or “Clerk”

 Chapter 7. Advanced SQL 55

¹ Every employee who was hired prior to 1986 must make more than $40, 500.

CREATE TABLE EMP

 (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),

JOB CHAR(5) CHECK (JOB IN ('Sales', 'Mgr', 'Clerk')),

 HIREDATE DATE,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

PRIMARY KEY (ID),

CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) >═ 1986 OR SALARY > 40500))

A constraint is violated only if the condition evaluates to false. For example, if DEPT is
NULL for an inserted row, the insert proceeds without error, even though values for
DEPT should be between 10 and 100 as defined in the constraint.

The following statement adds a constraint to the EMPLOYEE table named COMP that
an employee's total compensation must exceed $15, 000:

ALTER TABLE EMP

ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)

The existing rows in the table will be checked to ensure that they do not violate the new
constraint. You can defer this checking by using the SET CONSTRAINTS statement as
follows:

SET CONSTRAINTS FOR EMP OFF

ALTER TABLE EMP ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)

SET CONSTRAINTS FOR EMP IMMEDIATE CHECKED

First, the SET CONSTRAINTS statement is used to defer constraint checking for the
table. Then one or more constraints can be added to the table without checking the
constraints. Then the SET CONSTRAINTS statement is issued again to turn constraint
checking back on and to perform any deferred constraint checking.

 Triggers
A trigger defines a set of actions that is activated by an operation that modifies the data
in a specified base table.

You can use triggers to perform validation of input data, to automatically generate a
value for a newly inserted row, to read from other tables for cross-referencing purposes,
to write to other tables for audit-trail purposes, or to support alerts through electronic
mail messages. Using triggers results in faster application development, global enforce-
ment of business rules, and easier maintenance of applications and data.

DB2 Universal Database supports several types of triggers. Triggers can be defined to
be activated either before or after a DELETE, INSERT, or UPDATE operation. Each

56 SQL Getting Started

trigger includes a set of SQL statements called a triggered action that can include an
optional search condition.

After triggers can be further defined to perform the triggered action either for each row
or once for the statement, while before triggers always perform the triggered action for
each row.

Use a trigger before an INSERT, UPDATE, or DELETE statement to check for certain
conditions before performing a triggering operation or to change the input values before
they are stored in the table. Use an after trigger to propagate values as necessary or
perform other tasks, such as sending a message, that may be required as a part of the
trigger operation.

The following example illustrates a use of before and after triggers. Consider an appli-
cation that records and tracks changes to stock prices. The database contains two
tables, CURRENTQUOTE and QUOTEHISTORY defined as:

CREATE TABLE CURRENTQUOTE

 (SYMBOL VARCHAR(10),

 QUOTE DECIMAL(5,2),

 STATUS VARCHAR(9))

 CREATE TABLE QUOTEHISTORY

 (SYMBOL VARCHAR(10),

 QUOTE DECIMAL(5,2),

 TIMESTAMP TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated using a statement such as:

 UPDATE CURRENTQUOTE

SET QUOTE = 68.5

WHERE SYMBOL = 'IBM'

The STATUS column of CURRENTQUOTE should be updated to reflect whether the
stock is:

¹ Rising in value
¹ At a new high for the year
¹ Dropping in value
¹ At a new low for the year
¹ Steady in value.

This is done using the following before trigger:

.1/

CREATE TRIGGER STOCK_STATUS

NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE

FOR EACH ROW MODE DB2SQL

 .2/

SET NEWQUOTE.STATUS =

 Chapter 7. Advanced SQL 57

 .3/

 CASE

 .4/

WHEN NEWQUOTE.QUOTE >=

 (SELECT MAX(QUOTE)

 FROM QUOTEHISTORY

WHERE SYMBOL = NEWQUOTE.SYMBOL

AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))

 THEN 'High'

 .5/

WHEN NEWQUOTE.QUOTE <=

 (SELECT MIN(QUOTE)

 FROM QUOTEHISTORY

WHERE SYMBOL = NEWQUOTE.SYMBOL

AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))

 THEN 'Low'

 .6/

WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE

 THEN 'Rising'

WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE

 THEN 'Dropping'

WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE

 THEN 'Steady'

 END

.1/ This block of code defines a trigger named STOCK_STATUS as a trigger that
should be activated before the update of the QUOTE column of the
CURRENTQUOTE table. The second line specifies that the triggered action is to
be applied before any changes caused by the actual update of the
CURRENTQUOTE table are applied to the database. It also means that the trig-
gered action will not cause any other triggers to be activated. The third line speci-
fies the names that must be used as qualifiers of the column name for the new
values (NEWQUOTE) and the old values (OLDQUOTE). Column names qualified
with these correlation names (NEWQUOTE and OLDQUOTE) are called transition
variables. The fourth line indicates that the triggered action should be executed for
each row.

.2/ This marks the start of the first and only SQL statement in the triggered action of
this trigger. The SET transition-variable statement is used in a trigger to assign a
value to a column in the row of the table that is being updated by the statement
that activated the trigger. This statement is assigning a value to the STATUS
column of the CURRENTQUOTE table.

.3/ The expression that is used on the right hand side of the assignment is a CASE
expression. The CASE expression extends to the END keyword.

.4/ The first case checks to see if the new quote (NEWQUOTE.QUOTE) exceeds the
maximum value for the stock symbol in the current calendar year. The subquery is
using the QUOTEHISTORY table that is updated by the after trigger that follows.

58 SQL Getting Started

.5/ The second case checks to see if the new quote (NEWQUOTE.QUOTE) is less
than the minimum value for the stock symbol in the current calendar year. The
subquery is using the QUOTEHISTORY table that is updated by the after trigger
that follows.

.6/ The last three cases compare the new quote (NEWQUOTE.QUOTE) to the quote
that was in the table (OLDQUOTE.QUOTE) to determine if it is greater, less or the
same. The SET transition-variable statement ends here.

In addition to updating the entry in the CURRENTQUOTE table, an audit record needs
to be created by copying the new quote, with a timestamp, to the QUOTEHISTORY
table. This is done using the following after trigger:

.1/

CREATE TRIGGER RECORD_HISTORY

AFTER UPDATE OF QUOTE ON CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 .2/

INSERT INTO QUOTEHISTORY

VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

 END

.1/ This block of code defines a trigger named RECORD_HISTORY as a trigger that
should be activated after the update of the QUOTE column of the
CURRENTQUOTE table. The third line specifies the name that should be used as
a qualifier of the column name for the new value (NEWQUOTE). The fourth line
indicates that the triggered action should be executed for each row.

.2/ The triggered action of this trigger includes a single SQL statement that inserts a
row into the QUOTEHISTORY table using the data from the row that has been
updated (NEWQUOTE.SYMBOL and NEWQUOTE.QUOTE) and the current
timestamp.

CURRENT TIMESTAMP is a special register containing the timestamp. A list and
explanation is provided in “Special Registers” on page 68.

 Joins

The process of combining data from two or more tables is called joining tables. The
database manager forms all combinations of rows from the specified tables. For each
combination, it tests the join condition. A join condition is a search condition, with some
restrictions. For a list of restrictions refer to the SQL Reference.

 Chapter 7. Advanced SQL 59

Note that the data types of the columns involved in the join condition do not have to be
identical; however, they must be compatible. The join condition is evaluated the same
way as any other search condition, and the same rules for comparisons apply.

