
DB2 Server for VSE

System Administration
Version 7 Release 1

SC09-2981-00

���

DB2 Server for VSE

System Administration
Version 7 Release 1

SC09-2981-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 415.

First Edition (September 2000)

This edition applies to Version 7, Release 1, Modification 0 of the IBM® DATABASE 2™ Server for VSE & VM
Program, (product number 5697-F42) and to all subsequent releases and modifications until otherwise indicated in
new editions.

This edition replaces SC09-2658-00.

© Copyright International Business Machines Corporation 1987, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

About This Manual ix
Organization of This Manual. ix
How to Send Your Comments xi
Syntax Notation Conventions xi
SQL Reserved Words xv

Summary of Changes xvii
Summary of Changes for DB2 Version 7 Release 1 xvii

Enhancements, New Functions, and New
Capabilities xvii
Reliability, Availability, and Serviceability
Improvements xix
Library Enhancements xix

Chapter 1. Planning for Installation . . . 1
Usage Environments. 1

Batch Application Processing 1
Online (CICS) Transaction Processing 2
Interactive Application Development 4
Query/Report Writing 5
Components of the Relational Database
Management System. 6
Prerequisite Programs 7
Virtual Storage Requirements 8
Hardware Requirements 8
DBNAME Directory Requirements. 11
DB2 Key Processing 11

Chapter 2. Planning for Database
Generation 13
Setting Up the DB2 Product Key 13
Database Generation Parameters 13

Defining Database Directory Size 14
Defining the Database Log 16
Establishing Database Capacity Parameters . . . 17
Establishing Initial Dbspace Requirements . . . 18
Determining Initial Dbextent Requirements . . . 21

Choosing an Application Server Name 23
Setting Up the DBNAME Directory 23

The IBM-Supplied DBNAME Directory 28
Updating the DBNAME Directory 28
CICS CEDA DEF CONNECTIONS Command for
a Remote Entry 30

Choosing the Application Server Default
CHARNAME and CCSID. 30
Choosing the Application Server Default Character
Subtype 32
Choosing the Default CHARNAME and CCSID for
Application Requesters 33
Preparing for Database Regeneration 33
Database Generation Worksheet 34

Chapter 3. Planning for Database
Migration. 39

Migration Considerations 39
Increasing the HELPTEXT Dbspace 39

Migrating from Version 3 Release 1 40
Considerations for Invalid Indexes. 40
Conversion of Packages 40

Migrating from Version 3 Release 2 40
Choosing a Server Name 40
Elimination of the SET XPCC Command . . . 40
Choosing an Application Server Default
CHARNAME. 40
Considerations for Mixed Primary Keys with
Field Procedures. 43
Considerations for EXPLAIN Tables 43
Considerations for VSE Guest Sharing 43

Migrating from Version 3 Release 4 44
Considerations for Assembler Even Precision
Packed Decimal 44
Considerations for SQLSTATE Changes for
SQL92 Support 44

Migrating from Version 3 Release 5 44
Considerations for Uncommitted Read 44
Considerations for Support of ESA-mode
Processors Only 44
Considerations for the Renaming of the Product 44
Considerations for the Removal of the User
Facility Subset 44

Migrating from Version 5 Release 1 45
Choosing the Default CHARNAME for All
Application Requesters 45
Considerations for VSE DRDA Online Requester
Support 45
Considerations for RDS Above 16M 45

Migrating from Version 6 Release 1 45
Considerations for the DBNAME Directory . . . 45
Considerations for Key Enablement 45

Release Coexistence Considerations 45
Changing the Server Name and Application Server
Identifier 46

Chapter 4. Planning for Operation of
the Database Manager 47
Starting the Application Server 47

Modes of Operation 47
Multiple User Mode Initialization Parameters . . 47
Single User Mode Initialization Parameters . . . 65
Tape Support 67
Starting the Application Server in Multiple User
Mode 67
Running Multiple User Mode Application
Programs 69
Starting the Application Server in Single User
Mode 71
Overriding Initialization Parameters 74
Creating a Parameter Data Set 75

Stopping the Application Server 76

© Copyright IBM Corp. 1987, 2000 iii

||

||
|
||
|
||
||

||

||

||
||
||
|
||

||
||
||

Taking an Archive 76
Verifying the Directory 78
Online Support Considerations 78

Chapter 5. Operating the Online
Support 79
Operating VSE Guest Sharing 79
Operator Responsibilities 80

Starting the Online Resource Adapter -- The
CIRB Transaction 81
Adding Connections -- The CIRA Transaction . . 88
Automatic Restart Resynchronization 91
Changing the Default Server -- The CIRC
Transaction 97
Removing Connections -- The CIRR Transaction 98
Displaying Information -- The CIRD Transaction 101
Stopping the Online Support -- The CIRT
Transaction 110
Password Implications on Online Resource
Adapter Termination 114

Chapter 6. Maintaining Database
Security 117
Protecting VSAM Data Sets 117
VSAM Restrictions 117
Controlling Access by ISQL Users 117
Controlling Access by Remote Users 119
DRDA Security 120

Chapter 7. Managing Database
Storage 121
Storage Concepts 121

How Information is Stored in Dbspaces . . . 122
Adding Dbspaces to the Database 123

The ADD DBSPACE Operation 123
Considerations for Adding Dbspaces 124

Expanding the Database Directory 126
Acquiring Dbspaces for Packages. 127
Managing Storage Pools 129

Design Considerations for Storage Pools . . . 129
Monitoring Storage Pools 130
Maintaining Storage Pools 131

Chapter 8. Making Backups and
Recovering from Failures 141
Understanding Recovery Concepts 141

What is a Logical Unit of Work? 141
What is a Log? 142
What is a Checkpoint? 143
What Happens after a System Failure? 143
What is an Archive? 144
Recovering from DASD Failures that Damage
the Database 145
Recovering from DASD Failures that Damage a
Log. 146
Recovering from DASD Failures that Damage
the Database and Log 146

Establishing DASD Recovery Procedures 146
Choosing a Log Mode 146

Backing Up the History Area 149
Choosing Dynamic or Static Tape Devices . . . 149

Archiving Procedures. 149
Performing Database Archives With Database
Manager Facilities 150
Performing Database Archives With User
Facilities 151
Performing Log Archives 152
Labeling Your Archive Tapes 154

Recovery Procedures 154
Restarting Procedures 155
Restoring the Database 155
Restarting from Failure of a Database Restore 159
Restarting from a System Failure While
Archiving 160
Restarting from Failure of a Database
Generation or COLDLOG Operation 161
Relocating the Database Manager. 161
Replacing a Dbextent 161
Replacing a Log 162
Recovering to a Secondary System 162

Chapter 9. Special Topics in Recovery
Design 163
Switching Log Modes 163

From LOGMODE=A 163
From LOGMODE=L 163
From LOGMODE=Y or N 164

Using Dual Logging 165
Reconfiguring and Reformatting the Logs 165

Log Reconfiguration 166
Log Reformatting 167
History Area 167

Nonrecoverable Storage Pools 171
Characteristics of Dbspaces in Nonrecoverable
Storage Pools 172
Data That Can be Placed in Nonrecoverable
Storage Pools 175
Data That Should Not Be Placed in
Nonrecoverable Dbspaces 178
Setting Up Nonrecoverable Storage Pools and
Dbspaces 178
Querying for Nonrecoverable Storage Pools and
Dbspaces 179

Chapter 10. Using the Accounting
Facility 181
Preparing to Use the Accounting Facility 181

Setting Up Your System 181
Setting Up a Job Control for the Accounting
Files 181

Starting the Accounting Facility 187
Operating the Accounting Facility 188
Generation of Accounting Records 189
Using DRDA Accounting 190
Supplying Accounting Data from DRDA
Applications. 190
Formats of the Accounting Records 191

Initialization Records 192
Operator and Checkpoint Records 193

iv System Administration

Termination Records 193
User Records 194
Remote User Records. 195
DRDA Records 195
VSE Guest User Records. 196

Maintaining Accounting Data 197
Considerations for an Accounting Dbspace . . 197
Tables to Hold Accounting Data 198
Loading the Accounting Data 201
Converting VSAM ESDS Accounting File
Records into VSAM Managed SAM Feature
Records 203

Chapter 11. Generating Additional
Databases 205
Learning about Configuration Concepts 205

Reasons for Adding a Database Partition . . . 205
Database Generation Process 207

Step 1: Update the DBNAME Directory . . . 208
Step 2: Defining the Database Data Sets . . . 208
Step 3: Setting Up Your Database Job Control 211
Step 4: Generating the Database 212
Step 5: Installing the Database Components . . 219
Step 6: Reload CCSID-Related Packages . . . 220
Step 7: Optionally Changing the Application
Server Default CHARNAME 220
Step 8: Optionally Changing the Application
Server Default Character Subtype 221
Step 9: Optionally Setting the DBCS Option to
YES 221
Step 10: Changing the Password of
Authorization ID SQLDBA 221
Step 11: Optionally Install the DRDA Code . . 221
Step 12: Optionally Load Phases into SVA . . . 221

Chapter 12. Choosing a National
Language and Defining Character
Sets 225
Considerations when changing default
CHARNAME and CCSID 226

Changing from pre-Euro CHARNAME to
Euro-compatible CHARNAME 227

Using Alternative Character Sets 228
Hexadecimal Values of the Sample Character
Sets 228
Specifying an IBM-Supplied Character Set at
Run Time. 235

Using Double-Byte Character Set (DBCS) 237
Identifiers Containing DBCS Characters . . . 237
Constants and Data Containing DBCS
Characters 238

CCSID Conversion 239
Determining CCSID Values 242
Setting the Application Server Default
CHARNAME and CCSIDs 243

Changing the CCSID Attribute of an Existing
Column 244
Changing the Subtype Attribute of an Existing
Column 245

Setting the Application Requester Default
CHARNAME and CCSIDs 245

The SQLGLOB File Batch Query/Update
Program 247

Setting the Application Server Default Character
Subtype 247
Setting the DBCS Option for the Application Server 248
Setting the Default Application Requester DBCS
Option 248
EUC Conversions 250
Examples of Setting Values for an Installation . . 250

Example 1 250
Example 2 251
Identifying Classification and Translation Tables
for a CCSID 253

National Language Support for Messages and
HELP Text 253

Changing the ISQL Default Language 255
National Language Messages in a VSE Guest
Sharing Environment 256

Chapter 13. Creating Installation Exits 257
Supplying Account Numbers for Users 257

How the ARIUXIT Module Works 258
Coding Your Own Accounting Exit 262
Installing Your Version of ARIUXIT 268
Service Considerations for ARIUXIT 269

Defining Your Own Datetime Format 269
Datetime Formats 269
How Datetime Exits Work 270
Coding Your Own Datetime Exit 273
Installing Your Version of ARIUXDT or
ARIUXTM 277
Updating the SYSTEM.SYSOPTIONS Catalog
Table 278

Coding Your Own TRANSPROC Exit 279
. 279

Coding Your Own Cancel Exit. 281
. 282

Field Procedures 284
Specifying the Field Procedure 285
When Field Procedures are Called 285
General Considerations for Writing Field
Procedures 286
A Warning about Blanks. 286
Maintaining Field Procedures 287
Recovering from Abends in Exits 287
Security with Field Procedures 287
Field Procedures for Cultural Sorts 287
Field Procedure Interface to the Database
Manager 288
Field-Definition (Function Code 8) 290
Field-Encoding (Function Code 0) 293
Field-Decoding (Function Code 4) 294

Chapter 14. Using a DRDA
Environment 305

. 305
Benefits of Using the DRDA Protocol 305

Contents v

|
||

Added Responsibilities in Using the DRDA
Protocol 306
Types of Distributed Access 306

Remote Unit of Work. 306
Distributed Unit of Work 307
Summary of DRDA Support in DB2 Server for
VSE 308

Preparing to Implement DRDA 308
On the Application Requester 308
On the Application Server 309
Entries Required in CICS System Definition File 309
CICS Program Definitions Required for DRDA 310
Entries Required in DFHSIT 310
Terminal Definitions Required by AXE 310
Entries Required in DFHCSDUP 311
Entries Required in DFHSNT 311
CICS Transaction Server (TS) Considerations . . 311

Installing and Removing the DRDA Code 312
Installing the DRDA Code on the Application
Server 312
Removing the DRDA Code on the Application
Server 312
Installing the DRDA Code on the Application
Requester. 312
Removing the DRDA Code on the Application
Requester. 313

Using DRDA 313
Creating Packages on the Remote Server 315
Using the DBS Utility on Remote Application
Servers 315
Using ISQL on non-DB2 Server for VM Application
Servers 316
Two-Phase Commit Processing 316

Using the Two-Phase Commit Protocol 317
CICS/VSE Syncpoint Manager and the Task
Related User Exit (TRUE) 319
Managing In-Doubt LUW’s. 320

Operator Commands 320
Making Heuristic Decisions 321
Resynchronization 322

Resync When Partner is Not Active 322
Resolution of In-doubts 322

Chapter 15. Using TCP/IP with DB2
Server for VSE 327
Preparing the Application Server to use TCP/IP 327
Preparing the Application Requester to use TCP/IP 329

Appendix A. Processor Storage
Requirements 331
Virtual Storage Requirements of Components . . 331
CICS Dynamic Storage Considerations 335

Use of SELECT 335
Use of Routines 336
CICS Temporary Storage Queues 336

Appendix B. Estimating Database
Storage 337
Storage Capacities of IBM DASD Devices 337
Relationship of Megabytes to 4-Kilobyte Pages . . 339

Estimating Directory Space Requirements 340
Estimating Storage Pool Requirements 340
Estimating SYS0001 Dbspace Requirements . . . 341

SYS0001 Storage Estimating General Formula
Assumptions 341
Derivation of the General Formula for SYS0001
Storage Estimating 345
Formula for SYS0001 Storage Estimating . . . 345
Examples of Using the SYS0001 Storage
Estimating Formula 346
Modifying the SYS0001 Storage Estimating
General Formula 347

Estimating ISQL Dbspace Requirements 349
Estimating Dbspace Sizes for Routines 349
Estimating Dbspace Size for Stored SQL
Statements (Stored Queries) 350

Appendix C. Maximum Values 353
Database Manager Maximum Values 353
Database Maximum Values 354

Appendix D. Updating
SYSTEM.SYSSTRINGS 355

Appendix E. Defining Your Own
Character Set 359
Step 1: Identify All Characters in Your Character
Set 360
Step 2: Classify the Characters. 362
Step 3: Determine Translation Characters 370
Step 4: Update the SYSTEM.SYSCHARSETS
Catalog Table 372
Step 5: Update the SYSTEM.SYSCCSIDS Catalog
Table 372
Step 6: Update the SYSTEM.SYSSTRINGS Catalog
Table 373
Step 7: Update the CCSID-Related Phases 374

Appendix F. Macro List 375

Appendix G. DRDA Considerations 377
Omissions from the Standards 377
Extensions to the Standards 377
DB2 Server for VSE Facility Restrictions 378

Appendix H. Incompatibilities Between
Releases 381
Definition of an Incompatibility 381
Impact on Existing Applications 381
V2R1 and V1R3.5 Incompatibilities 382
V2R2 and V2R1 Incompatibilities 384

Detailed Notes on V2R2-V2R1 Incompatibilities 386
V3R1 and V2R2 Incompatibilities 387

Detailed Notes on V3R1-V2R2 Incompatibilities 392
V3R2 and V3R1 Incompatibilities 397

Detailed Notes on V3R2-V3R1 Incompatibilities 401
V3R4 and V3R2 Incompatibilities (VSE Only). . . 403

Detailed Notes on V3R4-V3R2 Incompatibilities 411
V3R5 and V3R4 Incompatibilities 412

vi System Administration

||

|
||
||
||

V5R1 and V3R5 Incompatibilities 413
V6R1 and V5R1 Incompatibilities 413
V7R1 and V6R1 Incompatibilities 414

Notices 415
Programming Interface Information 417

Trademarks 417

Bibliography. 419

Index 423

Contents vii

||

viii System Administration

About This Manual

This manual describes how to carry out system planning and administration tasks
for DB2 Server for VSE.

Note: If your installation is using VSE guest-sharing to access a database manager
on a VM operating system, you can use this manual to carry out tasks that
involve operating the database manager or improving performance on VSE.
However, for a complete description of VM administrative tasks, including
those that involve the database virtual machine, you will need the DB2
Server for VM System Administration manual.

The following tasks are described here:
v Installation
v Migration
v Operation
v Management of resources (including security)
v Modification of facilities (including national language support).

Organization of This Manual
v “Summary of Changes” on page xvii lists the changes made to the product since

Version 6 Release 1.
v “Chapter 1. Planning for Installation” on page 1 summarizes the software,

hardware, and storage requirements for installing the database manager. It does
not describe the actual installation procedure. For information on that, see the
DB2 Server for VSE Program Directory.

v “Chapter 2. Planning for Database Generation” on page 13 describes how to set
up your initial database, including specifying parameters to define the logical
and physical limits for its capacity and setting its initial DASD allocations.

v “Chapter 3. Planning for Database Migration” on page 39 explains the planning
you must do before migrating a database from a previous release of the database
manager to the Version 7 Release 1 level. For the actual migration steps, see the
DB2 Server for VSE Program Directory.

v “Chapter 4. Planning for Operation of the Database Manager” on page 47
explains how to choose appropriate startup parameters which will determine the
operational characteristics of the application server when it is started by the DB2
Server for VSE operator.

Note: Starting, operating, and stopping the application server are also discussed
in the DB2 Server for VSE & VM Operation manual.

v “Chapter 5. Operating the Online Support” on page 79 explains how to enable
VSE guest users to access the application server on a VM/ESA operating system,
and how to operate the online support for CICS/VSE® transactions.

Note: These subjects are also discussed in the DB2 Server for VSE & VM
Operation manual.

v “Chapter 6. Maintaining Database Security” on page 117 discusses how to control
access to the application server.

© Copyright IBM Corp. 1987, 2000 ix

v “Chapter 7. Managing Database Storage” on page 121 explains how to manage
the disk storage allocated to the database, including adding (or defining)
dbspaces, defining storage pools, adding dbextents to storage pools, and
managing storage pools.

v “Chapter 8. Making Backups and Recovering from Failures” on page 141
describes facilities provided for recovery from system failures and DASD
failures; how to back up your database; and how to recover from different types
of failures.

v “Chapter 9. Special Topics in Recovery Design” on page 163 discusses dual
logging and switching log modes.

v “Chapter 10. Using the Accounting Facility” on page 181 describes the DB2
Server for VSE accounting facility, which tracks how database resources are
consumed by users.

v “Chapter 11. Generating Additional Databases” on page 205 describes how to
add databases to your system.

v “Chapter 12. Choosing a National Language and Defining Character Sets” on
page 225 contains information on national language character set and coded
character set identifier (CCSID) support, as well as how to provide HELP text
and messages in languages supported by the database manager.

v “Chapter 13. Creating Installation Exits” on page 257 describes the types of
installation exits that you can code to customize the database manager:
– Accounting exits, to customize account information
– Date and time exits, to create your own date or time format if the

IBM-supplied formats do not fit your requirements
– TRANSPROC exits, to carry out DBCS conversions
– Cancel exits, to replace the product-supplied cancel function when coding

your own interactive program
– Field Procedures, to change the sorting sequence by encoding and decoding

data if the standard sorting sequence does not meet your requirements.
v “Chapter 14. Using a DRDA Environment” on page 305 discusses using the

database manager in a distributed environment.
v “Chapter 15. Using TCP/IP with DB2 Server for VSE” on page 327 discusses

using TCP/IP to access application servers.
v “Appendix A. Processor Storage Requirements” on page 331 presents guidelines

for estimating the processor requirements needed for running the database
manager.

v “Appendix B. Estimating Database Storage” on page 337 contains procedures for
estimating the sizes of the database directory, public dbspaces, and the ISQL
dbspace.

v “Appendix C. Maximum Values” on page 353 contains the system and database
maximums for the database manager.

v “Appendix D. Updating SYSTEM.SYSSTRINGS” on page 355 details how to
update this catalog table to support your own CCSID conversion.

v “Appendix E. Defining Your Own Character Set” on page 359 describes how to
create your own character set.

v “Appendix F. Macro List” on page 375 lists the macros identified as
programming interfaces for customers by the database management system.

v “Appendix G. DRDA Considerations” on page 377 discusses what you should
consider in a distributed environment.

v “Appendix H. Incompatibilities Between Releases” on page 381 describes the
incompatibilities between releases.

x System Administration

|
|

A bibliography is provided at the back of the book.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
DB2 Server for VSE & VM documentation:
v Visit our home page at:

http://www-4.ibm.com/software/data/db2/vse-vm/

v A form for readers’ comments is provided at the back of this publication. If the
form has been removed, address your comments to:

IBM CANADA LTD.
DB2 Server for VSE & VM
2S/240/1150/TOR
1150 Eglinton Ave. East
North York, Ontario
Canada M3C 1H7

v Send your comments by electronic mail to one of the following addresses:

Format Address
Internet torrcf@ca.ibm.com
Facsimile (416) 448-6161 (Attention RCF

Coordinator)

Be sure to include the name of the book, the form number (including the suffix),
and the page, section title, or topic you are commenting on.

If you choose to respond through the Internet, please include either your entire
Internet network address, or a postal address.

v Fill out the form at the back of this book and return it by mail, by fax, or by
giving it to an IBM representative.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement or command.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units that are not complete statements start with the
�─── symbol and end with the ───� symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

�� SAVE ��

About This Manual xi

|

|
|
|

|

|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).
v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.
v All items (parameters and keywords) must be separated by one or more blanks.
v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

This command might appear as:
SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item appears on the main path. For
example:

�� SET AUTOCOMMIT OFF ��

�� DROP SYNONYM synonym ��

�� SHOW DBSPACE integer ��

�� CREATE
UNIQUE

INDEX ��

�� SHOW LOCK DBSPACE ALL
integer

��

xii System Administration

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

�� BACKWARD
integer
MAX

��

�� ERASE 2 name ��

�� VALUES (2

,

constant
host_variable_list
NULL
special_register

) ��

About This Manual xiii

v When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.
In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

��
ASC

DESC
��

��
PCTFREE = 10

PCTFREE = integer
��

�� REVOKE ALL
PRIVILEGES

��

��
NOT NULL

UNIQUE
PRIMARY KEY

fieldproc_block ��

fieldproc_block:

FIELDPROC program_name

2

,

(constant)

xiv System Administration

SQL Reserved Words
The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

About This Manual xv

|

xvi System Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. All manuals are affected
by some or all of the changes discussed here. For your convenience, the changes
made in this edition are identified in the text by a vertical bar (|) in the left
margin. This edition may also include minor corrections and editorial changes that
are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2
Server for VM System Administration, or the DB2 Server for VSE System
Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 1
Version 7 Release 1 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities

TCP/IP Support for DB2 Server for VSE
TCP/IP support allows:
v VSE online and batch application programs to access remote application servers

which support IBM’s implementation of the DRDA architecture over TCP/IP.
v Remote application requesters which support IBM’s implementation of the

DRDA architecture to access the DB2 for VSE application server over TCP/IP.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory.

DRDA RUOW Application Requester for VSE (Batch)
DRDA Remote Unit of Work Application Requester provides read and update
capability in one location in a single unit of work.

This support provides VSE batch application programs with the ability to execute
SQL statements to access and manipulate data managed by any remote application
server that supports IBM’s implementation of the DRDA architecture.

VSE batch application programs can access only one remote application server per
unit of work, and must use TCP/IP communications.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE & VM Application Programming

© Copyright IBM Corp. 1987, 2000 xvii

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|

|
|

|

|

|

|

v DB2 Server for VSE Program Directory.

Stored Procedures Application Requester
A stored procedure is a user-written application program compiled and stored at
the server. Stored procedures allow logic to be encapsulated in a procedure that is
local to the database manager. The ability to use stored procedures provides
distributed solutions that let more people access data faster. SQL statements and
replies flowing across the network are reduced and performance is improved.

This support provides VM and VSE (online and batch) application programs with
the ability to invoke stored procedures from any remote application servers that
support IBM’s implementation of the DRDA architecture. It also allows processing
of result sets if supported by the remote DRDA application server.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference.

Simplified DB2 Server for VSE Installation/Migration
A REXX procedure Job Manager is supplied to assist in the DB2 Server for VSE
Installation/Migration process. It controls the overall job flow based on the
contents of the job list control tables and the parameter table (supplied as Z-type
members). The job manager selects the job control member from the job list file (a
Z-type member), extracts the member from the Installation Library, modifies the
JCL, submits the job, evaluates the execution, posts the results, and then repeats
the process as required. The users are required to modify the parameter table,
according to their environment.

This support simplifies the process of installation and migration by reducing user
intervention - the Job Manager submits the prepared jobs.

See the DB2 Server for VSE Program Directory for further details.

New Code Page and Euro Symbol Code Page Support
The following CCSIDs are now supported:
v 1137: Hindi
v 1142: E-Danish/Norweigan
v 1143: E-Finnish/Swedish
v 1145: E-Spanish.

Additional support has been added for conversions from Unicode (UTF-8) to host
CCSIDs.

For a complete list of CCSIDs supported, refer to the DB2 Server for VM System
Administration and DB2 Server for VSE System Administration manuals.

Control Center for VM Enhancements
The following is a list of enhancements that have been made to the Control Center
for VM:
v QMF™ Tools: allow the user to list QMF objects, view and unload QMF queries

and PROCS, schedule QMF PROCS to execute, and run explain on QMF queries.
v Table Create Tool: allows the user to create new tables.
v Search List improvements.
v Referential Integrity Report tool: A referential integrity map report can now be

generated directly from the CMS command interface.

xviii System Administration

|

|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

|
|
|

|
|

|

|

|
|

v PL/I prerequisite removal.
v New and improved tape hopper support.
v High density tape drive support: support for high density (non-CMS density)

tape drives.

Control Center for VSE Enhancements
The following enhancements have been provided for Control Center for VSE:
v Additional Operator Command Support
v Installation of IBM-provided Stored Procedures.

QMF for VSE & VM Optional Feature
The following enhancements have been provided for QMF for VSE & VM:
v Application Requester support for VSE QMF users
v Command enhancements to default to object type
v Fast path to the QMF home screen
v Cross-platform install capability
v DB2 for AS/400 database access.

QMF for Windows® Optional Feature
The following enhancements have been provided for QMF for Windows :
v Java-based Query
v Aggregating, grouping and formatting directly within query results and

automatic Form creation
v Personal portal user interface that launches centrally shared queries and reports,

and sends results to spreadsheets, desktop databases, and browsers
v Procedures with REXX.

Reliability, Availability, and Serviceability Improvements

DBNAME Directory Restructuring
ARISDIRD has been restructured to improve readability and flexibility. Each
DBNAME entry is now defined explicitly by its type (Local, Remote or Host VM
(Guest Sharing)). CICS AXE Transaction TPNs (Transaction Program Names) are
still included in the directory as a type of ’LOCALAXE’. The DBNAME Directory
Builder program, ARICBDID has been rewritten as a REXX/VSE procedure with
extensive error and dependency checking. Support for TCP/IP information is
added and ’alias’ DBNAMEs are supported. ALL DBNAMEs must be specified in
the new DBNAME Directory, including the Product Default DBNAME ″SQLDS″. A
migration REXX/VSE procedure, ARICCDID, is provided to assist in migrating to
the new format. See the DB2 Server for VSE System Administration and DB2 Server
for VSE Program Directory for additional information.

Migration Considerations
Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM
Versions 5 and 6. Migration from SQL/DS Version 2 Release 2 or earlier releases is
not supported. Refer to the DB2 Server for VM System Administration or DB2 Server
for VSE System Administration manual for migration considerations.

Library Enhancements
Some general library enhancements include:
v The following books have been removed from the library:

– DB2 Server for VM Application Programming
– DB2 Server for VSE Application Programming

Summary of Changes xix

|

|

|
|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

– DB2 Server for VM Database Administration
– DB2 Server for VSE Database Administration
– DB2 Server for VSE Installation
– DB2 REXX SQL Interface Installation
– DB2 REXX SQL Reference
– DB2 Server for VM Diagnosis Guide and Reference
– DB2 Server for VSE Diagnosis Guide and Reference
– DB2 VM Data Spaces Support

Note: Information from this book can now be found in the DB2 Server for VSE
& VM Performance Tuning Handbook

– DB2 Server for VM Master Index and Glossary
– DB2 Server for VSE Master Index and Glossary.

v The following books have been added to the library:
– DB2 Server for VSE & VM Database Administration
– DB2 Server for VSE & VM Application Programming
– DB2 REXX SQL for VM/ESA Installation and Reference
– DB2 Server for VSE & VM Diagnosis Guide and Reference
– DB2 Server for VSE & VM Master Index and Glossary.

Refer to the new DB2 Server for VSE & VM Overivew for a better understanding of
the benefits DB2 Server for VSE & VM can provide.

xx System Administration

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

Chapter 1. Planning for Installation

Before installing the database manager, you must:
v Determine which of the usage environments will be appropriate for your

processing requirements
v Understand a typical DB2 Server for VSE configuration
v Have the appropriate prerequisite programs
v Determine your virtual storage requirements
v Determine your hardware requirements
v Determine the DBNAME directory requirements
v Set up the DB2 key, if you are using VSE/ESA 2.5

Usage Environments
To determine what software and hardware you need, you must first categorize
your planned use of the database manager as one or more of the following:
v Batch application processing
v Online (CICS) transaction processing
v Interactive application development
v Query or report writing

Each of these environments is described in detail below, including the DB2 Server
for VSE functions supported, and options that are either recommended or required
for the associated program products.

Batch Application Processing
Batch processing, as shown in Figure 1, is used for submitting jobs to run in a
non-interactive mode. A job is submitted using job control (JCL) with or without
the VSE/ICCF facilities. The only requirement beyond the base prerequisites is one
of the supported programming languages.

Batch facilities are useful for job-preparation tasks like preprocessing and
compiling host language programs, or for running applications. Application
programs that do not require end-user access can be run in batch. Batch processing
places minimal demands on system resources (real storage and processor power).

© Copyright IBM Corp. 1987, 2000 1

Online (CICS) Transaction Processing
Online transaction processing, as shown in Figure 2 on page 4, requires installation
of the online support, and of CICS/VSE, or an equivalent product to support
double-byte character set (DBCS) characters and to provide the terminal
management and transaction-processing support. Online programs can be written
in any of the supported programming languages. You can install ISQL, but its use
is limited to data administration functions. Consider this environment for

TTF

VSE/ICCF Interactive
Partitions

Database Partition

Batch Partition
(or partitions)

VSE/ADVANCED FUNCTIONS

VSE/ICCF
Monitor

Terminals

DB2/VSE
DBMS

DB2/VSE
Database

Preprocessor

DBS utility

DB2/VSE
Application

Preprocessor

DBS utility

DB2/VSE
Application

VSE/ICCF
Transaction

Figure 1. Batch Configuration

2 System Administration

preplanned business applications where end user access to the system is managed
through CICS/VSE transactions programmed for specific end user tasks.

For this environment, configure the system as follows:
v CICS/VSE options:

– Dynamic transaction backout program (DBP): required for proper
coordination and recovery with the database manager.

– Exec level support: required to support transaction access to the database
manager.

– User exit interface: also required for transaction access to the database
manager.

– CICS/VSE monitoring facility: optional but recommended. If it is used, the
database manager participates in the monitoring by providing performance
class information.

– CICS/VSE restart resynchronization: required if you plan to access databases
from the CICS online environment.

v VSE/Power facility: required for the system printer or remote workstation
printer report writing support in ISQL (which runs as a CICS/VSE transaction);
not required for report writing to a CICS/VSE terminal printer. This is the only
facility to provide multiple copy capability.

Chapter 1. Planning for Installation 3

Interactive Application Development
An application development environment, as shown in Figure 3 on page 5, involves
a large amount of data design, application coding, and testing. Such activities
typically involve less SQL activity in the form of data definition, catalog queries,
and program preprocessing. Correspondingly there is greater demand for real
storage and processor resources than that demanded by application or transaction
processing.

CICS Partition

Database Partition

Batch Partition
(or partitions)

VSE/ADVANCED FUNCTIONS

SQL
TR

DB2/VSE
DBMS

Preprocessor

DBS utility

DB2/VSE
Application

SQL
Transaction

DB2/VSE

Database

Terminals

DRDA
Remote

Database

Figure 2. Online Transaction Processing Configuration

4 System Administration

The configuration requirements are the same as those described for online
transaction processing.

Query/Report Writing
The query/report writing environment, as shown in Figure 4 on page 6, supports
dynamic SQL query and report writing by end users. This environment places a
relatively high demand on system resources, because user requests must be

VSE/ICCF Interactive
Partitions

Database Partition

Batch Partition
(or partitions)

VSE/ADVANCED FUNCTIONS

VSE/ICCF
Monitor

SQL
Trans.

ISQL
Trans. Terminals

DB2/VSE
DBMS

DB2/VSE
Database

DRDA
Remote

DatabasePreprocessor

DBS utility

DB2/VSE
Application

Preprocessor

DBS utility

DB2/VSE
Application

VSE/ICCF
Transaction

CICS/VSE
Interactive
Partition

Figure 3. Interactive Application Development Configuration

Chapter 1. Planning for Installation 5

dynamically interpreted, the number of requests is not limited, and sorting may be
very frequent.

The configuration requirements are the same as those described for the online
transaction processing environment.

Components of the Relational Database Management System
Figure 5 on page 7 depicts a typical configuration with one database, one batch
partition user, and a CICS

®

partition with several interactive users.

SQL
Trans.

ISQL
Trans.

CICS/VSE
Partition

VSE/Power
Product

VSE/Power Partition

DB2/VSE
DBMS

Database Partition

Preprocessor

DBS utility

DB2/VSE
Application

Batch Partition
(or partitions)

VSE/ADVANCED FUNCTIONS

Terminals

Terminal
Printer

System
Printer

DB2/VSE
Database

Figure 4. Query/Report Writing Configuration

6 System Administration

The database is composed of :
v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents).
v A directory that identifies data locations in the storage pools. There is only one

directory per database.
v A log that contains a record of operations performed on the database. A database

can have either one or two logs.

The database manager is the program that provides access to the data in the
database. It is loaded into the database partition from the DB2 Server for VSE
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Prerequisite Programs
This section summarizes the program products required or recommended for the
DB2 Server for VSE functions and environments available with this release. Unless
otherwise stated, the database manager works with all subsequent versions,
releases, and modification levels of the products listed in this section as well as
with equivalent non-IBM products.

Storage
Pool

Database

Database Manager

Applications

Application Requester

Application Requester

Data System Control

Interactive SQL

Relational Data System

CICS Application

Database Storage
Subsystem

Online Resource Adapter

Batch Resource Adapter

Dbextent

ent

ent

Log
Directory

VSE Batch
Partition

Application
Program

Application Server

Database
Partition

VSE

CICS Partition

DB2
for VSE
Library

VSAM

Figure 5. Basic Components of the RDBMS in VSE

Chapter 1. Planning for Installation 7

When installing this product on a VSE system, you require an environment
provided by VSE/Enterprise Systems Architecture (VSE/ESA) Version 2 Release 3
Modification 1 or later. DB2 Server for VSE requires VSE/VSAM which is included
with this operating system.

Table 1 summarizes the components needed for the usage environments, as well as
the languages supported by each environment.

Table 1. VSE Environments

DB2/VSE Environments DB2/VSE Components 1 Supported Languages

Base ORA ISQL PL/I COBOL COBOL
II

FOR-
TRAN

C ASM

Batch U U U U U U U

Online U U U U U U U U

Interactive application
development

U U U U U U U U U

Query/Report Writing U U U

Notes:
1 For this column:

v Base refers to the database manager components that support batch applications, the preprocessors, and
the utilities including the database services (DBS) utility.

v ORA (online resource adapter) refers to the DB2 Server for VSE support for transaction processing
(CICS) environments.

v ISQL refers to the terminal user query and report-writing facilities.

Virtual Storage Requirements
The size of the partition running the database manager is your primary design
consideration for determining virtual storage requirements. Virtual storage
requirements of other components are less significant as they are smaller or
transient in nature.

Several factors contribute to the virtual storage requirements of the partition. The
dominant ones are the sizes of the buffer pools (used for directory and data), the
number of concurrent users to be supported, the complexity of the SQL requests,
and the additional storage required for the optional DRDA support. (The DRDA
support makes DB2 Server for VSE data accessible to users equipped with the
DRDA remote unit of work application requester function. For more information,
see “Chapter 14. Using a DRDA Environment” on page 305.)

The recommended minimum partition size is 5MB, plus 204KB times the
maximum number of concurrently active users. However, this is only a guideline;
detailed formulas for calculating virtual storage requirements are provided in
“Appendix A. Processor Storage Requirements” on page 331.

Hardware Requirements
Hardware requirements include real storage, DASD space, tape, and display
terminals.

8 System Administration

|
|

|

Real Storage Requirements
You need not allocate any real storage for the database manager over and above
what is already defined for the partition. However, if more real storage is available,
there is less paging, thus improving performance.

The VSE guest sharing facility requires 40 kilobytes of real storage for each
database communication link.

DASD Space Requirements
DASD space requirements are discussed under the following categories: libraries,
database data sets, and starter database. If you use the accounting facility, you can
direct its output to DASD or tape. For guidelines on estimating DASD space
requirements for the accounting facility, see “Chapter 10. Using the Accounting
Facility” on page 181.

Libraries: Table 2 shows the requirements of the DB2 Server for VSE library on
various devices.

Table 2. DASD Storage Requirements for DB2 Server for VSE Library

APPROXIMATE SPACE REQUIREMENT: 28,735 LIBRARY BLOCKS

DASD Device Type Approximate Library Space
Required

MSHP History File Space
Required

3375 93 cylinders 15 tracks

3380 60 cylinders 15 tracks

3390 59 cylinders 15 tracks

9345 69 cylinders 15 tracks

FB-512 54,672 blocks 900 blocks

Notes:

1. These allocations include approximately 25% free space to allow for
maintenance.

2. If you are installing versions of the DB2 Server for VSE HELP text or messages
in languages other than English, information about the allocations required is
supplied with the distribution tapes for these languages in the DB2 Server for
VSE Program Directory.

3. The sizes for the Maintain System History Program (MSHP) auxiliary history
files are based on suggested values in the IBM VSE/ESA System Control
Statements manual for your VSE operating system.

4. FB-512 devices include 0671, 3370, 9332, 9335, and 9336 storage devices.

Database Data Sets: A database requires a minimum of three VSAM datasets:
v A directory extent, to hold internal control information for the database.
v Either one or two log extents, to hold recovery information. Only one is

required, but defining two separate volumes is recommended, to protect against
I/O errors on access to the log information.

v Database extents (dbextents), to hold the user data of the database. It is possible
to have only one dbextent, but a typical database has several.

The directory and log extents are described in “Chapter 2. Planning for Database
Generation” on page 13, and database extents are described in “Chapter 7.
Managing Database Storage” on page 121.

Chapter 1. Planning for Installation 9

|

|

|

|

|

|

The Starter Database: The A-type member ARISDBG, which comes with this
product, contains IBM-supplied specifications for generating a starter database.
This database consists of one directory data set, one log data set, and one user-data
dbextent. You can later add more dbextents, up to a logical maximum size of about
4.6 gigabytes, using the information in “Adding Dbextents to a Storage Pool” on
page 131.

It is recommended that you generate the starter database at the time of installation,
and experiment with it in order to familiarize yourself with the database manager.
You may then keep it as your production database. However, as your needs grow,
you may find it necessary to transfer its contents to another database, which can be
a major undertaking. Thus, once you are familiar with how it works, it is best to
discard it and generate your own database by following the guidelines in Chapter
2, “Planning for Database Generation”.

The initial physical size of the starter database is predefined and will be about the
same on all IBM storage devices. Figure 6 shows the approximate cylinder
allocations (or block allocations, in the case of FB-512) on various devices.

This starter database must be able to fit in a single dbextent. If you do not have
enough DASD, you will not be able to use the IBM-supplied specifications, and
will have to generate your own database at the time of installation. If you want to
define the equivalent of the starter database on the devices shown in Figure 6, you
must define multiple dbextents on multiple volumes.

If you are migrating from a previous release of the database manager, you already
have at least one database, so generating the starter database is optional. The
advantage of doing so is that you can use it as a test database to verify your
installation, but the disadvantages are the work involved and the necessary DASD
allocations. Thus to deal with migration needs, the database manager provides
allocations for generating a starter database that is large enough to hold the initial
database components (for example, HELP text, catalog tables, and FORTRAN
packages), but not much else. Figure 6 also shows the data set sizes for a minimum
starter database.

VSAM Catalogs: The database manager must have a VSAM master catalog and
optionally, a VSAM user catalog. Each of the database data sets (the directory, the
logs, and the dbextents) must be cataloged in either a user catalog or the master
catalog.

Starter Database
Data Set
Allocations

3375 Cyls 3380 Cyls 3390 Cyls 9345 Cyls FB-512 Blocks

Directory 53 34 29 38 31,620

Log 13 8 7 9 9,600

Data Extent

Minimum 38 24 21 27 28,800

Recommended 121 77 65 85 92,400

Total Allocations

Minimum 104 66 57 74 70,020

Recommended 187 119 101 132 133,620

Figure 6. Recommended Starter Database DASD Sizes

10 System Administration

Tape Requirements
One tape drive is required for installation. Once the database manager is running,
tape drives are only required for the following activities:
v Database archive and log archive processing (both creating the archive and

restoring the database from the archive) to support recovery from DASD failures
v Unloading and reloading data into the database using the DBS utility
v Holding the output of the trace facility
v Holding the output of the accounting facility

For all of these facilities except archiving, you can use DASD instead of tape.

Also, with the exception of accounting output, the database manager does not
require the continuous use of any tape drive: tape mounts are requested when
needed. If you are using tape drives, you should have at least two to cover all
your needs.

The database manager supports all tape drives that are supported by the operating
system.

Display Terminal Requirements
A variety of display terminals are supported, including the larger screen sizes
offered by some models of the 3278 and 3279 (or equivalent) devices. Since CICS is
needed to provide terminal support for DB2 Server for VSE online applications, the
terminal must be one that is supported by CICS.

You can direct ISQL-printed output to a terminal printer rather than the system
printer. To use terminal printers with ISQL, update the CICS tables as described in
the DB2 Server for VSE Program Directory manual.

Terminals and workstations that follow the line disciplines represented on
VSE/Power remote job entry are also supported by ISQL.

Note: To display and print DBCS characters (for example, Japanese HELP text), a
DBCS terminal and printer (for example, the IBM 5550 terminal) are
required.

DBNAME Directory Requirements
The DBNAME directory is a required directory of all DBNAMEs accessible from
the VSE system. It identifies:
v The system default application server and partition defaults
v All valid TPNs used to access the DB2 Server for VSE application server from

remote application requesters
v Communications parameters required for a local VSE DRDA requester to access

a remote DRDA Server over SNA or TCP/IP.

The DBNAME directory is contained in A-type source member ARISDIRD.
IBM-supplied defaults are provided, but these can be changed. For more
information, see “Setting Up the DBNAME Directory” on page 23.

DB2 Key Processing
When running on VSE/ESA 2.5, DB2 Server for VSE is key-enabled. For
information on setting up the DB2 key, see the DB2 Server for VSE Program
Directory.

Chapter 1. Planning for Installation 11

|

|
|

|

|
|
|

12 System Administration

Chapter 2. Planning for Database Generation

As described in “The Starter Database” on page 10, when you first install the
database manager you should generate an initial database using the IBM-supplied
specifications. This eases installation, and enables you to gain experience with the
system.

However, once you know how to work with this database, you will probably want
to discard it and create several databases that are tailored to your own needs. This
chapter describes the parameters that are set at the time of database generation,
and presents some general design considerations.

If you are migrating from an earlier version of the database manager, then instead
of reading this chapter go to “Chapter 3. Planning for Database Migration” on
page 39.

The database-generation process does not require definition of any data specifics; it
merely establishes the potential capacity of the database. Some of the
capacity-planning decisions require knowledge of the data and application
requirements of your users. For example, to estimate how big the database will
become, you need to know the potential number of tables that will be stored, and
the storage requirements of those tables. To obtain this information, consult with
the person responsible for the data and application requirements for the database.
Also refer to the DB2 Server for VSE & VM Database Administration manual.

Setting Up the DB2 Product Key
When running on VSE/ESA 2.5, DB2 Server for VSE is key-enabled. For
information on setting up the DB2 key, see the DB2 Server for VSE Program
Directory.

Database Generation Parameters
Planning for the generation of a database entails establishing logical and physical
limits for its capacity, and setting its initial DASD allocations.

The parameters that you must establish at this time are summarized in Table 3 on
page 14. This figure also shows the IBM-provided values used for the starter
database.

Note: The parameters that have a Yes entry in the Fixed column must be
established during generation of the database, and cannot be changed for
the lifetime of the database. Also note that some parameters are established
by running the VSAM IDCAMS program, whereas others are established by
input to an IBM-supplied job called ARISQLDS.

Following the figure is a discussion of how to set these parameters, and of the
issues to consider when setting them.

© Copyright IBM Corp. 1987, 2000 13

|

|
|
|

Table 3. Database Parameters Set at Database Generation Time

Parameter Default Minimum Maximum Starter
Database

Fixed Set by

Database directory size None 2 tracks 1 volume 34 cylinders No IDCAMS

Log data set (or data sets)
-Size (each)
-Number

None
None

1 cylinder
1

524,287
4Kb pages
2 volumes

8 cylinders
1

No IDCAMS

Maximum number of storage
pools (MAXPOOLS)

32 1 999 256 Yes ARISQLDS

Maximum number of dbextents
(MAXEXTNT)

64 1 999 256 Yes ARISQLDS

Maximum number of dbspaces
(MAXDBSPC)

1000 10 32000 10240 Yes ARISQLDS

Catalog dbspace
(PUBLIC.SYS0001)
Size (4 kilobyte pages)

None 128 8388607 12800 Yes ARISQLDS

First package dbspace
(PUBLIC.SYS0002)
Size (4 kilobyte pages)

None 128 8388607 2048 Yes ARISQLDS

HELP text dbspace
(PUBLIC.HELPTEXT)
Size (4 kilobyte pages)

None 2304 8388607 8192 No ARISQLDS

ISQL dbspace
(PUBLIC.ISQL)
Size (4 kilobyte pages)

None 128 8388607 1024 No ARISQLDS

SAMPLE dbspace
(PUBLIC.SAMPLE)
Size (4 kilobyte pages)

None 512 8388607 512 No ARISQLDS

Internal dbspaces
-Size (each)
(4 kilobyte pages)
-Number

None
None

128
5

8388607
31997

1024
80

No ARISQLDS

Initial dbextents
-Size (each)
-Number

None
None

1 cylinder
1

1 volume
999

77 cylinders
1

No IDCAMS

Notes:

1. The cylinder specifications listed above for the starter database are for IBM
3380 storage devices. Make the appropriate adjustment for your storage
devices.

2. PUBLIC means that the dbspace is publicly owned.

Defining Database Directory Size
The DB2 Server for VSE directory (called BDISK) contains control information and
page tables for mapping dbspace page references to physical DASD locations. Its
size determines the maximum number of dbextent pages and the number of page
table entries that can be supported by the database being generated.

Use the VSAM DEFINE CLUSTER command to define the BDISK data set. The
directory size is established by the TRK, CYL, or BLK parameter. If necessary, you

14 System Administration

can later expand the directory to hold more dbspace pages, or more dbspace and
dbextent pages. Refer to “Expanding the Database Directory” on page 126 for more
details.

Table 4 shows the recommended cylinder (or block) allocations for various DASD
device types, based on assumed maximum database sizes.

Table 4. Recommended Directory Allocations for Various Database Sizes

Directory Space for Various IBM Storage Devices

Maximum
Database
Size 3375 3380 3390 9345

FB-512
BLOCKS

10 megabytes TRK(3) TRK(3) TRK(3) TRK(4) BLK(124)

50 megabytes TRK(7) TRK(6) TRK(6) TRK(7) BLK(310)

100
megabytes

CYL(1) TRK(11) TRK(10) TRK(12) BLK(496)

500
megabytes

CYL(5) CYL(4) CYL(4) CYL(6) BLK(2232)

1 gigabyte CYL(10) CYL(8) CYL(7) BLK(4480)

2 gigabytes CYL(19) CYL(16) CYL(14) CYL(21) BLK(8866)

4 gigabytes CYL(38) CYL(32) CYL(27) CYL(42) BLK(17696)

5 gigabytes CYL(47) CYL(40) CYL(34) CYL(52) BLK(22080)

10 gigabytes CYL(92) CYL(80) CYL(68) CYL(101) BLK(44144)

50 gigabytes CYL(459) CYL(400) CYL(337) CYL(504) BLK(220286)

Note: The values in this table apply when the defaults are used for MAXPOOLs,
MAXDBSPC, and MAXEXTNT. These parameters are described in
“Establishing Database Capacity Parameters” on page 17.

Use Table 4 to choose the initial directory size. Detailed information for generating
its values is contained in “Appendix B. Estimating Database Storage” on page 337.
When estimating the maximum database size, include the sizes of the public,
private, and internal dbspaces.

The directory data set for the starter database supports about 4.9 gigabytes of data.
This includes space for internal dbspace definitions so the actual space supported
for public and private dbspaces is about 4.6 gigabytes.

Directory Allocation Considerations

Maximum Database Size: The directory data set cannot extend beyond a single
volume; therefore, the maximum database size is limited by the single volume
capacity of the device type used. The absolute maximum size for a database is
either 64 gigabytes or the limit imposed by the device type, whichever is smaller.
For the limits imposed by various devices, see Table 38 on page 337 and Table 39 on
page 338.

Placement of Directory: The directory data set will be used extensively by the
database manager for resolution of data addresses. Thus, you should not allocate it
to a volume that will contain either the log data sets or heavily used data
dbextents. Instead, place it on a separate volume to avoid device contention.

Chapter 2. Planning for Database Generation 15

If DASD is limited on your system and the directory must share a volume with
data dbextents, put it on a volume with a dbextent that contains infrequently
referenced data. For example, sharing a volume with private dbspaces or historical
data is preferable to sharing one with public dbspaces or current, highly active
data.

Defining the Database Log
The database manager requires at least one log data set and can support two. It is
recommended that you use two log data sets.

The log data sets contain information, recorded during database processing, that is
used to support database recovery facilities. This includes control information (for
example, COMMIT statement and checkpoint records) and the specifics of database
changes (for example, inserts, updates, and deletes).

If you define two log data sets they must be exactly the same size. Do not define
them on different device types because it is almost impossible (because of
rounding) to get identically sized data sets using space allocation algorithms.

To establish the size of the log data sets use the VSAM DEFINE CLUSTER
commands for LOGDSK1 and (optionally) LOGDSK2. The size you specify will
depend on the use of the database and on the type of recovery capabilities you
want. If you underestimate this size at database generation time, you can redefine
it afterwards, as described in “Log Reconfiguration” on page 166.

Log Size Considerations
The log size depends on the number of changes that you expect will be made to
the database and on whether or not you plan to use archiving facilities. If either
database or log archiving is enabled, the log must be large enough to hold all the
logging done between archives; otherwise it need only be large enough to hold the
logging done in a few hours.

Note: If you are putting dbspaces in nonrecoverable storage pools, keep in mind
that only minimal logging is done for them, so the following log size
considerations would not apply to those dbspaces.

Log Size without Archiving: If you run the database manager without the
archiving facilities (LOGMODE=Y or N), log space is reclaimed as applications
finish and checkpoints of the database are taken. Usually, this occurs every few
seconds or every few minutes. Many uses of the database manager can be
supported by a log size of only one or two cylinders; however, a long-running
application may require more log space.

Typically, the largest demand for log space is online loading or reorganization jobs.
These jobs run longer than most applications and cause a lot of logging to occur.

A starting estimate for the initial log size is twice the space requirements of your
largest dbspace. If you have one exceptionally large dbspace, you can disregard it
and use the size of the next largest dbspace. The data in the largest dbspace can be
loaded and reorganized offline with logging inhibited.

Log Size with Archiving: If you are using the archiving facilities (LOGMODE=A
or L), log space is not reclaimed until an archive is taken. That is, log space is not
reused between archives of the log or database. Typically, you would only archive
the database once or twice a week. You may choose to do log archiving more
frequently, depending on database usage.

16 System Administration

To estimate the size of the log, consider the amount of logging that will occur
between archives. A useful approach is to estimate the percentage of data that will
be generated, deleted, and changed over one archive period as follows:

logsize estimate = (percentage generated
+ percentage deleted
+ percentage changed x 2)

x database size

For example, assume that in a one-week period the database size grows by 5% but
also shrinks by 4%, and that 6% of the database (rows) are changed. Your estimate
for the log size would be:

logsize estimate = .21 x database size

If your database size were 100 megabytes and you wanted an archive period of
one week, your log size estimate would be:

logsize estimate = 21 megabytes

This is approximately 30 cylinders of an IBM 3390 DASD device.

Logging Generated by Loading: The log requirements for processing the DBS
utility DATALOAD and RELOAD commands in multiple user mode are:
v If the NEW option is used: enough space to hold the log entries for all table

rows to be inserted
v If the PURGE option is used: enough space to hold the log entries for all table

rows to be deleted as well as for all rows to be inserted.

The log space consumption caused by these operations can be avoided by running
the DBS utility in single user mode with LOGMODE=N specified, or by using the
COMMITCOUNT option to force periodic checkpoints in multiple user mode.

Placement of Logs: Like the directory data set the log data sets are frequently
referenced during processing. To avoid device contention, they should reside on
separate volumes from the directory or heavily used dbextents.

Placement of Dual Logs: If two log data sets are defined, place them on separate
volumes. If they were allocated to the same one, loss of that volume would cause
the loss of both logs, thus defeating the purpose of dual logging.

Establishing Database Capacity Parameters
The MAXPOOLS, MAXEXTNT, MAXDBSPC, and CUREXTNT keyword control
statements can be specified on control card input to database generation (done by
program ARISQLDS with the STARTUP=C initialization parameter). The first three
of these statements are optional. The last one must be specified.

The MAXPOOLS, MAXEXTNT, and MAXDBSPC values are fixed when the
database is generated: once defined, they cannot be changed for its lifetime. To
avoid future limitation problems, it is recommended that you set them to the
allowed maximums. This will take about 1 cylinder of DASD on a 3380 device for
the directory, and 280K virtual storage when the database manager is running.

Estimating MAXPOOLS
The MAXPOOLS specification determines the maximum number of storage pools
that can be defined in the database. Storage pools control the location of data on

Chapter 2. Planning for Database Generation 17

DASD volumes - that is, what dbspaces are located on what volumes. You can
make a generous estimate for MAXPOOLS, since the value specified results in only
a small directory space allocation for each potential storage pool. You should plan
on having one storage pool for each user group (or billing account), and one for
each major application you expect the database to support.

Estimating MAXEXTNT
The MAXEXTNT controls the maximum number of dbextents that are defined to
support the database being generated. Dbextents determine the physical allocation
of DASD space for a storage pool.

Because a dbextent is a VSAM data set, it cannot span DASD volumes. This means
that you need at least as many dbextents as volumes. You can, of course, define
multiple dbextents on one volume. It also means that if you have a dbspace that
spans multiple volumes, the corresponding storage pool requires multiple
dbextents.

Because you should plan to support multiple dbextents for each storage pool and
you should be prepared to extend most, if not all, of your planned storage pools,
MAXEXTNT should be much larger than MAXPOOLS. Your estimate for it can be
generous because this value results in only a small directory space allocation for
each potential dbextent.

Estimating MAXDBSPC
MAXDBSPC controls the maximum number of dbspaces, including internal
dbspaces, that can be defined for the database. See “Determining the Internal
Dbspace Requirements” on page 20. A dbspace is a logical allocation of database
space for holding one or more tables and their indexes. A dbspace is assigned to a
storage pool when it is defined and draws on the actual DASD space available in
that storage pool on an as-needed basis. Typically, dbspaces are defined to support
private space allocations for individual users and space allocations for specific
applications; thus, the number of dbspaces required generally depends on the
number of users and the number of tables needed for applications. Each user
probably requires from one to five private dbspaces over the lifetime of the
database, and each application requires, at most, one dbspace for each table being
accessed. For performance reasons, one table per dbspace is recommended.

As with the previous two parameters, your estimate for MAXDBSPC can be
generous, because the value you specify will result in only a small allocation of
directory space for each potential dbspace.

Estimating CUREXTNT
CUREXTNT determines the number of dbextents defined during database
generation. This number should be sufficient to support your initial storage
requirements. You can add more dbextents after database generation.

Establishing Initial Dbspace Requirements

Determining the System Dbspace Requirements
Any public dbspace that has SYS as the first three characters in its name is
reserved for system use only. The system dbspaces established at database
generation time are PUBLIC.SYS0001, PUBLIC.SYS0002, PUBLIC.HELPTEXT,
PUBLIC.ISQL, and PUBLIC.SAMPLE.

This section presents only general concepts related to setting the initial dbspace
sizes. For more information, see “Specifying Initial Dbspaces” on page 217 and
“Appendix B. Estimating Database Storage” on page 337.

18 System Administration

|
|

v PUBLIC.SYS0001 holds the database catalog tables. The size required for it varies
considerably, depending on factors such as the number of tables, columns,
indexes, views, and users in the database. For guidelines, see “Estimating
SYS0001 Dbspace Requirements” on page 341.

Note: Physical space is not actually consumed until required, so you can afford
to define the SYS0001 dbspace to be very large. Be generous: this dbspace
cannot be dropped or recreated after the database is generated. If you
make it too small and SYS0001 runs out of usable space, you will have to
regenerate the database which can be a considerable task.

v PUBLIC.SYS0002 holds the definitions of views and packages. This dbspace,
which cannot be dropped or recreated after generation, can hold a combination
of 255 views and packages. If you anticipate more views and packages than this,
you can acquire additional dbspaces after database generation, as described in
“Acquiring Dbspaces for Packages” on page 127.

v PUBLIC.HELPTEXT holds the online HELP tables. You will need 2304 pages for
each IBM-supplied HELP text that you install. The starter database uses 8192
pages.

v PUBLIC.ISQL holds several tables; EXAMPLE.ROUTINE, SQLDBA.ROUTINE,
and SQLDBA.STORED QUERIES. An allocation of 1024 pages should be enough
for most uses. If you have many users or expect to make extensive use of the
ISQL stored queries facility, consider increasing this. See “Estimating ISQL
Dbspace Requirements” on page 349.

v PUBLIC.SAMPLE contains copies of the sample tables for ISQL users, to help
them gain experience with using the database manager. Usually, every ISQL user
has a copy of the sample tables. An allocation of 512 pages should be enough for
all your users, but you can increase the size if you have many ISQL users.
Alternatively, you can ask experienced ISQL users to drop their copies after they
no longer need them to free space for new users’ tables.

The ARISDBU A-type member contains SQL statements to acquire the public
dbspaces HELPTEXT, ISQL, and SAMPLE. If you want to increase their size,
update the appropriate ACQUIRE DBSPACE statement in ARISDBU.

Except for PUBLIC.SAMPLE, the sizes that you establish for system dbspaces at
database generation time can limit the logical capacity of your database. Because
physical space is not actually used until required, you should establish large sizes
for them. The large recommended sizes shown in Figure 7 on page 20 will support
most uses of the database manager.

Chapter 2. Planning for Database Generation 19

Determining the Initial User Dbspace Requirements
When you generate the database, you need only consider the dbspace requirements
for its initial use. To determine the initial user dbspace requirements, either consult
with the database administrator or refer to the DB2 Server for VSE & VM Database
Administration manual. The ADD DBSPACE facility can be used to add more later,
up to the MAXDBSPC value.

For more information, refer to “Chapter 7. Managing Database Storage” on
page 121.

Determining the Internal Dbspace Requirements
The database manager uses internal dbspaces to process commands that require
sort operations and to process views that require materialization. For information
on sorting and materialization, see the DB2 Server for VSE & VM Database
Administration manual.

The internal dbspaces are held until a COMMIT or ROLLBACK statement is
issued; therefore, a single application may hold a number of internal dbspaces at
one time. For example, if each SELECT needs an average of two internal dbspaces,
and a certain program issues five SELECTs before issuing a COMMIT statement,
then that program will hold 10 internal dbspaces. Internal dbspaces that are not in
use take up minimal space (approximately 4 bytes of directory space for each
page).

Allocate at least 30 internal dbspaces; more if your installation has interactive
users. The exact number required depends on the number of logical units of work
(LUWs) that are concurrently active and the amount of sorting and view
materialization required in those LUWs. Because the number of NCUSERS is
comparable to the number of concurrently active LUWs, as a guideline, in addition
to the minimum of 30, you may want to provide 10 internal dbspaces for each

System dbspace Recommended Sizes (in Pages)
Default
in pages

SYS0001 (Catalog Tables) 30 + .33 x the number of tables 12,800
+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces

(including package
dbspaces)

+ 10.28 x the number of users
+ 8.10 x the number of package

dbspaces
+ .25 x the number of

character sets
+ .13 x the number of keys

SYS000n (packages) 2,048 for each dbspace 2,048

PUBLIC.HELPTEXT 2,304 x Number of languages installed 8,192

PUBLIC.ISQL The larger of : 1,024 or 1,024
(0.88 x the number of stored queries)

PUBLIC.SAMPLE 512 512

Figure 7. Guidelines for the Sizes of the System Dbspaces

20 System Administration

NCUSER (see the description of the NCUSERS parameter on “NCUSERS” on
page 54). After the database has been generated, you can always add more
internal dbspaces by using the ADD DBSPACE function. All internal dbspaces (and
their storage pool assignments) are redefined on each run of this function.

The physical placement of the internal dbspaces affects performance, especially
when you perform a sort operation on a large table. You should place internal
dbspaces in their own storage pool, and use multiple dbextents over multiple
devices. There are several ways of doing this. Suppose you had 300 3380-type
cylinders for internal dbspace dbextents, you could use one of these strategies:
1. Make the first dbextent small (less than 100 cylinders), and each succeeding

dbextent twice the size of the preceding one. For example, have dbextents that
are 20, 40, 80, and 160 cylinders in size.

2. Graduate the sizes of the dbextents. For example, have dbextents that are 10,
20, 30, 40, 50, 60, and 90 cylinders in size. The last dbextent is extra large so
that unusually large sorts can be accommodated.

3. Have several small dbextents and a few big ones. For example, have five
dbextents of 20 cylinders each, and two of 100 cylinders.

The purpose of all these strategies is to spread input/output activity over more
devices as the size of a sort increases. The strategy you adopt determines how
many dbextents a sort requires. With the first strategy, a sort requiring 60 cylinders
uses two dbextents. With the second and third strategies, the same sort requires
three dbextents. Use a strategy that is suitable for your organization.

Sorting is done for ORDER BY, GROUP BY, join, CREATE INDEX, or UNION
operations. The internal dbspaces must be large enough to hold the rows being
sorted. For example, if an ORDER BY operation is requested using all the columns
of an entire table, the internal dbspace must be large enough to hold the whole
table. Less space is required if all the columns are not selected. During index
creation, space is required only for the key columns. To calculate the required size
of an internal dbspace, use the formula (KEYSIZE + 8 bytes) * ROWCOUNT. Make
the internal dbspaces large enough to hold the largest table or query result you
want to be able to sort. The dbspace size estimates are discussed under
“Appendix B. Estimating Database Storage” on page 337.

The number of internal dbspaces required also depends on the planned usage of
the system. Fewer are needed for preplanned application processing than for
dynamic query processing, as query users usually hold dbspaces longer than do
preplanned applications.

Internal dbspaces can also be stored on a virtual disk. Only use virtual disks for
internal dbspaces because information on a virtual disk is lost when the database
is restarted. For more information on virtual disk support, see the DB2 Server for
VSE & VM Performance Tuning Handbook manual.

Determining Initial Dbextent Requirements
Sufficient space must be allocated during database generation to support your
initial dbspace data storage requirements. You must define at least one dbextent for
each storage pool that initially contains dbspaces. The specific amount to allocate
for each storage pool depends on the following considerations:
v System dbspace support

Chapter 2. Planning for Database Generation 21

System dbspaces are heavily used, so they should not share their storage pool
(storage pool 1) with heavily used user dbspaces. Until you gain experience with
your data, do not put user dbspaces in the same storage pool as system
dbspaces.
You should undercommit storage pool support for the SYS0001 and SYS0002
dbspaces. If the catalog tables grow significantly, you can later allocate an
additional dbextent, probably on a separate device, to avoid excessive device
contention on catalog access.
Storage pool support for PUBLIC.HELPTEXT should be large enough to hold
the HELP tables; PUBLIC.ISQL must be large enough to hold your initial needs
for stored queries; and PUBLIC.SAMPLE should be large enough to hold the
number of sample data tables needed.

v End user dbspace support
Dbspaces for use primarily by end users should be supported by one or more
storage pools. Public and private dbspaces can share a storage pool; however,
you may want to manage space allocation differently for these two cases.
A recommended approach to storage pool support for end user data is to define
more dbextent space than is needed to support your initial dbspace definitions.
This approach is called overcommitting, and ensures that end user space
requirements can be accommodated as existing users need more space or more
users are added to the system.
If your installation plans to bill users for DASD storage space, you may want to
consider separate storage pools for different user groups (or account numbers).

Note: You can also use statistics from the SYSTEM.SYSDBSPACES catalog table
to achieve this.

v Dbspace support for applications
Storage pool support of dbspaces for use primarily by application programs
varies, depending on the nature of the data and the storage management
technique. In general, consider using different storage pools for different
applications, and undercommitting storage pool support for application
dbspaces.
The dbspaces for applications should be defined to be larger than is believed
necessary, to avoid later reorganization because of data growth. If you do this,
storage pool requirements are smaller than the dbspace sizes indicate. The initial
storage pool allocations should be large enough to cover initial loading of the
data plus growth over the next planning period (for example, six months or a
year).

v Internal dbspace support
Storage pool support for internal dbspaces should be undercommitted, since you
probably do not need storage to support all internal dbspaces at the maximum
size. As a rough estimate, the storage pool for internal dbspaces should have
enough DASD space available to hold data for three internal dbspaces (at the
internal dbspace size specified at database generation).
Storage space for internal dbspaces is taken from the storage pool assigned at
database generation time. In general, this storage pool should not be used for
system dbspaces or other heavily used dbspaces. Consider using a separate
storage pool just for internal dbspaces.

For more information on storage organization techniques, see “Chapter 7.
Managing Database Storage” on page 121.

22 System Administration

Choosing an Application Server Name
In planning for database generation, you choose two names for your database.
v The first name is the mapped DBNAME (DBNAME).
v The second name is the basic DBNAME. This is the VSE subsystem application

identifier, APPLID. It identifies the application server subsystem to VSE.

These names are specified in the DBNAME directory. In this directory, the mapped
DBNAME is mapped to the basic DBNAME. Details regarding this directory can
be found in “Setting Up the DBNAME Directory”.

When the application server is started, you must supply the mapped DBNAME.
This value is now the server name, and is stored in the CURRENT SERVER register.

Attention: The mapped DBNAME is the name the application requesters should
specify when connecting to the application server.

The mapped DBNAME must be from one to 18 characters. It should start with an
uppercase alphabetic character. The remaining characters can be alphabetic,
numeric or underscore characters. The mapped DBNAME must not be prefixed
with “SYSARI”. It should be unique within a set of networks that are
interconnected, and be defined and stored in the DBNAME directory in the
production library.

The basic DBNAME has a length of eight alphanumeric characters, and must be
unique within the VSE system because it is used to identify the application server
subsystem to the VSE system. The basic DBNAME is either the VSE APPLID
(SYSARI0x) or, in the case of guest sharing, the VM resource identifier (RESID).
There are 36 reserved basic DBNAMEs (SYSARI00 to SYSARI09, SYSARI0A to
SYSARI0Z), which must be reserved for VSE application servers only. If the basic
DBNAME is not prefixed with “SYSARI”, it is assumed to be a VM application
server and must be defined with a SET APPCVM TARGET command if it is on a
remote system. In this case, the basic DBNAME defined in the DBNAME directory
must be identical to the VM RESID.

You must also decide whether the application server will be accessed from remote
application requesters. If the DRDA environment will be used, you must also
choose a CICS transaction program name (TPN) to represent the application server.

Note: When using remote access, it is recommended that the system administrator
ensure that server names are unique within a set of interconnected SNA
networks. APPLIDs are predetermined. For more information on these
requirements, see “Chapter 14. Using a DRDA Environment” on page 305.

Setting Up the DBNAME Directory
The DBNAME directory is a required user-definable directory of ALL Local,
Remote and Host VM application server names. A Local server executes in a
partition in the VSE system. A Remote server exists external to the VSE system
(and must be connected via SNA or TCP/IP). A Host VM server exists on the VM
system on which the VSE system runs as a guest and DB2 Guest Sharing is used
between the VSE requesters and the VM server.

In addition, the DBNAME Directory contains all Transaction Program Names
(TPNs) used by remote application requesters to identify the local DB2 Server for
VSE application servers which they want to access.

Chapter 2. Planning for Database Generation 23

|

|
|
|
|
|
|

|
|
|

The IBM supplied default DBNAME Directory is contained in the A-type source
member called ARISDIRD. It contains the default mapped DBNAME ″SQLDS″,
which defines a Local server which is also the System Default DBNAME. It also
contains the default Registered TPN (X'07F6C4C2), which points to the default
DBNAME ″SQLDS″.

The DBNAME Directory consists of a number of entries that define all mapped
DBNAMEs and all TPNs. Each mapped DBNAME can have an ALIAS name, to
allow multiple entries (with different options) to specify the same mapped
DBNAME. The Alias name defaults to the mapped DBNAME, if not specified.
Each Alias name MUST be unique within the DBNAME Directory source file and
this will be enforced.

There are four types of entries, as follows:
v LOCAL: This type of entry defines a server that physically exists on the same

VSE system as the DBNAME Directory.
v HOSTVM: This type of entry is for Guest Sharing only and defines a server that

exists on the Host VM system on which the VSE system is a guest.
v REMOTE: This type of entry defines a DRDA-conforming server on a system

that is physically remote from the VSE system and is connected to the VSE
system via an SNA or a TCP/IP communications network.

v LOCALAXE: This type of entry identifies a local mapped DBNAME and the
TPN of a remote requester that can access this local DBNAME via the
APPC-to-XPCC Exchange (AXE) CICS Transaction. This type of entry cannot have
an Alias name.

The first three types of entries define mapped DBNAMEs, while the LOCALAXE
entry defines the names of CICS ″AXE″ transactions and their target local servers.

The DBNAME Directory does not have a maximum size. It is searched sequentially
and the first entry that matches the search argument is used. Where there are
multiple default partition entries, the last default partition entry will be used.
Therefore, it is possible to have overriding entries, but excessive overrides impact
search performance and should be avoided.

The following four figures show the syntax of the four directory entry types. The
keywords and values are defined after these figures.

Each entry consists of a number of lines, each of which specifies a single
’KEYWORD=value’. The first line MUST be the TYPE of the entry and the second
line MUST be the DBNAME of the entry. Blank lines are ignored. If the first 2
non-blank characters of the line are ’*’, ’/*’, or ’--’ then the line will be ignored and
can be used for comments.

24 System Administration

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

A Sample LOCAL Directory entry with only required lines:
TYPE=LOCAL
DBNAME=VSEDATABASE
APPLID=SYSARI00

A Sample HOSTVM Directory entry with only required lines:
TYPE=HOSTVM
DBNAME=VMDATABASE3
RESID=VMRESID3

A Sample REMOTE Directory entry with only required lines:
TYPE=REMOTE
DBNAME=REMOTEDB
SYSID=REMS
REMTPN=REMTRANSPROGRAMNAME

�� TYPE=LOCAL DBNAME=local_database_name APPLID= SYSARI0 x �

�
DBNAME

ALIAS = alias_name
0

TCPPORT = portnumber

�

�
N

SYSDEF = Y
PARTDEF = pd

��

Figure 8. LOCAL Type Entry

�� TYPE=HOSTVM DBNAME=host_vm_database_name RESID=vm_database_iucv_resid �

�
DBNAME

ALIAS = alias_name
N

SYSDEF = Y
PARTDEF = pd

��

Figure 9. HOSTVM Type Entry

�� TYPE=REMOTE DBNAME=remote_database_name
DBNAME

ALIAS = alias_name

�

�
N

SYSDEF = Y
PARTDEF = pd

�

�
(1)

SYSID = cics_appc_connection_name REMTPN = remote_transaction_program_name
(1)

TCPPORT = portnumber IPADDR = dotted_decimal_address
TCPHOST = remote_server_tcpip_host_name

��

Notes:

1 Either ’SYSID=’ or ’TCPPORT=’ must be specified, and both can be specified.

Figure 10. REMOTE Type Entry

Chapter 2. Planning for Database Generation 25

|

|
|
|

|

|

|
|
|

|

|

|
|
|
|

or
TYPE=REMOTE
DBNAME=REMOTEDB
TCPPORT=4865
IPADDR=98.76.54.32

A Sample LOCALAXE Directory entry with only required lines:
TYPE=LOCALAXE
DBNAME=LOCALDB
APPLID=SYSARI0Q
TPN=WXYZ

These keywords and values are described below:

TYPE=
This value is required, it is the type of entry that follows and must be one
of LOCAL, HOSTVM, REMOTE or LOCALAXE. It must be the first line
of an entry.

DBNAME
This 1 to 18 character mapped name is required. It does not need to be
unique within the file but it cannot begin with SYSARI. The first character
must be alphabetic or ’#’, ″$″ or ″@″; other characters can be alphabetic,
numeric, ″#″, ″$″, ″@″ or ″_″. It must be the second line of an entry.

ALIAS=’alias’
This identifies an alias database name for the mapped DBNAME; it is
optional but if specified it MUST be unique within the file. An alias name
is an 18 byte name and defaults to the mapped DBNAME. When the
Directory is searched via a DBNAME, it is the alias name that is searched,
but it is the mapped DBNAME that is used to connect to the server. Note
that a LOCALAXE entry cannot have an alias name, because it is always
searched via the TPN.

APPLID
This is the basic DBNAME and is the XPCC ″Application Name″ that
corresponds to the DBNAME. It is required for LOCAL and LOCALAXE
entries. There must be a one to one correspondence between each APPLID
and DBNAME in the file. The value must be specified as SYSARI0x, where
″x″ is upper case A through Z, or 0 through 9.

TPN This is the CICS AXE Transaction Program Name that is used by remote
requesters to access this local DBNAME server and is required for
LOCALAXE entries only. This is a 4 character value consisting of upper
case A-Z, 0-9, or ″#″, ″$″, ″@″, or ″_″. Alternatively, it can be specified as an
8 character hexadecimal value consisting of 0-9 or A-F.

PRIV This is a flag to determine if this TPN is a privileged user of a local
server’s Real Agent. It must be ″Y″ or ″N″ and is optional only for
LOCALAXE entries. Normally a Real Agent is released when a requester

�� TYPE=LOCALAXE DBNAME=local_database_name APPLID= SYSARI0 x �

� TPN=cics_axe_transaction_name
N

PRIV = Y

��

Figure 11. LOCALAXE Type Entry

26 System Administration

|

|
|
|
|

|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|

||
|
|

reaches the end of an LUW. A privileged TPN will retain exclusive use of
the Real Agent until the end of the SNA or TCP/IP communications
session. Note that privileged TPNs can cause contention problems for other
users of the server.

PARTDEF
This option indicates that this DBNAME is the Partition Default for the
partition(s) specified in the value. It is used when either a server or
requester is started without specifying a DBNAME and is optional only for
LOCAL, HOSTVM or REMOTE entries. A server started in the specified
partition will use this entry’s DBNAME. A requester executing in the
specified partition will connect to this entry’s DBNAME. It is a two
character partition name, for example: ″BG″, ″F3″, ″H2″ or ″X*″. For
dynamic partitions, the second character may be an asterisk (*) to indicate
that this DBNAME is the default for any dynamic partition whose name
begins with the first character. The default is blank, which means that this
DBNAME is not the default for any partition.

SYSDEF
This option indicates that this DBNAME is the System Default. It is used
when either a server or requester is started without specifying a DBNAME
and no Partition Default is found; it is optional only for LOCAL, HOSTVM
or REMOTE entries. You must specify ″Y″ or ″N″, ″N″ being the default.
Only one entry in the directory can be specified as the System Default and
this restriction is enforced.

SYSID
This option specifies the CICS APPC Connection Name (of an entry in the
CICS Terminal Control Table, defined by the CICS CEDA DEF
CONNECTIONS command) that identifies the SNA connection with the
remote system where the DRDA-capable DBNAME server resides. This is a
4 character value consisting of upper case alphabetic, numeric or ″#″, ″@″,
″$″ or ″_″ characters. The default is blank, which indicates that there is no
SNA access to this DBNAME server. If SYSID is specified in this entry,
REMTPN must also be specified. A REMOTE entry must specify SYSID or
TCPPORT, or both.

SYSID is optional only for REMOTE entries.

REMTPN
This is the 1-32 character Remote Transaction Program Name of the remote
server which is optional only for REMOTE entries. This value is not
checked and there is no default. It must be specified if the SYSID option is
specified.

TCPPORT=’port’
This option only applies to LOCAL or REMOTE entries.

For LOCAL entries, it identifies the TCP/IP Port Number to be used by
the LOCAL server to accept incoming TCP/IP connections. This value can
be overridden by the local server ’TCPPORT’ Start Up Parameter. The
default is minus one, meaning that the TCP/IP support to be used will be
determined by the Server. Valid values range from zero through 65,535,
with zero indicating TCP/IP support is NOT to be used by this server.

For REMOTE entires, it identifies the TCP/IP Port Number to be used by
the local requester when making a connection to the REMOTE server. Valid
values range from minus one through 65,535. Minus one and zero both
mean that no port number was specified in this DBNAME directory entry,
which means that no TCP/IP communications is available to this remote

Chapter 2. Planning for Database Generation 27

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

server. If this parameter is specified for REMOTE entries, IPADDR or
TCPHOST must also be specified. A REMOTE entry must specify SYSID or
TCPPORT, or both.

IPADDR=’port’
This option only applies to REMOTE entries and identifies the TCP/IP
Dotted-Decimal Address of the REMOTE server. The value must be
specified as ″nnn.nnn.nnn.nnn″, where the periods (″.″) are required
delimiters and each ″nnn″ value is a decimal number between 0 and 255. If
this parameter is specified, TCPPORT must also be specified, and
TCPHOST must NOT be specified.

TCPHOST=’host_name’
This option only applies to REMOTE entries and identifies the TCP/IP
Host Name of the REMOTE server. It is a 1-64 character Host Name and
must be known to the TCP/IP network. This value is not validated and
there is no default. If this parameter is specified, TCPPORT must also be
specified, and IPADDR must NOT be specified.

The IBM-Supplied DBNAME Directory
The following example shows the IBM-supplied default DBNAME Directory,
including the System Default local server DBNAME of ″SQLDS″ and the default
registered DRDA AXE TPN Name X'07F6C4C2, which maps to a DBNAME of
″SQLDS″ and an APPLID of ″SYSARI00″.

You must not delete either of these supplied entries and you should insert any
additional entries preceeding the two supplied entries. However, if you add an
entry for a server that is to be the System Default entry (for example, the entry
contains the SYSDEF=Y option), you must remove the SYSDEF=Y option from the
supplied entry, as only one entry can use that option.
*
TYPE=LOCALAXE
DBNAME=SQLDS
APPLID=SYSARI00
TPN=07F6C4C2
*
TYPE=LOCAL
DBNAME=SQLDS
APPLID=SYSARI00
SYSDEF=Y

Updating the DBNAME Directory
The DBNAME Directory source file is an A-type member ARISDIRD in the
production library. All local server, remote server and host VM server DBNAMEs
must be identified in this member.

Place your new entries before the IBM-supplied entries. Remember to remove the
SYSDEF=Y option from the IBM-supplied entry if you define a different System
Default entry. Catalog your changed member back into the production library. If
you catalog your changed member under a different name than ″ARISDIRD″, be
sure to update the ″PARM=″ field of the EXEC statement in the ARISBDID JCL
before executing the JCL.

The member must then be processed by the IBM-supplied ARISBDID Job Control
Language member to catalog the DBNAME Directory Service Phase
(″ARICDIRD.PHASE″) into the production library. For more information on this

28 System Administration

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

process, see the DB2 Server for VM Program Directory. Any errors or warnings
during this processing will appear in the SYSLST listing.

Sample DBNAME Directory
The following is a sample DBNAME Directory, with explanatory notes:
TYPE=LOCAL
DBNAME=SQLDB4_SANJOSE
APPLID=SYSARI03
PARTDEF=F4

If a server is started in partition F4 and no DBNAME start up parameter is
specified, then this entry is used. Likewise, if an application is executing in
partition F4 and issues an SQL CONNECT statement without a ’TO’ clause, it will
use this entry and access DBNAME ’SQLDB4_SANJOSE’.
TYPE=LOCAL
DBNAME=SQLDB1_NY
APPLID=SYSARI02
SYSDEF=Y

This entry is the System Default entry. Any application executing in a partition that
is NOT identified in this directory will access DBNAME ’SQLDB1_NY’.
TYPE=LOCAL
DBNAME=SQLDB3_TOR
ALIAS= SQLDB3_TOR
APPLID=SYSARI0A
PARTDEF=BG

Applications executing in partition BG will access DBNAME SQLDB3_TOR.
TYPE=LOCAL
DBNAME=SQLDB3_TOR
ALIAS= SQLDB3_TORX
APPLID=SYSARI0A
PARTDEF=X*

Applications executing in a dynamic partition with a partition name beginning
with ’X’ will access DBNAME SQLDB3_TOR. Note the use of the ALIAS= keyword
above. As the previous entry used the alias ’SQLDB3_TOR’, and all alias names
MUST be unique, this entry must use a different alias name, even though the
DBNAMEs in both entries are equal.
TYPE=LOCALAXE
DBNAME=TORONTO_LAB
APPLID=SYSARI07
TPN=SQL1
PRIV=Y

When a remote DRDA requestor communicates with CICS and passes a TPN of
’SQL1’, CICS starts transaction ’SQL1’ (after validation). Transaction ’SQL1’ will
connect to this entry’s APPLID via XPCC, which is DBNAME ’TORONTO_LAB’.
Also, because the ″PRIV=Y″ option is specified, CICS transaction ’SQL1’ has
extended use of the server’s Real Agent until the DRDA conversation ends.
TYPE=HOSTVM
DBNAME=VMDATABASE1
RESID=VMDB1

This entry identifies a DB2 Server for VM database server that executes on the VM
system under which this local VSE system is running as a guest. Any local
requester that connects to DBNAME ’VMDATABASE1’ will access the VM server
via the Guest Sharing facility.

Chapter 2. Planning for Database Generation 29

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

TYPE=REMOTE
DBNAME=SQLMACJR
ALIAS=TOKYO
SYSID=VMC3
REMTPN=JRSERVER
TCPPORT=27
IPADDR=94.83.72.161

This entry identifies a remote DRDA-capable server with a DBNAME of
’SQLMACJR’ and an alias of ’TOKYO’. It can be accessed by CICS requesters via
SNA using a Remote Transaction Program Name (REMTPN) of ’JRSERVER’. It can
also be accessed by CICS and Batch requesters via TCP/IP using IP Address
’94.83.72.161’ and Port number ’27’. Note that Batch requesters cannot access
remote servers via SNA.

CICS CEDA DEF CONNECTIONS Command for a Remote
Entry

Figure 12 shows an example of the CICS CEDA DEF CONNECTIONS command
used to define the connection that matches the remote entry for
″DBNAME=SQLMACJR″ in the exmaple above.

Choosing the Application Server Default CHARNAME and CCSID
The application server default CHARNAME is set using the CHARNAME
initialization parameter. The database manager uses the CHARNAME value to
determine the classification table and translation table which are used to identify
valid characters and to determine how to fold lowercase characters to uppercase.
For more information on the CHARNAME initialization parameter, see
“CHARNAME” on page 50.

The CHARNAME parameter also specifies the application server default coded
character set identifier (CCSID). For a newly installed database, the application
server default CHARNAME is INTERNATIONAL, and the application server
default CCSID is 500. For a migrated database, the application server default

Connection : VMC3
Group : DRDA
CONNECTION IDENTIFIERS
Netname : OECGW001
INDsys :
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :
CONNECTION PROPERTIES
ACcessmethod : Vtam Vtam | IRc | INdirect
Protocol : Appc Appc | Lu61
SInglesess : No No | Yes
Datastream : User User | 3270 | SCs | STrfield | Lms
RECordformat : U U | Vb
OPERATIONAL PROPERTIES
AUtoconnect : Yes No | Yes | All
INService : Yes Yes | No
SECURITY
SECURITYNAME :
ATTACHSEC : Local | Identify | Verify
Bindpassword : PASSWORD NOT SPECIFIED

Figure 12. Define Remote Connection

30 System Administration

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|

|

CHARNAME is ENGLISH, and the application server default CCSID is 37. The
application server default CCSID is the value of CCSIDMIXED if it is not zero,
otherwise it is the value of CCSIDSBCS. Refer to “CCSID Conversion” on page 239
and “Determining CCSID Values” on page 242 for more information on CCSIDs.

If you use DBCS characters, you need to use a mixed CCSID as the the application
server default. A mixed CCSID has both an SBCS component CCSID, and a DBCS
component CCSID. For more information, see Table 19 on page 241.

The application server default CCSID value is used for the following:
v The CCSID that SQL statements are converted to for processing by the relational

data system (RDS) component
v The CCSID of constants (including hexadecimal constants) which are part of the

SQL statement processed by the RDS component

Depending on the application server default subtype value (that is, the CHARSUB
value), the application server default value for CCSIDMIXED or CCSIDSBCS is
used for the following:
v The CCSID of special registers which represent character data (for example,

CURRENT USER and CURRENT DATE)
v The CCSID of the results of the scalar functions CHAR, DIGITS, and HEX
v The CCSID of the character representation of datetime values (for DRDA

protocol, this is always the CCSIDSBCS value)
v The CCSID of character columns created using the CREATE TABLE or ALTER

TABLE statements (when the CCSID or subtype clause is not explicitly specified
and when package defaults are not specified). See the DB2 Server for VSE & VM
Application Programming manual for more details on package defaults.

It is important that you choose the correct default CHARNAME and CCSID for
your installation. The goals of choosing the correct values are to ensure the
integrity of character data representation, and to reduce the performance overhead
associated with CCSID conversion. The application server and application
requester should have the same CCSID value unless there is a specific reason for
them to be different.

When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an associated
performance overhead. Performance degradation also occurs if the CCSID
conversion causes a sargable predicate to become residual. For example, this can
occur on a simple equals predicate like, T1.C1 = T2.C2. For this case, C2 was
created prior to migrating to Version 3 Release 4 and has a CCSID of 37. C1 was
created using Version 3 Release 4 with the application server default CHARNAME
set to INTERNATIONAL (CCSID 500), As a result, since this predicate requires the
CCSID conversion of the data in the columns, it is residual. For more information
on performance, see the DB2 Server for VSE & VM Performance Tuning Handbook.

For example, if your application server is only accessed by local users whose
terminal controllers are generated with code page 37 and character set 697 (CP/CS
37/697) for the US ENGLISH characters, then you should set the application server
default CHARNAME to ENGLISH. This is because CP/CS 37/697 corresponds to
the CCSID of 37 which corresponds to the CHARNAME of ENGLISH.

Chapter 2. Planning for Database Generation 31

To eliminate unnecessary CCSID conversion, choose an application server default
CCSID to be the same as the CCSID of the application requesters which access
your application server most often.

The following is an example of how these two goals can be in conflict.

The situation has these characteristics:
v An application server is accessed by 5 application requesters which are local

(that is, they have the protocol parameter set to SQLDS).
v This application server is also accessed by 100 application requesters which are

remote (that is, they are using the DRDA protocol).
v The local application requesters have controllers which are defined with CP/CS

37/697 (this corresponds to CCSID 37).
v The remote application requesters use CCSID 285.

If the application server default CHARNAME is set to ENGLISH (CCSID 37), this
keeps the data integrity for the local application requesters. However, CCSID
conversion overhead is incurred for all remote application requesters who have
CHARNAME UK-ENGLISH (CCSID 285).

If the application server default CHARNAME is set to UK-ENGLISH (CCSID 285),
this will avoid the CCSID conversion overhead incurred for the remote application
requesters, but will cause data integrity problems for the local application
requesters. Certain characters will not be displayed correctly for local application
requesters. For example, a British pound sign (£) will be displayed as a dollar sign
($).

These are the trade-offs to consider when choosing your application server default
CHARNAME.

For more information on CCSIDs, see the Character Data Representation Architecture
Reference and Registry manual.

Attention: Immediately following an installation, the application server
CHARNAME is set to INTERNATIONAL and the CCSID is 500. Immediately
following a migration, the application server CHARNAME is set to ENGLISH and
the CCSID is 37. If you do not choose your own application server defaults, these
settings may not be correct for your system.

For information on how to change the application server default CHARNAME and
CCSID, see “Setting the Application Server Default CHARNAME and CCSIDs” on
page 243. For a summary of the considerations for changing these values, see
“Considerations when changing default CHARNAME and CCSID” on page 226.

Choosing the Application Server Default Character Subtype
The database manager supports three types of character data:
v SBCS
v Mixed
v Bit.

Note: Character refers to data types CHAR, VARCHAR and LONG VARCHAR in
this discussion.

32 System Administration

Each database has a default character subtype (that is, the CHARSUB value) which
can be either SBCS (single-byte character set) or mixed (mixed single and
double-byte character set). The default character subtype is the value used for the
subtype attribute of any new character column that is created by either the
CREATE TABLE statement or the ALTER TABLE statement. The default subtype is
used if a subtype is not specified as a package default option or a preprocessing
option, and is not specified explicitly using a subtype clause, or implicitly using a
CCSID clause.