If you do not specify a join condition, all combinations of rows from tables listed in the
FROM clause are returned, even though the rows may be completely unrelated. The
result is referred to as the cross product of the two tables.

Examples in this section are based on the next two tables. They are simplifications of
the tables from the sample database but do not exist in the sample database. They are
used to outline interesting points about joins in general. SAMP_STAFF lists the name of
employees who are not employed as contractors and their job descriptions, while
SAMP_PROJECT lists the name of employees (contract and full-time) and the projects
that they are working on.

The tables are as follows:

Figure 5. SAMP_PROJECT TABLE

Figure 6. SAMP_STAFF TABLE

The following example produces the cross product of two table. A join condition is not
specified, so all combination of rows is present:

 SELECT SAMP_PROJECT.NAME,

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT, SAMP_STAFF

60 SQL Getting Started

This statement produces the following result:

 NAME PROJ NAME JOB

---------- ------ ---------- --------

 Haas AD3100 Haas PRES

 Thompson PL2100 Haas PRES

 Walker MA2112 Haas PRES

 Lutz MA2111 Haas PRES

 Haas AD3100 Thompson MANAGER

 Thompson PL2100 Thompson MANAGER

 Walker MA2112 Thompson MANAGER

 Lutz MA2111 Thompson MANAGER

 Haas AD3100 Lucchessi SALESREP

 Thompson PL2100 Lucchessi SALESREP

 Walker MA2112 Lucchessi SALESREP

 Lutz MA2111 Lucchessi SALESREP

 Haas AD3100 Nicholls ANALYST

 Thompson PL2100 Nicholls ANALYST

 Walker MA2112 Nicholls ANALYST

 Lutz MA2111 Nicholls ANALYST

The two main types of joins are inner joins and outer joins. So far, in all of our exam-
ples we have used the inner join. Inner joins keep only the rows from the cross product
that meet the join condition. If a row exists in one table, but not the other, the informa-
tion is not included in the result table.

The following example produces the inner join of the two tables. The inner join lists the
information full-time employees who are assigned to a project :

 SELECT SAMP_PROJECT.NAME,

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT, SAMP_STAFF

WHERE SAMP_STAFF.NAME = SAMP_PROJECT.NAME

Alternately, you can specify the inner join as follows:

 SELECT SAMP_PROJECT.NAME,

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT INNER JOIN SAMP_STAFF

ON SAMP_STAFF.NAME ═ SAMP_PROJECT.NAME

The result is:

 NAME PROJ NAME JOB

---------- ------ ---------- --------

 Haas AD3100 Haas PRES

 Thompson PL2100 Thompson MANAGER

Note that the result of the inner join consists of rows that have matching values for the
NAME column in the right and the left tables - both 'Haas' and 'Thompson' are included
in the SAMP_STAFF table that lists all full-time employee and in the SAMP_PROJECT
table that lists full-time and contract employee assigned to a project.

 Chapter 7. Advanced SQL 61

Outer joins are a concatentation of the inner join and rows from the left table, right
table, or both tables that are missing from the inner join. When you perform an outer
join on two tables, you arbitrarily assign one table as the left table and the other one as
the right table. There are three types of outer joins:

1. left outer join includes the inner join and the rows from the left table that are not
included in the inner join.

2. right outer join includes the inner join and the rows from the right table that are
not included in the inner join.

3. full outer join includes the inner join and the rows from both the left and right
tables that are not included in the inner join.

Use the SELECT statement to specify the columns to be displayed. In the FROM
clause, list the name of the first table followed by the keywords LEFT OUTER JOIN,
RIGHT OUTER JOIN or FULL OUTER JOIN. Next you need to specify the second
table followed by the ON keyword. Following the ON keyword, specify the join condition
to express a relationship between the tables to be joined.

In the following example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using LEFT OUTER JOIN, we list the name and
project number of all employees, full-time and contract, (listed in SAMP_PROJECT) and
their job title, if they are a full-time employee (listed in SAMP_STAFF):

SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,

 SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT LEFT OUTER JOIN SAMP_STAFF

 ON SAMP_STAFF.NAME ═ SAMP_PROJECT.NAME

This statement produces the following result:

 NAME PROJ NAME JOB

---------- -------------------- ---------- --------------------

 Haas AD3100 Haas PRES

 Lutz MA2111 - -

 Thompson PL2100 Thompson MANAGER

 Walker MA2112 - -

Rows with values in all columns are the result of the inner join. These are rows that
satisfy the join condition: 'Haas' and 'Thompson' are listed in both SAMP_PROJECT
(left table) and SAMP_STAFF (right table). For rows that the join condition was not sat-
isfied, the null value appears on columns of the right table: 'Lutz' and 'Walker' are con-
tract employees listed in the SAMP_PROJECT table and not in the SAMP_STAFF
table. Note that all rows from the left table are included in the result set.

In the next example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using RIGHT OUTER JOIN we list the name and
job title of all full-time employees (listed in SAMP_STAFF) and their project number, if
they are assigned to one (listed in SAMP_PROJECT):

62 SQL Getting Started

 SELECT SAMP_PROJECT.NAME,

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT RIGHT OUTER JOIN SAMP_STAFF

ON SAMP_STAFF.NAME ═ SAMP_PROJECT.NAME

The result is:

 NAME PROJ NAME JOB

---------- -------------------- ---------- --------------------

 Haas AD3100 Haas PRES

 - - Lucchessi SALESREP

 - - Nicholls ANALYST

 Thompson PL2100 Thompson MANAGER

As in the left outer join, rows with values in all columns are the result of the inner join.
These are rows that satisfy the join condition: 'Haas' and 'Thompson' are listed in both
SAMP_PROJECT (left table) and SAMP_STAFF (right table). For rows that the join
condition was not satisfied, the null value appears on columns of the right table:
'Lucchessi' and 'Nicholls' are full-time employee that are not assigned to a project.
While they are listed in SAMP_STAFF, they are not in SAMP_PROJECT. Note that all
rows from the right table are included in the result set.

The next example uses FULL OUTER JOIN with the SAMP_PROJECT and
SAMP_STAFF tables. It lists the name of all full-time, including the ones that are not
assigned to a project, and contract employees:

SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,

 SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT FULL OUTER JOIN SAMP_STAFF

 ON SAMP_STAFF.NAME ═ SAMP_PROJECT.NAME

The result is:

 NAME PROJ NAME JOB

---------- -------------------- ---------- --------------------

 Haas AD3100 Haas PRES

 - - Lucchessi SALESREP

 - - Nicholls ANALYST

 Thompson PL2100 Thompson MANAGER

 Lutz MA2111 - -

 Walker MA2112 - -

This result includes the left outer join, the right outer join and the inner join. All full-time
and contract employees are listed. Just like left outer join and right outer join, for values
that the join condition was not satisfied the null value appears in the respective column.
Every row from SAMP_STAFF and SAMP_PROJECT is included in the result set.

 Chapter 7. Advanced SQL 63

 Complex Queries

DB2 Universal Database allows you to group, consolidate, and view multiple columns in
a single result set through the use of ROLLUP and CUBE. This new and powerful
capability enhances and simplifies SQL based data analysis.

There are various methods of extracting useful information from the database. You can
implement recursive queries to produce result tables from existing data sets.

ROLLUP and CUBE Queries
You specify ROLLUP and CUBE operations in the GROUP BY clause of a query.
ROLLUP grouping produces a result set containing the regular grouped rows and sub-
total rows. CUBE grouping produces a result set containing the rows from ROLLUP and
cross-tabulation rows. So for ROLLUP, you can get the sales by person by month with
monthly sales totals and an overall total. For CUBE, additional rows would be included
for total sales by person. See the SQL Reference for further details.

 Recursive Queries
A recursive query is a query that iteratively uses result data to determine further results.
You might think of this as traversing a tree or a graph. Practical examples where this is
useful include bill of materials applications, reservation systems, network planning and
scheduling. A recursive query is written using a common table expression that includes
a reference to its own name. See the SQL Reference for examples of recursive
queries.

64 SQL Getting Started

Chapter 8. Customizing and Enhancing
Data Manipulation

This chapter gives a brief introduction to object-oriented extensions in DB2 Universal
Database. There are many advantages to using object oriented extensions. User-
defined Types (UDT) increase the set of data types available to your applications while
user-defined Functions (UDF) allow for creation of application specific functions. UDFs
act as methods for UDTs by providing consistent behavior and encapsulation of the
types.

Special registers and system catalogs are discussed next. Special registers provide
information about the connection. The system catalogs contain information about the
logical and the physical structure of database objects.

This chapter covers:

 ¹ User-Defined Types

 ¹ User-Defined Functions

¹ Large Objects (LOBs)

 ¹ Special Registers

¹ Introduction to Catalog Views

A detailed discussion of the above topics is beyond the scope of this book but is pre-
sented in the SQL Reference and Administration Guide.

 User-Defined Types

A distinct type is a user-defined data type that shares its internal representation with an
existing type (its “source” type), but is considered to be separate and incompatible for
most operations. For example, you might want to define an age type, a weight type,
and a height type, all of which have quite different semantics, but which use the built-in
data type INTEGER for their internal representations.

The following example illustrates the creation of a distinct type named PAY:

CREATE DISTINCT TYPE PAY AS DECIMAL(9,2) WITH COMPARISONS

Although PAY has the same representation as the built-in data type DECIMAL(9,2), it is
considered to be a separate type that is not comparable to DECIMAL(9,2) or to any
other type. It is comparable only to the same distinct type. Also, operators and functions

 Copyright IBM Corp. 1993, 1997 65

that would work on DECIMAL will not apply here. For example, a value with PAY data
type cannot be multiplied with a value of INTEGER data type. Therefore, you have to
write functions that only apply to the PAY data type.

Using distinct data types limits accidental mistakes. For instance, if the SALARY
column of table EMPLOYEE was defined as a PAY data type, it could not be added to
COMM even though their sourced types are the same.

Distinct data types support casting. A source type can be cast to a distinct data type,
and a distinct data type to a source type. For example, if the SALARY column of the
table EMPLOYEE were defined as a PAY data type, the following example would not
fail at the comparison operator.

SELECT * FROM EMPLOYEE

WHERE DECIMAL(SALARY) ═ 41250

DECIMAL(SALARY) returns a decimal data type. Inversely, a numeric data type can be
cast to a PAY type. For example, you can cast the number 41250 by using
PAY(41250).

 User-Defined Functions

As mentioned in “Using Functions” on page 29, DB2 Universal Database provides
built-in and user-defined functions (UDF). However, this set of functions will never
satisfy all requirements. Often, you need to create customized functions for particular
tasks. User-defined functions allow you to create customized functions.

There are two types of user-defined functions: sourced and external.

Sourced user-defined functions allow for user-defined types to selectively reference
another built-in or user-defined function that is already known to the database. You can
use both scalar and column functions.

In the next example a user-defined function called MAX is created that is based on the
built-in MAX column function, which takes a DECIMAL data type as input. The MAX
UDF takes a PAY type as input and returns a PAY type as output.

CREATE FUNCTION MAX(PAY) RETURNS PAY

 SOURCE MAX(DECIMAL)

External user-defined functions are written by users in a programming language. There
are external scalar functions and external table functions and both are discussed in the
SQL Reference.

66 SQL Getting Started

Assuming that you have already written a function that counts the number of words in a
string, you can register it with the database using the CREATE FUNCTION statement
with the name WORDCOUNT. This function can then be used in SQL statements.

For example, the following statement returns employee numbers and the number of
words in the ASCII form of their resumes. WORDCOUNT is an external scalar function
that has been registered with the database by the user and is now being used in the
statement.

SELECT EMPNO, WORDCOUNT(RESUME)

 FROM EMP_RESUME

WHERE RESUME_FORMAT = 'ascii'

For more detailed information on writing user-defined functions, refer to the Embedded
SQL Programming Guide.

Large Objects (LOBs)

The term large object and its acronym LOB are used to refer to three data types:
BLOB, CLOB, or DBCLOB. These types can contain large amounts of data, for objects
such as audio, photos and documents.

A Binary Large OBject (BLOB) is a varying-length string, measured in bytes, that can
be up to 2 gigabytes long. A BLOB is primarily intended to hold nontraditional data such
as pictures, voice, and mixed media.

A Character Large OBject (CLOB) is a varying-length string, measured in bytes, that
can be up to 2 gigabytes long. A CLOB is used to store large single-byte character set
data such as documents. A CLOB is considered to be a character string.

A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of double-
byte characters that can be up to 2 gigabytes long (1 073 741 823 double-byte charac-
ters). A DBCLOB is used to store large double-byte character set data such as
documents. A DBCLOB is considered to be a graphic string.

Manipulating Large Objects (LOBs)
Since LOB values can be very large, transferring them from the database server to
client application program can be time consuming. However, typically LOB values are
processed one piece at a time, rather than as a whole. For those cases where an appli-
cation does not need (or want) the entire LOB value to be stored in application
memory, it can reference this value via a large object locator variable.

 Chapter 8. Customizing and Enhancing Data Manipulation 67

Subsequent statements can then use the locators to perform operations on the data
without necessarily retrieving the entire large object. Locator variables are used to
reduce the storage requirements for the applications, and improve the performance by
reducing the flow of data between the client and the server.

Another mechanism is file reference variables. They are used to retrieve a large object
directly to a file or to update a large object in a table directly from a file. File reference
variables are used to reduce the storage requirements for the applications since they
do not need to store the large object data. For more information refer to the Embedded
SQL Programming Guide and the SQL Reference.

 Special Registers

A special register is a storage area that is defined for a connection by the database
manager and is used to store information that can be referenced in SQL statements.
Following are a few examples of the more commonly used special registers. For a list
of all the special registers and more detailed information refer to the SQL Reference.

¹ CURRENT DATE: Holds the date according to the time-of-day clock at SQL state-
ment execution time.

¹ CURRENT FUNCTION PATH: Holds a value that specifies the function path used
to resolve function and data type references.

¹ CURRENT SERVER: Specifies the current application server.

¹ CURRENT TIME: Holds the time according to the time-of-day clock at the SQL
statement execution time.

¹ CURRENT TIMESTAMP: Specifies a timestamp according to the time-of-day clock
at SQL statement execution time.

¹ CURRENT TIMEZONE: Specifies the difference between Coordinated Universal
Time and local time at the application server.

¹ USER: Specifies the run-time authorization ID.

You can display the contents of a special register with the VALUES statement. For
example:

VALUES (CURRENT TIMESTAMP)

 You could also use:

SELECT CURRENT TIMESTAMP FROM ORG

 and this will return the TIMESTAMP for every row entry in the table.