The CHARSUB value is also used for determining CCSIDs. For more information
on CCSIDs, see “Choosing the Application Server Default CHARNAME and
CCSID” on page 30, “CCSID Conversion” on page 239, and “Determining CCSID
Values” on page 242. For information on how to change the default character
subtype, see “Setting the Application Server Default Character Subtype” on
page 247.

Choosing the Default CHARNAME and CCSID for Application
Requesters

It is important that the appropriate application requester default CHARNAME and
appropriate application requester default CCSID be chosen. The goals of choosing the
correct values are to ensure the integrity of character data representation, and to
reduce the performance overhead associated with CCSID conversion.

For example, if your terminal controller is generated with code page 37 and
character set 697 (CP/CS 37/697) for US ENGLISH characters, then the application
requester should set the default CHARNAME to ENGLISH. This is because CP/CS
37/697 corresponds to the CCSID of 37 which corresponds to the CHARNAME of
ENGLISH.

The application requester default CCSID is the value of CCSIDMIXED if it is not
zero; otherwise, it is the value of CCSIDSBCS. The application requester default
CCSID is used for the following:
v The CCSID of SQL statements coded at the application requester
v The CCSID of host variables which represent character data
v The CCSID of character values described by an input or output SQLDA (when

the SQLNAME field is not used to override the CCSID value)
v The CCSID of character data returned in a DESCRIBE SQLDA
v The CCSID of message tokens returned in an SQLCA

For more information on setting the default CHARNAME for an application
requester, see “Setting the Application Requester Default CHARNAME and
CCSIDs” on page 245. For more information on CCSIDs, see “CCSID Conversion”
on page 239 and “Determining CCSID Values” on page 242.

Preparing for Database Regeneration
If the SYS0001 dbspace ever becomes too small to hold the catalog tables, or if the
contents of the directory data set or a dbextent data set are damaged or destroyed
and you do not have archives to restore them, the database can no longer serve
your needs and must be regenerated.

The size and complexity of the regeneration task depends on the size and
complexity of the database. This task includes:

Chapter 2. Planning for Database Generation 33

v Regenerating the database, including any dbspaces, dbextents, and VM
minidisks that may have been added since the previous generation

v Using the DBS utility to unload and reload all the data in the database,
including the ISQL routines and the ISQL stored queries.

v Repreprocessing all application program packages
v Reestablishing the entire authority scheme
v Recreating all views and indexes.

One way to simplify this task is to keep a record of the various types of
information you would need to reestablish the operating environment that existed
in the previous database. In particular:
v Keep all the ACQUIRE DBSPACE, CREATE TABLE, ALTER TABLE, GRANT,

CREATE INDEX, CREATE VIEW, and CREATE SYNONYM statements for the
database in DBS utility job streams. These job streams can be run easily on the
regenerated database.

Note: If these statements are not kept, you can reconstruct them from
information available in the system catalog tables. However, this could
take a long time for a large production database.

v Keep all the VSAM Access Method Services statements used to define the VSAM
data sets for the database, both for initial generation and for later ADD
DBEXTENT operations. Also keep the statements used for any log
reconfigurations. These statements can be used in one job to redefine the VSAM
data sets.

v Keep all the input control statements for any ADD DBSPACE or ADD
DBEXTENT operations. These statements can be used as input to the job that
regenerates the database.

v Keep the database job control (DLBL, TLBL, and LIBDEF statements) up to date
in a cataloged procedure. This procedure can be used by the job that regenerates
the database.

v Keep the jobs used to preprocess each application program so that they can be
run on the regenerated database (as separate jobs).

Database Generation Worksheet
This section provides two worksheets. Figure 13 covers the items that you must
address in order to define the VSAM data sets for your database, and Table 5
covers the database generation control statements. Fill them out as you design
your database; then refer to them when you do the actual database generation.

34 System Administration

Table 5. Database Generation Worksheet

Database Name
Server Name ______________________________

APPLID ______________________________

Database Capacity Parameters:

CUREXTNT _____________ (A value from 1 to 999 must be specified.)

MAXPOOLS _____________ (Default is 32. Value can be from 1 to 999.)

MAXEXTNT _____________ (Default is 64. Value can be from 1 to 999.)

MAXDBSPC _____________ (Default is 1 000. Value can be up to 32 000.)

Need to define VSAM Master Catalog: NO: __
YES: __ CYL./BLOCKS: ____ VOLUME: _________

ORIGIN: ____
Need to define VSAM User Catalog: NO: __

YES: __ CYL./BLOCKS: ____ VOLUME: _________
ORIGIN: ____

Need to password protect data sets: NO: __
YES: __ Level: ______ Password: ___________

(Only one VSAM Data Space Required)
Data Space 1: ORIGIN: ____ CYL./BLOCKS: ___ VOLUME: _________

Data Space 2: ORIGIN: ____ CYL./BLOCKS: ___ VOLUME: _________

Data Space 3: ORIGIN: ____ CYL./BLOCKS: ___ VOLUME: _________

Data Space n: ORIGIN: ____ CYL./BLOCKS: ___ VOLUME: _________

Directory: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

(Only one Log Required)
Primary Log: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

Secondary Log: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

(Only one Dbextent Required)
Dbextent 1: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

Dbextent 2: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

Dbextent 3: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

Dbextent n: NAME: _____________________ CYL./BLOCKS: ___ VOLUME: __________

Figure 13. Important Factors for Installing Your Own Database

Chapter 2. Planning for Database Generation 35

Table 5. Database Generation Worksheet (continued)

Nonrecoverable Storage Pools:

POOL ________ NOLOG (Storage pool 1 cannot be specified.)

POOL ________ NOLOG

POOL ________ NOLOG

POOL ________ NOLOG

Database Extent (Dbextent) Placement:

Dbextent Storage Pool
Number (Default is 1)
-------- --------------

1 ___

2 ___

3 ___

4 ___

Note: The number of dbextents must equal CUREXTNT, but one is required. The MAXEXTNT value determines the
maximum number of database extents.

Public Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)

--------------------------------- ------------- --------------
Catalog Tables ____ 1

Packages ____ ___

HELP Text ____ ___

ISQL 1024 (minimum) ___

Sample Tables 512 (minimum) ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

Note: The public dbspaces for the catalog tables, packages, HELP text, ISQL, and the sample tables are required.
The catalog tables must be in storage pool 1.

36 System Administration

Table 5. Database Generation Worksheet (continued)

Private Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
--------------------------------- ------------- --------------

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

Internal Dbspaces:

Number: _____ Size in 4K Pages: ____ Storage Pool: ____

Note: The MAXDBSPC value determines the maximum total number of public, private, and internal dbspaces
possible.

Chapter 2. Planning for Database Generation 37

38 System Administration

Chapter 3. Planning for Database Migration

If your installation already has a previous release of the database manager
installed, you must consider the effect that migration to the new release will have
on your existing databases and applications.

You can migrate to a DB2 Server for VSE Version 7 Release 1 database from:
v Version 6 Release 1
v Version 5 Release 1
v Version 3 Release 5
v Version 3 Release 4
v Version 3 Release 2
v Version 3 Release 1

Note: If you are on an earlier release, you will have to migrate to Version 3
Release 5 first and then to Version 7 Release 1.

This chapter also contains a section on:
v Release coexistence considerations

It can be impractical to migrate all the databases in a local or distributed
environment to the current level at the same time. For information on the level
of coexistence that is possible see “Release Coexistence Considerations” on
page 45.
If you will be migrating databases on a VSE system to a VM system, see the
DB2 Server for VM System Administration manual.

Migration Considerations
For users of an earlier version of the database manager, installing Version 7
Release 1 means loading the new code by running one or more IBM supplied
programs, and migrating any existing databases. This section highlights the
considerations that you should be aware of when doing this.

The topics are grouped by the release level of the database that is being migrated.
Start at your release level and read to the end of this chapter. For example, if your
database is Version 3 Release 1, you must review all the topics; if it is Version 3
Release 2, you need only read from that topic to the end of the chapter.

Increasing the HELPTEXT Dbspace
A database that is migrated keeps its existing HELPTEXT dbspace, which may not
be large enough to support the Version 7 Release 1 HELP text. The size required
for this dbspace depends on the number of national languages for which you have
HELP text. It should be:

2,304 pages x number of languages installed.

This dbspace can be increased at any time before you install the current HELP text.
For information, see the DB2 Server for VSE & VM Database Administration manual.

© Copyright IBM Corp. 1987, 2000 39

|

|

Migrating from Version 3 Release 1

Considerations for Invalid Indexes
Before you migrate, at least four dbspace blocks must be available in the database
directory to allow for expansion of the invalid entities table. During migration, any
entries in the invalid entities table are migrated to the new format. The new table
format requires additional space in the directory. If there are any entries in the
invalid entities table, it is possible that there may not be enough room in the
directory to allow the table to be modified during migration.

For information about directory space verification, see the DB2 Server for VSE
Program Directory.

Conversion of Packages
After migration, all packages are dynamically repreprocessed on first use. This
conversion can cause a performance degradation over the first few days as the
packages are referenced and repreprocessed.

To help minimize this degradation, the REBIND PACKAGE command is provided
so that all packages can be recreated, if desired, after migration but before
production. For information about this command, see the DB2 Server for VSE &
VM Database Services Utility manual.

Migrating from Version 3 Release 2

Choosing a Server Name
With Version 3 Release 4 and later, you can specify a server name of up to 18
characters. See “Choosing an Application Server Name” on page 23.

Elimination of the SET XPCC Command
Before Version 3 Release 4 an application program could only access one database.
In Version 3 Release 4 and later, up to 36 application servers can be active at the
same time in your VSE system.

To make use of this new facility, you must remove the SET XPCC command and
use the SET APPCVM command. For details on this command, see “Chapter 5.
Operating the Online Support” on page 79.

However, if you continue to access only one database, the SET XPCC command
can still be used.

Choosing an Application Server Default CHARNAME
After migration, the database manager sets the application server default
CHARNAME to ENGLISH, and sets the application server CCSID values as
follows:
v CCSIDSBCS = 37
v CCSIDMIXED = 0
v CCSIDGRAPHIC = 0.

You can change the value of the default CHARNAME, which in turn determines
the values for the three application server default CCSIDs. These four values are
stored in the VALUE column of the SYSTEM.SYSOPTIONS catalog table. The

40 System Administration

corresponding values in the SQLOPTION column for these defaults are
CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC.

The value you choose for the default CHARNAME should accurately reflect the
type of data that will be stored in the database: that is, the type of code page and
character set that describes the data, and whether or not the database manager is
to support DBCS characters or MBCS characters, or both. For more information,
see “Character Set Considerations at Startup” on page 50, “Determining CCSID
Values” on page 242, and “CCSID Conversion” on page 239. For a summary of the
considerations for changing these values, see “Considerations when changing
default CHARNAME and CCSID” on page 226.

Setting Migration CCSID Values
After choosing your default CHARNAME, you must also set your CCSID values
for character and graphic data that existed before the migration to Version 3
Release 4. The CCSID value of character and graphic data stored in tables that
were created before Version 3 Release 4 are specified by the three other rows (with
SQLOPTION value MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC) in the
SYSTEM.SYSOPTIONS catalog table. The migration CCSID values (MCCSIDSBCS,
MCCSIDMIXED, and MCCSIDGRAPHIC) are used for single byte, mixed, and
graphic data that was created prior to Version 3 Release 4 and therefore does not
have a CCSID associated with it. The database manager sets the migration CCSID
values as follows:
v MCCSIDSBCS = 37
v MCCSIDMIXED = 0
v MCCSIDGRAPHIC = 0.

If the code page and character set used to create the migrated data (that is, the
data that was inserted into the database prior to Version 3 Release 4) is not CP/CS
37/697, these settings are not correct for your installation and must be changed.
You can determine the CCSIDs for migrated data from the code page and character
set that was used to generate the terminal controller where the data was entered.

For an example of how your choice of migration CCSID value affects the
characters displayed, refer to page 244.

To determine if your database contains graphic or mixed data, issue the following
query:

If the query returns a result of zero rows, the database contains neither graphic nor
mixed data; a nonzero result indicates the number of columns in your database
that do contain such data.

Handling SBCS Data: If your database contains only SBCS data (that is, the
above query returns a result of zero) prior to Version 3 Release 4, the migrated
CCSID values for mixed and graphic data (MCCSIDMIXED and
MCCSIDGRAPHIC) must remain 0.

If the MCCSIDSBCS value of 37 is not correct for your installation, this must be
changed to correspond to the code page and character set used to create the
migrated data. For example, if the data was created with CP/CS 273/697

SELECT COUNT(*) FROM SYSTEM.SYSCOLUMNS
WHERE COLTYPE = 'GRAPHIC' OR

COLTYPE = 'VARGRAPH' OR
COLTYPE = 'LONGVARG' OR
SUBTYPE = 'M'

Chapter 3. Planning for Database Migration 41

(GERMAN), the CCSID value you should use is 273. For a list of some of the SBCS
CCSIDs and their character set and code page values, see Table 19 on page 241.

The row that you must update for data in tables created before Version 3
Release 4 is:
v SQLOPTION='MCCSIDSBCS'

Change the value in the VALUE column to the appropriate SBCS CCSID (for
example, 273 for GERMAN). The following statements show how to update or
insert the row using this value:

Handling Mixed Data: If your database contains graphic or mixed data prior to
Version 3 Release 4, you must update the VALUE column of
SYSTEM.SYSOPTIONS for the row where SQLOPTION='MCCSIDMIXED' with the
appropriate nonzero CCSID value. You must also update the row where
SQLOPTION='MCCSIDSBCS' to the value of the SBCS component of the mixed
CCSID, and the row where SQLOPTION='MCCSIDGRAPHIC' to the value of the
DBCS component of the mixed CCSID. If these CCSIDs do not correspond to the
components of the mixed CCSID, the wrong conversion selection tables are being
used. For a list of some of the mixed CCSIDs and their component SBCS and
DBCS CCSIDs, see Table 19 on page 241.

The rows that you must update for data in tables created before Version 3
Release 4 are:
v SQLOPTION='MCCSIDMIXED'

Change the value in the VALUE column to the appropriate mixed CCSID. If you
used DBCS characters before Version 3 Release 4, specify the appropriate CCSID
value. For example, if you used Kanji characters, specify the value 5035. The
following statements show how to update or insert the row using this value:

v SQLOPTION='MCCSIDSBCS'
Change the value in the VALUE column to the appropriate SBCS CCSID. If you
used DBCS characters before Version 3 Release 4, you must specify the SBCS
component CCSID of the MCCSIDMIXED value. For example, if
MCCSIDMIXED is set to 5035, specify 1027. The following statements show how
to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '273'
WHERE SQLOPTION = 'MCCSIDSBCS'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDSBCS', '273',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '5035'
WHERE SQLOPTION = 'MCCSIDMIXED'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDMIXED', '5035',
'DEFAULT CCSID FOR MIGRATED MIXED CHARACTER COLUMNS')

42 System Administration

v SQLOPTION='MCCSIDGRAPHIC'
Change the value in the VALUE column to the appropriate graphic CCSID. If
you used DBCS characters before Version 3 Release 4, this value must be the
DBCS component CCSID of the MCCSIDMIXED value that you used. For
example, if you used Kanji characters, specify 4396. The following statements
show how to update or insert the row using this value:

Considerations for Mixed Primary Keys with Field Procedures
If you are migrating from Version 3 Release 1 or Version 3 Release 2, the value of
CCSID in SYSTEM.SYSKEYCOLS is NULL. For some primary keys, this value is
not correct. In this case, you should drop and recreate the primary keys, which you
can identify by running the ARIS341D procedure after migrating. (For information
on this procedure, see the DB2 Server for VSE Program Directory manual.)

Considerations for EXPLAIN Tables
Several changes and enhancements were made to the EXPLAIN tables in Version 3
Release 4. If you have existing EXPLAIN tables they must either be renamed, or,
dropped and recreated before using the EXPLAIN statement.

An IBM-supplied macro, ARISEXP, recreates the EXPLAIN tables for you.

For additional information on using EXPLAIN tables, see the DB2 Server for VSE &
VM Performance Tuning Handbook manual.

Considerations for VSE Guest Sharing
VSE batch applications can access an application server on VM that is either
remote or local. If the application server is in a remote network, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure must be replaced by the SET
APPCVM TARGET command. If the application server is local, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure is not needed, and can be
deleted.

Regardless of whether the application server is remote or local, an entry in the
DBNAME directory may also be necessary to map the DBNAME to the resid when

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '1027'
WHERE SQLOPTION = 'MCCSIDSBCS'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDSBCS', '1027',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '4396'
WHERE SQLOPTION = 'MCCSIDGRAPHIC'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDGRAPHIC', '4396',
'DEFAULT CCSID FOR MIGRATED GRAPHIC COLUMNS')

Chapter 3. Planning for Database Migration 43

the DBNAME is greater than 8 characters, or when the DBNAME and the resid are
different. For more information on the DBNAME directory, see “Setting Up the
DBNAME Directory” on page 23.

Migrating from Version 3 Release 4

Considerations for Assembler Even Precision Packed Decimal
Prior to Version 3 Release 5, assembler host variables declared as even precision
packed decimal were converted to odd precision by the preprocessor. As of
Version 3 Release 5, the database manager supports assembler host variables
defined as even precision packed decimal, and they are not converted to odd
precision. In some cases, the lack of conversion may cause a datatype mismatch
between a host variable and a column. To prevent potential performance
degradation, applications affected by this change should be modified so the
datatypes of the host variables exactly match the datatypes of the columns to
which they will be compared.

Considerations for SQLSTATE Changes for SQL92 Support
The SQLSTATEs returned by several conditions were changed to comply with
SQL92. Application programs that have a dependency on the SQLSTATE returned
may be affected by these changes. See DB2 Server for VM Messages and Codes for
information on the changed SQLSTATEs.

Migrating from Version 3 Release 5

Considerations for Uncommitted Read
Prior to Version 5 Release 1, the database manager accepted isolation level
uncommitted read as a preprocessor parameter, but internally the isolation level
was escalated. As of Version 5 Release 1, isolation level uncommitted read is fully
supported. However, this isolation level to take effect, packages that were prepped
with uncommitted read in a previous release must be explicitly repreprocessed
after migration.

Considerations for Support of ESA-mode Processors Only
Any user exits (date, time, or accounting), field procedures, or applications that
run in single user mode that are dependent on running in a 370 mode virtual
machine must be converted to execute in an ESA mode virtual machine. AMODE
24 is still supported, so exits, field procedures, and single user mode applications
that require AMODE 24 are not affected.

Considerations for the Renaming of the Product
The text of several messages was modified as the result of the renaming of the
product. Applications with dependencies on the text of messages may be affected.

Considerations for the Removal of the User Facility Subset
The User Facility Subset is no longer supported; machines on which the subset was
previously installed must now contain the full product.

44 System Administration

|

Migrating from Version 5 Release 1

Choosing the Default CHARNAME for All Application
Requesters

After migration, the application requester default CHARNAME is determined from
the SQLGLOB file. By default it is set to INTERNATIONAL, and the application
requester CCSID values are as follows:
v CCSIDSBCS = 500
v CCSIDMIXED = 0
v CCSIDGRAPHIC = 0.

To ensure the integrity of character data representation and to reduce the
performance overhead associated with CCSID conversion, it is important to choose
the appropriate CHARNAME for the code page used by each application requester.
See “Choosing the Default CHARNAME and CCSID for Application Requesters”
on page 33 and “Setting the Application Requester Default CHARNAME and

CCSIDs” on page 245. For more general information on CCSIDs, see “CCSID
Conversion” on page 239 and “Determining CCSID Values” on page 242.

Considerations for VSE DRDA Online Requester Support
The format of the DBNAME directory source file member, ARISDIRD, has changed
and must be modified and a new phase created. See “Setting Up the DBNAME
Directory” on page 23.

Considerations for RDS Above 16M
After migration, the RDS component will be loaded above 16M whenever possible.
For information, see “V6R1 and V5R1 Incompatibilities” on page 413.

Migrating from Version 6 Release 1

Considerations for the DBNAME Directory
The format of the DBNAME directory has changed. As a result, you must modify
the DBNAME directory source file member (ARISDIRD), and create a new phase.
See “V7R1 and V6R1 Incompatibilities” on page 414 and “Setting Up the DBNAME
Directory” on page 23, for more information.

Considerations for Key Enablement
When running VSE/ESA 2.5, DB2 Server for VSE is key-enabled. For information
on setting up the DB2 key, see the DB2 Server for VSE Program Directory.

Release Coexistence Considerations
For installations with multiple databases, you should migrate all your databases to
the current level. All users have the same features available to them, and future
database migrations are easier.

Applications at any supported release level can access application servers at any
supported release level. However, if an application requester and application
server are at different release levels, any functions used must be available in both
release levels. That is, you cannot use any new release facilities from ISQL, DBS
Utility, or application programs when the application server is running a different
level of DB2 Server for VSE & VM than the application requester.

Chapter 3. Planning for Database Migration 45

|
|

|
|

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

All existing applications that accessed a database before the database was migrated
to another release level continue to work after migration.

Note: Changes were required in Version 7 Release 1 to handle file I/O correctly
when using CMS 15 and later. These changes affect the format of data that is
unloaded and reloaded by the UNLOAD and RELOAD commands of the
DBS Utility. If you use the DBS Utility’s UNLOAD and RELOAD commands
with databases at different release levels, you must ensure that the code
changes have been applied at all release levels. For releases prior to
Version 7 Release 1, you must apply the following APARs:

Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

See “Appendix H. Incompatibilities Between Releases” on page 381 for
incompatibilities that exist between each release and the next release.

Changing the Server Name and Application Server Identifier
Situations exist where you may want to change the application server name
(DBNAME), application identifier (APPLID), or CICS transaction program name
(TPN).

These changes are made in the DBNAME directory. For details, see “Setting Up the
DBNAME Directory” on page 23.

46 System Administration

|

|
|
|
|
|
|
|

||

||

||

||

|
|

Chapter 4. Planning for Operation of the Database Manager

Once the DB2 Server for VSE code is installed and your database generated, the
operator can start the application server so that users can access the databases and
submit SQL statements. This chapter explains the planning tasks associated with
starting, running, and stopping the application server. For information on the
actual operator commands, see the DB2 Server for VSE & VM Operation manual.

The examples in this book assume that you have loaded the IBM-supplied
procedures containing the job control statements needed for each database and for
referencing the DB2 Server for VSE library.

Starting the Application Server
This section discusses the following topics:
v Modes of operation
v Multiple user mode initialization parameters
v Single user mode initialization parameters
v Tape support
v Starting the application server in multiple user mode
v Running multiple user mode applications
v Starting the application server in single user mode
v Overriding initialization parameters
v Creating a parameter data set

Modes of Operation
The database manager can be operated in either multiple user mode or single user
mode.

In multiple user mode, more than one user or application can concurrently access the
same database. The database manager runs in one VSE system partition while
applications run in other partitions. The initialization parameter SYSMODE=M
defines this mode.

In single user mode, only one user or application can be run at one time. Both the
database manager and the application program run in the same VSE system
partition. The initialization parameter SYSMODE=S defines this mode.

Many of the database manager facilities, including support for ISQL, CICS
transactions, and VSE/ICCF, are available only in multiple user mode. Support for
the DBS utility, preprocessors, and batch applications is available in both multiple
and single user modes. Support for special facilities (such as ADD DBEXTENT) is
available only in single user mode.

Multiple User Mode Initialization Parameters
Figure 14 identifies the initialization parameters that apply when the database
manager is operating in multiple user mode, and lists their defaults. A discussion
of the appropriate settings for these parameters follows.

© Copyright IBM Corp. 1987, 2000 47

NCUSERS=n
NPACKAGE=n
NPACKPCT=n
NPAGBUF=n
NDIRBUF=n
NLRBU=n

NLRBS=n

DISPBIAS=n
NCSCANS=n
LTIMEOUT=n
PTIMEOUT=n
PROCMXAB=n

PERFORMANCE PARAMETERS

SERVICE PARAMETERS

RECOVERY PARAMETERS

5
10
30

10 + NCUSERS X 4
NPAGBUF

1000

(2 X NCUSERS) +
(NLRBU x NCUSERS)/2

+ 10

7
30
0

180
0

1
1
0
10
10
10

larger of
50 or

(2 x NCUSERS)

1
1
0
0
0

251
32766

100
400000
400000
583333

583333

10
655

99999
99999

255

PARAMETER DEFAULT MINIMUM MAXIMUM

DBNAME=name

RMTUSERS=nnnnn
SYSMODE=M
STARTUP=W R F U
PARMID=name
DBPSWD=password
CHARNAME=name
ACCOUNT= T D E N
SYNCPNT= Y N
DSPSTATS=nn
TCPPORT=n
SECALVER=Y|N
SECTYPE=DB2|ESM

ENVIRONMENT PARAMETERS

From DBNAME
directory

0
M
W

None
None

INTERNATIONAL
N

If RMTUSERS > 0, Y
0

DBNAME Directory
N

DB2

__
__

0
__
__
__
__
__
__
__

0
0

__
__

__
__

65535
__
__
__
__
__
__
__
21

65535
__
__

LOGMODE=Y A L
CHKINTVL=n
SLOGCUSH=n
ARCHPCT=n
SOSLEVEL=n

Y
10
90
80
10

__
1
11
10
1

__
99999999

90
99

100

DSPLYDEV=L C B
DUMPTYPE=P F N
EXTEND=Y N
TRACDBSS=nnn...
TRACRDS=nnnnnnn
TRACWUM=n
TRACDRRM=nnnn
TRACDSC=nn
TRACCONV=n
TRACSTG=n
TRACEBUF=n

L
F
N

000...
0000000

0
0000

00
0
0
0

__
__
__

000...
0000000

0
0000

00
0
0
0

__
__
__

222...
2222222

2
2222

22
2
1

99999

Figure 14. Multiple User Mode Initialization Parameters

48 System Administration

Environment Parameters

DBNAME
This parameter specifies the application server to be started. Different application
servers can be started in different partitions (up to a maximum of 36). With
multiple server support, different procedures can be written to link the appropriate
disks for each database. When starting the application server, correlate the
procedure name with this parameter. If not specified, the application server is
started with the default specified in the DBNAME directory. For more details, see
“Choosing an Application Server Name” on page 23.

The following examples show the DBNAME parameter specified correctly with
two procedures to start two different application servers.

RMTUSERS
This parameter can be specified only if the DRDA code can be installed.

The value specified for RMTUSERS is the maximum number of remote users that
can access the application server, and can be set to any number from 1 to 65535
(inclusive). The default is 0. The appropriate value for RMTUSERS depends on the
availability of virtual storage.

If RMTUSERS is not specified or the value is 0, remote users will not be able to
access the application server.

SYSMODE
This parameter is used to specify either single(S) or multiple(M) user mode. Set it
to M to initialize the database manager for multiple user mode operation. This is
the default mode.

STARTUP
This parameter specifies how the database will be started:
v Most of the time let STARTUP default to W (warm start).
v Use STARTUP=R (restore) to restart the application server and restore the

database from an archive tape file. This setting causes the VSAM data sets to be
reset before the data is restored.

v STARTUP=F (fast restore) also restores the database from an archive tape, but
does not format the data sets. Only use it if you have not changed the database
files. (The database files would be changed, for example, when there is a media
failure.)

// JOB xxxxx
// EXEC PROC=ARIS71SL
// EXEC PROC=SQLDB1
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='STARTUP=W,DBNAME=SQLDB1_NEWYORK_INV'
/*
/&

// JOB yyyyy
// EXEC PROC=ARIS71SL
// EXEC PROC=SQLDB36
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='STARTUP=W,DBNAME=SQLDB36_TORONTO_INV'
/*
/&

Figure 15. Examples of Job Control to Start a Database in Multiple User Mode

Chapter 4. Planning for Operation of the Database Manager 49

v Specify STARTUP=U (user restore) if you have archived and restored the
database with user facilities.

For more information, see “Restoring the Database” on page 155.

PARMID

This parameter can be used to specify an A-type source member containing the
values for the other initialization parameters. Application program parameters
(user parameters) cannot be included. Figure 16 shows an example of startup of the
application server that uses the PARMID initialization parameter.

DBPSWD
When you define the data sets for your database, you can define a password to
protect them from unintentional or malicious access. All the data sets for a
database must have the same VSAM password, which is defined with the
VSE/VSAM DEFINE CLUSTER command. Then, when starting the application
server, the operator must specify this password with the DBPSWD parameter, as
shown in Figure 16. If the specified password does not match the one defined for
the data sets, the operator is prompted to supply the correct one.

CHARNAME
This section discusses the following:
v Character set considerations at startup
v National language considerations at startup.

Character Set Considerations at Startup: Use the CHARNAME parameter to
specify the CCSIDs to be used as the application server defaults. The default
CCSIDs determine the character sets and code pages to be used to interpret
statements and return results.

The valid CHARNAME values you can specify are ENGLISH (CCSID=37),
INTERNATIONAL (CCSID=500), and all the values that are in the CHARNAME
column of the SYSTEM.SYSCCSIDS catalog table.

The database manager obtains the CCSIDs associated with the CHARNAME by
looking up the row of the SYSTEM.SYSCCSIDS catalog table where the
CHARNAME column matches the CHARNAME parameter. It also obtains the
classification and translation tables associated with the CHARNAME by looking
up the row of the SYSTEM.SYSCHARSETS catalog table where the NAME column
matches the CHARNAME parameter. The classification table is used to identify
valid characters in identifiers. The translation table is used to indicate how to fold
ordinary lowercase identifiers to uppercase.

For CHARNAMEs ENGLISH and INTERNATIONAL, their CCSID values, the
classification table and the translation table are stored internally. The rows in
SYSTEM.SYSCCSIDS and SYSTEM.SYSCHARSETS for these CHARNAMEs are for
reference purposes only and are not used by the database manager.

// JOB MULTI
// EXEC PROC=ARIS71SL
// EXEC PROC=ARIS71DB
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='PARMID=WARM1,DBPSWD=password'
/*
/&

Figure 16. Job Control to Start in Multiple User Mode with Password-Protected Data Sets

50 System Administration

During startup, if you do not specify the CHARNAME parameter, the application
server uses the same CHARNAME that was used the last time it was started. The
values stored in the rows where SQLOPTION equals CHARNAME, CCSIDSBCS,
CCSIDMIXED, and CCSIDGRAPHIC are for reference purposes only. They reflect
the current values associated with the system. The only way to change the default
values is by starting the application server with a different CHARNAME
parameter. Any updates to the values in the SYSTEM.SYSOPTIONS table are
ignored during startup.

Note: The database manager determines the current default CHARNAME from the
CCSID attribute of the CNAME character column in the
SYSTEM.SYSCOLUMNS catalog table. If this value is null, then 37 is used (a
CCSID of 37 corresponds to a CHARNAME of ENGLISH). The database
manager uses the CCSID value to locate the corresponding row in the
SYSTEM.SYSCCSIDS catalog table to obtain the associated CHARNAME.
The value in the CHARNAME column of this row is the current application
server default CHARNAME.

When you specify a value for the CHARNAME parameter that is different from
the current application server default CHARNAME, you are prompted to choose
whether or not you want to change the application server default CHARNAME. If
you specify YES and have supplied a valid CHARNAME value, the database
manager updates the application server default values for CHARNAME,
CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC. It also modifies the CCSID
attribute of all character columns that are part of the catalog tables to the
application server default CCSID. The CCSID attribute of character columns that
are not part of the catalog tables are not modified. If the value for CCSIDMIXED is
not zero, this value is used as the application server default CCSID. If the value for
CCSIDMIXED is zero, then the application server default CCSID is the value of
CCSIDSBCS.

Note that the tables which have their CCSID modified when the CHARNAME is
changed include:
v All tables created by SYSTEM
v The following tables created by SQLDBA:

– SQLDBA.ROUTINE
– SQLDBA.STORED QUERIES
– SQLDBA.SYSLANGUAGE
– SQLDBA.SYSTEXT2
– SQLDBA.SYSUSERLIST

When a CHARNAME is changed, the following should be considered:
1. The FIPS Flagger package must be reloaded by using the ARIS360D procedure.

Failure to do this can cause SQLCODE=-931 (SQLSTATE=58004). This will
render the agent reporting the SQLCODE error unable to preprocess packages
until the application server is started. Once the FIPS Flagger package is
reloaded or repreprocessed, this error will not occur.

2. All views which are dependent on the tables that had their CCSID modified
must be dropped and recreated.
The following query lists all such view packages:
SELECT CREATOR, TNAME, PLABEL

FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'V'
AND VALID = 'N'

Chapter 4. Planning for Operation of the Database Manager 51

This query is useful in that owners of affected views can be notified to drop
and recreate their view before they try and use the view and get an error
(SQLCODE=-835, SQLSTATE=56049, with SQLERRD1 set to -833).

3. All packages which are dependent on the tables that had their CCSID modified
must be dropped and recreated.
The following query lists all such packages:

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'X'
AND VALID = 'N'

This query is useful in that owners of affected packages can be notified to
rebind the packages instead of having them dynamically repreprocessed at run
time. The DBS utility REBIND PACKAGE command can be used to rebind the
packages listed.

4. The ISQL package (SQLDBA.ARIISQL) and DBS utility package
(SQLDBA.ARIDSQL) can be reloaded and recreated using the ARIS360D
procedure. If this is not done, the first time these packages are used, they will
be dynamically repreprocessed.

To check if all the above activities have been done, run the following query:
SELECT CREATOR, TNAME, PLABEL

FROM SYSTEM.SYSACCESS
WHERE VALID = 'N'

If there are no rows found, all packages have been either recreated, reloaded,
rebound or dynamically repreprocessed and the VALID column value for the
package in SYSTEM.SYSACCESS has been changed to “Y”.

Note that CCSID conversion of the data in catalog tables does not occur: only the
CCSID attribute of the columns is modified. If you change the application server
default CHARNAME, system objects of the character data type (for example, table
names and column names) stored in the catalog may be displayed differently. The
reason for this is that a code point may represent different characters in different
code pages.

If you want to change the application server default CHARNAME, the default will
not be changed if:
v You specify an invalid value for the CHARNAME parameter
v An error occurs in the verification of the

– New CHARNAME CCSID values
– Classification table
– Translation table.

When the application server is started, it records the application server default
values for CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table. To obtain these values, you can query the
table. For example, to determine the name of the character set that is currently in
use, issue:

SELECT VALUE
FROM SYSTEM.SYSOPTIONS
WHERE SQLOPTION = 'CHARNAME'

For more information about character sets, see “Chapter 12. Choosing a National
Language and Defining Character Sets” on page 225.

52 System Administration

National Language Considerations at Startup: You can use the SET LANGUAGE
command from the operator console to choose a national language so that DB2
Server for VSE messages can be received in the selected language. (You cannot
choose a double-byte character set (DBCS) language, as the VSE operator console
does not support DBCS.) For more information see “National Language Support
for Messages and HELP Text” on page 253.

ACCOUNT
This parameter enables the accounting facility. If ACCOUNT=T or ACCOUNT=D
or ACCOUNT=E is specified, accounting records will be generated and directed to
either a tape file, a SAM DASD file or a VSAM ESDS file, respectively. (The tape or
DASD file must be identified in your job control for starting the application
server.) If the default value of ACCOUNT=N is specified, accounting information
is not generated.

For a complete description of the accounting facility, see “Chapter 10. Using the
Accounting Facility” on page 181.

SYNCPNT
This parameter specifies whether or not a sync point manager (SPM) will be used
to coordinate DRDA2 DUOW two-phase commit and resynchronization activity. It
is only meaningful when the RMTUSERS parameter is greater than zero.

If Y is specified, the server will use a sync point manager, if possible, to coordinate
two-phase commits and resynchronization activity. If N is specified, the server will
not use an SPM to perform two-phase commits. If N is specified, the database
manager is limited to multi-read, single-write distributed units of work and it can
be the single write site. If Y is specified, but the database manager finds that a
sync point manager is not available, then the server will operate as if N was
specified.

The default is SYNCPNT=Y, if RMTUSERS is greater than zero.

DSPSTATS
This two digit parameter specifies what information is displayed and what level of
detail is displayed. If 0 is specified, nothing is displayed. If 1 is specified, the
minimum information is displayed. If 2 is specified, more detail is displayed. The
positional digits correspond to the following informational displays: the first is
checkpoint performance information and the second is counter information to be
displayed at system shutdown.

If the first option is 1, then format 1 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining how often checkpoints occur. If
the first option is 2, then format 2 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining if checkpoint processing is causing
a performance problem.

If the second option is 1, then the “COUNTER *” operator command is issued just
before the application server is shutdown. This is useful for performance tuning.

The SET command changes the value of this parameter without having to stop and
restart the application server. For more information on the SET operator command,
see the DB2 Server for VSE & VM Operation manual.

SECALVER
This parameter determines if the application server will accept users that have
already been verified by another system. If SECALVER=Y, verified users will be

Chapter 4. Planning for Operation of the Database Manager 53

accepted. The requester only needs to send a user ID to be validated. If
SECALVER=N, verified users will not be accepted. The requester must send a user
ID and password to be verified.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

SECTYPE
This parameter determines if the application server will validate a user ID and
password for connect authority using an external security manager or by checking
the DB2 SYSUSERAUTH catalog table. If SECTYPE=ESM an external security
manager will be used to validate the user ID and password. The external security
manager must support the RACROUTE application programming interface. If
SECTYPE=DB2, the user ID and password are validated by checking the
SYSUSERAUTH catalog table.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

TCPPORT
This parameter specifies the TCP/IP port number that the application server will
use to listen for incoming TCP/IP connect requests.

If this parameter is not specified, TCP/IP support will be initialized and the
DBNAME Directory on the TCP/IP client disk will be searched to determine the
port number that the application server will use.

If this parameter is specified with a non-zero value, TCP/IP support will be
initialized and the value specified will be used as the port number that the
application server will use.

If this parameter is specified with a value of 0, TCP/IP support will not be
initialized.

Performance Parameters

NCUSERS
This parameter defines the maximum number of real agents that the database
manager can actively handle at any one time, limiting the number of users that can
be supported by the database manager. The value of NCUSERS is usually less than
the number of connected users anticipated, because not all users will be accessing
data at the same time. This value directly affects the size of the database partition
required.

The number of NCUSERS is limited because some static agent storage for each real
agent is obtained below 16 megabytes.

Figure 17 on page 55 provides guidelines for setting the NCUSERS parameter.
Because these are only guidelines, you should modify them to concur with the
activity on your system. For additional information, see the DB2 Server for VSE &
VM Performance Tuning Handbook.

54 System Administration

Each ISQL user can generate a high level of system activity. If you set NCUSERS
so that all ISQL users can be active at the same time (NCUSERS=number of ISQL
users), you minimize the time that any one user must wait for services. However,
if this number is large, it may cause the database manager to be overloaded. To
prevent this, you should also use the CICS DFHSIT parameter CMXT, which limits
the number of users who can be logged on to ISQL. For information on this
parameter, see “Controlling Access by ISQL Users” on page 117.

Application developers (VSE/ICCF users) typically do a considerable amount of
other activity (such as VSE/ICCF file editing or output scanning). These users
require less service from the database manager, so NCUSERS can be lowered
accordingly.

If you are using VSE guest sharing, the NCUSERS of the VM database machine
should be increased by the number required for the VSE guest. The demand for
services from CICS transaction processing can vary widely, depending on the
nature of the transactions.

The demand for services from batch application programs can also vary
considerably. If you have online or interactive activity on the database manager,
consider limiting the amount of concurrent SQL batch processing.

Note: When the application server is started, there may be one or more in-doubt
logical units of work (LUWs). The value of NCUSERS must be large enough
to handle these. When they have been resolved, the DB2 Server for VSE
agent structures are used to handle new users. The creation and use of agent
structures for resolving in-doubt LUWs takes precedence over all new user
logical units of work. For more information about in-doubt LUWs, see
“Resolving In-Doubt Transactions” on page 96.

NPACKAGE
This parameter defines the maximum number of packages in an LUW, and
together with the value specified for NCUSERS, determines the size of the package
cache. The size of the package cache limits the number of packages that can be
present in storage simultaneously. (Package cache size =
NPACKAGE x NCUSERS.) The default value of NPACKAGE is 10, and that for
NCUSERS is 5, giving a default package cache of 50, allowing 50 packages to be
present in storage simultaneously.

In general, increasing the size of the package cache improves performance of the
database manager. However, do not increase it to the point where system paging
becomes too great. For more information, see the DB2 Server for VSE & VM
Performance Tuning Handbook.

NPACKPCT
This parameter defines the percentage of the package cache that is used in the
calculation of the package cache threshold. The size of the threshold determines the

NCUSERS= 1 for each 1-2 users of ISQL (or other query products)
+ 1 for each 2-5 application program developers (VSE/ICCF users)
+ 1 for each 4-10 non-ISQL CICS users
+ 1 for each batch partition supported
+ 1 for each 4-10 remote users

Figure 17. Guidelines for the NCUSERS Parameter

Chapter 4. Planning for Operation of the Database Manager 55

number of loaded packages that are kept in storage at the end of an LUW.
(Threshold = NPACKPCT percent of package cache.) If the threshold is exceeded,
the loaded packages are freed and returned to the package cache.

The default values for NPACKPCT and the package cache are 30 and 50
respectively, giving a threshold of 15. In general, increasing the size of the
threshold improves performance. For more information, see the DB2 Server for VSE
& VM Performance Tuning Handbook.

NPAGBUF
This parameter specifies the number of 4096-byte data pages kept in storage
buffers at one time. The number of data buffers you want depends on the number
of active users and the nature of their request. The default for NPAGBUF assumes
an average of four buffer pages for each potentially active user (NCUSERS x 4),
plus ten buffer pages for the buffering of catalog and log information.

In general, increasing NPAGBUF improves the performance of the database
manager. However, increasing it also requires an increase in the size of the
database partition. Also -- and more importantly -- it can cause an increase in the
paging rate of the system. It is more efficient to let the database manager do more
I/O operations than it is to let the system do more paging; database I/O
operations are overlapped whereas system paging operations are not. Therefore do
not increase NPAGBUF to the point where system paging becomes too great.

For more information about NPAGBUF, see the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual.

NDIRBUF
This parameter determines the number of 512-byte directory pages to be kept in
storage. Increasing it reduces the number of I/O operations. Again, bigger is better,
until you either run out of virtual storage or cause too much system paging. Each
directory page addresses 128 data pages.

When you set NPAGBUF and NDIRBUF, you have to choose how to split buffer
space between data pages and directory pages. At least initially, you should set
them to the same value. Issue the COUNTER commands to see the actual I/O
activity; then adjust NPAGBUF and NDIRBUF.

For more information about NDIRBUF, see the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual.

NLRBU and NLRBS
NLRBU specifies the maximum number of lock request blocks allowed for one
active user, while NLRBS specifies the number allowed for all active users.
(Usually, two lock request blocks are used for every lock that a user holds.)

The database manager can perform lock escalations, increasing the granularity of
data being locked from either row or page level to dbspace level. In general, you
only need to change the default values of NLRBU and NLRBS if contention
problems occur. Increasing them reduces the number of lock escalations performed
by the database manager.

When either the NLRBU limit for a user is reached or the NLRBS limit is
approached, lock escalation occurs. This results in fewer locks being required, and
lock request blocks being freed. This in turn reduces the opportunities to share
data. For example, when locking is done at a row level, many users may be
updating the same dbspace at the same time. When it is escalated to the dbspace

56 System Administration

level, only one user can update rows in that dbspace. Everyone else must wait
until that person’s update is committed or rolled back.

Escalation can also cause deadlocks. A deadlock occurs when two or more LUWs
are in wait states and dependent on the completion of LUWs that are also in wait
states. For example, suppose two users are updating tables in a dbspace. When the
lock size is escalated to a dbspace level, both users can be locked out, with each
waiting for the other to complete an LUW. The database manager resolves
situations like these by rolling back the newest LUW. For more about locking, see
the DB2 Server for VSE & VM Application Programming manual.

If the default values for NCUSERS (5) and NLRBU (1000) are used, the database
manager defines 2520 lock request blocks, each of which requires 24 bytes; 60480
bytes of virtual storage are required for lock request blocks. With these defaults,
one application could use 1000 lock request blocks and four other applications
could simultaneously use an average of 370 lock request blocks each, before
causing an escalation.

Even though two lock request blocks are needed for each lock, the default values
allow a large number of locks for each application. With the defaults, one
application could use 500 locks while four other applications use an average of 185
locks each.

You should use the NLRBU and NLRBS default values at first, and increase them if
users either are experiencing delays when they access the database manager, or if
they are receiving SQLCODEs of -911, -912, or -915 (rollbacks that occur because of
deadlock, insufficient lock request blocks for the database manager, or insufficient
lock request blocks for a user application, respectively).

Note: These SQLCODEs may also be received during preprocessing, as the locks
are required then as well.

To test the frequency of lock escalations and of deadlocks, use the COUNTER
operator command. Specify both the ESCALATE and the LOCKLMT counters to
get the number of successful escalations and the number of unsuccessful escalation
attempts respectively. (An escalation can fail if the LUW that reached the lock limit
is rolled back because of a deadlock, or if a sufficient number of lock request
blocks cannot be freed.) For example, suppose the operator issues the command
COUNTER ESCALATE LOCKLMT a few times a day and normally receives results in the
range of 10 to 150 for ESCALATE, and 0 to 5 for LOCKLMT. If, one day, the results
are 428 for ESCALATE and 23 for LOCKLMT, a locking problem would be
indicated.

In addition, the SHOW LOCK MATRIX command can be used to display information
about lock request block usage to determine whether unexpected delays are caused
by locking; to monitor how the database manager is using lock request blocks; and
to determine the lock request blocks required for a single application or for a run
of a preprocessor.

One of the values displayed is called MAX USED BY LUW: the maximum number
of lock request blocks used by any one application during an LUW. (When any
LUW starts to exceed NLRBU and the escalation process occurs, MAX USED BY
LUW is set to zero.) All this information can help you determine the required
values for NLRBU and NLRBS.

Chapter 4. Planning for Operation of the Database Manager 57

To establish the lock request block requirements for running a preprocessor, or for
an application that is causing contention problems:
1. Start the application server in multiple user mode with NCUSERS=1, NLRBU

about five times its current setting, and NLRBS set to the same value as
NLRBU.

2. Start the application and allow it to complete processing.
3. Verify that no escalation occurred by displaying the ESCALATE and LOCKLMT

counters. If no escalation occurred, MAX USED BY LUW will show the number
of lock request blocks required.

4. If an escalation did occur, set NLRBU to a value greater than or equal to MAX
USED BY LUW, then start the application server again, and rerun the
application.

If necessary, reset NLRBS. For example, suppose NLRBU is set to 1100, and two
users will run their applications -- each requiring 1100 lock request blocks -- at the
same time. Also assume that any other application requires about 500 lock request
blocks. If NCUSERS is 5, then set NLRBS to at least 3700 (1100 for each of two
applications and 500 for each of three additional applications).

If an application requires more lock request blocks than you have virtual storage
for, you should consider the following alternatives:
v Use either the SQL ALTER DBSPACE or the SQL LOCK statement to change the

locking level of the dbspace used by the application. The ALTER statement
permanently changes the locking level for all applications, while the LOCK
statement can be inserted into an application, and used to change the locking
level only when that application runs. The LOCK statement is the preferred way
to temporarily modify the locking level, because it involves no update to the
catalog tables.

v Consider changing the application: perhaps it is holding locks longer than
necessary. Additional SQL COMMIT WORK statements in the application may
necessitate fewer locks.

v Consider running the application by itself: either in single user mode, where no
locking is required, or in multiple user mode with a reduced NCUSERS and
with NLRBU and NLRBS set as required.

For more information about locking problems and how to solve them, see the DB2
Server for VSE & VM Diagnosis Guide and Reference manual.

DISPBIAS
This parameter determines how the dispatcher selects the order in which agents
get serviced by the database manager. To set it, you need to understand how the
dispatcher works. Only one agent at a time can be serviced; the other agents wait
in a queue. Within this queue, agents are prioritized according to their estimated
resource consumption: those estimated to consume the least are placed at the top,
while those estimated to consume the most are placed at the bottom.

When the active agent returns to the dispatcher, the next agent at the top of the
queue is dispatched. Every time an agent is dispatched, the database manager
reevaluates the priority of the remaining agents, and requeues them according to
their new priorities.

A pure priority dispatcher can present some problems, however. If many
short-running LUWs are present, the longer-running ones may never get serviced:
they are always at the bottom of the queue. To avoid this problem, fair-share

58 System Administration

auditing is used, whereby all the agents in the queue are checked periodically to
see if they are receiving adequate service. When one is found that is not, its
priority is changed and it is moved to the top of the queue.

If fair-share auditing is done frequently, the dispatcher tends to operate more like a
round-robin dispatcher: agents get equal service because those at the bottom of the
queue get bumped to the top more frequently. If it is done infrequently, the
dispatcher tends to operate more like a priority dispatcher: agents get prioritized
service because long-running agents are forced to wait at the bottom of the queue
longer. (Eventually, fair-share auditing causes these agents to get service.)

The DISPBIAS parameter determines how often fair-share auditing is done. When
it is set low (near 1), fair-share auditing is done frequently, and the dispatcher
operates more in round-robin mode. When it is set high (near 10), fair-share
auditing is done infrequently, and the dispatcher operates more in priority mode.

Initially, you should use the DISPBIAS default of 7. If your long-running LUWs are
getting poor service, you may want to use a lower value; if your ISQL users are
often waiting for long-running applications to complete, you may want to use a
higher value. You can use the SET operator command to change the value of
DISPBIAS without having to stop and restart the application server. See the DB2
Server for VSE & VM Operation manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

You may be tempted to set DISPBIAS to 10 to get good response time for ISQL
users. Keep in mind, however, that a long-running LUW can hold a large number
of locks. If other users are waiting for those locks, they must wait until the
application frees them. If the application is waiting at the bottom of the queue,
everyone is waiting. In this situation, you would want to have fair-share auditing
occur more frequently, so the long-running unit can free the resources it has
locked. The default of seven represents a balance between the interests of
long-running and short-running LUWs.

NCSCANS
This parameter determines the number of internal control scan blocks kept for
accessing tables and indexes. These blocks can vary in size and number depending
on the type of query being performed. This discussion is concerned with
long-running requests that might be queries or database change operations.

Scan control blocks contain positioning information related to a query. The
positioning information can result from a user-defined cursor or by an internal
cursor created by RDS. If an index is involved in the query, the size of the scan
control block depends on the key size for that index. An average scan control block
is assumed to be 50 bytes (32 bytes for control information, and an average key
length of 18 bytes).

The maximum table size to hold the scan control block entries for each agent is 32
kilobytes (32768 bytes). This can contain 655 entries of 50-byte scan control blocks,
which in general, is enough to support 255 user-declared cursors. If, however, the
key lengths for indexes are long, the scan table supports fewer user cursors. For
example, if the key length for a given index associated with a cursor is 255 bytes,
an entry would require 287 (255 + 32) bytes, and the maximum number of cursors

Chapter 4. Planning for Operation of the Database Manager 59

possible using that index would be 114 (32 kilobytes divided by 287). That number
would be reduced if the DB2 Server for VSE requests caused internal cursors to be
created. Internal cursors are always smaller than 50 bytes, and cannot use index
keys.

If you have many complex requests, you may have to increase NCSCANS. If it is
not set to a high enough value, users will get SQLCODE -522. For information on
the virtual storage used by NCSCANS, see “Virtual Storage Requirements of
Components” on page 331.

LTIMEOUT
This parameter specifies a general lock wait timeout period for any SQL
application, and especially as the way to avoid global deadlocks for DUOW
applications.

The range of the LTIMEOUT value is 0 to 99999 seconds. The value of zero
indicates that no lock timeout should be enforced for agents connected to this
database. This is the default value for a database.

A nonzero lock timeout value will cause any agents waiting for a lock to have their
current transaction rolled back when the lock timeout period has expired. The
agent will notify the application that a lock timeout has occurred with SQLCODE
-911 (SQLSTATE 40001). A reason code will be returned to indicate whether it is a
deadlock or lock timeout situation (reason code 2 for a deadlock situation and
reason code 68 for a lock timeout situation). The lock timeout period begins at the
moment an agent requests a lock on any database resource. The full lock timeout
period is allowed for each lock request.

The lock timeout control parameter should be adjusted in those environments
where lock contention between applications has started to affect the desired
performance and concurrency levels.

If a lock timeout is required for your environment, it is recommended that your
starting value be equivalent to the maximum period of time that you want an
application to wait for a lock.

Note: The LTIMEOUT parameter is changed through the SET operator command.
The timeout value will affect any users currently in LOCK WAIT. If a user
has been in a LOCK WAIT for 100 seconds and the value of LTIMEOUT is
set to a value less than 100, that user will receive a timeout. For more
information on the SET operator command, see the DB2 Server for VSE &
VM Operation manual.

If lock timeout control is activated, you should ensure that all applications
recognize and can handle the -911 SQLCODE that may be received as the result of
a lock timeout initiated rollback.

Note: New units of work that are waiting to begin because a log archive is
running or is scheduled to run are in a lock wait. The SHOW LOCK
WANTLOCK operator command shows these units of work waiting to
acquire an IX lock on the database. Because log archives can potentially take
a significant amount of time to complete, units of work in this particular
type of lock wait are ignored by the lock timeout function.

60 System Administration

PROCMXAB
This parameter specifies the number of times a stored procedure is allowed to
terminate abnormally, after which a STOP PROC ACTION REJECT is performed
against the procedure and all subsequent SQL CALL statements for that procedure
are rejected. Note that a timeout that occurs while waiting for a stored procedure
server to be assigned for an SQL CALL statement is not included in this count.

PROCMXAB must be an integer between 0 and 255. The default, 0, means that the
first abend of a stored procedure causes SQL CALLs to that procedure to be
rejected. For production systems, you should accept the default.

PTIMEOUT
This parameter specifies:
v The number of seconds before DB2 Server for VSE & VM ceases to wait for an

SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT
interval expires, the SQL CALL statement fails.

v The number of seconds before DB2 Server for VSE & VM ceases to wait for the
START PSERVER command to complete. If the PTIMEOUT interval expires, a
message is displayed and the START PSERVER command terminates.

The default for PTIMEOUT is 180.

Recovery Parameters

LOGMODE
This parameter determines whether archives will be taken for the database and the
log. Specify LOGMODE=A to maintain an archive of the database, LOGMODE=L
to maintain an archive of the log, and LOGMODE=Y if you want logging but do
not want the log archived.

LOGMODE=A allows you to restore the database and apply the current log.
LOGMODE=L allows you to maintain a database archive as well as log archives.
The database archive followed by the log archives are applied during restore, then
the current log is applied.

Use LOGMODE=A or L if it is important to protect the database against media
(DASD) failures; otherwise use LOGMODE=Y.

Note: Each sequence of log archives must be preceded by a database archive, so if
you use LOGMODE=L, you must occasionally take a database archive. You
do not need to switch to LOGMODE=A to do so.

For more information on LOGMODE, see “Choosing a Log Mode” on page 146.

CHKINTVL
This parameter determines how often a checkpoint is taken. A checkpoint is an
internal operation in which data and status information is written to permanent
(DASD) storage, and a summary status record is written to the log data set. A
checkpoint causes two important events:
v Storage pool space is freed.

As updates to data occur, duplicate copies of changed data pages are
maintained. These copies (called shadow pages) are kept in the storage pools of
the pages that were changed. A checkpoint frees the shadow pages, and thereby
frees the storage pool space where they are kept.

v Log space may be freed.

Chapter 4. Planning for Operation of the Database Manager 61

If LOGMODE=Y, a checkpoint typically frees log space by moving the logical
beginning of the log forward to the beginning of the oldest LUW still active at
the time of the checkpoint. If LOGMODE=A or L, log space is only freed when
an archive is taken; not on every checkpoint.

Checkpoints are taken periodically: however, by the time one is taken, there may
be a large amount of data to be committed. If a failure should occur before it is
committed, much processing may need to be redone after the database is restored.

The CHKINTVL parameter lets you take checkpoints at predetermined intervals.
Its value is specified in terms of the number of log pages written between
checkpoints. You can use the SET operator command to change the value of
CHKINTVL without having to stop and restart the application server. See the DB2
Server for VSE & VM Operation manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

By setting it low, you minimize the risk of filling the log or storage pools.
However, because checkpoints are time-consuming operations that suspend SQL
processing until they are completed, they should be taken infrequently. For more
information on setting CHKINTVL, see the DB2 Server for VSE & VM Performance
Tuning Handbook.

SLOGCUSH
This parameter defines the point at which the log cushion is entered and log-full
processing begins. Its value is expressed in terms of the percentage of the log size.
The default of 90 means that when the log is 90% full, log-full processing will be
initiated.

In log-full processing, the oldest active LUWs are rolled back until enough log
space is freed to bring the percentage of the log in use below the SLOGCUSH
level. Ideally, checkpoints and archiving would continually free log space so that
the log would never reach the SLOGCUSH level.

If the log should become 100% full, the database manager would end abnormally,
so you should set SLOGCUSH to a value that allows log-full processing to take
effect (free some log space) before this happens. If the database manager is ending
with log-full conditions, you may want to lower the SLOGCUSH value or increase
the size of your log data sets.

ARCHPCT
This parameter can be used to define a point at which an archive is automatically
initiated. It is used only when LOGMODE=A or L is specified. Like SLOGCUSH,
its value is expressed in terms of a percentage of the log.

Archives free up log space; however, they take some time to complete. If the
SLOGCUSH value is reached during an online archive operation, all SQL
processing is suspended until the archive is done. For this reason, it is best to
ensure that archives are initiated in time to finish before the log fills to the
SLOGCUSH percentage. This is done by setting the value of ARCHPCT lower than
the value of SLOGCUSH.

62 System Administration

When the log becomes full to the ARCHPCT value, a message is issued to the VSE
system operator to mount an archive tape and identify the cuu of the tape drive.
The database manager then takes a database or log archive depending on whether
you have LOGMODE set to A (database) or L (log).

Normally, the operator explicitly archives the database or the log before the
ARCHPCT value is reached, by issuing one of the archive commands. If the
ARCHPCT is reached, meaning that the log is almost full, the action that the
database manager takes depends on the LOGMODE that is in effect. See Table 6 for
a summary of these actions.

Table 6. Summary of Activity When ARCHPCT Level Is Reached

LOGMODE
Parameter

Activity When ARCHPCT is Reached

A An operator message is issued that requests a database archive.

L An operator message is issued that requests a log archive.

Y Because the log cannot be archived, the value for ARCHPCT is ignored.
When the log is full it wraps. If an LUW spans the entire log, a
ROLLBACK WORK is forced for that LUW.

Note: To see how full the log is, you can issue the SHOW LOG command. For a
description of this command, see the DB2 Server for VSE & VM Operation
manual.

SOSLEVEL
This parameter defines the storage cushion for storage pools. Its value is expressed
as a percentage of space remaining in a storage pool. In multiple user mode
processing (and single user mode processing where LOGMODE is not N), if any
storage pool gets full to the point where only the SOSLEVEL percentage of storage
pool pages is still free, a checkpoint is taken to free any shadow pages in use.

If, following this, only enough pages are freed to bring the number of free pages
just above the SOSLEVEL, frequent checkpointing could occur. For more
information, see the DB2 Server for VSE & VM Diagnosis Guide and Reference
manual. If, however, the number of free storage pool pages is still at or below
SOSLEVEL, message ARI0202I is issued once to inform the user that the number of
free pages left in the storage pool is fewer than the SOSLEVEL. This message is
also issued once in single user mode with LOGMODE=N, but no checkpoint is
taken.

Attention: If message ARI0202I is received, it indicates some action may be
needed to prevent imminent filling of the storage pool.

One possible action is to stop the application server and extend that storage pool
by adding dbextents to it. However, you can remedy the situation without
stopping the application server if you have set SOSLEVEL high enough to give
you adequate warning. When the message is received, proceed to remove
unneeded data from the storage pool, either by dropping dbspaces or tables, or by
reorganizing the data with a smaller percentage of free space for each page. In
order to do this, you must have adequate warning to schedule the necessary
processing.

Chapter 4. Planning for Operation of the Database Manager 63

Service Parameters

DSPLYDEV
This parameter:
v Defines where certain informational and error messages are to be routed
v Governs the display of startup messages including initialization parameters

derived from combining the DB2 Server for VSE defaults, parameters read from
a source member, and parameters specified with the EXEC command or job
control statement

v Controls the routing of any DB2 Server for VSE mini-dumps and shutdown
messages.

Depending on the operating procedures at your installation, set DSPLYDEV=C if
the output should be sent to SYSLOG; to L if the output should be sent to SYSLST;
and to B if the output should be sent to both SYSLOG and SYSLST.

Generally, you will want to set DSPLYDEV to either C or B for debugging a
problem from the operator’s console; and to L for normal operations.

DUMPTYPE
This parameter defines whether or not dumps are to be taken, and the amount of
information to be dumped if they are.

DUMPTYPE=N indicates that a dump is not taken.

DUMPTYPE=F gives you a full partition dump on some error conditions,
including trace points.

DUMPTYPE=P gives you a partial dump of the database partition, excluding major
phases (read-only code), on certain error conditions. A dump is not taken when a
limit error (message ARI0039E) or hardware error (message ARI0041E) occurs, or
when a user specification error is detected. It is recommended that you always use
DUMPTYPE=F and not DUMPTYPE=P, as partial dumps generally do not contain
enough information for debugging problems. The partial dump output is also
generated to the trace tape for some trace points.

Generally, you should not run with DUMPTYPE=N (no dumps), but you may find
occasions when you want to prevent dumping.

You can use the SET operator command to change the value of DUMPTYPE
without having to stop and restart the application server. See the DB2 Server for
VSE & VM Operation manual for more information on the SET operator command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

For more information on dumps, see the DB2 Server for VSE & VM Diagnosis Guide
and Reference manual.

EXTEND
This parameter specifies whether or not special recovery commands are processed
at startup. Only set it to Y when you have a DBSS processing error or a severe user
error. For more information on this parameter, see the discussion on starting the
application server to recover from DBSS errors in the DB2 Server for VSE & VM
Diagnosis Guide and Reference manual.

64 System Administration

|
|
|

TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC,
TRACCONV, and TRACSTG
These parameters call the trace facilities during startup (as opposed to the TRACE
operator command). Except for TRACWUM and TRACDRRM (which are not
supported in single user mode), they are used primarily for tracing in single user
mode, but can be set in multiple user mode if you want to start tracing as soon as
possible. For information about tracing, refer to the DB2 Server for VSE & VM
Operation manual.

Security Auditing: The TRACRDS parameter is also used to start security audit
tracing during startup. A security audit is a special case of the normal trace facility.
Unlike other traces, which are usually only started for problem determination, a
security audit trace may be continually active while the database manager is
running. This may be a standard procedure for some installations.

If you do not want the security audit to be continually active, you can start and
stop it with the TRACE operator command instead.

For more information, see the discussion on security auditing in the DB2 Server for
VSE & VM Database Administration manual.

TRACEBUF
This parameter specifies the amount of memory (in kilobytes) to allocate to the
trace buffer. Specifying a nonzero value causes trace output to be stored in a fixed
size buffer in memory. Trace records are stored in wrap-around mode in this buffer,
and when tracing is turned off, the contents of the buffer are written to disk or to
tape (as specified by the ARITRAC FILEDEF statement). The trace buffer is only
created if you specify TRACEBUF with at least one of the startup initialization
parameters TRACRDS, TRACDBSS, TRACDSC, TRACCONV, TRACDRRM,
TRACWUM, or TRACSTG; it is not created if the TRACEBUF default (n=0) is
specified. A suggested size for the trace buffer is 100 kilobytes or more. If you do
not specify TRACEBUF and tracing is requested, trace records are written directly
to disk or tape as the trace points are processed.

Single User Mode Initialization Parameters
Figure 18 on page 66 identifies the initialization parameters that apply when the
database manager is operating in single user mode.

Chapter 4. Planning for Operation of the Database Manager 65

Most of the considerations for setting these parameters are the same as those
described under “Multiple User Mode Initialization Parameters” on page 47, with
the following exceptions:
v The RMTUSERS parameter does not apply.
v The SYNCPNT parameter does not apply.
v The value of SYSMODE is S, which specifies that the database manager is

dedicated to a single application.

PARAMETER DEFAULT MINIMUM MAXIMUM

DBNAME(name)

SYSMODE=S
STARTUP=W R F U
PARMID=name
CHARNAME=name
ACCOUNT=T D E N
DBPSWD=password
PROGNAME=name
DSPSTATS=nn

ENVIRONMENT PARAMETERS

PERFORMANCE PARAMETERS

SERVICE PARAMETERS

RECOVERY PARAMETERS

From DBNAME
directory

__
W

None
INTERNATIONAL

N
None
None

00

__
__
__
__
__
__
__
__
__
00

__
__
__
__
__
__
__
__
__
21

NPACKAGE=n
NPACKPCT=n
NPAGBUF=n
NDIRBUF=n
NCSCANS=n

10
30
14

NPAGBUF
30

1
0
10
10
1

32766
100

400000
400000

655

DSPLYDEV=L C B
DUMPTYPE=P F N
EXTEND=Y N
TRACDBSS=nnn...
TRACRDS=nnnnnnn
TRACDSC=nn
TRACCONV=n
TRACSTG=n
TRACEBUF=n

L
F
N

000...
0000000

00
0
0
0

__
__
__

000...
0000000

00
0
0
0

__
__
__

222...
2222222

22
2
1

99999

LOGMODE=Y A N L
CHKINTVL=n
SLOGCUSH=n
ARCHPCT=n
SOSLEVEL=n

Y
10
90
80
10

__
1
11
10
1

__
99999999

90
99

100

Figure 18. Single User Mode Initialization Parameters

66 System Administration

v The database manager does not generate accounting records when
STARTUP=C|E|L|S|I|M, which are special situations. For more information,
see the DB2 Server for VSE & VM Operation manual.

v The PROGNAME parameter is required (except when
STARTUP=C|E|L|S|I|M, which are special cases), to identify the application
program to be run.

v The NCUSERS parameter is not used; it defaults to 1.
v The DISPBIAS parameter does not apply.
v The NLRBS and NLRBU parameters are omitted (there is no locking in single

user mode).
v The LOGMODE parameter can take the value N, which specifies that changes

made by the application program are not to be logged.
If LOGMODE=N, database changes are only committed when a checkpoint is
explicitly taken (with COMMIT WORK statements).
The ARCHPCT parameter cannot be specified if LOGMODE=N.

v The TRACDRRM and TRACWUM parameters do not apply.

Tape Support
The database manager can write archive information, trace output, and accounting
output to tape files. Users can use tape files for input and output to the DBS utility.
They can also use tape for input and output for a preprocessor, but this use is not
usually done.

To assign tape files, use the usual TLBL job control statements. Most installations
place these statements for the trace, database archive, log archive, and accounting
tapes in the cataloged procedure used to identify the database data sets. An
example of this is under “Step 3: Setting Up Your Database Job Control” on
page 211. Other examples are shown throughout the manual as needed.

Note: All tapes used by the database manager must use IBM standard (EBCDIC)
labels. Unlabeled tapes are not supported.

Starting the Application Server in Multiple User Mode
When the application server is started in multiple user mode, operator commands
can be issued and the operator may receive messages requesting that specific
actions be done (for example, mounting a tape).

If you have a single database, start the application server like any batch job, by
submitting job control statements or entering an EXEC command for ARISQLDS
from the system operator console. To simplify the startup process, keep the DLBL
and TLBL job control statements in the standard label area.

The job control example in Figure 19 shows how to start the application server by
allowing the default initialization parameters to set up a normal multiple user
mode environment.

Chapter 4. Planning for Operation of the Database Manager 67

Notes:

1. ARIS71PL is a cataloged procedure that contains the LIBDEF statements that
refer to the DB2 Server for VSE production libraries. It is updated during the
initial installation of the database manager. See the DB2 Server for VSE Program
Directory manual for instructions on how to create this procedure.

2. ARIS71DB is a cataloged procedure that contains the DLBL job control for
operating the database manager on your database. It (or one similar to it) is
defined when you generate the database and should be updated when (or if)
you add dbextents. For more information, see “Step 3: Setting Up Your
Database Job Control” on page 211.

3. For procedures ARIS71PL and ARIS71DB, substitute your own procedures or
job control statements to identify the database and the production libraries.

If you have generated more than one DB2 Server for VSE database, you would
have a job control procedure for each (for example, ARIS71DB, DBNAME01, and
DBNAME02). To start the application server, you would reference the appropriate
cataloged procedure.

There is nothing special about using cataloged procedures as shown in Figure 19:
this is just one of the ways you can use VSE job control facilities to run the
database manager. For other techniques, see your VSE manuals.

The job control statements and procedures must include:
v An EXEC statement to run the program ARISQLDS. This statement can

optionally specify parameters for overriding the default initialization parameters.
v A DLBL statement for the database directory, which must refer to the directory

data set (BDISK) defined for the database being accessed.
v A DLBL statement for each log. Although one log is adequate, two are

recommended to protect against media failures on a log. The logs are named
LOGDSK1 and LOGDSK2.

v One DLBL statement for each dbextent currently defined for the database. The
dbextents are named DDSK1, DDSK2, ..., DDSKnnn.

v LIBDEF (and, perhaps, DLBL and EXTENT) statements that identify the
production libraries and any other needed libraries (for example, user
applications for exits).

v If you intend to use archiving, a TLBL statement for the database archive file.
The file name on this statement must be ARIARCH.

v If you intend to use log archiving, one TLBL statement for the log archive file,
and one for the database archive file that must precede each sequence of log
archives. The file name on the TLBL statements must be ARILARC.

v If you intend to use tracing, job control statements for the trace output file.
The trace output file can be a tape file or a DASD file. If it is to be a tape file,
you need a TLBL statement, and the file name on this statement must be
ARITRAC. If it is to be a disk file, you need a DLBL, an EXTENT, and an
ASSGN statement. If the disk file is managed by the VSE/VSAM Space

// JOB MULTI
// EXEC PROC=ARIS71PL
// EXEC PROC=ARIS71DB
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='DBNAME=SQLDB1_NEWYORK_INV'
/*
/&

Figure 19. Job Control to Start in Multiple User Mode

68 System Administration

Management for SAM Feature, the EXTENT statement is optional, and the
ASSGN statement is not applicable. The file name on the DLBL statement must
be ARITRAC. For examples of job control statements that you can use for tracing
to disk, see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.

v If you intend to use the accounting facility, a job control statement for each
accounting file. (You can use just one accounting file, but two are
recommended.) An accounting file, like a trace output file, can reside on tape or
disk. For an example of job control statements that can be used with the
accounting facility, see “Setting Up a Job Control for the Accounting Files” on
page 181.

Running Multiple User Mode Application Programs

Batch Application Programs
When the application server is started in multiple user mode, batch SQL
application programs can be started by normal means. Figure 20 shows the job
control statements for starting a batch program and for passing user parameters
directly to that program.

Note: If you plan to run your application programs in both multiple user mode
and single user mode, follow the protocols discussed in the section
“CALL/RETURN Protocols for Application Programs in Single User Mode”
on page 72.

Notes:

1. The AUTO keyword is not required, but is recommended.
2. The user program must be preprocessed by the database manager before being

run.

VSE/ICCF Application Programs
Running SQL application programs under VSE/ICCF is the same as running any
program except it is recommended that you set GETVIS to AUTO on the
/OPTION statement. To run user SQL programs, the VSE/ICCF user would do an
/EXEC for the file containing the VSE/ICCF control statements. These statements
load the program and specify the GETVIS=AUTO option, as suggested in
Figure 21.

CICS Transactions
All CICS transaction programs written to use the database manager can be called
using any of the means available under CICS. Usually, transactions are called

// JOB USER PROGRAM WITH USER PARMS
// EXEC USERPROG,SIZE=AUTO,PARM='parm1,parm2'
/*
/&

Figure 20. Job Control to Start a Batch Application Program

/LOAD MYPROG,PARM='...'
/OPTION GETVIS=AUTO
/DATA

v
v
v

Figure 21. Example of VSE/ICCF Control Statements for Running an Application Program

Chapter 4. Planning for Operation of the Database Manager 69

directly from a terminal. If the terminal user has signed on to CICS, the CICS user
ID is used as the default user ID for SQL operations done by the transaction only
if the transaction does not issue an SQL CONNECT statement. If the terminal user
has not signed on, the default user ID for CICS users is used. This ID was defined
when online support was started through the CIRB or CIRA transaction. For a
more complete discussion, see the DB2 Server for VSE & VM Application
Programming manual.

CICS transactions can also be initiated by other means not directly tied to users. In
these situations, the default user ID will be the one defined by the CIRB or CIRA
transaction.

For CICS SQL transactions to be run, the database manager must be running in
multiple user mode, and the online support must have been started with either the
CIRB or CIRA transaction.

CICS Pseudo-Conversational Transaction Considerations: “Pseudo-
conversational” refers to a technique for coding CICS transactions that interact
with a user at a terminal. The transaction is not active while it is waiting for the
user to enter a response. The following scenario shows one method of coding a
pseudo-conversational transaction:
1. The transaction writes a question on the terminal.
2. The transaction issues a CICS RETURN with the TRANSID parameter specified.
3. The user enters the response.
4. CICS restarts the transaction automatically.
5. The transaction interprets the response.
6. The transaction can then ask another question or end.

ISQL is not pseudo-conversational. It runs as two CICS transactions (named ISQL
and CISQ). When a long-running SQL statement is being processed, the ISQL
transaction:
1. Issues message ARI7044I:

Command in progress. Terminal is now free.

2. Times out
3. Ends with a CICS RETURN without the TRANSID parameter.

This allows the user to enter ISQL CANCEL to cancel a long-running SQL
statement. If this is not done, the ISQL transaction is restarted by the CISQ
transaction when the SQL statement completes. The results of the SQL statement
are displayed when the ISQL transaction is restarted by the CISQ transaction.

If the ISQL transaction times-out (ends with message ARI7044I) and a
pseudo-conversational transaction is started, the following events can cause
confusion:
v If the pseudo-conversational transaction requests input from the user (and issues

a RETURN with TRANSID specified), the user is not able to cancel ISQL with an
ISQL CANCEL command, because the ISQL CANCEL is interpreted by CICS as
data to the pseudo-conversational transaction.

v If the pseudo-conversational transaction requests input from the user (and issues
a RETURN with TRANSID specified), and processing of the long-running SQL
statement ends before the user completes input and presses the ENTER key,
ISQL will display the SQL statement output on the terminal. This will overlay
any input that the user may have typed on the terminal for the

70 System Administration

pseudo-conversational transaction. The transaction is waiting for input, but the
request for the input has been overlaid by the ISQL output. The
pseudo-conversational transaction continues to wait for input, so the user can
enter input to it after the ISQL transaction either times-out or ends.

To eliminate this confusion, avoid running pseudo-conversational transactions and
ISQL on the same terminal at the same time.

Starting the Application Server in Single User Mode
An application program running in single user mode runs in the database partition
under the control of the database manager. The application server is started in
single user mode (SYSMODE=S), and the program name is provided as an
initialization parameter (PROGNAME=name).

Figure 22 shows an example. When the application server is started, it passes
control to the application program specified by the PROGNAME parameter. All
other initialization parameters are allowed to default.

Note: The PROGNAME parameter is not used if STARTUP is specified as C
(database generation), E (adding dbextents), L (log reformatting or
reconfiguration), S (adding dbspaces), I (reorganization of catalog indexes),
or M (catalog migration). These types of startup specify the operation to be
performed, so a program name is not needed.

Note: It may be necessary to specify SIZE=(AUTO,nK) for ARISQLDS, where the
nK value specifies the amount of storage required by the programming
language to load run-time routines and perform dynamic storage allocation.

Specifying User Parameters
When starting the application server in single user mode, you can also specify user
parameters to be passed to the application program, along with initialization
parameters passed to the application server. A slash (/) must be placed between
the application server parameters and the application program parameters, as
shown in Figure 23.

Note: Up to 100 characters can be specified as parameters on the EXEC statement
or command. Each parameter must be separated by at least one comma or

// JOB SINGLE
// EXEC PROC=ARIS71PL
// EXEC PROC=ARIS71DB
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,PROGNAME=name'
/*
/&

Figure 22. Job Control to Start in Single User Mode

// JOB SINGLE WITH USER PARMS
// EXEC PROC=ARIS71PL
// EXEC PROC=ARIS71DB
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,PROGNAME=PROG1/parm1,parm2'
/*
/&

Figure 23. Job Control to Start in Single User Mode and Provide User Parameters

Chapter 4. Planning for Operation of the Database Manager 71

|
|
|

|

blank; these commas and blanks also count as characters. The parameter
string cannot extend past column 71. If a continuation is needed, column 72
must contain a continuation character (any nonblank character), and the
parameters must continue in column 16 of the next line.

Parameters are passed to the application program by the standard VSE/ESA
protocol, as shown in Figure 24. When the database manager has processed its
initialization parameters, it passes the address (in register 1) of a pointer to the
application program specified by the PROGNAME parameter. (If there are no user
parameters, the pointer contains binary zeros.)
Application program parameters are not displayed along with the initialization

parameters. Application program parameters also cannot be specified in a DB2
Server for VSE parameter data set.

CALL/RETURN Protocols for Application Programs in Single
User Mode
In single user mode, an application is called using normal CALL/RETURN
protocols, as follows:
Register 1

Pointer to pointer to user parameters
Register 13

Pointer to DB2 Server for VSE save area
Register 14

Return point to the database manager
Register 15

Entry point of the user program.

Register 1

Pointer to
Pointer

Pointer to
Parameters
(or zeros)

Length
(2 bytes)

User Parameters
(0 to 100 bytes)

One way of using this protocol is:

CR 1,15
BE NOPARM
CLC 0(4,1),=F ' 0 '
BE NOPARM

Process User Parameters

NOPARM EQU *

Figure 24. Passing User Parameters to a User Application Program

72 System Administration

Note: This same protocol can also be used by programs running in multiple user
mode.

Upon entry, the application program must store the registers in the DB2 Server for
VSE save area, and restore them before returning control to the database manager.
Failure to do so causes unpredictable results.

The database manager sets an abnormal task termination routine to intercept
abnormal end conditions, including program checks. If the user program issues an
STXIT AB macro instruction, this macro overrides the DB2 Server for VSE STXIT
AB macro instruction. If the user program issues an STXIT PC macro instruction,
this macro overrides the DB2 Server for VSE STXIT AB macro instruction for
program checks. A user program should not issue one of these STXIT macro
instructions.

Notes:

1. A PL/I application program can issue an STXIT PC macro instruction to
override the DB2 Server for VSE exit. If this is done, the database manager
cannot handle a program check, but it can still handle other abnormal end
conditions.

2. When a user runs an application with the TRAP(ON) run-time option of
LE/VSE and the DB2 Server for VSE application is running in single user
mode, LE/VSE and DB2 Server for VSE keep track of calls to and returns from
the database. If a program interrupt or abend occurs when the application is
running, the LE/VSE condition manager is informed whether the problem
occurred in the application or in the database manager. If the program interrupt
or abend occurs in the database manager, the LE/VSE condition handler passes
the condition back to DB2 Server for VSE. For more information, see the section
“Condition Handling with LE/VSE” in the DB2 Server for VSE & VM
Application Programming manual.

An application program should always return control to the database manager (if
possible). It should never issue a CANCEL, DETACH, DUMP, JDUMP, RETURN or
EOJ (or equivalent macro) instruction. These instructions prevent the database
manager from doing its normal shutdown processing, such as closing the database
files and the trace tape file (if one is being used).

The DB2 Server for VSE abnormal end routines issue CLOSE macro instructions for
the database, the trace and accounting files if those facilities were activated, and
the SYSLST file if it was opened. This same close process is also done when the
application program returns control to the database manager at the end of the job.
If you do not return control to the database manager, the files cannot be closed.
However, the database manager does not have to close these files. The VSAM
automatic close function will be started and the application server will still be
accessible. When the application server is next started, VSAM may issue an
informational message stating that the files were not closed in the previous run. If
tracing or accounting were active, their output files may not have had the last
buffer (or buffers) written. And, if the output files were on tape, no tape mark
would be written.

The database manager uses an “eye-catcher” technique for determining when a
specific module is in error. The eye-catcher is displayed in the DB2 Server for VSE
mini-dump. An application program can use the same technique in single user
mode, assuming that the DB2 Server for VSE abnormal end exit has not been

Chapter 4. Planning for Operation of the Database Manager 73

overridden by a user STXIT AB or STXIT PC macro instruction. A suggested
coding example in assembler language is shown in Figure 25.

Notes:

1. The instruction BALR 15,0 can be used just ahead of the USING *,15 instruction
as long as other registers are not used until the DB2 Server for VSE registers
have been saved.

2. The techniques shown here work whether the application program is called by
the database manager, or is called as a job itself. Thus, the same application
program can be run in either single or multiple user mode.

3. The techniques shown here may not always be achievable by a FORTRAN, C,
COBOL, or PL/I program. A program written in one of these languages may
need to be called by a pre-entry routine, to ensure that register 15 contains a
zero (or valid return code) upon return to the database manager. A PL/I
program can use PLIRETC/PLIRETV.

Overriding Initialization Parameters
When starting the application server, you can change the default parameter values
in either of two ways:
v You can specify the parameters in the PARM field of the job control EXEC

statement or command
v You can create a DB2 Server for VSE parameter data set as an A-type source

member, and invoke it with the PARMID initialization parameter. See Figure 16
on page 50 for an example.

You can also combine the two methods. Parameters specified in the parameter data
set override the default values, while those specified with the EXEC override both
the default values and those specified in the parameter data set. Thus, a user who
has a parameter data set with an incorrect parameter value can override the error
with a correct specification on the EXEC statement or command.

USING *,15
B SKIPEYE BRANCH AROUND EYE-CATCHER
DC AL1(16) LENGTH OF CHARACTER STRING
DC CL8'progname' PROGRAM NAME EYE-CATCHER
DC CL8'&SYSDATE' DATE PROGRAM COMPILED
DS 0H

SKIPEYE EQU *
STM 14,12,12(13) SAVE DB2 Server for VSE REGISTERS
BALR 12,0 ESTABLISH BASE REGISTERS
DROP 15
USING *,12
LA 11,MYSAVEAR GET ADDRESSABILITY TO MY SAVE AREA
ST 11,8(13) SAVE ADDRESS OF SAVE AREA IN DB2 Server for VSE SAVE AREA
ST 13,MYSAVEAR+4 SAVE ADDRESS OF DB2 Server for VSE SAVE AREA IN SAVE AREA
LR 13,11 SET REGISTER 13 TO MY SAVE AREA

v
Body of the Application Program

v
EXIT L 15,RETCOD SET RETURN CODE (OR SET TO ZERO)

L 13,4(13) GET DB2 Server for VSE SAVE AREA
L 14,12(13) GET DB2 Server for VSE REGISTER 14
LM 0,12,20(13) GET OTHER DB2 Server for VSE REGISTERS
BR 14 RETURN TO DATABASE MANAGER

Figure 25. Use of an Eye-catcher by an Application Program

74 System Administration

When all the values of the initialization parameters have been resolved, the final
values (or defaults, if no values have been overridden) are displayed on SYSLOG,
SYSLST, or both (according to the value of the DSPLYDEV parameter).

You can use up to 100 characters on the EXEC command for specifying parameters.
Separate each parameter by at least one comma or blank, but the commas and
blanks also count as characters. An example of specifying parameters with the
EXEC command is:

EXEC ARISQLDS,SIZE=AUTO,PARM='DSPLYDEV=B,DUMPTYPE=F'

Because of the 100-character limit for parameters on the EXEC statement or
command, you may choose to set up your initialization parameters in one or more
A-type source members. Such an arrangement allows you to specify more user
parameters (if any) when running application programs in single user mode. User
parameters (those for the application program itself), cannot be specified in a
source member, and must be specified in the PARM field of the job control EXEC
statement or command. If you plan to use application program parameters, refer to
“Specifying User Parameters” on page 71.

Creating a Parameter Data Set
You can store various parameters in A-type source members. You can have as
many A-type source members as you need. Each one can start the application
server for a slightly different environment. To use the parameters, specify the
member name in the PARMID initialization parameter. Figure 26 shows an
example of a job that catalogs a source member.

The rules for specifying parameters in a member are a little different from those
specifying parameters in the job control. In particular:
v The parameters must be in uppercase in a parameter file.
v A blank after a parameter ends the processing of the line, so do not put a blank

between parameters -- anything on the line after the first blank will be ignored.
You can, however, use blanks to put comments in the member, as shown for the
DUMPTYPE parameter in Figure 26.

v A comma at the end of a line is not required, but can make the statement easier
to read.

v User parameters (those destined for the application program itself), are not
allowed in a member containing DB2 Server for VSE initialization parameters. If
the database manager detects any parameters other than its own initialization
parameters, it issues error messages and stops.

// JOB CATALPRM
// EXEC LIBR

ACCESS SUBLIB=LIBRARY.SUBLIB
CATALOG PARMXMPL.A
DBNAME=SQLDB1_NEWYORK_INV,RMTUSERS=50,
DSPLYDEV=B,NDIRBUF=20,SYSMODE=S,
PROGNAME=USERPROG,NPAGBUF=20,
DUMPTYPE=F COMMENT - FULL PARTITION DUMP
NCSCANS=20

/+
/*
/&

Figure 26. Job to Catalog a Source Member

Chapter 4. Planning for Operation of the Database Manager 75

Stopping the Application Server
This section discusses the following topics:
v Taking an archive
v Verifying the directory
v Online support considerations

In single user mode, the application server stops itself when the task is completed.
In multiple user mode, the operator stops it by issuing the SQLEND operator
command. In both modes, the database files and the trace file (if active) are closed.
The SQLEND command is described in the DB2 Server for VSE & VM Operation
manual.

The SQLEND command can be entered from the VSE system operator console
only. Its format is shown in Figure 27. The ARCHIVE, LARCHIVE, and
UARCHIVE parameters are used to initiate archive activities after the database has
been shut down, and are discussed in the next section. The NORMAL parameter is
used to shut down the database when all work in progress is completed. The
QUICK parameter is used to stop all work in progress and shut down
immediately. The TRCPURGE parameter is used if you want to purge the contents
of the trace buffer at DB2 Server for VSE shut down. You can also specify the
DVERIFY parameter to do a directory verification.

Taking an Archive
The SQLEND command can be set up to enable the operator to take a database or
log archive after all DB2 Server for VSE activity has stopped. The following
parameters are available for archiving:
v ARCHIVE for a database archive using DB2 Server for VSE facilities
v LARCHIVE for a log archive using DB2 Server for VSE facilities
v UARCHIVE for a database archive using user facilities.

Attention: User archive facilities are available for the database, but not the log.
Never attempt to use user facilities to archive a log.

The most appropriate time to take an archive is at shutdown, so consider setting
up a procedure for periodic SQLENDs with the ARCHIVE, UARCHIVE, or
LARCHIVE parameters, as needed.

For both database and log archives, online archives are disruptive to users. Taking
archives during SQLEND avoids this disruption. In addition, database archives
taken at SQLEND contain data that is consistent, whereas those started by operator
ARCHIVE commands or triggered by ARCHPCT typically contain uncommitted or
incomplete data, and require information from the log to make the data consistent.
(Consistency is not a problem for log archives regardless of when they are taken,

�� SQLEND
NORMAL

ARCHIVE
LARCHIVE
UARCHIVE
QUICK

DVERIFY TRCPURGE
��

Figure 27. SQLEND Operator Command

76 System Administration

because the database manager always waits until all LUWs end before taking the
checkpoint on which the log archive is based.)

To determine the best recovery procedures for your installation, see “Recovering
from DASD Failures that Damage the Database” on page 145.

If the operator specifies ARCHIVE or UARCHIVE when LOGMODE=Y, the
database manager automatically switches the LOGMODE to A. To resume running
with LOGMODE=Y, the operator must do a COLDLOG. See “Switching Log
Modes” on page 163.

Should you decide not to take an archive at shutdown, specify NORMAL or
QUICK. During a normal shutdown, the database manager allows all active LUWs
to finish before ending. During a quick shutdown, the application server ends
immediately: in-progress LUWs receive a negative SQLCODE and are rolled back
the next time the application server is started.

Note: A User Archive will NOT be consistent if it is taken following an SQLEND
QUICK shutdown.

If you are running with LOGMODE=L, and request a database archive, and if there
is data in the log, then the database manager takes a log archive before taking the
database archive. This log archive is written to tape.

Database archives are written to tape. When running a database archive, the
database manager displays external label information for you to write on the tape.
It then requests that you mount the required tape volumes. See “Archiving
Procedures” on page 149 for more information.

When the SQLEND command is issued with the NORMAL, ARCHIVE,
LARCHIVE, or UARCHIVE parameters, a shutdown is not initiated until all users
are disconnected from the application server. The database manager displays a
message showing how many agents are still active. (An agent is an internal
representation for a user.) As each agent becomes inactive, another message is
displayed with an updated count.

The initial count displayed in the message includes all active user agents. When
users who are inactive (not allocated to a real agent) disconnect from the database
manager, no message is displayed to indicate a reduction in agents; the message is
issued only when a user disconnects from the database manager while still
allocated a real agent. This results in gaps in the updated count messages.

After issuing an SQLEND command, and before shutdown commences, the
operator can issue a SHOW ACTIVE command to find out who is still using the
database manager. Users who are connected with no active LUW can prevent the
database manager from performing shutdown operations. For example, an ISQL
user can end an LUW and then leave the terminal without exiting from ISQL. To
determine whether inactive users are preventing the shutdown operation, use the
SHOW USERS operator command to determine which users are still active. For more
information on the SHOW commands, see the DB2 Server for VSE & VM Operation
manual.