68 SQL Getting Started

Introduction to Catalog Views

DB2 creates and maintains an extensive set of system catalog tables for each data-
base. These tables contain information about the logical and physical structure of data-
base objects such as tables, views, packages, referential integrity relationships,
functions, distinct types, and triggers. They are created when the database is created,
and are updated in the course of normal operation. You cannot explicitly create or drop
them, but you can query and view their contents.

For more information, refer to the SQL Reference.

Selecting Rows from System Catalogs
The catalog views are like any other database view. You can use SQL statements to
look at the data, exactly in the same way that you would for any other view in the
system.

You can find very useful information about tables in the SYSCAT.TABLES catalog. To
find the names of existing tables that you have created, issue a statement similar to the
following:

SELECT TABNAME, TYPE, CREATE_TIME

 FROM SYSCAT.TABLES

WHERE DEFINER = USER

This statement produces the following result:

 TABNAME TYPE CREATE_TIME

------------------ ---- --------------------------

 ORG T 1997-05-22-11.15.27.850000

 STAFF T 1997-05-22-11.15.29.470000

 DEPARTMENT T 1997-05-22-11.15.30.850000

 EMPLOYEE T 1997-05-22-11.15.31.310000

 EMP_ACT T 1997-05-22-11.15.32.850000

 PROJECT T 1997-05-22-11.15.34.410007

 EMP_PHOTO T 1997-05-22-11.15.35.190000

 EMP_RESUME T 1997-05-22-11.15.40.600000

 SALES T 1997-05-22-11.15.43.000000

The following list includes catalog views pertaining to subjects discussed in this book.
There are many other catalog views, and they are listed in detail in the SQL Reference
and Administration Guide.

Description Catalog View

check constraints SYSCAT.CHECKS

columns SYSCAT.COLUMNS

 Chapter 8. Customizing and Enhancing Data Manipulation 69

Description Catalog View

columns referenced by check constraints SYSCAT.COLCHECKS

columns used in keys SYSCAT.KEYCOLUSE

datatypes SYSCAT.DATATYPES

function parameters or result of a function SYSCAT.FUNCPARMS

referential constraints SYSCAT.REFERENCES

schemas SYSCAT.SCHEMATA

table constraints SYSCAT.TABCONST

tables SYSCAT.TABLES

triggers SYSCAT.TRIGGERS

user-defined functions SYSCAT.FUNCTIONS

views SYSCAT.VIEWS

70 SQL Getting Started

Sample Tables

 Appendix A. Sample Tables

This appendix shows the information contained in the sample tables, and how to install
and remove them. The sample tables are used in the examples that appear in this
manual and other manuals in this library. In addition, the data contained in the sample
files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.

“The Sample Database” on page 72
“To Install the Sample Database” on page 72
“To Erase the Sample Database” on page 72
“CL_SCHED Table” on page 73
“DEPARTMENT Table” on page 73
“EMPLOYEE Table” on page 73
“EMP_ACT Table” on page 78
“EMP_PHOTO Table” on page 80
“EMP_RESUME Table” on page 80
“IN_TRAY Table” on page 81
“ORG Table” on page 81
“PROJECT Table” on page 81
“SALES Table” on page 83
“STAFF Table” on page 84
“STAFFG Table” on page 85
“Sample Files with BLOB and CLOB Data Type” on page 86
“Quintana Photo” on page 86
“Quintana Resume” on page 87
“Nicholls Photo” on page 88
“Nicholls Resume” on page 88
“Adamson Photo” on page 89
“Adamson Resume” on page 89
“Walker Photo” on page 90
“Walker Resume” on page 91.

In the sample tables, a question mark (-) indicates a null value.

 Copyright IBM Corp. 1993, 1997 71

Sample Tables

The Sample Database

The examples in this book use a sample database. To use these examples, you must
install the SAMPLE database. To use it, the database manager must be installed.

To Install the Sample Database
An executable file installs the sample database.2 To install a database you must have
SYSADM authority.

¹ When Using UNIX-based Systems

If you are using the operating system command prompt, type:

 sqllib/misc/db2sampl <path>

 from the home directory of the database manager instance owner, where path is
an optional parameter specifying the path where the sample database is to be
created. Press Enter.3 The schema of the authorization ID that invoked DB2SAMPL
is the default schema.

¹ When Using DB2 for OS/2

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is to be
created. Press Enter.4

If you are not logged on to your workstation through User Profile Management, you
will be prompted to do so.

To Erase the Sample Database
If you do not need to access the sample database, you can erase it by using the DROP
DATABASE command.

db2 drop database sample

2 For information related to this command, see the DB2SAMPL command in the Command Reference.

3 If the path parameter is not specified, the sample tables are installed in the default path specified by the DFTDBPATH parameter in
the database manager configuration file.

4 If the drive parameter is not specified, the sample tables are installed on the same drive as DB2 for OS/2.

72 SQL Getting Started

Sample Tables

 CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

 DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not
null

varchar(29) not null char(6) char(3) not
null

char(16)

Desc: Department
number

Name describing general activ-
ities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

 B01 PLANNING 000020 A00 -

 C01 INFORMATION CENTER 000030 A00 -

 D01 DEVELOPMENT CENTER - A00 -

 D11 MANUFACTURING SYSTEMS 000060 D01 -

 D21 ADMINISTRATION SYSTEMS 000070 D01 -

 E01 SUPPORT SERVICES 000050 A00 -

 E11 OPERATIONS 000090 E01 -

 E21 SOFTWARE SUPPORT 000100 E01 -

 EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which
the
employee
works

Phone
number

Date of hire

 Appendix A. Sample Tables 73

Sample Tables

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly
salary

Yearly
bonus

Yearly com-
mission

See the following page for the values in the EMPLOYEE table.

74 SQL Getting Started

Sample Tables
 C

O
M

M

de
c(

9,
2)

42
20

33
00

30
60

32
14

25
80

28
93

23
80

20
92

37
20

23
40

19
04

22
74

20
22

17
80

19
74

 B
O

N
U

S

de
c(

9,
2)

10
00

80
0

80
0

80
0

50
0

70
0

60
0

50
0

90
0

60
0

50
0

60
0

50
0

40
0

50
0

 S
A

LA
R

Y

de
c(

9,
2)

52
75

0

41
25

0

38
25

0

40
17

5

32
25

0

36
17

0

29
75

0

26
15

0

46
50

0

29
25

0

23
80

0

28
42

0

25
28

0

22
25

0

24
68

0

B

IR
T

H
D

A
T

E

da
te

19
33

-0
8-

24

19
48

-0
2-

02

19
41

-0
5-

11

19
25

-0
9-

15

19
45

-0
7-

07

19
53

-0
5-

26

19
41

-0
5-

15

19
56

-1
2-

18

19
29

-1
1-

05

19
42

-1
0-

18

19
25

-0
9-

15

19
46

-0
1-

19

19
47

-0
5-

17

19
55

-0
4-

12

19
51

-0
1-

05

 S
E

X

ch
ar

(1
)

F M F M M F F M M M F F M F M

E
D

LE
V

E
L

sm
al

lin
t

no
t

nu
ll

18 18 20 16 16 16 16 14 19 14 16 18 16 17 16

JO

B

ch
ar

(8
)

P
R

E
S

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

S
A

LE
S

R
E

P

C
LE

R
K

A
N

A
LY

S
T

A
N

A
LY

S
T

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

H

IR
E

D
A

T
E

da
te

19
65

-0
1-

01

19
73

-1
0-

10

19
75

-0
4-

05

19
49

-0
8-

17

19
73

-0
9-

14

19
80

-0
9-

30

19
70

-0
8-

15

19
80

-0
6-

19

19
58

-0
5-

16

19
63

-1
2-

05

19
71

-0
7-

28

19
76

-1
2-

15

19
72

-0
2-

12

19
77

-1
0-

11

19
78

-0
9-

15

P
H

O
N

E
N

O

ch
ar

(4
)

39
78

34
76

47
38

67
89

64
23

78
31

54
98

09
72

34
90

21
67

45
78

17
93

45
10

37
82

28
90

W
O

R
K

D
E

P
T

ch
ar

(3
)

A
00

B
01

C
01

E
01

D
11

D
21

E
11

E
21

A
00

A
00

C
01

C
01

D
11

D
11

D
11

LA

S
T

N
A

M
E

va
rc

ha
r(

15
)

no
t

nu
ll

H
A

A
S

T
H

O
M

P
S

O
N

K
W

A
N

G
E

Y
E

R

S
T

E
R

N

P
U

LA
S

K
I

H
E

N
D

E
R

S
O

N

S
P

E
N

S
E

R

LU
C

C
H

E
S

S
I

O
'C

O
N

N
E

LL

Q
U

IN
T

A
N

A

N
IC

H
O

LL
S

A
D

A
M

S
O

N

P
IA

N
K

A

Y
O

S
H

IM
U

R
A

M
ID

IN
IT

ch
ar

(1
)

no
t

nu
ll

I L A B F D W Q G M A R J

F

IR
S

T
N

M
E

va
rc

ha
r(

12
)

no
t

nu
ll

C
H

R
IS

T
IN

E

M
IC

H
A

E
L

S
A

LL
Y

JO
H

N

IR
V

IN
G

E
V

A

E
IL

E
E

N

T
H

E
O

D
O

R
E

V
IN

C
E

N
Z

O

S
E

A
N

D
O

LO
R

E
S

H
E

A
T

H
E

R

B
R

U
C

E

E
LI

Z
A

B
E

T
H

M
A

S
A

T
O

S
H

I

 E
M

P
N

O

ch
ar

(6
)