If the SQLEND command is issued with the QUICK parameter, all in-progress
work ends and return code 508 is displayed on the console. This command can be
issued at any time, even following an SQLEND issued with another parameter.

Chapter 4. Planning for Operation of the Database Manager 77

Verifying the Directory
The DVERIFY parameter determines whether the database manager checks for
inconsistencies in the directory. It can be specified with the other parameters, but is
ignored if you specify QUICK. It should be specified each time the database is
archived (using either DB2 Server for VSE or user facilities); if it is not, any
inconsistency in the directory will be recorded in the database archive, so a
subsequent restore operation using that archive would fail.

Even if you have not requested a database archive, you should periodically verify
the directory (perhaps every few days, depending on the volume of update
activity). Otherwise, inconsistencies may surface later. For example, an
inconsistency can cause an abnormal end during checkpoint processing. Early
detection reduces data loss.

If an error is found in the directory, a message is displayed. If this happens, and
you had specified ARCHIVE, the archive is not taken. If you had specified
UARCHIVE (a database archive using user facilities), then when you are prompted
to take the archive, do not do so. However, if you had specified LARCHIVE, the
log archive is taken; the inconsistency in the directory does not affect the log, so
the log archive is still valid. For information on recovering from directory
verification errors, see the DB2 Server for VSE & VM Diagnosis Guide and Reference
manual.

Online Support Considerations
If you are supporting an online (CICS) environment, you should stop the online
support before ending the application server, in order to clean up CICS transaction
processing efficiently. To stop the online support, enter the CIRR or CIRT
transaction. For more information on the effect of a shutdown on online
applications, see “Stopping the Online Support -- The CIRT Transaction” on
page 110 and “Removing Connections -- The CIRR Transaction” on page 98.

Note: For DB2 Server for VSE, each link from the Online Support requires a
dedicated agent, whether or not these agents are actually active. SQLEND
NORMAL will not terminate these connections.

78 System Administration

Chapter 5. Operating the Online Support

This chapter explains how to enable VSE guests to access an application server on
a VM operating system, and how to operate the VSE online support.

Operating VSE Guest Sharing
Your VSE online users can access an application server on a VM host operating
system when the VSE operating system is running as a guest in a virtual machine.
(DRDA support is not provided with the VSE guest sharing function.) Database
switching is supported for CICS online applications, which means that one
resource adapter in one CICS region can connect to multiple application servers.
Any CICS transaction in the CICS region can connect to any of the DB2 Server for
VM application servers to which the online resource adapter has established
connections. This means that:
1. Different transactions in a CICS region will be able to connect to different DB2

Server for VM application servers
2. Single transactions will be able to connect to different DB2 Server for VM

application servers in different units of work.

The DB2 Server for VM application server can be accessed by specifying the
server_name parameter on the CIRB transaction or on the CIRA transaction. The
DB2 Server for VM application server must be defined in the DBNAME Directory.
The DBNAME Directory provides the mapping of mapped DBNAME to resid. See
“Choosing an Application Server Name” on page 23 DB2 Server for VSE System
Administration for more DBNAME Directory information. The resid is the basic
DBNAME, and must be the same as the one specified in the SET APPCVM
command during the VSE initial program load. If there are multiple DB2 Server for
VM servers on the VM host, there can be more than one SET APPCVM command.

The VM application server being accessed can be either on the same processor or
on another processor in the network. For batch applications and for online users
who want to access an application server on another processor in a SNA network,
you must issue the SET APPCVM command when you start VSE. The command
provides routing information for both batch and online users. Note that SET
APPCVM is required only if VTAM is to be used in the connection. If the server
and requester are in a TSAF collection on the same node, it is not necessary to
issue the SET APPCVM command.

Figure 28 on page 80 shows the syntax of the SET APPCVM command.

© Copyright IBM Corp. 1987, 2000 79

The variables have the following meanings:

resid
The resource identifier of the DB2 Server for VM application server which is
the same as the resid parameter on the IUCV *IDENT entry in the database
machine directory for VM operating systems.

avs_parameter_block
Only specify these parameters if the application server you want to access is in
an SNA network. The names are defined by VTAM* statements when the
network is built, and have these meanings:

resid
The resource identifier of the DB2 Server for VM application server. This is
the same as the resid parameter on the IUCV *IDENT entry in the database
machine directory on VM.

gateway_name
This corresponds to an APPL statement at the local system. To the SNA
network, gateway_name is an LU with the same name.

target_LU_name
This corresponds to an APPL statement at the remote system.

mode_name
This corresponds to a mode table entry at the local and remote systems.

The parameters must be specified in the order shown above.

For more information about the AVS parameters, see the VM/ESA: Connectivity
Planning, Administration, and Operation manual. For more information on the IPL
SET APPCVM command in VSE, see VSE/ESA System Control Statements.

Note: The VSE Guest sharing facility requires 40KB of real storage for each
database communication link. For more information on providing real
storage, see VSE/ESA System Control Statements

Operator Responsibilities
VSE guest sharing is monitored from the VM console. All DB2 Server for VM
operator commands can be used. In addition, in-doubt LUWs can be forced from
the VM console.

Online support is required for ISQL and CICS transaction programs that access the
application server. The DB2 Server for VSE online resource adapter must be started
so that the application server can be accessed from the CICS online environment. If

�� SET APPCVM TARGET resid

avs_parameter_block

��

avs_parameter_block:

(resid,gateway_name,target_LU_name,mode_name)

Figure 28. SET APPCVM Command

80 System Administration

this is not done, and a CICS transaction attempts to access the application server,
CICS will end the transaction with CICS/VSE abend code AEY9.

Operation of the online support involves the following:
1. Starting the application server in multiple user mode, either before or after

CICS is started. (The online environment is not supported in single user mode.)
2. Starting the DB2 Server for VSE online support by running the CIRB

transaction under CICS. The CIRB transaction accepts a list of server names.
This allows online access to multiple application servers to be established from
one command. After CIRB has successfully completed its processing, the online
resource adapter is ready to handle SQL requests from CICS transaction
programs (such as ISQL).

3. After the online resource adapter is started, the CICS transaction CIRA can be
used to add connections or enable online access to other application servers.
CIRA can be entered multiple times with different server_names. This establishes
the connections or enables online access to the specified application server.
CIRA also accepts a list of server_names so that online access to multiple servers
can be established with one command.

4. The transaction CIRR can be used to remove connections or disable online
access to a particular application server or list of application servers. The online
resource adapter is terminated if the CIRR transaction removes the connection
or disables online access to the last application server.

5. Displaying information about active CICS transactions (including ISQL) that
access an application server by using the CIRD transaction. The CIRD
transaction accepts a server_name parameter to display the transactions
accessing a particular application server. The * keyword can be specified to
display all transactions on all of the application servers (for example, CIRD *).

6. Changing the default application server using the CICS transaction CIRC.
7. Stopping the online support without stopping either CICS or the application

server by issuing the CIRT transaction. The CIRT transaction terminates all
connections or access to all application servers and then terminates the online
resource adapter.

If a local application server becomes unavailable for some reason, only the
connections to that application server are lost. The online resource adapter remains
active and connections or online access to other application servers can still be
used. When the local application server becomes available again, the CIRA
transaction can be used to re-establish connections to it. If there are any in-doubt
LUWs associated with this application server, they will be resolved at this time.

If the default application server becomes unavailable, a new default server is not
established automatically. Users attempting to connect to the default server will
receive a message indicating that the server is not available.

These steps are described in detail below. For more information on starting and
stopping online support for VSE guest sharing, see the DB2 Server for VSE & VM
Operation manual.

Starting the Online Resource Adapter -- The CIRB Transaction
To activate the online support, run the CIRB transaction. When it completes, the
resource adapter is enabled. Only when this happens can user transactions be
executed.

Chapter 5. Operating the Online Support 81

CIRB has six parameters:

The parameters are described in the following table:

Table 7. CIRB Transaction Parameters

Parameter Default Description

PASSWORD
(positional parameter
1)

SQLDBAPW This parameter establishes the operator’s authority to activate
online access to a local application server. The password identifies
the CICS subsystem. The user ID of the subsystem is the CICS
APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to
the local application server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See “Password Implications
on Online Resource Adapter Termination” on page 114 for more
details.

NOLINKS (positional
parameter 2)

3 This parameter establishes the number of links (paths) that should
be initialized to a local application server. Specify this parameter as
a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5.)

DEFUID (positional
parameter 3)

CICSUSER This parameter identifies the default user ID used by the online
support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM
specifications for a user ID.

�� CIRB ,
password,

,
nolinks,

,
defuid,

,
rmid,

,
langid,

�

�

2

Default_server

server_name
,

(server_name
,)

��

Figure 29. CIRB Transaction Syntax

82 System Administration

Table 7. CIRB Transaction Parameters (continued)

Parameter Default Description

RMID (positional
parameter 4)

0 This parameter identifies a unique resource adapter. You must
specify it only if your installation has multiple CICS partitions
active in the same VSE/ESA system, and if each CICS partition
allows online access to a server. For the case of a local application
server, recovery requires that the local server know the resource
adapter it is servicing. You must specify this parameter as a decimal
value between 0 and 63.

If the DB2 Server for VSE online support detects that this ID is not
unique in the system, it issues a message. The CIRB transaction
then ends without enabling the resource adapter.

There can be only one DB2 Server for VSE resource adapter enabled
in a single CICS partition. An attempt to enable a second DB2
Server for VSE resource adapter causes the DB2 Server for VSE
online support to issue a message, and the CIRB transaction ends
without enabling the second resource adapter. The first one,
however, remains in effect.

LANGID (positional
parameter 5)

specified at
installation

This parameter defines the language the DB2 Server for VSE online
support uses to display error and information messages. The
language you specify on this transaction becomes the default
language for ISQL, CBND, C2BD, DSQG, DSQU, DSQD, and
DSQQ. The ISQL welcome logo always appears in the language
specified on this transaction.

This parameter must take the form of a minimum 1-character,
maximum 5-character language ID. You must use one of the
language IDs in the LANGID column of the
SQLDBA.SYSLANGUAGE table. The language ID must identify a
language you have installed on the DB2 Server for VSE server. To
choose another language, use the SET LANGUAGE command in
ISQL. The following IDs can be specified on the CIRB transaction:

AMENG American English

UCENG Uppercase English

FRANC French

GER German

KANJI Kanji (Japanese)

HANZI Simplified Chinese

If this parameter is omitted, the language defaults to the language
chosen as the default at installation.

SERVER-NAME
(positional parameter
6)

Determined from
DBNAME directory or
“SQLDS”.

This parameter enables you to specify the application servers that
you want to access. If the list format specifies multiple servers, the
first one in the list becomes the default server. Only the first
server_name in the list may be omitted.

If this parameter (or the first one in the list) is omitted, the default
server is determined from the DBNAME directory. If the DBNAME
directory does not specify a default server, then SQLDS becomes
the default server name.

The CIRB transaction establishes the default application server. If the server_name
parameter is not specified on the CIRB transaction, then the default server is

Chapter 5. Operating the Online Support 83

determined from the DBNAME directory. If a single server_name is specified on
the CIRB transaction then it becomes the default server. If a server_name list is
specified on the CIRB transaction, the first server_name in the list becomes the
default server. If the first server_name in the server_name list is blank then the
default server is determined in the same way as when the server_name is omitted
from the CIRB transaction. For example:
CIRB ,,,,,(,SQLMACH2)

This starts connections to two servers. The first one is the default server and its
name is determined from the DBNAME directory or if it is not specified in the
DBNAME directory it defaults to SQLDS. The second server is SQLMACH2.

Note that the following examples are not allowed. Only the first server_name in
the list can be blank.
CIRB ,,,,,(SQLMACH2,)
CIRB ,,,,,(SQLMACH2,,SQLVM)

The number of server_names that can be specified on the CIRB command is
limited by the size of the input line on the VSE console or a CICS terminal. The
VSE console only allows one line of input. A CICS terminal allows much more
input. If short server_names are used more can fit on the command. Server-names
can be up to 18 characters long. If all of the required server_names cannot fit on
the command, the CIRA transaction must be used to establish connections for the
remaining server_names.

Figure 30 shows an example of using the server_name list on the CIRB transaction.

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

If you try to establish connections to an application server to which connections
already exist, or to which online access is already enabled, the message “ARI0457W
Connections to <server_name> already exist.” is displayed. No action is taken against
that server. If the connections to a local server need to be changed they must first
be removed using CIRR or CIRT and then re-established using CIRA or CIRB. An
example is shown in Figure 31 on page 85.

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach1)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055B2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0457W Connections to SQLMACH1 already exist.
F2-002 ARI0402E Connections to SQLMACH1 could not be established.

Figure 30. Example of CIRB with Duplicate Server Names

84 System Administration

Note that each local server in the list has its connections established with the same
values for password, number of links, RMID, default user ID and language ID that
were specified.

If the CIRB parameters for each server are identical, all of the connections or online
access can be established with one CIRB transaction, as illustrated in Figure 32.

All three local application servers have the same number of connections, the same
default user ID, the same password, the same RMID and the same language ID.

If one or more of the parameters must be different, then all of the connections
cannot be established with one CIRB transaction. You will need the CIRA
transaction to add additional servers.

If you enter a remote server name in the server_name parameter of the CIRB or
CIRA transaction, CIRB or CIRA will not establish any links or sessions to the
remote system where the remote server runs. The following message will not be
displayed by CIRB or CIRA when it is processing a remote server, but will display
for local servers.

ARI0454I Connections to server_name established.
RMCV at XXXXXXXX.

CIRB or CIRA will display the following message instead for every remote server
processed at initialization time:

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach2)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055B2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
2 cirr ,,,sqlmach2
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
2 cira ,5,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A2E0.

Figure 31. Example of Changing Connection Settings

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach2,sqlvm)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055A2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055D2E0.

Figure 32. Example of CIRB with Server-Name List

Chapter 5. Operating the Online Support 85

ARI0467I RMCV for remote server_name established.
RMCV at XXXXXXXX.

Starting the CIRB Transaction
The CICS sequential device support can be used to automatically start the CIRB
transaction when CICS is started. Either a CRLP (a card reader or line printer)
device, or a sequential DASD device must be defined in the CICS DFHTCT, to
allow them to simulate terminals.

If a CRLP device is defined, the CIRB transaction can be run automatically by
including it in the CICS startup jobstream. The CIRB statement should be coded
just as it would if it were entered from a terminal. Include a slash (\) at the end of
the statement to indicate the end of data. Figure 33 shows an example:

If a sequential DASD device has been defined in the CICS DFHTCT, you must
define two sequential DASD data sets: one input and one output. These can be
either sequential access method (SAM) data sets or SAM-managed VSAM data
sets. The input data set must contain the CIRB statement. (A utility such as DITTO
or VSAM IDCAMS can be used to load the CIRB statement to the data set.) The
output data set will contain the messages from the CIRB startup process.
Whichever type of device is used -- CRLP or DASD -- do not include a CSSF
GOODNIGHT statement following the CIRB statement, as this would allow the
statement to be processed in all CICS startup modes (cold, auto, and emer).

The application server must be started before CICS for automatic startup to work.
When the CIRB transaction successfully ends, the following message is displayed
at the VSE console:

ARI0410I Resource Adapter ARI0OLRM is enabled

For more information about CICS sequential device support, see the CICS/VSE
Resource Definition (Macro) manual. For information about the DFHTCT entries
required to define a sequential CRLP or DASD device, see the DB2 Server for VM
Program Directory.

If a failure occurs, you can issue the CIRT transaction with the QUICK mode. This
mode disconnects links to the application server. For more information, see
“Stopping the Online Support -- The CIRT Transaction” on page 110. If the above
action does not solve the problem, CICS must be recycled.

SCHEDULE Authority for VSE Guest Sharing
The VM database must grant SCHEDULE authority to the CICS/VSE application
identifier.

Implicit CONNECT Support
This support allows development of online applications that do not issue an SQL
CONNECT statement. With this support, operators need not enter a user ID and
password as input to the online application, which is useful if your installation
requires terminal users to sign on using the CSSN transaction. For some
transactions accessing the database, the CICS sign-on verification may be sufficient.
It can also be useful if you have just installed the database manager and find it
convenient to have all users identified by one name (for example, CICSUSER).

// EXEC DFHSIP,SIZE=NNNNK
CIRB PASSWORD,3,PRODCICS,0\
/*

Figure 33. Automatically Starting CIRB

86 System Administration

If a CICS transaction has not yet established a user ID for the current or prior unit
of work, and the user has signed on to CICS using the CESN (or CSSN)
transaction, online support will attempt to use the eight-character signon user ID.
The user ID used will be the value returned by the CICS command

EXEC CICS ASSIGN USERID(data-area)

If you start the online support with CIRB, then before the online resource adapter
is able to run the implicit connect support to a local application server, it verifies
that the CICS subsystem has SCHEDULE authority on the local application server.
Refer to procedure ARIS080D in the DB2 Server for VSE Program Directory manual,
which shows how the CICS subsystem is identified to the application server and
granted the necessary SCHEDULE authority. Modify the example procedure
ARIS080D if any of the following are true:
v Your CICS subsystem does not use the default APPLID (DBDCCICS). It specifies,

for example, APPLID=CICSTEST for the CICS DFHSIT.
v You want to change the password. For example, you want to identify the name

by a more secure password than SQLDBAPW.

Given the above two conditions, you would change the GRANT statement to read:
Grant the necessary SCHEDULE authority as follows:

GRANT SCHEDULE TO CICSTEST IDENTIFIED BY cicspw

where cicspw is the new password. The required password input parameter for
CIRB (and CIRT) is now cicspw.

If the online support can verify that the CICS subsystem has SCHEDULE authority,
it sets the DEFUID into each of the agents allocated for online use. The DEFUID
you specify as an input parameter for CIRB is the user ID used for all online
applications connecting to a local application server that do not issue an SQL
CONNECT statement and do not have a valid CICS signon user ID.

Supporting Multiple User Online Access
The NOLINKS input parameter to CIRB causes the allocation of a fixed number of
links to the local application server. The online support suballocates the links to
CICS transactions when they issue their first SQL request. When a transaction has
a link, it keeps it until the end of the logical unit of work. When the number of
such transactions exceeds NOLINKS, some transactions have to wait for links, and
link contention occurs. Some planning is required to optimize the NOLINKS
parameter. NOLINKS varies as your application mix varies.

Consider these things about the NOLINKS input parameter:
v Initially, allow one link for each one to two ISQL users, and one link for each

four to ten users of preplanned transactions.
v The NOLINKS value must not exceed that of the NCUSERS initialization

parameter, which defines the total number of links to the application server.
v The online support uses the CICS monitoring facility to collect performance

data. For a given NOLINKS and a given period of the day, you can gather
information on the number of link waits, total link wait time, and total time
holding the link. For more information, see the DB2 Server for VSE & VM
Performance Tuning Handbook.

v When a logical unit of work ends, the online support makes the freed link
available to all waiting transactions. The first waiting database transaction that
CICS dispatches gets the link. To define allocation priority for the online links,
consider using the operator, transaction, and terminal priority mechanisms of

Chapter 5. Operating the Online Support 87

CICS. (These are specified with the OPPRTY keyword of DFHSNT, and the
TRMPRTY keyword of DFHTCT respectively.)

v Consider defining one or more transaction classes for the transactions that access
the database manager, and limit access by using the CICS CMXT keyword of
DFHSIT. By correlating CMXT with NOLINKS, you can ensure that storage
resources in the CICS partition are not used until links are available.

v Consider a similar technique to control the number of active ISQL users. Rather
than limit the total number of active ISQL users, you can control the number of
active users from a given department or user group. See “Controlling Access by
ISQL Users” on page 117.

CIRB Impact to System Resources
If the NOLINKS input parameter is n, system resources are used as follows:
v You have n links allocated to the application server, and n application server

agents are used. The agents remain allocated for online applications until CIRT
is entered.

v Additional virtual storage is required in the CICS partition for the online
support. See “Appendix A. Processor Storage Requirements” on page 331.

v For each concurrent transaction that is attempting to access the application
server, additional virtual storage is required in the CICS partition. See
“Appendix A. Processor Storage Requirements” on page 331.

Supporting Multiple CICS Partitions
Your installation can have multiple CICS partitions, each with access to the
application server. For recovery purposes, each instance of an active online
resource adapter must have a unique identifier. You can do this with the CIRB
RMID input parameter. You should keep the RMID for a CICS partition consistent,
by relating the RMID to the priority of each CICS, specifying a 0 for the
production CICS, 1 for the test-level CICS, and so on. If your installation has only
one CICS system, the RMID input parameter need not be specified.

Adding Connections -- The CIRA Transaction
The CIRA transaction has four parameters:

The parameters are described in the following table:

�� CIRA ,
password,

,
nolinks,

,
defuid,

�

�

2

server_name
,

(server_name)

��

Figure 34. CIRA Transaction Syntax

88 System Administration

Table 8. CIRA Transaction Parameters

Parameter Default Description

PASSWORD
(positional parameter
1)

SQLDBAPW This parameter establishes the operator’s authority to activate
online access to a local application server. The password identifies
the CICS subsystem. The user ID of the subsystem is the CICS
APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to
the DB2 Server for VSE server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See “Password Implications
on Online Resource Adapter Termination” on page 114 for more
details.

NOLINKS (positional
parameter 2)

3 This parameter establishes the number of links (paths) that should
be initialized to a local application server. Specify this parameter as
a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5).

DEFUID (positional
parameter 3)

CICSUSER This parameter identifies the default user ID used by the online
support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM
specifications for a user ID.

SERVER-NAME
(positional parameter
4)

none This parameter is required and it specifies the additional
application servers (local or remote), that you want to access.

If this parameter is omitted, the message ARI0400E is issued
indicating that an invalid input parameter was entered.

The password, nolinks, defuid and server_name parameters have exactly the same
meanings as on the CIRB command. One exception is that the server_name
parameter is required on CIRA but is optional on CIRB.

The number of server_names that can be specified on the CIRA command is
limited by the size of the input line. As with CIRB, CIRA can be entered on the
VSE console or on a CICS terminal. On the VSE console the input is limited to one
line. On the CICS terminal it can use the full screen. If short server_names are used
more can fit on the command. Server_names can be up to 18 characters long. If all
of the required server_names cannot fit on the command, the CIRA transaction
must be repeated for the remaining server_names. Figure 35 on page 90 shows an
example using the CIRA transaction with a server_name list.

Chapter 5. Operating the Online Support 89

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

The CIRA transaction establishes connections or enables online access to the
specified application servers based on the parameters given on the CIRA
transaction. If a server_name list is used then connections or online access will be
established to each application server in the list using the same set of parameters.
For example:

CIRA thispw,4,thisid,(sqlmach2,sqlvm)

The above command will establish four links to the local application server
SQLMACH2 with password “thispw” and default user ID “thisid.” The RMID and
the language ID are inherited from the CIRB transaction. If the online resource
adapter was started with RMID = 0 and language ID = ameng then any
connections started to that same online resource adapter will also have RMID = 0
and language id = ameng. Then CIRA will establish four links to SQLVM with
password “thispw” and default user ID “thisid.” Again the RMID is 0 and the
language ID is ameng. If CIRA is entered before CIRB was run, the message
“ARI0411I Resource Adapter is not enabled.” is displayed.

If one or more of the parameters must be different, then the server_name list
format of the CIRA transaction cannot be used. The CIRA transaction would have
to be executed separately for each application server that required different
parameters. For example, if three links are required to SQLMACH2 and four links
are required to SQLVM but the other parameters are the same for both servers, the
CIRA transaction must be run for each of them.

CIRA thispw,3,thisid,sqlmach2
CIRA thispw,4,thisid,sqlvm

If you try to establish connections or enable online access to an application server
that is already connected a warning message will be displayed. No action is taken
against that server. If the connections to a local application server need to be
changed they must first be removed using CIRR or CIRT and then re-established
using CIRA or CIRB.

Consider the following scenario. An online transaction program needs to access
three different application servers, SQLMACH2, SQLMACH1 and SQLVM.
SQLMACH2 and SQLMACH1 are running in two VSE partitions and SQLVM is
running under VM and is accessed via guest sharing. We want SQLMACH1 to be
the default server, and we want the default settings for all three servers.

msg f2
AR 015 1I40I READY
2 cirb ,,,,,sqlmach1
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055A2E0.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira ,,,(sqlmach2,sqlvm)
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055D2E0.

Figure 35. Example of CIRA with Server_Name List

90 System Administration

To achieve this we could enter the following sequence of commands. Assume that
our CICS region is running in partition 2, SQLMACH2 is running in partition 4
and SQLMACH1 is running in partition 5.
1. Use the CIRB transaction to start the online resource adapter and establish the

default application server, SQLMACH1.
2. Use the CIRA transaction to establish connections to SQLMACH2.
3. Use the CIRA transaction again to establish connections to SQLVM.

This is illustrated in Figure 36.

Since the settings for the connections to SQLMACH2 and SQLVM are identical,
both connections could be established on the same CIRA command, as illustrated
in Figure 35 on page 90.

Automatic Restart Resynchronization
If a system or subsystem failure occurs while an online application is trying to
commit work and two-phase commit is being used, the unit being committed is
called an in-doubt logical unit of work, because the database manager has
prepared it for commit or rollback but the system or subsystem failure occurred
before the commit completed. In-doubt units of work must be resolved the next
time the application server is started.

Note: CICS/VSE and the local application server will use a one-phase commit if at
most one external resource has been updated. In this case it is not possible
to create an in-doubt unit of work. This means that any CICS transaction
that updates only the local application server resources will not generate
in-doubt units of work.

The CICS/VSE restart resynchronization facility, which is started implicitly when
you issue CIRB or CIRA, resolves the in-doubt units of work created by any CICS
transaction that updated a local application server. To enable it, you must update
the CICS/VSE tables to include the resynchronization transaction.

CIRB and CIRA assume that restart resynchronization is enabled when they are
executed. If, for some reason it has been disabled when CIRB or CIRA is issued, it
will display the message ″ARI0466E CICS restart re-synchronization is not available.

F2-002 DFH1500 - DBDCCICS : CONTROL IS BEING GIVEN TO CICS
msg f2
AR 015 1I40I READY
2 cirb ,,,,,sqlmach1
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055D2E0.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira ,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
2 cira ,,,sqlvm
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055A2E0.

Figure 36. Example of CIRB and CIRA

Chapter 5. Operating the Online Support 91

The <tran> transaction is ended.″ and exit. At this point the system programmer
should ensure that it has been properly enabled and retry CIRB or CIRA.

For information about the updates, see the DB2 Server for VSE Program Directory
manual.

The current implementation of the CICS/VSE restart resynchronization facility
allows it to re-synchronize itself with DB2 Server for VSE online resource adapter
only once. After it has been invoked, CICS discards any information about
in-doubt units of work that it did not resolve. This means that there can be
scenarios where it is not possible to automatically resolve in-doubt units of work.

When the CIRB or CIRA transaction is started, a connection is made to the
READY/RECOVERY agent of the local server to get a ’recovery list’. This recovery
list provides information on any in-doubt agents that need to be resolved for this
server. After this has been done for every local server specified in the CIRB or
CIRA command, the CICS/VSE restart resynchronization facility is invoked, which
will resolve the in-doubt units of work for all of those local servers. A subsequent
CIRA to connect to another local server that also has in-doubt units of work will
fail because CICS has discarded the log information. The in-doubt units of work on
that server must be resolved manually using the FORCE n COMMIT or FORCE n
ROLLBACK commands on the server before the CIRA command will work.

For example, suppose that SQLMACH1 and SQLMACH2 are DB2 Server for VSE
application servers that run on the same VM system and are accessed via guest
sharing. The password used to access SQLMACH1 is ABC and the password used
to access SQLMACH2 is DEF. All the other parameters needed by the two
databases are the defaults. The connections to SQLMACH1 and SQLMACH2 are
established using the following sequence of commands:

CIRB abc,,,,,sqlmach1

CIRA def,,,sqlmach2

Suppose that CICS transactions accessing these application servers also make
updates to the DB2 Server for VSE database as well as some other external
non-CICS resource, so that CICS will use the two-phase commit process. If a
system failure occurs on the VM system while CICS is performing a two-phase
commit to both these databases, then both SQLMACH1 and SQLMACH2 will go
down. When the system is brought back up and SQLMACH1 and SQLMACH2 are
restarted, they will both have in-doubt units of work. If the connections to
SQLMACH1 and SQLMACH2 are restarted the same way as before, only the
in-doubt units of work on SQLMACH1 will be resolved automatically. The
in-doubt units of work on SQLMACH2 will need to be resolved explicitly before
the CIRA command for SQLMACH2 will work.

See Figure 37 on page 93 for an example of this.

92 System Administration

2 cirb abc,,,,,sqlmach1
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira def,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

<System Failure occurs>

F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of DB2 Server for VSE online applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000041 CISQ SQLDBA L080 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:15 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH1.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH1 are disabled.
F2 002 ARI0460W Connections to the default server SQLMACH1

have been disabled.
F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of DB2 Server for VSE online applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000141 CISQ SQLDBA L083 00:00:06 00:01:34
F2 002

Figure 37. Automatic Restart Resynchronization Failure (Part 1 of 2)

Chapter 5. Operating the Online Support 93

However if the connections to SQLMACH1 and SQLMACH2 are established with
a single CIRB or CIRA command, the in-doubt units of work on both servers will
be resolved automatically.

See Figure 38 on page 95 for a detailed example of this.

F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH2.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,sqlmach1
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira def,,,sqlmach2
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.
F2-002
F2 002 ARI0438E Automatic restart resynchronization failed.

A logical unit of work that DB2 for VSE indicated
needed to be resolved was not identified by
the CICS/VSE log as needing resolution.

F2 002 ARI0423A Use the SHOW and FORCE commands to
COMMIT or ROLLBACK the following units of work:

F2 002 ARI0424I User ID = SQLDBA Agent Identifier = 1
Server = SQLMACH2

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 15:33:22 DATE= 08/14/95
F2 002 ARI0455I Connections to SQLMACH2 are disabled.

<From the SQLMACH2 console enter:>
<SHOW ACTIVE>
<FORCE 1 ROLLBACK>

<Now CIRA will work>

2 cira def,,,sqlmach2
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

Figure 37. Automatic Restart Resynchronization Failure (Part 2 of 2)

94 System Administration

2 cirb abc,,,,,(sqlmach1,sqlmach2)
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

<System Failure occurs>

F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000041 CISQ SQLDBA L080 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:15 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH1.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH1 are disabled.
F2 002 ARI0460W Connections to the default server SQLMACH1

have been disabled.
F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002

Figure 38. Successful Automatic Restart Resynchronization (Part 1 of 2)

Chapter 5. Operating the Online Support 95

Assuming CICS restart resynchronization has been properly enabled as described
in the DB2 Server for VSE Program Directory manual, the conditions where in-doubt
units of work must be resolved explicitly are:
1. CICS log missing. This can be from a CICS log media failure, CICS COLD start

which destroys the log contents, or CICS journal is not active so no log data is
created.

2. CICS RESYNCH has already been issued. The log data is discarded by CICS
after the RESYNCH command has been issued even if it was not used. See
Figure 37 on page 93 for an example of this.

To take full advantage of the automatic restart resynchronization the following
should be true:
1. All local application servers with in-doubt units of work must be started on the

same CIRB or CIRA transaction. This means they must have the same
password, default user ID, language, RMID, and number of links to be started.

2. CICS startup should be START=AUTO which lets CICS determine if the startup
will be START=WARM or START=EMER. Any COLD start will erase the log
data and automatic restart resynchronization will not be possible.

Resolving In-Doubt Transactions
Only under exceptional conditions (such as a CICS log media failure) do you have
to resolve in-doubt LUWs explicitly. To do so, issue the SHOW ACTIVE command to
determine those agents that are in-doubt; then issue the FORCE command to commit
or rollback each one:

FORCE n COMMIT

or

FORCE n ROLLBACK

where n is the agent identifier of the in-doubt LUW.

F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000141 CISQ SQLDBA L083 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH2.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,(sqlmach1,sqlmach2)
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

Figure 38. Successful Automatic Restart Resynchronization (Part 2 of 2)

96 System Administration

The discussion in the DB2 Server for VSE & VM Operation manual states that, in
general, FORCE n COMMIT should be entered. The exception is for applications
that access multiple resources (for example, an application that updates a database
and a VSAM file.) For such applications, the operator requires direction from the
developer or user of the application.

You could plan for this situation by keeping a list of all transactions that update
multiple resources. The list should contain the CICS transaction identifier for the
application, and the recommended direction (COMMIT or ROLLBACK) from the
developer. (For more information, see the discussion on online application recovery
in the DB2 Server for VSE & VM Database Administration manual.) Because ISQL
does not update multiple resources, the direction for the ISQL transaction should
always be to commit work.

Changing the Default Server -- The CIRC Transaction
The transaction CIRC can be used to dynamically change the default server. The
CIRC transaction has one parameter:

The parameter is described in the following table.

Table 9. CIRC Transaction Parameter

Parameter Default Description

SERVER-NAME
(positional
parameter 1)

none This parameter is required and it specifies the
application server that you want to become the
default.

If this parameter is omitted, the message ARI0400E
is issued indicating that an invalid input parameter
was entered.

The server-name specified must already have connections or online access
established to it, either from the CIRB or CIRA transactions. If connections to the
specified server do not exist or online access to the specified server was not
enabled from the CIRB or CIRA transactions, the message “ARI0456I Connections to
<server-name> do not exist.” is displayed. In this case the CIRA transaction must
first be run to establish the connections, then the CIRC transaction is run to make
it the default server.

For the following example assume that connections exist to SQLMACH1 and
SQLMACH2 and that SQLMACH2 is the current default server.

�� CIRC server_name ��

Figure 39. CIRC Transaction Syntax

msg f2
AR 015 1I40I READY
2 circ sqlmach1
F2-002 ARI0459I The new default server is SQLMACH1.

The previous default server was SQLMACH2.

Figure 40. Example of CIRC

Chapter 5. Operating the Online Support 97

For this next example assume that connections exist to SQLMACH1 but not to
SQLMACH2.

It is important to note that if the connections to the default server are lost, or
online access to the default application server is disabled, that server is still
identified as the default server. The connections can be lost because the server
went down or because the CIRR transaction was used to terminate the online
access or connection. Users that are trying to connect to the default server in these
cases will receive SQLCODE = -940. If the CIRB or CIRA transaction is used to
establish connections to a local server that is not ready, the message “ARI0418A
Application server <server-name> is not ready. Retry the enable transaction after the
application server starts.” is displayed. If the CIRB or CIRA transaction is used to
establish online access to a remote server that is not ready, an error message will
not be displayed. This is because CIRB or CIRA can not check whether a remote
server is ready or not.

Removing Connections -- The CIRR Transaction
To remove connections or to disable online access to a local or remote application
server, issue the CICS CIRR transaction. The CIRR transaction has four parameters:

The password, mode and interval parameters are the same as on the CIRT
transaction and are described in the following table:

msg f2
AR 015 1I40I READY
2 circ sqlmach2
F2-002 ARI0456I Connections to SQLMACH2 do not exist.
2 cira ,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055D2E0.
2 circ sqlmach2
F2-002 ARI0459I The new default server is SQLMACH2. The previous

default server was SQLMACH1.

Figure 41. Example of CIRC

�� CIRR ,
password,

,
mode,

,
interval,

�

�

2

Default_server

server_name
,

(server_name
,)

��

Figure 42. CIRR Transaction Syntax

98 System Administration

Table 10. CIRR Transaction Parameters

Parameter Default Description

PASSWORD
(positional
parameter 1)

SQLDBAPW This password establishes the operator’s authority to
terminate the online access to the application server.
It must be the same password that was supplied for
the server by the CIRB or CIRA transaction. Refer to
“Password Implications on Online Resource Adapter
Termination” on page 114 for more details.

MODE
(positional
parameter 2)

NORMAL This parameter establishes the shutdown mode:
NORMAL or QUICK. When you specify NORMAL,
the CIRR transaction prevents new online users from
accessing the specified application server. Users who
are already doing work, however, can finish. When
all users complete their work, no online users can
use the specified application server. When you
specify NORMAL for a remote application server,
the shutdown of the access to the remote application
server will complete only when all conversations to
the remote application server have been deallocated.
When you specify QUICK for a local application
server, online access is ended immediately. Online
users cannot finish their work. Their current logical
units of work are rolled back (unless they are
already processing a COMMIT WORK). You can
change from NORMAL to QUICK. However, once
the MODE is QUICK, you cannot change it back to
NORMAL. When you specify QUICK for a remote
server, the QUICK mode is changed to NORMAL.
QUICK mode is not supported for a remote
application server.

INTERVAL
(positional
parameter 3)

30 (seconds) The number of seconds that the CIRR transaction
should delay before freeing the terminal. The value
must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRR transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRR transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRR PASSWORD,NORMAL,, server_name the
terminal is not available until all online DB2 Server
for VSE users complete their work.

The value you specify for interval represents an
interval of time measured in seconds. If the CIRR
transaction does not finish immediately, it waits the
amount of time you specify. When this time ends,
the CIRR transaction tries once again to finish
processing. If the CIRR transaction does not finish
successfully, you receive a message telling you to
retry the CIRR transaction later. After issuing the
message, the CIRR transaction ends. The shutdown
mode is still in effect (the specified server is in the
process of shutting down), and the terminal is
available for your use.

Chapter 5. Operating the Online Support 99

Table 10. CIRR Transaction Parameters (continued)

Parameter Default Description

SERVER-NAME
(positional
parameter 4)

Determined by
CIRB or CIRC
transaction.

This parameter enables you to specify the
application servers from which you want to remove
access. The default server is removed if this
parameter is omitted, or if the first parameter in the
server_name list is blank. The default server is the
one that was established by the CIRB transaction or
by the CIRC transaction.

If no server_name is specified the default server_name is used. The default
server_name was established by the CIRB or CIRC transaction. The CIRD
transaction may be used to display the default server_name in case the user does
not know what the default server_name is.

The above example assumes that there are connections to more than one server
when the CIRR transaction is entered.

If the password, mode and interval are the same then the server_name list can be
used to remove connections or disable online access from multiple application
servers. Since SQLVM was the last active connection, the online resource adapter
was terminated. SQLMACH2 and SQLVM are local application servers, while
SQLMACH8 is a remote server.

The CIRR transaction can be used to remove the connections or disable online
access to the application server that were established by the CIRB and CIRA
transactions. If CIRR removes the last active connections to the online resource
adapter and all active APPC conversations known to the online resource adapter
are deallocated, then the online resource adapter is terminated. The CIRB
transaction would have to be used to restart it.

The CIRA and CIRR transactions can be entered repeatedly and in any order to
add and remove links to application servers or to enable and disable online access
to application servers as required.

If CIRR is entered to remove connections or disable online access to a server to
which no connections or online access have been established, the message
“ARI0456I Connections to <server_name> do not exist.” is displayed.

msg f2
AR 015 1I40I READY
2 cirr
F2-002 ARI0455I Connections to SQLMACH1 are disabled.
F2-002 ARI0460W Connections to the default server SQLMACH1 have

been disabled.

Figure 43. Example of CIRR with Defaults

msg f2
AR 015 1I40I READY
2 cirr ,,,(sqlmach2,sqlmach8,sqlvm)
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0455I Online access to SQLMACH8 is disabled.
F2-002 ARI0455I Connections to SQLVM are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

Figure 44. Example of CIRR with Server-Name List

100 System Administration

If the password given on the CIRR transaction does not match the password that
was used to start the connections or online access to the named server, then the
connections or online access to that server are not shut down and processing
continues with the next server in the list.

Displaying Information -- The CIRD Transaction
To display status information about active CICS transactions that access a local or a
remote application server, issue the CICS CIRD transaction.

The CIRD transaction does not require a password, and can be issued from any
CICS terminal or the operator console. To use it, you must enable it as well as the
CICS restart resynchronization facility. See the DB2 Server for VSE Program Directory
for more information.

The parameter is described in the following table:

Table 11. CIRD Transaction Parameters

Parameter Default Description

SERVER-NAME
(positional
parameter 1)

Determined by
CIRB or CIRC
transaction.

This parameter enables you to specify the
application server whose status is to be displayed, or
* to display the status of all servers and the details
of transactions accessing the servers, or ? to display
a list of the connected servers without the
transaction details.

If this parameter is omitted, the default server_name
is the one that was determined by the CIRB or the
CIRC transaction.

Four categories of CICS transactions access the local application server. The
information that CIRD displays for transactions connected to a local server varies
depending on these four categories:
v Transactions waiting to access the local application server

These transactions have issued an SQL request and are waiting because all links
to the application server are busy. For these transactions, CIRD displays the
elapsed time of the wait.
In general, links to the local application server are busy because other users are
accessing it. The only exception occurs when the DB2 Server for VSE online
support is being started; at that time, all links to the application server could be
busy during the synchronization of the database log and the CICS log. Usually
this requires little time, but a long delay can occur if a very large LUW is being
rolled back.

v Transactions currently accessing the local application server

�� CIRD
Default-server

*

?

server_name

��

Figure 45. CIRD Transaction Syntax

Chapter 5. Operating the Online Support 101

These transactions have established a link to the local application server and an
LUW. The application server is currently doing processing for that LUW. For
these transactions, CIRD displays the elapsed time of the current SQL statement,
and the elapsed time the link is held. The latter effectively indicates the elapsed
time of the current LUW.

v Transactions holding a link to the local application server but not using it
These transactions have established a link to the local application server and an
LUW, but the application server is not currently processing for that LUW.
Instead, these transactions are doing other work or are waiting for terminal
communications. For these transactions, CIRD displays the elapsed time since
the last application server access ended, and the elapsed time the link is held.
Again, the latter effectively indicates the elapsed time of the current LUW.

v Transactions that previously held a link to the local application server, but no
longer do.
These transactions have previously ended one or more LUWs, but have not yet
started another. For these transactions, CIRD displays the elapsed time since the
last LUW completed.

If you enter CIRD when the DB2 Server for VSE online support is not enabled or
when the CIRD is not operational, an error message is displayed and CIRD ends.
Note that for CIRD to display information about a transaction, the transaction
must have issued an SQL request. CIRD displays the following information (where
applicable) for each of the four categories of local database transactions:
v The CICS task number (TASKNO)
v The CICS transaction identifier (TRANID)
v The CICS terminal identifier (TERMID)

Not all transactions have a terminal identifier. For example, ISQL has a
two-transaction structure: ISQL and CISQ. The former controls the terminal and
the latter is for access to the application server. Because a CISQ transaction has
no terminal associated with it, instead of displaying TERMID for it, CIRD
displays the terminal identifier in another field called USERDATA (described
below).
If a transaction accesses the application server, but does not have a terminal
associated with it, CIRD does not display TERMID.

v The user identifier (USERID) that the application server establishes for the
transaction
CIRD does not display this identifier unless a user ID has been established,
which is done when an application issues an SQL statement that starts an initial
LUW. The user ID may not be established immediately. (For example, a
transaction can be waiting for a link to the application server.) It remains
established after a transaction ends an LUW, unless the RELEASE option of
COMMIT WORK or ROLLBACK WORK was used.

v User data (USERDATA) for ISQL transactions
The USERDATA field contains the terminal identifier (TERMID) of the terminal
that was used to call ISQL. For most other transactions, USERDATA is blank. It
is possible, however, to code an online application to initialize the USERDATA
field. Such an application would use the DB2 Server for VSE online cancel
support. For more information, see “Coding Your Own Cancel Exit” on page 281.

Note: If you are controlling ISQL access with the DFHSIT CMXT parameter, you
have renamed the ISQL transaction. For these renamed ISQL transactions,
CIRD still displays the terminal identifier of the terminal that was used to

102 System Administration

run the transaction. For more information on this parameter, see
“Controlling Access by ISQL Users” on page 117.

v The elapsed time intervals (as described above)
CIRD uses the following format to display the time:

hh:mm:ss

CIRD then displays the time of day and the date, as follows:
TIME=hh:mm:ss DATE=mm/dd/yy (or dd/mm/yy)

and then ends its processing. (The format of the date depends on how you
specified it on the DATE parameter of the VSE STDOPT JCC/JCS.)

If CIRD determines that no CICS transactions apply to the application server, it
displays only the time and the date, and then ends.

Note: If the DB2 Server for VSE online support ends abnormally (for example, if
the application server partition ends unexpectedly), the CIRD transaction is
called implicitly to display information about transactions that were
accessing the application server at the time of the failure. This information is
displayed on the VSE system console.

For the following examples, assume that SQLMACH1 is the default local server
and that connections have been established for the local application servers
SQLMACH1, SQLMACH2 and SQLVM.

Figure 46 on page 104 shows an example of the information displayed by the CIRD
transaction with no parameters.

Chapter 5. Operating the Online Support 103

Figure 47 on page 105 shows an example of the information displayed by the CIRD
transaction with a server_name specified.

2 cird
F2 002 The default server is SQLMACH1.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000037 INV L209 TERRY 00:00:01 00:00:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000003 CISQ WILLIAM L210 00:07:01 00:10:56
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 ROBERT L210 00:20:04
F2 002
F2 002 TIME=14:28:23 DATE=09/01/95

Figure 46. Example of CIRD with Defaults

104 System Administration

Figure 48 on page 106 shows an example of the information displayed by the CIRD
transaction with the * specified.

2 cird sqlmach2
F2 002 The default server is SQLMACH1.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000037 INV L209 TERRY 00:00:01 00:00:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000003 CISQ WILLIAM L210 00:07:01 00:10:56
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 ROBERT L210 00:20:04
F2 002
F2 002 TIME=14:28:23 DATE=09/03/95

Figure 47. Example of CIRD with Server-Name

Chapter 5. Operating the Online Support 105

Figure 49 shows an example of the information displayed by the CIRD transaction
with the ? specified.

2 cird *
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000137 INV L209 BOB 00:17:34 01:24:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000013 CISQ LARRY L210 00:03:01 00:11:36
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 LOUISA L210 01:57:04
F2 002
F2 002 TIME=14:28:23 DATE=09/03/95
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2-002 TIME= 14:29:47 DATE= 09/03/95
F2 002 ---
F2 002 DBDCCICS connected to server SQLVM.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME=14:30:23 DATE=09/03/95

Figure 48. Example of CIRD with *

2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---

Figure 49. Example of CIRD with ?

106 System Administration

Some extra information can be derived from the displays. In Figure 52 on page 110
notice that SQLMACH1 is mentioned as the default server and on the next
message that there are connections to SQLMACH1 also. It is possible, with the
CIRR transaction, to remove the connections to SQLMACH1. The CIRD command
would still show that the default server is SQLMACH1 but the message indicating
there are connections to SQLMACH1 would not be displayed. In this scenario,
users connecting to the default server would receive SQLCODE = -940 on the
CONNECT statement. The CIRA transaction could be used to establish connections
to SQLMACH1 again or the CIRC transaction could be used to change the default
server to one of the other active servers. Either method allows CONNECT
statements to access the default server.

If CIRR or CIRT has been issued to disconnect a server or to shut down the online
resource adapter but cannot complete because there are still active transactions
against the server, the CIRD transaction will show which transactions and which
servers are affected.

Figure 50 on page 108 shows an example of the information displayed by the CIRD
transaction with the ? parameter specified. The attempt to remove the connections
to SQLMACH2 fails because there are still active transactions. Then the CIRD
transaction is used to determine which transactions are still active. The user is
found and asked to complete his work. When the CIRR command is retried it
completes successfully and the connections to SQLMACH2 are shut down.

Chapter 5. Operating the Online Support 107

The CIRD transaction displays the following information (where applicable) for
transactions that relate to a remote application server:

RDBMS
displays the name, class, and release level (version, release, and modification
level) of the application server being accessed.

LU
displays the logical unit name.

TPN
displays the transaction program name. Its character and hexadecimal versions
are both displayed.

2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---
2 cirr ,,1,sqlmach2
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

1-second interval before attempting the disable.
F2-002
2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 Connections to SQLMACH2 are being disabled.
F2 002 There are connections to server SQLVM.
F2 002 --
F2-002
2 cird *
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 Connections to SQLMACH2 are being disabled.
F2 002 There are connections to server SQLVM.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 19:07:43 DATE= 09/20/95
F2-002
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000129 CISQ CICSUSER L77D 00:00:31 00:00:31
F2 002
F2 002 TIME= 19:07:44 DATE= 09/20/95
F2 002 --
F2 002 DBDCCICS connected to server SQLVM.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 19:07:45 DATE= 09/20/95
F2-002
2 cirr ,,2,sqlmach2
F2-002 ARI0455I Connections to SQLMACH2 are disabled.

Figure 50. Example of CIRD in a Disable Scenario

108 System Administration

TASKNO
displays the number of the task.

TRANID
displays the transaction id.

TERMID
displays the name of the terminal where the transaction was initiated.

USER ID
displays the connected user id.

STATUS
displays the communication state. COMM indicates that the transaction sent an
SQL statement to the database machine and has been waiting for a reply since
the time shown. APPL indicates that the transaction returned control to the
application at the time shown. VRA indicates that the Online Resource Adapter
is processing your request. WAIT indicates that the transaction is waiting for a
session.

TIME
displays the time when the STATUS displayed had begun. For example, task
number 891 has already returned control to the application at 09:12:42, as
indicated by TIME.

LUWID
displays the logical unit of work identifier, which uniquely identifies an LU6.2
conversation. Its value is netid.luname.instance_number.sequence_number where
netid and luname are up to 8 characters long, instance_number is 12 characters
long, and sequence_number is 4 characters long.

Figure 51 shows an example of the information displayed by the CIRD transaction
with a remote server-name specified.

Figure 52 on page 110 shows an example of the information displayed by the CIRD
transaction with a ? specified, where online access to the remote server RMTSERV1
is allowed. Assume that SQLMACH1 is the default local application server and
RMTSERV1 is a remote application server. Connections have been established for

User: 2 cird sqlmach8
System: F2 0002 The default server is SQLMACH8.

F2 0002 --
F2 0002 Status of online DB2 Server for VSE applications for
F2 0002 RDBMS = SQLMACH8 SQLDS/VM V6.1.0
F2 0002 LU = VMC3
F2 0002 TPN = SQLMACH8
F2 0002 (X'E2D8D3D4C1C3C8F8')
F2 0002
F2 0002 TASKNO TRANID TERMID USER ID STATUS TIME
F2 0002 ______ ______ ______ ________ ______ ___________________
F2 0002 LUWID
F2 0002 ______
F2 0002 0000891 DRT1 D080 SYSA APPL 1998-08-11.09:12:42

F2 0002 CAIBMOML.D08001.E31FE596ADDE.0001

F2 0002
F2 0002 TIME= 09:18:11 DATE= 08/11/98
F2-0002

Figure 51. Example of CIRD with remote server name

Chapter 5. Operating the Online Support 109

SQLMACH1 and online access to RMTSERV1 through the online support is
allowed.

Stopping the Online Support -- The CIRT Transaction
While the online support is enabled, it uses CICS resources (storage) and
application server resources (agents). At certain periods of the day, you may want
to free these resources and prevent online access to the application server. You
may, for example, want to allow only batch access to the application server for
purposes of loading a large amount of data. For either of these situations, the
operator can disable the online support by entering the CIRT transaction.

To end DB2 Server for VSE online support, issue the CICS CIRT transaction. The
syntax of the CIRT transaction is as follows:

Table 12. CIRT Transaction Parameters

Parameter Default Description

PASSWORD
(positional
parameter 1)

SQLDBAPW This password establishes the operator’s authority to
terminate the online access to the application server.
It must be the same password that was supplied for
the CIRA or CIRB transaction. Refer to “Password
Implications on Online Resource Adapter
Termination” on page 114 for more details.

User: 2 cird ?
System: F2 002 The default server is SQLMACH1.

F2 002 There are connections to server SQLMACH1.
F2 002 Online access to remote RMTSERV1 is allowed.
F2 002 ---

Figure 52. Example of CIRD with ?

�� CIRT ,
password,

,
mode,

,
interval

��

Figure 53. CIRT Transaction Syntax

110 System Administration

Table 12. CIRT Transaction Parameters (continued)

Parameter Default Description

MODE
(positional
parameter 2)

NORMAL This parameter establishes the shutdown mode:
NORMAL or QUICK. When remote application
servers are accessed by the online support, CIRT
NORMAL will complete only when all conversations
to the remote application servers are deallocated.
When you specify NORMAL, the CIRT transaction
prevents new online users from accessing the
application server. Users who are already doing
work, however, can finish. When all users complete
their work, no online users can use the application
server. When you specify QUICK, online access to
local application servers is ended immediately.
Online users accessing a local application server
cannot finish their work. Their current logical units
of work are rolled back (unless they are already
processing a COMMIT WORK). You can change
from NORMAL to QUICK. However, once the
MODE is QUICK, you cannot change it back to
NORMAL. When remote application servers are
accessed by the online support and you specify
QUICK, online access to the remote application
server is not ended immediately. Online users
accessing a remore server can finish their unit of
work, but cannot start a new logical unit of work.
QUICK mode is not supported for a remote
application server.

INTERVAL
(positional
parameter 3)

30 (seconds) The number of seconds that the CIRT transaction
should delay before freeing the terminal. The value
must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRT transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRT transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRT PASSWORD,NORMAL the terminal is
not available until all online DB2 Server for VSE
users complete their work. Even with CIRT
PASSWORD, QUICK there may be some delay
before the CICS terminal allows the CIRT terminal to
complete its cleanup process.

The value you specify here represents an interval of
time measured in seconds. If the CIRT transaction
does not finish immediately, it waits the amount of
time you specify. When this time ends, the CIRT
transaction tries once again to finish processing. If
the CIRT transaction does not finish successfully,
you receive a message telling you to retry the CIRT
transaction later. After issuing the message, the CIRT
transaction ends. The shutdown mode is still in
effect (the specified DB2 Server for VSE system is in
the process of shutting down), and the terminal is
available for your use.

Chapter 5. Operating the Online Support 111

If links or online access to multiple application servers exist, they will all be
removed. Once all of the links and/or online access have been removed, the online
resource adapter is terminated.

The following examples assume that SQLVM, SQLMACH1 and SQLMACH2 are
local application servers, and SQLMACH8 is a remote application server.

Note that the message ARI0413I Resource Adapter ARI0OLRM is disabled is not
displayed until the last application server connections and APPC conversations
have been severed.

When the online resource adapter is not active, the CIRA and CIRR transactions
are invalid. The online resource adapter needs to be enabled with the CIRB
transaction before the CIRA and CIRR transactions can be used.

Effect of a Shutdown on Online Applications
In the NORMAL mode, CIRT prevents new LUWs from being started. As LUWs
end, the links to the local application server are disconnected and APPC
conversations to the remote application server are deallocated. (The NORMAL
process allows for the normal end of all online LUWs.) After all links are
disconnected and all APPC conversations are deallocated, the CICS storage
resources are freed, and application access to the DB2 Server for VSE online
support is no longer allowed.

In the QUICK mode, links to the local application server are immediately
disconnected. Some online LUWs may be interrupted. The CICS storage resources
are freed, and application access to online support is no longer allowed.

With QUICK, when the links are disconnected, the application server partition is
posted by the operating system. The post causes the database manager to do an
internal ROLLBACK WORK for all LUWs that were not committed or at a
synchronization point (that is, those LUWs that were prepared for COMMIT or
ROLLBACK).

While the CIRT transaction is ending access in QUICK mode, the CICS transactions
that access the application server can be ended by CICS with an abend code of
AEY9, ASP7, or ASRA. To allow for normal transaction shutdown, then, you
should either use the CIRD transaction to determine which transactions accessing

msg f2
AR 015 1I40I READY
2 cirt
F2-002 ARI0455I Connections to SQLVM are disabled.
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0455I Connections to SQLMACH1 are disabled.
F2-002 ARI0455I Online access to SQLMACH8 is disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

Figure 54. Example of CIRT with Connections to Four Applications Servers

F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.
2 cira ,,,sqlmach1
F2-002 ARI0411I Resource Adapter is not enabled.
2 cirr ,,,sqlmach1
F2-002 ARI0411I Resource Adapter is not enabled.

Figure 55. Example of CIRA and CIRR after CIRT

112 System Administration

the application server are still active and wait until they are complete, or use the
CIRT transaction with the NORMAL option which allows all active users to finish
their work.

The QUICK mode is not supported when you are ending online access to a remote
server. In this case, the QUICK mode is changed to NORMAL mode.

Terminal Availability During Online Shutdown
The terminal used to activate the CIRT transaction for NORMAL or QUICK is
unavailable until the transaction ends. This could be a long time for a large online
application or for an online application controlled by a CICS terminal operator
who is not at the console. There are two conditions when CIRT may need to wait
(in CICS terms, delay for an interval of time):
v In the NORMAL mode, the process must wait until all LUWs complete

normally.
v In both NORMAL and QUICK modes, after all connections and APPC

conversations to the application server are severed, the process attempts to
disable itself. The attempt can fail if CICS finds some online transaction that is
still active and had access to the application server before CIRT was issued. In
this situation, the CIRT transaction cannot complete its clean-up process until
that transaction ends.

In the situations described above, CIRT will wait for an interval of time before
attempting to complete the cleanup process again. (The default interval of time is
30 seconds. The interval can be specified as an input parameter to CIRT.)

After the delay, the CIRT transaction determines if the condition that caused the
wait has passed. If it has, the process completes, and the online support is
disabled. If not, CIRT exits by returning to CICS (the shutdown mode is still active
and the terminal is free), and message ARI0414I is displayed, prompting the
operator to retry the CIRT transaction later.

The operator can proceed in a number of ways to disable the online support:
v The installation may have a policy that work can continue until 5:30 PM. The

operator routinely issues CIRT SQLDBAPW,NORMAL at 5 PM. Doing this prevents
new work from starting. The operator then waits until 5:30 PM and reissue the
CIRT transaction to proceed with normal transaction shutdown.

v The operator can use the CICS message transaction CMSG to route messages to
selected terminals or users, and CICS CEMT, CIRD or CSMT commands to
determine who or what applications are active, or to end the application. After
such operator intervention is completed, the CIRT transaction is re-entered and
the online support becomes disabled.
This intervention presupposes that the operator has information about those
CICS transactions that access the application server. You may find it useful to
keep a list or use a naming convention for all such transactions.

v If the NORMAL process was attempted and could not finish, the operator can
escalate the shutdown mode (escalate in the sense that the database manager
goes from NORMAL mode, which allows all LUWs to end, to QUICK mode,
which immediately stops all access to the application server). To escalate, the
operator enters CIRT SQLDBAPW,QUICK.

Shutdown Impact to Online Applications
After the online support has been disabled, or before it has been enabled, CICS
abnormally ends any transaction that attempts online access to the application
server by abending the transaction with abend code AEY9. If an attempt is made

Chapter 5. Operating the Online Support 113

to execute a transaction while the online support has not been enabled, the
transaction also abends with an abend code AEY9. If an application attempts to
use CICS HLPI to access either a CICS/VSE subsystem or non-CICS/VSE
subsystem that has not been enabled, the CICS terminal operator receives the
CICS/VSE abend code AEY9.

When the shutdown process is active, the following occurs:
v For NORMAL mode, the result depends on the state of the application program.

If it is in work, the process has no effect. If the application program is not in
work, the online support returns an SQLCODE of -937. A later request by such a
program will cause CICS to abnormally end the transaction with the AEY9
abend code.

v For QUICK mode, all initial requests result in the -937 SQLCODE, and a later
request will result in the AEY9 abend code.
Also, for the QUICK mode, the online support cannot participate in the CICS
two-phase syncpoint protocol. (For information on this protocol, review the
discussion on online application recovery in the DB2 Server for VSE & VM
Database Administration manual.) When the online support reports to CICS that it
is disabling, the result is an ASP7 abend. This is the general abend code that the
CICS syncpoint manager uses when a CICS or non-CICS/VSE subsystem cannot
participate in the two-phase syncpoint protocol. Online application programs do
not regain control for clean-up routines when an ASP7 abend occurs. The ISQL
transaction must be ended by the operator with the CICS CSMT or CEMT
command.

Password Implications on Online Resource Adapter
Termination

The password used on the CIRR and CIRT transactions must be the same one that
was used on the CIRA and/or the CIRB transactions. CIRR and CIRT will only
shut down the connections to servers where the password matches. If the
passwords do not match, that server is not shut down.

Consider the following example:
1. The online resource adapter is started with the command:

CIRB pw1,5,,,,(SQLMACH1,SQLMACH2)
2. Connections to two new servers are added with the command:

CIRA ,,,(SQLMACH3,SQLMACH4)
3. Another connection is added to a fifth server with the command:

CIRA pw2,1,,SQLMACH5

It is not possible to end the online resource adapter with one command in this
scenario. The CIRT or CIRR transactions must be run at least three times before the
online resource adapter is completely shutdown because three different passwords
were used to start it up.

The CIRT transaction issued with no parameters would only shut down the
connections to SQLMACH3 and SQLMACH4 because they were the only servers
that were started with the default password.

To shut down SQLMACH5, you would have to enter the following command:

CIRT pw2

114 System Administration

To bring down the remaining servers and stop the online resource adapter you
need to enter:

CIRT pw1 followed by CIRT

The CIRR transaction can also be used, but the server names must be specified.
The following shows the CIRR commands that would be equivalent to the CIRT
commands in this scenario.

CIRT pw1 is equivalent to CIRR pw1,,,(SQLMACH1,SQLMACH2)

CIRT is equivalent to CIRR ,,,(SQLMACH3,SQLMACH4)

CIRT pw2 is equivalent to CIRR pw2,,,SQLMACH5

If the command:

CIRR ,,,(SQLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACH5)

were entered only SQLMACH3 and SQLMACH4 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH1, SQLMACH2 and
SQLMACH5 because the passwords do not match.

Similarly, if the command:

CIRR pw1,,,(SQLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACH5)

were entered only SQLMACH1 and SQLMACH2 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH3, SQLMACH4 and
SQLMACH5 because the passwords don’t match.

Chapter 5. Operating the Online Support 115

116 System Administration

Chapter 6. Maintaining Database Security

Database security is maintained through the use of authorities and privileges. Only
users granted the CONNECT authority for an application server can access it.

For information about DB2 Server for VSE authorities and privileges, refer to the
DB2 Server for VSE & VM Database Administration manual. This chapter discusses
the following topics:
v Protecting VSAM data sets from unauthorized access
v VSAM commands that must not be used against any database
v Controlling access to ISQL
v Access Control to Remote Users

Protecting VSAM Data Sets
You can optionally assign a VSAM MASTERPW- or CONTROLPW-level password
to protect all the VSAM data sets that make up the database. If you do, you must
use it:
v In every DEFINE statement for the VSAM data sets that make up the database
v When you install the database manager
v When you add new data sets.

Table 14 on page 132 shows how a CONTROLPW is to be coded. Coding for a
MASTERPW is identical, except for the keyword.

Each time the application server is started, the DBPSWD=password initialization
parameter must be supplied. The database manager uses the password when it
opens the VSAM data sets. If the password supplied does not match the one
defined for the data sets, the operator is prompted to supply the correct one. (See
“DBPSWD” on page 50)

VSAM Restrictions
Storage for the database manager is defined by VSAM. However, VSAM does not
manage this storage. The VSAM commands such as EXPORT, IMPORT, REPRO,
and VERIFY should never be used against the database. If an error message is
received indicating an OPEN error (RC=74), ignore it and do not run VERIFY.

Controlling Access by ISQL Users
In VSE, ISQL is made up of two transactions: ISQL and CISQ. The former controls
the CICS terminal, and the latter controls access to the application server. By
creating the second transaction dynamically (instead of hard-coding it as CISQ)
you can put different departments or different groups of users into different CICS
classes. Each group would have different transaction identifiers for both
transactions of ISQL. Because the different groups have different CICS classes, you
can limit the number of active ISQL users in each group.

To implement this, create any transaction ID for the first transaction. Then, instead
of making CISQ the second transaction ID, make it identical to the first one except

© Copyright IBM Corp. 1987, 2000 117

for the last character, which should be a 2. For example, if there are five
departments, you could have chosen these transaction IDs:

First Second
Transaction ID Transaction ID Department
-------------- --------------------- ----------
ISQL ISQ2 202
ACCT ACC2 ACCOUNTING
SAL SA2 SALES
IN I2 INVENTORY
P P2 PLANNING

These examples show how the format works for different identifier lengths. Note
that when the first transaction ID is one character (P), the 2 is added (P2). Also
note that the first transaction ID cannot end with a 2.

Next, decide what the maximum number of ISQL users for each department
should be:

First Second Maximum
Transaction ID Transaction ID Department ISQL Users
-------------- -------------- ---------- ----------
ISQL ISQ2 202 2
ACCT ACC2 ACCOUNTING 3
SAL SA2 SALES 4
IN I2 INVENTORY 3
P P2 PLANNING 2

Next, specify the CICS parameters TRANSID, TCLASS, and CMXT as follows:
v TRANSACTION parameter in the CICS System Definition File

You must code an entry for each transaction ID defined. In the above example
these are: ISQL, ISQ2, ACCT, ACC2, SAL, SA2, IN, I2, P, and P2. The
TRANSACTION must specify the particular transaction ID (for example,
TRANSID=ISQ2 for the ISQ2 transaction), and the program name parameter
should reference the same program as CISQ or ISQL.

v TCLASS parameter and CMXT parameter in the DFHSIT
To fully understand these two parameters, it is best to consider them together.
To implement the above example, you would code them as follows:
DEFINE TRANSACTION(ISQL) GROUP(DB2710) PROGRAM(ARIITRM) *

TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ISQ2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(1)

DEFINE TRANSACTION(ACCT) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ACC2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASSS(2)

DEFINE TRANSACTION(SAL) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(SA2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(3)

DEFINE TRANSACTION(IN) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(I2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(4)

DEFINE TRANSACTION(P) GROUP(DB2710) PROGRAM(ARIITRM) *

118 System Administration

TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(P2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(5)

These TCLASS values correspond to the positional values in the CMXT
parameter. These values are arbitrary, but you should set them up so that a
transaction’s TCLASS value corresponds to its CMXT positional parameter. In
the above example, ISQ2 has a TCLASS value of 1. This means that it is in class
1, which corresponds to the first positional value on the CMXT parameter. The
first positional parameter value for CMXT is 2. This means that the maximum
number of transactions that can be active in class 1 (TCLASS=1) is 2. Therefore,
the number of active Department 202 users of the ISQL-ISQ2 transactions is
limited to 2. The same is true for the other TCLASS and CMXT positional
values. (For unspecified CMXT values, the default is 1.)

Controlling Access by Remote Users
The AXE transactions must be installed in one or more groups with appropriate
security mechanism provided by CICS or by an external security manager. Local
CICS users should not be able to start any of these transactions.

The security levels are:
v Bind-time Security

This is the session level security that can be used if the partner LU supports
LU-to-LU verification.

v Transaction Security
This controls the link authorization to attach the AXE transaction.

For more information on CICS security, see the VTAM Resource Definition Reference
and the CICS/VSE Intercommunication Guide manuals.

After deciding on the security level, specify the TCLASS parameter in the CICS
System Definition for the AXE transaction. An example is shown below.

DFHSIT ...,CMXT=(5,6,2,1,,),...

DEFINE TRANSACTION(AXE1) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(YES) TPURGE(YES) TCLASS(1)

DEFINE TRANSACTION(AXE2) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(YES) TPURGE(YES) TCLASS(2)

DEFINE TRANSACTION(AXE3) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(YES) TPURGE(YES) TCLASS(3)

DEFINE TRANSACTION(AXE4) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(YES) TPURGE(YES) TCLASS(4)

DEFINE TRANSACTION(AXE5) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(YES) TPURGE(YES) TCLASS(5)

Note: There are a maximum of ten classes which can be defined to CICS. Ensure
that when you design your security methodology, you do not commit a class
for more than one purpose. That is, if you use TCLASS 1 for limiting ISQL
users, then that is the same limit if you assign TCLASS 1 for limiting remote
users.

In the example, 5 remote users can access the application server with TPN AXE1, 6
remote users can access the application server with TPN AXE2 and so on. If AXE4
is a privileged TPN for a critical application, only that application is given access
to TPN AXE4. This way, the application has exclusive use of a real agent on the
application server.

Chapter 6. Maintaining Database Security 119

DRDA Security
If any packages need to be secure (not viewed by unauthorized persons), the
application can be preprocessed into a private bind file that is only accessible to
the authorized person(s). VSAM security control mechanism could then be used to
protect this private VSAM file so that unauthorized access is denied. You can
change the JCL of the preprocessor to specify the file_id of the private VSAM Bind
file on the SQLBIND DLBL statement and use this file_id with the CBND
transaction.

With CICS/VSE, you can only establish SECURITY=SAME conversions with
remote partners. Therefore, DRDA security checking is performed during
handshaking.

120 System Administration

Chapter 7. Managing Database Storage

This chapter discusses:
v Database storage concepts
v Adding dbspaces to a database
v Expanding the page tables in the directory
v Acquiring dbspaces for packages
v Managing storage pools.

Storage Concepts
A database contains user data objects (tables and indexes), and supporting
information maintained by the database manager. Specifically, it contains:
v A directory which is a data set containing database control information, including

mappings of the dbspaces to their addresses on DASD. The directory relates the
logical database image to the physical storage used.

v Either one or two log data sets which hold records that describe each change
made to the database. If any changes made to the data must be undone or
redone, logs can be used to restore the data to a consistent state.

v One or more storage pools, which are collections of data sets called database
extents (dbextents). This is where the actual data is stored.

A dbextent is an allocation of actual DASD space. Storage pools are composed of one
or more dbextents. The size of a storage pool can be increased by adding more
dbextents, or reduced by deleting existing ones. Each dbextent is the primary
allocation of a VSAM data set. When dbspaces are assigned to a storage pool and
their pages are filled, physical DASD pages are taken from the dbextents of the
storage pool.

Storage pools can be defined so that they are either recoverable or nonrecoverable.
By default, storage pools are recoverable, that is, the database manager does full
recovery for them. For nonrecoverable storage pools, only limited recovery is done.
For more information on nonrecoverable storage pools, refer to “Nonrecoverable
Storage Pools” on page 171.

Directory

Log

Storage pool 1 Storage pool 2

Log

Figure 56. The DB2 Server for VSE Database

© Copyright IBM Corp. 1987, 2000 121

A dbspace is a logical allocation of space in the database, divided into 4096-byte
blocks called pages. A dbspace is not a real allocation of DASD space, but only an
allocation of page tables in the directory. These page tables map logical dbspace
pages to DASD locations. The database manager dynamically allocates real DASD
storage space to support dbspace pages on a demand basis so unused pages do not
occupy DASD space.

How Information is Stored in Dbspaces

Tables and their indexes are stored in dbspaces. At the beginning of every dbspace
are one to eight header pages, which contain control information on the tables and
indexes that follow. Next come data pages, which hold the rows of the tables. At

.

I1 I4 I7

Tab 1 I2 Tab 4 I5 I8

Tab 2 I3 Tab 5 I6 Tab 6 I9

Tables (Tab)
and indexes
(I) are stored
in dbspaces

Dbspace A Dbspace B Dbspace C

Each dbspace is
assigned to a
storage pool.

Storage pool 5 Storage pool 7

Storage pools
consist of
one or more
dbextents

Dbextent 5 Dbextent 9 Dbextent 7

Figure 57. Physical Database Concepts

122 System Administration

the end are index pages, which hold the index entries. A page in a dbspace is
defined as a header page, a data page, or a index page, when the dbspace is
acquired. Figure 58 shows how information is stored in a dbspace.
When a table is created, its creator can either assign it to a dbspace explicitly by

specifying a dbspace in the CREATE TABLE statement, or can let the database
manager assign it to a default dbspace. Any indexes created on the table obtain
their storage from the same dbspace as that table.

Figure 57 shows two tables and their indexes in dbspace A, two tables and their
indexes in dbspace B, and one table with three indexes in dbspace C.

The potential capacity of a dbspace is fixed when it is defined with the ADD
DBSPACE command. A dbspace can hold up to 255 tables along with their indexes.

More than one table can be stored in the same dbspace, but a table cannot reside in
multiple dbspaces. If you store multiple tables in a dbspace, be aware that the
database manager may store rows from different tables on the same data pages.
For performance reasons, it is frequently desirable to have only one table per
dbspace. (Index entries from different indexes are never stored on the same page.)

There are three types of dbspaces: private, public, and internal. For private data,
there should be one private dbspace reserved for each user. These are locked at the
dbspace level, so the database manager does not incur unnecessary overhead while
users are accessing their own private data. Any tables that are to be accessed by
multiple users who will be doing UPDATE, INSERT, or DELETE operations should
be placed in public dbspaces, which have page- or row-level locking to support
concurrent access. Internal dbspaces are temporary spaces used only by the
database manager to perform tasks such as sorting.

Adding Dbspaces to the Database
Before tables and indexes can be stored in a dbspace, the dbspace must be added,
and then acquired. Adding a dbspace to a database consists of reserving page tables
in the directory, assigning the dbspace to a storage pool, and specifying it as public
or private.

The ADD DBSPACE Operation
To create new dbspaces, use the ADD DBSPACE operation. The application server
must be running in single user mode (SYSMODE=S), with STARTUP=S.

Specify each dbspace to be added on a SYSIPT input record that contains the type
(public or private), the size (number of pages), and, optionally, the storage pool
assignment. (The default storage pool number is 1.) The number you specify for
the size should be a multiple of 128, since directory page tables are allocated in
multiples of 128-page table entries. If it is not, the database manager rounds it up
to the next higher multiple of 128. Separate all parameter values by at least one
blank. Figure 59 on page 124 shows an example.

Header
Pages

Data
Pages (tables)

Index
Pages

Figure 58. Table and Index Storage in a Dbspace

Chapter 7. Managing Database Storage 123

On the last dbspace specification record you must specify the internal dbspaces to
be defined. This record contains the keyword INTERNAL, the number of internal
dbspaces to be supported, the size of each (in number of pages), and, optionally,
the storage pool assignments. Internal dbspaces can be assigned to either
recoverable or nonrecoverable storage pools. However, for performance reasons,
the internal dbspaces should not be assigned to storage pool 1 and preferably
should be stored in their own storage pool. Internal dbspaces can also be stored in
a virtual disk. For more information on the performance benefits of virtual disk
support, see the DB2 Server for VSE & VM Performance Tuning Handbook.

It is necessary that you respecify the internal dbspace values each time you add a
new public or private dbspace, even if you are not changing these values from
what they were before. The internal dbspace specification overrides the previous
one, including changing the storage pool assignment.

Note: You may sometimes want to change the internal dbspace specifications for
reasons other than adding new user dbspaces. To do this, simply run the
ADD DBSPACE operation omitting the control statements for public or
private dbspaces, and enter the number of internal dbspaces you want.

Considerations for Adding Dbspaces
The ADD DBSPACE operation updates the directory and the catalog tables in the
database. Only the updates to the catalog tables are recorded in the log; updates to
the directory are not. Because of this, you can have a problem if you normally
archive the database, and then try to restore it. Suppose the following events occur:
1. You do a database archive.
2. Later, you add dbspaces.
3. Later, users acquire and use those dbspaces.
4. You do an archive restore using the archive file that you created in step 1 and,

if you use LOGMODE=L, the subsequent log archives.

The directory and the database are not synchronized. The directory has been
restored from a database archive file that does not reflect the ADD DBSPACE
operation. The database is also restored from that file; but its restore includes the
updates recorded in the log or log archives, which do reflect the ADD DBSPACE
operation. Thus, the directory does not include the new dbspaces but the database
does.

To prevent this problem, archive the database immediately after the ADD
DBSPACE operation, as follows:

// JOB ADD DBSPACES
// EXEC PROC=ARIS71SL
// EXEC PROC=ARIS71DB
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='DBNAME=SQL_DB1,SYSMODE=S,STARTUP=S'

PUBLIC 1024 7
PUBLIC 1024 8
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5
INTERNAL 50 1024 9

/*
/&

Figure 59. Sample ADD DBSPACE Control Statements

124 System Administration

1. After you add the dbspaces, warm-start the application server in multiple user
mode (SYSMODE=M) with LOGMODE set to L or A.

2. Immediately take a new database archive, with either the ARCHIVE, SQLEND
ARCHIVE, or SQLEND UARCHIVE command. (If you use SQLEND
UARCHIVE, remember to take the user archive after the application server
ends.)

Following this procedure will ensure that your current database archive reflects the
added dbspaces. (See “Archiving Procedures” on page 149 and “Restoring the
Database” on page 155 for more information on archiving and restoring
procedures.)

If you do log archiving and restore the database using a database archive taken
before the ADD DBSPACE operation, the same problem that was described above
occurs. If you use a back-level database archive and subsequent log archives to
restore the database, the database archive that records the addition of the dbspaces
is skipped: the directory is restored from the back-level database archive and does
not show the addition of the dbspaces, but the subsequent log archives do.

If you used the ADD DBSPACE operation only to reconfigure your internal
dbspaces, restoring a back-level database does not unsynchronize the directory and
database, since information about internal dbspaces is stored in the directory but
their use is not recorded in the database. Thus, if you restore a back-level database,
the number and size of the internal dbspaces return to the back-level values.

The ADD DBSPACE operation is a two-phase process. The first phase updates the
database directory with the information about the new dbspace. The second
updates the SYSTEM.SYSDBSPACES catalog table.

Completion of the first phase is indicated by the message:
ARI0915I DBSPACE ADDED TO DATABASE

If an abnormal end occurs before message ARI0915I is issued, restart the ADD
DBSPACE operation from the beginning. If an abnormal end occurs after message
ARI0915I is issued, restart the ADD DBSPACE operation by doing a start up of the
application server as follows:
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,STARTUP=W,PROGNAME=ARISEGB'

Initialization Parameters for ADD DBSPACE
Table 13 on page 126 shows the initialization parameters that you can specify for
the ADD DBSPACE operation.

Chapter 7. Managing Database Storage 125

Table 13. Initialization Parameters for the ADD DBSPACE Operation

Parameter Default Minimum Maximum

DBNAME=name
SYSMODE=S

PARMID=name
STARTUP=S
DBPSWD=password

LOGMODE=Y|A|L|N

DSPLYDEV=L|C|B
DUMPTYPE=P|F|N
TRACDBSS=nnn...
TRACRDS=nnnnnn
TRACDSC=nnnnnn
TRACCONV=n
TRACSTG=n
TRACEBUF=n

SQLDS

None

None

Y

L
P
Zeros
Zeros
Zeros
Zero
Zero
Zero

Zeros
Zeros
Zeros
Zero
Zero
Zero

Twos
Twos
Twos
Twos
Ones
99999

The DBNAME, SYSMODE and STARTUP parameters are required as shown to
define the run of the database manager as an ADD DBSPACE operation. In
addition, DBPSWD is required if the database VSAM data sets are password
protected.

If you have been accessing the database with LOGMODE=A or L, you must
continue to do so for the ADD DBSPACE operation.

You can use PARMID to specify a source member that contains parameter
specifications for the ADD DBSPACE operation.

You can also specify the DSPLYDEV, DUMPTYPE, TRACDBSS, TRACDSC,
TRACRDS, TRACCONV, TRACSTG and TRACEBUF parameters. For more
information, see “Multiple User Mode Initialization Parameters” on page 47.
Because the ADD DBSPACE operation requires that the database manager be run
in single user mode, the TRACDBSS and TRACRDS initialization parameters are
the only means of doing a trace of the ADD DBSPACE operation. (Operator
TRACE commands are only valid when the database manager runs in multiple
user mode).

Expanding the Database Directory
When a database is initially generated, a calculation is made to determine which
portion of the directory will be set aside for the page map table, and which portion
will be used for the allocation bitmaps. The size of the page map table determines
the maximum number of DBSPACE pages, that is, the maximum logical size of the
database. The size of the allocation bitmap determines the maximum number of
dbextent pages, that is, the maximum physical size of the database. As the
database grows in size with use, it may run short on either logical or physical
space. If it is short on logical space, the ADD DBSPACE operation may fail. If it is
short on physical space, the ADD DBEXTENT operation may fail. You can expand
the directory to correct these situations.

You can use ARIMEXBD to increase:

126 System Administration

v The maximum number of dbspace pages, by expanding the page map table
using EXPAND=DBSPACE. See Figure 60.

v The maximum number of dbspace pages and dbextent pages, by expanding the
page map table and allocation bitmaps concurrently using EXPAND=ALL. See
Figure 60.

Expand the directory as follows:
1. Use the VSAM IDCAMS DEFINE commands to define the VSAM data set for

the new directory.
For information about these commands, see the Using VSE/VSAM Commands
and Macros manual.

2. Run the utility program ARIMEXBD. An example is shown in Figure 60.
3. Update the DLBL statement for the BDISK to reflect the change.

Notes for Figure 60:

�1� In the DLBL statements, the file name for the new directory data set must
be BDSKNEW.

�2� If the VSAM data sets are password-protected, enter the correct password
on the DBPSWD parameter.

Acquiring Dbspaces for Packages
The process of adding a dbspace merely reserves pages for it in the directory.
Before it can actually be used, it must be acquired. For details of how to acquire
dbspaces, see the DB2 Server for VSE & VM Database Administration manual.

Packages and view definitions are stored in system dbspaces named SYS0002,
SYS0003, SYSnnnn. Allocation of the initial system dbspace (SYS0002) is
performed during database generation. You should probably acquire an additional
package dbspace after installation, and then more as needs arise. Because unused
dbspaces only require minimal directory space and no data pages, acquiring them
is not costly. Thus, if your installation has many packages and views, it is a good
idea to acquire several dbspaces for packages in advance for later use.

The database manager stores packages and view definitions as tables. A dbspace
can contain up to 255 tables, and can therefore have up to 255 packages and view
definitions.

Although packages and view definitions are stored as tables, information about
them is found not in the SYSTEM.SYSCATALOG catalog table, but in the
SYSTEM.SYSACCESS catalog table. When a dbspace is acquired for packages, 255
empty tables are preallocated in it. For each table that is created, a row is added to

// JOB EXPAND BDISK
// LIBDEF PROC,SEARCH=(PRD2.DB2710)
// EXEC PROC=ARIS71PL *-- PRODUCTION LIBRARY ID PROC
// EXEC PROC=ARIS71DB *-- DATABASE ID PROC
// DLBL BDSKNEW,'SQL.BDSKNEW.STARTER.DB',,VSAM �1�
// EXEC ARIMEXBD,SIZE=AUTO,PARM='DBPSWD=password,EXPAND=DBSPACE|ALL'�2�
/*
/&

Figure 60. Sample ARIMEXBD Job

Chapter 7. Managing Database Storage 127

the SYSTEM.SYSACCESS catalog table that identifies the package table as unused.
Unused package tables can be either available or unavailable. The TNAME value
in SYSACCESS for unused package tables is represented either as
!0x AVAILABLE or ¢0x UNAVAILABLE. (The x is a number from 1 to 5, which
is used internally.) Initially, all package tables in a newly acquired dbspace are
unused and available. As packages are created and views are defined, the TNAME
value is changed to indicate the package or view name.

As mentioned above, you can usually fit 255 packages in a dbspace. However, if
large packages are created, the dbspace pages may fill before all 255 package tables
are used. In this situation, all remaining package tables are unused and unavailable
and their TNAME value is marked in the dbspace as ¢0x UNAVAILABLE. When
the dbspace is full, the FREEPCT column of the SYSTEM.SYSDBSPACES catalog
table is updated. A FREEPCT of 1 means that space is still available, while a
FREEPCT of 0 means that this dbspace is full.

If a package or view is dropped from a dbspace that is not full, the database
manager does not drop the package table from the dbspace. Instead, it deletes all
the rows from the table, and marks the table as available in the
SYSTEM.SYSACCESS catalog table. The table can then be reused.

If a package or view is dropped from a dbspace that has been marked as full
(FREEPCT = 0), FREEPCT is reset to 1. Before these package tables can be reused,
however, their TNAMEs in the SYSTEM.SYSACCESS catalog table must be
changed to indicate that they are available. This is not done immediately, because
if it were, the next time someone tried to create a package, the database manager
would reuse the table from the package or view that was just dropped. It would
try to place the newly created package in a dbspace that is almost full, and it
probably would not fit. Thus, if you have used all the space in your package
dbspaces, you should acquire another dbspace rather than try to free space by
dropping one or two unused packages. The package tables will be marked
available the next time the database manager does preallocation.

Preallocation is done when you acquire a new package dbspace. It is also done
when you try to create a view or a new package, and there are no available
packages. If the database manager cannot find an available package, it looks in all
dbspaces that are not full (FREEPCT=1) for package tables that are marked
unavailable, and marks them as available.

A user with DBA authority can acquire a package dbspace by issuing the following
SQL statement when the database is running in multiple user mode:

ACQUIRE PUBLIC DBSPACE NAMED SYSnnnn (PAGES=xxxx)

where

nnnn is the number of the package dbspace. (SYS0002 is the initial dbspace,
so the next one will be called SYS0003, the next one, SYS0004, and so on.).

xxxx is the number of pages of address space for the dbspace. The usual
value is 2048, but you can set it larger or smaller if your programs have a
large or small number of SQL statements in them, or if you are adding many
views to the database.

You should specify the PAGES parameter because the default value of 128 is
usually too small. You can specify NHEADER or allow it to default to 8. The

128 System Administration

database manager sets PCTFREE to 1, PCTINDEX to 0, and LOCK to PAGE
(page locking). If you try to specify any of these parameters, your settings
will be ignored.

If no package tables are available in any package dbspace during preprocessing,
SQLCODE -945 is returned, and the DBA must acquire another dbspace for
packages.

If sufficient space is not available in the dbspace where the database manager
attempts to create the package, it returns SQLCODE -946. The user’s response
depends on the availability of package tables in other dbspaces. If some are
available, the user can try to preprocess the program again. (The database manager
does not choose the same dbspace again because it sets FREEPCT=0 when the
preprocess fails.) If no package tables are available, another dbspace for packages
must be acquired.

To get information about unused packages (available and unavailable), issue the
following query:

SELECT * FROM SYSTEM.SYSACCESS WHERE TNAME LIKE '%AVAILABLE'

To determine which package dbspaces are full because all the space is taken, issue:
SELECT * FROM SYSTEM.SYSDBSPACES WHERE DBSPACENAME LIKE 'SYS0%'

If the FREEPCT value is 0, there is no free space in the dbspace.

To determine which package dbspaces are full because all 255 tables are occupied,
issue:

SELECT DBSPACENO, COUNT(*) -
FROM SYSTEM.SYSACCESS -
WHERE TNAME NOT LIKE '%AVAILABLE' -
GROUP BY DBSPACENO

Dbspaces with a count of 255 have no available package tables. (For information
on the syntax of the ACQUIRE DBSPACE and SELECT statements, see the DB2
Server for VSE & VM SQL Reference manual.)

Managing Storage Pools
Typically, you set up your database to be supported by multiple storage pools, so
that you can control what data resides on what devices, and can manage physical
DASD allocations differently for different data. The following sections discuss uses
of storage pools and how to define them.

Design Considerations for Storage Pools
A storage pool consists of a large collection of 4-kilobyte DASD pages, called slots,
for storing allocated public and private dbspace pages and shadow pages (old
copies of dbspace pages that have changed since the last checkpoint). Dbspace
pages that are not allocated are not stored. For internal dbspaces, slots are
occupied only by nonempty pages of data for active logical units of work.

The placement of dbspace pages in storage pool slots is determined by the
database manager; however, you control which pool of slots the dbspace pages are
assigned to. This allows you to control device utilization and the use of different
DASD allocation schemes for different data.

Chapter 7. Managing Database Storage 129

Estimating Storage Requirements
You may often choose to undercommit the actual DASD space available for the
dbspaces. Because a dbspace cannot be extended after it is defined, and because it
is really only a logical allocation of space, many dbspaces are defined to be much
larger than needed. As a result, the actual storage pool slots required are fewer
than the dbspace sizes imply. The number of dbextent pages should be defined to
support the expected number of dbspace pages that will actually be used.

The undercommitting approach to managing storage pools is particularly useful if
the tables involved are expected to grow over time. The sizes of the dbspaces are
set based on how large the tables can grow, while the size of the storage pool is
defined based on current storage requirements. As the tables grow, you can extend
the storage pool by adding dbextents to it.

Undercommitting is also useful for supporting internal dbspaces. It is unlikely that
you will ever need all the pages of all of the internal dbspaces at the same time.
The number of internal dbspaces defined is based on the most the database
manager would need at one time, and the size for each is defined based on the
worst possible situation that could occur. (Note that internal dbspaces are all the
same size.)

If you want to guarantee space availability, or have more dynamic dbspace storage
requirements, you should overcommit the DASD space available for dbspaces. For
example, you might want to do so to handle the storage requirements for private
dbspaces. User requests for more or bigger dbspaces can be relatively frequent.
Rather than repeatedly going through an ADD DBEXTENT operation, you could
overcommit the storage pool for private dbspaces and handle the user requests
through the ADD DBSPACE and ACQUIRE DBSPACE operations. (You may still
have to run the ADD DBEXTENT operation, but not as often.) For overcommitting,
allocate sufficient slots to handle all dbspace pages plus the potential shadow
pages.

Controlling Device and Channel Utilization
Storage pools enable you to control device and channel utilization through one of
two basic approaches:
v Separating highly referenced dbspaces

Two highly active dbspaces can be placed on different devices by assigning them
to different storage pools and defining the dbextents of these storage pools on
different devices.

v Spreading a highly referenced dbspace across devices
A single highly active dbspace can be spread across multiple devices by defining
its storage pool as small, multiple dbextents, each of which is a VSAM data set
defined on a different device.