no
t

nu
ll

00
00

10

00
00

20

00
00

30

00
00

50

00
00

60

00
00

70

00
00

90

00
01

00

00
01

10

00
01

20

00
01

30

00
01

40

00
01

50

00
01

60

00
01

70

 Appendix A. Sample Tables 75

Sample Tables
 C

O
M

M

17
07

16
36

22
17

14
62

23
87

17
74

23
01

15
34

13
80

21
90

21
00

12
27

14
20

12
72

15
96

20
30

 B
O

N
U

S

50
0

40
0

60
0

40
0

60
0

40
0

60
0

40
0

30
0

50
0

50
0

30
0

40
0

30
0

40
0

50
0

 S
A

LA
R

Y

21
34

0

20
45

0

27
74

0

18
27

0

29
84

0

22
18

0

28
76

0

19
18

0

17
25

0

27
38

0

26
25

0

15
34

0

17
75

0

15
90

0

19
95

0

25
37

0

B

IR
T

H
D

A
T

E

19
49

-0
2-

21

19
52

-0
6-

25

19
41

-0
5-

29

19
53

-0
2-

23

19
48

-0
3-

19

19
35

-0
5-

30

19
54

-0
3-

31

19
39

-1
1-

12

19
36

-1
0-

05

19
53

-0
5-

26

19
36

-0
3-

28

19
46

-0
7-

09

19
36

-1
0-

27

19
31

-0
4-

21

19
32

-0
8-

11

19
41

-0
7-

18

 S
E

X

F M M M F M M M F F F M M F M M

E
D

LE
V

E
L

17 16 16 17 18 14 17 15 16 15 17 12 14 12 16 14

JO

B

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

F
IE

LD
R

E
P

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
73

-0
7-

07

19
74

-0
7-

26

19
66

-0
3-

03

19
79

-0
4-

11

19
68

-0
8-

29

19
66

-1
1-

21

19
79

-1
2-

05

19
69

-1
0-

30

19
75

-0
9-

11

19
80

-0
9-

30

19
67

-0
3-

24

19
80

-0
5-

30

19
72

-0
6-

19

19
64

-0
9-

12

19
65

-0
7-

07

19
76

-0
2-

23

P
H

O
N

E
N

O

16
82

29
86

45
01

09
42

06
72

20
94

37
80

09
61

89
53

90
01

89
97

45
02

20
95

33
32

99
90

21
03

W
O

R
K

D
E

P
T

D
11

D
11

D
11

D
11

D
11

D
21

D
21

D
21

D
21

D
21

E
11

E
11

E
11

E
11

E
21

E
21

LA

S
T

N
A

M
E

S
C

O
U

T
T

E
N

W
A

LK
E

R

B
R

O
W

N

JO
N

E
S

LU
T

Z

JE
F

F
E

R
S

O
N

M
A

R
IN

O

S
M

IT
H

JO
H

N
S

O
N

P
E

R
E

Z

S
C

H
N

E
ID

E
R

P
A

R
K

E
R

S
M

IT
H

S
E

T
R

IG
H

T

M
E

H
T

A

LE
E

M
ID

IN
IT

S H T K J M S P L R R X F V

F

IR
S

T
N

M
E

M
A

R
IL

Y
N

JA
M

E
S

D
A

V
ID

W
IL

LI
A

M

JE
N

N
IF

E
R

JA
M

E
S

S
A

LV
A

T
O

R
E

D
A

N
IE

L

S
Y

B
IL

M
A

R
IA

E
T

H
E

L

JO
H

N

P
H

IL
IP

M
A

U
D

E

R
A

M
LA

L

W
IN

G

 E
M

P
N

O

00
01

80

00
01

90

00
02

00

00
02

10

00
02

20

00
02

30

00
02

40

00
02

50

00
02

60

00
02

70

00
02

80

00
02

90

00
03

00

00
03

10

00
03

20

00
03

30

76 SQL Getting Started

Sample Tables
 C

O
M

M

19
07

 B
O

N
U

S

50
0

 S
A

LA
R

Y

23
84

0

B

IR
T

H
D

A
T

E

19
26

-0
5-

17

 S
E

X

M

E
D

LE
V

E
L

16

JO

B

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
47

-0
5-

05

P
H

O
N

E
N

O

56
98

W
O

R
K

D
E

P
T

E
21

LA

S
T

N
A

M
E

G
O

U
N

O
T

M
ID

IN
IT

R

F

IR
S

T
N

M
E

JA
S

O
N

 E
M

P
N

O

00
03

40

 Appendix A. Sample Tables 77

Sample Tables

 EMP_ACT Table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not
null

char(6) not
null

smallint not
null

dec(5,2) date date

Desc: Employee
number

Project
number

Activity
number

Proportion of
employee's

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

 000070 AD3110 10 1.00 1982-01-01 1983-02-01

 000230 AD3111 60 1.00 1982-01-01 1982-03-15

 000230 AD3111 60 .50 1982-03-15 1982-04-15

 000230 AD3111 70 .50 1982-03-15 1982-10-15

 000230 AD3111 80 .50 1982-04-15 1982-10-15

 000230 AD3111 180 1.00 1982-10-15 1983-01-01

 000240 AD3111 70 1.00 1982-02-15 1982-09-15

 000240 AD3111 80 1.00 1982-09-15 1983-01-01

 000250 AD3112 60 1.00 1982-01-01 1982-02-01

 000250 AD3112 60 .50 1982-02-01 1982-03-15

 000250 AD3112 60 .50 1982-12-01 1983-01-01

 000250 AD3112 60 1.00 1983-01-01 1983-02-01

 000250 AD3112 70 .50 1982-02-01 1982-03-15

 000250 AD3112 70 1.00 1982-03-15 1982-08-15

 000250 AD3112 70 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .50 1982-10-15 1982-12-01

 000250 AD3112 180 .50 1982-08-15 1983-01-01

 000260 AD3113 70 .50 1982-06-15 1982-07-01

 000260 AD3113 70 1.00 1982-07-01 1983-02-01

 000260 AD3113 80 1.00 1982-01-01 1982-03-01

 000260 AD3113 80 .50 1982-03-01 1982-04-15

 000260 AD3113 180 .50 1982-03-01 1982-04-15

 000260 AD3113 180 1.00 1982-04-15 1982-06-01

 000260 AD3113 180 .50 1982-06-01 1982-07-01

 000270 AD3113 60 .50 1982-03-01 1982-04-01

 000270 AD3113 60 1.00 1982-04-01 1982-09-01

 000270 AD3113 60 .25 1982-09-01 1982-10-15

 000270 AD3113 70 .75 1982-09-01 1982-10-15

 000270 AD3113 70 1.00 1982-10-15 1983-02-01

 000270 AD3113 80 1.00 1982-01-01 1982-03-01

 000270 AD3113 80 .50 1982-03-01 1982-04-01

78 SQL Getting Started

Sample Tables

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000030 IF1000 10 .50 1982-06-01 1983-01-01

 000130 IF1000 90 1.00 1982-01-01 1982-10-01

 000130 IF1000 100 .50 1982-10-01 1983-01-01

 000140 IF1000 90 .50 1982-10-01 1983-01-01

 000030 IF2000 10 .50 1982-01-01 1983-01-01

 000140 IF2000 100 1.00 1982-01-01 1982-03-01

 000140 IF2000 100 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-10-01 1983-01-01

 000010 MA2100 10 .50 1982-01-01 1982-11-01

 000110 MA2100 20 1.00 1982-01-01 1982-03-01

 000010 MA2110 10 1.00 1982-01-01 1983-02-01

 000200 MA2111 50 1.00 1982-01-01 1982-06-15

 000200 MA2111 60 1.00 1982-06-15 1983-02-01

 000220 MA2111 40 1.00 1982-01-01 1983-02-01

 000150 MA2112 60 1.00 1982-01-01 1982-07-15

 000150 MA2112 180 1.00 1982-07-15 1983-02-01

 000170 MA2112 60 1.00 1982-01-01 1983-06-01

 000170 MA2112 70 1.00 1982-06-01 1983-02-01

 000190 MA2112 70 1.00 1982-02-01 1982-10-01

 000190 MA2112 80 1.00 1982-10-01 1983-10-01

 000160 MA2113 60 1.00 1982-07-15 1983-02-01

 000170 MA2113 80 1.00 1982-01-01 1983-02-01

 000180 MA2113 70 1.00 1982-04-01 1982-06-15

 000210 MA2113 80 .50 1982-10-01 1983-02-01

 000210 MA2113 180 .50 1982-10-01 1983-02-01

 000050 OP1000 10 .25 1982-01-01 1983-02-01

 000090 OP1010 10 1.00 1982-01-01 1983-02-01

 000280 OP1010 130 1.00 1982-01-01 1983-02-01

 000290 OP1010 130 1.00 1982-01-01 1983-02-01

 000300 OP1010 130 1.00 1982-01-01 1983-02-01

 000310 OP1010 130 1.00 1982-01-01 1983-02-01

 000050 OP2010 10 .75 1982-01-01 1983-02-01

 000100 OP2010 10 1.00 1982-01-01 1983-02-01

 000320 OP2011 140 .75 1982-01-01 1983-02-01

 000320 OP2011 150 .25 1982-01-01 1983-02-01

 000330 OP2012 140 .25 1982-01-01 1983-02-01

 000330 OP2012 160 .75 1982-01-01 1983-02-01

 000340 OP2013 140 .50 1982-01-01 1983-02-01

 000340 OP2013 170 .50 1982-01-01 1983-02-01

 000020 PL2100 30 1.00 1982-01-01 1982-09-15

 Appendix A. Sample Tables 79

Sample Tables

 EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

¹ “Quintana Photo” on page 86 shows the picture of the employee, Delores
Quintana.

¹ “Nicholls Photo” on page 88 shows the picture of the employee, Heather Nicholls.

¹ “Adamson Photo” on page 89 shows the picture of the employee, Bruce Adamson.

¹ “Walker Photo” on page 90 shows the picture of the employee, James Walker.

 EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

80 SQL Getting Started

Sample Tables

¹ “Quintana Resume” on page 87 shows the resume of the employee, Delores
Quintana.

¹ “Nicholls Resume” on page 88 shows the resume of the employee, Heather
Nicholls.

¹ “Adamson Resume” on page 89 shows the resume of the employee, Bruce
Adamson.

¹ “Walker Resume” on page 91 shows the resume of the employee, James Walker.

 IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

 ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department
name

Manager number Division of cor-
poration

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

 PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

 Appendix A. Sample Tables 81

Sample Tables

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Desc: Project
number

Project
name

Depart-
ment
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major project,
for a sub-
project

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

 AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

 AD3111 PAYROLL
PRO-
GRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

 AD3112 PER-
SONNEL
PRO-
GRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

 AD3113 ACCOUNT
PRO-
GRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

 IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

 IF2000 USER
EDUCA-
TION

C01 000030 1 1982-01-01 1983-02-01 -

 MA2100 WELD
LINE
AUTO-
MATION

D01 000010 12 1982-01-01 1983-02-01 -

 MA2110 W L PRO-
GRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

 MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

 MA2112 W L
ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

 MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

 OP1000 OPERA-
TION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

 OP1010 OPERA-
TION

E11 000090 5 1982-01-01 1983-02-01 OP1000

 OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

 OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

 OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

 OP2012 APPLICA-
TIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

 OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

 PL2100 WELD
LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

82 SQL Getting Started

Sample Tables

 SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee's last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

 12/31/1995 LEE Ontario-South 3

 12/31/1995 LEE Quebec 1

 12/31/1995 LEE Manitoba 2

 12/31/1995 GOUNOT Quebec 1

 03/29/1996 LUCCHESSI Ontario-South 3

 03/29/1996 LUCCHESSI Quebec 1

 03/29/1996 LEE Ontario-South 2

 03/29/1996 LEE Ontario-North 2

 03/29/1996 LEE Quebec 3

 03/29/1996 LEE Manitoba 5

 03/29/1996 GOUNOT Ontario-South 3

 03/29/1996 GOUNOT Quebec 1

 03/29/1996 GOUNOT Manitoba 7

 03/30/1996 LUCCHESSI Ontario-South 1

 03/30/1996 LUCCHESSI Quebec 2

 03/30/1996 LUCCHESSI Manitoba 1

 03/30/1996 LEE Ontario-South 7

 03/30/1996 LEE Ontario-North 3

 03/30/1996 LEE Quebec 7

 03/30/1996 LEE Manitoba 4

 03/30/1996 GOUNOT Ontario-South 2

 03/30/1996 GOUNOT Quebec 18

 03/30/1996 GOUNOT Manitoba 1

 03/31/1996 LUCCHESSI Manitoba 1

 03/31/1996 LEE Ontario-South 14

 03/31/1996 LEE Ontario-North 3

 03/31/1996 LEE Quebec 7

 03/31/1996 LEE Manitoba 3

 03/31/1996 GOUNOT Ontario-South 2

 03/31/1996 GOUNOT Quebec 1

 04/01/1996 LUCCHESSI Ontario-South 3

 04/01/1996 LUCCHESSI Manitoba 1

 04/01/1996 LEE Ontario-South 8

 04/01/1996 LEE Ontario-North -

 04/01/1996 LEE Quebec 8

 04/01/1996 LEE Manitoba 9

 04/01/1996 GOUNOT Ontario-South 3

 04/01/1996 GOUNOT Ontario-North 1

 04/01/1996 GOUNOT Quebec 3

 04/01/1996 GOUNOT Manitoba 7

 Appendix A. Sample Tables 83

Sample Tables

 STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

84 SQL Getting Started

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM

350 Gafney 84 Clerk 5 13030.50 188.00

 STAFFG Table
Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

 Appendix A. Sample Tables 85

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data
Type

This section shows the data found in the EMP_PHOTO files (pictures of employees)
and EMP_RESUME files (resumes of employees).

 Quintana Photo

Figure 7. Delores M. Quintana

86 SQL Getting Started

Sample Tables

 Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933
Birthdate: September 15, 1925
Sex: Female
Marital Status: Married
Height: 5'2"
Weight: 120 lbs.

Department Information

Employee Number: 000130
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of Technology

Work History

10/91 - present Advisory Systems Analyst Producing documentation tools for
engineering department.

12/85 - 9/91 Technical Writer Writer, text programmer, and planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll programs for a
diesel fuel company.

Interests

 ¹ Cooking
 ¹ Reading
 ¹ Sewing
 ¹ Remodeling

 Appendix A. Sample Tables 87

Sample Tables

 Nicholls Photo

Figure 8. Heather A. Nicholls

 Nicholls Resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734
Phone: (208) 555-2310
Birthdate: January 19, 1946
Sex: Female
Marital Status: Single
Height: 5'8"
Weight: 130 lbs.

Department Information

Employee Number: 000140
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-1793
Hire Date: 1976-12-15

88 SQL Getting Started

Sample Tables

Education

1972 Computer Engineering, Ph.D. University of Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the architecture of
OCR products.

12/76 - 1/83 Text Programmer Optical character recognition (OCR) pro-
gramming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch cards met quality
specifications.

Interests

 ¹ Model railroading
 ¹ Interior decorating
 ¹ Embroidery
 ¹ Knitting

 Adamson Photo

Figure 9. Bruce Adamson

 Adamson Resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

 Appendix A. Sample Tables 89

Sample Tables

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-4489
Birthdate: May 17, 1947
Sex: Male
Marital Status: Married
Height: 6'0"
Weight: 175 lbs.

Department Information

Employee Number: 000150
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-4510
Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns Hopkins University

1968 American History, B.A. Northwestern University

Work History

8/79 - present Neural Network Design Developing neural networks for
machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing rule-based systems to
emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank systems commu-
nicate with each other.

Interests

 ¹ Racing motorcycles
 ¹ Building loudspeakers
¹ Assembling personal computers

 ¹ Sketching

 Walker Photo

90 SQL Getting Started

Sample Tables

Figure 10. James H. Walker

 Walker Resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-7325
Birthdate: June 25, 1952
Sex: Male
Marital Status: Single
Height: 5'11"
Weight: 166 lbs.

Department Information

Employee Number: 000190
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-2986
Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of Massachusetts

1972 Linguistic Anthropology, B.A. University of Toronto

 Appendix A. Sample Tables 91

Sample Tables

Work History

6/87 - present Microcode Design Optimizing algorithms for mathematical func-
tions.

4/77 - 5/87 Printer Technical Support Installing and supporting laser
printers.

9/74 - 3/77 Maintenance Programming Patching assembly language com-
piler for mainframes.

Interests

 ¹ Wine tasting
 ¹ Skiing
 ¹ Swimming
 ¹ Dancing

92 SQL Getting Started

Appendix B. How the DB2 Library Is
Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task infor-
mation, DB2 books, troubleshooting information, sample programs, and DB2 information
on the Web. “About the Information Center” on page 100 has more details.

 SmartGuides

SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance Config-
uration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

 Copyright IBM Corp. 1993, 1997 93

SmartGuide Helps you to... How to Access...

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Online Help

Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in interac-
tive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes pre-
requisite information
you need to know,
and describes how to
use the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

94 SQL Getting Started

Type of Help Contents How to Access...

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in interac-
tive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

SQL Help Explains the syntax of
SQL statements.

From the command line processor in interac-
tive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in interac-
tive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix B. How the DB2 Library Is Structured 95

 DB2 Books

The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 100 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 100 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

96 SQL Getting Started

Order To order a hardcopy book from IBM, use the form number.

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration con-
cepts and tasks, and walks you through the primary
administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a call-
able SQL interface that is compatible with the Micro-
soft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all sup-
ported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for cus-
tomers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA Appli-
cation Requesters with DB2 Universal Database
servers, and customers who want to use DRDA Appli-
cation Servers with DB2 Connect (formerly DDCS)
application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes dis-
cussions about programming techniques and perform-
ance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix B. How the DB2 Library Is Structured 97

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software Devel-
oper's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools sup-
plied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about release-to-
release incompatibilities, product limits, and catalog
views.

S10J-8165

db2s0x50

System Monitor Guide and Ref-
erence

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to under-
stand database activity, improve performance, and
determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in consulta-
tion with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and enhance-
ments in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2 Environ-
ments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Windows or OS/2 system.

S10J-8160

db2a1x50

98 SQL Getting Started

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all sup-
ported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix B. How the DB2 Library Is Structured 99

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the lan-
guage of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center

The Information Center provides quick access to DB2 product information. The Informa-
tion Center is available on OS/2, Windows 95, and the Windows NT operating systems.
You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the appro-
priate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software Devel-
oper's Kit. If the Software Developer's Kit is not installed, this tab
is not displayed.

100 SQL Getting Started

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix B. How the DB2 Library Is Structured 101

102 SQL Getting Started

 Appendix C. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly des-
ignated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

 Copyright IBM Corp. 1993, 1997 103

 Trademarks

The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or regis-
tered trademarks of Microsoft Corporation.