Controlling Data Location
You can allocate a specific table and all its indexes to a specific device or VSAM
data set. To do this, create the table in a dbspace with no other tables, assign that
dbspace to its own storage pool, and define the dbextents of that pool as the
VSAM data sets on the volume that you want.

Monitoring Storage Pools
Use the SHOW POOL command to display physical storage information about each
storage pool defined, including:
v The total number of pages in the storage pool

130 System Administration

v The number of pages being used
v The percentage of the pages in use
v The number of dbextents defined for that storage pool, in the order in which

they were defined (which is also the order in which they will be searched for a
free page)

v For each dbextent
– The total number of pages
– The number of free pages

v A short-on-storage indicator.

You can issue the SHOW POOL command from either the operator console or from
ISQL. For more information about it, refer to the DB2 Server for VSE & VM
Operation manual. To see information about reusable deleted dbextent numbers,
use the SHOW POOL DELETED command.

Maintaining Storage Pools
To maintain storage pools, you:
v Add storage pools to the database

You add a storage pool to a database by adding a dbextent to a nonexistent
storage pool, using the ADD DBEXTENT process described in “Adding
Dbextents to a Storage Pool”.

v Add storage to existing storage pool
If any of your storage pools are short on storage, you can use the ADD
DBEXTENT process to increase their size.

v Remove storage from storage pools
You can use the DELETE DBEXTENT process to release DASD for other uses.

v Move dbextents to another device

Adding Dbextents to a Storage Pool
Dbextents can be added to a nonexistent storage pool (which defines a new storage
pool), or to an existing storage pool (which increases the size of the storage pool)
using the following two-step process:
1. Define the dbextent VSAM data sets
2. Update the database job control
3. Run ARIS250D procedure to add the dbextents.

These steps are described in more detail below.

Step 1: Define the Dbextent VSAM Data Sets: Run the VSAM IDCAMS program
to define the VSAM data sets. This step allocates the DASD space and establishes
the size of the dbextent. Table 14 shows an example of a job for defining three
dbextents.

Chapter 7. Managing Database Storage 131

Table 14. Example of a Job for Allocating Dbextent Data Sets

// DLBL IJSYSCT,'AMASTCAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE -
(DEDICATE -
VOL(DBDISK7)) -
CAT(SQLCAT01/PASSWORD)

DEFINE CLUSTER -
(NAME(SQL.DDSK15.DBNAME01.DB) -
CNVSZ(4096) -
CYL(50) -
NONINDEXED -
VOL(DBDISK7) -
CONTROLPW(PASSWORD) -
RECSZ(4089) -
REUSE -
SHR(1)) -
CAT(SQLCAT01/PASSWORD)

DEFINE SPACE -
(DEDICATE -
VOL(DBDISK8)) -
CAT(SQLCAT01/PASSWORD)

DEFINE CLUSTER -
(NAME(SQL.DDSK16.DBNAME01.DB) -
CNVSZ(4096) -
CYL(20) -
NONINDEXED -
VOL(DBDISK8) -
CONTROLPW(PASSWORD) -
RECSZ(4089) -
REUSE -
SHR(1)) -
CAT(SQLCAT01/PASSWORD)

DEFINE CLUSTER -
(NAME(SQL.DDSK17.DBNAME01.DB) -
CNVSZ(4096) -
CYL(30) -
NONINDEXED -
VOL(DBDISK8) -
CONTROLPW(PASSWORD) -
RECSZ(4089) -
REUSE -
SHR(1)) -
CAT(SQLCAT01/PASSWORD)

/*

Note: For minimum space allocation values, see Table 41 on page 338.

In this example, one dbextent data set called SQL.DDSK15.DBNAME01.DB is
defined on volume DBDISK7, and two more, SQL.DDSK16.DBNAME01.DB and
SQL.DDSK17.DBNAME01.DB, are defined on volume DBDISK8.

You can move dbextents between device types as long as the dbextent is not larger
than the size of the device. When you define dbextents, you should keep this in
mind. For example, if you defined a single dbextent of 600000 blocks on a 9335
device, you could not move that dbextent to a 9332 device which is limited to
360032 blocks. However, if you defined three dbextents, each of 200000 blocks, on a
9335 (for a total of 600000 blocks), you could move them to three 9332 devices.

Step 2: Update the Database Job Control: If you are using cataloged procedures
to include the DLBL statements for your database, you must update those

132 System Administration

procedures to include the DLBL statements for the new dbextents. For the example
shown in Table 14 on page 132, you would add the following three DLBL
statements:

// DLBL DDSK15,'SQL.DDSK15.DBNAME01.DB',,VSAM
// DLBL DDSK16,'SQL.DDSK16.DBNAME01.DB',,VSAM
// DLBL DDSK17,'SQL.DDSK17.DBNAME01.DB',,VSAM

Step 3: Run the ADD DBEXTENT operation: Run the ARIS250D procedure to
add dbextents to the storage pool. This step updates the database directory to
include the control information for the dbextents. If the dbextents are being added
to a new storage pool, this procedure also defines the new storage pool as are
being recoverable or nonrecoverable. Multiple dbextents can be defined in one run
of each of these jobs. For a description of this procedure, see “Using the ARIS250D
Procedure” on page 134.

Deleting Dbextents from a Storage Pool
Deleting a dbextent does not delete any data in the database. Data in the deleted
dbextent is first moved to another dbextent in the same pool before it is removed
from the database.

Dbextents can be deleted from a storage pool using the following three-step
process:
1. Run ARIS250D procedure to delete the dbextents
2. Update the database job control
3. Delete the dbextent VSAM data set.

These three steps are described in more detail below.

Step 1: Run the DELETE DBEXTENT operation: Run the ARIS250D procedure to
delete dbextents from the storage pool. This step updates the database directory to
remove the control information for the dbextents. For a description of this
procedure, see “Using the ARIS250D Procedure” on page 134.

Attention
You must not delete the only dbextent from the storage pool that contains the
internal dbspaces.

Step 2: Update the Database Job Control: If you are using cataloged procedures
to hold the DLBL statements for your database, you must remove them for the
deleted VSAM data sets. For the example shown in Figure 61, you would delete
the following three DLBL statements from your job control procedures:
// DLBL DDSK15,'SQL.DDSK15.DBNAME01.DB',,VSAM
// DLBL DDSK16,'SQL.DDSK16.DBNAME01.DB',,VSAM
// DLBL DDSK17,'SQL.DDSK17.DBNAME01.DB',,VSAM

Step 3: Delete the Dbextent VSAM Data Sets: Run the VSAM IDCAMS program
to physically delete the DASD space for the dbextent. Figure 61 shows how to
delete the three VSAM data sets that were defined in Table 14 on page 132.

Chapter 7. Managing Database Storage 133

Note: You can move a dbextent from one storage pool to another by deleting it
and adding it back to the new pool; however, you cannot delete, add, and
then delete the same dbextent in a single run.

Using the ARIS250D Procedure
A dbextent is added to or deleted from the database using the procedure
ARIS250D shown in Figure 62. This procedure starts the application server in
single user mode (SYSMODE=S) with STARTUP=E. The job control to run this
procedure is shown in Figure 63. The specifications for the dbextents to be added
or deleted are provided in the member ARISADD, shown in Figure 65 on page 135.

The job control to run ARIS250D is shown in the figure below:

If you are using your own startup job stream instead of ARIS250D, you must code
READ MEMBER ARISADD twice, and separate each line with /*. If you are
coding the control statements in stream, you must code them twice, and separate
them with /* as shown in Figure 64. The ARISQLDS program requires two sets of
identical specifications for efficiency reasons. The first set is for syntax checking,
and the second set is for processing.

// JOB DELETE DBEXTENT DATA SET
// DLBL IJSYSCT,'AMASTCAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO

DELETE (SQL.DDSK15.DBNAME01.DB/PASSWORD)
DELETE (SQL.DDSK16.DBNAME01.DB/PASSWORD)
DELETE (SQL.DDSK17.DBNAME01.DB/PASSWORD)

/*
/&

Figure 61. Example Job Step for Deleting Dbextent Data Sets

* ARIS250D: ADD AND DELETE DBEXTENTS
* THE PROGRAM SCANS THE INPUT TWICE. FIRST PASS
* TO CHECK FOR ERRORS, SECOND PASS TO EXECUTE.

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,STARTUP=E'
READ MEMBER ARISADD
/*
READ MEMBER ARISADD
/*
/&

Figure 62. Procedure ARIS250D

// JOB ARIS71HD ADD AND DELETE DBEXTENTS
// LIBDEF PROC,SEARCH=(PRD2.DB2710)
// EXEC PROC=ARIS71PL *-- PRODUCTION LIBRARY ID PROC
// EXEC PROC=ARIS71DB *-- DATABASE ID PROC
// EXEC PROC=ARIS250D *-- ADD AND DELETE DBEXTENT PROC
/&

Figure 63. Example Job Control for ARIS250D procedure

134 System Administration

The following figure contains examples of the control statements typically found in
a member such as ARISADD, used by the ARIS250D procedure to add or delete
dbextents.

If the ARCHIVE control statement is specified, it must come last. The valid options
are ARCHIVE (database archive), UARCHIVE (user archive) or NOARCHIVE (no
archive). If you do not specify it, the default (ARCHIVE) is used.

Attention
The database cannot be restored from an archive taken prior to the deletion
of a dbextent after the dbextent is removed from the database. Therefore, the
user should choose ARCHIVE or UARCHIVE to backup the database.

The optional POOL control statements must precede the statements that define the
dbextents. They are required only for defining new nonrecoverable storage pools
with POOL(NOLOG). They are unnecessary if you are adding dbextents to an
existing pool because a storage pool’s status has already been defined as either
nonrecoverable or recoverable. POOL statements are also not necessary for new
recoverable storage pools, because by default, storage pools are recoverable. The
POOL control statement shown in Figure 65 defines storage pool 8 as
nonrecoverable.

You cannot specify pool number 1 on any POOL control statement.

// JOB ADD AND DELETE DBEXTENTS
// LIBDEF PROC,SEARCH=(PRD2.DB2710)
// EXEC PROC=ARIS71PL
// EXEC PROC=ARIS71DB
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,STARTUP=E'

POOL 8 NOLOG
DELETE 3 1
DELETE 2 2
ADD 6 8
DELETE 4
ARCHIVE

/*
POOL 8 NOLOG
DELETE 3 1
DELETE 2 2
ADD 6 8
DELETE 4
ARCHIVE

/*
/&

Figure 64. Example Job Control for Adding or Deleting Dbextents

POOL 8 NOLOG
DELETE 3 1
DELETE 2 2
ADD 6 8
DELETE 4
ARCHIVE

Figure 65. Example ARISADD for Adding or Deleting Dbextents

Chapter 7. Managing Database Storage 135

Attention
Once a storage pool is defined as either nonrecoverable or recoverable, you
must not change it from recoverable to nonrecoverable (or from
nonrecoverable to recoverable).

The records following the POOL control statements contain the dbextent
definitions. Each control statement must contain a control word (ADD or DELETE)
and the specification of one dbextent. The first number in the input record is the
number designator of the dbextent. The second number, if specified, is the number
designator of its storage pool. (For the ADD action, if this number is not specified,
the default is storage pool 1; for the DELETE action, the default is the storage pool
where the dbextent resides.) The numbers must be separated by at least one blank.

When you add a dbextent, its number must either be one more than the number of
dbextents currently defined, or the number of any dbextent that was deleted by the
DELETE DBEXTENT operation. The total amount of space allocated in the
directory as the dbextent control area is fixed for a database, and cannot be
changed without regenerating the database. When a dbextent is deleted, the
control area is not compressed. Therefore, you should reuse deleted dbextent
numbers whenever possible so as to reuse the directory control area. Figure 66
shows area the dbextent control in the directory.

In this example, a new dbextent can take on the numbers 5, 7 or 8, which are
available for reuse, or 11, which is the next sequential number. The value 2+
indicates that there is empty directory space between dbextents 2 and 3. Because
no dbextent number is associated with this space, you must first delete dbextent 2
or dbextent 3 to reclaim it.

You can determine the number of dbextents currently defined in a database by
using the SHOW POOL operator command. To determine the maximum number of
dbextents or storage pools that can be defined for the database, issue the SHOW
DBCONFIG operator command. For more information, see the DB2 Server for VSE &
VM Operation manual.

You can determine the deleted dbextent numbers that are available to be reused by
using the SHOW POOL DELETED command. There is a maximum size associated with
each deleted dbextent number. The maximum size is determined by the previous
use of the dbextent number. The highest number is an exception; if it is deleted,
the control area it used to occupy will be combined with the rest of the free area
and this number will be treated as if it has never been used.

Extent number:

Belongs to
pool number:

...unused...
1 2 2+ 3 4 5 6 7 8 9 10

1 1 ... 2 2 ... 1 2 4

Where indicates deleted area in directory
...

n

Figure 66. Dbextent Control Area in the Database Directory

136 System Administration

For example, if dbextent 10 in Figure 66 on page 136 above is deleted, the control
area in the directory will look like Figure 67.

When the SHOW POOL DELETED command is issued, dbextent number 10 will not be
listed.

Storage pool numbers can range from 1 to MAXPOOLS, where MAXPOOLS is the
maximum number of storage pools for the database, as specified during the
database generation. Storage pool numbers can be used in any sequence.

Considerations for Adding and Deleting Dbextents: Neither the ADD nor the
DELETE DBEXTENT operation is recorded in the log. Because these operations
update the directory, and not the database itself, you can encounter a problem if
you normally archive the database, and then try to restore it. For an ADD
DBEXTENT operation, suppose the following events occur in the following order:
1. You do a database archive
2. You add dbextents
3. Users use data from those dbextents
4. You do an archive restore using the archive file from number 1 above and, if

you use LOGMODE=L, subsequent log archives.

The directory and the database are not synchronized. The directory was restored
from an archive file that did not reflect the ADD DBEXTENT operation; the
database is also restored from that file however, the use of the changed dbextents
is also restored from updates recorded in the log or log archives. Thus, the
directory does not reflect the changed dbextents, but the database does.

For a DELETE DBEXTENT operation, suppose the following occurs:
1. You do a database archive
2. Later you delete dbextents
3. You attempt to do an archive restore from number 1 above.

The restore operation fails because it attempts to put data on the dbextents that
have been removed.

You can prevent this problem by using the ARCHIVE or UARCHIVE option in the
ADD or DELETE DBEXTENT operation. This will ensure that your current
database archive reflects the changed dbextents.

The same problems occur if you use log archiving and restore the database using a
database archive taken before the ADD or DELETE DBEXTENT operation. That is,
if you use a back-level database archive and subsequent log archives to restore the
database, the database archive that records the changes to the dbextents are
skipped. For ADD DBEXTENT operations, the directory, restored from the
back-level database archive, does not show the changes to the dbextents; the
subsequent log archives, however, do record the use of those dbextents. Restoring

Extent number:

Belongs to
pool number:

...unused...

1 2 2+ 3 4 5 6 7 8 9

1 1 ... 2 2 ... 1 2

Figure 67. Dbextent Control Area in the Directory after Dbextent 10 Is Deleted

Chapter 7. Managing Database Storage 137

the database from an old database archive and subsequent log archives can thus
put the database out of synchronization with the directory. For DELETE
DBEXTENT operations, the restore fails when it tries to use the removed dbextents.

If a system failure occurs during the ADD or DELETE DBEXTENT operation,
restart the operation after determining and correcting the cause of the failure.

Initialization Parameters for ADD and DELETE Dbextents
Instead of using the procedure ARIS250D, you can choose to run program
ARISQLDS with additional parameters. The initialization parameters that you can
specify for running the ADD or DELETE DBEXTENT operation, are shown in
Table 15.

Table 15. Initialization Parameters for the ADD and DELETE DBEXTENT
Operation

Parameter Default Minimum Maximum

DBNAME=name
SYSMODE=S

PARMID=name
STARTUP=E
DBPSWD=password

LOGMODE=Y|A|L|N

DSPLYDEV=L|C|B
DUMPTYPE=P|F|N
TRACDBSS=nnn...
TRACRDS=nnnnnn
TRACDSC=nn
TRACCONV=n
TRACSTG=n
TRACEBUF=n

SQLDS

None

None

Y

L
P
Zeros
Zeros
Zeros
Zero
Zero
Zero

Zeros
Zeros
Zeros
Zero
Zero
Zero

Twos
Twos
Twos
Twos
Ones
99999

The DBNAME, SYSMODE and STARTUP parameters are required as shown to
define the run as an ADD or DELETE DBEXTENT operation. Also, PASSWORD
will be required if the database VSAM data sets are password protected.

The PARMID parameter can be used to specify a source member that contains
parameter specifications for the ADD or DELETE DBEXTENT operation.

The DSPLYDEV, DUMPTYPE, TRACDBSS, TRACDSC, TRACRDS, TRACCONV,
TRACSTG and TRACEBUF parameters can optionally be specified. For a
description of these parameters, see “Multiple User Mode Initialization
Parameters” on page 47. Because ADD and DELETE DBEXTENT operations can
only be done when the database manager is running in single user mode, the
initialization parameters are the only means of tracing them. (Operator TRACE
commands are only valid when the database manager operates in multiple user
mode).

Moving Dbextents
Sometimes it may be necessary to relocate the dbextents to another device due to
disk migration or to control device utilization. This is done using the VSAM
BACKUP and RESTORE commands after the application server is shut down. See
Figure 70 on page 152 for an example of IDCAMS BACKUP, commands and
Figure 72 on page 157 for IDCAMS RESTORE commands.

138 System Administration

Moving the Log
Sometimes you must relocate the log data set to another device because of disk
migration or to control device utilization. If the following conditions are met,
VSAM BACKUP and RESTORE commands can be used to make an exact copy of
the original log data set and it is not necessary to reformat or reconfigure the new
log data set:
v The target log data set is the identical size as the source data set
v The source log data set is not damaged.

For more information about reconfiguring or reformatting the log data set, see
“Reconfiguring and Reformatting the Logs” on page 165.

Chapter 7. Managing Database Storage 139

140 System Administration

Chapter 8. Making Backups and Recovering from Failures

Database recovery refers to the processing done to correct data when something
goes wrong. This chapter presents a detailed description of basic recovery
concepts, and how to implement them. More advanced recovery topics are
discussed in “Chapter 9. Special Topics in Recovery Design” on page 163.

The problems that can occur fall into four categories:

Application Error
Occurs when an application (for example, an ISQL command or routine, or
the DBS utility) does not end successfully.

User Logic Error
Occurs when the system or application does the requested function, but
the request itself is in error — that is, the user (or application program) did
not specify the correct function. For example, the user may have
accidentally dropped the wrong table or dbspace.

This is the only type of error where detection is not immediate. Therefore,
it presents more of a problem. Errors in the data can go undetected for
quite some time, making recovery processing very complex.

System Failure
Occurs when the application server ends abnormally. Such failures can
occur because of a severe error involving the operating system, or because
of certain error conditions detected by the database manager, such as a
power failure.

DASD Failure and Database Corruption
Occurs when the database manager cannot read data from or write it to
the DASD where it is stored, because the storage medium is unreadable or
damaged. Such an error (also called a media failure) can occur on the log,
the directory, or a data extent (DBEXTENT).

This manual discusses how to recover from system and DASD failures. Recovery
from application and user logic errors is described in the DB2 Server for VSE & VM
Database Administration manual.

There are two aspects to dealing with system and DASD failures:
v Establishing and maintaining regular recovery procedures, to ensure that you

have the information available to correct the data if something goes wrong.
v Correcting the data.

Understanding Recovery Concepts
To effectively protect your data and recover it in the event of failure, you need to
understand the measures built into this product. Protecting against system failures
involves the LUW, the log, and the checkpoint. Protecting against DASD failures
entails two types of archive: the database archive and the log archive.

What is a Logical Unit of Work?
The data in your database is in a consistent state if no changes are left only
partially completed.

© Copyright IBM Corp. 1987, 2000 141

Some data changes cannot be expressed in only one SQL statement. For example,
suppose you have a banking program to transfer money between accounts, and
want to transfer $100 from a SAVINGS to a CHECKING account. The program
makes this transfer in two steps:
1. Add $100 to the balance of the CHECKING account.
2. Subtract $100 from the balance of the SAVINGS account.

If the second step fails (for example, because of a system failure), the data is in an
inconsistent state. That is, a deposit has been made to the CHECKING account, but
no withdrawal has been made from the SAVINGS account.

The logical unit of work (LUW) prevents such inconsistencies. An LUW is a sequence
of SQL statements that the system treats as a single entity. Either all the data
changes made during an LUW are performed, or none is performed. In the
example above, the two updates should be placed within a single LUW.

To group several SQL statements into one LUW, one uses the COMMIT WORK
and ROLLBACK WORK commands.

If no problems or errors occur, the user issues the COMMIT WORK command to
save all the changes made. If a problem occurs in the middle of an LUW, the user
can issue the ROLLBACK WORK command to undo all the changes made since
the last COMMIT WORK command.

An LUW can be as small as one SQL statement, or as large as an entire ISQL
session or application execution. ISQL, by default, treats each command as an
LUW, and issues a COMMIT WORK command after each SQL statement that
modifies the database. Users can change this default by issuing the SET
AUTOCOMMIT OFF command. For more information on the use of the
AUTOCOMMIT, COMMIT, and ROLLBACK commands, refer to the DB2 Server for
VSE & VM SQL Reference manual.

What is a Log?
The log is a file maintained on DASD that records all the changes completed by
each LUW. For each change, the log records the old and new values of the updated
object. If any changes to the database must be undone or redone, you can use the
log to restore the data to its proper state.

In addition to the changes made by each logical unit of work, the log also records
when each logical unit of work started and stopped. (It does not record logical
units of work that only read information from the database).

A database must have at least one log. Optionally, you can define a second log. If
there are two logs, they are exact duplicates: then, if a DASD failure occurs on one
log, the database manager can continue, using the other copy. If there are damaged
tracks on each copy, processing can continue as long as a complete copy of the log
can be pieced together from both data sets. For more information, see “Using Dual
Logging” on page 165.

Larger logs may be needed for tables that are being captured for DataPropagator
because of the increased amount of log data written for UPDATEs to those tables
which specify DATA CAPTURE CHANGES. Tables being captured will log the
entire original row (not just the data that was changed), and the new data that
replaces the old changed data. You should consider increasing the size of the log
dbextent(s) when planning to make extensive use of this function.

142 System Administration

What is a Checkpoint?
Checkpoints are taken periodically. During a checkpoint the database manager
stops servicing users, and takes a “snapshot” of the database that includes updates
from completed LUWs as well as from those that are still in progress, and writes
them to DASD. In addition, a special checkpoint record is written to the log to
synchronize the log with the state of the database.

What Happens after a System Failure?

Restart Recovery with a Log
If your system fails, as long as the current log is available, the database will be
automatically recovered to a consistent state when you restart the application
server. This process, called restart recovery, uses the log to ensure that changes
made by LUWs are either committed (if they had successfully finished) or backed
out (if they had not finished successfully).

The recovery process determines the state of each LUW; both at the time of failure
and at the time of the last checkpoint before the failure. The following scenarios
are shown in Figure 68 on page 144:
v LUW A: if the LUW starts and ends before the checkpoint, all the updates are

safely reflected in the database at the checkpoint.
v LUW B: if the LUW starts before the checkpoint and commits work after the

checkpoint but before the failure, those updates made after the checkpoint must
be redone, using the log. Those updates made prior to the checkpoint are
reflected in the database.

v LUW C: if the LUW starts before the checkpoint but is not completed before the
failure, those updates made prior to the checkpoint must be undone using the
log. The updates made after the checkpoint are not reflected in the database:
thus all the updates must be re-entered.

v LUW D: if the LUW starts after the checkpoint and commits work before the
failure, all its updates must be redone using the log.

v LUW E: if the LUW starts after the checkpoint and is not completed before the
failure, all its updates must be re-entered since none of them are reflected in the
database.

The following diagram illustrates the LUW Recovery process for the five cases
described above:

Chapter 8. Making Backups and Recovering from Failures 143

Restart Recovery Without a Log
If the application server must be restarted without a log (due to the log either
being lost, reformatted, or reconfigured immediately after the failure), the database
cannot be adjusted to complete committed logical units of work or to back out
uncommitted ones. In this situation, to recover the database you will have to
restore a previous database archive, together with any applicable log archives.

If the database manager had been running in single user mode with
LOGMODE=N, the changes made by the application are not logged. However, a
checkpoint would have been taken each time the application issued a COMMIT
WORK (or one was issued for the application), so most changes will have been
effectively committed. Any that were uncommitted at the time of failure will be
discarded when you restart the application server and will need to be re-entered.

What is an Archive?
Archiving facilities enable you to recover your database directory and storage
pools from DASD failures. There are two kinds of archives: database archives and
log archives.

Database Archives
A database archive is a tape copy of the database directory and dbextents. It can be
taken using two types of facilities:
v database manager archiving facilities supplied with this product
v user archiving facilities such as VSE/VSAM Backup/Restore.

If database manager facilities are used, the database manager takes a checkpoint
(the begin-archive checkpoint) and writes a copy of the database directory and the
database to tape, as they were at the checkpoint. (A database archive does not
include a copy of the log.) Users continue to receive service while the archive is
being done.

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Time
Checkpoint

occurs
Sys Failure

occurs

LUW A
no action required

LUW B

redo
no action required

undo

LUW C
no action required

LUW D

redo

LUW E
no action required

Figure 68. LUW Recovery Actions

144 System Administration

A user archive can only be done while the application server is shut down. A user
archive generally takes less time than a database manager archive.

You are not restricted to using one kind of archive for a given database; you can
switch between database manager archives and user archives as often as you like.
There are two situations in which the former facility is required:
v When you migrate a database between two different operating systems (for

example, from VSE to VM)
v When a database archive is needed while users are accessing the database. You

can avoid this situation by using log archiving (LOGMODE=L).

Experience helps you determine which method is best for you. When using any
backup method, the performance improvement will be related to how full your
database is. The fewer pages in your database that are allocated, the less time a
database manager archive takes.

In fact, if the percent of allocated pages is low enough, a database manager archive
will outperform a user archive, because the database manager only archives pages
that actually contain data. User facilities archive all pages, so the time taken does
not vary with the number of pages allocated.

Aside from the performance advantage that user archiving facilities may offer
because they exploit particular device characteristics, consider whether your facility
provides other advantages such as archiving multiple dbextents simultaneously.

For a description of how to carry out these archives, see “Performing Database
Archives With Database Manager Facilities” on page 150 and “Performing Database
Archives With User Facilities” on page 151.

Log Archives
A log archive is a copy of the log on tape. Only database manager archive facilities
can be used to archive the log. Log archives can be taken either when the database
manager is running or at shutdown. Because the log is usually much smaller than
the database, this archive takes less time than a full database archive. For a
description of how to carry it out, refer to “Performing Log Archives” on page 152.

Recovering from DASD Failures that Damage the Database
If a DASD failure occurs on one of your database devices, you can restore the
database by replacing the damaged volume with a working volume (see
“Replacing a Dbextent” on page 161), redefining (or restoring) the data sets on the
volume, and then restoring the data from the archived database and logs (if
applicable.)

There are two ways to do this. One way is to use the database archive and the
current log. By loading the archive and re-applying the changes in the log, you can
bring the database up-to-date because all changes made to the database since the
archive are recorded in the current log. If the restore set for the database archive
includes the current log, you can recover the damaged storage pools instead of the
entire database using the Data Restore Feature. See the DB2 Server for VSE & VM
Data Restore manual for more information on storage pool level recovery.

Alternatively, if you archived the log, you can use the database archive, the log
archives you created since the last database archive, and your current log, to
recreate the database. You would load the database archive, and reapply the
changes in the log archives and the current log. If the restore set for the database

Chapter 8. Making Backups and Recovering from Failures 145

archive includes the current log, you can recover the damaged storage pools
instead of the entire database using the Data Restore Feature. See the DB2 Server
for VSE & VM Data Restore manual for more information on storage pool level
recovery.

The relationships among the different archives, the current log, and the current
database are shown in Figure 69 on page 148. For more details, see “Restoring the
Database” on page 155.

Recovering from DASD Failures that Damage a Log
If a DASD failure, such as an unresolvable I/O error, occurs on one of the log
devices, there are two possibilities for recovery:
v If you are using single logging, replace the damaged log data set (see “Replacing

a Log” on page 162), and then follow the steps in “Log Reconfiguration” on
page 166. Log data from the damaged log is lost.

v If you are dual logging, replace the damaged log data set with a working data
set (see “Replacing a Log” on page 162), and then start the application server
with the same log mode used before the log data set was damaged. The contents
of the good log data set is copied to the new log data set.

Recovering from DASD Failures that Damage the Database
and Log

If a DASD failure occurs on both a database device and a log device, you can
restore the database by replacing the damaged dbextent with a working data set
(see “Replacing a Dbextent” on page 161), replacing the damaged log data set with
a working data set (see “Replacing a Log” on page 162), and then restoring the
data from the archived database and logs (if applicable) (see “Restoring the
Database” on page 155).

Establishing DASD Recovery Procedures
As the system administrator, you must establish recovery procedures for your
installation. The procedures you put in place will determine the degree of
protection for your database. Naturally, trade-offs exist; when you allocate system
resources to protect against failures, these resources are unavailable to other users.
However, if a failure occurs, the recovery takes less time.

This section discusses some of the options available. Based on this information,
devise a plan that best suits your requirements.

Choosing a Log Mode
One of the first decisions you must make when designing a recovery strategy is
the type of log mode you want. The log mode is an initialization parameter that you
specify when you start the application server. It has four possible values:

LOGMODE=Y
All changes to the database will be recorded in a log, but no archives of
the log or database will be maintained. This value is the default. Use it if
you do not need to protect your data from DASD failures. The application
server will run faster, since it will not require the extra time to create
archives.

LOGMODE=A
All changes to the database will be recorded in a log, and regular archives

146 System Administration

of the database will be maintained. You can either create these archives
yourself, or have them created automatically when the log reaches a
certain threshold level.

LOGMODE=L
All changes to the database will be recorded in a log, and regular archives
of the log will be maintained. You can either create these log archives
yourself, or have them created automatically when the log reaches a
certain threshold level (to prevent it from becoming too full to be effective).

Log archives do not contain data, but only operations that change the
database. If you use this log mode, you must take an occasional database
archive as well. If a failure occurs, you can use the database archive,
subsequent log archives, and the current log to recover the database.

The log archives must be continuous, recording all processing that
occurred since the last database or log archive. If a gap exists, it will be
impossible to restore the database to its current level. (The processing that
occurred during the gap can never be reapplied to the database because it
was never archived.) Gaps can occur in the sequence of log archives when,
for example, you switch from LOGMODE=L to some other log mode. If
the continuity of the log is broken in this manner, the database manager
will force a database archive before you return to LOGMODE=L
processing.

LOGMODE=N
No changes to the database are recorded. This option, which is only
available in single user mode, is not recommended for normal operation
but can be useful in some situations. For example, it may be more efficient
not to log changes if you are loading a large amount of data into a table by
using the DBS utility in single user mode. If a problem occurs while you
are loading, you do not need the log to recover; you can simply start over.

Once you have decided on a log mode, use it whenever you start the application
server. Do not change it without thought and planning. If you must do so, you
may have to carry out additional procedures. For information, refer to “Switching
Log Modes” on page 163.

Deciding between LOGMODE=A or L
Figure 69 on page 148 illustrates the relationships among the archives, the log, and
the database when the log mode is A or L. You should consider several things
before choosing one mode over the other.

Chapter 8. Making Backups and Recovering from Failures 147

There are two advantages to log archiving (LOGMODE=L):
v It usually takes less time, because only the log is being archived, not the

directory and dbextents. This is especially helpful when the archive is being
done to free log space when the database manager is running.

v If the last database archive is unreadable or unavailable, you can bring the
database back to its current status by using a back-level database manager
archive or user archive, and applying to it the changes that were recorded in all
subsequent logs. More recent database archives are ignored when you restore a
back-level database. Two requirements must be met in order for you to use this
method:
– The log archives must be continuous. That is, you cannot have switched log

modes and done a COLDLOG (with STARTUP=L) or a restore since the
back-level archive was created.

Note: You can switch from LOGMODE=L to A and then back again without
breaking the continuity of the log archives, provided that no database
archive was taken while LOGMODE was set to A.

– You have not added dbspaces, added or deleted dbextents, or reconfigured
the logs since the back-level database archive was made. These operations are
recorded in the database directory, so if you have carried any of them out, the
directory will not be synchronized with the database changes.

A disadvantage of archiving the logs is that no logical units of work can be active
during the checkpoint that immediately precedes the archive itself. Concurrent
access is allowed once the checkpoint is complete, but users may experience delays
both before and during the checkpoint.

Another disadvantage is that it takes longer to restore the database. For example,
suppose you have been taking a database archive every Friday evening and a log
archive on Tuesdays and Thursdays, and on a Friday afternoon there is a media
failure on the DASD that contains the database directory. You must restore the
most recent database archive (from the previous Friday), and then restore the log
archives from Tuesday and Thursday as well as the changes recorded in the log

When LOGMODE = A

Series of log archives Current log

Current log

When LOGMODE = L

Last database

archive

Current databaseLast database

archive

Current database

Figure 69. Relationships among the Archives, the Log, and the Database

148 System Administration

that was current at the time of the failure. Because only the changes to the
database are stored in the log, restoring the database is similar, in processing time,
to redoing all the work from the week. If there was heavy activity that week,
restoration can take a long time.

Had you used database archives (LOGMODE=A) as intermediate online archives,
you would only need to restore Thursday’s database archive and reapply the
changes on the current log. The restore time is much shorter. On the other hand,
more time would have been spent doing the intermediate archives. Because media
failures are infrequent, it is usually better to take intermediate log archives instead
of intermediate database archives. Depending on your own experience with media
failures, it may even be worthwhile to lengthen the time between database archives
taken at shutdown.

Backing Up the History Area
The database manager uses the history area of the current log to keep track of
recovery events (for example, database archives and log archives). The database
manager can then determine which log archives belong with which database
archives. If the disk containing the current log is damaged or unavailable (offsite
disaster recovery scenarios), you cannot use log archives to recover the database.
To avoid this situation, you should create a backup of the log file after each log
archive. You can then restore this file to rebuild the log history area.

Choosing Dynamic or Static Tape Devices
Database archives or log archives can be either dynamically or statically assigned.

With dynamic tape allocation, only one tape drive can be allocated for archiving. If
the archive exceeds the storage of the tape, the tape must be rewound, unloaded,
and a second tape must be mounted manually. With static tape allocation, more
than one tape drive can be allocated for archiving. The tape drives are statically
assigned in the start-up JCL.

The following is a sample JCL:
// JOB ARCHIVE
// LIBDEF *,SEARCH=(PRD2.DB2710)
// ASSGN SYS005,cuu1
// ASSGN SYS005,cuu2,ALT
// TLBL ARIARCH, ...
// TLBL ARILARC, ...
// EXEC ARISQLDS,SIZE=AUTO, PARM='STARTUP=W,LOGMODE=L'
/*
/&

You are prompted with message ARI0299A. For dynamic tape allocation, respond
with the tape address cuu. For static tape allocation, respond 1.

Archiving Procedures
This section describes how to create archives to protect your database against
system failure. If a system failure occurs while you are taking an archive, see
“Restarting from a System Failure While Archiving” on page 160.

Chapter 8. Making Backups and Recovering from Failures 149

|

Performing Database Archives With Database Manager
Facilities

Database archives are tape copies of the directory and dbextents that are carried
out using the database manager archiving facilities:
v By issuing an SQLEND ARCHIVE operator command, which copies the

database to tape only after all LUWs complete. The copy contains all changes
made by completed LUWs because no LUWs are active when the database
archive is made. Log space is freed after the archive completes successfully. No
changes made by incomplete LUWs are in the database archive copy. This
method is preferred.

Note: Before issuing SQLEND ARCHIVE, you should disable the DB2 Server for
VSE online support by issuing the CIRT transaction. See “Online Support
Considerations” on page 78.

v By issuing an ARCHIVE operator command, which lets the operator initiate a
database archive at any time without either shutting down the application server
or stopping access to it. The drawback, however, is that if the archive is started
while applications are accessing the database, the archive copy may contain
changes made by incomplete LUWs, and cannot be used for recovery from user
logic errors, unless the log that was current when the database archive was
taken is available. For more information about user logic errors, see the DB2
Server for VSE & VM Database Administration manual.
The ARCHIVE command should be used only when you need to take a database
archive to free log space but cannot afford to shut down the application server.
Thus, you might want to schedule an SQLEND ARCHIVE for every Friday
night, and periodic online archives during the week.
Log space used by completed logical units of work is freed. Log space reflecting
changes that are not completely included in the database archive (as of its
begin-archive checkpoint) cannot be reused until the next database archive that
completely includes the changes.

v By reaching the ARCHPCT value, in which case a database archive is taken
automatically. The ARCHPCT initialization parameter protects the log from
overflowing. (See “ARCHPCT” on page 62.) When you are running the database
manager with only database archiving active (LOGMODE=A), log space that can
be freed by the archive is determined by the begin-archive checkpoint and freed
by the end-archive checkpoint. Log space that has been used since the longest
running active logical unit of work began cannot be reused until the next
database archive is taken. If the log becomes filled to the ARCHPCT value, the
database manager forces an online database archive.
Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is started. When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
another forced online database archive, it can frustrate the user whose
application was almost finished.)
Ideally, your log should be large enough so that the ARCHPCT value is never
reached. If this value were reached at an inconvenient time (say when the
operator is not at the console), database activity could stop. To prevent this from
happening, you should use the ARCHIVE command to do online database
archives when activity on the system is low.
Also, if you do have a database archive taken because ARCHPCT is reached,
remember you cannot use this archive to recover from user logic errors. Like an

150 System Administration

online database archive initiated with the ARCHIVE command, it contains
changes from incomplete LUWs, so you still need the log if this archive is the
source for a restore.

Contention During an Archive
When a database archive is taken online, using database manager facilities only,
other work usually continues. If, however, a condition arises during the archive
that requires a checkpoint to be taken, other work must wait until the archive
process completes. Such conditions include:
v A short-on-storage condition for a storage pool
v A full database log
v A COMMIT or ROLLBACK WORK statement issued during an LUW that

updated data in a nonrecoverable storage pool
v An invocation of the DROP DBSPACE statement.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling database archives. See the DB2 Server for VSE &
VM Operation manual for description of operator commands.

Performing Database Archives With User Facilities
User archives are database archives (LOGMODE=A or L) that are done with user
facilities, such as the VSE/VSAM IDCAMS Backup/Restore feature. User archives
include the database directory and all dbextents, but not the logs.

Because database manager archiving facilities are DASD-independent, they do not
take advantage of particular DASD characteristics to improve performance. Some
user facilities exploit these characteristics, and can archive and restore your
database more quickly in some situations.

To begin archiving your database with user facilities, stop the application server
and issue:

SQLEND UARCHIVE

After all logical units of work have been finished, the database manager indicates
in the log history that a user archive will be taken, then prompts the operator to
take the archive, and ends. (If LOGMODE=L and the log contains information, it
takes a log archive before ending.) When the application server ends, the operator
should take the user archive. The next time the application server is started, it
displays a message to confirm that the user archive was done.

Note: Confirmation of a successful user archive is required at the next startup. If
the operator specifies a restore (STARTUP=R or U) the next time the
application server is started, the system assumes that the user archive was
not taken. If the system does not prompt the operator to confirm that a user
archive was created, this means that the archive was not recognized
(whether or not it was successful), and it must be repeated.

Note: Do not stop the server with SQLEND QUICK and then take a user archive
because the user archive will not contain consistent data.

Figure 70 shows the control statements needed to archive a database using multiple
tape allocations, and using the VSE/VSAM IDCAMS command. The database in
this example, has a directory called BDISK, and seven dbextents called

Chapter 8. Making Backups and Recovering from Failures 151

DDSK1-DDSK7. For information about this command, see the Using VSE/VSAM
Commands and Macros manual.

Freeing Log Space during a User Archive
Log space is freed after a successful user archive has been confirmed at the next
startup. If you take user archives and it becomes necessary to free log space when
the database manager is running, you must use either the log or database
archiving facilities supplied with this product to free the log space.

For log archives, set LOGMODE=L when starting the application server, and for
database archives, set LOGMODE=A. In both cases, this will ensure that database
archives are automatically taken if the log fills to the ARCHPCT value. Or, if you
prefer to schedule your online archives yourself, periodically issue the LARCHIVE
command for log archives, or the ARCHIVE command for database archives.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling user archives.

Performing Log Archives
A log archive is a copy on tape of all the active pages of the database log except
for the last one, the log history area. To use log archiving, set LOGMODE to L. A
log archive can only be performed with database manager facilities supplied with
this product.

Log archives can be used with database archives taken with either database
manager facilities or user facilities. Each sequence of log archives must be preceded
by at least one database archive.

The log archive process can be started in the following ways:
v By issuing an SQLEND LARCHIVE operator command, which causes the

database manager to copy the log to tape when all LUWs are complete. Log
space is freed after the archive completes successfully.

Note: Before issuing SQLEND LARCHIVE, you should disable the DB2 Server
for VSE online support by issuing the CIRT transaction. For more
information, see “Online Support Considerations” on page 78.

v By issuing an LARCHIVE command when the database manager is running.
This should be done when you need to take an archive to free log space but
cannot afford to shut down the application server. For example, you may

// JOB USERARCH
// ASSGN SYS005,181
// ASSGN SYS005,182,ALT
// DLBL IJSYSUC,'SQL301C',,VSAM
// EXEC IDCAMS,SIZE=AUTO
BACKUP (SQL301.BDISK, -

SQL301.DDSK1, -
SQL301.DDSK2, -
SQL301.DDSK3, -
SQL301.DDSK4, -
SQL301.DDSK5, -
SQL301.DDSK6, -
SQL301.DDSK7)

/*
/&

Figure 70. Example of VSE/VSAM BACKUP Command for a User Archive

152 System Administration

schedule an SQLEND ARCHIVE or SQLEND LARCHIVE for every Friday night,
and schedule periodic online log archives during the week. Log space is freed
after the archive completes successfully.

v By reaching the ARCHPCT value, in which case a log archive is taken
automatically. The ARCHPCT initialization parameter protects the log from
overflowing. See “ARCHPCT” on page 62. When you run the database manager
with log archiving active (LOGMODE=L), log space after the begin-archive
checkpoint cannot be reused until the next log archive is taken. If the log
becomes filled to the ARCHPCT value, the database manager forces an online
log archive. This archive cannot begin until all active logical units of work have
been either committed or backed out.
Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is run and thereby protects the log from
overflowing. (see “SLOGCUSH” on page 62.) When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
the online log archive, it can also frustrate the user whose application almost
completed.)
Because a log archive finishes faster than a database archive, it has less
performance impact if it is done when the database manager is running. If log
archives are occurring at inopportune times, however, you may want to
periodically issue LARCHIVE when activity on the database manager is low. Be
sure the log is large enough so the ARCHPCT limit is not reached before your
scheduled log archive.

v By doing an explicit database archive while LOGMODE=L by issuing SQLEND
ARCHIVE, SQLEND UARCHIVE, or ARCHIVE. Before archiving the database,
the database manager does an implicit log archive (if information is in the log).
Note that the database manager never does an implicit database archive.

v By restoring the database. This causes the database manager to do a log archive
(if there is information in the current log) before beginning the database restore.

Contention During an Archive
When an online log archive is requested, the database manager allows any LUWs
that are active to finish, but prevents any new ones from starting. A message is
displayed that tells how many LUWs are active. When they are complete, the
database manager takes a checkpoint and creates the log archive. During the
checkpoint, access to the database is disabled and any users or applications that try
to start a new LUW will be in a lock wait.

You can monitor the locking contention caused by the online log archive by using
the SHOW operator commands from the operator’s console. However, you cannot
issue SHOW commands from ISQL to monitor the lock contention.

In most situations, only a slight delay occurs before the checkpoint is taken, but if
there are long-running LUWs, it can be longer. In a worst-case scenario, a
long-running LUW can delay the log archive checkpoint long enough so that the
SLOGCUSH value is reached, and the database manager must roll back the
longest-running LUW to free log space.

If you find that users are experiencing long delays because the database manager
is trying to take a checkpoint, you can issue the SHOW operator commands to
determine which user is delaying the start of the checkpoint, and then issue the
FORCE command to end that user’s LUW.

Chapter 8. Making Backups and Recovering from Failures 153

During the creation of the log archive, normal access to the database is usually
resumed. If, however, a condition arises during the archive that requires a
checkpoint to be taken, other work must wait until the archive process completes.
Such conditions include:
v A short-on-storage condition for a storage pool
v A full database log
v A COMMIT or ROLLBACK WORK statement issued during an LUW that

updated data in a nonrecoverable storage pool.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling log archives.

Labeling Your Archive Tapes
Because there are different types of archives, and each may require multiple tape
volumes, it is a good idea to label the tapes externally in case you have to restore
the database.

When the database manager prompts the operator to mount the tape to record the
archive, it also displays a message that includes the date, time, and type of archive
(database or log). For example:

ARI0239I External labeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 183

The timestamp and type of archive provide identifying information about this
archive, and should be written on the external label of each tape reel or cartridge.
The label information is provided by the database manager for the first volume of
the archive. If your archive requires more than one tape volume, add your own
sequential identification to each label (for example, Tape1 of 2, Tape2 of 2).

When the database is restored, the database manager checks if there are any log
archives associated with the database archive. If log archives exist, a list of them is
displayed, and the time and date of each is provided. The information on the
external label can be matched against this list to find the correct tapes to use for
the restore.

Recovery Procedures
A system failure is any failure that causes the database manager to end
abnormally. Such failures could occur because of an abnormal end of the VSE
system, or because of error conditions in the database partition.

As long as the current log is available, recovery from system failures is automatic.
Even if you are running the database manager in single user mode (SYSMODE=S)
with no logging (LOGMODE=N), it can recover any committed updates by using
the current log. Restart recovery is performed the next time the application server
is started.

If there is a system failure while you are restoring the database, see “Restarting
from Failure of a Database Restore” on page 159.

154 System Administration

Restarting Procedures
To perform restart recovery procedures, the operator starts the application server
with STARTUP set to one of the following values:

W Warm start

R Restoring from a database manager archive

F Restoring from a database manager archive without reformatting the
database data sets

U Restoring from a user archive

S Adding dbspaces

E Adding or deleting dbextents

I Reorganizing the catalog indexes

M Catalog migration.

For all these settings, the log is checked at startup to see whether the last run of
the database manager left any LUWs in progress. If it did, restart recovery
processing starts and the changes made by those LUWs are backed out. Restart
recovery processing also ensures that changes made by completed LUWs are, in
fact, made.

Restart recovery procedures will not be performed if STARTUP is set to either C
(for database generation) or L (for log reformatting or reconfiguration, called a
COLDLOG operation).

For both of these settings, the database manager does not check the log, and the
LUW recovery processing does not occur.

Restoring the Database
If an unresolvable I/O error occurs on any of the devices that contain the directory
or dbextents, the application server ends abnormally. It may be necessary to
replace the damaged volume, redefine the VSAM data sets on the new volume,
and then restore the database from the most recent archive tapes.

Selecting the Archive Copy to Use
Locate the last successful archive of the database. If the DASD failure occurred
while the most recent archive was being taken, then the last successful database
archive would be the previous archive copy, not the copy interrupted by the
failure.

If you are restoring from the most recent archive and the log dataset (or at least
one of the log datasets in the case of dual logging) is not damaged, do not perform
a COLDLOG before restoring. The current log is required for recovery. After
restoring the database, follow the procedures in “Log Reconfiguration” on page 166
to recover the damaged log dataset in the case of dual logging.

If you are using a back-level database archive and LOGMODE had not been set to
L when that archive was taken, or if the physical extents of the log have been
changed (regardless of what LOGMODE was set to), you must run a COLDLOG
with LOGMODE=Y before restoring in order to reformat the logs. Do not use
LOGMODE=N.

Chapter 8. Making Backups and Recovering from Failures 155

You may have to redefine the directory and log datasets (or both logs in the case of
dual logging) at the same time due to an I/O error. If you are restoring from a
user archive, perform a COLDLOG to reformat the logs before continuing with the
restore. If there is a problem with both the directory and the log, the database will
have to be restored before doing the COLDLOG whether it is a DB2 Server for VSE
archive or a user archive. The restore will fail when the database manager tries to
read the log. After the restore fails, do a COLDLOG to reformat the logs.

If you are restoring the database by using a database archive and subsequent log
archives (LOGMODE=L), locate all the necessary log archives. If the failure
occurred during the archiving of the log, do not use that final log archive tape. The
database manager will automatically take another log archive when it is started for
the restore.

The steps to be followed to restore your database differ, depending on whether the
database had been archived using database manager or user facilities.

Restoring from a Database Manager Archive
Start the application server, with STARTUP=R and LOGMODE=A or L to restore
the database using an archive created with database manager facilities. The
database manager prompts the operator to mount the database archive tape, and to
specify on which unit (cuu) the tape is mounted. It then dynamically assigns and
opens the tape, and restores the database directory and dbextents from it.

Figure 71 shows an example of doing a startup to restore a database that had been
archived using database manager facilities supplied with this product.

Note: The ARIARCH and ARILARC TLBL job control statements are not required
if you have included them in your cataloged procedure for the database
(DBNAME01).

It is recommended that you do not specify a VOLID parameter on TLBL
statements for log archiving. Multiple log archive files can be created on a single
run of the database manager. You would want these files to have different VOLIDs.

In this example, LOGMODE is set to L because the user normally uses log
archiving.

Restoring from a User Archive
Shut down the application server, and restore the database using the same user
facilities that created the archive.

Do not restore the database logs. If you accidentally restore the logs, the history
area and all the changes to the database recorded in the log, are lost. The database
manager uses the history area to track which log archives go with which database
archives. For more information, see “History Area” on page 167. Even if you have

// JOB RESTORE
// EXEC PROC=DBNAME01
// EXEC PROC=ARIS71PL
// TLBL ARIARCH, ...
// TLBL ARILARC, ...
// EXEC ARISQLDS,SIZE=AUTO,PARM='STARTUP=R,LOGMODE=L'
/*
/&

Figure 71. Starting with STARTUP=R to Restore a Database

156 System Administration

been using log archiving, all changes made since the last database archive are lost.
Because the history area is lost, no existing log archive can be used. To recover
from accidentally restoring the log, start the application server with STARTUP=L,
to do a COLDLOG to reconfigure the logs before proceeding.

After restoring the database directory and dbextents, start the application server
with STARTUP=U and LOGMODE=A or L. The operator is asked whether the user
restore completed successfully. If the answer is yes, then if LOGMODE=A, the
changes in the log are applied to the database; if LOGMODE=L, the database
manager takes an archive of the current log, and then restores the log archive tape
files that are associated with the user archives. If the operator responds that the
user restore was not done, the application server ends, and the operator must take
the necessary action to resolve the problem.

Figure 72 shows an example of the control statements needed to perform a user
restore using the VSE/VSAM Restore feature.

In this example, VSE/VSAM restores a database having a directory (BDISK) and
seven dbextents (DDSK1-DDSK7). For information about the VSE/VSAM
RESTORE command, see the Using VSE/VSAM Commands and Macros manual.

When to Use LOGMODE=A
For both database restores (STARTUP=R) and user restores (STARTUP=U), specify
LOGMODE=A when you start the application server to have the database manager
restore the database without using log archive tape files. When the database is
restored, the database manager applies only the changes in the current log to the
database. (This is the reason you need to do a COLDLOG if you are not using the
most recent database archive, or if you accidentally restored the logs during a user
restore: the log does not apply to the older archive.) After completing the restore,
the database manager runs with LOGMODE=A.

The database manager still checks whether there are any log archives associated
with the database archive. If there are, message ARI0247D is displayed prompting
the operator either to keep LOGMODE=A and restore the database without using
the log archives, or to switch to LOGMODE=L and use the log archives during the
restore. If the decision is made to switch to LOGMODE=L, the database manager
runs as if it had been intended to do the restore with LOGMODE=L all along.

When the restore set is complete, the archive that is restored becomes the database
archive for the current restore set. A restore set consists of a database archive and

// JOB USERREST
// ASSGN SYS004,181
// DLBL IJSYSUC,'SQL301C',,VSAM
// EXEC IDCAMS,SIZE=AUTO
RESTORE OBJECTS ((SQL301.BDISK) -

(SQL301.DDSK1) -
(SQL301.DDSK2) -
(SQL301.DDSK3) -
(SQL301.DDSK4) -
(SQL301.DDSK5) -
(SQL301.DDSK6) -
(SQL301.DDSK7))

/*
/&

Figure 72. Example of VSE/VSAM RESTORE Command for a User Archive

Chapter 8. Making Backups and Recovering from Failures 157

the log archives associated with it in the history area -- that is, those log archives
that occurred between the database archive and the next restore or COLDLOG or
change of log mode.

When to Use LOGMODE=L
Specify LOGMODE=L if you want the database to be restored using log archives.
The database manager first restores the database archive and then takes a log
archive if information is in the log that was being used when the system failed or
was shut down immediately prior to the restore. It then restores the log archives
that were taken after the database archive you restored. When the restore is
complete, the database manager runs with LOGMODE=L.

Before restoring the database archive and each log archive, the operator is
prompted to continue, stop the application server, or end the restore. Usually, the
operator responds CONTINUE.

If the operator responds STOP SYSTEM, the application server ends. The next time
the application server is warm-started, it will continue restoring the database using
the next log archive. If it is restarted to do a restore instead of a warm start, it
ignores the first restore, which was stopped, and begins a new one. If it is restarted
with STARTUP=C, the application server does the equivalent of an END RESTORE
(see below) and then a COLDLOG. (All subsequent log archives are no longer
usable.)

The STOP SYSTEM response is used primarily for filtered log recovery. This allows
you to stop the application server in the middle of a restore, change the EXTEND
input file commands used for filtered log recovery, and continue the restore. For
information about filtered log recovery, see the discussion on starting the
application server to recover from a DBSS error in the DB2 Server for VSE & VM
Diagnosis Guide and Reference manual.

The END RESTORE response is used primarily for ending a restore before
processing a log archive tape that is unusable. A secondary use is to end a restore
before processing a log archive that contains a user error.

Attention: If you end a restore, you may lose the ability to use subsequent log
archives on a future restore.

For example, suppose you have taken a database archive and six subsequent log
archives. If you discover a user error that was recorded in the fourth log archive,
restore the database archive and the first three log archives. Enter END RESTORE
to avoid processing the fourth, fifth, and sixth log archives. When you end the
restore, it may be impossible to restore the database again using the fourth, fifth,
and sixth log archives. This would be unfortunate if you had made a mistake and,
in fact, should have restored the fourth log archive as well. Thus, before you
respond END RESTORE, be sure you have processed the correct number of log
archives.

If a situation like the one above occurs, the only way to recover the lost log
archives is to restore a back-level database archive. The log archives associated
with that database archive must include the ones that were lost. That is, the old
database archive must have continuous log archives to the point of the END
RESTORE. If it does not, you cannot recover the lost logs. For more information,
see “How the History Area is Used” on page 168.

158 System Administration

After the restore set is complete, the database archive and log archives that were
just restored become the current restore set, unless the restore ended before all log
archives in the restore set were applied. As a final step, the current log is restored
if it directly followed the restored log archives.

Restarting from Failure of a Database Restore
Three types of errors can cause a failure of a database restore operation:
1. System failures, such as power interruptions, or operator or equipment errors

that can be corrected. For example, the database manager can end because the
wrong tape volume was mounted or a tape drive malfunctioned.
In these error situations, after taking corrective action, you can restart the
restore process as follows:
v If you have received message ARI0260I (displayed at the beginning of log

recovery), warm-start the application server (STARTUP=W and LOGMODE
set to the value used previously). If you are using LOGMODE=L, the
database manager continues with the log archive file it was processing when
the failure occurred. A warm start saves you processing time for reading and
recovering from database and log (if LOGMODE=L) archive files that have
already been successfully processed.

v If you have not received message ARI0260I (or are unsure whether you have
received it), restart the restore process specifying the same STARTUP and
LOGMODE values you used to initiate the database restore process.

2. A log archive error that can be corrected, or a failure during UNDO/REDO
processing.
To deal with a log error that can be bypassed or corrected, refer to the section
on recovering from DBSS errors in the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual, especially the discussions on UNDO and REDO
processing failures during a restore.

3. A database or log archive input file error that cannot be corrected, such as a
damaged archive tape volume. One of the following situations applies:
v You were using log archiving (LOGMODE=L), and the damaged file is a

database archive.
In this situation, you can reset the database to its current state by using a
previous database archive and the subsequent log archives (if there are any).
You can do this only if the following conditions are met:
– The log archives must be continuous. That is, you have not switched log

modes and have not done a COLDLOG (STARTUP=L) since the previous
database archive.

Note: You can switch from LOGMODE=L to A and then back to L again
without breaking the continuity of the log archives, as long as you
do not take a database archive while LOGMODE is set to A. For
example, suppose you accidentally start the application server with
LOGMODE=A instead of L. If you immediately shut down the
application server without taking a database archive, the continuity
of the log archives is preserved.

– You must not have added dbspaces, added dbextents, or reconfigured the
log since the back-level database archive was made. If you have, these
changes are not recorded in the log or the log archives, but are recorded in
the database directory; thus, if you use the back-level database archive
and subsequent log archives to restore the database, the directory will not
be synchronized with the database changes, and the restore will fail.

Chapter 8. Making Backups and Recovering from Failures 159

To reset the database using database manager facilities, restart the application
server and restore the back-level database using STARTUP=R or F with
LOGMODE set to L. In response to the request to mount the archive tape,
mount the tape created by the previous database manager archive. When the
database archive tape is restored, the operator is prompted for the
subsequent log archives.

To reset the database using user facilities, restore the database using the tape
file from the previous user archive. Then start the application server with
STARTUP=U and LOGMODE=L. The operator is prompted for the
subsequent log archives.

v You were using log archiving (LOGMODE=L), and the damaged file is a log
archive.
In this situation, the most current level of the database that you can restore
to depends on the last undamaged log archive.
To reset the database, restart the application server with STARTUP=W and
LOGMODE set to L. The database manager tries to continue the restore by
requesting the log archive that had caused the failure. (The database
manager determines where it was interrupted.) Instead of responding
CONTINUE, respond END RESTORE to the prompt in message ARI0250D.

v You were not using log archiving. The damaged tape is a database archive
tape.
Restart the application server with STARTUP=L and LOGMODE=Y
(COLDLOG to reformat the logs). Then restart the restore job using a
previous database archive tape.

Note: This previous database archive must have been created by an
SQLEND ARCHIVE, SQLEND UARCHIVE, or ARCHIVE command
known to have been issued when no application program was
accessing the database.

In these situations, all changes made to the database since the
database archive was taken are lost. You can reset the database to the
consistent state that existed when that database archive tape file was
created.

Restarting from a System Failure While Archiving
The procedure to recover from a system failure that occurs when the database
manager is taking either a log or database archive is essentially the same as any
other restart. Because it did not finish, however, the archive that was being written
at the time of the failure cannot be used.

Restart the application server with STARTUP=W. If LOGMODE had been set to A
or L, specify the same value; if LOGMODE had been set to Y, specify
LOGMODE=A.

If the archive in-process had been an automatic archive (started by ARCHPCT),
another automatic archive will be initiated immediately when the application
server is started again. If it had been started by an ARCHIVE, LARCHIVE,
SQLEND ARCHIVE, or SQLEND LARCHIVE command, you must reissue the
command when restarting the application server. If it had been an implicit log
archive created by issuing SQLEND UARCHIVE with LOGMODE set to L, reissue
the SQLEND UARCHIVE command after restarting the application server with
LOGMODE=L.

160 System Administration

Restarting from Failure of a Database Generation or
COLDLOG Operation

If a system failure occurs during database generation or COLDLOG processing,
restart the operation after determining and correcting the cause of the failure.

In some cases, storage may need to be reclaimed before continuing processing. For
example, an LUW is processing a DROP TABLE statement, a checkpoint is taken
during this processing, and a COLDLOG operation immediately follows. If a
media failure occurred before the COLDLOG, there is a possibility of rows from
the dropped table still existing. However, the entry in the SYSTEM.SYSDROP
catalog table no longer exists. To reclaim this storage, the dbspace containing this
“dropped” table must be dropped before continuing processing.

Relocating the Database Manager
You can move the database manager between system DASD in two ways:
v Use VSE/VSAM Backup/Restore feature to move the database manager. For

examples, see Figure 70 on page 152 and Figure 71 on page 156.
v Archive the database on the original system and restore it on the new system.

For more information, see “Replacing a Dbextent”.

Replacing a Dbextent
You may want to replace a dbextent because:
v You want to move your dbextents to a different device type.

If you are replacing all the database dbextents (as you might when moving the
database to a different device type), replace the log dbextents first. Follow the
procedures in “Log Reconfiguration” on page 166.

v The dbextent is damaged because of an unrecoverable DASD error.
You may need to replace the database directory or dbextents, because one or
both were damaged. In this situation, if you are running with dual logging and
only one of the logs is damaged, replace the database directory or dbextents first
by following the steps below. Then replace the log dataset by following the
procedures in “Log Reconfiguration” on page 166, and finally, restore the
database by following the procedures in “Restoring the Database” on page 155.

v You want to balance your DASD workload.
Use the instructions below if you are moving the database directory or
dbextents. If you are moving your logs, refer to “Log Reconfiguration” on
page 166.

To move, replace, or change a dbextent:
1. Take a database manager archive or a user archive of the database. (See

“Archiving Procedures” on page 149.) The archive is required for the steps
below.

2. Define the new data sets for the directory and dbextents on the new device
type. Be careful when calculating their size. They should be slightly larger than
the original ones, because of rounding that occurs in the space allocation
algorithms. If you define the new datasets approximately equivalent in size to
the old ones, the restore will probably fail.

3. Restore the database from the archive you took in Step 1. (See “Restoring the
Database” on page 155.)

Chapter 8. Making Backups and Recovering from Failures 161

Replacing a Log
If you are relocating the log data sets to another device because of disk migration
or to control device utilization, and the target log data set is the identical device
type and size as the source log data set and the source log data set is not
damaged, you can use VSE/VSAM BACKUP and RESTORE to move the log data
set. See “Moving the Log” on page 139 for more information.

This section describes how to replace a log data set (DLBL LOGDSK1 or
LOGDSK2). You would replace a log data set if:
1. The data set is damaged by an unrecoverable DASD error.
2. You want to change the size of your logs.
3. You want to move your data sets to a different device type.

To replace log data sets:
1. If you are replacing the only log (for single logging) or both logs (for dual

logging), take a database archive if you are running with LOGMODE=A or L,
because the contents of the log, including the history area, will be lost. If you
are dual logging and you are only replacing one log, the archive is not lost.

2. If you are replacing the only log (for single logging) or both logs (for dual
logging), follow the procedures on “Log Reconfiguration” on page 166.

3. If dual logging and you are only replacing one log, use the IDCAMS command
to delete and redefine the VSAM data set for the log to be replaced. For a
description of the job control statements, see Figure 87 on page 209.

Recovering to a Secondary System
To be able to recover in cases where the original database data sets are not
available (for example, in an offsite disaster recovery situation), you should make a
VSE/VSAM BACKUP copy of the log data set after every log archive or database
archive. You would then recover to a secondary system. The secondary system
must have the same dbextent configuration and number of logs as the original
system.

If you have been running with LOGMODE=A and need to recover to a secondary
system, do a log reconfiguration to initialize the log (see “Log Reconfiguration” on
page 166), then restore the most recent archive on the secondary system.

If you have been running with LOGMODE=L and need to recover to a secondary
system:
1. Do a log reconfiguration to initialize the log (“Log Reconfiguration” on

page 166)
2. Use VSE/VSAM RESTORE to restore the copy of the log data set that you took

after the latest database or log archive of the original system. Restore it onto
the secondary system.

3. Restore the most recent archive on the secondary system.

162 System Administration

Chapter 9. Special Topics in Recovery Design

This chapter describes how to switch log modes, how to use dual logging, how to
reconfigure and reformat the logs, and how to use nonrecoverable storage pools.

Switching Log Modes
In general, you should not switch indiscriminately between log modes Y, N, L, and
A: pick one mode and stick to it. However, switching to another mode may at
times be required. (See “Choosing a Log Mode” on page 146 for description of log
modes.)

From LOGMODE=A
To switch to LOGMODE=Y or N:
1. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive (using your
own facilities).

2. Start the application server with STARTUP=L and LOGMODE=Y to perform a
COLDLOG to reformat the log.

3. Start the application server with STARTUP=W and LOGMODE=Y or N.

To switch to LOGMODE=L:
1. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive. In either case,
this database archive serves as the starting point for subsequent log archives.
You do not have to take this database archive under either of the following two
conditions:
v You have already taken one, and have been running with LOGMODE=A

since that archive.
v You have done a restore that finished without interruption, and have done

nothing to break the continuity of the restore set. (For information on how
the continuity of the restore set can be broken, see “History Area” on
page 167.)

In either of these situations, the database archive you took (or restored) is in
the current restore set.

2. Start the application server with STARTUP=W and LOGMODE=L.

From LOGMODE=L
To switch to LOGMODE=Y or N:
1. Shut down the application server by issuing an SQLEND LARCHIVE operator

command to save the log.
2. Start the application server with STARTUP=L and LOGMODE=Y to perform a

COLDLOG to reformat the log.
3. Start the application server with STARTUP=W and LOGMODE=Y or N.

© Copyright IBM Corp. 1987, 2000 163

To switch to LOGMODE=A:
1. Shut down the application server by issuing an SQLEND LARCHIVE operator

command to save the log.
2. Start the application server with STARTUP=W and LOGMODE=A.

You will be warned that the continuity of the log archives will be broken.

Switching the log mode when you have been using log archiving will interrupt the
continuity of the log archives, unless all you do is switch from LOGMODE=L to A
and then back again without taking a database archive. (This protects you from
losing a sequence of log archives if you accidentally set LOGMODE to A.) If the
continuity is broken and work is done on the database, you will not be able to
restore the database to its current level by using database and log archives taken
prior to the break. Figure 73 shows this situation:

In the above diagram:
v D is the current database status.
v If you use the database archive taken at A and subsequent log archives, you can

restore the database only to point B. All changes between points B and D are
lost.

v If you use the database archive taken at C and subsequent log archives, you can
restore the database to point D.

From LOGMODE=Y or N
To switch to LOGMODE=A:
1. Start the application server with STARTUP=W, LOGMODE=Y, and

SYSMODE=M.
2. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive (using your
own facilities).

3. Start the application server with STARTUP=W and LOGMODE=A.

To switch to LOGMODE=L:
1. Start the application server with STARTUP=W, LOGMODE=Y, and

SYSMODE=M.
2. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the

Database
Archive

Log
Archive

Log
Archive

Log
Archive

Database
Archive

Log
Archive

Log
Archive

LOGMODE=A,Y,N

A B C D

(LOGMODE=L) (Switch LOGMODE) (Switch back to LOGMODE=L)

Figure 73. Log Archive Continuity

164 System Administration

application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive.
The continuity of the log archives will have been interrupted by any work that
was done while LOGMODE was set to Y or N, so you must take a new
database archive. This database archive will serve as the starting point for
subsequent log archives.

3. Start the application server with STARTUP=W and LOGMODE=L.

Using Dual Logging
With dual logging, updates are recorded in two log data sets. It is unlikely that an
unrecoverable DASD failure will occur on both log data sets at the same time, so
this option protects you from log failures. The database manager continues running
as long as it can read from and write to one of the logs. With single logging, any
I/O error on the log would cause it to end.

To establish dual logging at database generation time, you must define two VSAM
clusters of equal size for the logs. The DLBL file name for the first log must be
LOGDSK1, and for the second log LOGDSK2. When starting the application server
to perform database generation, specify the initialization parameter DUALLOG=Y.
Later, when starting the COLDLOG operation, specify it again.

If just one log was defined at database generation time, you can use the
COLDLOG operation to establish the second log to the database. Define this log to
be the same size as the first, and name it LOGDSK2 on the DLBL statement.

If you have been running with LOGMODE=A or L, take a database archive or log
archive before starting the COLDLOG operation. (The COLDLOG operation
reformats the original log, thus erasing all the existing log data.) An example of the
job control statements for starting the COLDLOG operation to create a dual log is
shown in Figure 74. Note that the LOGMODE is set to Y for a COLDLOG.

Reconfiguring and Reformatting the Logs
During the life of a database, you may occasionally need to change the physical
configuration of the logs. Such reconfigurations are necessary if, for example, you
need to move logs from one DASD device to another.

At other times, you will need to reset the contents of the log logically. This is
referred to as log reformatting and is required, for example, when you switch from
LOGMODE=A or L to LOGMODE=Y or N.

// JOB COLDLOG
// EXEC PROC=DBNAME01
// EXEC PROC=ARIS71PL
// EXEC ARISQLDS,SIZE=AUTO,PARM='STARTUP=L,SYSMODE=S,DUALLOG=Y,LOGMODE=Y'
/*
/&

Figure 74. Example of a Job Control to Start the COLDLOG Operation

Chapter 9. Special Topics in Recovery Design 165

log reconfiguration and reformatting

In this section, the term log reconfiguration means that the history area has
been erased. Log reformatting means that history area has not been erased.
Both erase the current database updates saved in the log.

The operation that performs log reformatting is called a COLDLOG, and is done
by setting the initialization parameters STARTUP=L and LOGMODE=Y. Log
reconfiguration will include the log reformatting step.

If the last shutdown was abnormal, bringing up the database using STARTUP=L
and LOGMODE=Y will result in warning message ARI2010I, indicating that the
current log is required for warm start or database recovery. If you have already
reconfigured the log, this warning will be too late, since the log data will have
been erased already.

Log Reconfiguration
Log reconfiguration erases the history area of the log. You should consider
reconfiguring your log if you are using the database manager archive facility
(LOGMODE=A or L) and want to do any of the following:
v Switch from single logging to dual logging (DUALLOG=Y)

– this involves defining a second log the same size as the first one.
v Increase the size of your logs

– this involves deleting the current logs and defining new, larger logs. (Note
that you cannot use this process to decrease the size of your logs.)

v Change the location of your logs
– this involves deleting the current logs and defining a set on the new devices.

To reconfigure the logs:
1. Take a database archive if you are running with LOGMODE=A or L, because

the contents of the log (including the history area) will be erased.
2. Use the IDCAMS command to delete/redefine the VSAM data sets used for the

logs, as indicated above. For a description of the job control statements
involved, see Figure 87 on page 209.

3. Start the COLDLOG operation to reformat the log.
4. Take a new database archive, thus reflecting the new log definitions in the

archive.
5. Restart the application server for normal operation.

Archiving Considerations
The continuity of log archives is broken whenever a COLDLOG reconfigure is
done, so log archives taken prior to a log reconfiguration cannot be used in a
restore. You should create a new archive copy of the database immediately after
you complete the COLDLOG operation. This action will ensure that the archive
copy of the database correctly reflects the size of the logs and whether or not dual
logging is in effect.

166 System Administration

If you use log archiving, note that a database archive, not a log archive, is needed.
Reconfiguring the log breaks the continuity of the log archives, so the database
archive is needed to serve as a new starting point for the log archives. (See
Figure 73 on page 164.)

To create the new archive:
1. Start the application server in multiple user mode, specifying the initialization

parameters STARTUP=W and SYSMODE=M. (Both of these are default values.)
Set LOGMODE as you normally would (A or L).

2. After startup is complete, issue either an SQLEND ARCHIVE or an SQLEND
UARCHIVE command. With SQLEND ARCHIVE, a database archive is
automatically taken, then the application server shuts down; with SQLEND
UARCHIVE, the application server shuts down immediately, then you take the
user archive.

Log Reformatting
You must reformat the logs if you do any of the following:
v When you switch from LOGMODE=A or L to Y or N
v When you cannot do a warm start because of a logical error in the current log
v When you want to avoid log recovery in restoring a database from a back-level

database archive.
v When you switch from dual logging to single logging.

To reformat the logs:
1. Take an archive if you are running with LOGMODE=A or L, because the

contents of the log will be erased (but not the history area). If you are
switching from LOGMODE=L to Y or N, you can take either a log archive or a
database archive. If you are switching from dual logging to single logging and
you use LOGMODE=L, you can take a log archive. For other log reformatting
situations, take a database archive.

2. Start the application server with STARTUP=L and LOGMODE=Y to perform a
COLDLOG reformat on the log.

History Area

The distinction between a log reconfiguration and log reformatting is the effect
each has on an internally used portion of the log known as the history area. This is
a portion of the log that the database manager uses to keep track of recovery
events such as database archives, log archives, restores, COLDLOGs, and the
switching of log modes. Log reconfiguration causes the history area to be erased;
log reformatting does not.

Be aware that whenever you move the log, change its size, or delete the VSAM
data set used for it, its history area is erased. If this happens, the database manager
cannot tell which log archives belong with which database archives, or if the
continuity of log archiving was broken. In fact, it cannot tell whether you were
using log archiving at all, so it cannot allow you to restore the database using a
database archive and subsequent log archives.

You can always restore the database from a back-level database archive or a
current database archive, but if you lose the history area, you lose the ability to
restore using any log archive that was taken before this loss. Also, if the database
archive was taken online (with the ARCHIVE command), the database may be

Chapter 9. Special Topics in Recovery Design 167

restored to an inconsistent state. For example, a LUW could have made changes
before the archive was taken, and then been rolled back after the archive finished.
When the database archive is restored, the changes made before the archive was
taken will be in the database, but any changes made after the archive will be lost.

How the History Area is Used
The following description is not intended to be comprehensive; it only provides
general background information about log archive recovery processes using the
history area.

Suppose that you take a database archive (using either database manager or user
facilities), followed by four log archives. The history area of the log would contain
one record for each of these events:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4

The records in the history area itself are in an internal (unreadable) format. For
ease of description, they are shown here in an externalized form.

If you now request another database archive, then because the database manager is
running with LOGMODE=L, it first takes another log archive of the current log
(Log Archive 5 in the example below). If you then take three subsequent log
archives, the history area would contain the following records:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8

When you take an archive, the database manager generates identification
information based on the processor’s time-of-day clock. When you restore the
database, the database manager reads this information in the database archive tape
file before it looks at the history area.

During a restore, you may be prompted to take a log archive of the current log to
save the changes up to the point of the restore. When you restore the database
from the restore set containing this log archive (and actually restore the log
archive), it is erased from the log history’s restore set since it is put back into the
current log.

When the database manager identifies the database archive tape that is being
restored, it writes a record in the history area to indicate that a restore is being
done. Next, it looks for the corresponding database archive record in the history
area.

For example, suppose you start the application server with STARTUP=R, and
mount the Database Archive 2 tape file. The database manager looks for the
corresponding record in the history area, by searching in reverse chronological
order, from the most recent to the least recent entries. When it finds it, it
determines the log archives associated with the database archive by reading

168 System Administration

forward in the history area until the RESTORE record is reached. Log Archive 9 is
taken before the restore set is determined. This set of records is referred to as the
restore set.

Read back to the Read forward to
Database Archive identify associated

Write a RESTORE record: Record: log records:

RESTORE RESTORE RESTORE
Database Archive 1 Database Archive 1 Database Archive 1
Log Archive 1 Log Archive 1 Log Archive 1
Log Archive 2 Log Archive 2 Log Archive 2
Log Archive 3 Log Archive 3 Log Archive 3
Log Archive 4 Log Archive 4 Log Archive 4
Log Archive 5 Log Archive 5 Log Archive 5
Database Archive 2 Database Archive 2 <--- Database Archive 2 <---
Log Archive 6 Log Archive 6 Log Archive 6 <---
Log Archive 7 Log Archive 7 Log Archive 7 <---
Log Archive 8 Log Archive 8 Log Archive 8 <---
Log Archive 9 Log Archive 9 Log Archive 9 <---

The database manager copies the restore set records after the RESTORE record.
Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2 <---
Log Archive 6 <--- Restore set
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---
RESTORE
Database Archive 2 <---
Log Archive 6 <--- Restore set copied forward
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---

It then displays the restore set to the console using messages. If you restore all the
log archives associated with the database archive, the history area remains as
shown above, except that Log Archive 9 is erased from the restore set copied
forward when it is restored to the current log. If, however, you respond END
RESTORE to one of the prompts, the database manager deletes the remaining log
archive records from the history area. For example, suppose you responded END
RESTORE after only two of the log archives had been processed. The final two log
archives in the history area are deleted:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8
Log Archive 9
RESTORE
Database Archive 2
Log Archive 6 <--- Only two log archives are restored
Log Archive 7 <---

Chapter 9. Special Topics in Recovery Design 169

When the restore is ended, processing continues and two more log archives are
taken. Now the history area looks like this:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8
Log Archive 9
RESTORE
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 10 <--- New log archives
Log Archive 11 <---

If you must again restore the database and use Database Archive 2, the restore set
will contain Log Archives 6, 7, 10, and 11. Because the database manager
determines the restore set by scanning backwards in the history area until it finds a
corresponding database archive record, the original Database Archive 2 record (the
one before the RESTORE) is never reached. Consequently, it is impossible to use
Log Archive 8 or 9 when restoring the database from Database Archive 2.

The only way to restore Log Archive 8 or 9 after you responded END RESTORE is
to restore from a back-level database archive. This archive must have continuous
log archives to the log archive you want to restore.

In our example, to restore the database to its status immediately before the restore,
start the application server to do a restore, and restore Database Archive 1. The
database manager scans backwards to the first occurrence of a Database Archive 1
record. (There is only one occurrence.) When it finds the record, it then scans
forward in the history area until it either reaches the end of the history area or
until it finds:
v A record that indicates that a COLDLOG was taken
v A record that indicates that LOGMODE was switched to N
v A record that indicates that LOGMODE was switched to Y
v A RESTORE record
v Two database archive records in a row (no log archive records in between)
v Records that indicate that LOGMODE was switched to A and that a database

archive had been taken while LOGMODE=A. (When the database is archived,
the log is reclaimed without a log archive. This breaks the continuity of the log
archives.)

These records indicate a break in the continuity of the log archives. If you restore
Database Archive 1 in our example, the restore set copied forward in the history
area includes Log Archive 8:

Database Archive 1 <---
Log Archive 1 <--- New
Log Archive 2 <--- Restore
Log Archive 3 <--- Set
Log Archive 4 <---
Log Archive 5 <---
Database Archive 2 <---
Log Archive 6 <---

170 System Administration

Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---
RESTORE <--- Indicates end of restore set
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 10
Log Archive 11
RESTORE
Database Archive 1 <---
Log Archive 1 <---
Log Archive 2 <---
Log Archive 3 <---
Log Archive 4 <---
Log Archive 5 <--- Restore Set Copied Forward
Log Archive 6 <---
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---

During the actual restore, only the log archives are applied. Database Archive 2 is
skipped, because all the change activity is recorded in the continuous log archives.

When the database is restored, it reverts back to the state it was in before the first
restore. The changes recorded in Log Archives 10 and 11 are lost.

The important points about the history area are:
1. You can issue the SHOW LOGHIST command to determine what log archives will

be restored. To determine the restore set, scan backwards in the command
output until the appropriate database archive is reached; then scan forward to
determine what log archives are associated with that database archive. When
you reach a recovery event that breaks the continuity of the log archives, you
have reached the end of the restore set.

2. If you have responded END RESTORE and later want to restore the subsequent
log archives, you must restore a back-level database archive whose associated
log archives include those that were skipped by the issuing of the END
RESTORE.

If the database manager cannot find the database archive in the current history
area, a message is displayed saying the database archive is unknown. You are
given the opportunity to do a COLDLOG (if one has not yet been done) to
reformat the log. The COLDLOG is necessary because since the database manager
cannot determine a recovery set, none of the log archive records in the history area
applies, and hence the database manager cannot confirm that the current log
applies.

The lack of a database archive record in the history area implies either that the
database archive is very old, or that you have mounted the wrong database
archive tape file. If you are intentionally restoring an old database archive, you
must do a COLDLOG to avoid applying changes recorded in the current log.

Nonrecoverable Storage Pools
You can define storage pools that are not recoverable. Changes made to user data
in nonrecoverable storage pools are not logged, which eliminates much of the
overhead required for recovery operations described earlier in this chapter.
Recovery is the responsibility of the user.

Chapter 9. Special Topics in Recovery Design 171

For some applications, the benefit derived from the reduced overhead far
outweighs the effort of having to do your own recovery. The applications that
benefit the most are those that do massive updating of a specific set of tables in the
database. Such applications include:
v User programs that perform massive updates, using SQL INSERT, PUT,

DELETE, and UPDATE statements.
v DBS utility DATALOAD and RELOAD operations involving thousands or

millions of records.

If normal recovery procedures were in place, these applications would generate
many log records. These not only cause processing overhead, but require a larger
log, because the log must be large enough to hold all the records generated during
the long-running LUW (along with the records of all other concurrent LUWs).
Further, if you use archiving, the increased log activity causes more frequent
archives.

For applications that cause excessive logging or archiving, you have two
alternatives:
1. Run the application in single user mode with LOGMODE=N.
2. Place the tables that the application accesses in dbspaces that are assigned to

nonrecoverable storage pools.

The first of these methods is usually preferable. For example, suppose you have an
application that loads thousands of new records into an existing table. These
records are the names and addresses of subscribers to a new monthly service that
your company is offering. The data for new subscribers is loaded into the tables
once a month. Between runs, users perform updates on the table using ISQL (for
example, changing the address of an existing subscriber).

Now suppose you decide to run the application in single user mode with
LOGMODE=N. The advantage is that after the application runs successfully and
you create a database archive, the ISQL users have the benefit of full database
recovery. The disadvantages are:
1. You must stop the application server to run in single user mode.
2. You must create a log or a database archive before running the application, and

a database archive afterwards.
3. If LOGMODE is L, you lose the potential to restore the database to its current

level by using a back-level database archive and subsequent log archives,
because you have broken the continuity of the log archives.

Consider, though, the alternative of placing the data in a nonrecoverable storage
pool. By doing so, you avoid having to create the archives, and you can run the
application in multiple user mode and so avoid interrupting other users. However,
the data is nonrecoverable. The decision depends on whether your ISQL or DBSU
utility users can work without recovery. If the answer is no, or if you are not
certain you can foresee all possible recovery situations, use LOGMODE=N instead.

Characteristics of Dbspaces in Nonrecoverable Storage Pools
The following discussion provides the basis for you to determine whether it is
feasible to store the data for a given application in a dbspace in a nonrecoverable
storage pool, and what recovery procedures you will need for such data.

There is one situation where nonrecoverable and recoverable dbspaces have the
same characteristics: when the database manager is running in single user mode

172 System Administration

with LOGMODE=N. In this situation, for both types of dbspaces, if there is a
failure, all updates that were committed at the time of the failure are in the
database; all those that were not committed are not. This applies to any ISQL or
DBS utility command that updates the database. Note that commitment includes
both an explicit COMMIT command and any implicit commitment (as described
earlier in this chapter).

In any mode other than LOGMODE=N, the following characteristics apply to
nonrecoverable dbspaces:
v Archiving nonrecoverable dbspaces

When you take a database archive, nonrecoverable dbspaces are archived the
same way as the recoverable ones. Logging is performed differently, however,
because changes to user data in nonrecoverable dbspaces are not logged.

v Locking and concurrency
Same as for recoverable dbspaces.

v Preprocessing
DB2 Server for VSE preprocessors never update data in nonrecoverable
dbspaces.

v Atomicity of operations
Not supported. For more information, see the discussion on the SQL statements
that affect multiple rows on page 175.

v Committing work
The database manager forces a checkpoint whenever there is an implicit or
explicit COMMIT of a LUW that updated data in a nonrecoverable dbspace, to
ensure that all updates in that LUW are really in the database. The checkpoint
will only occur if data is modified, such as by an INSERT, UPDATE, or DELETE
statement. It will not occur for LUWs that do not update data, or for data
administration operations such as creating or dropping indexes or altering
tables. These operations are logged and are thus recoverable.
Thus, except when restoring from an archive (see below), a user can be sure that
committed updates are in the database, and will survive a system failure or an
application failure. They do not, however, survive a DASD failure unless you
archive the database after the updates are made.

Note: Checkpoints cause significant system overhead and increase response time
for interactive users. Thus, avoid a high frequency of LUWs that update
data in nonrecoverable dbspaces. Also, a checkpoint that occurs during a
database or log archive causes the database manager to end all concurrent
activity until the archive is completed, so users must wait. Plan your
updates to nonrecoverable dbspaces so that they do not coincide with an
archive operation.

v Rolling back work
When an LUW is rolled back (either implicitly or explicitly), the database
manager does not undo successful SQL INSERT, PUT, DELETE, and UPDATE
statements. Instead, it forces a checkpoint (after it rolls back any changes made
to recoverable data during that LUW). This means that the nonrecoverable data
appears just as though the LUW had been committed at the point when the
rollback occurred.
If you want to return the data to the state it was in before the LUW, you must
undo the INSERTs, PUTs, DELETEs, and UPDATEs manually. Until you do,
other users can see the uncommitted updates.

Chapter 9. Special Topics in Recovery Design 173

The database manager does a checkpoint to ensure that you know what changes
were made (so that you can undo them). If the checkpoint was not done, and
the database manager failed before the next checkpoint, it would be difficult to
tell what changes (if any) were made to the database. The checkpoint is done to
make it easier for you to undo the changes.
There are two situations where the database manager does not force a
checkpoint for rollbacks of LUWs that update nonrecoverable data:
– When it rolls back LUWs during a warm start after a system failure.

The database manager uses the log to determine the LUWs that were in
progress at the time of the failure. These LUWs are normally rolled back.
Changes to nonrecoverable data are not rolled back, because they were never
recorded in the log in the first place.
There is no forced checkpoint because when the system fails, all changes
made since the last checkpoint are lost. (They are not in the database.) For
nonrecoverable data, in this situation, there is nothing to record at a
checkpoint. For more information, see the discussion on recovering from
processing failures, below.

– When it rolls back LUWs when applying log changes during an archive
restore.
Here again, the updates are not in the log, so there is nothing to record at a
checkpoint. In fact, all changes to nonrecoverable data made after the archive
are lost. For more information, see the discussion on restoring from an
archive, below.

Usually the EXEC CICS ROLLBACK rolls back updates made to multiple
resources, but the CICS transactions that use the two-phase syncpoint (TPSP)
protocol cannot rely on this when nonrecoverable data is involved. You must
make other provisions for such transactions.

v Recovering from processing failures
Logical units of work that are in-process when a system failure occurs lose the
automatic rollback that normally is done the next time the application server is
started. In this situation, the state of these updates depends on when the last
checkpoint occurred before the failure. Updates that were completed before the
checkpoint occurred are in the database; those done after the checkpoint are not.
You must undo only the updates made by an in-process LUW that occurred
before the last checkpoint. This procedure resets the data to its state before the
LUW that was interrupted by the system failure.
This process applies only to nonrecoverable data. If you are also updating
recoverable data in that same LUW, the normal recovery rules apply for that
data.

v Restoring from an archive
If you are restoring the database from an archive copy, all data updates to
nonrecoverable dbspaces done after that archive was taken are lost. You must
redo all updates since the archive to bring those dbspaces to the current level.
Because row updates (INSERT, PUT, DELETE, UPDATE) are not recorded in the
log, the filtered log recovery ROLLBACK COMMITTED WORK command does
not apply. It does apply, however, for recoverable SQL statements and for the
DBS utility command REORGANIZE INDEX (see below), because they are
logged. For information about filtered log recovery, see the discussion on
starting the application server to recover from a DBSS error in the DB2 Server for
VSE & VM Diagnosis Guide and Reference manual.

v Recoverable statements and commands

174 System Administration

The following SQL statements are always recoverable, even if they involve
nonrecoverable dbspaces:
– ACQUIRE DBSPACE
– ALTER DBSPACE
– ALTER TABLE
– CREATE INDEX
– CREATE TABLE
– DROP DBSPACE
– DROP INDEX
– DROP TABLE

The DBS utility command REORGANIZE INDEX is also recoverable.

The reason these are recoverable is that the database manager does not suppress
logging for them. They are logged to ensure the integrity of the database catalog
tables, which always refer only to objects that exist.

If an LUW fails to commit (implicitly or explicitly) after successfully doing any
of the above statements or the command, the recovery procedures will
automatically undo the statement or command. For example, suppose the
following actions are in a LUW:
1. CREATE TABLE
2. INSERT into that table.

If this LUW fails to be committed, the table, all its rows, and its indexes are
automatically dropped from the database. Because the above statements are
logged, if an LUW is committed after successfully processing the statements,
they can be restored from the archive.

v Partial row updates
Except for long strings, the problem never occurs of a single row being only
partially updated (inserted, deleted, or modified). The database manager always
ensures that either all processing for updating a row is in the database, or that
none is. (You can get partial row updates for long strings because more than one
update is needed internally for each row update you request.)

v SQL statements that affect multiple rows
An SQL statement that causes multiple rows to be inserted, deleted, or updated
can fail between row modifications, due to an error condition or a system
failure. Whatever the cause, because the dbspace is nonrecoverable, some of the
rows are modified in the database, and some are not.

Data That Can be Placed in Nonrecoverable Storage Pools
When you are considering placing application data in a nonrecoverable storage
pool, you must determine whether the user will be able to recover it in a
reasonable and relatively simple manner. If so, then the table is a candidate for a
nonrecoverable storage pool.

Some examples of such data follow, along with descriptions of how to recover it,
based on the rules in the previous section.

Example 1
Some applications use data that is retrieved from a source outside the database,
such as VSAM data, data from another DB2 Server for VSE database, or data from
a sequential file. Such tables are candidates for nonrecoverable storage pools if the
following are true:

Chapter 9. Special Topics in Recovery Design 175

1. The data, after being loaded into database tables, is used only for read-only
applications.

2. The data from the outside source is the only data in the tables. (That is, the
data was not added to existing tables.)

If the application that loads the data into the database tables fails (does not
COMMIT) for any reason, you can recover in either of the following ways:
v If the failing LUW included one or more CREATE TABLE statements for the

tables being loaded, rerun the application. Because this statement is recorded in
the log, any failure to commit would cause it to be rolled back. The table and
any rows that were inserted into it would be dropped.

v If the failing LUW did not contain any CREATE TABLE statements, delete all the
rows from the tables; then rerun the application step that loads the data into the
tables.

If, after successfully loading the data, you restore the database from a database
archive that was created before the data was loaded, the rows you loaded no
longer exist in the database. You can recover as follows:
1. Bypass any steps that delete all rows from the tables or that drop and recreate

the tables.
These steps are not necessary because the database manager always records
DROP and CREATE table statements in the log, even for nonrecoverable
dbspaces.

2. Rerun the steps that load the data into the tables.
You must redo the data manipulation statements (in this situation, INSERT and
PUT) because they are not recorded in the log. (The restore defined the tables
in the database, but did not insert any data.)

These recovery rules apply only to data that is imported and loaded once and is
discarded when no longer needed. Each time the data is loaded, it completely
replaces the previous version.

The key point is that the source data must exist so that it can be used to recover
the read-only database version.

Example 2
Data that is retrieved from an outside source and added to existing data can also
be stored in a nonrecoverable dbspace.

The data can be from any of the sources described in Example 1 above. To add it
to an existing table, you could use the DBS utility DATALOAD command or an
application program to perform a mass INSERT operation.

You can recover the data if each batch of added rows has a unique value in a
column that identifies rows of the batch. You would need an application program
that generates a unique batch identifier and places it into each record (or into each
row, if the application loads the rows into a table).

If the application that loads the data fails (does not commit the work) for any
reason, you can recover as follows:
1. Specify the unique values that identify the rows added to the tables.
2. Delete all the rows in tables that have these unique identifier values. These

rows were inserted before the system failed.
3. Rerun the step that loads the added data into the tables.

176 System Administration

Note: Although it is tempting to commit work frequently during loading to avoid
potential recovery problems, keep in mind that the commit operations cause
checkpoints, which can adversely affect overall performance.

If you restore the database using a database archive that was created before one or
more of the load operations, all rows loaded since that archive no longer exist in
the database.

To recover those lost rows, either:
1. Query the tables to determine the last batch of rows inserted that still exist in

the database.
2. Rerun the steps that added all subsequent batches of rows to the tables.

Alternatively:
1. Delete all the rows that were loaded before the database archive was taken of

the tables.
2. Reload all of the rows from the original source.

Both methods of recovery assume that the loaded data still exists somewhere
outside the database, and that each batch of rows has a unique identifier.

Example 3
Read-only data that is created by one or more INSERT via subselect statements can
also be stored in a nonrecoverable dbspace. For recovery to be possible, the data
must be inserted into empty tables.

If the loading of the table fails to be committed, you can recover the data as
follows:
1. If the LUW created the table:

a. Recreate the table. (Because CREATE TABLE statements are always
recoverable, the table is dropped when the LUW fails.)

b. Rerun the INSERT via subselect statements to load the data.
2. If the table already exists:

a. Delete all the rows from the table, since they reflect an incomplete update.
b. Rerun the INSERT via subselect statements to load the data.

If you restore the database from a database archive that was created before the
data was loaded, the data that was loaded is not in the database. The table is not
dropped, however, even if it was created after the archive, because CREATE
TABLE statements are always logged. To restore the data that was eliminated by
the database restore operation:
1. If the table was created (or recreated) after the database archive, rerun the

INSERT via subselect statements.
2. If the table was created before the database archive, some rows may also exist

in the table. It may be impossible to identify the INSERT via subselect
statements that put these rows in the table. Even if you determine the INSERT
responsible for a row, it is difficult to tell if all rows originally inserted by the
statement still exist. (The statement may have been in progress at the time the
database archive was taken.) For this situation:
a. Delete all rows in the table.
b. Rerun the INSERT via subselect statements.

Chapter 9. Special Topics in Recovery Design 177

Avoid loading (or otherwise updating) nonrecoverable dbspaces if an online
database archive could occur at the same time, because such archives typically
contain changes made by incomplete LUWs. For recoverable data, this is not a
problem because the log contains the rest of the changes, so when you do a
restore, the archive and the log are used together to reconstruct a consistent copy
of the database. For nonrecoverable data however, changes are not recorded in the
log, so data can be incomplete or inconsistent because no log records are available
to complete the restoration of the database.

You should also not update nonrecoverable data when an online log archive can
occur, because the database manager waits until all LUWs end before creating the
log archive. Because LUWs that update nonrecoverable data are usually
long-running, the log archive is forced to wait. If the log fills to the SLOGCUSH
point, log overflow processing will be started: this involves rolling back the
longest-running LUW, which is usually the one that is updating nonrecoverable
data. (For a description of the SLOGCUSH parameter, see “SLOGCUSH” on
page 62.)

Data That Should Not Be Placed in Nonrecoverable Dbspaces
Any data that would be difficult or impossible for a user to recover should not be
put in nonrecoverable dbspaces. Some examples are:
v Data that cannot be recreated

This includes data whose source is destroyed after the data is loaded, and data
that is manually entered into tables (with the ISQL INPUT command, for
example).

v Data that is modified by application programs or terminal users after it is loaded
into the database
If the owner of the table keeps an audit trail of the updates made, you can put
this kind of data in a nonrecoverable dbspace, and have the owner use the audit
trail to do recovery. However, this is practical only if the number of updates
made is small.

v Tables that are linked with referential constraints (referential integrity) to tables
in recoverable dbspaces.

v Tables that are managed by DB2 Server for VSE components:
– ISQL-stored query tables
– ISQL-stored routine tables
– Extract facility catalog tables
– Other IBM-supplied tables.

v Tables with small amounts of data
Here, recovery is not a problem. Rather, there is just not enough logging done
for the data to justify the added complexity of user recovery. Let the database
manager do the logging and recovery.

v Large tables where small numbers of rows are periodically added
Here again, there is not enough logging to justify user recovery.

Setting Up Nonrecoverable Storage Pools and Dbspaces
If you want the data for a particular application to reside in a nonrecoverable
storage pool, do the following:
1. Determine the dbspace requirements (size, type, and number).
2. Design a recovery scheme to use in case an LUW fails while the nonrecoverable

dbspaces are being updated.

178 System Administration

3. Design a recovery scheme to use in case restoring the database from an archive
should be necessary.

4. Allocate the nonrecoverable storage pool. You can do this either during
database generation, or when adding a dbextent. In either situation, use the
POOL control statement (see “Adding Dbextents to a Storage Pool” on
page 131).
Attention: Once a storage pool is defined, either by adding dbextents to it or
by POOL(NOLOG), you must not change it from recoverable to
nonrecoverable, or the reverse.

5. Define dbspaces in this storage pool, either during database generation or
when adding dbspaces (see “Adding Dbspaces to the Database” on page 123).
On your control statements defining the dbspaces, specify the number of the
storage pool.

6. Acquire the dbspaces you want by using the ACQUIRE DBSPACE statement.
You must specify the number of the storage pool you want with the
STORPOOL parameter; otherwise, the database manager will not select a
dbspace from a nonrecoverable storage pool.

7. Create tables in these dbspaces. To do this, you must specify the dbspace name
in the CREATE TABLE statement; otherwise, the database manager will not
place a table in a nonrecoverable dbspace.

Remember to perform your recovery procedures whenever there is a LUW failure
or when you must restore the database from an archive.

Querying for Nonrecoverable Storage Pools and Dbspaces
To determine whether a storage pool is nonrecoverable, issue the SHOW DBEXTENT
operator command. The POOL NO. column shows the number of the pool. If it is
positive, the storage pool is recoverable; if negative, it is nonrecoverable. For
example, if the number displayed is -32, storage pool 32 is nonrecoverable; if it is
32, this storage pool is recoverable.

To determine what dbspaces are in nonrecoverable storage pools, look at the POOL
column in the SYSTEM.SYSDBSPACES catalog table. If this value is positive, the
pool where the dbspace is assigned is recoverable; if it is negative, the pool is
nonrecoverable. Again, the absolute value of the number is the storage pool
number.

Following are some sample queries you can use to determine the status of
nonrecoverable storage pools and dbspaces:
v To determine which storage pools are nonrecoverable and have dbspaces

assigned to them, issue:
SELECT DISTINCT POOL -

FROM SYSTEM.SYSDBSPACES -
WHERE POOL > 999

Because the data type of the POOL column is DBAHW, you specify POOL > 999
instead of POOL < 0 to retrieve the nonrecoverable (that is, negative) storage
pools. The DBAHW fields do not sort the same way that SMALLINT fields do.
(See the DB2 Server for VSE & VM SQL Reference manual for description of data
types.)

v To determine how many of the public dbspaces allocated to nonrecoverable
storage pool number 7 are not yet acquired, and the number of pages in each of
the dbspaces, issue:

Chapter 9. Special Topics in Recovery Design 179

SELECT NPAGES FROM SYSTEM.SYSDBSPACES -
WHERE DBSPACETYPE=1 AND POOL=-7 AND OWNER=' '

The blank OWNER column indicates that the dbspace is not yet acquired.

To find the same information for private dbspaces, change the DBSPACETYPE
value in the statement from 1 to 2.

v To determine how many storage pools remain to be defined in the database, first
issue the SHOW DBCONFIG command to see the value of the MAXPOOLS
parameter. This value, which was set during database generation, determines the
maximum number of storage pools allowed.
Next, issue SHOW DBEXTENT to determine the number of storage pools that are in
use. Storage pools are in use only if dbextents are assigned to them. The
difference between this number and MAXPOOLS is the number of pools that
remain to be defined. You can define storage pools by adding extents to new
pool numbers until you reach the MAXPOOLS limit.

v To determine whether a specific table is in a nonrecoverable dbspace, issue:
SELECT DBSPACENO FROM SYSTEM.SYSCATALOG -

WHERE TNAME=table_name AND CREATOR=userid

If the DBSPACENO value is 0, the table is actually a view, and you have to
query the SYSTEM.SYSVIEWS catalog table to obtain the name of the underlying
table. If the DBSPACENO value is not 0, use the value in this SELECT statement:

SELECT POOL FROM SYSTEM.SYSDBSPACES WHERE DBSPACENO=n

If the returned POOL value is negative, the dbspace is nonrecoverable; if it is
positive, the dbspace is recoverable.

180 System Administration

Chapter 10. Using the Accounting Facility

The accounting facility records how resources are consumed on the database
manager. Resources are consumed both by individual users, and by processes that
cannot be attributed to a single user, such as startup, shutdown, checkpoints, and
archives. This information is collected in fixed-length records, 80 bytes long, that
describe who or what consumed resources.

The records include up to 16 bytes for installation-dependent data, where you can
supply information such as account numbers or project numbers. These 16 bytes
can come from:
v VSE applications, provided an accounting exit has been installed as described in

section “Supplying Account Numbers for Users” on page 257.
v Applications on platforms other than VM or VSE that use the DRDA protocol to

connect to DB2 Server for VSE servers. In this case, 16 bytes of user supplied data
are recorded into database manager USER accounting records. Examples of such
DRDA requesters are: DB2 for OS/390 and DB2 Connect.

If you already have routines to process other accounting records, you can modify
them to handle the DB2 Server for VSE records. You can also use the database
manager itself to store your accounting data, and use ISQL to easily manipulate
the data and generate reports.

Preparing to Use the Accounting Facility
To use the accounting facility, you must first set up the operating system, then set
up the job control statements for the accounting files.

Setting Up Your System
1. IPL the VSE operating system with the JA=YES option specified on the IPL SYS

command. For more information, see VSE/ESA System Control Statements.
2. If you have CICS, you must generate it with the restart resynchronization

capability. (If accounting is active but restart resynchronization is not installed,
the online support cannot be started; the CIRB transaction fails, and you receive
an error message.) For a description of the CICS table entries required for
restart resynchronization, see the DB2 Server for VSE Program Directory.

Setting Up a Job Control for the Accounting Files
When the VSE operating system is set up to use accounting, you need to set up a
job control for the accounting files, within the job control that identifies your
database. This job control must identify either one or two accounting files. It is
recommended that you define two, so that you can use the alternate accounting file
support.

If only one accounting file is used, you must shut down the database manager to
process this file. With alternate accounting file support, you can switch from the
current file to a second one while the database manager is running, which enables
you to process the information in the first file without interrupting users. You can
also use the alternate file support if there is a write error on the active file; or if
you are accounting to DASD files, you can switch to the alternate file when the
active file reaches the end of the extent.

© Copyright IBM Corp. 1987, 2000 181

If you switch to a second accounting file, you should process the closed file as
soon as possible to prevent yourself from accidentally overlaying the previous
session’s accounting information.

The accounting files must be sequential files, and they can reside on either tape or
DASD. If you define two, they must both be on the same storage medium: you
cannot define one on tape and the other on DASD. If the files are on DASD, they
can be native SAM files, VSE/VSAM ESDS files, or files managed by the
VSE/VSAM space management for SAM feature. It is recommended that you
define your accounting files on DASD as VSE/VSAM ESDS files.

Regardless of whether you use DASD or tape, you must specify the file name
ARIACC1 for the first file on either the DLBL or TLBL statement. If you use two
accounting files, the second file name must be ARIACC2. The database manager
always opens ARIACC1 when it is started with the accounting facility active.

When the database manager ends (either normally or abnormally), it attempts to
close the accounting file. If this file cannot be closed, accounting data may be lost.

Managing DASD Accounting Files
To use DASD sequential files for your accounting data, first determine the
potential size of the accounting data set. Initially, you should overestimate it; then
adjust it based on your experience.

To get a general idea of how many accounting records are likely to be generated,
start the application server for normal multiple user mode access, and at the end
of the day, issue the COUNTER BEGINLUW and COUNTER CHKPOINT operator
commands. The number of accounting records generated at your installation will
be smaller than, but proportional to, these values. The database manager writes an
accounting record for each user on some ends of logical units of work, and on all
checkpoints. Three more accounting records are written for each run: one for
startup, one for operation, and one for shutdown: you can ignore these three
records when making your estimate.

For example, assume your counters show that your installation does 2000 logical
units of work and 200 checkpoints a day. On average, this can result in 1000
accounting records generated for users and 200 records generated for checkpoints.
For environments with heavy ISQL usage, the number of records generated for
users would probably be lower, while for preplanned transaction environments, it
would probably be higher, so you should overestimate the number of records
needed.

To get an initial estimate for the size of your accounting files, multiply your
estimate of the number of records by 80 to get the approximate number of bytes.
For help in determining the file size that you need, see “Storage Capacities of IBM
DASD Devices” on page 337.

When you have gained experience using accounting, you can adjust your file sizes.

Files Managed by VSE/VSAM Space Management for SAM Feature: If you have
the VSE/VSAM space management for SAM (sequential access method) feature,
you should use it to manage your accounting files on DASD. This feature provides
the following advantages:

File extendibility
It allows files to be extended by the use of the DISP=(OLD) parameter on
the DLBL statement. This prevents the database manager from overlaying

182 System Administration

the accounting records generated during its previous run. Otherwise, you
would have to update EXTENT job control statements over multiple runs
of the database manager

Secondary allocations
It gets up to 15 additional extents when the primary allocation is
exhausted. This reduces the risk of filling the accounting file, which causes
a loss of accounting data.

Monitor status
You can monitor the status of the accounting file using the access method
services LISTCAT command. You can do this without interrupting
processing.

No symbolic device collision
You do not need to worry about symbolic device address collisions, which
can occur
v when the output of both the trace and accounting facilities are directed

to DASD files managed by native SAM
v when, (in single user mode) the output of the DBS utility or the

preprocessor is directed to DASD files managed by native SAM

The collisions must be resolved in the job control statements, as described
on page 185.

Figure 75 shows sample job control statements for two accounting files managed
by the VSE/VSAM space management for SAM feature.

Notes:

1. The DLBL file name for the primary accounting file must be ARIACC1, and for
the secondary file ARIACC2.

2. The DLBL parameter VSAM indicates that these are VSAM managed files.
3. The example assumes that the files are implicitly defined to VSAM the first

time they are opened.
4. Every time the application server is started, it directs output to the file

identified by file name ARIACC1 (even if you are using two accounting files).
To avoid having the accounting information from the previous run of the
database manager erased, specify the DISP=(OLD,KEEP) option on the DLBL
statement for the accounting file to indicate that the files are not to be reset at
OPEN time (OLD), and are not to be deleted at CLOSE time (KEEP). This
allows you to implicitly define the files the first time they are used, and to
extend them (add records to them) in subsequent runs.
If you run the database manager continually, it is advantageous to specify
DISP=(NEW,KEEP) to have the accounting file erased every time it is opened.
Here, you would be switching between the two accounting files, using the
ALTACCT command, so that you can process the current file. If you specified

// DLBL ARIACC1,'ACCTFIL1',0,VSAM,DISP=(OLD,KEEP),RECORDS=(x,y), C
RECSIZE=80,CAT=SQLWK1C

// EXTENT ,SQLWK1
// DLBL ARIACC2,'ACCTFIL2',0,VSAM,DISP=(OLD,KEEP),RECORDS=(x,y), C

RECSIZE=80,CAT=SQLWK1C
// EXTENT ,SQLWK1

Figure 75. Job Control for DASD Accounting Files (VSAM Space Management)

Chapter 10. Using the Accounting Facility 183

DISP=(OLD,KEEP), the files would never be erased; they would keep growing.
If you do specify DISP=(NEW,KEEP), be sure to process the accounting file
immediately after you close it. If you do not, the accounting data will be
erased the next time you switch accounting files.

5. When implicitly defining the files, VSAM uses the RECSIZE and RECORDS
parameters to determine how much primary and secondary space to allocate
for the files.
Set RECSIZE to 80, because that is the size of an accounting record.
For RECORDS=(x,y), set x to the number of accounting records you expect to
be generated during your accounting period. The value you specify for x is
multiplied by 80 (the RECSIZE) by VSAM to determine the size of the primary
space allocation. For example, if you have determined that you expect 500
accounting records to be generated for each accounting period, set x equal to
500. The number of bytes set by VSAM for the primary space allocation is
40000 (500 x 80). The value you specify for y determines the size of the
secondary allocation. If you set y to 100, VSAM allocates 8000 bytes (100 x 80).
If the primary allocation is full, VSE/VSAM gets up to 15 additional extents.
The VSAM catalog must own sufficient unallocated space on the specified
volume to satisfy the space allocation requirements for the file.

Note: If you use an explicit definition for the VSAM clusters, then specify a
maximum record size of 2000 on the RECORDSIZE parameter of the
IDCAMS utility DEFINE CLUSTER command.

6. For an implicit file definition, an EXTENT statement with a volume serial
number (SQLWK1 in the example) is required.

7. An ASSGN statement is not required for VSE/VSAM-managed files.

Files Managed by SAM: If you use native SAM, which cannot extend files, to
manage accounting files on DASD, you must devise operating procedures to avoid
overlaying the accounting information from the previous run of the database
manager. This can be done by updating your job control EXTENT statements every
time you start the application server, or by using two sets of job control with
different EXTENT statements. When starting the application server, you would
alternate between the two sets of job control statements.

If you use this approach, be certain to process the accounting file as soon as you
close it; otherwise it will be overlaid the next time you start the application server
by using the job control that identifies the file. If you load your accounting data
into tables, consider prefixing your normal start-up job control with a DBS utility
job that runs in single user mode (with ACCOUNT=N specified). This job would
run the DBS utility to load accounting data from the previous session into tables to
prevent it from being overlaid by the next job.

Figure 76 on page 185 shows sample job control statements for native SAM
accounting files.

184 System Administration

Notes:
1. The DLBL file name for the primary accounting file must be ARIACC1; that for

the secondary file must be ARIACC2.
2. In this example, the DASD allocation for the primary accounting file is 38

tracks on SQLWK1. The 38 tracks start at relative track 57. The secondary
accounting file has an allocation of 30 tracks on the same volume starting at
relative track 95.

3. If you are only using one accounting file, you must specify a new DASD
allocation every time you start the application server. Otherwise, you will write
over the old file. (You should also specify a different file-id.)
Even if you are using alternate accounting files, you would have to change the
extents unless you ensure that the accounting data from the previous run is
processed before it is overlaid.

4. This example uses the DB2 Server for VSE default symbolic unit for DASD
output (SYS007). If you do not want the default, specify the symbolic unit of
your choice as the first EXTENT parameter. Also specify it in the ASSGN
statement. If you are also using DB2 Server for VSE tracing with output
directed to DASD, either the trace or accounting output must be directed to a
symbolic unit other than SYS007. In single user mode, DBS utility output or
trace output to DASD causes the same problem. You must ensure that the
output from only one of the facilities is directed to SYS007.

Files Managed by VSE/VSAM ESDS: It is recommended that you define your
accounting files on DASD as VSE/VSAM ESDS files because they handle the
End-of-Extent situation better than VSE/VSAM managed by SAM files. All
advantages of using VSE/VSAM files still remain for VSE/VSAM ESDS files,
except that the files will have to be defined explicitly. Figure 77 shows sample
IDCAMS commands to define two VSE/VSAM ESDS accounting files. See
“Converting VSAM ESDS Accounting File Records into VSAM Managed SAM
Feature Records” on page 203 for related consideration of loading the accounting
records using VSE/VSAM ESDS accounting files.

// DLBL ARIACC1,'ACCTFIL1'
// EXTENT ,SQLWK1,1,0,57,38
// DLBL ARIACC2,'ACCTFIL2'
// EXTENT ,SQLWK1,1,0,95,30
// ASSGN SYS007,DISK,VOL=SQLWK1,SHR

Figure 76. Job Control for DASD Accounting Files (Native SAM)

Chapter 10. Using the Accounting Facility 185

Note:

1. Set RECORDSIZE to (80 80) because that is the size of an accounting
record.

2. For RECORDS=(x y), set x to the number of accounting records you
expect to be generated during your accounting period. The value of y
determines the size of the secondary allocation.

Figure 78 shows sample job control statements for two VSE/VSAM ESDS
accounting files.

Note:

1. The DLBL file name for the primary accounting file must be ARIACC1,
and the secondary file name is ARIACC2.

2. The DLBL parameter VSAM indicates that these are VSAM managed
files.

3. The example assumes that the files are explicitly defined using the
sample IDCAMS commands illustrated in Figure 77.

4. Every time the application server is started, it directs output to the file
identified by file name ARIACC1 (even if you are using two accounting
files). To avoid having the accounting information from the previous run
of the database manager erased, specify the DISP=(OLD,KEEP) options
on the DLBL statement for the accounting file to indicate that the files
are not to be reset at OPEN time (OLD), and are not to be deleted as
CLOSE time (KEEP).

// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER (NAME(ACCTFIL1) -
VOLUMES(SQLWK1) -
ORDERED -
REUSE -
RECORDS(x y) -
RECORDSIZE(80 80) -
NOINDEXED) -
DATA(NAME(ACCT.FILE1.DATA))

DEFINE CLUSTER (NAME(ACCTFIL2) -
VOLUMES(SQLWK1) -

ORDERED -
REUSE -
RECORDS(x y) -
RECORDSIZE(80 80) -

NOINDEXED) -
DATA(NAME(ACCT.FILE2.DATA))

/*

Figure 77. IDCAMS Commands to Define VSE/VSAM ESDS DASD Accounting Files

// DLBL ARIACC1,'ACCTFIL1',0,VSAM, C
CAT=SQLWK1,DISP=(OLD,KEEP)

// DLBL ARIACC2,'ACCTFIL2',0,VSAM, C
CAT=SQLWK1,DISP=(OLD,KEEP)

Figure 78. Job Control for DASD Accounting Files (VSE/VSAM ESDS)

186 System Administration

5. If the RECSIZE parameter is specified in the DLBL statement, its value
should be set to 80.

Managing Tape Accounting Files
To write accounting records to a tape file, specify a TLBL statement in your
database job control. The file name on the TLBL statement must be ARIACC1. If
you will be using alternate accounting files, specify a TLBL statement for a second
accounting file, and call the file ARIACC2.

When accounting to tape, the database manager uses the VSE dynamic tape
ASSIGN macro. The operator is prompted for the address (cuu) of the tape drive.

If you switch the output to the alternate file, the cuu of the first accounting file is
unassigned by the VSE dynamic tape ASSIGN macro, and becomes available for
use for any purpose, including reuse for the alternate file. Figure 79 shows an
example of job control statements for two accounting files.

To avoid overlaying accounting information from the previous session, the
database manager does not rewind the accounting tape at OPEN or CLOSE time.
Therefore, when the application server is next started, another accounting file is
written starting after the file from the previous session.

A block size of 2000 is used for the tape file. This provides efficient performance,
and minimizes the amount of accounting data lost due to a system failure or a
write error on the tape.

While it is unlikely that you will reach end-of-volume for a tape accounting file,
multivolume tape support is provided. You must use only IBM standard label tape
files.

Starting the Accounting Facility
To start the accounting facility, set the ACCOUNT initialization parameter to D or
E to write records to disk, or T to write them to tape. If you do not want
accounting, specify N (the default).

Figure 80 on page 188 shows an example of a job control to start the application
server in multiple use mode and to direct accounting output to DASD using
VSE/VSAM ESDS accounting files. The example assumes that you have supplied
appropriate job control statements for the accounting files in the database
identification procedure ARIS71DB

// TLBL ARIACC1,'ACCTFIL1'
// TLBL ARIACC2,'ACCTFIL2'

Figure 79. Example Job Control for Accounting Files on Tape

Chapter 10. Using the Accounting Facility 187

The database manager can also generate accounting records in single user mode
for user programs, the DBS utility, and the preprocessors. Accounting records are
not generated for:
v Log reconfigurations (STARTUP=L)
v Database generations (STARTUP=C)
v Adding dbextents (STARTUP=E)
v Adding dbspaces (STARTUP=S)
v Catalog index reorganizations (STARTUP=I)
v Catalog migrations (STARTUP=M)
v PROGNAME=ARISEGB, which is the catalog update phase of an ADD

DBSPACE operation.

If you specify ACCOUNT=D, E, or T in these situations, the database manager
displays a warning message and ignores the ACCOUNT parameter.

To generate accounting records for single user mode programs, specify
ACCOUNT=D, E, or T as you would for multiple user mode.

When the database manager ends, it closes the accounting files. You should
immediately process the files to reduce the chance of overlaying them during the
next run.

Operating the Accounting Facility
Little operator intervention is required to use the accounting facility. If the
accounting files are on tape, the operator will be prompted to mount the tape and
give the cuu of its drive. If they are on DASD, intervention is usually not required
at all: the database manager simply opens ARIACC1, wherever it may be, and
continues operation.

If you have defined two accounting files, the operator must issue the ALTACCT to
close ARIACC1 and open ARIACC2 (or vise versa). If you are accounting to tape,
the cuu for ARIACC1 becomes unassigned and available for other use, including
for the alternate file; the operator is now prompted for the cuu of the tape drive of
the alternate file. If you are accounting to DASD, the ALTACCT command does not
require further operator action.

ALTACCT can be issued any number of times during a single run of the database
manager. Each time, the file that is currently open is closed, and the alternate file is
opened.

If the accounting file fills or a write error occurs, operator intervention is required.
The operator is prompted as to whether the database manager should switch to an
alternate file (if available), continue with accounting disabled, or end. If an
alternate file has been defined, the operator should switch to it; if not, consider
shutting down the database manager to avoid losing more accounting data. (In this

// JOB SQL START
// EXEC PROC=ARIS71DB
// EXEC PROC=ARIS71PL
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='ACCOUNT=E,PARMID=WARM1'

Figure 80. Example Job Control to Start with Accounting Enabled

188 System Administration

situation, the accounting data in the buffer has already been lost.) The operator
will need to know how to respond to this error message in advance. Other users
must wait until the operator replies.

When the database manager ends (either normally or abnormally), it attempts to
close the accounting file. If it cannot, some accounting data may be lost. Also, if
the tape file cannot be closed, its tape mark is not written. In this situation, the
operator should manually write a tape mark using the VSE WTM command. (For
information on this command, see VSE/ESA System Control Statements.)

Whenever an accounting file is closed (either by shutting down the database
manager or by switching to the alternate file), the operator should immediately
process it, to reduce the risk of its being overlaid the next time the application
server is started. If the file is being written to tape, overlaying can easily happen --
the database manager does not rewind the tape, but there is nothing to stop the
operator from manually doing so. For DASD files, a simple job control error for
VSAM-managed files can cause the error: specifying DISP=(KEEP) instead of
DISP=(OLD,KEEP). For SAM-managed DASD files, it is even easier to overlay the
file, as no SAM provisions exist for extending files. Thus, if the same job control is
used two days in a row, the ARIACC1 file will certainly be overlaid. All of these
problems can easily be avoided if the operator makes it a practice to process the
file whenever it is closed.

For examples of operating procedures used in accounting, see the DB2 Server for
VSE & VM Operation manual.

Generation of Accounting Records
Accounting records are written when one of the following occurs:
v For guest sharing, when an IUCV or APPC/VM SEVER occurs:

– When the RELEASE option of an SQL COMMIT or ROLLBACK command is
specified in multiple user mode

– When the user ID abends
– When the DB2 Server for VSE operator issues an SQL FORCE for the

authorization id
v A user reconnects without explicitly releasing the previous session.

For example, suppose user ID USER1 uses ISQL to implicitly connect to the
database manager, does some work, and then explicitly connects as
authorization ID SQLDBA to do tasks requiring DBA authority. When USER1
changes authorization IDs, the database manager writes an accounting record for
authorization ID USER1 and begins a new session for authorization ID SQLDBA,
even though USER1 did not explicitly release the first connection.

v The internal DB2 Server for VSE resource threshold is met or exceeded. This is
checked at the end of a logical unit of work.
For example, suppose USER1 uses ISQL with AUTOCOMMIT ON, and never
issues a COMMIT or ROLLBACK WORK RELEASE. The session therefore lasts
until this user reconnects or leaves ISQL. If this user works on ISQL for hours
and processes many logical units of work during this long session, he or she
exceeds the resource threshold a number of times. Every time this happens, an
accounting record is written. Now suppose the database manager abends. The
only accounting information lost is for work that USER1 did after last exceeding
the threshold. If the internal threshold were not used, all accounting information
about USER1’s session would have been lost, which represents a significant
amount of work.

Chapter 10. Using the Accounting Facility 189

v The connection between the user ID and the database manager is ended by:
– An SQLEND QUICK command
– A DB2 Server for VSE FORCE command
– A CICS transaction ending.

The database manager does not write an accounting record for every logical unit of
work, because too many records would be generated, resulting in high system
overhead. Because most ISQL users use AUTOCOMMIT ON, practically every SQL
statement issued would cause a new LUW.

Using DRDA Accounting
When a remote application requester establishes a connection with an application
server, it must pass along information to uniquely identify the originating user, so
that the database manager can generate proper accounting records. This passed
information is the LUWID.

The format of the LUWID is shown below.

Within the VSE operating system, tracing usage to a user of local resources for
billing purposes is easy because the user identification is unique. With the
expansion into the SNA network, accounting poses the issue of unique site and
user identification. Two pieces of information supplied by the application requester
form a unique identification of a remote user:
v Access user ID of requesting application
v LUWID associated with each conversation

This information is supplied by the application requester to the application server
in the SNA control structure FMH5.

Two accounting record types are used to track resource consumption of remote
users using the DRDA option:
v The remote user accounting record resembles the format of an ordinary user

accounting record, with certain record fields having different meaning
v The DRDA accounting record is written each time a remote user accounting

record is generated

For the purpose of correlating the two records, the access user ID, DB2 Server for
VSE user ID, and date/time stamp in the remote user record are duplicated in the
associated DRDA record.

Supplying Accounting Data from DRDA Applications
Remote DRDA application requesters have the opportunity to send accounting
information to DRDA servers using a general purpose unarchitected DRDA
parameter. DB2 for MVS (Version 2 Release 3 or later) and DDCS (Version 2
Release 1) have implemented this approach for sending accounting data. Similar
support was enabled for VM requesters in Version 3 Release 5.

NETID.LUNAME.INSTANCE_NUMBER.SEQUENCE_NUMBER

Figure 81. DRDA LUWID

190 System Administration

If the database manager determines that a DRDA requester has supplied
accounting data, 16 bytes of user supplied data is recorded into database manager
USER accounting records as “installation-dependent” data. For DB2 for MVS
applications, user supplied data corresponds to the MVS accounting string
associated with the DB2 SQL application’s MVS address space.

For DDCS applications and DB2 CONNECT applications, user supplied data
corresponds to one of the following:
v The value specified by an application with the sqlesact() API
v The value of the DB2ACCOUNT environment variable
v The value of the DFT_ACCOUNT_STR (default accounting string) configuration

parameter.

If the DRDA protocol is used to connect VM applications to VSE servers (or any
other DRDA server), user supplied data corresponds to data supplied by the
ARIUXIT accounting exit described in the DB2 Server for VM System Administration
manual.

If the database manager determines that a DRDA requester has supplied
accounting data but the requester is not DB2 for MVS, DDCS or DB2 CONNECT
or DB2 for VM, it inserts the string “pppvvrrm UNKNOWN” into USER accounting
records. pppvvrrm is the product id (prdid) of the DRDA requester.

Note: When you are using the DRDA protocol, the installation-dependent data
should conform to the following:
1. The accounting string data is converted to CCSID 500 before being sent

to the DRDA server. To ensure that all characters in the string data can
be represented in CCSID 500, only the characters A-Z, 0-9 and ’_’
(underscore) be used. If characters other than these recommended ones
are used, then those characters may not translate properly when the
DRDA server writes out accounting records.

2. The user-specified portion of the accounting string can be at most 16
bytes. This is true for DB2 Server for VM applications sending
accounting data (which is set up in the ARIUXIT user exit) and for
non-DB2 for VM DRDA requesters sending accounting data to servers.

Formats of the Accounting Records
There are four kinds of accounting records generated for users:

User records
are generated for users on VSE who access an application server on VSE.

Remote User Records
are generated for remote users accessing the database manager using the
DRDA protocol.

DRDA records
are generated for remote users accessing the database manager using the
DRDA protocol. The database manager generates DRDA records and
Remote User records for these users.

VSE guest user records
are generated for users on VSE who access an application server on a VM
operating systems. For more information, see the DB2 Server for VM System
Administration manual.

Chapter 10. Using the Accounting Facility 191

Accounting records are also generated for system processes that cannot be
attributed to a single user:

An initialization
record is written when the application server is started. This record
describes the resources consumed by the operator, checkpoint, and
ready/recovery agents during the startup process.

A checkpoint
record is written for the checkpoint agent after a checkpoint occurs. For the
checkpoint that immediately follows an archive, this record reflects the
resources consumed in doing the archive as well as the checkpoint.

An operation
record is written during shutdown for the processing that the operator
agent has done during the current session. (This accounting record is
written only for multiple user mode, as operator communications are not
possible in single user mode.)

A termination
record is written that summarizes the resources consumed during the
current session.

Note: Internal resource thresholds are not used for system processes.

Initialization Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “INIT ”

25-40 CHAR (16) Reserved (blanks)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS). This format may
also be DDMMYYHHMMSS. The format is controlled by the DATE parameter of
the VSE STDOPT job control command or statement

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Duration of the startup process (in seconds)

65-68 INTEGER Processor time used by the startup process (in 300ths of a second)

69-72 INTEGER Number of times the database manager looked at a page buffer during startup
(equivalent to issuing COUNTER LPAGBUFF immediately after startup)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL record identifier, where x = I for Initialization

79-80 CHAR (2) Reserved (blanks)

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |

SQLDBA SQL/DS INIT 051389182005 19 ISQL

192 System Administration

Operator and Checkpoint Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “SYSTEM ”

25-40 CHAR (16) Reserved (blanks)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS). This format may
also be DDMMYYHHMMSS. The format is controlled by the DATE parameter of
the VSE STDOPT job control command or statement.

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Binary zero

65-68 INTEGER Processor time used (in 300ths of a second)

69-72 INTEGER Number of times this agent looked at a page buffer (equivalent to issuing
COUNTER LPAGBUFF for only this agent)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL record identifier, where x = C for Checkpoint or O for Operator).

79-80 CHAR (2) Reserved (blank)

Termination Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “TERM ”

25-40 CHAR (16) Reserved (blanks)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS). This format may
also be DDMMYYHHMMSS. The format is controlled by the DATE parameter of
the VSE STDOPT job control command or statement.

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Time, in seconds, from startup to shutdown

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |

SQLDBA SQL/DS SYSTEM 051389182005 0083032819 CSQL

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |

SQLDBA SQL/DS TERM 051389182005 19 TSQL

Chapter 10. Using the Accounting Facility 193

Column Data Type Description

Note: The following are totals for the entire run of the database manager that are extracted from the data that is
used by the COUNTER command.

65-68 INTEGER DASDIO - Total number of DASD I/Os

69-72 INTEGER LPAGBUFF - Number of times the database manager looked at a page buffer

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL record identifier, where x = T for Termination

79-80 CHAR (2) Reserved (character blanks)

User Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition

9-16 CHAR (8) For batch and VSE/ICCF environments: the jobname of the user partition. For
online environments: blanks. (The example record above is for batch
environments.)

17-24 CHAR (8) DB2 Server for VSE authorization ID that was established, implicitly or explicitly,
using the connect process

25-40 CHAR (16) If you wrote your own ARIUXIT exit to generate installation-supplied data, this
data is placed here for batch/ICCF and CICS applications.

If you did not write such an exit, this contains character blanks for batch/ICCF
applications. For CICS applications, the following information is put in the field:

25-28 CICS transaction ID

29-36 CICS signon ID ID (if available)

37-40 CICS terminal ID (if available)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS). The format can
also be DDMMYYHHMMSS. The format is controlled by the DATE parameter of
the VSE STDOPT job control command or statement.

53-60 CHAR (8) The name of the package that was last active for the application

Note: The following are totals for the agent. They show values accumulated for a user.

61-64 INTEGER Active time (that is, time that the user was connected to an agent) in seconds

65-68 INTEGER Processor time used (in 300ths of a second)

69-72 INTEGER Number of times this agent looked at a page buffer (this value is equivalent to
the LPAGBUFF counter value for an individual user)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL record identifier, where x = U for User

79-80 CHAR (2) Reserved (character blanks)

Columns:

1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |

SQLDBA JOB1 MYID USER DATA HERE 051389182005BADDEBTS 19 USQL

194 System Administration

Remote User Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition (application server)

9-16 CHAR (8) Access user ID of the application or interactive user (application requester)

17-24 CHAR (8) DB2 Server for VSE authorization ID that was established, implicitly or explicitly,
using the connect process

25-40 CHAR (16) If your installation has an accounting exit that uses these bytes, this area is filled
with installation-supplied data. For more information, see “Supplying
Accounting Data from DRDA Applications” on page 190.

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-60 CHAR (8) The name of the package that was last active for the application

Note: The following are totals for the agent. They show values accumulated for a user.

61-64 INTEGER Active time (that is, time that the user was connected to an agent) in seconds

65-68 INTEGER Processor time used (in 300ths of a second)

69-72 INTEGER Number of times this agent looked at a page buffer (this value is equivalent to
the LPAGBUFF counter value for an individual user)

73-74 CHAR (2) Century number of Date ('19' or '20')

75-78 CHAR (4) The xSQL record identifier, where x = U for User

79-80 CHAR (2) Reserved (character blanks)

DRDA Records

Column Data Type Description

1-8 CHAR (8) Jobname of the database partition (application server)

9-16 CHAR (8) Access user ID of the application or interactive user (application requester)
accessing the application server

17-24 CHAR (8) DB2 Server for VSE authorization ID that was established, implicitly or explicitly,
using the connect process

25-36 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |
SQLDBA JOB1 MYID USER DATA HERE 051389182005BADDEBTS 19USQL

Columns:
1 9 17 25 37 64 73 75 79
| | | | | | | | |
SQLDBA JOB1 MYID 051389182005nnTORONET.SP6AGATnnnnnnnn 19RSQLC0

Chapter 10. Using the Accounting Facility 195

Column Data Type Description

37-63 CHAR(27) LU 6.2 LUWID. This field is composed of the following subfields:

37-37 Length of the entire LUWID: a 1-byte binary integer

38-38 Length of the qualified LUNAME: a 1-byte binary integer

39-n Qualified LUNAME (NETID.LUNAME): a character subfield in which n
depends on the length value in column 38

(n+1)-(n+6)
Instance number: a bit data field

(n+7)-(n+8)
Sequence number: a bit data field

If the LUWID is less than 25 bytes, the remaining columns are padded with
blanks

64-72 Reserved

73-74 CHAR (2) Century number of Date ('19' or '20')

75-78 CHAR (4) The xSQL identifier to separate the DB2 Server for VSE accounting records from
other VSE accounting records, where x = R for remote user

79-80 CHAR (2) Reserved (character blanks)

Notes:

1. DB2 Server for VSE does not provide any data on costs incurred in
communications.

2. The remote user accounting record column 9-16 has the remote application
requesters access user ID. For a local batch job, this field contains the jobname.

3. The remote user accounting record column 25-40 may contain system
dependant information for the application requester. For a local batch job, this
field contains data retrieved from the accounting exit.

VSE Guest User Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) For batch and VSE/ICCF environments, the jobname of the user partition. For
online environments, the VM user ID of the VSE machine. (The example record
above is for online environments.)

17-24 CHAR (8) DB2 Server for VSE connected authorization ID that was established using the
connect process (this can be an explicit or implicit connection)

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | |
SQLDBA VSEMCH1 MYID USER DATA HERE 051389182005DEBTS 19USQLC0

196 System Administration

Column Data Type Description

25-40 CHAR (16) Installation-supplied data. If you are in a batch or VSE/ICCF environment, and
have not coded an accounting exit that supplies information to this field, the
database manager leaves character blanks. In an online environment, if you have
not coded an accounting exit to supply the information, the following is put in
the field:

25-28 CICS transaction ID

29-31 CICS terminal operator ID (if available)

32-35 CICS terminal ID (if available)

36-39 This field contains character blanks, unless you have coded your own
cancel exit. For information on cancel exits in VSE, see the DB2 Server
for VSE & VM Diagnosis Guide and Reference manual.

40 Blank

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-60 CHAR (8) The name of the package that was last active for the application (also referred to
as prepname or program name)

Note: The following are totals for the agent. They show values accumulated for a user.

61-64 INTEGER Active time (the time that the user was connected to an agent) in seconds

65-68 INTEGER Processor time used (in milliseconds). In the VSE guest user accounting record
passed to VM/ESA, processor time is recorded in thousandths of a second
(milliseconds).

69-72 INTEGER Number of times this agent looked at a page buffer (equivalent to the
LPAGBUFF counter value for an individual user)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VSE accounting records from
other VM accounting records, where x = U for User.

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

Maintaining Accounting Data
Accounting data, like any other data, can be loaded into tables and maintained by
any DB2 Server for VSE facility. The following sections describe how to set up
dbspaces to hold accounting records and present an example. You will have to
modify the example tables to meet your own installation’s requirements.

Setting up a database for accounting data involves the same activities that would
be done for any data application:
1. Adding and acquiring a dbspace
2. Creating tables for the accounting data
3. Creating views on those tables
4. Creating indexes on those tables.

Considerations for an Accounting Dbspace
Because accounting data is usually read-only, it is most suited for a private
dbspace. When it is in a private dbspace, multiple users are able to read it as long
as the tables are not being loaded. (If they are being loaded, users get an
immediate notification that a load is taking place in the form of a negative
SQLCODE).

Chapter 10. Using the Accounting Facility 197

Also, because the data is read-only and because its source is a sequential file, it is a
candidate for a nonrecoverable dbspace. For information on the advantages and
disadvantages of this type of storage, see “Nonrecoverable Storage Pools” on
page 171.

The size of the dbspace depends on a number of factors. The key considerations
are:
v The number of accounting records you want to keep online
v The row length of the records
v The index space requirements.

When you have determined these factors, you can estimate the size of the dbspace
needed by using the formulas in “Appendix B. Estimating Database Storage” on
page 337.

To estimate the rate at which your installation generates accounting records, use
the accounting facility for a trial period (a day or a week). Or, you can try to make
an initial estimate using the method shown on page 182.

Tables to Hold Accounting Data
One approach to organizing accounting records is to place them in four separate
tables:
v One to hold the termination records, which summarize the resources consumed

during an entire session of the database manager.
v One to hold the initialization, operator, and checkpoint records, which describe

the overhead resources consumed by the database manager processes.
v One to hold user records, which describe the resources consumed by individual

users.
v One to hold remote access records, which contain the LUWID. The records also

contain the user ID and datetime value that can be used to match with the
regular user records.

Figure 82 shows the statements you could issue to create these three tables, here
named SQLDETAIL (for termination records), SYSDETAIL (for initialization,
operator and checkpoint records), and USERDETAIL (for user records).

CREATE TABLE SQLDETAIL(SQLNAME CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
RUNTIME INTEGER,
DASDIO INTEGER,
LPAGBUFF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 82. Example of DBS Utility Commands to Create Accounting Tables (Part 1 of 4)

198 System Administration

Note: If you have accounting tables defined from an earlier release, you can use
the ALTER TABLE statement to add the CENTURY column to your existing
tables.

The information for all the columns in the tables is loaded directly from the
accounting records. These tables are described in detail below.

SQLDETAIL Table
Each row of the SQLDETAIL table contains selected data from one termination
accounting record, and represents one session of the database manager. The
following information is inserted into the SQLDETAIL columns:

SQLNAME The jobname of the database partition

DATE The dates from the termination records

TIME The times from the termination records

RUNTIME The time, in seconds, from startup to shutdown

DASDIO The total number of DASD I/Os for the database manager session

CREATE TABLE SYSDETAIL(SQLNAME CHAR(8),
TYPE CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
RUNTIME INTEGER,
CPUTIME INTEGER,
LPAGBUFF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 82. Example of DBS Utility Commands to Create Accounting Tables (Part 2 of 4)

CREATE TABLE USERDETAIL(SQLNAME CHAR(8),
USERPART CHAR(8),
SQLUSER CHAR(8),
USERDATA CHAR(16),
DATE CHAR(6),
TIME CHAR(6),
PNAME CHAR(8),
ATIME INTEGER,
CPUTIME INTEGER,
ULPAGBUF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 82. Example of DBS Utility Commands to Create Accounting Tables (Part 3 of 4)

CREATE TABLE DRDADETAIL(SQLNAME CHAR(8),
ACCUSRID CHAR(8),
SQLUSER CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
LUWID VARCHAR(27),
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 82. Example of DBS Utility Commands to Create Accounting Tables (Part 4 of 4)

Chapter 10. Using the Accounting Facility 199

LPAGBUFF The total number of times that the database manager looked at a
page buffer

CENTURY The century numbers of the dates from the termination records.

SYSDETAIL Table
Each row of the SYSDETAIL table contains selected data from one initialization,
operator or checkpoint accounting record. The following information is inserted
into its columns:

SQLNAME The jobname of the database partition

TYPE INIT is inserted if the row describes an initialization record, and
SYSTEM is inserted if the row describes an operator or checkpoint
record

DATE The dates from the operator/checkpoint or initialization records

TIME The times from the operator/checkpoint or initialization records

RUNTIME If the value in TYPE is INIT, this value shows the amount of time
for the initialization process to finish (in seconds); if the value in
TYPE is SYSTEM, this value contains binary zeros

CPUTIME The processor time used (in 300ths of a second)

LPAGBUFF The number of times the agent (represented by the accounting
record) looked into a page buffer

CENTURY The century numbers of the dates from the initialization records.

USERDETAIL Table
Each row of the USERDETAIL table contains selected data from one user
accounting record, either from a local or a remote processor. The following
information is inserted into its columns:

SQLNAME The jobname of the database partition

USERPART The jobname of the user partition for batch/ICCF (for rows that
describe the accounting information for online users, USERPART is
blank)

SQLUSER The authorization ID that was established, explicitly or implicitly,
during the connect process

USERDATA The installation-supplied accounting data. If you have not coded
an accounting exit, this column contains blanks for rows that
contain accounting data for batch/ICCF users; for online users,
other information is displayed. For more information, see the
description of the user accounting records on page 194.

DATE The dates from the user records

TIME The times from the user records

PNAME The name of the package that was last active for the application

ATIME The active time (that is, the time that the user was connected to an
agent) in seconds

CPUTIME The processor time used (in 300ths of a second)

ULPAGBUF The number of times the agent looked into a page buffer.

CENTURY The century numbers of the dates from the user records.

200 System Administration

DRDADETAIL Table
Each row of the DRDADETAIL table contains selected data from DRDA accounting
records. The columns are described as follows:

SQLNAME The jobname of the data partition (application server)

ACCUSRID The access user ID of the application or interactive user
(application requester) accessing the application server

SQLUSER The authorization ID that was established, explicitly or implicitly,
during the connect process

DATE The dates from the DRDA accounting records

TIME The times from the DRDA accounting records

LUWID The qualified LUNAME, the sequence number, and the instance
number

CENTURY The century numbers of the dates from the DRDA accounting
records.

Loading the Accounting Data
If you have created the tables described above, you can use the DBS utility to load
the accounting records into the tables. For example, the commands shown below
load the tables and list their contents. (The example shows ARIACC1 as the input
file. Use ARIACC2 if you are loading records from the alternate accounting file.)

Chapter 10. Using the Accounting Facility 201

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
SET ERRORMODE CONTINUE;
DATALOAD TABLE(SQLDETAIL) IF POS(75-78)='TSQL'

SQLNAME 1-8 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
DASDIO 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='ISQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='OSQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='CSQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

Figure 83. Example DBS Utility Commands to Load Accounting Tables (Part 1 of 2)

202 System Administration

Converting VSAM ESDS Accounting File Records into VSAM
Managed SAM Feature Records

If VSE/VSAM ESDS files are used to collect your accounting records, you will
have to convert the records into VSAM managed SAM feature records before you
load them into the tables. This is because for the DBSU DATALOAD function, only
a local SAM file or VSAM managed SAM file can be processed as a DASD input
file. Figure 84 shows sample JCL statements for converting VSAM ESDS accounting
file records into VSAM managed SAM file records.

Note:

1. ’ACCTFIL1’ and ’ACCTFIL2’ are the file ids of the VSAM ESDS
accounting files used to collect accounting records.

DATALOAD TABLE(USERDETAIL) IF POS(75-78)='USQL'
SQLNAME 1-8 CHAR
USERPART 9-16 CHAR
SQLUSER 17-24 CHAR
USERDATA 25-40 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
PNAME 53-60 CHAR
ATIME 61-64 FIXED
CPUTIME 65-68 FIXED
ULPAGBUF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE (DRDADETAIL) IF POS (75-78) = 'RSQL'
SQLNAME 1-8 CHAR
ACCUSRID 9-16 CHAR
SQLUSER 17-24 CHAR
DATE 25-30 CHAR
TIME 31-36 CHAR
LUWID 37-63 CHAR
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

INFILE(ARIACC1 RECFM(FB) RECSZ(80) BLKSZ(2000) PDEV(DASD))
COMMIT WORK;
SELECT * FROM SQLDETAIL;
SELECT * FROM SYSDETAIL;
SELECT * FROM USERDETAIL;

Figure 83. Example DBS Utility Commands to Load Accounting Tables (Part 2 of 2)

// DLBL ARIACT1,'ACCTFIL1',0,VSAM,CAT=SQLWK1,DISP=(OLD,KEEP)
// DLBL ARIACT2,'ACCTFIL2',0,VSAM,CAT=SQLWK1,DISP=(OLD,KEEP)
// DLBL ARIACC1,'ACCT.SAM.FILE1',0,VSAM,CAT=SQLWK1, C

RECSIZE=80,RECORDS=(X,Y),DISP=(NEW,KEEP)
// DLBL ARIACC2,'ACCT.SAM.FILE2',0,VSAM,CAT=SQLWK1, C

RECSIZE=80,RECORDS=(X,Y),DISP=(NEW,KEEP)
// EXEC IDCAMS,SIZE=AUTO

REPRO INFILE(ARIACT1) -
OUTFILE(ARIACC1 ENV(RECFM(FB) BLKSZ(2000) RECSZ(80))

REPRO INFILE(ARIACT2) -
OUTFILE(ARIACC2 ENV(RECFM(FB) BLKSZ(2000) RECSZ(80))

/*

Figure 84. Job Control for Converting VSAM ESDS File Records to VSAM Managed SAM
File Records

Chapter 10. Using the Accounting Facility 203

2. ARIACC1 and ARIACC2 should be specified as the file name of the
VSAM managed SAM file to be used as the IDCAMS REPRO command
output files. After the conversion, by using the same set of DLBL
statements, these files can be used as input files to the DBSU
DATALOAD job control.

3. Set RECSZ to 80 and BLKSZ to 2000, they are the expected values for
DBSU DATALOAD.

4. The example assumes that the VSAM managed SAM files ARIACC1 and
ARIACC2 are implicitly defined to VSAM the first time they are opened.

5. DISP=(NEW,KEEP) indicates that the files will be reset at OPEN time. If
there are still existing records in either ARIACC1 or ARIACC2 that are
not yet processed, DATALOAD the records first before any new
conversion.

204 System Administration

Chapter 11. Generating Additional Databases

Initially, you set up database partition with one database: then, depending on your
needs, you can add additional databases or database partitions. Your initial
database is generated at the time of installation; you generate additional ones later.
This chapter describes how to generate a database. It assumes that you are familiar
with the terminology discussed in Figure 5 on page 7 and have reviewed
“Chapter 2. Planning for Database Generation” on page 13. The database is
specified when application server is started. This is done through the use of job
control statements that reference the required database.

Learning about Configuration Concepts

Reasons for Adding a Database Partition
Initially, there is one database partition which is called SQLDS. As your installation
grows, you can add more database partitions. The primary reason for doing so
would be to permit multiple user mode access to more than one database at the
same time, or multiple database operation.

Consider, for example, an installation having one database partition (SQLDS) and
three databases (SQLDBA, DATA1, and DATA2). A database partition can manage
only one database at a time. Thus, as Figure 85 on page 206 shows, while the
database partition is accessing one database in multiple user mode, the other
databases are inactive.

© Copyright IBM Corp. 1987, 2000 205

Users could access the remaining databases (DATA1 and DATA2) in single user
mode if their partitions are properly prepared; however, it is not recommended
that the the database manager be used this way.

If you define two more database partitions, multiple user access to all three
databases is possible at the same time. Figure 86 on page 207 shows a multiple
database configuration. In this case, two more database partitions are defined
(SQLMFB and SQLJDS). Each partition owns one database, and operates
independently of the others.

MIKE JIM CINDY

SQLDS

SQLDBA DATA1 DATA2

Figure 85. One Database Partition Accessing One Database

206 System Administration

Database Generation Process
The steps for generating a database are as follows:
1. Update the DBNAME Directory for the new database.
2. Define the VSAM data sets for the database, by running the VSAM IDCAMS

program with the appropriate set of DEFINE commands.
3. Set up the job control statements for generating the database.
4. Modify and run a job control to generate a database. The job control does the

following:
v Formats the database components and constructs the catalog tables
v Installs the DBS utility
v Runs the DBS utility to complete the installation of the database.

This involves tasks such as creating views, granting access to DB2 Server
for VSE facilities, and acquiring dbspaces for system use.

Once the database is generated, you can do the following:
5. Install the desired components into the database, such as ISQL, online

support, and HELP text.
6. Optionally change the application server default CHARNAME.
7. Optionally change the application server default character subtype.

MIKE JIM CINDY MARY BOB EDWARD

SQLMFB SQLJDS

SQLDBA DATA1 DATA2

SQLDS

Figure 86. Multiple Users Accessing Multiple Databases

Chapter 11. Generating Additional Databases 207

8. Optionally set the DBCS option to YES.
9. Change the password of authorization ID SQLDBA in the database to one of

your own choosing.
10. Optionally install the DRDA code.
11. Optionally load phases into the SVA.

These steps are all described in detail below.

Step 1: Update the DBNAME Directory
Update your DBNAME directory to add the new database. See “Setting Up the
DBNAME Directory” on page 23.

Step 2: Defining the Database Data Sets
To define the VSAM data sets for the new database, run the VSAM utility program
IDCAMS. The specific DEFINEs will depend on your requirements. At a minimum,
however, you must define data sets for:
v A directory (sometimes called a BDISK)
v One or two logs
v At least one dbextent (at least one data set).

The ARIS71CD procedure shown in Figure 87 on page 209 provides an example of
the job control statements to define a VSAM user catalog and data sets for a
database. This database has one directory, one log, and one dbextent. In the
example, they will reside on an IBM 3380 DASD device.

Note: The VSAM keywords shown here are only the basic ones that the database
manager requires. Other keywords and options that you can use are
described in the Using VSE/VSAM Commands and Macros manual.

208 System Administration

Notes:

1 Change the NAME keyword to the name of the application server you
want to access.

2 Change all occurrences of VOLUME (XXXXXX) and ORIGIN (NNNN) to
reflect the volume serial number and origin allocation for the VSAM
components that make up your new database. (The origin value is the
beginning track number or block number.)

3 If you are allocating the database to a 3380 DASD device, you do not need
to modify the CYL space allocations. If a fixed-block architecture (FBA)
3370/9332/9335 DASD device is being used for the database, replace the
CYL allocations with the equivalent BLOCK allocations. For all other types

// JOB ARIS71CD DB2 for VSE STARTER DATABASE VSAM DEFINITIONS
// LIBDEF PROC,SEARCH=(PRD2.DB2710)
// EXEC PROC=ARIS71DB *-- SQL/DS DATABASE ID PROC
// EXEC IDCAMS,SIZE=AUTO

DEFINE UCAT /* DEFINE USER CATALOG */ -
(NAME (SQLCAT) -

CYL (1) -
ORIGIN (NNNN) -
VOL (XXXXXX))

DEFINE SPACE /* DEFINE DB2 DATABASE SPACE */ -
(ORIGIN (NNNN) -

CYL (119) -
VOL (XXXXXX)) -
CAT (SQLCAT)

DEFINE CLUSTER /* DEFINE DB2 DATABASE DIRECTORY */ -
(NAME (SQL.BDISK.STARTER.DB) -

CNVSZ (512) -
CYL (34) -
NONINDEXED -
VOL (XXXXXX) -
RECSZ (505 505) -
REUSE -
SHR (2)) -
CAT (SQLCAT)

DEFINE CLUSTER /* DEFINE DB2 DATABASE LOG */ -
(NAME (SQL.LOGDSK1.STARTER.DB) -

CNVSZ (4096) -
CYL (08) -
NONINDEXED -
VOL (XXXXXX) -
RECSZ (4089 4089) -
REUSE -
SHR (2)) -
CAT (SQLCAT)

DEFINE CLUSTER /* DEFINE DB2 DATABASE DATA EXTENT 1 */ -
(NAME (SQL.DDSK1.STARTER.DB) -

CNVSZ (4096) -
CYL (77) -
NONINDEXED -
VOL (XXXXXX) -
RECSZ (4089 4089) -
REUSE -
SHR (2)) -
CAT (SQLCAT)

/*
/&

Figure 87. Job ARIS71CD (Defining VSAM Data Sets for the Database)

Chapter 11. Generating Additional Databases 209

of DASD devices, refer to “Appendix B. Estimating Database Storage” on
page 337 . Minimum space allocation values are shown in Table 41 on
page 338.

4 If the user catalog for the database will not be identified by the file-id
SQLCAT, then:
v Alter the file_id in the DLBL statement identifying the VSAM user

catalog for the database, and
v Alter the CAT specification in the IDCAMS DEFINE SPACE and

DEFINE CLUSTER commands.

We recommend that you use a VSAM user catalog for the new database. If
you choose not to, you must do the following:
v Remove the DLBL statement identifying the VSAM user catalog
v Remove the DEFINE UCAT command and the DEFINE SPACE

command
v Remove the CAT specification from the IDCAMS DEFINE CLUSTER

commands.

You may also wish to password-protect your database with the VSAM password
protection facility. See “Protecting VSAM Data Sets” on page 117.

The directory for the database is defined as part of a VSAM services job that
creates the initial set of database data sets. Figure 88 shows another example of
defining a directory data set. Figure 87 on page 209 shows the complete job.

Notes:

1. The directory data set is defined by the DEFINE CLUSTER command. You can
give it any name you like. To avoid confusion, however, you should retain
BDISK as part of the name; then give it a qualifier to distinguish it from
directories on other databases.

2. You must use the CNVSZ and RECSZ values shown. The directory must have
512-byte control intervals.

3. Set the directory size based on potential database size. Specify it with either
CYL(nn) or TRK(nn) for count-key-data devices, or with BLOCKS(nnnn) for
fixed block devices.

4. The SHR(2) parameter must be used to allow archiving.
5. You may wish to password-protect your database with the VSAM password

protection facility. See “Protecting VSAM Data Sets” on page 117.

DEFINE CLUSTER
(NAME (SQL.BDISK.DBNAME01.DB) -
CNVSZ (512) -
CYL (6) -
NONINDEXED -
VOL (volid1) -
RECSZ (505 505) -
REUSE -
SHR (2)) -
CAT (SQLCAT01)

Figure 88. Defining the Directory Data Set

210 System Administration

Step 3: Setting Up Your Database Job Control
Each time the database manager (program ARISQLDS) is run, the following job
controls are needed:
v DLBL statements, which identify the database being accessed (the directory, the

log or logs, and the data dbextents)
v LIBDEF statements, which define the DB2 Server for VM libraries and any other

needed libraries
v Trace facility statements
v Database archive and log archive statements
v Accounting facility statements.

During the initial installation of the database manager, two procedures are defined
that contain the needed LIBDEF statements:

ARIS71PL runs LIBDEF statements to define the production
libraries, which are required for the day-to-day use
of the database manager.

ARIS71SL runs LIBDEF statements to define libraries that are
required for database generation and for code link
edits.

It is recommended that you also use catalogued procedures for the other job
controls, to avoid having to maintain multiple copies of them. Because procedures
for the libraries are cataloged during installation, you only need to catalog the
DLBL statements that identify the new database. You also should catalog the job
control statements needed for the trace, database archive, log archive, and
accounting facilities.

Database archiving and log archiving can be directed only to tape, so for these
activities, you must use TLBL statements. Trace output and accounting output can
be directed to either DASD or tape. For information on specifying job control
statements for the trace output file, see the DB2 Server for VSE & VM Operation
manual; for information on accounting job control statements, see “Setting Up a
Job Control for the Accounting Files” on page 181.

Figure 89 on page 212 shows an example of the job control statements needed for
cataloging the database.

Chapter 11. Generating Additional Databases 211

Notes:

1. Specify the sublibrary into which your procedure is to be cataloged. In the
above example, PRD2.DB2710 is used.

2. The file names on the DLBL and TLBL statements must be as shown in the
example.

3. The data set names on the DLBL and TLBL statements must match those on
the DEFINE CLUSTER commands that defined the data sets for the database.

4. You need a DLBL statement for the directory (BDISK).
5. You need a DLBL statement for each log data set (LOGDISK1, LOGDISK2).
6. You need one DLBL statement for each defined dbextent data set (DDSK1,

DDSK2).
7. If you plan to use tracing, you need job control for the trace output file. The

file name must be ARITRAC. This example shows a TLBL statement; trace
output can be directed to disk as well.

8. If you will be running with LOGMODE=A or L, you need a TLBL statement
for archiving the database. The file name must be ARIARCH.

9. If you will be running with LOGMODE=L, you also need a TLBL statement
for archiving the log. The file name must be ARILARC.
It is recommended that you do not specify any VOLID parameter on the TLBL
statements for log archiving. Because multiple files can be created or read
during the same run of the database manager, you would want different
VOLIDs for the different files.

10. If you are including job control statements for the accounting file facility, the
file name of the first accounting file must be ARIACC1, and that of the second
file, if you choose to have it, must be ARIACC2. Only one file is required, but
it is recommended that you use two.

Step 4: Generating the Database
To generate a database, modify and run the job control shown in Figure 90 on
page 213 in single user mode (SYSMODE=S). This will run IBM-supplied
procedures to do the following:
1. Create the package for the DBS utility using the Assembler preprocessor

// JOB CATALOG DATABASE JOB CONTROL
// EXEC LIBR
ACCESS SUBLIB=PRD2.DB2710
CATALOG DBNAME01.PROC
// DLBL IJSYSUC,'SQLCAT01',,VSAM
// DLBL BDISK,'SQL.BDISK.DBNAME01.DB',,VSAM
// DLBL LOGDSK1,'SQL.LOGDSK1.DBNAME01.DB',,VSAM
// DLBL LOGDSK2,'SQL.LOGDSK2.DBNAME01.DB',,VSAM
// DLBL DDSK1,'SQL.DDSK1.DBNAME01.DB',,VSAM
// DLBL DDSK2,'SQL.DDSK2.DBNAME01.DB',,VSAM
// TLBL ARITRAC,...
// TLBL ARIARCH,...
// TLBL ARILARC,...
// DLBL ARIACC1,...
// EXTENT...
// DLBL ARIACC2,...
// EXTENT...
/+
/*
/&

Figure 89. Job for Cataloging Database Job Control

212 System Administration

|

2. Finish the database generation process using the DBS utility.

Notes:

1. The ARIS71SL procedure is cataloged during initial installation. It contains job
control statements that identify the appropriate set of service libraries.

2. The DBNAME01 cataloged procedure refers to the job control (DLBL and
LIBDEF) statements for the database being generated. You define and create
this procedure as explained in “Step 3: Setting Up Your Database Job Control”
on page 211.

3. Running the database manager (PGM=ARISQLDS) in single user mode
(SYSMODE=S) with STARTUP=C calls the database generation program. This
program reads the SYSIPT input control cards that specify how the database is
to be generated. These statements are described later. Program ARISQLDS also
reads the A-type source member ARISCAT. The contents of this member remain
constant for all databases and should not be changed.

4. The ARIS040D procedure should be used without modification. It preprocesses
the DBS utility, and references DB2 Server for VSE source members.

// JOB GENERATE A DATABASE NAMED DBNAME01
// EXEC PROC=ARIS71SL *-- SERVICE/PRODUCTION LIBRARY ID PROC
// EXEC PROC=DBNAME01 *-- DATABASE ID PROC
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,STARTUP=C'
CUREXTNT=2
MAXEXTNT=200 The meanings of these
MAXDBSPC=1000 parameters are described
END in the paragraphs that
POOL 2 NOLOG follow this figure.
1 1
2 2
END
PUBLIC 12800 1
PUBLIC 2048 1
PUBLIC 8192 1
PUBLIC 1024 1
PUBLIC 512 1
PUBLIC 512 1
PUBLIC 512 1
PUBLIC 512 2
PUBLIC 512 2
PRIVATE 128 1
PRIVATE 128 1
PRIVATE 512 1
PRIVATE 128 2
PRIVATE 128 2
PRIVATE 512 2
INTERNAL 80 1024 1
END
/*
// EXEC PROC=ARIS040D *-- PREP DBS UTILITY
// EXEC PROC=ARIS050D *-- PERFORM REQUIRED DATABASE SET UP
// EXEC PROC=ARISDBSD *-- LOAD SAMPLE TABLES AND ROUTINES
READ MEMBER ARISAMDB
READ MEMBER ARISAMPI
/*
/&

Figure 90. Example of a Job Control for Generating Your Own Database

Chapter 11. Generating Additional Databases 213

5. Procedure ARIS050D uses the DBS utility to process the SQL statements that
finish generating the database. Do not change this procedure or the A-type
source member it reads (ARISDBU), because you may want to use them to
install and generate additional databases in the future. If you want to allocate
larger dbspaces for the HELP text, ISQL-stored queries, or sample tables than
those defined in ARISDBU, copy and rename both ARIS050D and ARISDBU;
then increase the number of pages in the ACQUIRE PUBLIC DBSPACE
statements in the renamed member, and update the renamed procedure to use
the renamed member as input.
The member ARISDBU enables you to perform the following:
v Grant RUN authority to PUBLIC for the DBS utility package

SQLDBA.ARIDSQL
v Acquire the standard database public dbspaces for HELPTEXT, ISQL, and

SAMPLE
v Create the HELP text tables SQLDBA.SYSTEXT1, SQLDBA.SYSTEXT2, and

SQLDBA.SYSLANGUAGE
v Create indexes SQLDBA.SYSTEXT1INDEX, SQLDBA.SYSTEXT2INDEX, and

SQLDBA.SYSLANGINDEX on the HELP text tables
v Create the ISQL sample routine table EXAMPLE.ROUTINE and its index

EXAMPLE.RINDEX
v Create the SYSUSERLIST catalog view and grant access to PUBLIC
v Grant access to PUBLIC on all catalog tables except

SYSTEM.SYSUSERAUTH.

Note: You should not drop the dbspaces or tables that are acquired and created
above, even if you are not installing the corresponding facilities. Certain
database maintenance operations assume that these tables and dbspaces
exist in the database.

6. The procedure ARISDBSD runs the DBS utility in single user mode.
7. The A-type source members ARISAMDB and ARISAMPI contain SQL

statements to be run by the DBS utility to build and load the sample tables and
routines.

The input (SYSIPT) control statements for the database generation program are
divided into three sets of input records, separated by END delimiter control
statements. These specify:
v Database generation keyword control statements, which define the number of

dbextents to be prepared during the database generation process (CUREXTNT),
and establish certain maximum values for the database (MAXPOOLS,
MAXEXTNT, and MAXDBSPC). Each statement can be specified on its own
input record (card), or multiple statements can be specified on one input record.
An END delimiter control statement must be specified after all the keyword
control statements. The CUREXTNT control statement must be specified; all the
others have default values.

v Initial storage pool and dbextent definitions, which identify the initial set of
nonrecoverable storage pools and define the initial set of dbextents. Any
dbextent defined here must have a corresponding DLBL statement in your
database job control (DBNAME01). You must specify at least one dbextent for
each storage pool that is referenced by the initial dbspace definitions. The POOL
control statements that define nonrecoverable storage pools must precede the
statements that define the dbextents.

v Initial dbspace definitions, which define the initial set of dbspaces, including public
dbspaces required by the database manager (system dbspaces), any user public

214 System Administration

and private dbspaces you need initially, and the internal dbspace allocations for
the database. You must specify at least five public dbspaces: first two for the
database catalog and package storage, and three more for the HELP text, ISQL
tables, and the sample tables. In Figure 90 on page 213 the first five dbspace
keyword control statements define these five dbspaces. The remainder of the
public and private dbspaces shown in Figure 90 on page 213 are user dbspaces of
various sizes and storage pool assignments.
You must also specify the internal dbspaces for the database. You can change the
specification of internal dbspaces on any ADD DBSPACE operation. For
information, see “Adding Dbspaces to the Database” on page 123.

The details of specifying these database generation control statements are described
below.

Specifying Keyword Control Statements
The format for specifying the database generation keyword control statements is:

CUREXTNT

CUREXTNT specifies the number of dbextents being defined in the database
generation. You must specify it; it has no default value. Its value can be from 1 to
999, and must match the number of dbextent definition control statements. You
must also have DLBL statements for all the dbextents being defined (in your
DBNAME01 procedure). In the example shown in Figure 90 on page 213,
CUREXTNT=2 indicates that two dbextents are being defined.

MAXPOOLS

MAXPOOLS specifies the maximum number of storage pools that can ever be
defined for the database. Its value can range from 1 to 999. The default is 32. In the
example in Figure 90 on page 213, the default is used.

MAXEXTNT

MAXEXTNT specifies the maximum number of dbextents that can ever be defined
for the database. Its value can range from 1 to 999. The default is 64. In the
example in Figure 90 on page 213, it is set to 200.

MAXDBSPC

MAXDBSPC specifies the maximum number of dbspaces that can ever be defined
for the database. Its value can range from the number you specify in your database
generation control statements to 32000. The default is 1000. In the example in
Figure 90 on page 213, it is explicitly set to 1000.

The keyword control statements must be coded in columns 1-71. Column 72 is a
continuation column, and columns 73-80 are ignored. If you specify more than one
keyword control statement on a single input record, separate them with blanks.

�� CUREXTNT=nnn
MAXPOOLS=nnn MAXEXTNT=nnn MAXDBSPC=nnn

END ��

Chapter 11. Generating Additional Databases 215

Specifying Initial Storage Pools and Dbextents
The control statement format for specifying the initial storage pools and dbextents
is:

POOL

Include the POOL control statement only for those storage pools you want to
define as nonrecoverable: if you omit it, the pool will be defined as recoverable.
You can specify as many nonrecoverable storage pools as you want, up to the
MAXPOOLS value. For more information, see “Nonrecoverable Storage Pools” on
page 171.

pool_number

The value for pool_number is the number of the storage pool. You cannot specify 1
because storage pool 1 is the default storage pool for dbspaces, so it cannot be
defined as nonrecoverable.

LOG

The LOG option, which indicates that the storage pool is to be recoverable, is the
default. Specify the NOLOG option if the storage pool is to be nonrecoverable.

extent_number/pool_number

The dbextent definition control statements follow the POOL statements. They
define an initial set of dbextents (by number), and the storage pool assignment for
each.

The first number in the pair is the extent number, which corresponds to the suffix
number in the file name of the dbextent data sets (DDSKn). You must use stylized
file names on the DLBL statements describing the dbextents. The file name is
DDSKn, where n is the extent number used in the dbextent definition record. You
must define the dbextents in consecutive (numeric) order by extent number.

The second number, which must be separated from the first by at least one blank,
is the storage pool number. If you do not specify the storage pool number, it
defaults to 1.

Note: You cannot assign a dbspace to a storage pool until a dbextent has been
assigned to it.

Each extent number/storage pool number pair must be entered on a separate input
record. You can put comments on the dbextent control statements, by specifying
the storage pool number and separating the comment from the number by at least

�� 2

,

LOG
POOL pool_number

NOLOG

2

.

extent_number
pool_number

END ��

216 System Administration

one blank. A comment must be contained in the one input record for the dbextent:
it cannot be continued on the next input record, which is interpreted as the next
dbextent definition.

In the example in Figure 90 on page 213, dbextent number 1 (DDSK1) is assigned
to storage pool number 1, and dbextent number 2 (DDSK2) is assigned to storage
pool number 2.

Specifying Initial Dbspaces
The format is:

The number_of_pages value is the number of logical pages in the dbspace, rounded
up to the next higher multiple of 128. The storage_pool_number value must
correspond to a pool that already has a dbextent defined for it, as defined by the
dbextent control statements.

You must define five public dbspaces for system use: the catalog dbspace, package,
HELP text, ISQL tables, and sample tables dbspaces. In the example shown in
Figure 90 on page 213, all are assigned to storage pool 1, but you can assign them
elsewhere. The catalog and package dbspaces must always be assigned to a
recoverable storage pool. In the example in Figure 90 on page 213, the first five
dbspace control statements specify:
v 12800 pages for the catalog dbspace (SYS0001)
v 2048 pages for the package dbspace (SYS0002)
v 8192 pages for the HELPTEXT dbspace
v 1024 pages for the ISQL dbspace
v 512 pages for the SAMPLE dbspace.

The general format for specifying the initial internal dbspace control statement is:

This statement specifies the number (number_of_dbspaces) of equal size
(number_of_pages) temporary dbspaces that the database manager can use for
internal sorting and index creation. The storage_pool_number must correspond to a
pool that already has a dbextent in it, as defined by the dbextent control
statements. You must not delete the last dbextent from the storage pool that
contains the internal dbspaces. The storage pool to which you assign the internal
dbspaces can be either recoverable or nonrecoverable: if you do not specify the
storage pool number, it defaults to 1.

This internal dbspace keyword control statement must be the last dbspace
definition input record before the END delimiter control statement. Separate the
values you specify in this statement by at least one blank.

�� PUBLIC

PRIVATE

number_of_pages
1

storage_pool_number
��

�� INTERNAL number_of_dbspaces number_of_pages
1

storage_pool_number
��

Chapter 11. Generating Additional Databases 217

In the example in Figure 90 on page 213, 80 internal dbspaces of 1024 pages each
are defined and assigned to storage pool 1.

Note: Because the catalog and package dbspaces are assigned to storage pool 1,
performance is improved if you assign the internal dbspaces to some other
recoverable storage pool. In this example, they are assigned to storage pool
1, just to keep things simple.

Generally speaking, your input records for initial dbspace definitions would follow
this pattern:

The first two dbspaces are public dbspaces: PUBLIC.SYS0001 and PUBLIC.SYS0002,
which are both defined and acquired by the generation process for the catalog
tables and for the packages, respectively. You are advised to change these control
statements only if you want to define and allocate a larger dbspace for the catalog
tables or for the package dbspace, respectively. To do this, increase the
number_of_pages value in the control statement.

The third, fourth, and fifth dbspaces are public dbspaces that are added by the
generation process. They are later acquired when procedure ARIS050D calls the
DBS utility to complete the generation of the database. As shown in Figure 90 on
page 213, procedure ARIS050D must be called whenever you generate a database.

Note: The fifth dbspace, PUBLIC.SAMPLE, is also added by the generation
process. It is used to hold the IBM-supplied sample data tables. These tables
are created and loaded during the last run of the DBS utility, when the
A-type members ARISAMDB and ARISAMPI are processed. Details of
ARISAMDB and ARISAMPI are provided in the DB2 Server for VSE Program
Directory manual. The data in the sample tables is manipulated by sample
application programs, which are called by the IBM-supplied job control
members. There is one sample program for each programming language that
the database manager supports. Details of these programs are in the DB2
Server for VSE & VM Application Programming manual.

You must specify database generation control statements for all five of these
dbspaces. If you omit one, the database generation may fail.

PUBLIC nnnn n this adds and acquires SYS001
PUBLIC nnnn n this adds and acquires SYS002
PUBLIC nnnn n this adds a dbspace for PUBLIC.HELPTEXT
PUBLIC nnnn n this adds a dbspace for PUBLIC.ISQL
PUBLIC nnnn n this adds a dbspace for PUBLIC. SAMPLE
PUBLIC nnnn n

. . .

. . . these add your initial set of

. . . public dbspaces

. . .
PRIVATE nnn n

. . .

. . . these add your initial set of

. . . private dbspaces

. . .
INTERNAL nn n this is your initial
END specification of internal dbspaces

Figure 91. Input Records for Initial Dbspace Definitions

218 System Administration

Code the dbspace values in columns 1-71. Columns 72-80 are ignored. You can put
comments on the dbspace statements by specifying the storage pool number and
separating the comment from this number by at least one blank.

Step 5: Installing the Database Components
After the database is generated, you can install these three components into it:
v HELP text
v Online support
v ISQL.

All of these components are optional; which ones you should install depends on
your usage environment. For example, in a query/report writing environment, you
should install all three.

Regardless of whether you use these components, you can still install all of them
into the database for possible future use. Figure 92 shows job control statements
that install all the optional components into the DBNAME01 database. Modify the
job control and run it to install the components into your database. (The database
manager must be running in single user mode.)

Notes:
1. Procedure ARIS380D loads the English version of the DB2 Server for VSE HELP

text into the database. About 40000 rows are inserted, and the job normally
takes 10 to 15 minutes. The dbspace PUBLIC.HELPTEXT must exist for this
procedure to be run. If you do not want the English version of the HELP text,
you can omit the job control statement for this procedure.
HELP text is loaded from the Help Text Tape, which must be mounted on the
tape drive identified by the value assigned to the cuu parameter.
HELP text is available in other languages as well. To load HELP text for a
language other than American English, replace the value for the LANG
parameter in the PROC ARIS380D with one of the following values.

AMENG American English

UCENG Uppercase English

FRANC French

GER German

KANJI Kanji (Japanese)

HANZI Simplified Chinese

// JOB TO INSTALL DATABASE COMPONENTS
// EXEC PROC=ARIS71SL *--SERVICE/PRODUCTION LIBRARY ID PROC
// EXEC PROC=DBNAME01 *--DATABASE ID PROC
// EXEC PROC=ARIS380D,LANG=AME,HELP=ONLY,CUU=xxx
// EXEC PROC=ARIS080D *--INSTALL ONLINE SUPPORT
// EXEC PROC=ARIS110D *--INSTALL ISQL
// EXEC PROC=ARIS120D *--INSTALL ISQL
// EXEC PROC=ARIS130D *--INSTALL ISQL
/&

Figure 92. Job Control to Install Optional Database Components

Chapter 11. Generating Additional Databases 219

Refer to the installation instructions in the DB2 Server for VSE Program Directory
manual.

2. Procedure ARIS080D installs the online support into the database, and grants
CONNECT authority to ALLUSERS. This allows the online support to
implicitly connect users. For information on implicit CONNECT, see the DB2
Server for VSE & VM Database Administration manual.
If the online support is not required for your database, omit the job control
statements for procedures ARIS080D, ARIS110D, ARIS120D, and ARIS130D.

3. Procedures ARIS110D, ARIS120D, and ARIS130D install ISQL support into the
database. If you do not want to install the ISQL support, omit the job control
statements for these procedures. You may also omit the job control statement
for procedure ARIS060D.

After making the necessary job control modifications, submit the job for
processing. All steps should end with a return code of 0 or 4. If any step fails to
run, remove the EXEC PROC statements for all job steps that completed, and rerun
the job. However, do not remove the database identification procedure or the
library definition procedure (DBNAME01 and ARIS71SL). For example, if the step
EXEC PROC=ARIS130D did not complete successfully, you can rerun the step by
running the job control shown in Figure 93:

Step 6: Reload CCSID-Related Packages
The database manager and online resource manager use CCSID-related phases for
validating and folding characters in SQL statements. The programs used to create
these phases depend on packages residing in the database. The job control in
Figure 94 can be used to load the package in the new database.

Step 7: Optionally Changing the Application Server Default
CHARNAME

The application server default CHARNAME value on a newly installed database
manager is INTERNATIONAL (CCSID=500). On a migrated database manager, the
default is ENGLISH (CCSID=37). To change the application server default
CHARNAME (and with it the application server default CCSID, classification
tables, and translation tables), specify the new CHARNAME initialization
parameter.

// JOB RESTART
// EXEC PROC=DBNAME01 *--YOUR DATABASE IDENTIFICATION PROCEDURE
// EXEC PROC=ARIS71SL *--SERVICE/PRODUCTION LIBRARY ID
// EXEC PROC=ARIS130D *--INSTALL ISQL
/&

Figure 93. Job Restart for Installing Optional Components

// JOB RELOAD CCSID-RELATED PHASES PACKAGE
// EXEC PROC=ARIS71SL *--SERVICE/PRODUCTION LIBRARY ID
// EXEC PROC=DBNAME01 *--YOUR DATABASE IDENTIFICATION PROCEDURE
// EXEC PROC=ARIS175D *--RELOAD CCSID-RELATED PHASES PACKAGE
/&

Figure 94. Job Reload for Loading CCSID-Related Phases Package

220 System Administration

For information on creating a new CHARNAME, CCSID, and character set, see
“Chapter 12. Choosing a National Language and Defining Character Sets” on
page 225.

Step 8: Optionally Changing the Application Server Default
Character Subtype

If you use mixed character data (which contains DBCS and SBCS characters), you
may want to change the application server default character subtype (CHARSUB)
to mixed. The application server default character subtype is the value used for
new columns when the character subtype is not explicitly defined by the CREATE
TABLE or ALTER TABLE statements, or supplied as a package option. The
character subtype value is also used to determine whether the results of the
CHAR, DIGITS, and HEX scalar functions and the character representation of date,
time, or timestamp values, or special registers should be interpreted either as
mixed data or as SBCS data.

The application server default character subtype is initially set to SBCS.

For information on changing the default character subtype, see “Setting the
Application Server Default Character Subtype” on page 247.

Step 9: Optionally Setting the DBCS Option to YES
If you are using a double-byte character set (DBCS), you should enable the DBCS
option, which allows the database manager to correctly interpret SQL statements
that contain DBCS strings. As a default, the DBCS option is not enabled. For
information, see “Using Double-Byte Character Set (DBCS)” on page 237.

Step 10: Changing the Password of Authorization ID SQLDBA
One final task you should not omit is to change the password for the authorization
ID SQLDBA in your new database. The authorization ID SQLDBA is defined in all
databases to have DBA authority. The password is set to SQLDBAPW during
database generation. Because this default password for SQLDBA is common
knowledge (it is in many product manuals), you should change it immediately
after database generation. To do so, use ISQL, an application program, or the DBS
utility to connect to the database manager as SQLDBA with the following
statement:

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW

Then change the password to one of your own choosing with the following
statement:

GRANT CONNECT TO SQLDBA IDENTIFIED BY newpw

Step 11: Optionally Install the DRDA Code
A DRDA environment provides the application server capability for remote unit of
work access to data that is distributed across different installations. For more
information on installing this code, see “Chapter 14. Using a DRDA Environment”
on page 305.

Step 12: Optionally Load Phases into SVA
The VSE shared virtual area (SVA) allows the DB2 Server for VSE code to be
shared. This sharing can reduce the amount of storage required by the database
partitions, and reduces the amount of paging done by the system. You can load the
eligible phases into the shared virtual area.

Chapter 11. Generating Additional Databases 221

Table 16 shows the phases that are eligible to be loaded into the shared virtual
area.

Table 16. Phases Eligible for SVA

Component Phase

DBSS ARISQLDS

RDS ARIXRDS

DBSU ARIDBS

Batch Resource Adapter ARIRBARM

DBNAME Directory ARICDIRD

Assembler Preprocessor ARIPRPA

COBOL Preprocessor ARIPRPC

FORTRAN Preprocessor ARIPRPF

PL/I Preprocessor ARIPRPP

Notes:

1. If you load all of the eligible phases, allocate an additional 4.1 megabytes of
storage to the shared virtual area.

2. The DBSS component contains the code for the following components:
v DBSS
v DSC

3. The RDS component contains the code for the following components:
v RDS
v WUM
v DRRM
v CONV

The DRRM and WUM components are only applicable if the DRDA code is
installed.

4. If loaded, the DBSS and RDS components must both be loaded together in the
SVA.

Phases can be loaded into the shared virtual area in the following ways:
1. During VSE system IPL, add the SET SDL command into the IPL PROC.
2. After IPL, a separate job control with the SET SDL command can be run

anytime after IPL.

The SET SDL command must always be issued from the background partition.
Once the phases have been loaded, they cannot be purged until the next VSE
system IPL.

The following is a sample job control to load both the DBSS and RDS phase into
the shared virtual area:

// JOB LOADSVA
// LIBDEF PHASE,SEARCH=(IJSYSRS.SYSLIB,PRD2.DB2710)

SET SDL
ARISQLDS,SVA
ARIXRDS,SVA

/*
/&

222 System Administration

|

For more information on the shared virtual area, see the IBM VSE/ESA System
Control Statements manual.

Chapter 11. Generating Additional Databases 223

224 System Administration

Chapter 12. Choosing a National Language and Defining
Character Sets

A national language (as opposed to a programming language) is a language used
in or by a nation. The database manager can work with data in national languages
represented by a single-byte character set (SBCS) or by a double-byte character set
(DBCS). The database manager will also support MBCS data from other platforms,
which will be converted to SBCS and DBCS data. The following are some of the
single-byte character sets that are shipped with the database manager:
v French
v English
v Spanish
v Italian
v German.

Examples of double-byte character sets that are shipped with the database manager
include:
v Japanese
v Chinese.

If you want a complete list of the character sets that are available, review the
SYSTEM.SYSCHARSETS catalog table.

This chapter describes the facilities that the database manager provides for national
languages:
v CHARNAME specification

This facility allows you to specify character sets and CCSIDs other than the
installation or migration default. The application server default CHARNAME for
a new installation is INTERNATIONAL (CCSID=500). The application server
default CHARNAME for a migrated system is ENGLISH (CCSID=37). The
application requester default CHARNAME is always INTERNATIONAL
(CCSID=500). The database manager can use alternative character sets for
identifying character usage and for folding lowercase characters to uppercase.
This facility provides for the proper interpretation and use of national language
characters not included in the default character set, for example, characters with
umlauts, accents, and tildes.
This facility also provides for the proper interpretation of data from application
requesters or application servers which use different character sets and code
pages. Character conversion is performed on data when the CCSID of the
application requester and the CCSID of the application server are different. The
application server default CCSID is determined from the application server
default CHARNAME.
It is very important that the application server and application requester have
the same CCSID value unless there is a specific reason for them to be different.
When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an
associated performance overhead, and causes performance degradation. CCSID
conversion of data also affects the sargability of predicates. For more information
on performance, see the DB2 Server for VSE & VM Performance Tuning Handbook
manual.

v DBCS option

© Copyright IBM Corp. 1987, 2000 225

This option, when it is set to YES, allows the database manager to correctly
interpret the shift-out (X'0E') and shift-in (X'0F') characters that delimit EBCDIC
DBCS strings. The DBCS option is set on both the application server and the
application requester.

v Multiple language messages
The database manager provides multiple language message support to allow
users to select the language in which error and informational messages appear
(the language must already be installed). The operator can select the language
for operator messages.
If an ISQL user selects a national language that is different from the national
language set by the operator on the application server, when the ISQL user
issues an operator command the output is in the language set by the operator.
For example, the operator sets the application server national language for
operator messages to ENGLISH. The ISQL users set the application requester to
KANJI. When the user issues an operator command, the result is in ENGLISH.

v Multiple language HELP text.
The database manager provides multiple language HELP text support. ISQL
users can interactively retrieve help information on messages and codes and
command reference information. The help facility allows ISQL users to retrieve
help in the language of their choice (provided that the language version of the
HELP text is installed). Information on DB2 Server for VSE HELP text is
contained in this chapter, and in the DB2 Server for VSE & VM Database
Administration manual.