104 SQL Getting Started

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corpo-
ration under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

 Appendix C. Notices 105

106 SQL Getting Started

 Index

A
ADD CONSTRAINT statement 55
ALL, using in a query 52
ALTER TABLE statement 55
ANY keyword 52
arithmetic operators 25
AS clause 26
authority vii
authorization ID 5

B
base table 3
BETWEEN predicate 50
binary integer, description 5
BLOB data type 67
BLOB string 67

C
case expression

description 36
SIGN function 36

casting data types
description 36

CHAR, data type 5
character string

as data type 5
 fixed length 5
varying length 5

CL_SCHED sample table 73
CLOB data type 67
CLOB string 67
column

ASC, ascending order sort 23
definition of 3
DESC, descending order sort 23

column function 29
AVG 29
COUNT 29
MAX 29
MIN 29

column functions 29

combining, queries 47
command line processor 1
common table expression

description 39
comparison operator used in a subquery 52
composite key 53
CONNECT statement 18

explicit 18
implicit 18

connecting queries 49
constraints

referential constraints 9
unique constraints 9

controlling access to data vii
correlated reference, description 41
correlated subquery

description 41
when to use 43

correlation
description 40
name 42
subqueries using joins 44
subquery 41

correlation-name
qualified reference of column name 40
rules for 40

CREATE DISTINCT TYPE 65
CREATE FUNCTION 66
CREATE TABLE statement 9

NOT NULL/NOT NULL WITH DEFAULT value for
column 9

CREATE TRIGGER 56
CREATE VIEW statement 13

WITH CHECK OPTION 13
cross product 59
cross-tabulation rows 64
CUBE 64

cross-tabulation rows 64
sub-total rows 64

CURRENT DATE special register 68
CURRENT FUNCTION PATH special register 68
CURRENT SERVER special register 68
CURRENT TIME special register 68
CURRENT TIMESTAMP special register 68

 Copyright IBM Corp. 1993, 1997 107

CURRENT TIMEZONE special register 68

D
data conversion

join conditions 61
set operators 49

data structure
column 3
row 3
value 3

data type
distinct 65

data types
CHAR 5
DATE 5
DATETIME 5
DECIMAL 5
DOUBLE 5
FLOAT 5
INTEGER 5
REAL 5
SMALLINT 5
TIME 5
TIMESTAMP 5
VARCHAR 5

database manager 1
DATE, data type 5
datetime values, descritption 5
DATETIME, data type 5
DBLOB data type 67
DBLOB string 67
DECIMAL, data type 5
decimal, description 5
DELETE statement 13
DEPARTMENT sample table 73
distinct data type 65
DISTINCT keyword 24, 30
DOUBLE, data type 5

E
EMP_ACT sample table 78
EMP_PHOTO sample table 80
EMP_RESUME sample table 80
EMPLOYEE sample table 73
erasing the sample database 72
error messages

message identifier 18
SQLSCODE 18

error messages (continued)
SQLSTATE 18

EXCEPT ALL 48
EXCEPT operator 48

ordering results 49
usage restrictions involving 49

data types 49
EXISTS predicate 51
expressions 25
expressions, naming 26
external scalar function 66
external table function 66

F
FLOAT, data type 5
foreign key 54
FROM clause 19
FULL OUTER join 59
fullselect 35

ALL keyword 52
ANY keyword 52
subquery 10, 52
with INSERT statement 10

fullselect, defintion 10
function

built-in 29
column 29
description 29
scalar 29
user-defined 29

G
graphic string

fixed length 5
varying length 5

GROUP BY 25
GROUP BY clause

grouping column 31
with HAVING clause 32

grouping column, defintion 31

H
HAVING 25
HAVING clause

description 32

108 SQL Getting Started

I
IN predicate 50
IN_TRAY sample table 81
inner join 59
INSERT statement 10

NOT NULL/NOT NULL WITH DEFAULT value for
column 10

installing the sample database 72
INTEGER, data type 5
interactive SQL, definition 1
INTERSECT ALL 49
INTERSECT operator 49

ordering results 49
usage restrictions involving 49

data types 49

J
join

correlated subqueries 44
cross product 59
data conversion 61
definition 27
join conditions 59
without join conditions 59

join condition 59

K
key

composite 53
definition 53
foreign 54
primary 54
unique 54

L
large object location, definition 67
LEFT OUTER join 59
LIKE predicate 51
LOB

locator, definition 67
string, definition 67

locator 67

M
merging results of queries 47
modifying tables through a view 15

WITH CHECK OPTION 15
monitor vii
multiple node relational database, definition 1

N
nested table expressions, description 38
nesting correlated subqueries 44
NOT BETWEEN predicate 50
NOT EXISTS predicate 51
NOT IN predicate 50
NOT LIKE predicate 51
null value 45

delete column value 12
null value, descritption 5
numbers, description 5

O
ORDER BY clause 23

set operators 49
order of operations 25, 29
ORG sample table 81
outer join

description 59
FULL OUTER join 59
LEFT OUTER join 59
RIGHT OUTER join 59

outer-level predicate 52
outer-level query, correlation 43

P
parent key, definition 54
partitioned relational database, definition 1
performance vii
precision, as a numeric attribute 5
predicate

IS NOT NULL 20
IS NULL 20

primary key 54
privilege vii
PROJECT sample table 81

 Index 109

Q
qualifying objects 5, 17
queries, connecting 49

R
REAL, data type 5
recover objects vii
recursive queries, description 64
referential integrity constraints

definition 53
description 54
foreign key 54
parent key 54

relational database, definition 1
relationship between tables and views 13
removing duplicate rows 24
reserved schemas 5
restrictions

for set operators 49
result table 3
retrieving data 19
RIGHT OUTER join 59
ROLL-UP

sub-total rows 64
ROLLUP 64
row

definition of 3
selecting 20

S
SALES sample table 83
sample database

erasing 72
installing 72

sample tables 71, 92
scalar fullselects

description 35
scalar function 29

ABS 30
DECIMAL 38
HEX 30
LENGTH 30
SIGN 30
YEAR 30

schema
definition of 5

search condition 20
select list 19
SELECT statement 19
SET clause

with UPDATE statement 12
SET CONSTRAINTS statement 55
sign, as a numeric attribute 5
SMALLINT, data type 5
SOME keyword 52
sorting rows 23
sourced function 66
special register 68

CURRENT DATE 68
CURRENT DEGREE 68
CURRENT FUNCTION PATH 68
CURRENT PATH 68
CURRENT SERVER 68
CURRENT TIME 68
CURRENT TIMESTAMP 68
CURRENT TIMEZONE 68
USER 68

STAFF sample table 84
STAFFG sample table 85
string

LOB 67
Structured Query Language (SQL), definition 1
sub-total rows 64
subquery

definition 28
system catalogs 69

T
table 71

base table 3
combine data (join) 27
definition of 3
foreign key 54
primary key 54
qualifying a column name 40
result table 3
sample 71
unique constraint 54
unique key 54

table check constraints
deferred constraint checking 55
definition 53
description 55

table expressions
description 38

110 SQL Getting Started

testing for existence 51
testing, existence 51
TIME, data type 5
TIMESTAMP, data type 5
transactions vii
triggers

after trigger 56
before trigger 56
CREATE TRIGGER 56
definition 53
description 56
transition variables 58

U
UNION ALL 47
UNION operator 47, 48

description 47
ordering results 48
usage restrictions involving 49

data types 49
unique constraint 54
unique constraints

definition 53
unique key 54

unique constraint 54
unit of work vii
UPDATE statement 12
USER special register 68
user-defined functions 66

defining 66
external scalar function 66
external table function 66
sourced function 66

V
value

definition of 3
value in SQL 5
VALUES clause

with INSERT statement 10
VARCHAR, data type 5
View

advantages 4
description 4
qualifying a column name 40

W
WHERE clause 20

combine table data (join) in SELECT statement 27
grouping considerations 32

WITH CHECK OPTION 15
WITH clause 39

 Index 111

112 SQL Getting Started

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the Trou-
bleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM soft-
ware remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order pro-
ducts or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools con-
cerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 113

ÉÂÔÙ

Part Number: 10J8156

Printed in U.S.A.

S10J-8156-00

1
0
J
8
1
5
6