The database manager also provides graphic data types for use with strings of
DBCS characters, as well as a mixed subtype for character data that contains both
DBCS and SBCS characters. For more information about using graphic and mixed
data, refer to the DB2 Server for VSE & VM SQL Reference manual.

Considerations when changing default CHARNAME and CCSID
If you are not using the default CHARNAME or CCSID during installation or
migration, ensure you consider the following activities:
1. Choosing default CHARNAME and CCSID for the application server

v Installation - see “Choosing the Application Server Default CHARNAME and
CCSID” on page 30.

v Migration - see “Choosing an Application Server Default CHARNAME” on
page 40.

Note: Refer to “CCSID Conversion” on page 239 and “Determining CCSID
Values” on page 242 for more information on CCSIDs.

2. Setting migration CCSID values
v Installation - defaults are adequate.
v Migration - see “Setting Migration CCSID Values” on page 41.

3. Optionally, choosing application server default character subtype
v Installation and migration - see “Choosing the Application Server Default

Character Subtype” on page 32.
4. Optionally, setting the DBCS option for the application server

v Installation and migration - see “Setting the DBCS Option for the Application
Server” on page 248.

226 System Administration

Note: To understand the effect of DBCS options, refer to “Using Double-Byte
Character Set (DBCS)” on page 237.

Changing from pre-Euro CHARNAME to Euro-compatible
CHARNAME

DB2 Server for VSE & VM supports several code pages that are identical to
existing code pages except that they include the Euro currency symbol rather than
the International currency symbol (¤). If you choose to use a CHARNAME that
corresponds to a CCSID for a code page that includes the Euro currency symbol, it
is recommended that your existing character data that is currently tagged with a
non-Euro CCSID be re-tagged with the corresponding Euro-compatible CCSID.
These steps should only be used when changing your CCSID to the corresponding
Euro-compatible CCSID as described in the following table:

Table 17. Non-Euro and Corresponding Euro-compatible CHARNAMEs and CCSIDs

From CCSID From CHARNAME To CCSID To CHARNAME

37 English 1140 E-English

277 Danish-Norweigan 1142 EDanish-Norweigan

278 Finnish-Swedish 1143 EFinnish-Swedish

284 Spanish 1145 E-Spanish

285 UK-English 1146 E-UK-English

297 French 1147 E-French

500 International 1148 E-International

273 German 1141 E-German

280 Italian 1144 E-Italian

Step 1: This step will locate character data that currently represents the
International currency symbol (¤). The Euro-compatible code pages have replaced
the International currecy symbol with the Euro symbol. If your database does not
contain character data that represents the International currency symbol, you can
skip this step. If your data does contain character data that represents the
International currency symbol, you must decide how to handle this. You can either
skip this step, in which case character data that currently represents the
International currency symbol will be interpreted as the Euro symbol once the
CCSID is changed, or, you can change the character data that currently represents
the International currency symbol to some other value. The following SELECT
statement will locate columns that are tagged with the non-Euro compatible
CCSID.
SELECT CNAME,TNAME,CREATOR FROM SYSTEM.SYSCOLUMNS WHERE CCSID=current_ccsid

For each column found, run the following SELECT statement:
SELECT * FROM creater.tname WHERE cname LIKE'%cur_symbol%'

Note: If your keyboard cannot generate the International currency symbol, replace
cur_symbol with the hex value X'9F'. In order to do this, you will have to use
an editor that allows hexadecimal characters to be entered.

This command will show you all the rows for column cname that include the
International currency symbol. You can now decide the appropriate value to
change the International currency symbol to for each row.

Chapter 12. Choosing a National Language and Defining Character Sets 227

||||

||||

||||

Step 2: Re-tag existing character data with the new Euro-compatible CCSID. This
step uses the JCL job ARISCSID, which is provided by DB2 Server for VSE & VM.
1. Shut down the database server.
2. If you use any database initialization parameters that must be specified when

the database manager is started in single user mode, specify them in
ARISCSID. Do not delete any parameters that are currently listed.

3. Make any changes to ARISCSID that are necessary for your local installation.
4. Submit ARISCSID for execution.
5. Start the database server using your normal procedures.

Using Alternative Character Sets
When the database manager folds keywords and identifiers from lowercase to
uppercase, or folds user-supplied data using the default TRANSLATE scalar
function, it bases the folding on the default character set specified on the
SQLSTART initialization parameter. For information on setting the default
character set, refer to “Choosing an Application Server Default CHARNAME” on
page 40.

Some characters in other national languages must be delimited by double
quotation marks (") before they can be accepted in identifiers. The double
quotation marks indicate that special characters are within the identifier. No
characters within delimited identifiers are folded from lowercase to uppercase. To
get proper folding of these characters and to allow them as part of an unquoted
identifier, you can specify your own character set, which includes both
classification and folding tables. Specify the CHARNAME parameter at startup to
have the database manager use your character set as the default. You can then use
characters such as o-umlaut or n-tilde in identifiers without the use of double
quotation marks.

For information on how to define your own character set, see “Appendix E.
Defining Your Own Character Set” on page 359.

Hexadecimal Values of the Sample Character Sets
You will probably be able to use one of the IBM-supplied sample character sets
without modification. This section shows the hexadecimal value that is used to
represent each valid character. If your devices use those hexadecimal values for the
indicated characters, you can use the IBM-supplied samples.

// JOB ARICCSID UPDATE CCSID COLUMN OF SYSCOLUMNS
// LIBDEF PROC,SEARCH=(PRD2.DB2710)
// EXEC PROC=ARIS71PL *-- DB2/VSE PROD. LIBRARY ID PROC
// EXEC PROC=ARIS71DB *-- DB2/VSE DATABASE ID PROC
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,PROGNAME=ARIDBS,SERVAIDS=0000001'
COMMENT ' Do NOT alter the line above in any way ! '
COMMENT 'Replace "sqldbapw" with the password for the SQLDBA SQL user ID'
CONNECT SQLDBA IDENTIFIED BY sqldbapw;
COMMENT 'Replace "euro-ccsid" with the CCSID of the '
COMMENT 'Euro-compatible CHARNAME and replace "current_ccsid with'
COMMENT 'the CCSID of your current CHARNAME '
UPDATE SYSTEM.SYSCOLUMNS SET CCSID=euro-ccsid WHERE CCSID=current_ccsid;
COMMIT WORK;
/*
/&

Figure 95. ARICCSID - Sample JCL

228 System Administration

The ENGLISH character set is shown in Figure 96 on page 230. Only those
characters that are identifiable by the database manager are shown. Any
hexadecimal code that does not have a character assigned to it is unusable for DB2
Server for VSE keywords or unquoted identifiers. Such characters are usable in
quoted identifiers and in constants and, of course, can be stored in the database.

For example, many display devices using an English character set assign a cent
sign (¢) to X'4A'. In Figure 96 on page 230, however, no character is shown for the
value X'4A' meaning that X'4A' is unusable for DB2 Server for VSE keywords or
unquoted identifiers. If you want to put a cent sign in an identifier, you must use a
delimited identifier.

Another example is the tilde (˜). In most ENGLISH character sets, the tilde is
represented by X'A1'. The matrix shows no entry for X'A1'. So, regardless of what
X'A1' represents in your character set, you must use a delimited identifier.

These rules apply to the matrices for the other character sets as well. An important
point to remember is that the absence of a character in one of the matrices does
not prevent you from using that character set. The characters are not undefined to
the database manager; they merely have limited use (as described above). Often,
this limited use is exactly how you want the hexadecimal code to be handled.
Independent of this qualification, you should almost always be able to find a
CCSID that you can use at your installation. When you decide on a CCSID, try to
avoid using a non-standard CCSID to prevent possible problems in the future
(such as the inability to connect to other application servers because they do not
support your CCSID). If you require a CCSID that is not supplied in the catalog
tables, check the Character Data Representation Architecture Level 1, Registry manual
for other predefined registered CCSIDs.

Chapter 12. Choosing a National Language and Defining Character Sets 229

The sample FRENCH character set is shown in Figure 97 on page 231. Translation
from lowercase to uppercase is done as follows:

X'6A' is translated to X'E4'
X'7C' X'C1'
X'C0' X'C5'
X'D0' X'C5'
X'E0' X'C3'

These characters can be used in unquoted identifiers.

When evaluating the character set for use in your installation, remember that
hexadecimal values that do not have characters assigned to them in Figure 97 on
page 231 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

,

%

>

?

:

#

@

’

=

”

Bits
0,1

2,3

Hex 0

$

*

)

;

SP

Figure 96. ENGLISH Character Set (CCSID=37)

230 System Administration

The sample GERMAN character set is shown in Figure 98 on page 232. Translation
from lowercase to uppercase is done as follows:

X'4A' is translated to X'4A'
X'5A' X'5A'
X'6A' X'E0'
X'A1' X'A1'
X'C0' X'4A'
X'D0' X'5A'
X'E0' X'E0'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 98
on page 232 can be used in quoted identifiers.

Some translation from lowercase to uppercase does not cause a change in the
hexadecimal value. For more information, see “Step 3: Determine Translation
Characters” on page 370.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

é

A

B

C

D

E

F

G

H

I

è

J

K

L

M

N

O

P

Q

R

ç

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Bits
0,1

2,3

Hex 0
Bits
4567

Hex 1

& –

/

.

<

(

+

!

ù

,

%

>

?

:

£

à

’

=

”

$

*

)

;

SP

|

Figure 97. FRENCH Character Set (CCSID=297)

Chapter 12. Choosing a National Language and Defining Character Sets 231

The sample ITALIAN character set is shown in Figure 99 on page 233. Translation
from lowercase to uppercase is done as follows:

X'5A' is translated to X'C5'
X'6A' X'D6'
X'79' X'E4'
X'A1' X'C9'
X'C0' X'C1'
X'D0' X'C5'
X'E0' X'C3'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 99
on page 233 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

ß

s

t

u

v

w

x

y

z

ä

A

B

C

D

E

F

G

H

I

ü

J

K

L

M

N

O

P

Q

R

Ö

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Ä

.

<

(

+

!

ö

,

%

>

?

Bits
0,1

2,3

Hex 0

Ü

$

*

)

;

SP

:

#

§

’

=

”

|

Figure 98. GERMAN Character Set (CCSID=273)

232 System Administration

The sample KATAKANA character set is shown in Figure 100 on page 234.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 100
on page 234 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

à

A

B

C

D

E

F

G

H

I

è

J

K

L

M

N

O

P

Q

R

ç

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

!

ò

,

%

>

?

Bits
0,1

2,3

Hex 0

é

$

*

)

;

SP

|

ù

:

£

à

’

=

”

Figure 99. ITALIAN Character Set (CCSID=280)

Chapter 12. Choosing a National Language and Defining Character Sets 233

The sample SPANISH character set is shown in Figure 101 on page 235. Translation
from lowercase to uppercase is done as follows:

X'6A' is translated to X'7B'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 101
on page 235 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

First
Hex
Char.
Bits
0,1

2,3

Hex 0

& –

/ A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

*

)

;

SP

,

%

>

?

:

#

@

’

=

” ˚

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q r s

t

u

v

w

x

y

z

Figure 100. JAPANESE (Katakana) Character Set (CCSID=290, the SBCS Component of CCSID 5026)

234 System Administration

Specifying an IBM-Supplied Character Set at Run Time
If the hexadecimal codes in one of the sample character sets matched those used
by your devices, you can specify the character set at run time. To use a character
set, specify the CHARNAME parameter when starting the application server. The
CHARNAME parameter is valid in both single and multiple user mode. For
information on how to specify the CHARNAME parameter, see “Setting the
Application Server Default CHARNAME and CCSIDs” on page 243. Examples of
IBM-supplied sample character sets are:
v ARABIC
v CYRILLIC
v DANISH-NORWEGIAN
v E-INTERNATIONAL
v ENGLISH
v ESTONIAN
v FINNISH-SWEDISH
v FRENCH
v GERMAN
v GREEK
v GREEK-423
v HEBREW

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

,

%

>

?

:

Ñ

@

’

=

”

Bits
0,1

2,3

Hex 0

*

)

;

SP

Pts

Figure 101. SPANISH Character Set (CCSID=284)

Chapter 12. Choosing a National Language and Defining Character Sets 235

v ICELANDIC
v INTERNATIONAL
v ITALIAN
v JAPANESE-ENGLISH
v KATAKANA
v KOREAN
v LAO
v S-CHINESE
v SPANISH
v T-CHINESE
v THAI
v UK-ENGLISH
v UKRAINIAN
v VIETNAMESE
v 290
v 833
v 836
v 870
v 930
v 939
v 1027
v 1112
v 28709.

Figure 102 shows example job control to start the application server. The
CHARNAME parameter indicates that the database manager is to use the
FRENCH sample character set, and a CCSID of 297.

The default character sets ENGLISH (CCSID=37) and INTERNATIONAL
(CCSID=500) are hardcoded into this product. For example, if you specify
ENGLISH for the CHARNAME parameter, the database manager uses the
ENGLISH character set that is coded internally. The internally coded character set
is used even if a row exists in SYSTEM.SYSCHARSETS that has ENGLISH or
INTERNATIONAL in its NAME column. (Neither the sample ENGLISH character
set nor the sample INTERNATIONAL character set is used, although you can load
either into SYSTEM.SYSCHARSETS. They are provided to make the definition of
your own character sets easier.)

If you specify the name of a character set that is not defined in
SYSTEM.SYSCHARSETS, the database manager displays an error message and
uses the character set that was specified previously. If the character set is defined
incorrectly in SYSTEM.SYSCHARSETS, an error message is displayed, and the
database manager uses the character set that was previously specified.

// JOB START SQL
// EXEC PROC=ARIS71PL
// EXEC PROC=DBNAME01
// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM='PARMID=WARM1,CHARNAME=FRENCH'
/*
/&

Figure 102. Starting the Application Server to Use the French Character Set

236 System Administration

Using Double-Byte Character Set (DBCS)
The double-byte character set (DBCS) option supports the use of DBCS characters
in identifiers, constants and data. Identifiers can be either:
v Host identifiers (such as host variables), or
v SQL identifiers (such as dbspaces, tables or columns).

Constants and data containing DBCS characters can be either:
v Graphic data, or
v Character data with a mixed subtype (that is, character data containing DBCS

characters).

Setting the DBCS option also ensures that:
v A shift-out character is paired with a shift-in character on output,
v When mixed character data is truncated, truncation does not occur between the

two bytes of a DBCS character.

If your installation uses a double-byte character set, you should consider setting
the DBCS option to YES.

For information on enabling the DBCS option, see “Setting the DBCS Option for
the Application Server” on page 248, and “Setting the Default Application
Requester DBCS Option” on page 248.

If you plan to use the double-byte character set (DBCS) characters, consider the
following:
v PL/I programs using DBCS require no additional preprocessing (the PL/I

compiler supports DBCS).
v DBCS variables and constants are not supported in FORTRAN and Assembler

programs. However, you can use DBCS in dynamically defined SQL statements.
v SQL identifiers, SQL host variables, and SQL labels with DBCS characters can be

used in SQL statements in COBOL II Release 2 or later. The COBOL Kanji
Preprocessor is not required.

When the DBCS option is set to YES, the shift-out (X'0E') and shift-in (X'0F')
delimiters are recognized in both identifiers in SQL statements and mixed data
character string constants. The recognition of the delimiters provides the following
benefits:
v On the application server

– SQL identifiers can contain DBCS characters.
v On the application requester

– Host identifiers can contain DBCS characters.
– The DBS utility processing ensures the pairings of shift-out and shift-in

characters.
– ISQL allows the input, print, and display of DBCS characters and mixed data.

However, setting the DBCS option induces overhead for checking the proper
pairing of shift-out and shift-in characters.

Identifiers Containing DBCS Characters
Identifiers can be either host identifiers or SQL identifiers.

Chapter 12. Choosing a National Language and Defining Character Sets 237

To use host identifiers that contain DBCS characters, the VSE application requester
must have the DBCS option set to YES. For more information, see “Setting the
DBCS Option for the Application Server” on page 248 and “Setting the Default
Application Requester DBCS Option” on page 248.

To use ordinary SQL identifiers that contain DBCS characters, the application
server must have the DBCS option in the SYSTEM.SYSOPTIONS catalog table set
to YES, and must also support DBCS characters and mixed data. The application
server supports DBCS characters and mixed data when a mixed CHARNAME is
specified as an initialization parameter. A mixed CHARNAME has a non-zero
value for the CCSIDMIXED row in the SYSTEM.SYSOPTIONS catalog table. For
more information, see “Choosing the Application Server Default CHARNAME and
CCSID” on page 30.

If the DBCS option is set to YES for the application server, you can use DBCS
characters in ordinary SQL identifiers. The identifier can be DBCS characters, or
can contain a DBCS substring.

Identifiers are recorded in the catalog tables. When the database manager stores
identifiers that contain DBCS characters, it also stores the shift-out and shift-in
delimiters. The delimiters are stored because all columns of the catalog tables that
contain identifiers have a data type of either CHAR or VARCHAR.

The number of bytes required to represent a string of DBCS characters is equal to:
2 x the number of DBCS characters + 2

For more information on how identifiers are used in application programs, see the
DB2 Server for VSE & VM Application Programming manual.

Constants and Data Containing DBCS Characters
Constants and data containing DBCS characters can be either graphic data or
character data with a mixed subtype.

To use graphic and mixed constants or data, the application server and the
application requester must support mixed data. The application server supports
graphic and mixed data when the default CHARNAME is a mixed CHARNAME.
A mixed CHARNAME has a non-zero value for the CCSIDMIXED row in the
SYSTEM.SYSOPTIONS catalog table. For more information, see “Choosing the
Application Server Default CHARNAME and CCSID” on page 30. The VSE
application requester supports graphic and mixed data when a mixed
CHARNAME is set for the application requester. For more information, see
“Setting the Application Requester Default CHARNAME and CCSIDs” on
page 245. Using a mixed CHARNAME provides the following benefits:
v On the application server

– Character string constants can contain mixed data consisting of DBCS and
SBCS characters.

– When character string constants containing DBCS characters are used in SQL
statements, the data is correctly interpreted as having a mixed subtype and a
mixed CCSID.

v On the application requester
– Character string constants can contain mixed data consisting of DBCS, SBCS,

and on some platforms, MBCS characters. (The MBCS characters will be
stored as SBCS or DBCS characters by the database manager.)

238 System Administration

The implied data type of all string character constants is VARCHAR. When the
DBCS option is set to YES:
v Constants with only SBCS characters have a subtype of SBCS.
v Constants with a combination of SBCS and DBCS characters have a subtype of

mixed. For example:
'abc<XXYYZZ>'

v Constants containing only DBCS are also of the character data type with a
subtype of mixed. They are not considered to be graphic constants. For example:

'<XXYYZZ>'

When the DBCS option for the application server is set to NO, all character
constants have a subtype of SBCS.

CCSID Conversion
Internally, character data is stored as hexadecimal values called code points. When
a device interprets or displays a code point as a character, it uses a code page,
which is a set of assignments of characters to code points. If two terminals use
different code pages, they can display the same code point as a different character.
For example, in code page 37, the code point X'4F' represents a vertical bar (|), but
in code page 500, the code point X'4F' represents an exclamation mark (!).

As of Version 3 Release 4, the database manager supports Coded Character Set
Identifiers (CCSIDs). The CCSID attribute specifies which code page to use both to
map code points to characters, and to map characters to code points. The CCSID
and the code points are used together to determine the character that the code
point represents.

Note: The default CCSID is implicitly set by the default CHARNAME.

For example, suppose a DB2 Server for VSE online application requester has the
default CHARNAME set to ENGLISH (CCSIDSBCS=37), the remote DRDA DB2
Server for VSE application server has the default CHARNAME set to
INTERNATIONAL (CCSIDSBCS=500). In this case, if the user inserts an
exclamation mark into a character column, the application requester sends X'5A'
(the code point that represents an exclamation mark in the code page used with
CCSID 37). The application server converts X'5A' to X'4F' (because X'4F' represents
an exclamation mark in the code page used with CCSID 500), then stores X'4F' in
the column.

If another application requester using a different CCSID retrieves the character,
X'4F' is converted to the code point that represents an exclamation mark in the
code page specified by the application requester CCSID. The character is
interpreted and displayed correctly, and the hexadecimal value that is stored in the
database is not changed.

For more information on how to decide the default CCSID values you should use,
see “Determining CCSID Values” on page 242.

The sections that follow discuss the following topics:
v How to determine the CCSID values
v How to set the application server default CHARNAME and CCSID values
v How to set the application requester default CHARNAME and CCSID values
v How to set the application server default character subtype

Chapter 12. Choosing a National Language and Defining Character Sets 239

v How to set the DBCS option for the application servers
v How to set the DBCS option for application requesters
v EUC Conversion.

For examples that show the interactions among the different values, see “Examples
of Setting Values for an Installation” on page 250.

If an application requester and an application server do not use the same default
CCSID, CCSID conversion is done during communications between the two.

Note: For an application requester using an ASCII representation of the data,
CCSID conversion always occurs.

The application requester CCSIDs are recognized by the application server when
DRDA support is installed and being used. If DRDA support is not installed, the
application requester CCSIDs are not recognized by the application server.

Table 18 and Table 19 on page 241 show CHARNAMEs and the corresponding
CCSIDs that can be used as system defaults. Table 18 shows the SBCS
CHARNAME CCSIDs, and Table 19 on page 241 shows the mixed CHARNAME
CCSIDs, with the component SBCS and DBCS CCSIDs for each mixed CCSID.

Table 18. SBCS CCSIDs

CCSID Character Set Code Page CHARNAME Description

37 697 37 ENGLISH Country extended code pages (CECP):
USA, Canada (S/370* system),
Netherlands, Portugal, Brazil, Australia,
New Zealand

273 697 273 GERMAN CECP: Austria, Germany

277 697 277 DANISH-NORWEGIAN CECP: Denmark, Norway

278 697 278 FINNISH-SWEDISH CECP: Finland, Sweden

280 697 280 ITALIAN CECP: Italy

284 697 284 SPANISH CECP: Spain, Latin America (Spanish)

285 697 285 UK-ENGLISH CECP: United Kingdom

290 1172 290 290 Japanese Katakana, extended host single
byte

297 697 297 FRENCH CECP: France

420 235 420 ARABIC Arabic (all presentation shapes)

423 218 423 GREEK-423 Greek (Coexistence)

424 941 424 HEBREW Hebrew

500 697 500 INTERNATIONAL CECP: Belgium, Canada (AS/400*
system), Switzerland, International Latin-1

833 1173 833 833 Korean, extended host single byte

836 1174 836 836 Simplified Chinese, extended host single
byte

838 1176 838 THAI Thai, extended host single byte

870 959 870 870 ROECE (Regional Office for East &
Central Europe) Latin-2 Multilingual

871 697 871 ICELANDIC CECP: Iceland

240 System Administration

Table 18. SBCS CCSIDs (continued)

CCSID Character Set Code Page CHARNAME Description

875 925 875 GREEK Greek

1025 1150 1025 CYRILLIC Cyrillic Multilingual Turkish Latin 5

1027 1172 1027 1027 Japanese Latin, extended host single byte

1112 1305 1112 1112 Latvian/Lithuanian

1122 1307 1122 ESTONIAN Estonian

1123 1326 1123 UKRAINIAN Cyrillic Ukrainian EBCIDIC

1130 1336 1130 VIETNAMESE EBCIDIC Vietnamese

1132 1341 1133 LAO EBCIDIC Lao

1137 1137 1137 HINDI Hindi

1142 697 1142 EDANISH-
NORWEIGAN

Danish and Norweigan Euro CECP

1143 697 1143 EFINNISH-SWEDISH Finnish and Swedish Euro CECP

1145 697 1145 E-SPANISH Spanish Euro CECP

1148 697 500 E-INTERNATIONAL International Euro CECP

1140 697 37 E-ENGLISH English Euro CECP

1141 697 273 E-GERMAN German Euro CECP

1144 697 280 E-ITALIAN Italian Euro CECP

1146 697 285 E-UK-ENGLISH UK English Euro CECP

1147 697 297 E-FRENCH French Euro CECP

28709 1175 37 28709 Traditional Chinese, extended host single
byte

Table 19. Mixed CCSIDs

Mixed Component
CCSIDs

Character
Set

Code Page CHARNAME Description

930 290 (SBCS) 300
(DBCS)

1172 1001 290 300 930 Japanese (Katakana)-Kanji
mixed host (including 4370
user-defined characters)
extended single byte

933 833 (SBCS) 834
(DBCS)

1173 934 833 834 KOREAN Korean host mixed (including
1880 user-defined characters)
extended single byte

935 836 (SBCS)
837(DBCS)

1174 937 836 837 S-CHINESE Simplified Chinese host mixed
(1880 user-defined characters)
extended single byte

937 28709 (SBCS) 835
(DBCS)

1175 935 37 835 T-CHINESE Traditional Chinese host mixed
(6204 user-defined characters)
extended single byte

939 1027 (SBCS) 300
(DBCS)

1172 1001 1027 300 939 Japanese (Latin)-Kanji mixed
host (including 4370
user-defined-characters)
extended single byte

1364 833 (SBCS) 834
(DBCS)

65535
65535

833 834 KOREAN-1364 Korean host mixed extended
including 11,172 full hangul

Chapter 12. Choosing a National Language and Defining Character Sets 241

|||||

||||
|
|

|||||

|||||

Table 19. Mixed CCSIDs (continued)

Mixed Component
CCSIDs

Character
Set

Code Page CHARNAME Description

1388 836 (SBCS) 837
(DBCS)

65535
65535

846 837 S-CHINESE-GBK S-Ch DBCS-Host Data GBK
mixed, all GBK character set
and other growing chars

5026 290 (SBCS) 4396
(DBCS)

1172 370 290 300 KATAKANA Japanese (Katakana)-Kanji
mixed host (including 1880
user-defined characters)
extended single byte

5035 1027 (SBCS) 4396
(DBCS)

1172 370 1027 300 JAPANESE-
ENGLISH

Japanese (Latin)-Kanji mixed
host , (including 1880
user-defined characters)
extended single byte

For more information about CCSIDs, see the Character Data Representation
Architecture Level 1, Registry, and the Character Data Representation Architecture
Reference and Registry manuals.

For information on the types of DBCS conversion that can be done between
CCSIDs, see “Coding Your Own TRANSPROC Exit” on page 279.

Determining CCSID Values
When displaying characters on your terminal display, the default CCSID values for
an application requester must be compatible with the code page that was used to
generate its terminal controller. If the defaults are incompatible, characters will not
be displayed or interpreted as expected, and the results of queries or inserts of
either character or graphic data will be unreliable. Table 18 on page 240 and
Table 19 on page 241 show the code pages that are compatible with each CCSID,
and the CHARNAME value that you should specify. For example, if the controller
was generated with code page 37, you should specify ENGLISH for the
CHARNAME parameter. This value sets the value of CCSIDSBCS to 37, and the
values of CCSIDMIXED and CCSIDGRAPHIC to 0. You can use the CICS DSQG
transaction to set default values for all application requesters. For more
information, see “Setting the Application Requester Default CHARNAME and
CCSIDs” on page 245. The system-wide defaults may not be suitable for all
application requesters: some may have a controller generated to use a code page
incompatible with the system-wide default CHARNAME. In this situation, you
should set the CHARNAME parameter for individual application requesters. For
more information on this topic, see “Setting the Application Requester Default
CHARNAME and CCSIDs” on page 245.

The default CCSID values for the application server can be set to any value you
want, but keep in mind that you may want to set the default CCSIDs for the
application server to values that can be used as defaults by the majority of the
application requesters. This can reduce the amount of CCSID conversion that will
be necessary. Also, consider setting the application server default CCSIDs to values
that are compatible with the code page used to generate the terminal controller of
the operator console. This ensures that data in single user mode applications is
processed correctly (for example, single user mode DBS utility). Table 18 on
page 240 and Table 19 on page 241 show the code pages compatible with each
CCSID, and the CHARNAME that should be specified. For example, if the
terminal controller of the operator console was generated with code page 37, you

242 System Administration

should use ENGLISH as the CHARNAME. This value sets the CCSIDSBCS value
to 37, and the CCSIDMIXED and CCSIDGRAPHIC values to 0.

In particular, the CHARNAME INTERNATIONAL (CCSID=500) warrants special
attention. This CHARNAME is composed of a code page that supports all the
characters that are supported by the Latin-1 countries, including Australia, Austria,
Belgium, Brazil, Denmark, Canada, the Faroe Islands, Finland, France, Germany,
Hong Kong, Iceland, Italy, Japan, the Netherlands, New Zealand, Norway,
Portugal, Spain, Latin America, Sweden, Switzerland, the United Kingdom, and the
United States. If all application requesters and application servers in these
countries use this CCSID, then single-byte CCSID conversion will not be necessary
for accessing data from different sites. This may provide savings because of lower
CPU usage.

Often, it may not be appropriate to use CCSID 500 at every site. For example, you
may have to use existing equipment (such as terminal controllers that use other
character sets and code pages), or you may have a large quantity of data that is
stored using a CCSID other than 500. However, if you plan to frequently access
data from other countries, you should consider migrating your data and hardware
to CCSID 500, both for performance reasons, and for the ease of data management.

Setting the Application Server Default CHARNAME and CCSIDs
The different uses of the default system CCSIDs are shown in “Choosing the
Application Server Default CHARNAME and CCSID” on page 30. Data in columns
which were migrated from a release earlier than Version 3 Release 4 have a CCSID
which is obtained from rows in the SYSTEM.SYSOPTIONS catalog table. These
rows are: MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC. For more
information on the SYSTEM.SYSOPTIONS catalog table, see the DB2 Server for VSE
& VM SQL Reference manual. To change either the application server default
CCSIDs or the CCSIDs that are used for data in migrated columns, you must have
DBA authority.

The only way to change the system CCSID is to change the CHARNAME
parameter when you start the application server. This also updates the following
columns of the SYSTEM.SYSOPTIONS catalog table: CCSIDSBCS, CCSIDMIXED
and CCSIDGRAPHIC. For more information, see “Character Set Considerations at
Startup” on page 50.

You may have to use different default CCSIDs for columns that were created
before the migration than for columns created after the migration. For example,
suppose that you are migrating your database and want to use the
INTERNATIONAL character set (CCSID=500) for character columns that were
created after the migration. Character columns that existed before migration were
created with the ENGLISH character set (CCSID=37). To ensure that the data in
existing character columns is displayed and interpreted correctly, (that is, as was
done before the migration), you require an MCCSIDSBCS value of 37, and a
CCSIDSBCS value of 500.

Be very careful when using different default CCSIDs. This should only be done
when there is a specific reason for them to be different. When the application
server and application requester have different CCSID values, character conversion
cannot be avoided. This conversion has an associated performance overhead, and
causes performance degradation. CCSID conversion of data also affects the
sargability of predicates. For more information on performance, see the DB2 Server
for VSE & VM Performance Tuning Handbook.

Chapter 12. Choosing a National Language and Defining Character Sets 243

Note: Use caution when you change the application server default CCSIDs. For
more information, see “Determining CCSID Values” on page 242.

For many characters, the corresponding hexadecimal value in the International
code page is the same as in the English code page. However, this is not true of all
characters. For example, in the English code page the hexadecimal value
corresponding to the exclamation mark (!) is '5A', but in the International code
page the value is '4F'. Table 20 lists the differences between the International
code page and the English code page.

Table 20. Differences between International Code Page and English Code Page

Character CCSID=37 CCSID=500

^ X'B0' X'5F'

¢ X'4A' X'B0'

! X'5A' X'4F'

[X'BA' X'4A'

] X'BB' X'5A'

| X'4F' X'BB'

¬ X'5F' X'BA'

For more information on code page details, see the Character Data Representation
Architecture Level 1, Registry manual.

Columns must be tagged with the CCSID that corresponds to the code page with
which they were created or the results of queries on these columns will be
unreliable. For example, suppose that the following column was created with the
English character set before migration:

CHARDATA

ABCDEFGH

kjp!
¬ds!

If MCCSIDSBCS is 37 (corresponding to English), and CCSIDSBCS is 500
(corresponding to International), performing a SELECT operation on this column
after the migration gives the results shown above. However, if MCCSIDSBCS is
incorrectly set to 500 (corresponding to the International character set), performing
a SELECT operation on the column produces the following result:

CHARDATA

ABCDEFGH

kjp]
|ds]

In this example, to ensure reliable results, MCCSIDSBCS must be 37, regardless of
the value of CCSIDSBCS.

Changing the CCSID Attribute of an Existing Column
If you want to change the CCSID attribute of an existing column, use the DBS
utility. For example, to change the default CCSID for data in columns that were
created previous to the migration to Version 3 Release 4, use the DBS utility to do
the following:
1. Unload the data from the existing table.

244 System Administration

2. Drop the table.
3. Recreate the table, specifying the new CCSID attribute for the column or

columns that you want to change, or use the default if it is appropriate.
4. Reload the data.

Note: You must use the DBSU ″DATALOAD/DATAUNLOAD″ commands, NOT
the ″UNLOAD/RELOAD″ commands.

Changing the Subtype Attribute of an Existing Column
The subtype attribute is only used when the CCSID attribute is null. If you have
migrated from a release previous to Version 3 Release 4, existing character
columns will have a CCSID value of null. For these columns, the subtype value is
used to indicate their CCSID value. The CCSID value is either the value for
MCCSIDSBCS (for a subtype of “S”) or the value for MCCSIDMIXED (for a
subtype of “M”).

In some cases, columns with a null CCSID could have a subtype of “S” and
contain mixed data. This can occur if the column was created without specifying
the FOR MIXED DATA clause. In this case, the subtype must be changed to “M” in
order for the correct CCSID to be used for this column. Otherwise, conversion
errors can occur (for example, SQLCODE -330, SQLSTATE 22517).

To change the subtype, DBA authority is required to update the
SYSTEM.SYSCOLUMNS table. Change the value in the SUBTYPE column from “S”
to “M” for the required character column.

Setting the Application Requester Default CHARNAME and CCSIDs
VSE application requesters use the CHARNAME that is specified in the SQLGLOB
file, either a specific userid’s value or the global default value as follows:
v Batch applications use the SQLGLOB file ’CHARNAME’ setting associated with

the userid(s) contained on the SQL CONNECT statement(s) used in the
application. If any of these userids are NOT defined in the SQLGLOB file, then
the global CHARNAME will be used.

v The preprocessor is a batch application requester. The userid given by the
’USERID’ preprocessor parameter will be used to determine the CHARNAME
from the SQLGLOB file. If the userid is not defined in the SQLGLOB file, the
global default CHARNAME value will be used.

v The Database Services Utility is a batch application requester. It uses the
SQLGLOB file global CHARNAME setting to determine the input data folding
translation table to be used. Otherwise, it will use the SQLGLOB file
’CHARNAME’ setting associated with the userid(s) contained on the SQL
CONNECT statement(s) used in the application. If any of these are NOT defined
in the SQLGLOB file, then the global CHARNAME will be used.

v ISQL is an online application requester. It has a CICS user ID associated with it.
Therefore, ISQL uses the user setting of the SQLGLOB parameter CHARNAME
if the ISQL user had used the DSQU transaction to override the global setting of
the CHARNAME parameter. Otherwise, ISQL uses the global setting of the
SQLGLOB parameter CHARNAME.

Note: If ISQL is running against a remote DRDA application server, the ISQL
user must ensure that the global and the user setting of the SQLGLOB
parameter CHARNAME are the same. ISQL has a two transaction

Chapter 12. Choosing a National Language and Defining Character Sets 245

structure: ISQL and CISQ. ISQL starts CISQ. The former controls the
terminal and the latter is for access to the application server.

Because CISQ is a transaction started by ISQL, it does not have a CICS
user ID associated with it. Therefore, the online DRDA resource adapter
uses the global setting of the SQLGLOB parameter CHARNAME to
process the SQL requests from CISQ. On the other hand, ISQL, being the
front-end transaction, has a CICS user ID associated with it. Therefore,
ISQL uses the user setting of the SQLGLOB parameter CHARNAME, if
available, to process the same SQL statement it received from the
terminal.

v All ″started″ CICS transactions that pass SQL requests to a remote DRDA
application server do not have a CICS user ID associated with it. Therefore,
these transactions will use the global setting of the SQLGLOB parameter
CHARNAME.

v All online DRDA application requesters have a CICS user ID associated with it.
Therefore, they will use the user setting of the SQLGLOB parameter
CHARNAME if the CICS user running the online DRDA transaction had used
the DSQU transaction to override the global setting of the CHARNAME
parameter. Otherwise, they will use the global setting of the SQLGLOB
parameter CHARNAME.

If you want to check the global setting for the SQLGLOB parameter CHARNAME,
use the DSQQ transaction without specifying any parameter. The CHARNAME
displayed is the global setting of the SQLGLOB parameter CHARNAME.

If you want to check the CHARNAME setting for a CICS user, use the DSQQ
transaction and specify the user ID of the CICS user. If the user setting exists, it
will be displayed. If the user setting does not exist, a message will be displayed.

For more information about the DSQQ transaction, see the DB2 Server for VSE &
VM Database Administration.

If you want to use the IBM-supplied default global settings for the SQLGLOB
parameters (including the default for CHARNAME), you must execute the
IBM-supplied job control program ARISGDEF. This program will initialize the
global settings for the SQLGLOB parameters with IBM-supplied default values.
(For more information on the default values for the SQLGLOB parameters, see the
DB2 Server for VSE & VM Database Administration manual.)

If you want to use your own default global settings for the SQLGLOB parameters
(including the default for CHARNAME), you must first execute the IBM-supplied
job control program ARISGDEF and then execute the DSQG transaction.

To specify ENGLISH as the new global setting for the SQLGLOB parameter
CHARNAME, run the DSQG transaction and specify the ENGLISH CHARNAME
value as follows:
DSQG ENGLISH

The global settings for the SQLGLOB parameters do not apply to online
application requesters that have already run the DSQU transaction (and thereby
have their own user SQLGLOB parameter values).

For more information about the DSQG transaction, see the DB2 Server for VSE &
VM Database Administration.

246 System Administration

To specify a user setting for the SQLGLOB parameter CHARNAME which is
different from the default global setting, run the DSQU transaction and specify the
CHARNAME value. This value overrides the global CHARNAME.

For example, to specify ENGLISH as the new user setting for the SQLGLOB
parameter CHARNAME for the CICS user CICSUSER, CICSUSER must sign on to
a CICS session, run the DSQU transaction and specify the ENGLISH CHARNAME
value as follows:
DSQU ENGLISH

For more information about the DSQU transaction, see the DB2 Server for VSE &
VM Database Administration.

The SQLGLOB File Batch Query/Update Program
This program can be used to query and update the SQLGLOB file in batch mode,
using the JCL in library member ARISBGUD.Z. It may be necessary to use this
program to add or change SQLGLOB parameters when CICS and the DSQx
transactions are not available, or for userids that do not exist under CICS, but are
in batch jobs that access remote servers. With this program, any userid’s SQLGLOB
parameters can be queried, inserted, updated or deleted. The Global Default
parameters cannot be deleted. For more information about this batch program, see
the DB2 Server for VSE & VM Database Administration.

Setting the Application Server Default Character Subtype
To set the application server default character subtype, you must update a row in
the SYSTEM.SYSOPTIONS catalog table. You must have DBA authority to do so.
The CHARSUB option specifies the default subtype for a column when SUBTYPE
clause or the CCSID is not specified explicitly (for example, on a CREATE TABLE
or ALTER TABLE statement).

Note: The character subtype is defined for the application server only. It is not
defined for the application requester. The CREATE PACKAGE CHARSUB
option or the preprocessor CHARSUB option defines the default subtype for
a package. For more information on this option, see the DB2 Server for VSE
& VM Application Programming or the DB2 Server for VSE & VM SQL
Reference manuals.

The initial setting of the application server default character subtype is SBCS. To
set it to mixed, issue:

UPDATE SYSTEM.SYSOPTIONS
SET VALUE = 'MIXED'
WHERE SQLOPTION = 'CHARSUB'

To reset the application server default character subtype to SBCS, issue:
UPDATE SYSTEM.SYSOPTIONS

SET VALUE = 'SBCS'
WHERE SQLOPTION = 'CHARSUB'

In both situations, the new setting does not become effective immediately. The new
setting is not in effect until the next time the application server is started.

If anything other than 'MIXED' or 'SBCS' is specified for the application server
default character subtype in the SYSOPTIONS table, SBCS is assumed and an error
message is issued when the application server is started.

Chapter 12. Choosing a National Language and Defining Character Sets 247

|

|
|
|
|
|
|
|
|

The application server default character subtype can only be mixed when the
application server default CHARNAME is mixed. The application server default
character subtype is forced to be SBCS when the application server default
CHARNAME is an SBCS CHARNAME.

Setting the DBCS Option for the Application Server
The DBCS option is set by updating a particular row in the SYSTEM.SYSOPTIONS
catalog table. The initial setting of the DBCS option is NO. To set the DBCS option
to YES, issue:

UPDATE SYSTEM.SYSOPTIONS
SET VALUE = 'YES'
WHERE SQLOPTION = 'DBCS'

To reset the DBCS option to NO, issue:
UPDATE SYSTEM.SYSOPTIONS

SET VALUE = 'NO'
WHERE SQLOPTION = 'DBCS'

You must have DBA authority to issue either of the above commands.

The new setting of the DBCS option will be effective the next time that the
application server is started. The new setting does not become effective
immediately.

If anything other than YES or NO is specified for the DBCS option in the
SYSOPTIONS table, NO is assumed, and an error message is issued during
startup.

For more information, see “Using Double-Byte Character Set (DBCS)” on page 237.

Setting the Default Application Requester DBCS Option
The VSE application requester DBCS option is set by the DBCS option contained in
the SQLGLOB file, as follows:
v Batch applications use the SQLGLOB file ’DBCS’ option associated with the

userid(s) contained on the SQL CONNECT statement(s) used in the application.
If any of these userids are NOT defined in the SQLGLOB file, then the global
DBCS will be used.

v The preprocessor is a batch application requester. The userid given by the
’USERID’ preprocessor parameter will be used to determine the DBCS option
from the SQLGLOB file. If the userid is not defined in the SQLGLOB file, the
global default DBCS value will be used.

v The Database Services Utility is a batch application requester. It uses the
SQLGLOB file global DBCS value.

v ISQL is an online application requester. It has a CICS user ID associated with it.
Therefore, ISQL uses the user setting of the SQLGLOB parameter DBCS if the
ISQL user had used the DSQU transaction to override the global setting of the
DBCS parameter. Otherwise, ISQL uses the global setting of the SQLGLOB
parameter DBCS.

Note: If ISQL is running against a remote DRDA application server, the ISQL
user must ensure that the global and the user setting of the SQLGLOB
parameter DBCS are the same. ISQL has a two transaction structure: ISQL

248 System Administration

and CISQ. ISQL starts CISQ. The former controls the terminal and the
latter is for access to the application server.

Because CISQ is a transaction started by ISQL, it does not have a CICS
user ID associated with it. Therefore, the online DRDA resource adapter
uses the global setting of the SQLGLOB parameter DBCS to process the
SQL requests from CISQ. On the other hand, ISQL, being the front-end
transaction, has a CICS user ID associated with it. Therefore, ISQL uses
the user setting of the SQLGLOB parameter DBCS, if available, to process
the same SQL statement it received from the terminal.

v All ″started″ CICS transactions that pass SQL requests to a remote DRDA
application server do not have a CICS user ID associated with it. Therefore,
these transactions will use the global setting of the SQLGLOB parameter DBCS.

v All online DRDA application requesters have a CICS user ID associated with it.
Therefore, they will use the user setting of the SQLGLOB parameter DBCS if the
CICS user running the online DRDA transaction had used the DSQU transaction
to override the global setting of the DBCS parameter. Otherwise, they will use
the global setting of the SQLGLOB parameter DBCS.

If you want to check the global setting for the SQLGLOB parameter DBCS, use the
DSQQ transaction without specifying any parameter. The DBCS displayed is the
global setting of the SQLGLOB parameter DBCS.

If you want to check the DBCS setting for a CICS user, use the DSQQ transaction
and specify the user ID of the CICS user. If the user setting exists, it will be
displayed. If the user setting does not exist, a message will be displayed.

For more information about the DSQQ transaction, see the DB2 Server for VSE &
VM Database Administration.

If you want to use the IBM-supplied default global settings for the SQLGLOB
parameters (including the default for DBCS), you must execute the IBM-supplied
job control program ARISGDEF. This program will initialize the global settings for
the SQLGLOB parameters. (For more information on the default values for the
SQLGLOB parameters, see the DB2 Server for VSE & VM Database Administration
manual.)

If you want to use your own default global settings for the SQLGLOB parameters
(including the default for DBCS), you must first execute the IBM-supplied job
control program ARISGDEF and then execute the DSQG transaction.

To specify YES as the new global setting for the SQLGLOB parameter DBCS, run
the DSQG transaction and specify the YES DBCS value as follows:
DSQG ,,YES

The global settings for the SQLGLOB parameters do not apply to online
application requesters that have already run the DSQU transaction (and thereby
have their own user SQLGLOB parameter values).

For more information about the DSQG transaction, see the DB2 Server for VSE &
VM Database Administration manual.

To specify a user setting for the SQLGLOB parameter DBCS which is different
from the default setting, run the DSQU transaction and specify the DBCS value.
This value overrides the global setting for the user who ran the DSQU transaction.

Chapter 12. Choosing a National Language and Defining Character Sets 249

For example, to specify YES as the new user setting for the SQLGLOB parameter
DBCS for the CICS user CICSUSER, CICSUSER must sign on to a CICS session,
run the DSQU transaction and specify the YES DBCS value as follows:

DSQU ,,YES

For more information about the DSQU transaction, see the DB2 Server for VSE &
VM Database Administration manual.

The SQLGLOB File Batch Query/Update Program can also be used to display or
modify user or global default parameters. For more information, see “The
SQLGLOB File Batch Query/Update Program” on page 247, or the DB2 Server for
VSE & VM Database Administration.

EUC Conversions
Extended UNIX Code (EUC) allows for a form of ASCII mixed data. It is an
encoding scheme supported by UNIX in far eastern countries which allows for
MBCS characters. Each EUC codepage is made up of three character sets, or
planes, denoted by G0, G1, and G2 or four character sets, denoted by G0, G1, G2
and G3. The group in which the data belongs is determined by the range of its first
and second bytes. G0 is comprised of single-byte characters and is the ASCII
invariant coded character set. G1 characters are double-byte characters within
another range. G2 and G3 characters are triple-byte characters, distinguished by
the first byte and the range of the last three bytes.

EUC conversion is supported by the database manager. EUC characters are
converted to SBCS or DBCS characters, or both.

Examples of Setting Values for an Installation
This section discusses two examples of using the application server default
CHARNAME JAPANESE-ENGLISH (CCSID=5035). The first example shows how
to specify this CHARNAME and enable mixed string manipulation. The second
example shows how to specify this CHARNAME without enabling mixed string
manipulation and how to prevent the verification of character strings that contain
mixed data. (Mixed string manipulation is the ability to specify mixed SQL
identifiers, such as columns.)

Example 1
Suppose that you want to use the mixed JAPANESE-ENGLISH CCSID, 5035, as
your application server default CCSID, and you also want to have the ability to do
mixed string manipulation. To do this, set up your environment as follows:
1. Ensure that your terminal controllers are generated to use the correct code

pages.
The CCSID you want to use is 5035. You must define the controller to use the
character set 1172 for the SBCS character set, and code page 1027 for the SBCS
code page. For the DBCS characters, specify the character set 370 and the code
page 300.

2. Install the database manager.
The application server default CCSID for a newly installed database manager is
500 (CHARNAME=INTERNATIONAL). After installation, the
SYSTEM.SYSOPTIONS catalog table contains the following information:

250 System Administration

CHARNAME=INTERNATIONAL (the name of 500)
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
DBCS=NO
CHARSUB=SBCS
.............

3. Change the value of the application server default CHARNAME to
JAPANESE-ENGLISH
Start the application server. Specify CHARNAME=JAPANESE-ENGLISH.
Message ARI0159D is displayed that informs you that the new CHARNAME
(JAPANESE-ENGLISH) is different from the current default
(INTERNATIONAL). You are prompted to enter either 1 (YES) to change the
default, 0 (NO) to leave the default unchanged, or 111 (QUIT) to shut down the
application server. Type 1 (for YES) and press ENTER.
After the application server is started, the SYSTEM.SYSOPTIONS catalog table
should contain the following information:
CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035
CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=NO
CHARSUB=SBCS
.................

4. To enable mixed string manipulation, change the value for DBCS in
SYSTEM.SYSOPTIONS from NO to YES. You can use either ISQL or the DBS
utility.

5. Because most of the character columns will contain mixed data, you should
also change the value for CHARSUB from SBCS to MIXED.

6. To cause the DBCS and CHARSUB values in SYSTEM.SYSOPTIONS to be used
as the new application server defaults, you must stop the application server,
and then restart it.
The changes are now complete. The SYSTEM.SYSOPTIONS catalog table
contains the following information:

CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035
CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=YES
CHARSUB=MIXED
.................

7. To set these values for the online DRDA requesters, ISQL and the
preprocessors, run the DSQG transaction. Issue the following command:

DSQG JAPANESE-ENGLISH,,YES

Example 2
Suppose that you want to use the mixed JAPANESE-ENGLISH CCSID, 5035, as
your application server default CCSID. Because you must be able to both store
DBCS characters, and retrieve DBCS characters from graphic columns (GRAPHIC,
VARGRAPHIC, or LONG VARGRAPHIC), you cannot specify an ENGLISH
single-byte CCSID such as 37 or 1027. Also suppose that you do not want the
ability to do mixed string manipulation, and you want to prevent the database
manager from verifying character strings for mixed data. In addition, you also
want character columns that are created without the explicit specification of a
CCSID or a subtype to default to the SBCS subtype and CCSID. To do this, set up
your environment as follows:

Chapter 12. Choosing a National Language and Defining Character Sets 251

1. Ensure that your terminal controllers are generated to use the correct code
pages.
The CCSID you want to use is 5035. You must define the controller to use the
character set 1172 for the SBCS character set, and code page 1027 for the SBCS
code page. For the DBCS characters, specify the character set 370 and the code
page 300.

2. Install the database manager.
The application server default CCSID for a newly installed database manager is
500 (CHARNAME=INTERNATIONAL). After installation, the
SYSTEM.SYSOPTIONS catalog table contains the following information:

CHARNAME=INTERNATIONAL (the name of 500)
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
DBCS=NO
CHARSUB=SBCS
.............

3. Change the value of the application server default CHARNAME to
JAPANESE-ENGLISH.
Start the application server. Specify CHARNAME=JAPANESE-ENGLISH.
Message ARI0159D is displayed that informs you that the new CHARNAME
(JAPANESE-ENGLISH) is different from the current default
(INTERNATIONAL). You are prompted to enter either 1 (YES) to change the
default, 0 (NO) to leave the default unchanged, or 111 (QUIT) to shut down the
application server. Type 1 (for YES) and press ENTER.
After the application server is started, the SYSTEM.SYSOPTIONS catalog table
should contain the following information:
CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035
CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=NO
CHARSUB=SBCS
.................

4. Because you do not want to enable mixed string manipulation, and you do not
want the database manager to verify character strings for mixed data, leave the
DBCS option set to NO (even though the database manager uses a mixed
CCSID). This still allows you to:
v Issue CREATE TABLE or ALTER TABLE statements to either add or create

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC columns. The CCSID
for these columns will be taken from value for CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table.

v Insert into graphic columns from graphic host variables.
v Select graphic columns into graphic host variables.
v Use graphic constants in SQL statements.

5. Because most character columns will contain SBCS data, leave the value for
CHARSUB as SBCS. When you need to either create or add a mixed character
column, you can specify the FOR MIXED DATA clause or the CCSID clause
explicitly for the CREATE TABLE or the ALTER TABLE statement.

6. To set these values for all the online DRDA application requesters, ISQL and
the preprocessors, run the DSQG transaction. Issue the following command:

DSQG JAPANESE-ENGLISH,,YES

252 System Administration

For an application requester to be able to use graphic data, the application
requester must use a mixed CCSID as the default. One exception exists. If the
application requester is connecting to a local application server, the application
server responds to the application requester with the expectation that the
application requester is using the same mixed CCSID as the application server
is using. If the user specified a different value for the SQLGLOB CHARNAME
parameter, the application server ignores this value. However, folding
performed by the application requester is always based on the application
requester’s CHARNAME setting. For more information on the application
requester’s CHARNAME setting, see “Setting the Application Requester Default
CHARNAME and CCSIDs” on page 245. In this case, if the application
requester CHARNAME and the application server CHARNAME are not the
same, unexpected results can occur.

Identifying Classification and Translation Tables for a CCSID
To identify either the classification table or the translation table that is used for
folding characters to uppercase for a specific CCSID, do the following:
1. Review the CHARNAME column of the SYSTEM.SYSCCSIDS catalog table for

the CHARNAME value of the CCSID.
2. Review the NAME column of the SYSTEM.SYSCHARSETS catalog table for the

value that matches the CHARNAME of the CCSID. That row contains both the
classification table and the translation table for the CCSID.

National Language Support for Messages and HELP Text
The database manager can provide DB2 Server for VSE messages and HELP text in
several national languages. Messages and HELP text come with the product tape.
For more information on HELP text, see the DB2 Server for VSE & VM Database
Administration manual. Installation instructions for HELP text is in the DB2 Server
for VSE Program Directory manual.

When the national language feature tape has been installed, national language
support works this way:
v Users of ISQL, the DBS utility, and the preprocessors can receive messages in the

language they select.
v ISQL users can receive HELP text for commands and messages in the language

they select.
v The DB2 Server for VSE operator can receive messages on the operator console

in the language selected. The VSE operator cannot choose a double-byte
character set (DBCS) language, as the VSE operator console does not support
DBCS.

The national language tape provided contains the following languages:
v Mixed American English
v Uppercase American English
v French
v German
v Japanese
v Simplified Chinese.

When the database manager is installed, you specify a default national language.
This is a second-level default. For online users, the first-level default is the
LANGID supplied on the CIRB transaction. The second-level default is used for
batch/ICCF users, and online users when LANGID is not specified. When one or

Chapter 12. Choosing a National Language and Defining Character Sets 253

more additional national languages have been installed, users can change the
language from the default in the following ways:
v ISQL users can choose the language for messages and HELP text using the SET

LANGUAGE command. For ISQL users to receive HELP text in the language
they choose, the messages and the HELP text for that language must be
installed. To support a national language, you must install the messages for that
language. Installing the HELP text is optional.
The VSE online users can also choose the language they receive messages in by
specifying the LANGID parameter on the CIRB transaction. For an explanation
of the CIRB transaction, see “Starting the Online Resource Adapter -- The CIRB
Transaction” on page 81.

v DBS utility users and preprocessor users receive messages in the language
specified when the database manager was installed. If a user wants to receive
messages in another language, the user should specify the library containing the
desired language in the LIBDEF statement of the job control.

v The operator can choose the language for operator messages using the SET
LANGUAGE command from the operator console. This language is also used to
display the output of the SHOW, RESET, and COUNTER commands. The VSE
operator cannot choose a double-byte character set (DBCS) language, as the VSE
operator console does not support DBCS.

National languages are identified to the database manager by a language name,
and a LANGID (language identifier). These values are in the
SQLDBA.SYSLANGUAGE table. If you have English and French installed on the
database manager, the SQLDBA.SYSLANGUAGE table can look like the example
in Figure 103.

For the LANGUAGE and REMARKS columns, you can choose values appropriate
for your organization. For the LANGKEY and LANGID columns, you should keep
the values supplied by the database manager.

The language keys (LANGKEY) and language identifiers (LANGID) used by the
database manager are shown in Table 21.

Table 21. Language Keys and Language Identifiers

LANGUAGE LANGKEY LANGID

ENGLISH (mixed case) S001 AMENG

ENGLISH (uppercase) S002 UCENG

FRENCH S003 FRANC

GERMAN S004 GER

JAPANESE D001 KANJI

CHINESE_SIMPLIFIED D003 HANZI

LANGUAGE LANGKEY REMARKS LANGID
-------------- ------- --------------------------------------- --------
ENGLISH S001 ENGLISH VERSION OF HELP TEXT AMENG
FRANCAIS S003 TEXTE D'AIDE FRANCAIS FRANC

Figure 103. Sample SQLDBA.SYSLANGUAGE Table

254 System Administration

You should not use the language keys and language identifiers (LANGID) shown
above for other purposes. In addition, the language keys S007-S500 and D003-D500
are reserved for IBM use.

The language key is used to internally identify HELP text for a language. The
LANGID can be used to choose a language for messages and HELP text. You can
also specify the name of the language, as it is stored in the LANGUAGE column of
the SQLDBA.SYSLANGUAGE table.

In ISQL, and on the operator console, you can specify a language or a LANGID on
the SET LANGUAGE command. The VSE operator cannot choose a double-byte
character set (DBCS) language, as the VSE operator console does not support
DBCS. The syntax of the SET LANGUAGE command is shown in Figure 104.

The language or LANGID you specify must match a value in the SYSLANGUAGE
table, and must be installed. If your installation uses a double-byte character set,
you should consider setting the DBCS option to YES. For information on the DBCS
option, see “Using Double-Byte Character Set (DBCS)” on page 237.

When using the LANGID parameter on the CIRB transaction, you can specify only
the LANGID. At startup, messages are displayed in the default national language.

Changing the ISQL Default Language
The default language for ISQL in VSE is set using the LANGID parameter of the
CIRB transaction. If the LANGID parameter is not specified, the default language
for ISQL is the one specified in an internal table structure called LANGBLK. There
is one LANGBLK table structure for each national language. The database manager
uses the language specified in the ARIMLBK TEXT member. A name is assigned to
each LANGBLK table structure for each language, as follows:

Table 22. LANGBLK Table

Mixed case English ARIMLBKD

Uppercase English ARIMLBKU

French ARIMLBKF

German ARIMLBKG

Japanese ARIMLBKJ

Simplified Chinese ARIMLBKC

To change the ISQL default language, rename the member for the language you
want to use to ARIMLBKD, and relink-edit the ARISLKYD link book.

�� SET LANGuage language

langid

��

Figure 104. The SET LANGUAGE Command

Chapter 12. Choosing a National Language and Defining Character Sets 255

National Language Messages in a VSE Guest Sharing
Environment

If you have VSE guest sharing, you should install all languages on the VSE guest
that you want to support on VSE. Users who use the DBS utility and the
preprocessors from the VSE guest should specify the library containing the desired
language in the LIBDEF statement of the job control.

256 System Administration

Chapter 13. Creating Installation Exits

This chapter discusses installation exits that:
v Supply account numbers for product users
v Define your own datetime format
v Coding your own TRANSPROC exit
v Perform your own cancel exit
v Encode and decode data (Field Procedures).

Supplying Account Numbers for Users
There is no rigid format for entering account or project numbers into accounting
records, because their definition and use vary at each installation. (Some
installations do not use account numbers at all.) Thus, you must devise your own
scheme.

To do this, you replace a module named ARIUXIT with your own version of that
module.

The resource adapter calls ARIUXIT when a user tries to connect to a DB2 Server
for VSE application server either implicitly or explicitly. The database manager
branches to ARIUXIT even before attempting to verify the user.

The database manager allows ARIUXIT to access a control block. In this control
block, ARIUXIT can provide up to 16 bytes of data.

Before calling ARIUXIT, the database manager initializes the 16-byte area. For
batch/ICCF applications, the database manager initializes the area to character
blanks.

The ARIUXIT module does not use the control block (except for the return code
area); it only sets a no-operation return code and branches back to the database
manager, as shown in the following figure.

© Copyright IBM Corp. 1987, 2000 257

Because of this, the database manager places blanks (for batch/ICCF) or CICS
information (for online applications) in the installation-dependent field of the
user’s accounting records. If you choose, you can change (write over) this area.
Whatever data is in the 16-byte area is placed on the accounting records of the user
who was trying to connect at the time that ARIUXIT was called.

Your version of ARIUXIT should determine the user’s accounting information for
your installation, verify it, and pass it to database manager which puts it in the
user’s accounting records. You can supply department names as well as account or
project numbers. You can, in fact, supply whatever you like so long as it fits in 16
bytes and meets your own installation’s requirements. The database manager does
no error-checking on the data.

The database manager always branches to ARIUXIT regardless of whether the
connect attempt is from a program, the DBS utility, the preprocessors, or ISQL. You
cannot disable branching. If you want to be able to bypass your accounting
routine, you have to code the routine so that you can turn it on and off.

How the ARIUXIT Module Works
The resource adapter is the component of the database manager that calls
ARIUXIT. In multiple user mode, the resource adapter is in the user partition; in
single user mode, it is in database partition. The ARIUXIT module is called in both
modes.

User attempts to connect
to the application server

Branch to
ARIUXIT

ARIUXIT
- Provide a

no-operation
return code

- Return

Continue processing
with normal connect

Figure 105. The Database Manager Branching to ARIUXIT

258 System Administration

When the resource adapter detects any attempt to connect to an application server,
it builds a parameter list for ARIUXIT, sets registers for a proper linkage, and calls
ARIUXIT. It always calls ARIUXIT, even if the accounting facility is not enabled.
The registers are set as follows:

Register 1 The address of the start of the parameter list for
ARIUXIT. The parameter list itself is named
ARIUEXI. The pointer to the parameter list points
to the beginning of ARIUEXI, which is described
below. The first field in ARIUEXI is an eye-catcher
value.

Register 13 Points to a standard register save area.

Register 14 Contains the return address.

Register 15 Contains the entry point of the installation exit
routine.

You must code ARIUXIT to save the DB2 Server for VSE registers in the area
pointed to by Register 13. If ARIUXIT does not save and restore the registers, the
results will be unpredictable.

The resource adapter also builds the parameter list named ARIUEXI. Table 23
shows what is in ARIUEXI.

Table 23. ARIUEXI Parameter List

Length Description

2 words
1 word

Eye-catcher: 'ARIUEXI '
Length of ARIUEXI parameter list

1 word
1 word

Pointer to Exit Number
Pointer to length of Exit Number

1 word
1 word

Pointer to Exit Global Area
Pointer to length of Exit Global Area

1 word
1 word

Pointer to Exit Local User Area
Pointer to length of Exit Local User Area

1 word
1 word

Pointer to Exit Unique Area
Pointer to length of Exit Unique Area

2 words Reserved

1 word
1 word

Pointer to Environment Dependent Area
Pointer to length of Environment Dependent Area

1 word
1 word

Pointer to Exit Return Code Area
Pointer to length of Exit Return Code Area

Each area that ARIUEXI points to is described below.

Eye-catcher and Length of List
The resource adapter sets the eye-catcher field to 'ARIUEXI ' and the
following full word to the length of the entire list. (This length includes the
length of the eye-catcher field.)

Exit Number
The exit number is always a full word. The exit number for the accounting
exit is 1. The resource adapter sets the pointer to the exit number with an

Chapter 13. Creating Installation Exits 259

address to a full word area containing a binary 1. The resource adapter sets
the pointer to the length of the exit number with the address of a full word
area containing a binary 4.

Exit Global Area
This area does not apply to the accounting exit. The resource adapter sets
both the pointer to the global area and the pointer to the length of the
global area to binary zeros.

Exit Local User Area
The local user area is 16 bytes long. It is a read/write area that lasts for the
life of the user program.
v For CICS transactions, the area exists for each transaction until the

transaction ends
v For batch or VSE/ICCF applications, the area exists until the end of the

job step.

For each user, the resource adapter obtains the 16-byte storage area and
sets it to binary zeros. The pointer to the local user area is unique for each
user. On subsequent calls by the user, the resource adapter returns the
same pointer; it never resets the area.

The pointer to the length of the local user area always points to a full word
that contains a binary 16.

Exit Unique Area
In this area, you provide the installation-dependent accounting
information. This area is also 16 bytes long. It is obtained and initialized by
the resource adapter. How it is initialized depends on the environment:
v For batch/ICCF applications, it is initialized to character blanks.
v For online CICS transactions, it is initialized as follows:

Bytes 1—4
contain the CICS transaction ID.

Bytes 5—12
contain the CICS sigon ID, if available.

Bytes 13—16
contain the CICS terminal ID, if available. If the transaction does
not have a CICS terminal ID and the user coded the ARIRCAN
cancel support, the first 4 characters of the RMARUDAT data
from the RMAR control block is placed into bytes 13-16.
Otherwise, these bytes are blank.

Note: If the user coded the ARIRCAN cancel support, the RMARUDAT
data from the RMAR control block is placed into bytes 29-36 of
the Environment Dependent area.

Reserved Area
This area is 8 bytes long and reserved. The resource adapter initializes it to
binary zeros.

Environment-Dependent Area
This area is 40 bytes long. It contains information about the environment
where the user is running.

260 System Administration

Note: This area identifies environment-dependent information. Some fields
apply only to VM uses of the database manager. For VSE, those
fields are set to character blanks.

The resource adapter initializes the environment-dependent area as follows:

Byte 1 Character S for single user mode, or M for multiple user mode.

Byte 2 Character D for VSE.

Byte 3 Character B for batch or VSE/ICCF, or O for VSE online.

Byte 4 Character I for implicit connect, or E for explicit connect.

Bytes 5—8
Pointer to CICS transaction control area (TCA) for VSE online. For
batch or VSE/ICCF, binary zeros.

Bytes 9—12
Pointer to CICS save area (CSA) for VSE online. For batch or
VSE/ICCF, this field is set to binary zeros.

Bytes 13—20
Character blanks.

Bytes 21—28
CONNECT user ID for all explicit connections and all online
implicit connections. Blanks for implicit connections.

Bytes 29—36
If the ARIRCAN cancel support is coded, this field is set to
RMARUDAT from the RMAR control block. (For more information
about the contents of this field, see the description of the Exit
Unique Area on page 260.) Otherwise, this field is character blanks.

Bytes 37—40
Binary zeros (reserved).

Exit Return Code Area
The resource adapter initializes this full word area (and the pointer to it),
and sets it to -1. A return code of -1 means that you do not want this exit.
The length field for this area is a full word containing a binary 4. The
resource adapter also ORs a X'80' to the high order byte of the pointer to
the length field of the return code area. The X'80' indicates the end of the
parameter list.

When you code your version of ARIUXIT, you can specify these return codes
before branching back to the database manager:

-1 Means that you do not want this exit (the default). This indicates to the
database manager that the exit is a no-op.

0 The function that the exit called to do a task completed successfully.

Other Any return code other than 0 or -1 causes an -815 SQLCODE to be
returned to the user. (SQLERRD1 contains the return code from the exit.)
You can reject a user’s attempt to connect because the user has incorrect
accounting information.

Figure 106 on page 262 summarizes the ARIUEXI parameter list and the areas
pointed to by the list.

Chapter 13. Creating Installation Exits 261

Coding Your Own Accounting Exit
Exit routines must always be coded in Assembler language. Your version of
ARIUXIT (and any of the modules it calls) must not use any DB2 Server for VSE
function. In an online environment, imbedded CICS commands (EXEC CICS) are
not allowed.

You can link-edit your accounting exit to run in AMODE 24 or 31 by using the
AMODE parameter in the PARM field of the EXEC LNKEDT statement. Your

Character

'ARIUEXI'

Binary 68

Pointer

Pointer

Binary 0

Binary 0

Pointer

Pointer

Pointer

Pointer

Binary

Zeros

Pointer

Pointer

Pointer

Pointer

0

8

12

16

20

24

28

32

36

40

44

52

54

58

62

Exit Number:

Binary 1

Exit Unique Area:

See text

Length of Exit Unique Area:

Binary 16

Environment Dependent Area:

See text

Register 1 Pointer

Length of
Exit Number:

Binary 4

Length of Local User Area:

Binary 16

Length of Environment Dependent Area:

Binary 40

Length of Return Code Area:

Binary 4

Return Code Area:

Binary -1

Local User Area:

Binary 0s

/ /

/ /

Figure 106. Summary of ARIUEXI Parameter List and Associated Areas

262 System Administration

accounting exit will be loaded below 16 megabytes and given control according to
its AMODE. If the AMODEs of the accounting exit and the database manager
differ, the database manager switches AMODEs before transferring control to the
accounting exit. For CICS/VSE applications, you MUST link-edit your accounting
exit to run in AMODE 31.

Figure 107 shows the ARIUXIT module that is included with the database manager.
This sample exit is supplied as an A-type source member named ARIUXIT. Note
that the Exit Return Code Area is set to -1, which means that you are not
interested.

TITLE 'ARIUXIT'

* ARIUXIT USER EXIT ROUTER ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *
* *

SPACE 5
ARIUXIT CSECT ,
ARIUXIT AMODE ANY
ARIUXIT RMODE 24

DS 0H
USING *,R15 GET ADDRESSABILITY
B PROLOG
DC CL8'ARIUXIT ' EYECATCHER

*
PROLOG EQU *

STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
DROP R15
BALR R12,0 R12 IS BASE REGISTER

*
PSTART EQU *

USING PSTART,R12 GET ADDRESSABILITY FOR ROUTINE
ST R13,UXSAVE+4 STORE BACKWARD POINTER
LA R9,UXSAVE ADDRESS OF SAVE AREA
ST R9,UXSAVE+8 STORE FORWARD POINTER
LR R13,R9 R13 POINTS TO NEW SAVE AREA
L R1,0(,R1) GET POINTER TO PLIST
USING PLIST,R1 GET ADDRESSABILITY TO PLIST DSECT

*
* Insert your own code here
* (and change the return code as appropriate).
*

Figure 107. IBM-Supplied Version of ARIUXIT (Part 1 of 3)

Chapter 13. Creating Installation Exits 263

L R2,PLRETCD GET PTR TO EXIT RETURN CODE AREA
L R3,NEG1RC LOAD NOOP RET CODE (NEGATIVE ONE)

*
ST R3,0(,R2) STORE RET CODE INTO EXIT RC AREA

*
L R13,UXSAVE+4 GET BACKWARD POINTER
LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
BR R14 RETURN TO CALLER

*
END EQU *

EJECT

*
* DECLARES FOR ARIUXIT ROUTER
*

SPACE 5
UXSAVE DC 18F'0' SAVE AREA FOR CALLER'S REGISTERS
NEG1RC DC F'-1' NEGATIVE ONE RETURN CODE (NO-OP)

SPACE 2
R0 EQU 0 REGISTERS EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

Figure 107. IBM-Supplied Version of ARIUXIT (Part 2 of 3)

264 System Administration

Figure 108 shows a simple example of a user version of ARIUXIT. In this example,
the string HERE IS USERDATA is moved into the exit unique area, and the exit
return code area is set to 0.

*
* DSECT FOR ARIUEXI PARAMETER LIST INTERFACE TO ARIUXIT ROUTER
*

SPACE 5
DS 0D

PLIST DSECT
PLICTCH DS CL8 EYECATCHER
PLILENG DS F LENGTH OF PLIST (INCLUDING EYECATCHER)
PLEXNUM DS F PTR TO EXIT NUMBER
PLLXNUM DS F PTR TO LENGTH OF EXIT NUMBER
PLGLOBA DS F PTR TO EXIT GLOBAL AREA
PLLGLOB DS F PTR TO LENGTH OF EXIT GLOBAL AREA
PLUSERF DS F PTR TO EXIT LOCAL USER AREA
PLLUSER DS F PTR TO LENGTH OF EXIT LOCAL USER AREA
PLEUNIQ DS F PTR TO EXIT UNIQUE AREA
PLLUNIQ DS F PTR TO LENGTH OF EXIT UNIQUE AREA

DS CL8 RESERVED
PLEDEPA DS F PTR TO ENVIRONMENT DEPENDENT AREA
PLLDEPA DS F PTR TO LENGTH OF ENVIRONMENT DEP AREA
PLRETCD DS F PTR TO EXIT RETURN CODE AREA
PLLRETC DS F PTR TO LENGTH OF EXIT RETURN CODE AREA
*

END

Figure 107. IBM-Supplied Version of ARIUXIT (Part 3 of 3)

Chapter 13. Creating Installation Exits 265

TITLE 'ARIUXIT'

* ARIUXIT USER EXIT ROUTER ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *
* *

SPACE 5
ARIUXIT CSECT ,
ARIUXIT AMODE ANY
ARIUXIT RMODE 24

DS 0H
USING *,R15 GET ADDRESSABILITY
B PROLOG
DC CL8'ARIUXIT ' EYECATCHER

*
PROLOG EQU *

STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
DROP R15
BALR R12,0 R12 IS BASE REGISTER

*
PSTART EQU *

USING PSTART,R12 GET ADDRESSABILITY FOR ROUTINE
ST R13,UXSAVE+4 STORE BACKWARD POINTER
LA R9,UXSAVE ADDRESS OF SAVE AREA
ST R9,UXSAVE+8 STORE FORWARD POINTER
LR R13,R9 R13 POINTS TO NEW SAVE AREA
L R1,0(,R1) GET POINTER TO PLIST
USING PLIST,R1 GET ADDRESSABILITY TO PLIST DSECT

Figure 108. Sample User Version of ARIUXIT (Part 1 of 3)

266 System Administration

*
* Here you would place code that gets and verifies your
* user-dependent data. The following code shows moving the data
* into the Exit Unique Area.
*
* Make sure you check the Exit Number word. If the Exit Number value
* is not a binary 1, you should set the Exit Return Code word to binary
* -1 (NEG1RC) and return to the database manager.
*

L R2,PLEUNIQ GET PTR TO EXIT UNIQUE AREA
MVC 0(16,R2),USERDATA MOVE 16 BYTES OF USER DATA
L R2,PLRETCD GET PTR TO EXIT RETURN CODE AREA
L R3,ZEROS SET ZERO RETURN CODE
ST R3,0(,R2) STORE RET CODE INTO EXIT RC AREA

*
EXIT EQU * RETURN TO THE DATABASE MANAGER

L R13,UXSAVE+4 GET BACKWARD POINTER
LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
BR R14 RETURN TO CALLER

*
END EQU *

EJECT

*
* DECLARES FOR ARIUXIT
*

SPACE 5
UXSAVE DC 18F'0' SAVE AREA FOR CALLER'S REGISTERS
ZEROS DC F'0' ZERO RETURN CODE
NEG1RC DC F'-1' NEGATIVE RETURN CODE (NO-OP)
USERDATA DC CL16'HERE IS USERDATA'

SPACE 2
R0 EQU 0 REGISTERS EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

Figure 108. Sample User Version of ARIUXIT (Part 2 of 3)

Chapter 13. Creating Installation Exits 267

After the program is coded, assemble it as you would any other program.

Installing Your Version of ARIUXIT
After assembling your program, you must catalog the ARIUXIT OBJ file into your
private sublibrary. (Your assembled version of ARIUXIT must be named ARIUXIT
OBJ.) Then link-edit the DB2 Server for VSE component DSC; then stop the
application server in order for the change to take effect.

The DSC component, which is described in the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual manual, contains the IBM-supplied version of ARIUXIT.
The link book name for DSC is ARISLKMD. When doing the link-edit, specify your
private sublibrary ahead of the DB2 Server for VSE sublibrary on the LIBDEF
statement defining the search order. The link-edit will then replace the
IBM-supplied version with your version.

An example of job control to install a user version of ARIUXIT is shown in
Figure 109 on page 269. Here, the ARIUXIT OBJ would be installed in a sublibrary
called LIB.SQL, and the DSC component would be replaced in PRD2.DB2710.

*
* DSECT FOR ARIUEXI PARAMETER LIST INTERFACE TO ARIUXIT
*

SPACE 5
DS 0D

PLIST DSECT
PLICTCH DS CL8 EYE-CATCHER
PLILENG DS F LENGTH OF PLIST (INCLUDING EYE-CATCHER)
PLEXNUM DS F PTR TO EXIT NUMBER
PLLXNUM DS F PTR TO LENGTH OF EXIT NUMBER
PLGLOBA DS F PTR TO EXIT GLOBAL AREA
PLLGLOB DS F PTR TO LENGTH OF EXIT GLOBAL AREA
PLUSERF DS F PTR TO EXIT LOCAL USER AREA
PLLUSER DS F PTR TO LENGTH OF EXIT LOCAL USER AREA
PLEUNIQ DS F PTR TO EXIT UNIQUE AREA
PLLUNIQ DS F PTR TO LENGTH OF EXIT UNIQUE AREA

DS CL8 RESERVED
PLEDEPA DS F PTR TO ENVIRONMENT DEPENDENT AREA
PLLDEPA DS F PTR TO LENGTH OF ENVIRONMENT DEP AREA
PLRETCD DS F PTR TO EXIT RETURN CODE AREA
PLLRETC DS F PTR TO LENGTH OF EXIT RETURN CODE AREA
*

END

Figure 108. Sample User Version of ARIUXIT (Part 3 of 3)

268 System Administration

AMODE (addressing mode) is the attribute of the entry point of the loaded phase,
and must be one of the following:

24 The exit is invoked in AMODE 24

31 The exit is invoked in AMODE 31

ANY The exit is invoked in the caller’s addressing mode

Note: The accounting exit must always be loaded below 16 megabytes (RMODE
24). If you are running DRDA online CICS transactions, the accounting exit
cannot be linkedited with AMODE 24.

Service Considerations for ARIUXIT
The dummy version of ARIUXIT is not serviceable; other portions of the DSC
component, however, are serviceable. If service is applied to any portion of DSC, it
is link-edited again. If you have coded your own version of ARIUXIT and
completed the previous steps, your version of ARIUXIT will be included in the
DSC component.

Defining Your Own Datetime Format
The database manager supports many datetime formats. This section describes the
datetime formats and how you can add your own by coding your own exit.

Datetime Formats
The database manager supports DATE, TIME, and TIMESTAMP data types and
operations. You can enter a date or a time using many different formats.

Dates can be entered in any of the formats shown in Table 24.

Table 24. Date Formats

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1993-12-31

IBM USA standard USA mm/dd/yyyy 12/31/1993

IBM European standard EUR dd.mm.yyyy 31.12.1993

Japanese Industrial Standard
Christian Era

JIS yyyy-mm-dd 1993-12-31

Site-defined LOCAL Any site-defined
form

—

// JOB INSTALL USER EXIT
// LIBDEF *,SEARCH=(LIB.SQL,PRD2.DB2710),CATALOG=PRD2.DB2710
* **
* INSTALL ARIUXIT USER EXIT ROUTINE *
* **
// OPTION CATAL

INCLUDE ARISLKMD
// EXEC LNKEDT,PARM='MSHP,AMODE=xxx,RMODE=24'
/*
/&

Figure 109. Example Job Control to Install ARIUXIT in the Production Library

Chapter 13. Creating Installation Exits 269

Times can be entered in any of the formats shown in Table 25.

Table 25. Time Formats

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm[.ss] 13.30.05

IBM USA standard USA hh:mm AM or PM 1:30 PM

IBM European standard EUR hh.mm[.ss] 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm[:ss] 13:30:05

Site-defined LOCAL Any site-defined
form

—

To define the LOCAL format, you have to code your own date or time exit. For
information about coding your own datetime exit, see “Coding Your Own
Datetime Exit” on page 273.

Default Output Format
When the database manager is installed, the default date and time formats are both
ISO. To change them, you must change the entry in the SYSTEM.SYSOPTIONS
table. You must have DBA authority to do this.

For example, to specify that the date output format is USA, enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE='USA' WHERE SQLOPTION='DATE'

Similarly, to specify that the time output format is JIS, you enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE='JIS' WHERE SQLOPTION='TIME'

Alternatively, you can update the SYSTEM.SYSOPTIONS table by modifying the
IBM-supplied ARISDTM member to specify your datetime defaults, then start the
DBS utility, specifying the ARISDTM member as the control file.

How Datetime Exits Work
Two datetime installation replaceable exits are provided to allow you to convert
datetime values in any installation-defined format into ISO format, or from ISO
format into any installation-defined format. These exits which are link-edited into
the exit router component ARIXSXR, are called ARIUXDT and ARIUXTM for date
and time, respectively.

When the database manager is installed, ARIXSXR is loaded and addressability to
the exits is set.

The entries in the SYSTEM.SYSOPTIONS catalog table are used by the database
manager to determine the default datetime format for output.

If SYSTEM.SYSOPTIONS indicates that local datetime exits are present, the exits
are called during SQL statement processing when conversion between internal and
external forms is required.

The product-supplied exits return a -1 return code, meaning the exits have not
been replaced by the user exits. If a user program issues an SQL statement that

270 System Administration

calls the exits, SQLCODE -185 is returned. Therefore, if the user is to replace the
exits, the -1 return code must not be used.

When Date and Time Exits are Called (Exit Points)
If a program has been preprocessed with the LOCAL format, or if the installation
default is LOCAL, then the datetime exits are called before any interpretation of
the datetime data values. Otherwise, the database manager attempts to interpret
the datetime data values first. In this situation, it calls the local exit only if it does
not recognize the datetime value.

The datetime exits are called at the following times:
v When you convert the external form to an internal form:

– When datetime data is entered by INSERT or UPDATE statements, or by the
DATALOAD commands of the DBS utility, or by the INPUT command of
ISQL.

– When a constant or host variable is compared with a DATE or TIME column.
The constant can be converted during preprocessing time.

– When the DATE or TIME scalar functions are used with a string
representation of a date or time.

The exit should then convert the installation-defined format into ISO format. The
ISO format is then validated and converted into an internal format to be entered
into the column or used in comparisons. If the column is a key column for an
index, the index entry is made in an internal format.

v When you convert the internal form to an external form:
– When data is retrieved from the column by SELECT or FETCH statements, or

by the DATAUNLOAD commands in the DBS utility, and the default format
is local.

– When the CHAR scalar function is used with the LOCAL format specification.

At this point, the exit should convert the value from ISO format into
installation-defined format; then the database manager returns the converted
value. In this situation, the exit is called after any edit routine or sort.

When the exits are called, the registers are set as follows:

Register 0 Undefined.

Register 1 Points to a pointer to the parameter list for
ARIUXDT (or ARIUXTM). The format of the
parameter list is discussed below. The first field in
it is an eye-catcher value.

Register 2—12 Undefined.

Register 13 Points to a standard register save area.

Register 14 Contains the return address.

Register 15 Contains the entry point of the user installation
routine.

Registers 2—13 must be saved and restored by the exit. If this is not done, the
results will be unpredictable.

Table 26 shows what is in the parameter list used by the date and time exits (see
Register 1).

Chapter 13. Creating Installation Exits 271

Table 26. Parameter List Used by Date and Time Exits

Length Description

2 words
1 word

Eye-catcher: ARIUXDT or ARIUXTM
Length of parameter list

1 word
1 word

Pointer to Function Number
Pointer to length of Function Number

1 word
1 word

Pointer to Exit Global Area
Pointer to length of Exit Global Area

1 word
1 word

Pointer to ISO Datetime Area
Pointer to length of ISO Datetime Area

1 word
1 word

Pointer to LOCAL Datetime Area
Pointer to length of LOCAL Datetime Area

1 word
1 word

Pointer to User Work Area
Pointer to length of User Work Area

1 word
1 word

Pointer to Environment Dependent Area
Pointer to length of Environment Dependent Area

1 word
1 word

Pointer to Exit Return Code Area
Pointer to length of Exit Return Code Area

Each area in the parameter list is described below.
v The Eye-catcher and Length of list is initialized by the database manager.
v The Function Number is a full word number describing the function to be

performed, as follows:

Number Function

00000004
00000008

DATE Functions:
Convert DATE from LOCAL format to ISO format.
Convert DATE from ISO format to Installation format.

00000004
00000008

TIME Functions:
Convert TIME from LOCAL format to ISO format.
Convert TIME from ISO format to Installation format.

v The EXIT Global Area is not used. Both values are set to zero.
v The length of the ISO Date and Time Areas are 10 bytes and 8 bytes,

respectively.
v The length of the LOCAL Date and Time Areas are as defined in the

SYSTEM.SYSOPTIONS catalog table. The pointer to the length of the area points
to a fullword that contains the value in this table.

v The User Work Area is a 512-byte area.
v The Environment Dependent Area is a 40-byte area. For the datetime exits, only

byte 2 is used. It contains D for VSE, and V for VM.
v The Exit Return Code Area is a full word to be set by the exit to the return code.

The possible return codes are:

-1 The exit supplied by the database manager has not been replaced by a
user exit. The database manager then sets SQLCODE to -185.

0 The function has been performed.

4 Invalid date or time value. The database manager then sets SQLCODE to
-181.

272 System Administration

8 Date or time value not in valid format. The database manager then sets
SQLCODE to -180.

Other Error in exit. The function number of the exit will be stored in
SQLERRD5, and the return code in SQLERRD1. The database manager
then sets SQLCODE to -816.

The exit name, function code and return code are set up as message
tokens in SQLERRM; they are used when the message associated with
SQLCODE -816 is displayed, for example, by the DBS utility and ISQL.

If a program has been preprocessed with the LOCAL format, or if the
installation default is LOCAL, then the database manager evaluates the
output of the datetime exit if the return code is either 0 or 8. Otherwise,
the output is evaluated only if the return code is 0.

Coding Your Own Datetime Exit
User-coded exits must conform to the following:
v The installation replaceable exits must be coded in Assembler language.
v The exits must be reentrant; they must save registers at entry and restore them

before exit.
v The exits (and any of the modules they call) must not use any DB2 Server for

VSE facilities.
v The exits must not use the return code -1.
v When formatting ISO datetime to LOCAL datetime, the user is responsible for

formatting the full buffer (the number of bytes equal to the length of the local
datetime as defined in the SYSTEM.SYSOPTIONS catalog table).

v The exits must support 31-bit addressing (AMODE 31) and be loaded below 16
megabytes (RMODE 24)

In an online environment, imbedded CICS commands (EXEC CICS) are not
allowed.

Figure 110 on page 274 shows the IBM-supplied ARIUXDT module, which is an
A-type source member. You need to modify this source code to support your local
date format requirements.

Chapter 13. Creating Installation Exits 273

TITLE ' ARIUXDT'

* ARIUXDT USER DATE CONVERSION ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *

ARIUXDT CSECT ,
ARIUXDT AMODE 31
ARIUXDT RMODE 24

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'ARIUXDT'
DROP R15 DROP R15 AND USE OWN ADDRESSABIL-

* ITY
PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA

LR R12,R15 SAVE BASE REGISTER
PSTART EQU ARIUXDT START OF PROGRAM

USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO THE PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS
L R2,FNPTR POINT TO FUNCTION TYPE

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE
SR R15,R15 INITIALIZE RETURN CODE TO ZERO

* HERE YOU WOULD PLACE CODE THAT GETS AND VERIFIES YOUR
* INPUT DATE AND CONVERTS IT TO EITHER TO LOCAL FORMAT OR ISO FORMAT
* A RETURN CODE OF -1 MEANS AN EXIT IS NOT PROVIDED
* A RETURN CODE OF 0 MEANS CONVERSION WAS SUCCESSFUL
* A RETURN CODE OF 4 MEANS THAT THE DATE VALUE WAS OUT OF RANGE
* A RETURN CODE OF 8 MEANS THAT THE DATE WAS INVALID

BCTR R15,R0 EXIT NOT PROVIDED
B RETURN CONVERSION COMPLETE

Figure 110. IBM-Supplied Version of ARIUXDT (Part 1 of 2)

274 System Administration

Figure 111 on page 276 shows the IBM-supplied ARIUXTM module. This module is
an A-type source member named ARIUXTM. You can modify this source code to
support your local time format requirements.

* RETURN TO CALLER

RETURN DS 0H RETURN POINT

L R2,RETPTR LOAD RETCODE PTR
ST R15,0(R2) STORE EXIT RETURN CODE
L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
EYECATCH DS CL8 EYECATCHER
PLEN DS F LENGTH OF PARAMETER LIST
FNPTR DS AL4 POINTER TO FUNCTION TYPE
FNLENP DS AL4 LENGTH OF FUNCTION TYPE
GLBPTR DS AL4 POINTER TO GLOBAL EXIT AREA
GLBLENP DS AL4 LENGTH OF GLOBAL EXIT AREA
ISOPTR DS AL4 POINTER TO ISO DATETIME AREA
ISOLENP DS AL4 LENGTH OF ISO DATETIME AREA
LOCPTR DS AL4 POINTER TO LOCAL DATETIME AREA
LOCLENP DS AL4 LENGTH OF LOCAL DATETIME AREA
WORKPTR DS AL4 POINTER TO USER WORK AREA
WORKLENP DS AL4 LENGTH OF USER WORK AREA
ENVPTR DS AL4 POINTER TO ENVIR. DEPENDANT AREA
ENVLENP DS AL4 LENGTH OF ENVIR. DEPENDANT AREA
RETPTR DS AL4 POINTER TO RETURN CODE AREA
RETLENP DS AL4 LENGTH OF RETURN CODE AREA

EJECT
ARIUXDT CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ARIUXDT

Figure 110. IBM-Supplied Version of ARIUXDT (Part 2 of 2)

Chapter 13. Creating Installation Exits 275

TITLE ' ARIUXTM'

* ARIUXTM USER TIME CONVERSION ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *

ARIUXTM CSECT ,
ARIUXTM AMODE 31
ARIUXTM RMODE ANY

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'ARIUXTM'
DROP R15 DROP R15 AND USE OWN ADDRESSABIL-

* ITY
PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA

LR R12,R15 SAVE BASE REGISTER
PSTART EQU ARIUXTM START OF PROGRAM

USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS
L R2,FNPTR POINT TO FUNCTION TYPE

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE
SR R15,R15 INITIALIZE RETURN CODE TO ZERO

* HERE YOU WOULD PLACE CODE THAT GETS AND VERIFIES YOUR
* INPUT TIME AND CONVERTS IT TO EITHER TO LOCAL FORMAT OR ISO FORMAT
* A RETURN CODE OF -1 MEANS AN EXIT IS NOT PROVIDED
* A RETURN CODE OF 0 MEANS CONVERSION WAS SUCCESSFUL
* A RETURN CODE OF 4 MEANS THAT THE TIME VALUE WAS OUT OF RANGE
* A RETURN CODE OF 8 MEANS THAT THE TIME WAS INVALID

BCTR R15,R0 EXIT NOT PROVIDED
B RETURN CONVERSION COMPLETE

Figure 111. IBM-Supplied Version of ARIUXTM (Part 1 of 2)

276 System Administration

After the program is coded, assemble it as you would any other program.

Installing Your Version of ARIUXDT or ARIUXTM
After assembling your program, you must catalog the ARIUXDT TEXT (or
ARIUXTM TEXT) file into your private sublibrary. (Your assembled version of
ARIUXDT or ARIUXTM must be named ARIUXDT TEXT or ARIUXTM TEXT.)
Then link-edit the exit router component ARIXSXR.

The ARIXSXR component contains the IBM-supplied version of ARIUXDT (or
ARIUXTM). The link book name is ARISLKXD. When doing the link-edit, specify

* RETURN TO CALLER

RETURN DS 0H RETURN POINT

L R2,RETPTR LOAD RETCODE PTR
ST R15,0(R2) STORE EXIT RETURN CODE
L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
EYECATCH DS CL8 EYECATCHER
PLEN DS F LENGTH OF PARAMETER LIST
FNPTR DS AL4 POINTER TO FUNCTION TYPE
FNLENP DS AL4 LENGTH OF FUNCTION TYPE
GLBPTR DS AL4 POINTER TO GLOBAL EXIT AREA
GLBLENP DS AL4 LENGTH OF GLOBAL EXIT AREA
ISOPTR DS AL4 POINTER TO ISO DATETIME AREA
ISOLENP DS AL4 LENGTH OF ISO DATETIME AREA
LOCPTR DS AL4 POINTER TO LOCAL DATETIME AREA
LOCLENP DS AL4 LENGTH OF LOCAL DATETIME AREA
WORKPTR DS AL4 POINTER TO USER WORK AREA
WORLENP DS AL4 LENGTH OF USER WORK AREA
ENVPTR DS AL4 POINTER TO ENVIR. DEPENDANT AREA
ENVLENP DS AL4 LENGTH OF ENVIR. DEPENDANT AREA
RETPTR DS AL4 POINTER TO RETURN CODE AREA
RETLENP DS AL4 LENGTH OF RETURN CODE AREA

EJECT
ARIUXTM CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ARIUXTM

Figure 111. IBM-Supplied Version of ARIUXTM (Part 2 of 2)

Chapter 13. Creating Installation Exits 277

your private sublibrary ahead of the DB2 Server for VSE sublibrary on the LIBDEF
statement that defines the search order. The link-edit will then replace the
IBM-supplied version with your version.

An example of job control to install a user version of ARIUXDT or ARIUXTM is
shown in Figure 112. Here, it is assumed that the ARIUXDT OBJ (or ARIUXTM
OBJ) file is in a sublibrary called LIB.USER, and the ARIXSXR component will be
replaced in PRD2.DB2710.

Updating the SYSTEM.SYSOPTIONS Catalog Table
You need to update the SYSTEM.SYSOPTIONS catalog table to specify the length
of your local datetime format.

If you installed a local date or time format, you can update the local date or time
length by using the database manager. For example, if the length of your local date
format is 10 bytes, enter:

UPDATE SYSTEM.SYSOPTIONS -
SET VALUE = '10' -
WHERE SQLOPTION = 'LDATELEN'

The local date length specified must be greater than 9 and less than 255.

If the length of your local time format is 8 bytes, enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE = '8' -
WHERE SQLOPTION = 'LTIMELEN'

The local time length specified must be greater than 7 and less than 255.

The changes will be in effect the next time the application server is started.

You can also update the SYSTEM.SYSOPTIONS table by modifying the
IBM-supplied ARISDTM member to specify your datetime defaults, then call the
DBS utility, specifying the ARISDTM member as the control file.

// JOB INSTALL USER
// LIBDEF *,SEARCH=(LIB.USER,PRD2.DB2710),CATALOG=PRD2.DB2710
* **
* INSTALL ARIUXIT USER EXIT ROUTINE *
* **
// OPTION CATAL

INCLUDE ARISLKXD
// EXEC LNKEDT,PARM='MSHP'
/*
/&

Figure 112. Example Job Control to Install ARIUXDT or ARIUXTM

278 System Administration

Coding Your Own TRANSPROC Exit

General-Use Programming Interface

The TRANSPROC exit is a General-Use programming interface. General-Use
programming interface is defined in “Programming Interface Information” on
page 417.

The TRANSPROC exit is used for DBCS conversion. The database manager
converts DBCS characters from one DBCS CCSID to another by using the value
specified in the TRANSPROC column of the SYSTEM.SYSSTRINGS catalog table.
This conversion can be performed when the CCSID of the source and the target are
both mixed or are both graphic; that is, the TRANSTYPE column of
SYSTEM.SYSSTRINGS has a value of 'PM', 'MM', or 'GG'.

The TRANSPROC exit is also used
v for EUC conversion, to convert MBCS data to mixed data. In EUC conversions,

the TRANSTYPE column is either 'PM', or 'GG'.
v to convert Unicode data to CCSIDs that are supported on the database manager.

For Unicode to host conversions, the TRANSTYPE column is one of 'US', 'UM'
'UG', or 'UI'.

If you have created your own DBCS CCSIDs, you must create your own
conversion routine. To do so:
1. Compile, link-edit and GENMOD your routine to create a MODULE file, and

store the module on the production disk.
2. Insert the name of the phase in the TRANSPROC column of the row for which

you want either mixed-to-mixed or graphic-to-graphic conversion. (For
example, you could create and run a DBSU job to perform this task.)

3. Stop the application server.
4. Run the job control program ARISCNVD to regenerate the CCSID-related

phases. See the DB2 Server for VSE Program Directory manual for more
information on the job control program ARISCNVD.

5. Restart the application server.

The interface between the database manager and a DBCS conversion routine
supplied by a user must conform to the following:
v Register conventions:

– Register 0 is undefined.
– Register 1 contains the address of the control block that contains the

parameters.
– Registers 2—12 are undefined.
– Register 13 contains the address of a standard register save area.
– Register 14 contains the return address.
– Register 15 contains the address of the user routine.

Registers 2 to 13 must be saved and restored by the routine. If this is not done,
the results are unpredictable.

v Parameter list, which is in the following form:

Chapter 13. Creating Installation Exits 279

– Address of the data to be converted (4 bytes)
– Address of the target for the converted data (4 bytes)
– Size of the source data (2 bytes)
– Size of the target area (2 bytes)
– Return code of the routine (4 bytes).

The TRANSPROC must support 31-bit addressing.

The database manager ensures that the size of the target area is at least as large as
that of the source data, and that the size of the source data is always an even
number. The routine supplied by the user should only convert the source data and
put it in the target area. The database manager should do all other operations,
such as padding the target area after data conversion is complete. You should also
ensure that the routine supplies a nonzero return code if the conversion fails. The
routine that you code should not have the same name as any of the defaults
supplied by the database manager for the TRANSPROC column. Figure 113 shows
the shell for a TRANSPROC routine.

TITLE 'DBCSCONV' ***
* DBCSCONV USER DBCS CONVERSION ROUTINE
* REGISTER ASSUMPTIONS:
* R1 -> PARMLIST
* R13 -> SAVE AREA
* R14 -> RETURN ADDRESS
* R15 -> ENTRY POINT
*
* THIS ROUTINE SHOWS THE INTERFACE TO DB2 Server for VSE

DBCSCONV CSECT ,
DBCSCONV AMODE 31 DBCSCONV RMODE ANY

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'DBCSCONV'
DROP R15 DROP R15 AND USE OWN ADDRESSABILITY

PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA
LR R12,R15 SAVE BASE REGISTER

PSTART EQU DBCSCONV START OF PROGRAM
USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS

Figure 113. TRANSPROC Shell (Part 1 of 2)

280 System Administration

End of General-Use Programming Interface

Coding Your Own Cancel Exit
When coding your own interactive program to process SQL statements, you may
want to code a cancel exit. The ISQL CANCEL command is an example of using a
cancel exit. Specifically, it allows you to stop an in-progress command or logical
unit of work. When a cancel exit is taken, the database manager stops processing
the current SQL statement, and does a ROLLBACK WORK RELEASE for the user
who issued the cancel request.

The Online Resource Adapter provides the user cancel exit primarily to allow
online applications to perform a CANCEL function. When it would be appropriate
to cancel SQL requests (for example, while waiting for an XPCC link or an SQL
request), the resource adapter gives control to the user cancel exit. This cancel exit

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE

* HERE YOU PLACE THE CODE THAT CONVERTS THE INPUT DBCS STRING AND
* PLACES THE CONVERTED STRING IN THE TARGET AREA.
* A NONZERO RETURN CODE INDICATES AN ERROR.

RETURN DS 0H RETURN POINT

L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
INPTR DS F POINTER TO INPUT STRING
OUTPTR DS F POINTER TO TARGET AREA
INLEN DS H LENGTH OF INPUT STRING
OUTLEN DS H SIZE OF TARGET AREA
RC DS F RETURN CODE

EJECT
DBCSCONV CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END DBCSCONV

Figure 113. TRANSPROC Shell (Part 2 of 2)

Chapter 13. Creating Installation Exits 281

can then do a CICS wait on ECBs pointed to by the RMWL for normal processing
to complete or for the terminal operator to request a cancel.

Once posted, the exit can then set the appropriate post-code in the RMARPC field
and return to the Online Resource Adapter, which interrogates the post-code and
takes the corresponding action.

General-Use Programming Interface

Macro ARIRCAN is a General-Use programming interface. General-Use
programming interface is defined in “Programming Interface Information” on
page 417.

ARIRCAN Macro
For the convenience of CICS/VSE user transactions to provide a cancel exit, an
assembler language macro is provided to generate the RDIIN set exit call. The
format of the macro is:

ARIRCAN RMARPTR = addr

where RMARPTR = addr gives the address of a pointer to the RMAR.

Output from this macro with the RMARPTR operand is an RDIIN, type 165
containing the RMARPTR address in field RDIVPARM. (For more information on
the RDIIN, see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.)
Also generated is a call to ARIPRDI, which when executed invokes the Online
Resource Adapter to perform the Set Exit function.

For the ARIRCAN macro above, the following is required:
1. Invocation must be from a module that has completed assembler preprocessing.

This provides for SQLDSECT and SQLCA addressability.
2. As for EXEC SQL, register 13 must point to a standard 72-byte save area, and

registers 1, 14, and 15 are modified as a result of the call generated by the
macro.

To use the cancel exit for cancel support, an interactive application would need to:
v Define an RMAR as described in the RMAR data area.
v Issue the ARIRCAN macro pointing to the established RMAR. The cancel would

be identified in this RMAR through the RMARXP field.
If your cancel exit is to take advantage of 31-bit addressing, you must set the
high order bit of the cancel exit entry point to ’1’.

When the online support invokes the cancel exit pointed to by RMARXP, R1 points
to a PLIST, the first word of which points to the RMAR. Some actions that the exit
might perform are:
v Save registers using standard register conventions. (required)
v Using R1, establish addressability to RMAR.
v Using RMARWLP, establish addressability to RMWL.
v Set RMWLUEP to point to an ECB which is posted by an application cancel

routine. When this user written routine recognizes that a cancel request has been
made, it posts the ECB pointed to by RMWLUEP. RMWLUEP is immediately
followed by pointers to DB2 Server for VSE ECBs, which are to be posted when
database activity completes.

282 System Administration

v Issue a CICS cancel pointing to RMWLUEP as the beginning of ECB list.
v When the cancel is satisfied, test if the cancel ECB was posted. If so, set

RMARPC=8; otherwise, set RMARPC=0. A value of 8 informs the database
manager to cancel the current SQL request. A value of 0 informs the database
manager to continue processing the SQL request. Any other values in RMARPC
results in the SQL request being canceled, SQLERRD1 being set to 4 and
SQLERRD2 being set to the value returned in RMARPC.

v Restore the registers and return to the online support via R14 (required).

RMAR (Resource Adapter Asynchronous Request)
This control block is used for EXEC RDIIN set or reset user wait exit requests. An
A within the field description indicates that the field is set by the application. An R
indicates that the resource adapter sets the field.

For this type of request, the following is applicable in the RDIIN structure.
v RDICTYPE = 165: This is the value reserved for exit calls to the resource adapter.
v RDICALL = “S” for “SET EXIT” and “R” for “RESET EXIT”.
v RDIVPARM = ADDR(RMAR); The RMAR is provided by the application

program.
v RDICODEP = ADDR(SQLCA). The following SQLCA values are applicable:

– SQLCODE=-914 SQLERRD1 = 0 For valid user requested cancel.
– SQLCODE=-914 SQLERRD1 = 4 For user cancel requested with invalid post

code.
– SQLCODE=-824 For invalid set or reset wait exit requests:

SQLERRD1=4 When exit already exists.
SQLERRD1=8 When RDIVPARM=0.
SQLERRD1=12 When exit pointer is 0.
SQLERRD1=16 When reset finds no exit to reset.

v RDIERROR should be set to B, E, or W if the application requires the
WHENEVER SQL ERROR OR WARNING process to be active for the specific
RDIIN exit request. Otherwise, RDIERROR should be set to a blank (“40”X).

v The remainder of the RDIIN structure is not referenced by the resource adapter
and should be binary zeros.

RESET has two functions: it allows an application to specify a new exit pointer,
and it allows for turning off the exit linkage. For each of these functions,
RDICALL=R. If RMARXP is not 0, RMARXP is taken as a new exit pointer. If
RMARXP is 0, the resource adapter pointer to the RMAR is nullified.

When an exit has been established, RMLORMAR contains the pointer to RMAR.
When the online support invokes an exit, register 1 points to a PLIST, the first
work of which points to RMAR.

Chapter 13. Creating Installation Exits 283

(1) 0: Resource adapter should continue
4: Reserved
8: Resource adapter should cancel
Others: Reserved

(2) See "RMAR flags" that follows.

RMAR Flags
OFFSET FIELD NAME BITS MEANING

36(24) RMARCNTL
RMARWAIT 1... Tells ARIRSEND to use the

wait exit.
0... Tells ARISEND to not exit

(because call is an EXEC
RDIIN PTC or EXEC SQL
COMMIT/ROLLBACK WORK (R)

RMARDSPR .1.. Tells RMAPI to do a
ROLLBACK via DFHSP. Set by
ARIRSEN when the attempt
to clear did not work
because processing already
finished.

..xx xxxx Reserved. Binary zeros (R)

End of General-Use Programming Interface

Field Procedures

General-Use Programming Interface

A field procedure is a General-Use programming interface. Macro ARIBFPPB is a
General-Use programming interface. General-Use programming interface is defined
in “Programming Interface Information” on page 417.

A field procedure is a user-written exit routine that transforms values in a single
short-string column. When values in the column are changed, or new values are
inserted, the field procedure is run to encode each value, which is then stored.
When values are retrieved from the column, the field procedure is run to decode

Dec(HEX) RMAR

0(0) RMAREYEC - 'RMAR' (eyecatcher)

8(8) RMARLEN - RMAR length (A) Reserved (Binary zeros) (A) (2)

16(10) RMARAPPL - Non-architected field RMARXP - application exit
reserved for the application (A)

24(19) RMARPC - Post code (A) (1) RMARXC - Exit code (R) (2)

32(20) RMARWLP RMWL (R) RMARCNTL - Control Flags (2)

40(28) RMARUDAT - User data (terminal id)

48(30) Reserved (16) bytes

Figure 114. Online Resource Adapter Asynchronous Request (RMAR)

284 System Administration

each value back to the original string value. A field procedure can be used to alter
the sorting sequence of values entered in a column. For example, telephone
directories sometimes require that names such as McCabe and MacCabe appear
next to each other. This cannot be achieved with the standard EBCDIC sorting
sequence. Languages that do not use the Roman alphabet have similar
requirements. However, if a column is provided with a suitable field procedure,
you can obtain the desired ordering with the ORDER BY clause.

Any indexes defined on a column that uses a field procedure are built with
encoded values.

The transformation that a field procedure performs on a value is called
field-encoding. The same routine is used to undo the transformation when values
are retrieved; that operation is called field-decoding.

The field procedure is called when a table is created or altered, to define the data
type and attributes of an encoded value to the database manager. That operation is
called field-definition. The data type of the encoded value can be CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC. If the datatype is VARCHAR the length
must be 254 or less. If the database is VARGRAPHIC, the length must be 127 or
less. For the applicable data types, see the description for the FPVDTYPE field in
Table 28 on page 290. The length, precision, or scale of the encoded value must be
compatible with its data type. Values in columns with a field procedure are
described to the database manager in the following catalog tables:
v SYSTEM.SYSCOLUMNS
v SYSTEM.SYSFIELDS
v SYSTEM.SYSFPARMS
v SYSTEM.SYSKEYCOLS.

For more information about catalog tables, see the DB2 Server for VSE & VM SQL
Reference manual.

Specifying the Field Procedure
To name a field procedure for a column, use the FIELDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the
procedure and, optionally, a list of parameters. You can use a field procedure only
with a short string column. You cannot add a field procedure to an existing
column of a table. You can, however, use the ALTER TABLE statement to add to an
existing table a new column that uses a field procedure. (To do so, you would have
to unload the data, recreate the table, and load the data back into the table.)

The optional parameter list that follows the procedure name is a list of constants,
enclosed in parentheses, called the literal list. The literal list is incorporated into a
data structure called the field procedure parameter value list (FPPVL). That structure is
passed to the field procedure during the field-definition operation. At that time,
the procedure can modify it or return it unchanged. The output form of the FPPVL
is called the modified FPPVL; it is stored in the DB2 Server for VSE catalog as part
of the field description. The modified FPPVL is passed again to the field procedure
when the procedure is called for field-encoding or field-decoding.

When Field Procedures are Called
A field procedure specified for a column is called in three situations:
v For field-definition, when the CREATE TABLE or ALTER TABLE statement that

names the procedure is run. When called, the procedure is expected to:

Chapter 13. Creating Installation Exits 285

– Determine whether the data type and attributes of the column are valid
– Verify the literal list, and change it if required
– Provide the field description of the column
– Define the amount of working storage needed by the field-encoding and

field-decoding processes.
v For field-encoding, when a column value is to be field-encoded. That occurs for

any value that is:
– Inserted in the column by an SQL INSERT or PUT statement, or loaded by

the DBS utility DATALOAD or RELOAD commands
– Changed by an SQL UPDATE statement
– Compared to a column with a field procedure, unless the comparison

operator is LIKE. The value being encoded is a host variable or constant.
v For field-decoding, when a stored value is to be field-decoded back into its

original string value. This occurs for any value that is:
– Retrieved by an SQL SELECT or FETCH statement, or by the DBS utility

DATAUNLOAD or UNLOAD commands
– Compared to another value with the LIKE comparison operator. The value

being decoded is from the column that uses the field procedure.

In this situation the field procedure is called after any DB2 Server for VSE sort.

A field procedure is never called to process a null value.

General Considerations for Writing Field Procedures
Your field procedure must adhere to the following rules:
v It must be written in Assembler.
v Its name must not start with ARI, to avoid conflict with the DB2 Server for VSE

modules.
v It must not call any SVC services.
v It must store registers in an area pointed to by R13, and restore them before

returning.
v It must be serially reusable.
v It must not contain any SQL statements.
v It must reside in the appropriate VSE library and be accessible when the

database manager is running.
v It must support 31-bit addressing (AMODE 31).

Attention: A field procedure should always transform one input data value into
one output data value, unless the parameters are different. This means that the
same field procedure with the same parameters must implement a one to one data
conversion, in both directions. The field-decoding function must be the exact
inverse of the field-encoding function. For example, if a routine encodes
ALABAMA to 01, it must decode 01 to ALABAMA. A violation of this rule can
lead to unpredictable results and possible data corruption.

A Warning about Blanks
When the database manager compares the values of two strings with different
lengths, it temporarily pads the shorter string with blanks (in either single-byte or
double-byte characters, as appropriate) up to the length of the longer string. If the
shorter string is the value of a column with a field procedure, the padding is done

286 System Administration

to the encoded value, but the pad character is not encoded. Hence, if the
procedure changes blanks to some other character, encoded blanks at the end of
the longer string are not equal to padded blanks at the end of the shorter string.
That situation can lead to errors; for example, some strings that should be equal
may not be recognized as such. You should not encode blanks with a field
procedure.

Maintaining Field Procedures
Field procedures are kept in the appropriate VSE library. They can reside in the
PRD2 library as a separate sublibrary. The maximum number of active field
procedures on one installation is 16. If this limit is exceeded, an attempt to load a
field procedure results in an SQLCODE -682 with reason code 4.

Recovering from Abends in Exits
If a field procedure ends abnormally, a message (ARI0022E) to remove the field
procedure from the installation is issued to the operator, the database manager
takes a SNAP dump, and processing continues.

Security with Field Procedures
Since exit routines run as extensions of the database manager and have all its
privileges, they can impact its security and integrity. All field procedures must be
tested and appropriate security measures taken before they are installed on a
system.

Field Procedures for Cultural Sorts
By default, string data is sorted based on the S/390 collating sequence. However,
the collating sequence required for certain alphabets is different from the default
S/390 collating sequence. Users expect that sorted data will match the order that is
culturally correct for them and that searches on data will return the result that is
correct for the sorting sequence of their language. They are at ease with only one
sort order, the one used in their dictionaries, telephone directories, book indices,
and so on.

A way to accommodate special sorting requirements is to use Field Procedures.
Field Procedures can be used to encode data being inserted into a column. The
encoding effectively alters the collating sequence for the data in the column,
enabling the special sorting requirements to be met by the S/390 collating
sequence.

Two field procedures are provided. The procedures are supplied as A-type
members.

The field procedures provided are:
v FP870L2 for Slovenia, Poland and Romania
v FP102CY for Russia, Bulgaria, Serbia and Montenegro

The field procedures are written in Assembler. The field procedure must be
assembled and the corresponding phase must be generated and placed in a library
that is accessible to the database manager when it is running.

Once the phase for the field procedure has been generated and made accessible to
the database manager, it can be used by specifying its name in the FIELDPROC
clause of the CREATE TABLE or ALTER TABLE statement.

Chapter 13. Creating Installation Exits 287

Field Procedure Interface to the Database Manager
This section describes certain control blocks that are used to communicate to a
field procedure, under the following headings:
v “The Field Procedure Parameter List (FPPL)”
v “The Work Area”
v “The Field Procedure Information Block (FPIB)” on page 289
v “Value Descriptors” on page 289
v “The Field Procedure Parameter Value List (FPPVL)” on page 290.

The Field Procedure Parameter List (FPPL)
The FPPL is pointed to by register 1 on entry to a field procedure. It, in turn,
contains the addresses of five other areas, shown in Figure 115. The FPPL and the
areas to which it points are all described by the mapping macro ARIBFPPB, which
is provided as an E-type member.

The Work Area
The work area is an area of storage used by a field procedure as working storage.
A new area is provided each time the procedure is called.

The size of the area you need depends on the way you have programmed your
field-encoding and field-decoding operations. For the field-definition operation, the
database manager passes your routine a value of 512 bytes for the length of the

Figure 115. Field Procedure Parameter List

288 System Administration

work area (FPBWKLN in FPIB). If, for example, the longest work area you need for
field-encoding or field-decoding is 1024 bytes, your field-definition operation must
change the length to 1024. Thereafter, whenever your field procedure is called for
either encoding or decoding, the database manager makes an area of 1024 bytes
available to it.

If 512 bytes is sufficient for your operations, your field-definition operation need
not change the value supplied by the database manager. If you need less than 512
bytes, your field-definition can return a smaller value. However, your
field-definition itself must not use more than 512 bytes.

The Field Procedure Information Block (FPIB)
The FPIB communicates general information to a field procedure. For example, it
tells what operation is to be done, allows the field procedure to signal errors, and
gives the size of the work area. Its format is shown in Table 27.

Table 27. Format of FPIB, Defined in Copy Macro ARIBFPPB

Name 'Hex'
Offset

Data Type Description

FPBFCODE 0 Signed halfword
integer

Function code.
Code Means
0 Field-encoding
4 Field-decoding
8 Field-definition

FPBWKLN 2 Signed halfword
integer

Length of work area; the maximum is
32767 bytes.

4 Signed halfword
integer

Reserved.

FPBRTNC 6 Character, 2 bytes Return code set by field procedure.

FPBRSNC 8 Character, 4 bytes Reason code set by field procedure.

FPBTOKP 12 Address Address of a 40-byte area, within the
work area or within the field
procedure’s static area, containing an
error message.

Value Descriptors
Value descriptors describe the data type and other attributes of a value. They are
used with field procedures in these ways:
v During field definition, they describe each constant in the field procedure

parameter value list (FPPVL). The set of these value descriptors is part of the
FPPVL control block.

v During field encoding and field decoding, the decoded (column) value and the
encoded (field) value are described by the column value descriptor (CVD) and
the field value descriptor (FVD).

The CVD contains a description of a column value and, if appropriate, the value
itself. During field encoding, the CVD describes the value to be encoded; during
field decoding, it describes the decoded value to be supplied by the field
procedure; and during field definition, it describes the column as defined in the
CREATE TABLE or ALTER TABLE statement.

The FVD contains a description of a field value and, if appropriate, the value itself.
During field-encoding, the FVD describes the encoded value to be supplied by the

Chapter 13. Creating Installation Exits 289

field procedure; during field-decoding, it describes the value to be decoded.
Field-definition must put into the FVD a description of the encoded value.

The format of value descriptors is shown in Table 28.

Table 28. Format of Value Descriptors

Name 'Hex'
Offset

Data Type Description

FPVDTYPE 0 Signed halfword
integer

Data type of the value:
Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN 2 Signed halfword
integer

For a varying-length string value, its
maximum length.

FPVDVALE 4 None The value. If the value is a
varying-length string, the first half
word is the value’s actual length in
bytes. This field is not present in a
CVD, or in an FVD used as input to
the field-definition operation.

The Field Procedure Parameter Value List (FPPVL)
The FPPVL communicates the literal list, supplied in the CREATE TABLE or
ALTER TABLE statement, to the field procedure during field definition. At that
time the field procedure can reformat the FPPVL. The reformatted FPPVL is stored
in SYSTEM.SYSFPARMS and communicated to the field procedure during field
encoding and field decoding as the modified FPPVL.

Its format is shown in Table 29.

Table 29. Format of FPPVL, Defined in Copy Macro ARIBFPPB

Name 'Hex'
Offset

Data Type Description

FPPVLEN 0 Signed halfword
integer

Length in bytes of the area containing
FPPVCNT and FPPVVDS. At least 254
for field-definition.

FPPVCNT 2 Signed halfword
integer

Number of value descriptors that
follow, equal to the number of
parameters in the FIELDPROC clause.
Zero if no parameters were listed.

FPPVVDS 4 Structure For each parameter in the FIELDPROC
clause, there is:
v A signed fullword integer giving the

length of the following value
descriptor.

v A value descriptor.

Field-Definition (Function Code 8)
The input provided to the field-definition operation, and the output required, are
as follows:

290 System Administration

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 288.

2-12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area consists of 512 contiguous uninitialized bytes.

The FPIB has the following information:

Field Contains

FPBFCODE 8, the function code.

FPBWKLN 512, the length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE One of these codes for the data type of the column
value:

Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN The length attribute of the column.

The FPVDVALE field is omitted.

The FVD provided is 4 bytes long.

The FPPVL has the following information:

Field Contains

FPPVLEN The length, in bytes, of the area containing the
parameter value list. The minimum value is 254,
even if there are no parameters.

FPPVCNT The number of value descriptors that follow; zero
if there are no parameters.

FPPVVDS A contiguous set of value descriptors, one for each
parameter in the parameter value list, each
preceded by a 4-byte length field.

On EXIT
The registers must have the following information:

Chapter 13. Creating Installation Exits 291

Register Contains

2-12 The values they contained on entry.

15 The integer zero if the column described in the
CVD is valid for the field procedure; otherwise the
value must not be zero.

Fields listed below must be set as shown; all other fields must remain as on entry.

The FPIB must have the following information:

Field Contains

FPBWKLN The length, in bytes, of the work area to be
provided to the field-encoding and field-decoding
operations; 0 if no work area is required.

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and
FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into the
tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

The FVD must have the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value. Any of the data types listed in Table 28 on
page 290 is valid.

FPVDVLEN The length of the field value.

Field FPVDVALE must not be set; the length of the FVD is 4 bytes only.

The FPPVL can be redefined to suit the field procedure, and returned as the
modified FPPVL, subject to the following restrictions:
v The field procedure must not increase the length of the FPPVL.
v The FPPVLEN must contain the actual length of the modified FPPVL, or 0 if no

parameter list is returned.

The modified FPPVL is recorded in the SYSTEM.SYSFPARMS catalog table and is
passed again to the field procedure during field-encoding and field-decoding. The
modified FPPVL need not have the format of a field procedure parameter list, and
it need not describe constants by value descriptors.

292 System Administration

Field-Encoding (Function Code 0)
The input provided to the field-encoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 288.

2-12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains

FPBFCODE 0, the function code.

FPBWKLN The length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column
value, as shown in Table 28 on page 290.

FPVDVLEN The length of the column value.

FPVDVALE The column value; if the value is a variable-length
string, the first halfword contains its length.

The FVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value.

FPVDVLEN The length of the field value.

FPVDVALE An area of unpredictable content that is as long as
the field value.

The modified FPPVL produced by the field procedure during field-definition is
provided if it exists.

On EXIT
The registers must have the following information:

Register Contains

Chapter 13. Creating Installation Exits 293

2-12 The values they contained on entry.

15 The integer zero if the encoding is successful;
otherwise the value must not be zero.

The FVD must contain the encoded (field) value in field FPVDVALE. If the value is
a varying-length string, the first halfword must contain its length.

The FPIB may have the following information:

Field Contains

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and
FPBRSNC, and the error message pointed to by FPBTOKPT, are also placed into
the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry.

Field-Decoding (Function Code 4)
The input provided to the field-decoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 288.

2-12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains

294 System Administration

FPBFCODE 4, the function code.
FPBWKLN The length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column
value, as shown in Table 28 on page 290.

FPVDVLEN The length of the column value.

FPVDVALE An area of unpredictable content that is as long as
the column value.

The FVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value.

FPVDVLEN The length of the field value.

FPVDVALE The field value; if the value is a varying-length
string, the first halfword contains its length.

The modified FPPVL, produced by the field procedure during field-definition, is
provided if it exists.

On EXIT
The registers must have the following information:

Register Contains

2-12 The values they contained on entry.

15 The integer zero if the decoding is successful;
otherwise the value must not be zero.

The CVD must contain the decoded (column) value in field FPVDVALE. If the
value is a varying-length string, the first halfword must contain its length.

The FPIB may have the following information:

Field Contains

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and

Chapter 13. Creating Installation Exits 295

FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into the
tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry.

A Sample Exit
Figure 116 shows an example of a field procedure.

FLCTFLC TITLE 'DB2 Server for VSE FIELD PROCEDURE EXAMPLE'
FLCTFLC START 0
FLCTFLC AMODE 31
FLCTFLC RMODE ANY
**
* DB2 Server for VSE FIELD PROCEDURE TO CONVERT *
* FIXED LENGTH CHARACTER TO FIXED *
* LENGTH CHARACTER USING A LOOKUP TABLE *
**

SPACE 3
PRINT GEN
USING FLCTFLC,R3 BASE REGISTER
USING FPIB,R9 COMMON INFORMATION BLOCK
USING FPVD,R10 VALUE DESCRIPTOR
USING FPPL,R11 PARAMETER LIST
USING WA,R12 WORK AREA
USING FPPVL,R8 PARAMETER VALUE LIST
USING TBLHDRD,R7 TABLE HEADER
SPACE 3

* SET UP MAIN LINE RETURN R14 *

SPACE 3
SAVE (14,12),,FLCTFLC
LR R3,R15 LOAD BASE REGISTER
LR R11,R1 PARAMETER LIST POINTER
L R12,FPPWORK WORK AREA ADDRESS
ST R13,SAVE13
L R9,FPPFPIB COMMON INFORMATION BLOCK
MVC FPBRTNC,=AL2(FPBRC0) RETURN CODE = 0
LH R2,FPBFCODE
L R15,FDLFC(R2) SELECT APPROPRIATE ROUTINE
LA R14,RET1
BR R15

RET1 DS 0H
PACK WADW,FPBRTNC SET RETURN CODE R15
CLI FPBRTNC+L'FPBRTNC-1,C' '
BNE NOTBL
PACK WADW,FPBRTNC(L'FPBRTNC-1)

NOTBL DS 0H
CVB R15,WADW
L R13,SAVE13
RETURN (14,12),T,RC=(15)
LTORG

FDLFC DC A(ENCODE,DECODE,DEFINE)
SPACE 3

Figure 116. Field Procedure Example (Part 1 of 9)

296 System Administration

**
* ENCODING ROUTINE RETURN R14 *
**

SPACE 3
ENCODE DS 0H

MVC FUNCT,=C'ENCD'
LA R5,B1
B CHKINP CHECK INPUT DESCRIPTION

B1 DS 0H
LA R5,B2
B CHKOUT CHECK OUTPUT DESCRIPTION

B2 DS 0H
SPACE 3

**
* LOOKUP ROUTINE FOR ENCODING *
**

SPACE 3
L R10,FPPCVD INPUT VALUE
L R6,TABADDR TOP OF LOOKUP TABLE
LA R5,B3
B SETLUP SET UP LOOKUP VARIABLES

B3 DS 0H
SPACE 3

* SET UP LOOP VARIABLES *

SPACE 3
SR R4,R4 CLEAR R4
IC R4,ILEN LENGTH FOR COMPARE
SH R4,=H'1' -1

ITOP DS 0H
EX R4,CLCINST
BE IHIT
A R6,INCRLEN INCREMENT TO NEXT ENTRY
BCT R13,ITOP
LA R13,ER5
B ERROR4

IHIT DS 0H
L R10,FPPFVD
SPACE 3

Figure 116. Field Procedure Example (Part 2 of 9)

Chapter 13. Creating Installation Exits 297

* SET UP MOVE INSTRUCTION *

SPACE 3
SR R13,R13 CLEAR R13
IC R13,OLEN OUTPUT LENGTH
SH R13,=H'1' -1
SR R5,R5 CLEAR R5
IC R5,ILEN INPUT LENGTH
AR R6,R5 POINT TO OUTPUT VALUE IN TABLE
EX R13,MVCINST
BR R14
SPACE 3

* MOVE AND COMPARE INSTRUCTION FOR EXECUTION INSTRUCTION *

SPACE 3
DS 0H

CLCINST CLC 0(1,R6),FPVDVALE
MVCINST MVC FPVDVALE,0(R6)

SPACE 3

* DECODING ROUTINE *

SPACE 3
DECODE DS 0H

MVC FUNCT,=C'DECD'
LA R5,BB1
B CHKINP CHECK INPUT DESCRIPTION

BB1 DS 0H
LA R5,BB2
B CHKOUT CHECK OUTPUT DESCRIPTION

BB2 DS 0H
SPACE 3

* LOOKUP ROUTINE FOR DECODING *

SPACE 3
L R10,FPPFVD OUTPUT VALUE
L R6,TABADDR TOP OF LOOKUP TABLE
LA R5,BB3
B SETLUP SET LOOKUP VARIABLES

BB3 DS 0H
SPACE 3

Figure 116. Field Procedure Example (Part 3 of 9)

298 System Administration

* SET UP LOOP VARIABLES *

SPACE 3
SR R4,R4 CLEAR R4
IC R4,OLEN LENGTH FOR COMPARE
SH R4,=H'1' -1
SR R5,R5 CLEAR R5
IC R5,ILEN INPUT LENGTH
AR R6,R5 POINT TO OUTPUT VALUE IN TABLE

OTOP DS 0H
EX R4,CLCINST
BE OHIT
A R6,INCRLEN POINT TO NEXT ENTRY
BCT R13,OTOP
LA R13,ER8
B ERROR4

OHIT DS 0H
L R10,FPPCVD
SPACE 3

**
* SET UP MOVE INSTRUCTION *
**

SPACE 3
SR R13,R13 CLEAR R13
IC R13,ILEN INPUT LENGTH
SR R6,R13 POINT TO INPUT VALUE IN TABLE
SH R13,=H'1' -1
EX R13,MVCINST
BR R14
SPACE 3

* DEFINE ROUTINE RETURN R14 *

SPACE 3
DEFINE DS 0H

MVC FUNCT,=C'DEFN'
LA R5,BBB1
B CHKINP

BBB1 DS 0H
SPACE 3

**
* UPDATE WORK AREA LENGTH IN FPIB *
**

MVC FPBWKLN,=Y(WAEND-WA)
SPACE 3

Figure 116. Field Procedure Example (Part 4 of 9)

Chapter 13. Creating Installation Exits 299

**
* SET UP FIELD VALUE DESCRIPTOR *
**

SPACE 3
L R10,FPPFVD OUTPUT DESCRIPTOR
MVC FPVDTYPE,=Y(FPVDTCHR) FIXED CHARACTER
MVI FPVDVLEN,X'00'
AH R10,=H'3'
MVC 0(1,R10),OLEN
BR R14
SPACE 3

**
* CHECK INPUT ROUTINE RETURN R5 *
**

SPACE 3
CHKINP DS 0H

L R8,FPPPVL
L R10,FPPCVD INPUT DESCRIPTOR
CLC =Y(FPVDTCHR),FPVDTYPE FIXED CHARACTER ?
BNE CHKINPE1
CLC FPPVCNT,=H'1' ONLY ONE PARAMETER ?
BNE CHKINPE2 NO, ERROR
LA R7,TBLHDR POINT TO TABLE HEADER TABLE

LOOP1 DS 0H
CLC CODE,FPPVVDS+8 IS VALUE IN TABLE
BNE CPEND NO, INCREMENT
B CINCL YES, A HIT

CPEND DS 0H
AH R7,=H'8' EACH TABLE ENTRY 8 BYTES
CLI CODE,X'FF' END OF TABLE?
BNE LOOP1 NO
LA R13,ER3
B ERROR8 YES, ERROR

CINCL DS 0H
CLC ILEN,FPVDVLEN+1 CHECK INPUT LENGTH
BER R5
LA R13,ER4
B ERROR4

CHKINPE1 DS 0H
LA R13,ER1
B ERROR4

CHKINPE2 DS 0H
LA R13,ER2

Figure 116. Field Procedure Example (Part 5 of 9)

300 System Administration

ERROR8 DS 0H
MVC FPBRTNC,=AL2(FPBRC8)
B ERROR

ERROR4 DS 0H
MVC FPBRTNC,=AL2(FPBRC4)

ERROR DS 0H
MVC FPBRSNC,FUNCT
ST R13,FPBTOKP
BR R14
SPACE 3

* CHECK OUTPUT DESCRIPTOR RETURN R5 *

SPACE 3
CHKOUT DS 0H

L R10,FPPFVD FIELD DESCRIPTOR
CLC =Y(FPVDTCHR),FPVDTYPE FIXED CHARACTER ?
BNE CHKOUTE1
CLC OLEN,FPVDVLEN+1 CHECK OUTPUT LENGTH
BER R5
LA R13,ER6
B ERROR4

CHKOUTE1 DS 0H
LA R13,ER7
B ERROR4
SPACE 3

* SET UP LOOKUP VARIABLE ROUTINE RETURN R5 *

SPACE 3
SETLUP DS 0H

SR R4,R4 CLEAR R4
IC R4,ILEN INPUT LENGTH
ST R4,INCRLEN SAVE INPUT LENGTH
SR R4,R4 CLEAR R4
IC R4,OLEN OUTPUT LENGTH
A R4,INCRLEN ADD INPUT LENGTH
ST R4,INCRLEN STORE TABLE ENTRY LENGTH
SR R13,R13 CLEAR R13
IC R13,NENTR NUMBER OF ENTRIES
BR R5
SPACE 3

Figure 116. Field Procedure Example (Part 6 of 9)

Chapter 13. Creating Installation Exits 301

**
* ERROR MESSAGES *
**
ER1 DC CL40'INVALID COLUMN TYPE'
ER2 DC CL40'INVALID NUMBER OF PARAMETERS'
ER3 DC CL40'INVALID PARAMETER VALUE'
ER4 DC CL40'INVALID COLUMN LENGTH'
ER5 DC CL40'INVALID INPUT VALUE TO ENCODE'
ER6 DC CL40'INVALID FIELD LENGTH'
ER7 DC CL40'INVALID FIELD TYPE'
ER8 DC CL40'INVALID FIELD VALUE TO DECODE'

SPACE 3
**
* TABLE HEADER TABLE *
**
TBLHDR DS 0F
**
* FIRST TABLE CODE = 'A' *
**

DC C'A' CODE
DC X'01' INPUT LENGTH
DC X'01' OUTPUT LENGTH
DC X'03' NUMBER OF ENTRIES
DC A(TABA) ADDRESS OF LOOKUP TABLE

**
* SECOND TABLE CODE = 'B' *
**

DC C'B' CODE
DC X'04' INPUT LENGTH
DC X'01' OUTPUT LENGTH
DC X'22' NUMBER OF ENTRIES
DC A(TABB) ADDRESS OF LOOKUP TABLE

* PUT ADDITIONAL TABLE HEADER ENTRIES HERE *

SPACE 3

* END OF TABLE HEADERS *

DC X'FF'
SPACE 3

TABA DS 0H
DC C'H' HIGH
DC C'7'
DC C'M' MEDIUM
DC C'5'
DC C'L' LOW
DC C'3'
SPACE 3

Figure 116. Field Procedure Example (Part 7 of 9)

302 System Administration

TABB DS 0H
DC C'AAA '
DC X'F0' 240
DC C'AA+ '
DC X'E6' 230
DC C'AA '
DC X'DC' 220
DC C'AA- '
DC X'D2' 210
DC C'A+ '
DC X'C8' 200
DC C'A1 '
DC X'BE' 190
DC C'A '
DC X'B4' 180
DC C'A- '
DC X'AA' 170
DC C'BBB+'
DC X'A0' 160
DC C'BBB '
DC X'96' 150
DC C'BBB-'
DC X'8C' 140
DC C'BB+ '
DC X'82' 130
DC C'BB '
DC X'78' 120
DC C'BB- '
DC X'6E' 110
DC C'B+ '
DC X'64' 100
DC C'B '
DC X'5A' 90
DC C'B- '
DC X'50' 80
DC C'CCC '
DC X'46' 70
DC C'CC '
DC X'3C' 60
DC C'C '
DC X'32' 50
DC C'D '
DC X'28' 40
DC C'NR '
DC X'1E'
SPACE 3

Figure 116. Field Procedure Example (Part 8 of 9)

Chapter 13. Creating Installation Exits 303

End of General-Use Programming Interface

**
* TABLE HEADER TABLE DSECT *
**
TBLHDRD DSECT
CODE DS CL1
ILEN DS CL1
OLEN DS CL1
NENTR DS CL1
TABADDR DS A

SPACE 3

* WORK AREA *

SPACE 3
WA DSECT
SAVE13 DS F
INCRLEN DS F
FUNCT DS CL4
WADW DS D
WAEND DS 0H

SPACE 3
ARIBFPPB

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

Figure 116. Field Procedure Example (Part 9 of 9)

304 System Administration

Chapter 14. Using a DRDA Environment

The Distributed Relational Database Architecture (DRDA) environment provides
the architecture for access to data that is distributed across different operating
systems. The application requester and the application server do not have to be
running with the same database manager.

This chapter discusses:
v Benefits and added responsibilities of a DRDA environment
v Types of distributed access
v Preparing to implement DRDA
v Installing and removing the DRDA code
v Using DRDA
v Creating the DBS Utility on remote DRDA application servers
v Using ISQL on remote DRDA application servers
v Two phase commit processing

Not all extended features are supported by the DRDA protocol. Refer to
“Appendix G. DRDA Considerations” on page 377 for more details.

For detailed information on Distributed Relational Database Architecture, see the
manuals in the Distributed Relational Database Architecture Library listed in the
Bibliography.

Benefits of Using the DRDA Protocol
The DRDA option does the following:
v Makes DB2 Server for VSE data accessible to users equipped with the DRDA

application requester function. Users on platforms such as OS/2, AIX, OS/400,
OS/390, or Microsoft Windows™ can run applications that utilize DRDA remote
unit of work or DRDA distributed unit of work processing to access data
residing in DB2 Server for VSE application servers.

v Enables DB2 Server for VSE users to use remote unit of work access to work
with data on non-DB2 Server for VSE application servers. This allows access to
data that would otherwise remain unavailable.

To support this access, application programs can contain SQL statements that are
specific to the target system, and both the DBS Utility and ISQL can be run on
non-DB2 Server for VSE application servers. The SQL statements in these
application programs can be static, dynamic, and extended dynamic, even if the
target system does not support extended dynamic statements. In addition, portable
packages can be loaded on non-DB2 Server for VSE application servers.

The DRDA option provides the following additional functions:
v To determine the status of connections in an environment that may have local

and remote systems, you can use the SHOW CONNECT operator command.
v To aid in the diagnosis of errors, first failure data capture is automatically

performed. IBM service can use the captured data for diagnosis, decreasing the
probability of having to rerun applications to acquire data for diagnosis.

© Copyright IBM Corp. 1987, 2000 305

|
|
|
|
|
|
|
|
|

v Another aid in the diagnosis of errors is the LUWID support. The LUWID is a
unique identifier associated with each application requester connection. It is
composed of four parts: network id, LU name, LUW instance number, and LUW
sequence number. This provides additional information that may be required in
problem diagnosis.

Added Responsibilities in Using the DRDA Protocol
Use of the DRDA protocol requires assuming extra responsibilities that are usually
not required in a non-distributed environment.

Because the communications between database managers can be in different time
zones or countries, some allowance must be made for scheduling and
communication problems (particularly when different languages are involved).

The operation of applications may be similar, but the different platforms will
require modifications. These modifications may require that as system
administrator you become familiar with the terminology used on non-DB2 Server
for VSE database managers. In situations such as adding users, assigning resources,
ascertaining the authorization schemes available, and performing diagnosis, the
different terminology of the different database managers can lead to
misunderstandings. Similarly, because communications software is involved, you
may have to become familiar with communication terminology that may not be
required in a non-distributed environment.

Applications that run in a DRDA environment also require attention. In some
instances, they may have to be recoded to compensate for system-to-system
processing differences. As an example, consider the differences between collating
sequences on different database managers. Quite apart from the differences
between the ASCII and EBCDIC collating sequences, differences can occur between
EBCDIC collating sequences on two different database managers: the same
character can appear in a different sequence because of the way in which a system
processes information. If an application is not recoded to correct for this variability,
the results generated by that application can be misleading.

Types of Distributed Access
Two types of access to data in distributed relational database systems are currently
available. They are remote unit of work, which is also known as DRDA1, and
distributed unit of work, which is also known as DRDA2.

Remote Unit of Work
Remote unit of work (RUOW) allows a user or an application to read or update
data at one remote location per unit of work. With remote unit of work, you can
have many SQL statements within a unit of work. You can access one database
management system with each SQL statement, and you can access one database
management system within a unit of work.

Consider a banking example. Using remote unit of work, you can transfer funds
from a savings account table to a checking account table, if both tables are at the
same remote location. Figure 117 on page 307 shows how the application first
requests an update to the savings account table (1) and then requests an update to
the checking account table (2).

306 System Administration

If both requests are processed successfully, the application can direct the database
management system to commit both updates (3). If either request is not processed
successfully, the application can issue a ROLLBACK, leaving both tables as they
were before the transaction began. This ensures that requests are neither lost nor
duplicated.

Distributed Unit of Work
Distributed unit of work lets a user or application program read or update data at
multiple locations within a single unit of work. With distributed unit of work, you
can:
v Have many SQL statements within a unit of work
v Access one database management system with each SQL statement
v Access many database management systems within a unit of work.

Using the banking example (see Figure 118), imagine that the savings account table
and the checking account table are on two different computer systems. Distributed
unit of work processing permits an application to debit the savings account (1),
credit the checking account (2), and either commit or roll back the operations in
both computer systems (3), treating all of the changes as a single transaction, or
unit of work.

Commit and rollback are coordinated at all locations so that if a failure occurs
anywhere in the system, data integrity is preserved. If there was a failure in the
middle of the banking transaction just described, and commit or rollback was not
coordinated, the savings account could be debited money and the checking account
might not be credited the money. This costly error is avoided by the coordination
of commit and rollback, or two-phase commit processing. For more information on
two-phase commit processing, see “Two-Phase Commit Processing” on page 316.

Savings

Funds
Transfer

1. Subtract from
Savings

2. Add to
Checking

3. Commit or
Roll back

RDBMS

Savings/Checking System

Checking

Figure 117. Remote unit of work

Savings

Checking

RDBMS

Funds
Transfer

1. Subtract from
Savings

2. Add to
Checking

3. Commit or
Roll back

RDBMS

Figure 118. Distributed unit of work

Chapter 14. Using a DRDA Environment 307

|

Summary of DRDA Support in DB2 Server for VSE
Table 30 summarizes the level of DRDA support available for the DB2 Server for
VSE application server (AS) and application requester (AR):

Table 30. DRDA Support in DB2 Server for VSE

VM or VSE AS VM AR VSE Batch AR VSE Online AR

RUOW over SNA yes yes no yes

RUOW over TCP/IP yes yes yes yes

DUOW over SNA yes no no no

DUOW over TCP/IP no no no no

Preparing to Implement DRDA
You can use the application requester, the application server, or both in a
distributed environment. This section provides a checklist of the required tasks for
implementing DRDA over SNA. For information on implementing DRDA over
TCP/IP, refer to “Chapter 15. Using TCP/IP with DB2 Server for VSE” on page 327.
For detailed information on DRDA, see the Distributed Relational Database
Connectivity Guide.

On the Application Requester
The following tasks must be completed before a batch or online application
requester can access a remote server via TCP/IP:
v The DRDA code must be activated. See “Installing the DRDA Code on the

Application Requester” on page 312 for more details.
v VSE TCP/IP support must be installed and enabled.
v The DBNAME Directory must be updated to identify the remote application

server as accessible via TCP/IP.
v Optionally, the SQLGLOB file can be updated with default parameters for

application requesters accessing remote servers.

The following tasks must be completed before a CICS online application requester
can access a remote DRDA application server via SNA:
v Update the DBNAME Directory with the remote application server’s SNA

information
v Issue CEDA DEFINE CONNECTION (or equivalent DFHCSDUP) to define the

remote LU associated with the remote application server. See Figure 12 on
page 30 for an example of the CEDA DEFINE CONNECTION.

v Issue CEDA DEFINE SESSION to define the LU 6.2 sessions with the remote
system.

v Define the CCSIDs-related phases to CICS. Figure 119 on page 309 shows the
DFHCSDUP commands for the new CCSIDs-related programs that must be
added.

308 System Administration

|||||

|
|
|

v Define the Online Resource Adapter DRDA Router program ARI0RTRM to CICS.
Figure 120 shows the DFHCSDUP commands for the new program that must be
added.

v Activate the DRDA code for the Online Resource Adapter. See “Installing the
DRDA Code on the Application Requester” on page 312 for more information.

v Issue CIRB or CIRA to enable online access to the remote application server.
v Issue DSQU (if a CICS user) to override any default global SQLGLOB parameter

settings, if required. The SQLGLOB environmental parameters are used by the
Online Resource Adapter when accessing a remote application server. Note:
When the Online Resource Adapter processes an SQL request from ISQL, CBND,
or any task started by the EXEC CICS START command, the Online Resource
Adapter uses the default global SQLGLOB parameter values, instead of the user
SQLGLOB parameter values.

On the Application Server
Several CICS definitions are required in order to use DRDA support on the VSE
application server. See the following sections for more details.

Entries Required in CICS System Definition File
All CICS transactions used for DRDA processing must be defined in the CICS
DFHPCT table CSD. Transactions definitions must include entries for each
Transaction Program Name (TPN) in the DBNAME Directory. The default entry is
shown as the CAXE entry in the next figure. Additional APPC-to-XPPC exchange
transactions can be added with different TRANS IDs, and, optionally, the TCLASS
parameter to provide access control. The TCLASS parameter is used in conjunction
with the DFHSIT CMXT parameter. The TCLASS parameter is not required for the
default CAXE entry. The XTRANID parameter is not required for user-defined AXE
transactions.

Transaction definitions must include definitions for DB2 Server for VSE DRDA2
administration routines. This includes the DAXP transaction, which sets parameters
that are used when an AXE transaction subsequently autostarts DRDA2 support.
This also includes the DAXT transaction, which is responsible for disabling DRDA2
support.

Use the sample entries in Table 31 on page 310 as a guideline for making your
transaction definitions.

* Phase for SYSCCSIDS
DEFINE PROGRAM(ARISCCSD) GROUP(DB2710) LANGUAGE(ASSEMBLER)
* Phase for SYSSTRINGS
DEFINE PROGRAM(ARISSTRD) GROUP(DB2710) LANGUAGE(ASSEMBLER)
* Phase for SYSCHARSETS
DEFINE PROGRAM(ARISSCRD) GROUP(DB2710) LANGUAGE(ASSEMBLER)

Figure 119. Sample commands of the DFHCSDUP command to define a program

* Phase for Online Resource Adapter DRDA Router
DEFINE PROGRAM(ARI0RTRM) GROUP(DB2710) LANGUAGE(ASSEMBLER)

Figure 120. Sample commands of the DFHCSDUP command to define a program

Chapter 14. Using a DRDA Environment 309

Table 31. DFHPCT Table Entries

TRansaction PROGram TWasize SPurge TPurge

DRDA Server Support AXE Entries

CAXE ARICAXED 0 YES YES

DRDA2 Parm Setting Entry

DAXP ARICDAXD 0 YES YES

DRDA2 Disable TRUE Entry

DAXT ARICDAXD 0 YES YES

CICS Program Definitions Required for DRDA
All phases that DRDA2 supports will be executed in the CICS partition and must
be defined in the CICS DFHPPT table. Entries must be defined for:
v The AXE transaction
v DBNAME directory services
v DRDA2 administration routines responsible for enabling and disabling support
v DRDA2 TRUE support
v DRDA2 DAXP parameters control block (DR2DFLT)

Use the sample entries in Table 32 to make your definitions in the CICS System
Definition File.

Table 32. DFHPPT Table Entries

Program Description Resident Language

ARICDIRD DBNAME Directory Services ASSEMBLER

ARICAXED APPC-XPCC Exchange (AXE) YES ASSEMBLER

ARICDAXD DAXP and DAXT Program YES ASSEMBLER

ARICDRAD DRDA2 (TRUE Exit) Support ASSEMBLER

ARICDR2 DR2DFLT Control Block ASSEMBLER

ARICDEBD DRDA2 Support Enabling Routine ASSEMBLER

Entries Required in DFHSIT
In order for CICS/VSE to be accessible to the SNA network as an LU (logical unit
of type 6.2), you must define the name of the LU using the APPLID parameter of
the DFHSIT macro. The name specified must be the same as the name specified on
the VTAM “APPL” definition when CICS was defined to VTAM. Also, if you are
using user-defined AXE entries in the DFHPCT table and specifying the TCLASS
parameter, the DFHSIT macro must include the CMXT parameter to provide access
control.

Terminal Definitions Required by AXE
Each remote DRDA system must be defined to CICS as remote LU 6.2 terminals by
updating the CICS System Definitions as follows:
v The remote system itself is defined with the DEFINE CONNECT definition.
v Use DEFINE SESSIONS to define the session characteristics for the remote

systems.

310 System Administration

Refer to the CICS/VSE Intercommunication Guide, and the CICS/VSE Resource
Definition (Online) for complete information on defining remote systems in CICS.

Entries Required in DFHCSDUP
Entries in the CICS System Definition File can be made online using the
transaction CEDA, or in a batch job running the DFHCSDUP utility program. The
following are sample entries to be included with the batch utility program for
DRDA transactions and programs.

DEFINE TRANSACTION(CAXE) GROUP(DB2710) PROGRAM(ARICAXED) *
TWASIZE(0) SPURGE(YES) TPURGE(YES)

DEFINE TRANSACTION(DAXP) GROUP(DB2710) PROGRAM(ARICDAXD) *
TWASIZE(0) SPURGE(YES) TPURGE(YES)

DEFINE TRANSACTION(DAXT) GROUP(DB2710) PROGRAM(ARICDAXD) *
TWASIZE(0) SPURGE(YES) TPURGE(YES)

DEFINE PROG(ARICDIRD) GROUP(DB2710) LANG(ASSEMBLER)
DEFINE PROG(ARICAXED) GROUP(DB2710) RES(YES) LANG(ASSEMBLER)
DEFINE PROG(ARICDAXD) GROUP(DB2710) RES(YES) LANG(ASSEMBLER)
DEFINE PROG(ARICDRAD) GROUP(DB2710) LANG(ASSEMBLER)
DEFINE PROG(ARICDR2) GROUP(DB2710) LANG(ASSEMBLER)
DEFINE PROG(ARICDEBD) GROUP(DB2710) LANG(ASSEMBLER)

Entries Required in DFHSNT
Every user ID and password used by a remote DRDA requester must be defined to
CICS in the DFHSNT table. Using the DFHSNT TYPE=ENTRY macro, define the
user ID using the USERID parameter and define the password using the
PASSWRD parameter.

CICS Transaction Server (TS) Considerations
CICS internal security and therefore the CICS Sign-On table (DFHSNT) has been
withdrawn in CICS TS for VSE/ESA 2.4. Instead, any external security manager
(ESM) may be used that conforms to the VSE/ESA RACROUTE interface.
Alternatively, the basic form of external security manager (BSM) provided with
VSE/ESA 2.4 may be used. The BSM provides sign-on and transaction attach
security only.

When using an ESM, refer to the relevant documentation supplied with the ESM
on defining DB2 for VSE user id(s) and operator data and transaction security.

If the BSM is used, DB2 for VSE userids in the DFHSNT and DB2 for VSE
transactions must be defined using the VSE Interactive Interface (II).

As the CICS TS System Definition (CSD) file is not compatible with earlier versions
of CICS (for example, CICS 2.3), a separate CSD file must be defined and all DB2
for VSE entries added using the DFHCSDUP utility provided with CICS TS.

For DB2 for VSE with CICS TS, the following System Initialization (DFHSIT)
parameters are obsolete.

AMXT=
EXEC= (command level is mandatory)
EXITS= (the user-exit interface is always enabled)
MONITOR= (replaced by new monitoring parameters)

Chapter 14. Using a DRDA Environment 311

|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

Refer to the CICS/VSE Release Guide manual for a complete list of obsolete DFHSIT
parameters.

For more information on installing DB2 for VSE V6.1 with CICS TS, refer to the
following publications:
v CICS/VSE Release Guide, GC33-1645

v CICS/VSE Migration Guide, GC33-1646

v CICS/VSE Resource Definition Guide, SC33-1653

Installing and Removing the DRDA Code
Installing the DRDA code is an optional customization step that follows either
installation or migration. You install it:
v Immediately after installing or migrating the base code
v At a later date, whenever it is required
v On either the application server or the application requester, or both

You can remove the DRDA code if it is no longer required.

When the DRDA code is installed on the application server, access from DB2
Server for VSE and non-DB2 Server for VSE application requesters is allowed.

When the DRDA code is installed on the application requester, access to remote
application servers is allowed.

Do not install the DRDA code unless it is specifically required, as the additional
code required for distributed communications requires a significant amount of
storage. For details on virtual storage requirements, see “Appendix A. Processor
Storage Requirements” on page 331.

Installing the DRDA Code on the Application Server
To enable DRDA server support, execute job control member ARIS712D. This job
can be executed any time when DRDA server support is to be enabled. The
support is activated the next time the DB2 Server for VSE database manager is
started.

Removing the DRDA Code on the Application Server
To disable DRDA server support, the job control member ARIS713D can be
executed any time. The support is deactivated the next time the DB2 Server for
VSE application server is started.

Installing the DRDA Code on the Application Requester
There are two linkbooks for the Online Resource Adapter. The first linkbook is
used when the shipped Online Resource Adapter phase is linkedited. The second
linkbook is used to complete the enablement of the DB2 Server for VSE online
DRDA application requester support.

To enable DRDA online application requester support, execute job control member
ARIS715D. This job can be executed any time when DRDA online application
requester support is to be enabled. The support is activated the next time the
Online Resource Adapter is recycled.

312 System Administration

|
|

|
|

|

|

|

|

|
|

To enable DRDA batch application requester support, execute job control member
ARIS71LD.

Removing the DRDA Code on the Application Requester
To disable DRDA online application requester support, execute job control member
ARIS716D. This job can be executed at any time when DRDA online application
requester support is to be disabled. The support is deactivated the next time the
Online Resource Adapter is recycled.

To disable DRDA batch application requester support, execute job control member
ARIS71MD.

Using DRDA
For the DRDA code to be used on the VSE application server the following
conditions must be met:
v The application server DRDA code must be linkedited. See “Installing the DRDA

Code on the Application Server” on page 312 for more information.
v A non-zero value must be specified for the database startup parameter

RMTUSERS. The RMTUSERS parameter specifies how many application
requesters can connect to the VSE application server concurrently.

The recommended supervisor modes for operation are the ESA mode or the
VMESA mode. DRDA support is not provided with the VSE Guest Sharing
function.

For the DRDA code to be used on the VSE application requester the following
conditions must be met:
v The application requester DRDA code must be linkedited. See “Installing the

DRDA Code on the Application Requester” on page 312 for more information.
v The DBNAME Directory entry for the database that the VSE application

requester will access must indicate that the database is remote. The VSE
application requester always uses DRDA protocol to access remote databases.
The DBNAME Directory entry contains other important information as well. For
more information, see “Setting Up the DBNAME Directory” on page 23.

CICS/VSE online application programs and VSE batch application programs have
the ability to execute SQL statements to access and manipulate data managed by
any remote application server that implements the DRDA architecture. The SQL
statements in these application programs can be static, dynamic, and extended
dynamic, even if the target system does not support extended dynamic statements.

Note: Application programs accessing a local AS (or a VM database via guest
sharing) will always use Private protocol.

Application programs use the facilities of an accessible DB2 Server for VSE Online
Resource Adapter, running in the same partition as the application and acting as a
DRDA application requester, to route SQL requests to a DRDA application server.
This is illustrated in Figure 121 on page 314.

Chapter 14. Using a DRDA Environment 313

|

|

|
|

|

The batch application programs use the facilities of the Batch Resource Adapter
which executes in the same partition as the batch application program. The batch
application requester is loaded into the partition when the first SQL request is
issued by the application program.

The Online Resource Adapter establishes communication links to local application
servers at initialization time and maintains these links. CICS applications accessing
the local application servers use these links. For remote application servers, the
Online Resource Adapter does not establish any communication links at
initialization time. Instead, the Online Resource Adapter acquires a session to the
remote system where the remote server runs when the application program first
connects to the remote server. The session is freed when either:
v the application program ends, or
v the application program switches to another server, or
v the application program switches to another authorization id

The Batch Resource Adapter establishes communication links to local or remote
application servers as needed. These links are freed from either:
v the application program ends, or
v the application program switches to another server, or
v the application program switches to another authorization id

An application program can access only one application server (remote or local) in
a single unit of work (LUW). A COMMIT RELEASE or ROLLBACK RELEASE
must be issued to terminate the LUW before an attempt is made to connect to
another application server.

In addition to the remote server it is updating, a CICS/VSE application program
can, within the same unit of work, update another CICS resource which
participates in two-phase commit processng. Note that VSAM does not participate
in two-phase commit processing. In this case, the user executing the program must
specify a value of 2 for the SQLGLOB parameter SYNCPOINT. The CICS/VSE
syncpoint manager establishes a protected conversation with the remote server and
the CICS/VSE syncpoint manager ensures that updates made to the remote server
and these other CICS resources are synchronized. Note that to the remote remote
DRDA application server this connection looks like a DRDA 2 connection.
However theCICS/VSE application is still limited to accessing a single DRDA
server within one LUW. That is, the CICS/VSE application is not able to use
CONNECT (Type 2) connections as defined in the IBM SQL Reference, Version 2,
Volume 1.

Batch applications always use single phase commits (SYNCPOINT 1).

┌───────────┐
┌──────────────┬────┐ │ DRDA │
│ CICS APPL'N │ AR ├─────────────────�│ REMOTE │
└──────────────┴────┘ │ AS │

└───────────┘

Figure 121. Online DRDA Application Requester (AR) Support

314 System Administration

|
|
|
|

Creating Packages on the Remote Server
If an application program is to access a remote application server, a package
corresponding to the application program must be created in the remote
application server. This can be done in one of two ways:
v Preprocess the program directly against the remote application server by using

the DBNAME preprocessing parameter
v Preprocess the program to create a bind file, then use the CBND utility to bind

the package to the remote application server

The DB2 Server for VSE preprocessor can create a package in a single remote
application server. Also, the DB2 Server for VSE preprocessor can generate an
optional bind file, in addition to the package it creates on the application server.
The bind file contains the preprocessor options and the SQL statements from the
application program. This information is used by the bind utility (CBND) to create
a package in a remote (or local) application server in the online environment. For
more information on how to create a bind file and use the online bind utility
(CBND), see the DB2 Server for VSE & VM Application Programming manual.

Using the DBS Utility on Remote Application Servers
For a user to be able to use the DBS utility on a remote DRDA target application
server, you must first preprocess the DBS utility package on the target application
server and then create the table SQLDBA.DBSOPTIONS on that application server.
This is done by the DB2 Server for VSE application requester. You must then
obtain the necessary program bind and table creation privileges for your
authorization-id on the target application server.

Note: If the target application server does not support the ERROR option when
preprocessing, you must create the DB2 Server for VSE & VM system
catalog tables on the target application server for the preprocessing to work.
The database managers that do not support the ERROR option (such as the
common server database managers) generally supply a command file that
creates the necessary table definitions. The command file to create the tables
for the DBS Utility is typically called SQLDBSU.CMD or SQLDBSU.BAT.

To create the DBS Utility package, do the following from a DB2 Server for VSE
application requester:
1. Ensure that the remote server is identified in the application requester’s

DBNAME Directory and can be accessed via a TCP/IP network.
2. Preprocess the DBS Utility against the remote application server to create the

DBS Utility package. Use the preprocessor options
’PREP=SQLDBA.ARIDSQL,BLK,ISOL(CS),NOPR,NOPU,CTOKEN(NO),ERROR’
(omit the ERROR option if the target application server does not support it).
Use the member ’ARIDSQLP.A’ as the input to the preprocessor. See the DB2
Server for VSE & VM Application Programming manual for more information on
preprocessing.

3. If you ran a command file to create the table definitions necessary for
preprocessing, the DBSOPTIONS table should have been created for you. If this
table does not exists, enter the following DBS Utility commands:

SET ERRORMODE CONTINUE;

CREATE TABLE SQLDBA.DBSOPTIONS
(SQLOPTION VARCHAR (18) NOT NULL,
VALUE VARCHAR (18) NOT NULL);

Chapter 14. Using a DRDA Environment 315

CREATE UNIQUE INDEX SQLDBA.DBSINDEX
ON SQLDBA.DBSOPTIONS (SQLOPTION,VALUE);

INSERT INTO SQLDBA.DBSOPTIONS
VALUES ('RELEASE','7.1.0');

COMMIT WORK;

You must now obtain the necessary program bind and table creation privileges for
your authorization-id on the target application server.

Using ISQL on non-DB2 Server for VM Application Servers
For a user to be able to make ISQL requests against a remote application server,
you must create the ISQL package on the remote application server. You can use
the DBS Utility RELOAD PACKAGE command or the CBND utility to do this.

Job ARIS120D can be used to create the ISQL package using the DBS Utility.

To load the ISQL package using the CBND utility, do the following:
v Store the ISQL bind file, which was initially shipped as an 80-byte A-type source

member (ARISIQBD), in the ″DB2.BIND.MASTER″ bind file. For more
information on storing the ISQL bind file in the ″DB2.BIND.MASTER″ bind file,
see the DB2 Server for VSE Program Directory.

v Execute CBND, specifying the package name SQLDBA.ARIISQL, against the
target application server. For more information on the CBND command, see the
DB2 Server for VSE & VM Application Programming manual. If the target
application server does not support the ERROR option, it should supply a
command file named ISQL.CMD or ISQL.BAT, which creates the tables that
must exist in order to create the ISQL package.

v Create the table SQLDBA.ROUTINE, and any other userid.ROUTINE tables that
you want.

Two-Phase Commit Processing
Distributed unit of work is a coordinated approach involving two phases. This
coordination is done by a sync point manager. DB2 Server for VSE uses CICS/VSE
as its sync point manager. A sync point manager maintains consistency in changes
which are made to protected resources. The primary functions of a sync point
manager include, but are not limited to, the following:
1. Keeping track of and logging LUW state information
2. Keeping track of and logging all local protected resource manager (PRM)

names that are involved with a logical unit of work
3. Coordinating the COMMIT and ROLLBACK of all local PRMs
4. Initiating resynchronization protocols for any logical unit of work that may be

in the in-doubt state because of a system or communications failure.

A sync point manager is required wherever resources may be updated. This
requires that sync point managers at each distributed location communicate with
one another using architected protocols. These protocols are fully discussed in the
SNA LU 6.2 Reference: Peer Protocols manual.

For a full explanation of what two-phase commit is, see the following manuals:

316 System Administration

v IBM Systems Network Architecture, Format and Protocol Reference Reference Manual:
Architecture Logic for LU Type 6.2

v IBM Systems Network Architecture, Logical Unit 6.2 Reference: Peer Protocols
v IBM Distributed Relational Database Architecture Reference
v Distributed Data Management (DDM) General Information.

Using the Two-Phase Commit Protocol
An example of a two-phase commit protocol sequence is shown in Figure 122 on
page 318. SNA LU 6.2 functions provide so many capabilities that it is impossible
to show all the possible sequences. Notes describing key points in the sequence
follow the sequence diagram.

The following assumptions have been made for the example:
v A conversation has been successfully established between the Source Server and

the target communications manager (TCM) using a protected conversation.
v No error situation occurs.

For example:
v The ″Source Server″ could be DDCS Multi-User Gateway V2.3.1. In this case, the

″SYNCPNTMGR″ would be function included with DDCS. Also, the ″SNA LU
6.2″ function could be provided by Communications Server for OS/2 Version 4.

v The ″Target Server″ would be DB2 Server for VSE. The ″TCM″ is the AXE
transaction. The ″SYNCPNTMGR″ would be CICS/VSE. The ″Other Protected
Managers″ would be the database manager function of DB2 Server for VSE.

Chapter 14. Using a DRDA Environment 317

Figure Notes:

(1) The Target Communications Manager (TCM) issues a
RECEIVE_AND_WAIT APPC verb to receive the next SQL Request from
the Source Server.

(2) The source application program requests the SYNCPNTMGR to commit
the logical unit of work (LUW). The source SYNCPNTMGR notifies the
SNA LU 6.2 communications facilities to prepare to commit and notifies
the source database (and other protected resource managers registered with
the SYNCPNTMGR) to prepare to commit. The source communications

Figure 122. Successful Two-Phase Commit

318 System Administration

facility sends the SNA LU 6.2 prepare message to the target system. The
local protected resource managers respond to the source SYNCPNTMGR
with the ″Request Commit″ message.

(3) On the target system, the RECEIVE_AND_WAIT verb is completed and the
WHAT_RECEIVED parameter is set to TAKE_SYNCPT.

The TCM issues a SYNCPT verb to the target SYNCPNTMGR which
begins the commit processing. The SYNCPNTMGR prepares the protected
resources to commit.

(4) The SYNCPNTMGR sends the SNA LU 6.2 request commit message to the
source system.

(5) The source SYNCPNTMGR collects the request commit messages from the
SNA LU 6.2 communications facilities and the other protected resource
managers. The source SYNCPNTMGR then commits the logical unit of
work by requesting that all of the resources commit. This causes an SNA
LU 6.2 committed message to be sent to the target system.

(6) The target SYNCPNTMGR requests that the local resources commit the
logical unit of work and causes an SNA LU 6.2 forget message to be sent
to the source system. In addition, the target SYNCPNTMGR posts a
positive response to the TCM for the SYNCPT verb issued in note (3).

(7) When the source SYNCPNTMGR receives the ″FO″ responses from the
protected resource managers, a positive response to the commit is given to
the application program.

CICS/VSE Syncpoint Manager and the Task Related User Exit (TRUE)
In the DRDA2 VSE environment, DB2 Server for VSE uses CICS/VSE as its sync
point manager. The environment can be shown as follows:

This diagram shows how a workstation application might use DDCS for OS2
V2.3.1 to execute a distributed unit of work between 2 DB2 Server for VSE servers

CM/2

OS/2

VTAM 1

VTAM 2

VSE / VSA 1

VSE / VSA 2

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

CICS 1

CICS 2

AXE

SPM

AXE

SPM

DB2 for VSE
Server 1

DB2 for VSE
Server 2PC

PC

DB2
Application

DB2 CAE

DRDA Sync
Point Mgr

DDCS
V2.3.1

Figure 123. DB2 Server for VSE Distributed Unit of Work

Chapter 14. Using a DRDA Environment 319

on different VM/ESA systems. Notice that DDCS registers itself with its own sync
point manager. DDCS then establishes protected conversations with CICS AXE
transactions. Each AXE transaction registers itself with a locally installed
CICS/VSE sync point manager and CICS will perform any sync point logging and
resynchronization activity. The AXE transactions use the VSE XPCC protocol to
communicate with the DB2 Server for VSE servers 1 and 2.

DB2 Server for VSE also requires the use of a task-related user exit (TRUE) to
interface with the CICS/VSE syncpoint manager and with the DB2 Server for VSE
database manager as it participates in a coordinated commit or backout process.
This interface is described in the CICS/VSE Customization Guide.

A separate task-related user exit program is enabled and started for each DB2
Server for VSE application server in support of distributed unit of work (two-phase
commit). This is done by the AXE transaction under the following circumstances:
v DB2 Server for VSE database start-up parameter SYNCPNT=Y, and
v The conversation with the application requester is a protected basic conversation

(synclevel 2), and
v The application starts doing some work (for example, begins using an agent),

and
v The task-related user exit is not yet enabled.

The entry name of the task-related user exit program is ’ARI0xAXE’, where x is
0->9, A->Z. x is the last character of a DB2 Server for VSE application server
APPLID. The APPLID of a DB2 Server for VSE application server can be any of the
following reserved DBNAMES:
v SYSARI00 to SYSARI09,
v SYSARI0A to SYSARI0Z.

Therefore, the corresponding entry name of the task-related user exit program is
v ARI00AXE to ARI09AXE,
v ARI0AAXE to ARI0ZAXE.

CICS transactions for managing DRDA task-related user exits:

DAXP The DAXP transaction is a CICS transaction that sets the parameters that
will be used when an AXE transaction subsequently autostarts DRDA
TRUE (task-related user exit) support for an application server.

For more information on DAXP, see the DB2 Server for VSE & VM
Operation manual.

DAXT The DAXT transaction is a task-related user exit administration routine
that is responsible for disabling DRDA support within CICS/VSE. It issues
the EXEC CICS DISABLE command to disable a task-related user exit
program.

For more information on DAXT, see the DB2 Server for VSE & VM
Operation manual.

Managing In-Doubt LUW’s

Operator Commands
The following DB2 Server for VSE operator commands can be used to manage
in-doubt LUWs:

320 System Administration

SHOW ACTIVE
Displays the status of active agent structures1

SHOW CONNECT
Displays the status of all users or selected users connected to the
application server.

FORCE COMMIT
Heuristically forces an in-doubt LUW to COMMIT

FORCE ROLLBACK
Heuristically forces an LUW to ROLLBACK

SHOW INDOUBT
Displays the status of all DRDA2 distributed units of work that are:
v currently in-doubt
v were heuristically committed or rolled back but RESYNC has not yet

been performed nor has RESET INDOUBT been performed
v RESYNC failed for some in-doubt unit of work, because the status of the

LUW was the opposite of what RESYNC required. (for example,
RESYNC required that the unit of work be COMMITTED, but it had
been heuristically ROLLED BACK). At the same time, RESET INDOUBT
has not been performed.

RESET INDOUBT
Causes a heuristically committed or rolled back unit of work to be
forgotten by the database, (that is, causes a forget log record to be written.)

Making Heuristic Decisions
In a DRDA environment, resynchronization occurs if two-phase commit processing
is interrupted by a resource failure. However, the decision to commit or roll back
an in-doubt LUW by any way other than the normal resynchronization process is a
heuristic decision. If you commit or roll back a unit of work and your decision is
different from the other system’s decision, data inconsistency occurs. This type of
damage is called heuristic damage.

An example of heuristic damage would be if the operator performed a heuristic
commit and then the transaction manager requested that the unit of work be rolled
back. If this situation occurs, and your system then updates any data involved
with the previous unit of work, your data is corrupted and is difficult to correct.

The only way to correct heuristic damage is to restore the database from an archive
by manually correcting the data based on knowledge from the application. This
damage correction must be coordinated with all of the participating application
servers to ensure that the data is consistent in each individual application server
and between all of the participating application servers.

You can perform heuristic actions on in-doubt transactions that are not involved in
a distributed unit of work. The heuristic actions performed are not logged and
therefore are also not displayed by the SHOW INDOUBT operator command.
(Note that heuristic damage is still possible on these transactions.) See the DB2
Server for VSE & VM Operation manual for more information on the SHOW
INDOUBT command.

1. An agent is the internal database manager representation of an active user

Chapter 14. Using a DRDA Environment 321

Performing heuristic actions on distributed unit of work transactions must be done
with caution. You can use the FORCE command to perform heuristic functions on
distributed unit of work in-doubt LUWs when the resource owner cannot wait for
the sync point manager to perform the resynchronization action. See the DB2
Server for VSE & VM Operation manual for more information on the FORCE
command.

Resynchronization
Resynchronization occurs if two-phase commit processing is interrupted by a
resource failure. A resource failure may be caused by a node failure, a session
failure, a program failure or other problems by a protected resource manager. The
resource failure may be between a sync point manager and local resource
managers or sync point manager and remote resource managers.

Resynchronization is conducted independently for each failed protected resource
for which it is required. Resynchronization has the following purposes:
v To place distributed resources in consistent states, if possible; if not possible, to

notify the operator at the LU that detected the damage and at the LU of the root
of the sync point tree. The LU for DB2 Server for VSE is CICS/VSE.

v To unlock locked resources in order to free them for other uses
v To update the log showing that no more sync point work is needed for that

protected resource, for that LUW.

Resync When Partner is Not Active
After an LU failure, it is possible that the partner that is responsible for resync is
unable to establish the resync conversation because the failed LU has not been
restarted. The responsible LU retries the resync at implementation-defined
intervals.

In order to reduce the delay for resynchronization after an LU is restarted, the
partner LU may signal to the resync initiator that it is available by sending an
Exchange Log Names GDS variable that is not accompanied by a Compare States
GDS variable.2 Once the responsible LU has received this signal that the failed LU
is active, it can initiate resync, sending the Exchange Log Names and Compare
States GDS variables.

Sending the Exchange Log Names GDS variable as a signal of LU availability need
be done only once, no matter how many protected conversations require
resynchronization between the two LUs. Also, if the LU that becomes available is
responsible for initiating resync for some conversations, it need not send another
Exchange Log Names GDS variable as a signal that the LU is available, since the
partner SPM can infer that a partner is available from the other resyncs the partner
SPM initiates.

Resolution of In-doubts
In the VSE environment, resynchronization has two components:

2. The partner can tell that a Compare States GDS variable is not present because SPM’s RECEIVE_AND_WAIT verb will complete
with a WHAT_RECEIVED of SEND rather than DATA_COMPLETE.

322 System Administration

v LU6.2 resynchronization3 occurs between the CICS/VSE syncpoint manager and
the application requester syncpoint manager. This is initiated at the application
requester site.
If there is a failure of the APPC session with the source system during the
in-doubt period, the CICS/VSE syncpoint manager makes a heuristic decision
based on the INDOUBT 4 option of the AXE transaction definition.

v Task-related user exit resynchronization5 occurs between the CICS/VSE
syncpoint manager and the CICS external resource manager (DB2 Server for
VSE). It is driven by the EXEC CICS RESYNC request that is issued by the AXE
transaction after it has successfully enabled and started the DRDA TRUE. This
causes the CICS/VSE syncpoint manager to pass the appropriate operation code
(for example, commit or rollback) to the DRDA task-related user exit (TRUE)
program for each in-doubt LUW that needs to be resynchronized. Depending on
the nature of the operation code, the DRDA TRUE issues an SQL request to the
DB2 Server for VSE database manager to resolve the in-doubt LUW.

The details of what the task-related user exit does when it receives the operation
code from the CICS/VSE Syncpoint Manager during task-related user exit
resynchronization are shown in Table 33.

Table 33. Actions by the DRDA task-related user exit during task-related user exit resynchronization

CICS/VSE Syncpoint Manager operation
code received by TRUE

DRDA task-related user exit actions

Backout (UERTBACK) Issues EXEC SQL ROLLBACK to resource manager

Committed (UERTCOMM) Issues EXEC SQL COMMIT to resource manager

Lost due to CICS cold start (UERTDGCS) Generates a message indicating that the LUW is lost due to CICS
cold start:
ARI0193E The CICS log does not contain information for an in-doubt

logical unit of work belonging to server server_name.

Instructs the operator to FORCE the LUW if the LUW has an agent
assigned to it (for example, the LUW has not been FORCED):
ARI4018A Use the database manager SHOW and FORCE commands

to commit or rollback the following units of work:
ARI4019I SERVER_NAME = server_name.

USER ID = user id.
AGENT IDENTIFIER = N.

Instructs the operator to RESET INDOUBT if the LUW does not
have an agent assigned to it (for example, the LUW has been
FORCED):
ARI0195A Use the database manager SHOW INDOUBT operator

command to find the following units of work:
ARI0196I SERVER_NAME = server_name.

RECOVERY TOKEN = rectok.

3. For general information on how CICS handles this, see the section “Syncpoint and Recovery” in the “VTAM LU6.2” chapter of
the CICS/VSE Diagnosis Reference manual

4. For more information on the INDOUBT option, see the section ″The INDOUBT Option of the Transaction Definition″ in the
″Recovery and Restart in Interconnected Systems″ chapter of the CICS/VSE Intercommunication Guide.

5. For general information on how CICS handles user exit resynchronization, see the chapter ″Task-related User Exit Recovery″ in
the CICS/VSE Diagnosis Reference manual

Chapter 14. Using a DRDA Environment 323

Table 33. Actions by the DRDA task-related user exit during task-related user exit resynchronization (continued)

CICS/VSE Syncpoint Manager operation
code received by TRUE

DRDA task-related user exit actions

LUW should not be in doubt (UERTDGNK) Generates a message indicating that the LUW should not be in
doubt:
ARI0194E A logical unit of work that the database manager

for server server_name indicated needed to be
resolved was not identifed by the CICS/VSE log as needing
resolution.

Instructs the operator to FORCE the LUW if the LUW has an agent
assigned to it (for example, the LUW has not been FORCED):
ARI4018A Use the database manager SHOW and FORCE commands

to commit or rollback the following units of work:
ARI4019I SERVER_NAME = server_name.

USER ID = user id.
AGENT IDENTIFIER = N.

Instructs the operator to RESET INDOUBT if the LUW does not
have an agent assigned to it (for example, the LUW has been
FORCED):
ARI0195A Use the database manager SHOW INDOUBT operator

command to find the following units of work:
ARI0196I SERVER_NAME = server_name.

RECOVERY TOKEN = rectok.

Note:

1. When the SHOW and FORCE operator commands are used to commit or rollback an LUW, the RESET
INDOUBT operator command must be issued to cause DB2 Server for VSE to forget about the LUW.

2. When message ARI0195A is issued, the RESET INDOUBT operator command must be issued to cause DB2
Server for VSE to forget about the LUW.

3. In both cases, before RESET INDOUBT is issued, any user-defined action to resynchronize the local and remote
databases must be done.

4. VSE messages come up in the CICS partition, not in the partition you are working on.

The DB2 Server for VSE resource manager processes the SQL request it received
from the task-related user exit. The action it takes is determined by the SQL
request and the LUW state which it remembers. These actions are shown in
Table 34.

Table 34. Actions by the DB2 Server for VSE resource manager during task-related user exit resynchronization

LUW state at
DB2 Server
for VSE

SQL request passed by task-related user exit

Rollback Commit

LUWID Not
Found

Send normal completion reply indicating Backout
state. DB2 Server for VSE notifies operator with
message:
ARI0183E The Sync Point Manager has asked to ROLLBACK

this LUW but the database manager has no
memory of it.

ARI0196I SERVER_NAME = server_name.
RECOVERY TOKEN = rectok.

Send normal completion reply indicating
Committed state. DB2 Server for VSE notifies
operator with message:
ARI0183E The Sync Point Manager has asked to COMMIT

this LUW but the database manager has no
memory of it.

ARI0196I SERVER_NAME = server_name.
RECOVERY TOKEN = rectok.

Indoubt
(Prepared)

Drive backout of resource and send normal
completion reply indicating Backout state.

Drive commit of resource and send normal
completion reply indicating Committed state.

324 System Administration

Table 34. Actions by the DB2 Server for VSE resource manager during task-related user exit
resynchronization (continued)

LUW state at
DB2 Server
for VSE

SQL request passed by task-related user exit

Rollback Commit

Heuristic
Backout

Send normal completion reply indicating Backout
state.

Send normal completion reply indicating
Committed state. DB2 Server for VSE notifies
operator with message:
ARI0184A The Sync Point Manager has asked to COMMIT

this LUW but the FORCE command was
previously used to ROLLBACK it.

ARI0196I SERVER_NAME = server_name.
RECOVERY TOKEN = rectok.

In this case, the LUW will still appear when the
SHOW INDOUBT command is executed. The
LUW must be cleared using the RESET
INDOUBT command. In addition, manual
intervention is necessary to ensure that the LUW
is in a consistent state at all sites where the LUW
has been distributed. This may require
intervention at this database manager, or possibly
at another database manager. Manual
intervention could mean manually fixing the data
or possibly restoring an archive.

Heuristic
Committed

Send normal completion reply indicating Backout
state. DB2 Server for VSE notifies operator with
message:
ARI0184A The Sync Point Manager has asked to ROLLBACK

this LUW but the FORCE command was
previously used to COMMIT it.

ARI0196I SERVER_NAME = server_name.
RECOVERY TOKEN = rectok.

In this case, the LUW will still appear when the
SHOW INDOUBT command is executed. The
LUW must be cleared using the RESET
INDOUBT command. In addition, manual
intervention is necessary to ensure that the LUW
is in a consistent state at all sites where the LUW
has been distributed. This may require
intervention at this database manager, or possibly
at another database manager. Manual
intervention could mean manually fixing the data
or possibly restoring an archive.

Send normal completion reply indicating
Committed state.

Chapter 14. Using a DRDA Environment 325

Table 34. Actions by the DB2 Server for VSE resource manager during task-related user exit
resynchronization (continued)

LUW state at
DB2 Server
for VSE

SQL request passed by task-related user exit

Rollback Commit

Note:
1. The state Syncpoint Pending is not possible at DB2 Server for VSE servers. The server completes any sync point

actions such as prepare to commit, commit, or rollback before the CICS/VSE Syncpoint Manager performs any
sync point logging.

2. The state Backout (Reset) is not possible at DB2 Server for VSE servers. The servers complete rollback
processing before the CICS/VSE Syncpoint Manager performs any sync point logging for backout.

3. The state committed is not possible at DB2 Server for VSE servers. The servers complete commit processing
before the CICS/VSE Syncpoint Manager performs any sync point logging for committed.

4. It is very remote that “LUWID Not Found” would occur. It can only happen if the following occurs:
a. TRUE enablement support obtains from the DB2 Server for VSE resource manager a list of LUWIDs that

require resynchronization.
b. The FORCE and RESET INDOUBT operator commands are issued for an LUWID that was in the list of

LUWIDs above.
c. TRUE enablement support commits or backs out LUWID according to the disposition of the CICS URD.

5. The task-related user exit resynchronization process is all one way, from CICS to the external resource manager
(such as, DB2 for VSE). After the task-related user exit has obtained a list of in-doubt LUWs from the DB2 for
VSE resource manager and has passed this list to CICS via the RESYNC command, CICS looks at its URDs to
determine whether to commit or backout each LUW. There is no provision for a DB2 for VSE resource manager,
through its task-related user exit, to inform CICS that a heuristic decision was made for an LUW.

The only sensible thing for the DB2 Server for VSE resource manager to do, in the case of a heuristic damage, is
to send a normal completion reply, as opposed to sending an abnormal reply. This way, the task-related user exit
can vote UERFDONE (Forget) to the CICS/VSE Syncpoint Manager and the CICS/VSE Syncpoint Manager can
throw away the unit of recovery descriptor (URD) associated with this LUW. If the DB2 Server for VSE resource
manager sends an abnormal reply, the task-related user exit will vote UERFHOLD and CICS will hold the URD
for this LUW until the next RESYNC. If the resource manager had ″forgotten″ the LUW, (for example, RESET
INDOUBT was done), CICS will assume that the resource manager is not interested in this LUW and will throw
away the corresponding URD. Therefore, both normal and abnormal replies eventually produce the same results,
but it is more efficient to send a normal reply in the case where a heuristic damage has occurred.

326 System Administration

Chapter 15. Using TCP/IP with DB2 Server for VSE

TCP/IP communications can be used with DB2 Server for VSE using DRDA
protocol. DB2 Server for VSE application requesters can use DRDA remote unit of
work over TCP/IP to access remote DRDA-capable servers (including remote DB2
Server for VSE and DB2 Server for VM servers.) Non-DB2 Server for VSE
requesters can use DRDA remote unit of work over TCP/IP to access remote DB2
Server for VSE servers (including remote DB2 Server for VSE and DB2 Server for
VM requesters).

Preparing the Application Server to use TCP/IP
The following must be done to allow the application server to use TCP/IP.
1. TCP/IP for VSE must be installed and configured.
2. For the Online Application Requester, the ARICTCP and CEEPIPI programs

must be defined to the CICS where the application requester runs. Refer to the
DB2 Server for VSE Program Directory for information on how to define these
programs.

3. The LE/VSE C runtime libraries must be available. For the Batch Application
Requester, this is the PRD2.SCEEBASE library. For the Online Application
Requester, these are the PRD2.SCEECICS and the PRD2.SCEEBASE libraries.
Minimum support level of LE/VSE is Version 1 Release 4.

4. The TCP/IP for VSE library must be available on both Online and Batch
application requesters, this is the PRD1.BASE library. If your TCP/IP product is
ordered directly from CSI (Connectivity Systems) or from a distributor, the
product library is PRD2.TCPIP.

5. To ensure proper TCP/IP functionality, the C runtime library and the TCP/IP
library must follow a certain search sequence. The following are sample
LIBDEF statements for the possible combinations:
v TCP/IP product installation from IBM: Batch partition:

//LIBDEF*,SEARCH=(PRD1.BASE,PRD2.SCEEBASE,...)

Online partition:
//LIBDEF*,SEARCH=(PRD1.BASE,PRD2.SCEECICS,PRD2.SCEEBASE,...)

v TCP/IP product installation from CSI: Batch partition:
//LIBDEF*,SEARCH=(PRD2.TCPIP,PRD1.BASE,PRD2.SCEEBASE...)

Online partition:
//LIBDEF*,SEARCH=(PRD2.TCPIP,PRD1.BASE,PRD2.SCEECICS,PRD2.SCEEBASE,...

6. One JCL statement //OPTION SYSPARM=’xx’ should be added to the CICS
startup JCL or the batch JCL, where xx is to match the xx specified in the ID=xx
parameter for starting up a specific TCP/IP server. This is how the application
requesters can route the TCP/IP function request to the correct TCP/IP server
in case there are more than one TCP/IP server running in the same VSE/ESA
system. If //OPTION SYSPARM is not specified, the default is 00.

7. The VSE partition running the TCP/IP for VSE server should always have a
higher priority than the partition running the DB2 for VSE database server.

© Copyright IBM Corp. 1987, 2000 327

|

|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

TCP/IP support is invoked at system initialization time. If TCP/IP for VSE is
available, the server will make use of it. The application server must be able to
determine what port number to listen on for connections. This can be
accomplished in a number of ways.
1. The DBNAME Directory of the database has a port number specified for the

TCPPORT parameter in the application server’s DBNAME Local entry. See
“Setting Up the DBNAME Directory” on page 23.

2. The new initialization parameter, TCPPORT, can be used to specify the port
number to listen on. Refer to the DB2 Server for VSE & VM Operation manual
for a detailed description of the TCPPORT parameter.

3. The well-known port number 446 is used, if available.

Each method has advantages and disadvantages.

The first method of using the DBNAME Directory is the preferred method. This
directory is maintained by the database administrator and resides in a VSE library.
Since more than one DB2 Server for VSE can run on the same VSE system, it must
be ensured that they do not use the same TCP/IP port or users will be connected
to the wrong database. Identifying the port numbers in the directory makes it
easier to ensure that different servers are using different ports.

The second method of port identification is the new initialization parameter,
TCPPORT. This is helpful when initially testing TCP/IP support or when TCP/IP
support needs to be enabled, but the DBNAME Directory cannot be updated. The
disadvantage is that it is possible that another application may be using the same
port. If this occurs, an error message is received during initialization showing a
BIND failure with return code 1115 indicating that the port was already in use by
another application.

The third method is the least desirable. If there is no port number specified in the
DBNAME Directory for the application server or a TCPPORT initialization
parameter was not specified, there is a well known port assignment for relational
databases. It is called ddm-rdb and the port number is 446. This has the advantage
of doing no extra configuration to TCP/IP for VSE and to the application server.
The disadvantage is that only one application server on the VSE system can use
the definition.

We will take advantage of all of the methods. The actions can be broken down into
the following scenarios.
1. If the TCPPORT initialization parameter is not specified when the application

server is started, the application server will search the DBNAME Directory for
its corresponding Local entry to see if the TCPPORT parameter is specified. If it
is specified and the value is not zero, it will be used as the port number of the
listener socket to be created. If the value is zero, no TCP/IP initialization will
be performed. If the TCPPORT parameter is not specified, it will use the well
known port number 446 to create the listener socket.

2. If the TCPPORT is specified when the application server is started, the
application server will use this parameter while performing TCP/IP support
initialization. If the port cannot be used, no attempt is made to find another
port. If any error is returned from a TCP/IP function used, it will be assumed
that TCP/IP is not available and TCP/IP support on the application server will
not be used.

After the TCP/IP support for the application server is initiated, a TCP/IP agent is
created to handle all TCP/IP related functions. If any TCP/IP function failure was

328 System Administration

|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

detected by the TCP/IP agent, the TCP/IP support for the application server will
be disabled. It is possible to restart the TCP/IP support for the application server
without recycling the application server. This can be done by using the new START
TCPIP operator command. Refer to the DB2 Server for VSE & VM Operation manual
for a detailed description of this command.

Preparing the Application Requester to use TCP/IP
The following must be done to allow an application requester to use TCP/IP.
1. TCP/IP for VSE must be installed and configured.

To indicate that TCP/IP is to be used to establish a connection from the online
application requester, the SQLGLOB file is used. If T is specified as the
communication protocol for the referencing application, TCP/IP communication
protocol will be used. In this case, the DBNAME Directory remote entry of the
database that is the target of the SQL CONNECT statement of the application must
be set up with the necessary TCP/IP related information to be used to establish a
TCP/IP connection. Refer to “Setting Up the DBNAME Directory” on page 23 for
details. For more information about the SQLGLOB file, refer to the DB2 Server for
VSE & VM Database Administration manual.

Note that batch applications accessing remote servers will always use TCP/IP
protocol and the SQLGLOB file communications protocol parameter is ignored.

Chapter 15. Using TCP/IP with DB2 Server for VSE 329

|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|

330 System Administration

Appendix A. Processor Storage Requirements

This appendix offers guidelines for estimating the processor resources needed for
the database manager.

In general, a system operating in multiple-user mode, with CICS for both
preplanned and unplanned (dynamic SQL, ISQL) query transactions, requires:
v Approximately 4 to 6 megabytes of storage for the database partition and its

buffers.
v Approximately 6 to 10 megabytes of storage for CICS, the DB2 Server for VSE

batch programs.

Following are suggestions on making detailed estimates of virtual storage
requirements.

Virtual Storage Requirements of Components
The virtual storage requirements for the database manager include the space for
the database manager itself, any application programs, buffers, VSAM control
blocks, the package buffers, and dynamic storage requirements.

Table 35 on page 332 and Table 36 on page 333 provide data for calculating the
virtual storage needed for a particular installation of the database manager. The
storage required varies depending on the mode of operation (single user mode or
multiple-user mode) and the initialization parameter values used when the
database manager is started.

The minimum dynamic storage required is NCUSERS x 120000. If the DRDA code
is installed, the minimum is NCUSERS x 170000.

© Copyright IBM Corp. 1987, 2000 331

Table 35. Initial Storage Requirements of DB2 Server for VSE Database Partitions

Recommended Minimums for

Formula/Constraints Single-User Mode Multiple-User Mode

DB2 Server for VSE Code 1, 12

Message Repository 12

DB2 Server for VSE Control Blocks
v Base
v Lock Request Blocks

NLRBS x 24 2, 3, 5

v Concurrent Scans Storage
NCSCANS x 50 2, 3 x (NCUSERS+3) 2, 6

v Miscellaneous LRBs
8 x (First Prime Number > (NLRBS/4))

v Static Agent Storage below 16M
NCUSERS x 57500 12

v Static Agent Storage anywhere
NCUSERS x 50000

v Working Storage Area 12

v Working Storage Queue Headers 2, 3

32 + (2 + 2 x (NCUSERS + 3) + NPACKAGE x
(NCUSERS + 1)) x 68

v Package Control Blocks
NCUSERS x NPACKAGE x 72 bytes 2, 3

v Communications Control Blocks
RMTUSERS x 552 2

v If TCP/IP Communications is used, add:
(NCUSERS+3) x 264+2000 16

v Stored Procedure Caches
(76 * the number of stored procedure servers)

+(32 * the number of stored procedure server groups)
+(for each procedure,

116
+the length of the LE options string (max 254)
+ (68 * the number of parameters))

DB2 Server for VSE Buffers
v 4 x Maximum of ((the first power of 2

that is >= (NPAGBUF/8)) or 256) + (NPAGBUF x 4144)2

v 4 x Maximum of (the first power of 2
that is >= (NDIRBUF/8)) or 256) + (NDIRBUF x 560)2

Database Control Blocks
v Base control blocks
v MAXDBSPC x 8 11

v MAXPOOLS x 18 11

v MAXEXTNT x 8 11

Database I/O Control Blocks
v NCUSERS x 216 x # of dbextents
v Minimum of (64 or NPAGBUF/10) x (NCUSERS+3) x 64 15

VSAM Control Blocks
v (NCUSERS x 1024 + 8192) x # of dbextents 4, 16

v VSAM Catalogs 13

3292000
250000

140000

12288

4500

1048

57500

50000
109000

848

72

0

0

0

59040

8864

88000
8000

576
384

2808
1344

119808
81920

4288000 7, 8

3042000
250000

140000

60480

12000

5048

287500

250000
109000

5336

3600

0

0

0

125344

17824

88000
8000

576
384

14040
1536

173056
81920

4675644 7, 8

332 System Administration

Note: The above numbers are in bytes.
1 If the DRDA code is installed on the application server, an additional
1.8 megabytes is required (this applies to both multiple-user mode and
single-user mode).
2 The numbers for multiple-user mode assume the following defaults:
NCUSERS (5), NPACKAGE (10), NCSCANS (30), NLRBS (2520), NLRBU
(1000), NPAGBUF(30), NDIRBUF(30), RMTUSERS(0).
3 The numbers for single-user mode assume the following defaults:
NCUSERS (1), NPACKAGE (1), NCSCANS (30), NLRBS (512), NLRBU
(1000), NPAGBUF(14), and NDIRBUF(14).
4 The number of datasets = 13 (10 active dbextents + 1 directory dataset
+ 2 logs for dual logging)
5 The calculation for NLRBS is:
NCUSERS x 2 + (NCUSERS x NLRBU)/2 + 10.
6 In single-user mode, NCSCANS x 50 x 3.
7 If you have coded an accounting exit, add its size to the total virtual
storage requirements for both single and multiple-user mode.
If you have coded any field procedures, add their total size to the
requirements for both single and multiple-user mode. In addition, add
NCUSERS times the maximum working storage used by any of your
field procedures. For more information, see “Field Procedures” on
page 284 .
8 Add the dynamic storage requirement of active agents.
9 The calculation for the default NPAGBUF is: 10 + 4 x NCUSERS
10 The calculation for the default NDIRBUF is: 10 + 4 x NCUSERS
11 The recommended minimum assumes the defaults for MAXDBSPC
(1000), MAXPOOLS (32), and MAXEXTNT (64).
12 The following always reside below 16 megabytes: 1.3 megabytes of the
DB2 Server for VSE Code, the Message Repository, and the Static Agent
Storage below 16 megabytes, the Working Storage Area, and VSAM
catalogs. If your application is running in single-user mode (SUM), you
may go above the 16 megabyte line.
13 Assume 40 kilobytes for each VSAM catalog. The recommended
minimum assumes two catalogs: the VSAM master catalog and one user
catalog.
15 In single-user mode, minimum of (256 or NPAGBUF/2) x 192.
16 Approximately one-eighth of this will reside below 16 megabytes.

Table 36. Virtual Storage Requirements of DB2 Server for VSE Components in the CICS
Partition

ONLINE RESOURCE ADAPTER:
Initialization, Termination, 659 000 (See Note 2)
and Transaction Display

Global Control Blocks 1200 + 8 192 x Number of links from the
CICS/VSE partition to the
Database partition (See Note 3)

Execution Time Code 215 000

Execution Time Control Blocks 3 x Maximum number of CICS/VSE transactions
that will access concurrently (See Note 3)

Appendix A. Processor Storage Requirements 333

Table 36. Virtual Storage Requirements of DB2 Server for VSE Components in the CICS
Partition (continued)

ISQL 580000 + Online resource manager requirements
+ 45000 for each ISQL user
+ 200000 for each additional message repository

Notes:

1. All numbers are in bytes.
2. The initialization/termination/transaction display code needs to be in the CICS

partition only when the CIRA, CIRB, CIRC, CIRT, or CIRD transactions are
active. For certain abnormal conditions, the system internally activates CIRT.
(For more information, see the DB2 Server for VSE & VM Diagnosis Guide and
Reference manual.) This value is calculated by adding the sizes of the following
phases: ARIRCONT, ARI0OLRM, ARIMS001, and ARICMOD. If CICS is not
able to load the termination phase, the CICS/VSE system waits until storage
becomes available. Shutdown is thus delayed, and the wait can be long.
Shutdown must complete its process before online access to the database
manager can be restarted. Therefore, it is important that the CICS partition
contain enough virtual storage to allow the
initialization/termination/transaction display code to run. (To avoid the
problem of not being able to load the termination code at a critical time,
consider specifying RES=YES in the DFHPPT entry for ARIRCONT.)

3. The global control blocks are maintained until CIRT (termination) completes its
processing. If the virtual storage requirement for the control blocks is less than
32768 bytes, CICS provides the storage from its own pool. Otherwise, the
partition’s GETVIS area is used.

4. For execution time control blocks:
v This storage requirement does not include the virtual storage used by the

application transaction.
v The maximum number of CICS transactions that concurrently access the

database manager is not the value NOLINKS (used by the CIRB transaction).
The 3-kilobyte virtual storage area is required for a transaction from the time
of the first database manager access until the end of the transaction.

v During online link initialization, a message buffer of 8192 bytes is obtained.
This message buffer (mailbox) is used by the resource adapter to gather all
the inputs generated by one SQL statement. The inputs are sent as one
contiguous message to the database partition. If the SQL statement generates
more input than 8192 bytes, the resource adapter attempts to get a larger
message buffer from the partition’s GETVIS area.
If the GETVIS fails due to insufficient storage, SQLCODE -932 and an
indication (SQLERRD1) of the amount of storage required are returned to the
transaction. If this occurs, either the GETVIS area must be made larger, or the
transaction must be run when fewer transactions are active.

5. For online application programs, if the fetch/insert blocking option is in effect,
add 8 kilobytes to the CICS partition size for each currently open cursor that
qualifies for blocking.

6. The numbers shown in the figure do not include a user-written accounting exit.
7. If DRDA is used, add 1 megabyte to the CICS partition size to allow for the

additional code in the online resource adapter.

334 System Administration

Notes:

1. The batch resource adapter uses a minimum of 230 kilobytes of virtual storage
in the batch (or VSE/ICCF) application’s partition. This value must be added to
the virtual storage requirements of the SQL application to arrive at the total
VSE or VSE/ICCF partition size.

2. The numbers for the DBS utility and the preprocessors show how much virtual
storage must be increased to run these facilities in their own partition (multiple
user mode) and in the same partition as the database manager (single user
mode).

3. MUM means multiple user mode, and SUM means single user mode. See the
glossary for definitions of these terms.

4. For programs running in multiple user mode, if the fetch/insert blocking
option is in effect, add 8 kilobytes for each currently open cursor that qualifies
for blocking.

5. If you have coded an accounting user exit routine, add its size to the total
virtual storage requirements.

CICS Dynamic Storage Considerations
The amount of virtual storage in the CICS dynamic area varies for ISQL. An
average of 35 to 45 kilobytes for each user, plus 330 kilobytes, is recommended at
the start. This supports most ISQL usage. The following variables can be
considered to adjust the size of the dynamic area:
v Use of SELECT
v Use of routines
v Other CICS transactions.

Use of SELECT
The row length is the only variable that affects the amount of storage needed by a
SELECT result: the number of rows retrieved from a SELECT has no effect on this.

Before retrieving any rows from tables, ISQL gets a buffer to hold enough storage
for two screens of rows. If more than two screens are retrieved, this buffer is
reused. (The number of rows depends on the size of the terminal screen.)

DB2 Server for VSE Component Recommended Minimum Virtual Storage Increase (in kilobytes)

Batch resource adapter

DBS utility MUM

SUM

Any DB2 for VSE MUM
preprocessor
(Assembler, COBOL,
FORTRAN, C or PL/I) SUM

User program MUM

SUM

250

795 (295 + batch resource adapter storage + message repository)
or

4,700 (295 + the database partition storage + message repository

750 (250 + batch resource adapter + message repository)
or

4,650 (250 + the database partition storage + message repository

User application size + batch resource adapter size
or

User application size + the database partition size

Figure 124. Recommended Batch (or VSE/ICCF) Virtual Storage Increase

Appendix A. Processor Storage Requirements 335

The number of columns referenced in a SELECT command in ISQL is limited to 45.
ISQL uses the length of the retrieved columns not the number of column references
to determine the buffer size. The storage needed is the number of rows for two
screens, multiplied by the length of one row. (Note that the length of the row may
be larger than the length of the screen.) If the storage required for the buffer
exceeds 32 kilobytes, not all selected columns are displayed or the user receives an
error message.

The SET VARCHAR and FORMAT VARCHAR ISQL commands change the size of
the row and thus the size of the buffer.

Use of Routines
CICS temporary storage can be either MAIN or AUXILIARY, as determined by the
TSP parameter in your SIT. If MAIN storage is used, the delta for ISQL users
should be increased. The amount of storage required is based on the number of
lines in the routines and the number of concurrent routines being run. The amount
of storage for each line of a routine is 254 bytes.

If AUXILIARY storage is used, routines do not affect ISQL virtual storage
requirements. Routines are read into CICS temporary storage before the first
command of the routine is run.

Other CICS Transactions

The numbers given here are delta numbers for ISQL. They do not include any
storage for other CICS transactions that your installation has.

CICS Temporary Storage Queues
CICS temporary storage queues can be defined as nonrecoverable. Recoverable
temporary storage queues are incompatible with ISQL operation.

336 System Administration

Appendix B. Estimating Database Storage

This appendix describes procedures for estimating the size of the directory, the
SYS0001 dbspace and ISQL dbspace.

For information on estimating the size of user dbspaces, see the DB2 Server for VSE
& VM Database Administration manual.

Storage Capacities of IBM DASD Devices
The effective storage capacities of IBM DASD devices vary, depending on how the
devices are being used. The database manager uses VSE/VSAM for managing
DASD space for the directory data set, the log, and the dbextents. The directory
data set uses 512-byte control intervals while the log and dbextent data sets are
managed with 4-kilobyte control intervals.

Table 37 and Table 38 show the capacities of IBM devices for storing log and
dbspace pages (dbextent space). Table 39 and Table 40 show the capacities for
storing directory information.

Table 37. Log and Dbextent Storage Capacities of IBM Count-Key-Data DASDs

DASD Type Number of
Cylinders

Tracks for Each
Cylinder

Megabytes for
Each Cylinder

Megabytes for
Each Volume

3375 959 12 0.3749 359

3380 J 885 15 0.5858 518

3380 E 1,770 15 0.5858 1,036

3380 K 2,655 15 0.5858 1,555

3390-1 1,113 15 0.7031 782

3390-2 2,226 15 0.7031 1,565

3390-3 3,339 15 0.7031 2,347

3390-9 10,017 15 0.7031 7,041

9345-1 1,440 15 0.5858 843

9345-2 2,156 15 0.5858 1,262

Table 38. Log and Dbextent Storage Capacities of IBM FBA DASDs

DASD Type Megabytes for Each Volume 4 Kilobyte Pages for Each
Volume

3370-1 272.4 69,750

3370-2 348.0 89,094

9332-400 175.7 45,004

9332-600 270.8 69,350

9335 392.9 100,589

9336-010 449.2 115,014

9336-020 816.8 209,110

9336-025 816.8 209,110

© Copyright IBM Corp. 1987, 2000 337

Table 38. Log and Dbextent Storage Capacities of IBM FBA DASDs (continued)

DASD Type Megabytes for Each Volume 4 Kilobyte Pages for Each
Volume

0671 280.5 71,820

Table 39. Directory Storage Capacities of IBM Count-Key-Data DASDs

DASD Type Number of
Cylinders per

Volume

Tracks for Each
Cylinder

Megabytes for
Each Cylinder

Megabytes for
Each Volume

3375 959 12 0.2343 224

3380 J 885 15 0.3295 291

3380 E 1,770 15 0.3295 583

3380 K 2,665 15 0.3295 874

3390-1 1,113 15 0.3645 405

3390-2 2,226 15 0.3645 811

3390-3 3,339 15 0.3645 1,217

3390-9 10,017 15 0.3645 3,651

9345-1 1,140 15 0.3002 432.28

9345-2 2,156 15 0.3002 647.23

Table 40. Directory Storage Capacities of IBM FBA DASDs

DASD Type Megabytes for Each Volume 512-Byte Blocks for Each Volume

3370-1 272.4 558,000

3370-2 348.8 712,752

9332-400 175.7 360,036

9332-600 270.8 554,800

9335 392.9 804,714

9336-010 449.1 920,115

9336-020 816.8 1,672,881

9336-025 816.8 1,672,881

0671 280.5 574,560

These capacity charts are referenced in later calculations for determining data set
allocations of the directory, log, and dbextent data sets.

Table 41 shows the minimum space allocations for a log or dbextent data set.

Table 41. Minimum Space Allocations for Log and Dbextent Data Sets

DASD Type Minimum Space Allocation

3375 1 cylinder

3380 1 cylinder

3390 1 cylinder

9345 1 cylinder

FBA 528 Blocks

338 System Administration

Relationship of Megabytes to 4-Kilobyte Pages
In the database generation process, all dbspace and dbextent DASD space
definitions are expressed in terms of 4-kilobyte pages: that is, each page represents
4096 bytes of storage space. Storage space is used not only for data, but also for
indexes and free space initially reserved to facilitate the insertion of new data after
the database is in operation.

Space needs are often expressed in terms of megabytes (1,048,576 bytes). Table 42
shows the number of 4-kilobyte pages needed to support a range of megabytes.
The dbspace definitions are made in multiples of 128 pages. An alternative to
using Table 42 is to use the formula:

Number of 4-kilobyte pages = 256 x number of megabytes

Table 42. Megabytes of Data on 4-Kilobyte Pages

Megabytes 4-Kilobyte Pages

0.0 - 0.5 128

0.5 - 1.0 256

1.0 - 1.5 384

1.5 - 2.0 512

2.0 - 2.5 640

2.5 - 3.0 768

3.0 - 3.5 896

3.5 - 4.0 1,024

4.0 - 4.5 1,152

4.5 - 5.0 1,280

5.0 - 5.5 1,408

5.5 - 6.0 1,536

6.0 - 6.5 1,664

6.5 - 7.0 1,792

7.0 - 7.5 1,920

7.5 - 8.0 2,048

8.0 - 8.5 2,176

8.5 - 9.0 2,304

9.0 - 9.5 2,432

9.5 - 10.0 2,560

50.0 12,800

100.0 25,600

500.0 128,000

Appendix B. Estimating Database Storage 339

Estimating Directory Space Requirements
The required size of the database directory depends on the maximums you
established on the MAXPOOLS, MAXEXTNT, and MAXDBSPC parameters during
database generation. The directory must be large enough to hold page table entries
for the maximum size of the database. Figure 125 shows a formula for calculating
the recommended size of a directory data set.

To estimate the value for the maximum database size, determine how many
dbspaces (public, private, and internal) your database will need, and the number
of pages needed by each dbspace; then multiply the total number of pages by 4096
to get the number of bytes. (You may want to overestimate this value to allow for
creating unplanned dbspaces, and for increasing the number and size of internal
dbspaces.) Finally, multiply this number by 0.0021, to determine how many bytes
are needed in the directory to support these dbspaces. The result of this calculation
includes the space needed for shadow paging.

Once you have the directory size, you can use the charts shown in the section
“Storage Capacities of IBM DASD Devices” on page 337 to determine the data set
size specifications, in cylinders or blocks, of the device to be used.

Note: Although you do not have to specify the maximum database size during
database generation, the size specified for the directory data set effectively
establishes the limit.

Estimating Storage Pool Requirements
For estimating storage pool sizes, you need to estimate:
v The size of used portions of dbspaces. This includes tables, indexes, and free

space on used dbspace pages.
v Shadow paging requirements. This is an estimate of the number of dbspace

pages that can change between checkpoints.

To estimate the number of pages required for a storage pool use the following
formula:
Pool pages = 8 x Number of dbspaces

+ 1.5 x Data pages for all dbspaces in the pool
+ Data pages for the largest table in the pool

This calculation covers header pages and pages required for table rows and
indexes on those tables. If you have increased your dbspace data pages value to
accommodate future growth of tables, you can decrease the pool pages
correspondingly.

The addition of the factor of data pages for the largest table in the pool should
accommodate storage pool demands for shadow paging. This allows for UNLOAD
and RELOAD of the largest table in the storage pool.

Directory size = 7 558 + 16 x MAXDBSPC value
(in bytes) + 16 x MAXEXTNT value

+ 4 x MAXPOOLS value
+ 0.0021 x Maximum database size

Figure 125. Formula for Calculating Directory Size (in Bytes)

340 System Administration

Estimating SYS0001 Dbspace Requirements
The PUBLIC.SYS0001 dbspace is reserved for the catalog tables during database
generation, and cannot be redefined. You establish its size (and storage pool) when
you generate the database. The size should be large enough to hold all of your
database catalog information for the life of the database.

Note: Physical space is not actually consumed until it is required. Consequently,
you can define the SYS0001 dbspace to be very large without penalty. Be
generous. The penalty for defining the SYS0001 dbspace too small is that,
when it has no more usable space, you must completely regenerate the
database. This can be a considerable task for a production database. For
more information, see “Preparing for Database Regeneration” on page 33.

The formula shown in Figure 7 on page 20 should provide ample storage space for
most uses of the database manager. The formula was derived based on a set of
assumptions that may not be valid for your database. Review the assumptions and
modify the general formula if the assumptions do not accurately represent your
planned usage of the database manager.

The following sections describe:
v SYS0001 storage estimating general formula assumptions

You should review these assumptions to determine whether they apply for your
planned usage of the database manager. If they do not, you should modify the
assumptions (and the resulting formula) to more accurately represent your
planned usage.

v Derivation of the general formula for SYS0001 storage estimating
v Formula for SYS0001 storage estimating

This formula is described in “Formula for SYS0001 Storage Estimating” on
page 345.

v Examples of using the SYS0001 storage estimating formula
These examples show how to use the SYS0001 storage estimating formula based
on three example situations.

v Modifying the SYS0001 storage estimating general formula
This section provides the formulas used to derive the general formula. You can
modify the general formula if you want to change some of the assumptions
made in deriving the general formula.

SYS0001 Storage Estimating General Formula Assumptions
The general formula for SYS0001 storage estimating was derived based on:
v Average row lengths for catalog rows
v The number of rows required for each object type in the formula.

Average Row Lengths for Catalog Table Rows
Table 43 on page 342 shows the length of the fixed portions of catalog rows, the
maximum stored row length for each catalog table, and an average row length for
each of the catalog tables. The average row length is the length assumed in
developing the general formula for estimating catalog storage space requirements.

Appendix B. Estimating Database Storage 341

Table 43. Stored Lengths of Catalog Rows

Catalog Table Minimum
Length

Maximum
Length

Estimated
Average
Length

SYSACCESS 46 90 52

SYSCATALOG 64 385 170

SYSCCSIDS 39 39 39

SYSCHARSETS 393 411 400

SYSCOLAUTH 46 82 72

SYSCOLSTATS 27 123 59

SYSCOLUMNS 54 398 156

SYSDBSPACES 40 58 46

SYSDROP 13 13 13

SYSINDEXES 62 232 131

SYSKEYCOLS 55 91 67

SYSKEYS 77 113 89

SYSOPTIONS 11 301 100

SYSPARMS 82 82 82

SYSPROGAUTH 46 54 49

SYSPSERVERS 11 281 60

SYSROUTINES 58 581 170

SYSSTRINGS 286 286 286

SYSSYNONYMS 26 62 36

SYSTABAUTH 57 101 84

SYSUSAGE 36 72 51

SYSUSERAUTH 35 35 35

SYSVIEWS 20 293 200

In Table 43, the minimum and maximum row lengths for each catalog table are
determined using the description of the catalog tables in the DB2 Server for VSE &
VM Database Administration manual. The length of a row depends on the data type
of each column in the catalog table. The minimum length for each column is found
using these values for each data type.

Table 44. Minimum Column Length

Data Type Value

DBAINT 4

DBAHW 2

INTEGER 4

SMALLINT 2

CHAR(n) n

TIMESTAMP 10

VARCHAR(n) 1

342 System Administration

Note: The data types DBAINT and DBAHW are used internally by the database
manager. Externally, they look like the data types INTEGER and
SMALLINT.

For CHAR columns, the length is the column length (n). The column lengths are
added. For each column that can contain nulls, 1 is added to this figure. The value
8 is then added to this total for catalog table overhead. The resulting number is the
minimum row length for the catalog table.

The maximum length for each column is found using these values:

Table 45. Maximum Column
Length

Data Type Value

DBAINT 4

DBAHW 2

INTEGER 4

SMALLINT 2

CHAR(n) n

TIMESTAMP 10

VARCHAR(n) n + 1

For CHAR columns, the length is the column length (n). For VARCHAR columns,
the length is the maximum column length plus one (n + 1). For each column that
can contain nulls, 1 is added to this figure. The value 8 is then added to this total
for catalog table overhead. The resulting number is the maximum row length for
the catalog table.

The average length for each column is calculated this way for most catalog tables:
(maximum length - minimum length)

3 + minimum length

This produces a number one third of the way between the minimum and
maximum lengths. In some situations, higher values are used because those
columns are typically longer. An example is the SYSTEM.SYSVIEWS catalog table,
where the VIEWTEXT column contains the command used to create the view.
Because these commands are usually over 100 bytes long, a number one third of
the way between the minimum and maximum lengths of the column would be too
low. In this situation, the number 200 is chosen arbitrarily.

If you make your own estimates of catalog table row lengths (using the chart
provided in Table 50 on page 348), you should choose values for the average row
lengths that are accurate for your database. Otherwise, you could underestimate
the size of the SYS0001 dbspace. In particular, you should not underestimate the
average length of rows in the SYSTEM.SYSCOLUMNS catalog table. If you use the
REMARKS or CLABEL columns of this catalog table, your average row length
could be far greater than the number (156) given in Table 43 on page 342. Because
the SYSTEM.SYSCOLUMNS table can become quite large (it has a row for every
column in every table in the database), its size is a major factor in the size of the
SYS0001 dbspace.

Appendix B. Estimating Database Storage 343

Assumptions on the Number of Catalog Table Rows
The average number of rows for each catalog table was determined based on the
assumptions in Table 46. These assumptions were used in generating the general
formula for SYS0001.

Table 46. Assumptions of Catalog Bytes/Pages for Each Object

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

Table 1 SYSCATALOG
1 SYSTABAUTH
2 SYSINDEXES

169
84
262

515 0.13

View 1 SYSCATALOG
1 SYSVIEWS
2 SYSTABAUTH
2 SYSUSAGE

169
200
168
102

639 0.16

Column 1 SYSCOLUMNS 156 156 0.04

Package 1 SYSPROGAUTH
15 SYSUSAGE

49
765

814 0.20

Dbspace
(including
package
dbspaces)

1 SYSDBSPACES 46 46 0.01

User 1 SYSUSERAUTH
50 SYSTABAUTH
50 SYSSYNONYMS
150 SYSCOLAUTH

35
4,200
1,800
10,800

16,835 4.11

Package
dbspaces

255 SYSACCESS 13,260 13,260 3.24

Character Set 1 SYSCHARSETS 400 400 0.10

Keys 1 SYSKEYS
2 SYSKEYCOLS

89
134

223 0.05

Other 15 SYSOPTIONS 1200 1200 0.30

When a table is created, one entry is made in the SYSTEM.SYSCATALOG table and
one in the SYSTEM.SYSTABAUTH table. This formula assumes an average of two
indexes for each table. For each index created, one entry is made in
SYSTEM.SYSINDEXES.

When a view is created, one entry is made in SYSTEM.SYSCATALOG. In addition,
as many as 32 entries are made in SYSTEM.SYSVIEWS. With the assumption that
the average view definition is less than 254 bytes, only one row is required. One
entry is also made in the SYSTEM.SYSTABAUTH and SYSTEM.SYSUSAGE tables
for each table on which the view is defined. The general formula assumes that, on
average, a view is defined on two tables.

One entry is made in SYSTEM.SYSCOLUMNS for every table and view column.

When a package is created, one entry is made in SYSTEM.SYSPROGAUTH. In
addition, entries are made in SYSTEM.SYSUSAGE for every table, view, index, and
dbspace used by the package. (A package uses a dbspace if it uses a table in the
dbspace.)

The general formula assumes 15 such entries in SYSTEM.SYSUSAGE.

344 System Administration

One entry is made in SYSTEM.SYSDBSPACES for each dbspace added to the
database, including package dbspaces.

One entry is placed in SYSTEM.SYSUSERAUTH for each user of the database.
Each user is assumed to have access to an average of 50 tables (and views)
belonging to other users. This explains the 50 entries in SYSTEM.SYSTABAUTH
and SYSTEM.SYSSYNONYMS. Specific column update authorization is assumed to
average about 3 columns for each table (or view) that is shared (3 for each of the
50 tables or views). This yields an estimate of 150 entries in
SYSTEM.SYSCOLAUTH for each user.

For each package dbspace added, one entry is made in SYSTEM.SYSDBSPACES,
which was accounted for earlier, and 255 entries are made in SYSTEM.SYSACCESS.
The 255 entries are made because all 255 packages are preallocated in the dbspace,
even though they can all be empty.

For each character set you define, you must load one row into
SYSTEM.SYSCHARSETS.

For each key, one row is added to SYSTEM.SYSKEYS, and two rows are added to
SYSTEM.SYSKEYCOLS (assuming that each key is made up of two columns).

Finally, three rows exist in SYSTEM.SYSOPTIONS for every database.

Derivation of the General Formula for SYS0001 Storage
Estimating

The assumptions in the preceding section provide a means of estimating the data
pages required in SYS0001. Assuming the PCTFREE value for the SYS0001 dbspace
is 0, the SYS0001 data pages are:
SYS0001 data pages = .13 x the number of tables

+ .16 x the number of views
+ .04 x the number of columns
+ .20 x the number of packages
+ .01 x the number of dbspaces

(including package dbspaces)
+ 4.11 x the number of users
+ 3.24 x the number of package dbspaces
+ .10 x the number of character sets
+ .05 x the number of keys
+ .30 (for the SYSTEM.SYSOPTIONS table)

To get the total number of SYS0001 dbspace pages, you must add the header pages
and the index pages. SYS0001 has eight header pages. The initial set of catalog
entries generated by the database generation process fills 4 pages. The PCTINDX
value for SYS0001 is 60. Thus, to get the total number of pages you must add 12
and divide by 0.4:
SYS0001 pages = (12 + SYS0001 data pages) / 0.40

The SYS0001 data pages is your estimate for the number of data pages for your
catalog entries.

Formula for SYS0001 Storage Estimating
When the adjustments described in “Derivation of the General Formula for
SYS0001 Storage Estimating” are made, the formula for the total number of
SYS0001 dbspace pages becomes:

Appendix B. Estimating Database Storage 345

SYS0001 pages = 30 + .33 x the number of tables
+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces

(including package dbspaces)
+ 10.28 x the number of users
+ 8.10 x the number of package dbspaces
+ .25 x the number of character sets
+ .13 x the number of keys

(+ .74 (for the SYSTEM.SYSOPTIONS table))

This number should be rounded up to the next higher multiple of 128. Because the
number of pages needed for the SYSTEM.SYSOPTIONS catalog table is so small,
the number is omitted from the general formula and any further calculations.

Examples of Using the SYS0001 Storage Estimating Formula
The following examples illustrate the use of the general formula for estimating the
required dbspace size for SYS0001.

For a Test Database
Table 47 illustrates the estimate for a small set of catalog tables that can be used in
generating a test database.

Table 47. Example of Estimating the Catalog Dbspace for a Test Database

Example Number of Objects Number of Pages Calculation Number of
Pages

Reserved 30 30

50 tables .33 X 50 17

100 views .40 X 100 40

1500 columns .10 X 1 500 150

25 packages .50 X 25 13

50 dbspaces .03 X 50 2

15 users 10.28 X 15 154

1 package dbspace 8.10 X 1 8

2 character sets .25 X 2 1

20 keys .13 X 20 3

Total number of SYS0001 pages = 418

Rounded to the next higher multiple of 128 is: 512

For an Application Development Database
Table 48 on page 347 illustrates the estimate for a medium sized set of catalog
tables that might be used in generating a test database to support development of
multiple application systems. The number of package dbspaces needed was
determined by adding the number of views to the number of packages and
dividing the sum by 255. The maximum number of packages that can be defined
in a package dbspace is 255. This number could be reduced if the packages are
large. The maximum 255 packages may not fit in the allocated pages for the
dbspace.

346 System Administration

Table 48. Example of Estimating the Catalog Dbspace for an Application Development
Database

Example Number of Objects Number of Pages
Calculation

Number of Pages

Reserved 30 30

500 tables .33 X 500 165

1000 views .40 X 1000 400

15,000 columns .10 X 15,000 1,500

50 packages .50 X 50 25

500 dbspaces .03 X 500 15

25 users 10.28 X 25 257

5 package dbspaces 8.10 X 5 40

6 character sets .25 X 6 2

200 keys .13 X 200 26

Total number of SYS0001 pages = 2461

Rounded to the next higher multiple of 128 is: 2560

For a Production Database
Table 49 illustrates the estimate for a large sized set of catalog tables that could be
used to support a production database.

Table 49. Example of Estimating the Catalog Dbspace for a Production Database

Example Number of Objects Number of Pages
Calculation

Number of Pages

Reserved 30 30

3000 tables .33 X 3000 990

5000 views .40 X 5000 2000

75,000 columns .10 X 75,000 7500

250 packages .50 X 250 125

500 dbspaces .03 X 500 15

50 users 10.28 X 50 514

21 package dbspaces 8.10 X 21 170

6 character sets .25 X 6 2

1,200 keys .13 X 1 200 156

Total number of SYS0001 pages = 11,502

Rounded to the next higher multiple of 128 is: 11,520

Modifying the SYS0001 Storage Estimating General Formula
Table 50 on page 348 and Table 51 on page 348 assist you if you want to modify any
of the assumptions used in deriving the general formula. If you have generated the
starter database, you should compare the data in the catalog tables against the
assumptions made here. You can do so by issuing UPDATE STATISTICS for each
of the catalog tables after you have used the starter database. Queries against
SYSTEM.SYSCATALOG give you the statistics for comparison.

Appendix B. Estimating Database Storage 347

Table 50. Your Estimated Stored Lengths of Catalog Rows

Catalog Table Minimum
Length

Maximum
Length

Estimated
Average
Length

SYSACCESS 46 64

SYSCATALOG 64 384

SYSCCSIDS 39 39 39

SYSCHARSETS 393 411

SYSCOLAUTH 46 82

SYSCOLSTATS 27 123

SYSCOLUMNS 56 400

SYSDBSPACES 40 58

SYSDROP 13 13 13

SYSINDEXES 62 232

SYSKEYCOLS 55 91

SYSKEYS 77 113

SYSOPTIONS 13 303

SYSPARMS 82 82

SYSPROGAUTH 46 54

SYSPSERVERS 11 281

SYSROUTINES 58 581

SYSSTRINGS 286 286 286

SYSSYNONYMS 26 62

SYSTABAUTH 57 101

SYSUSAGE 36 72

SYSUSERAUTH 35 35 35

SYSVIEWS 20 292

Table 51. Your Assumptions of Catalog Bytes or Pages for Each Object

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

Table 1 SYSCATALOG
1 SYSTABAUTH
__ SYSINDEXES

View 1 SYSCATALOG
1 SYSVIEWS
__ SYSTABAUTH
__ SYSUSAGE

Column 1 SYSCOLUMNS ___

Package 1 SYSPROGAUTH
___ SYSUSAGE

Dbspace
(including
package
dbspaces)

1 SYSDBSPACES ___

348 System Administration

Table 51. Your Assumptions of Catalog Bytes or Pages for Each Object (continued)

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

User 1 SYSUSERAUTH
___ SYSTABAUTH
___ SYSSYNONYMS
____ SYSCOLAUTH

35

Package
dbspaces

255 SYSACCESS ___

Character
Set

1 SYSCHARSETS ___

Keys 1 SYSKEYS
___ SYSKEYCOLS

Other 3 SYSOPTIONS ___

Estimating ISQL Dbspace Requirements
An allocation of 1 024 pages should be sufficient for most ISQL users. If you have
many users or expect to make extensive use of the ISQL stored queries facility,
consider increasing this allocation.

The recommended size (in pages) for the PUBLIC.ISQL dbspace is 1024 or .88 x the
number of stored queries, whichever is larger.

Estimating Dbspace Sizes for Routines
The size of ROUTINE tables can vary greatly from user to user and from
installation to installation. You can place the ROUTINE tables for all users in the
same public dbspace, or you can place the ROUTINE table for each user in that
user’s private dbspace.

The following formulas are condensed versions of size estimation formulas in the
DB2 Server for VSE & VM Database Administration manual. They simplify the work
required to estimate the size of the dbspace needed to hold routines. The following
assumptions have been used in the formulas:
v The PCTFREE value is 15.
v The PCTINDEX value is 33.
v ALLOWANCE was not included in the formula.

The following formula can be used to calculate the average row length for the
routines:
AVGROWLEN = 23 + average command line length

+ average remark length

Note: The average command line length is not the same as the average command
length. A command can be entered on multiple command lines. A command
line in a routine has a maximum length of 254 characters. A command has a
maximum length of 2048 characters. Be sure to use the command line length
in your estimate.

The following formula can be used to calculate the number of dbspace pages
required for your ROUTINE tables:

Appendix B. Estimating Database Storage 349

number average average
of x number of x number

users routines of lines

Dbspace pages = (2074 / AVGROWLEN) (from previous formula)

Examples:

Table 52. Example of Estimating the Number of Dbspace Pages for a Routine

Number of
Users

Number of
Routines For
Each User

Number of
Lines For Each
Routine

Row Length Dbspace Pages

1 20 20 80 16

20 20 20 80 309

50 60 35 75 3797

Estimating Dbspace Size for Stored SQL Statements (Stored
Queries)

The following assumptions are used in the formula for calculating the size of the
dbspace required for stored SQL statements:
v The PCTFREE value is 15.
v The PCTINDEX value is 33.
v ALLOWANCE is not included in the formula.
v One page was included for one routine named PROFILE. It can contain up to 25

lines with an average row length of 80.

The following formula can be used to calculate the number of dbspace pages
needed for stored SQL statements:

Dbspace pages = 1 + (.037 x number of statements) +

((Truncate [(avglen + 250) / 250 x 250)] x number of statements

2667

When calculating the average length of your stored queries, you must include the
FORMAT information for all SELECT statements. The length of the FORMAT
information can be calculated by the following formula:
Format length = 504 + (number of columns x 44)

or

2048, whichever is smaller

The following examples show the number of dbspace pages required for each user
for the two types of stored SQL statements. The two types are:
v SQL SELECT statements (true stored queries)
v Other SQL statements.

The examples in Table 53 on page 351 and Table 54 on page 351 show the number
of dbspace pages required for one user for 10 stored SQL statements. If a user has
some of each type of stored SQL statement, you must add the values from each
table as needed.

350 System Administration

Table 53. Examples — Dbspace Pages for Each User for Stored SELECT Statements

Number of
Selects

Number of
Columns

Length of
Select

Format
Length

Adjusted
Length1

Dbspace
Pages for
Each User

10 10 70 944 1250 5.88

10 20 70 1384 1500 5.99

10 10 400 944 1500 5.99

10 20 400 1384 2000 7.87

10 40 400 2048 2500 9.38

10 46 2048 2048 4250 16.30

1 The adjusted length is the stored data length of the stored SQL statements. For
more information on adjusted lengths columns, see the DB2 Server for VSE & VM
Database Administration manual.

Table 54. Examples — Dbspace Pages for Each User for Stored SQL Statements Other
than SELECTs

Number of Commands Average Length Adjusted Length1 Pages for Each User

10 70 250 1.31

10 400 500 2.25

10 999 1 000 4.12

10 1 499 1500 6.00

10 2 048 2 250 8.81

1The adjusted length is the stored data length of the stored SQL statements. For
more information on adjusted lengths columns, see the DB2 Server for VSE & VM
Database Administration manual.

Appendix B. Estimating Database Storage 351

352 System Administration

Appendix C. Maximum Values

Database Manager Maximum Values
Table 55. Database Manager Maximum Values

Restricted Parameter Maximum

Databases for each system 1

Number of CICS/VSE shareable links
Initialization parameters:

RMTUSERS 2

DISPBIAS
NCUSERS 2

NPACKAGE 2

NPACKPCT
NPAGBUF 2 3

NDIRBUF 2 4

NLRBU 2

NLRBS 2

NCSCANS 2

CHKINTVL 2

SLOGCUSH
ARCHPCT
SOSLEVEL

unlimited
64

65535
10
252
32766
100
400000
400000
583333
583333
655
99999999
90
99
100

Notes for Table 55:
1. Only one database at a time can be operated in multiple user mode.
2. This is the absolute maximum value. The practical maximum value is less,

depending on the values specified for other parameters and system resources
(such as the amount of storage available). The maximum number of NCUSERS
is limited because the program stack storage for each real agent is obtained
below 16 megabytes.

3. These are 4 K pages.
4. These are 512-byte pages.

© Copyright IBM Corp. 1987, 2000 353

Database Maximum Values
Table 56. Database Maximum Values

Restricted Parameter Maximum

Number of storage pools
Number of dbextents
Number of dbspaces

Number of bytes per database 1

Number of pages per database 1

Number of bytes per dbspace 2

Number of pages per dbspace 2

Size of the directory
Size of a log 4

Size of a dbextent
Size of a storage pool 1

999
999
32000

64 gigabytes 3

16,777,088

32 gigabytes 3

8,388,480

1,048,575 4KB pages
524,287 4KB pages
1,048,575 4KB pages
64 gigabytes 3

Notes for Table 56:
1. This is the absolute maximum size of the database. The practical maximum is

lower.
2. This is the absolute maximum size of a dbspace. The practical maximum is

lower.
3. A gigabyte is 230 bytes (1,073,741,824).
4. This is the absolute maximum size allowed, but it is much larger than the

database can use. See Table 4 on page 15 for more appropriate estimates.

354 System Administration

Appendix D. Updating SYSTEM.SYSSTRINGS

The SYSTEM.SYSSTRINGS catalog table contains information on all the CCSID
conversions that this product supports. For each CCSID conversion performed,
there must be a corresponding row in this table.

To insert a row, follow these steps:
1. Determine the source and target CCSIDs
2. Determine the conversion type

The conversion type is based on the encoding scheme (EBCDIC or ASCII) of
the CCSIDs and whether they are for tagging SBCS, mixed, or graphic data.
Note that in any conversion that this product supports, the target CCSID is
always EBCDIC. The following are conversion types recognized:
v "SS" (EBCDIC/ASCII SBCS to EBCDIC SBCS)
v "SM" (EBCDIC/ASCII SBCS to EBCDIC mixed)
v "MS" (EBCDIC mixed to EBCDIC SBCS)
v "MM" (EBCDIC mixed to EBCDIC mixed)
v "PS" (ASCII mixed to EBCDIC SBCS)
v "PM" (ASCII mixed to EBCDIC mixed)
v "GG" (EBCDIC/ASCII graphic to EBCDIC graphic)

3. Determine the error byte
The error byte is only used for SBCS conversions, and therefore applies to all
conversion types except for "GG". Be careful what you set it to: if a character in
the source gets converted to the error byte, the conversion is terminated and an
error occurs. CCSID conversions either have a NULL error byte, or are set as
follows for the detection of DBCS characters in the source when they are not
allowed:
v X'0E' used for

– "SM" conversions where the source CCSID is EBCDIC
– "MS" conversions

v X'3E' used for
– "SS" conversions where the source CCSID is ASCII
– "SM" conversions where the source CCSID is ASCII
– "PS" conversions

CDRA SBCS conversion tables are modified for use in this type of conversion,
so that all DBCS first bytes get mapped to X'3E' instead of the original X'3F'.

For more information, see step 7, “Customize the SBCS Conversion Table”.
4. Determine the substitution byte

As with the error byte, the substitution byte is not applicable in "GG" type
conversions. Whenever a character in the source gets converted to the
substitution byte, warning flags are set in the SQLCA. This byte is set based on
whether a given conversion table is created using the enforced subset match
criterion. (For more on this subject, refer to the Character Data Representation
Architecture Level 1, Registry manual.) If it is, then this byte is set to X'3F', which
is the CDRA-defined SUB character for conversions with EBCDIC target
CCSIDs.

5. Determine the TRANSPROC

© Copyright IBM Corp. 1987, 2000 355

This field only applies in the cases of "MM", "PM", and "GG" type conversions.
It contains the name of the DBCS conversion table that is shipped with this
product for use in the conversion. If it contains a value other than any of the
DBCS conversion table names that the database manager recognizes, then the
value is treated as the name of a user-defined DBCS conversion exit. (For
information on creating a user-defined TRANSPROC exit, see “Coding Your
Own TRANSPROC Exit” on page 279.)

6. Create the SBCS conversion table
An SBCS conversion table may be required except in the case of the "GG"
conversion type, where it is not applicable. For a conversion type where SBCS
conversion applies, it is possible to specify a NULL SBCS conversion table. For
example, you can have a mixed-to-mixed conversion where the SBCS CCSIDs
of the source and target mixed CCSIDs are the same, in which case you do not
need to perform conversion on the SBCS portion(s) of the mixed source data.
If you require a non-NULL SBCS conversion table, check the catalog table
SYSTEM.SYSSTRINGS to see whether it is already supported. If it is not
currently supported, then you have to create the conversion table based on the
conversion mapping that you define.
A user-created SBCS conversion table should be in the same format as those
supplied by CDRA: that is, a 256-byte string where the byte at offset n (starting
at offset 0) corresponds to what codepoint n in the source CCSID is converted
to. You also have to customize the conversion table for use if its source CCSID
is ASCII SBCS or ASCII mixed.

7. Customize the SBCS conversion table
If your SBCS conversion table is to be used for a conversion with an ASCII
SBCS or ASCII mixed source CCSID, you will have to modify it for the proper
detection of DBCS first bytes. This requires that you determine the ranges of
valid DBCS first byte codepoints for the ASCII SBCS source CCSID; then set the
contents of the SBCS conversion table at the offsets that correspond to the
DBCS first byte codepoints to:
a. Error byte

This is required for the following conversions, where DBCS characters are
not allowed in the ASCII source:
1) "SS" conversions where the source CCSID is ASCII
2) "SM" conversions where the source CCSID is ASCII
3) "PS" conversions

In the case of the CDRA-supplied SBCS conversion tables that are shipped
for use in the types of conversion mentioned above, the values contained at
the DBCS first byte offsets in the conversion tables have been changed from
the original X'3F' to X'3E'. This is also the error byte for these conversions.
X'3F' remains the substitution byte for these conversions.

You should also set the DBCS first byte offsets in your conversion table to a
unique character, which will also be your error byte.

b. X'00'
This is required for "PM" conversions, where DBCS characters in the ASCII
source are allowed and are converted. The database manager considers a
byte a DBCS first byte if it gets converted to X'00' using the
ASCII-to-EBCDIC SBCS conversion table, and if it is not X'00' itself to begin
with.
In the case of the CDRA-supplied SBCS conversion tables that are shipped
for use in "PM" conversions, the values contained at the DBCS first byte

356 System Administration

offsets in the conversion tables used to be X'3F', and have been changed to
X'00'. You must therefore also set the characters at the DBCS first byte
offsets in the conversion table to X'00', in order for DBCS characters to be
recognized in the mixed source.

8. Insert the row into SYSTEM.SYSSTRINGS
You can create a DBSU job to insert the row into SYSTEM.SYSSTRINGS. For
examples, review the ARITPOP MACRO which is supplied with the DB2 Server
for VSE code. This macro inserts a row into SYSTEM.SYSSTRINGS for every
supported conversion between CCSIDs that are supplied with the database
manager.

Appendix D. Updating SYSTEM.SYSSTRINGS 357

358 System Administration

Appendix E. Defining Your Own Character Set

If you cannot use one of the IBM-supplied sample character sets, you can create
your own. (You may be able to use one of the character sets in the Character Data
Representation Architecture Level 1, Registry manual. The CCSIDs in this manual are
registered, and already defined.) To create a character set:
1. Identify all characters in your set and their hexadecimal values. For more

information, see “Step 1: Identify All Characters in Your Character Set” on
page 360.

2. Classify each character.
The database manager has 12 character classifications that it uses to identify
how the character can be used in SQL statements. You must classify those
characters in your set that differ from the ENGLISH character set table. For
more information, see “Step 2: Classify the Characters” on page 362.

3. Determine the hexadecimal values to which lowercase characters are to be
translated. For example, suppose X'6A' is used for lowercase n-tilde, and X'7B'
is used for uppercase N-tilde. The database manager does not automatically
know that X'6A' should be converted to X'7B'. You must define that
relationship. For more information, see “Step 3: Determine Translation
Characters” on page 370.

4. Update the SYSTEM.SYSCHARSETS catalog table.
Having defined character classifications and translations, you must implement
them on the database manager. You can code an INSERT command for the DBS
utility to process. During this process, you must also choose a name for the
character set (for example, PORTUGUESE). For more information, see “Step 4:
Update the SYSTEM.SYSCHARSETS Catalog Table” on page 372.

5. Update the SYSTEM.SYSCCSIDS catalog table.
When the new character set is implemented, you must add a row to the
SYSTEM.SYSCCSIDS catalog table to identify the CCSID values to be associated
with the new character set. For more information, see “Step 5: Update the
SYSTEM.SYSCCSIDS Catalog Table” on page 372.

6. Update the SYSTEM.SYSSTRINGS catalog table.
After you specify the CCSID values, you must indicate the conversion table
information to allow conversions to and from the new CCSID.

7. Update the CCSID-Related Phases
Before using the new character set you must run the job control program
ARISCNVD. This job copies the information in SYSTEM.SYSCHARSETS,
SYSTEM.SYSCCSIDS, and SYSTEM.SYSSTRINGS to three phases, which are
used by the VSE application server and application requester. See the DB2
Server for VSE Program Directory for more information.

When your character set is loaded into the SYSTEM.SYSCHARSETS catalog table,
and the SYSTEM.SYSCCSIDS and SYSTEM.SYSSTRINGS catalog tables have been
updated, you can specify the character set by using the CHARNAME initialization
parameter.

Each step in defining a character set is discussed below. As an example, a character
set (PORTUGUESE) for Brazilian Portuguese is defined.

© Copyright IBM Corp. 1987, 2000 359

Step 1: Identify All Characters in Your Character Set
Identify all characters in your character set, and write a matrix like the one shown
in the previous figures. For example, Figure 126 shows an example of a character
set that might be used to represent Brazilian Portuguese.

Figure 127 on page 361 is provided for you to record your own character set.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

é

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

É

.

<

(

+

!

ç

,

%

>

?

ã

:

Õ

Ã

’

=

”

Bits
0,1

2,3

Hex 0

$

Ç

*

)

;

SP

|

Figure 126. PORTUGUESE Character Set

360 System Administration

At this time, you should note the hexadecimal values in your character set that
have representations different from those in the ENGLISH character set in
Figure 96 on page 230. Recording the differences makes character classification
easier. These are the hexadecimal values that have different representations in the
PORTUGUESE example:

X'4A' X'5F' X'7C'
X'4F' X'6A' X'C0'
X'5A' X'79' X'D0'
X'5B' X'7B'

Figure 127. Your SBCS Character Set

Appendix E. Defining Your Own Character Set 361

Step 2: Classify the Characters
When interpreting commands, the database manager must identify which
characters are valid, and which are not. To do this, the database manager uses an
internal character classification table.

In the table, each of the 256 possible SBCS hexadecimal values are assigned a
classification. The database manager uses these classifications to tell whether a
character is, for example, a delimiter or a numeric. There are 12 classes. Each
hexadecimal value is assigned one of these classes. The only hexadecimal values
that you are able to reclassify are those that, in the ENGLISH character set, are
classified as 3 or 0. Values classified as 0 can be reclassified as 3, and values
classified as 3 can be reclassified as 0. No other reclassifications are allowed. The
only exception to this rule occurs with certain class 6 characters. See the class 6
description below for details. See Table 57 on page 366 for the ENGLISH character
set class. Other character classes are shown only for reference:

Class Meaning

0 Unusable for keywords or unquoted identifiers

Any hexadecimal value assigned to this class cannot be used in keywords
or unquoted identifiers.

1 Blank

The hexadecimal value assigned to this class is a blank. A blank, in the
SQL language, is a delimiter between keywords. The database manager
uses X'40' for blanks.

2 Apostrophe

The hexadecimal value assigned to this class is an apostrophe ('). An
apostrophe, in the SQL language, is the delimiter for character constants.
The database manager uses X'7D' for an apostrophe.

3 Characters other than numerics, uppercase English alphabetics, and
underscores that are usable for unquoted identifiers

Numeric, uppercase English alphabetics, and underscores all belong to
other classes. In the default ENGLISH character set, the lowercase
alphabetics along with $, #, and .* are assigned to this class. In the sample
character sets, characters such as n-tilde and o-umlaut are assigned this
class.

4 Numerics

Any hexadecimal value assigned to this class is a numeric. The SQL
language defines the X'F0' to X'F9' to represent the numbers 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9. You must not assign class 4 to any other hexadecimal values,
nor can you reassign hexadecimal values X'F0' to X'F9' to some other class.

5 Period

Any hexadecimal value assigned to this class is a period. A period, in the
SQL language, is the delimiter between a qualifier (such as an owner) and
a data object (such as a table). The database manager uses X'4B' for a
period.

6 Special characters

Hexadecimal values assigned to this class have special meanings in the
SQL language, just as numerics do. You must not assign class 6 to any

362 System Administration

hexadecimal values other than those listed below. Nor can you reassign the
hexadecimal values shown to some other class. The only exceptions are the
ones which have a different hexadecimal value depending on the
application server default CCSID used. For those hexadecimal values listed
which map to a character used in the SQL language for your application
server default CCSID, do not reassign these values. For those hexadecimal
values listed which do not map to a character used in the SQL language
for your application server default CCSID, you can assign them to class 0
or class 3.

For example, X'5A' maps to the exclamation mark (!) for CCSID 37. For
CCSID 500, X'5A' maps to the right square bracket (]). For CCSID 37, the
hexadecimal value should be class 6. For CCSID 500, the hexadecimal
value could be either class 0 or class 3. In the SQL language the following
hex values have these meanings:

X'4C' <

X'4D' (

X'4E' +

X'4F' | (for CCSIDs 37, 284, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'4F' ! (for CCSIDs 273, 277, 278, 280, 297, 500, 870, 871, 875)

X'50' &

X'5A' ! (for CCSIDs 37, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'5C' *

X'5D')

X'5E' ;

X'5F' ¬ (for CCSIDs 37, 284, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'5F' | (for CCSIDs 273, 277, 278, 280, 297, 500, 870, 875)

X'60' -

X'61' /

X'69' | (for CCSID 838)

X'6A' | (for CCSIDs 870, 878)

X'6B' ,

X'6C' %

X'6E' >

X'6F' ?

X'7A' :

X'7E' =

X'B0' | (for CCSIDs 37, 290, 424, 833, 836, 1027, 28709)

X'BA' ¬ (for CCSIDs 273, 277, 278, 280, 297, 50 0, 871)

X'BA' | (for CCSIDs 284, 285)

X'BB' | (for CCSIDs 273, 277, 278, 280, 297, 500, 871)

X'BB' ! (for CCSID 284)

Appendix E. Defining Your Own Character Set 363

X'EC' | (for CCSID 871)

X'EF' ¬ (for CCSID 875)

7 Quotation Mark

Any hexadecimal value assigned to this class is a double quotation mark
("). A double quotation mark, in the SQL language, is the delimiter for
quoted identifiers. The database manager uses X'7F' for a double quotation
mark.

8 Shift-out character

You should not assign any hexadecimal value to this class. When the DBCS
option is YES, the database manager assigns this class to X'0E'.

9 Shift-in character

You should not assign any hexadecimal value to this class. When the DBCS
option is YES, the database manager assigns this class to X'0F'.

A English Uppercase Alphabetics

This class is restricted to all English uppercase alphabetics (hexadecimal
values X'C1' to X'C9', X'D1' to X'D9', and X'E2' to X'E9'). English uppercase
alphabetics can be used in unquoted identifiers and keywords. (This is true
no matter what SBCS character set is specified.)

B Underscore

Any hexadecimal value assigned to this class is an underscore. An
underscore, in the SQL language, can be used in an unquoted identifier
except as a starting character. The database manager uses X'6D' for an
underscore.

When you have defined a character set, you must classify each hexadecimal value
that has a different representation in your character set than it does in the
ENGLISH character set.

The database manager always sets the first 64 hexadecimal values (X'00' to X'3F') to
class 0. You can set only the remaining 192 hexadecimal values. Therefore, if any
character in your set has a hexadecimal value within X'00' to X'3F', you can use
that hexadecimal value only in quoted identifiers.

The only hexadecimal values that the database manager reclassifies in the first 64
are X'0E' and X'0F'. Those hexadecimal values are permanently defined to the
database manager as the DBCS shift-out and shift-in characters. When the DBCS
option is YES, the database manager reclassifies X'0E' to class 8 and X'0F' to class 9.
For more information, see “Using Double-Byte Character Set (DBCS)” on page 237.

Not all SBCS character sets can be classified for use with the database manager,
because it reserves certain hexadecimal values. For example, all hexadecimal values
that (in the ENGLISH character set) represent uppercase English letters are
reserved. The database manager reserves hexadecimal values so it can correctly
interpret SQL statements.

Use Table 57 on page 366 to classify your character set. The first column gives the
hexadecimal value. The next two columns identify the ENGLISH classification and
conversion values for each of those hexadecimal values. (Translation values are

364 System Administration

discussed in the next step.) The fourth and fifth columns show the classification
and conversion values for the PORTUGUESE example. The remaining two columns
are for your own character set.

Note: All hexadecimal values are reserved except those that are classified as 0 or 3
in the ENGLISH character set.

Any hexadecimal value that is classified in the ENGLISH character set as 0 or 3
can be reclassified as 3 or 0. Keep in mind that all hexadecimal values that are
classified as 0 cannot be used in keywords and unquoted identifiers. Therefore,
you would not want to classify as 0 any letter that is within your language’s
alphabet. You would not be able to use those letters in unquoted identifiers.

The English alphabet consists of the following letters: A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z. Most likely, the hexadecimal values
for letters in your language that are not in the English alphabet are classified as 0
in the ENGLISH character set. You would typically change the classification to 3.

If you must reclassify a hexadecimal value, but the hexadecimal value is reserved,
then it is not possible to completely classify the character set. In that situation, it
may not be to your advantage to specify an alternative character set. For example,
if a character in your alphabet has a hexadecimal value that is assigned class 6 in
the ENGLISH character set, you cannot reclassify that hexadecimal value (the only
exceptions are the hexadecimal values associated with the characters |, !, ¬ and |).

The rationale used in classifying the PORTUGUESE character set hexadecimal
values that are different from the ENGLISH character set is as follows:

X'4A' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'4F' The character represented by this hexadecimal value in the PORTUGUESE
character set is the exclamation mark. Since this is also a special character
in the ENGLISH character set and is already classified as 6, there is no
need to reclassify it.

X'5A' This hexadecimal value, which represents a dollar sign ($) in the
PORTUGUESE character set, was reclassified from 6 to 0. This was done
because the dollar sign is not a special character in the SQL language. If
you want to use the dollar sign in unquoted identifiers and keywords,
however, you can reclassify it to 3.

X'5B' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'5F' This is another character that is reserved in the SQL language. In the
example PORTUGUESE character set, X'5F' represents a caret. Since this is
also a special character in the ENGLISH character set and is already
classified as 6, there is no need to reclassify it.

X'6A' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'79' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'7B' Because the character represented by this hexadecimal value is in the

Appendix E. Defining Your Own Character Set 365

Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'7C' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'B0' This hexadecimal value, which represents a cent sign (¢) in the
PORTUGUESE character set, was reclassified from 6 to 0. This was done
because the cent sign is not a special character in the SQL language.

X'BA' The character represented by this hexadecimal value in the PORTUGUESE
character set is the NOT sign. Since this is a special character in the SQL
language, the value was reclassified from 0 to 6.

X'BB' The character represented by this hexadecimal value in the PORTUGUESE
character set is the vertical bar. Since this is a special character in the SQL
language, the value was reclassified from 0 to 6.

X'C0' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'D0' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

Having reclassified the characters, you next need to consider the translation values
of those characters.

Table 57. Character Classification and Translation Table

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

1
0
0
0
0
0
0
0
0
0
0
5
6
6
6
6

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

3

366 System Administration

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

6
0
0
0
0
0
0
0
0
0
6
3
6
6
6
6

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

0

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

6
6
0
0
0
0
0
0
0
0
0
6
6
B
6
6

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

3 X'5B'

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

0
0
0
0
0
0
0
0
0
0
6
3
3
2
6
7

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

3 X'7C'

Appendix E. Defining Your Own Character Set 367

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

0
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0

80
C1
C2
C3
C4
C5
C6
C7
C8
C9
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

0
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0

90
D1
D2
D3
D4
D5
D6
D7
D8
D9
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

0
0
3
3
3
3
3
3
3
3
0
0
0
0
0
0

A0
A1
E2
E3
E4
E5
E6
E7
E8
E9
AA
AB
AC
AD
AE
AF

368 System Administration

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

0

6
6

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

0
A
A
A
A
A
A
A
A
A
0
0
0
0
0
0

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

3 X'7B'

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

0
A
A
A
A
A
A
A
A
A
0
0
0
0
0
0

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

3 X'4A'

Appendix E. Defining Your Own Character Set 369

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

0
0
A
A
A
A
A
A
A
A
0
0
0
0
0
0

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

4
4
4
4
4
4
4
4
4
4
0
0
0
0
0
0

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Step 3: Determine Translation Characters
When the database manager translates a character string from lowercase to
uppercase, it checks the classification of each character in the string. If the
character is in class 3, it is translated. If not, the character is not changed.

To translate the character, the database manager consults a translation table. The
translation table contains the hexadecimal value to which a particular hexadecimal
value is to be translated.

For every hexadecimal value in your set that has a different character
representation than in English, you must define a translation value. Refer again to
Table 57 on page 366. The following rationale was used to choose the
PORTUGUESE translation values:

X'4A' Because the character represented by this hexadecimal value is an
uppercase E with an accent, there is no need to translate the hexadecimal
value to some other value when the database manager is folding to
uppercase. The translation value remains X'4A' (the same as the ENGLISH
value).

X'4F' The character represented by this hexadecimal value in Portuguese is the

370 System Administration

exclamation mark. Because the hexadecimal value should not be changed
when the database manager is doing a lowercase to uppercase translation,
the translation value should remain X'4F'.

X'5A' This hexadecimal value, which represents a dollar sign ($) in the
PORTUGUESE character set, should not change during a translation. The
translation value should remain X'5A'.

X'5B' Because this hexadecimal value represents an uppercase C with a cedilla, it
does not need to be changed during a translation. The translation value
should remain X'5B'.

X'5F' This is another hexadecimal value that does not represent a letter of the
alphabet. The hexadecimal value should not change during a translation.
The translation value should remain X'5F'.

X'6A' This hexadecimal value represents a lowercase c with a cedilla. During a
translation, it should be translated to an uppercase C with a cedilla. To
have the database manager do the correct translation, the translation value
should be X'5B' (the hexadecimal value for uppercase C with a cedilla).

X'79' This hexadecimal value represents a lowercase a with a tilde. During a
translation, it should be translated to an uppercase A with a tilde. The
translation value should be X'7C'.

X'7B' Because this hexadecimal value represents an uppercase O with a tilde, it
does not need to be changed during a translation. The translation value
should remain X'7B'.

X'7C' Because this hexadecimal value represents an uppercase A with a tilde, it
does not need to be changed during a translation. The translation value
should remain X'7C'.

X'C0' This hexadecimal value represents a lowercase o with a tilde. During a
translation, it should be translated to an uppercase O with a tilde. To have
the database manager do the correct translation, the translation value
should be X'7B' (the hexadecimal value for uppercase O with a tilde).

X'D0' This hexadecimal value represents a lowercase e with an accent. During a
translation, it should be translated to an uppercase E with an accent. To
have the database manager do the correct translation, the translation value
should be X'4A' (the hexadecimal value for uppercase E with an accent).

After determining what the translation values are, verify the following:
1. Hexadecimal values that you have reclassified to class 0 must be translated into

identical hexadecimal values. If you reclassify X'A2' from 3 to 0, you must
ensure that the translation value is set to X'A2', not X'E2' (as it is in ENGLISH).
In the PORTUGUESE example, this situation did not occur. No hexadecimal
values were reclassified from 3 to 0.

2. Hexadecimal values that you have reclassified to class 3 can be translated into
any hexadecimal value having a class of 3 or A. A quick check of the
PORTUGUESE-unique translation values show that the hexadecimal values
either translate to themselves or to hexadecimal values having class 3. The
PORTUGUESE example is still valid.

If your character set fails either of these tests, there is probably an error either in
reclassifications or in the translation values chosen.

Appendix E. Defining Your Own Character Set 371

Step 4: Update the SYSTEM.SYSCHARSETS Catalog Table
After you define translation values for the characters that require them, load the
character set into the SYSTEM.SYSCHARSETS catalog table. The easiest way to
load a character set is by modifying a copy of the DBS utility control commands
that load the sample ENGLISH character set. The A-type member ARISCHAR
contains these control commands.

Change your copy of ARISCHAR to reflect the classification and translation values
for your character set.

The first value in the INSERT statement is the name of the character set. For
'ENGLISH' substitute the name of your character set. You can specify up to
eighteen characters. The value 'PORTUGUESE' was chosen as the name of the
example Brazilian Portuguese SBCS character set.

The second value in the INSERT statement contains data for the character
classification table. There are 192 character classifications that you can set. You
should change only those character classifications in your character set that differ
from the ENGLISH classifications. Use the values you have recorded in Table 57 on
page 366.

The third value in the INSERT statement contains data for the character translation
table. There are 192 character translation values you can set. You should change
only those translation values in your character set that differ from the ENGLISH
translation values. Use the values you have recorded in Table 57 on page 366. Note
that the single quote (X'7D') must be entered twice. A single quote normally
delimits the end of a value in an INSERT statement. To use a single quote as part
of the data, the single quote must be entered twice.

Step 5: Update the SYSTEM.SYSCCSIDS Catalog Table
You must add a row to the SYSTEM.SYSCCSIDS catalog table to identify the
CCSID values to be associated with your new character set. You could issue the
following statement to update SYSTEM.SYSCCSIDS for the character set defined
for this example:

INSERT INTO SYSTEM.SYSCCSIDS (CCSID,SUBTYPE,DBCSID,SBCSID,CHARNAME)
VALUES (57344,

'S',
0,
0,
'PORTUGUESE')

If you are defining your own CCSID (that is, one that is not obtained from the
Character Data Representation Architecture (CDRA)) registry, you must use a value
that is within the range of 57 344 to 61 439 (X'E000' to X'EFFF'). Values within this
range are reserved for user-defined CCSIDs. Ensure that the value you specify does
not already exist: the CCSID column cannot contain duplicate information. Also
keep the following in mind:
v If the character set that you are defining uses conversion tables that are

provided by the CDRA registry, use the CCSIDs that they indicate.
v The SUBTYPE column identifies the subtype of the CCSID. In this example, the

value is 'S' for SBCS.
v The SBCSID column and the DBCSID column specify the SBCS and the DBCS

components for a mixed CCSID. Because the CCSID in this example is SBCS, the
value for both of these columns is 0.

372 System Administration

v The value that you specify for the CHARNAME column must be the same as
the value that you specified in the NAME column of the
SYSTEM.SYSCHARSETS catalog table.

For examples of statements that insert rows into the SYSTEM.SYSCCSIDS catalog
table, review the ARITPOP MACRO that is supplied with the database manager.

Step 6: Update the SYSTEM.SYSSTRINGS Catalog Table
The SYSTEM.SYSSTRINGS catalog table identifies the tables that will be used for
conversion between specific pairs of CCSIDs. Conversion tables for
CDRA-supplied CCSIDs are provided by the CDRA registry. For more information
on CDRA conversion tables, see the Character Data Representation Architecture Level
1, Registry manual. After you create your CCSID, you must determine the
conversion table information for SYSTEM.SYSSTRINGS. You must add a row to
SYSTEM.SYSSTRINGS for each conversion that you want to support both to and
from the new CCSID. For a detailed description to update SYSTEM.SYSSTRINGS,
see “Appendix D. Updating SYSTEM.SYSSTRINGS” on page 355.

Suppose you added CCSID 57344 and you want to support the following
conversions:
v CCSID 37 to CCSID 57344
v CCSID 57344 to CCSID 37
v CCSID 57344 to CCSID 28709.

You must add three rows to the SYSTEM.SYSSTRINGS catalog table. To specify
any of these conversions in SYSTEM.SYSSTRINGS, you would use an INSERT
statement to insert the necessary information into the following columns of the
catalog table:
v INCCSID, which specifies the CCSID of the input character.
v OUTCCSID, which specifies the CCSID to which the conversion is done.
v TRANSTYPE, which identifies the type of conversion to be done (for example,

'SS' for SBCS to SBCS).
v ERRORBYTE, which identifies characters that have no representation in the

target code page. If a character to be converted maps to a code point containing
this byte an error occurs.

v SUBBYTE, which identifies characters that have no representation in the target
code page. If a character to be converted maps to a code point identified by this
byte, a warning is issued.

v TRANSPROC, which identifies the conversion procedures that are used for
conversion between CCSIDs. The procedures are used either for converting
between DBCS CCSIDs, or for converting the DBCS components of mixed
CCSIDs. The TRANSPROC value is blank if a DBCS conversion procedure is not
applied. For more information, see “Coding Your Own TRANSPROC Exit” on
page 279.

v TRANSTAB1, which represents the first 64 bytes of the conversion table.
v TRANSTAB2, which represents the last 192 bytes of the conversion table.

The conversion table maps the hexadecimal representation of each character in the
source CCSID to the hexadecimal representation of each character in the target
CCSID. For example, in CCSID 37 an exclamation mark (!) is represented by X'5A'.
The hexadecimal representation for the exclamation mark in CCSID 281 is X'4F'.
The hexadecimal value of the character at offset 90 in the conversion table where

Appendix E. Defining Your Own Character Set 373

INCCSID=37 and OUTCCSID=281 would be X'4F'. Remember, when counting
offsets, the first offset is zero. Therefore, the byte at offset 90 is actually the 91st.

For a detailed description to update SYSTEM.SYSSTRINGS, see “Appendix D.
Updating SYSTEM.SYSSTRINGS” on page 355.

When you have completed steps 1 through 6, you can start the application server
using the newly defined character set. If the database manager detects an error in
the character set, it uses the value of CHARNAME that was used the last time the
application server was started.

Step 7: Update the CCSID-Related Phases
After you have updated the SYSTEM.SYSCHARSETS, SYSTEM.SYSCCSIDS and
SYSTEM.SYSSTRINGS catalog tables, run the job control program ARISCNVD to
load the CCSID information from the catalog tables into three phase files
(ARISCCSD, ARISSTRD, and ARISSCRD). The application server and the
application requester use these files to enable the use of the new character set. For
more information on the control program ARISCNVD, refer to the DB2 Server for
VSE Program Directory.

When you have completed steps 1 through 7, you can start the application server
using the newly defined character set. If the database manager detects an error in
the character set, it uses the value of CHARNAME that was used the last time the
application server was started.

374 System Administration

Appendix F. Macro List

The macros identified in this appendix are provided as programming interfaces for
customers by the DB2 Server for VSE database management system.

Attention: Do not use as programming interfaces any DB2 Server for VSE macros
other than those identified in this chapter.

Macro list

The database manager provides the following General-use programming interface
macros:
v ARIRCAN
v ARIBFPPB.

© Copyright IBM Corp. 1987, 2000 375

376 System Administration

Appendix G. DRDA Considerations

Users who are planning to design applications that
v run on non-VSE platforms and use the Distributed Relational Database

Architecture (DRDA) protocol to connect to DB2 Server for VSE & VM servers,
or

v run on VSE/ESA and use the Distributed Relational Database Architecture
(DRDA) protocol to connect to servers other than DB2 Server for VSE & VM

need to be aware that DB2 Server for VSE & VM’s support of SQL does not exactly
match the IBM SQL standard6 or the SQL Entry Level standard. 7 This appendix
attempts to provide some guidance in discrepancies to these standards.

Omissions from the Standards
For a list of where DB2 Server for VSE & VM does not support the IBM SQL or
SQL92 entry level standards, please consult the DB2 Server for VSE & VM SQL
Reference manual.

Extensions to the Standards
1. There is no support for modifiable packages created by using extended

dynamic statements. If you request such support by specifying the MODIFY
option on the CREATE PACKAGE statement, the system will override this
option with NOMODIFY.

2. Nonmodifiable packages created by using extended dynamic statements are
supported with the following restrictions:
a. There is no support for the positioned UPDATE and positioned DELETE

statements.
b. If the Basic Extended PREPARE form of the extended PREPARE statement

prepares a statement that contains parameter markers, the USING
DESCRIPTOR clause must be used to identify an input SQLDA structure.

c. There is no support for the Single Row Extended PREPARE form of the
extended PREPARE statement.

d. There is no support for the NODESCRIBE option of the CREATE PACKAGE
statement. If specified, it will be ignored.

e. There is no support for “USER” in the ISOLATION option of the CREATE
PACKAGE statement. The system will override USER with CS.

f. There is no support for “LOCAL” in the DATE or TIME option of the
CREATE PACKAGE statement. If specified, SQLCODE -168 (SQLSTATE
42615) will be generated, indicating an incorrect parameter.

g. DB2 Server for VSE & VM servers do not support cursors declared with the
“WITH HOLD” clause. However, applications may use the “WITH HOLD”
clause against other DRDA servers if they support it, except when extended
dynamic statements are involved.

6. IBM SQL is a superset of the SQL92 Entry Level standard

7. Entry Level of the International Organization for Standardization (ISO) 9075-1992 Database Language SQL specification

© Copyright IBM Corp. 1987, 2000 377

3. There is no support for the semantics checking of the Flagger, but the syntax
checking of static SQL against the SAA and SQL-89 standards will still be
carried out.

DB2 Server for VSE Facility Restrictions
1. There is no support for “USER” in the CBND parameter ISOLATION. When

specified, the system will override USER with CS.
2. There is no support for “LOCAL” in the CBND parameters DATE and TIME.

When specified, the remote DRDA application server will return SQLCODE
-168 (SQLSTATE 42615).

3. In a private flow environment, there is no support for the blocking of PUTs.
However, the PUT operation will still be supported one row at a time as
unblocked inserts. In a DRDA flow environment with the DB2 Server for VSE
Batch AR, no blocking is provided on a PUT. Each PUT will result in the
execution of a single INSERT. Therefore, if large amounts of data are loaded
into a remote server, it may be better to transfer the data through some other
means to the target site, and then use the local utility to load the data into the
database.

4. The following ISQL commands are not supported when ISQL is connected to
a remote DRDA application server, because they request functions or depend
on the DB2 Server for VSE system catalogs:
v SET ISOLATION
v COUNTER
v SHOW.

When ISQL is connected to a remote application server and a long-running
SQL statement is processed. ISQL will NOT display message ARI7044I to
allow the user to enter ISQL CANCEL to cancel the long-running SQL
statement. The user cancel exit is not supported on DRDA connections.

5. The DRDA Online Resource Adapter does not provide the user cancel exit to
allow online DRDA applications to perform a CANCEL function. For example,
a long-running SQL statement cannot be cancelled on a remote connection.

6. The DRDA Online Resource Adapter does not call ARIUXIT when a CICS user
tries to connect to a remote DRDA application server either implicitly or
explicitly and the accounting exit is link-edited in AMODE 24.
If the accounting exit is link-edited in AMODE 24 and the CICS user tries to
connect to a remote DRDA application server, SQLCODE=-947 will be
generated, indicating ARIUXIT in AMODE 24 is not supported.

7. If accounting data is sent from a DRDA application requester to a DB2 for
VSE & VM server, only the first 16 bytes of user-defined data 8 is captured by
the server and put into accounting records.

8. The current CICS/VSE implementation provides no facility for establishing
APPC conversations that use a security level of PGM (for example, a user ID
and password are required to allocate the conversation). CICS transactions can
only establish SECURITY=SAME conversations to remote APPC partners.
Due to this limitation, DB2 Server for VSE online application requester may
use the ″userid IDENTIFICATION BY password″ clause on the CONNECT
statement when connecting to a remote application server. In this case, the
VSE online application requester performs DRDA security checking as
described in the Distributed Relational Database Architecture Reference manual.

8. For example, from DDCS for OS/2 user-defined data can be set by the DFT_ACCOUNT_STR configuration parameter.

378 System Administration

|
|
|
|
|
|
|
|

This check will be performed during handshaking after having established an
APPC conversation with a DRDA server that supports security handshaking.

9. A user must sign on to CICS first before executing a transaction that accesses
a remote DRDA application server. If a user failed to sign on to CICS and
executes a transaction to access a remote DRDA application server, the connect
will fail because CICS passes a null user ID to the remote system, which is
invalid. DRDA does not support security NONE.

10. The following DBSU commands are not supported when using the DRDA
protocol, because they request functions specific to DB2 Server for VSE:
v UNLOAD DBSPACE
v UNLOAD TABLE
v UNLOAD PACKAGE
v RELOAD DBSPACE
v RELOAD TABLE
v SET ISOLATION
v SET UPDATE STATISTICS
v REBIND PACKAGE
v REORGANIZE INDEX

Appendix G. DRDA Considerations 379

|
|

|

|

|

|

|

|

|

|

|

380 System Administration

Appendix H. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between each release of the
product and the previous release, going back to Version 1 Release 3.5. There is a
separate section in the appendix for each release.

Note on Skipping Releases: If your migration plans call for skipping one or more
releases (for example, migrating directly from V2R2
to V3R4), you will still be affected by the
incompatibilities introduced by the releases that you
are skipping.

Within each section, the incompatibility items are grouped into the following
categories:
v SQL and Data
v Application Programming
v System Environment

Definition of an Incompatibility
For the purpose of this appendix, an “incompatibility” is defined to be a part of
the product that works differently than it did in the previous release, in such a
way that if used in an existing application, it will produce a different result,
necessitate a change to the application, or reduce performance. In this definition,
“application” can apply to a broad range of things (singly or in combination), such
as:
v Application program code
v Specifications for preprocessing application programs
v Interactive SQL queries
v ISQL functions
v DBS Utility functions
v Miscellaneous tools in your operating environment.

This appendix does not describe incompatibilities where certain operations in the
current release are less likely to generate an error condition than they did in the
previous release, as those changes will only have a positive impact on your
applications. (For example, the SUM and AVG column functions no longer
overflow as easily because they now use a larger accumulator, and a change to the
use of the equal (=) compare predicate with a negative indicator variable now
evaluates to UNKNOWN rather than generating an error condition.)

Impact on Existing Applications
Read the appropriate section of this appendix carefully to determine what changes
you will need to make to your applications when migrating from one release to the
next. You may also want to review the chapter in the DB2 Server for VSE System
Administration manual on migration considerations which discusses some of these
incompatibilities in more detail, plus other considerations for each
release-to-release migration.

This appendix excludes the numerous changes and enhancements for which no
impact on existing applications is anticipated. These are listed in the Summary of
Changes section (included with each manual) of the appropriate release of the

© Copyright IBM Corp. 1987, 2000 381

|

library. Review that section to see where you could make changes to your existing
applications in order to take advantage of some of these enhancements.

V2R1 and V1R3.5 Incompatibilities
SQL and Data

1. Evaluation of HAVING and SELECT Clauses
Prior to V2R1, the HAVING clause was evaluated after the SELECT clause. This
caused a statement such as the following to fail on a zero divide and generate
SQLCODE -802, if a zero part number was encountered:

SELECT 200/PARTNO FROM T1
GROUP BY PARTNO HAVING PARTNO > 0

In V2R1, the HAVING clause is evaluated before the SELECT clause. This
means your applications now have the potential of producing different results.
In the above example, if a zero part number is encountered, the query does not
fail and SQLCODE -802 is not generated.

2. Null Values as a Grouping Criterion
Prior to V2R1, if any row had a null value in one of the columns referenced in
a GROUP BY clause, each such row was treated as a separate group.
In V2R1, null values are considered identical for purposes of grouping.
This means that your existing applications may generate fewer rows in the
result table than they did in previous releases, since multiple null-value-groups
are now consolidated into one group. Any derived column function values will
reflect this consolidation (for example, SUM(BONUS)).

3. Negative Decimal Zero Support
Prior to V2R1, the system recognized negative decimal zero as a valid value.
However, it did not evaluate positive and negative decimal zero values as
equivalent.
In V2R2, any negative decimal zeros found in SQL statements are converted to
positive decimal zeros before execution. This means that inserting, updating, or
deriving negative decimal zeros, or using them in a comparison, is no longer
possible. A utility called SQLZERO is provided which converts all negative
decimal zeros in the database to positive decimal zeros.
For a detailed discussion of this topic, see “Elimination of Negative Decimal
Zero” in the chapter which discusses migrating from V1R3.5 in the System
Planning and Administration manual, V2R1 or later.

4. Insertion of Invalid Decimal Values
Prior to V2R1, it was possible to insert invalid decimal data into the database
during DATALOAD by specifying string values that were invalid for
DECIMAL columns. For example, X'0000' has no sign value.
In V2R1, this is no longer allowed. Doing so will generate SQLCODE -424.

Application Programming

5. Use of ORDER BY Clause with SELECT INTO
Prior to V2R1, the SELECT INTO statement was allowed to contain an ORDER
BY clause.
In V2R1, this is no longer allowed. Doing so will generate SQLCODE -524.

6. Scope of Prepared Statements
Prior to V2R1, a prepared statement could sometimes, but not always, be
referenced in subsequent logical units of work (LUWs).

382 System Administration

In V2R1, this inconsistency is removed. A prepared statement may now only be
referenced within the same LUW in which it was prepared.
If your applications contain code that references prepared statements across
LUWs, they will have to be restructured accordingly.

7. SQLCODE Returned After a Format 2 INSERT
Prior to V2R1, when a format 2 INSERT (known as “INSERT via subselect” in
V2R2 and later releases) returned an empty answer set for insertion, SQLCODE
+0 was generated.
In V2R1, SQLCODE +100 is generated instead.

8. Preprocessor Errors Converted to Warnings
Prior to V2R1, a certain set of conditions generated errors during preprocessing.
In V2R1, these conditions now generate warnings, although the associated
SQLCODEs are still negative (starting with V3R1, the codes are presented as
positive numbers). These conditions and their corresponding SQLCODEs are
shown in the table below.

SQLCODE DESCRIPTION

-134 IMPROPER USE OF THE LONG FIELD COLUMN column.

-135 THE INPUT FOR A LONG FIELD COLUMN IN AN INSERT OR UPDATE
MUST BE FROM A HOST VARIABLE OR THE KEYWORD NULL.

-150 THE VIEW CANNOT BE USED TO MODIFY DATA SINCE IT IS BASED
ON MORE THAN ONE TABLE.

-151 A COLUMN OF A VIEW CANNOT BE UPDATED SINCE IT IS DERIVED
FROM AN EXPRESSION.

-152 A COLUMN OF A VIEW CANNOT BE USED IN A WHERE-CLAUSE
SINCE IT IS DERIVED FROM A COLUMN FUNCTION.

-154 VIEW LIMITATIONS DO NOT ALLOW THE USE OF THE FOLLOWING
OPERATION: operation

-155 YOU CANNOT PERFORM A JOIN ON A VIEW CONTAINING A
GROUP-BY CLAUSE OR A DISTINCT KEYWORD.

-156 RESTRICTIONS APPLY WHEN SELECTING FROM A VIEW CREATED
WITH THE DISTINCT OR GROUP BY KEYWORD.

-202 COLUMN column WAS NOT FOUND IN ANY TABLE REFERENCED BY
THE COMMAND.

-205 COLUMN column WAS NOT FOUND IN TABLE creator.table.

-401 INCOMPATIBLE DATA TYPES FOUND IN AN EXPRESSION OR
COMPARE OPERATION.

-404 A CHARACTER STRING SPECIFIED IN AN INSERT OR UPDATE IS
TOO LARGE FOR THE TARGET COLUMN.

-405 THE NUMERIC VALUE, value, IS NOT WITHIN THE RANGE OF THE
DATA TYPE.

-407 AN UPDATE OR INSERT OF A NULL VALUE FOR A COLUMN
DEFINED AS NOT NULL IS NOT ALLOWED.

-408 AN UPDATE OR INSERT OF A DATA VALUE IS INCOMPATIBLE WITH
THE DATA TYPE OF THE ASSOCIATED TARGET COLUMN.

-414 LIKE WAS USED FOR A NUMERIC OR DATE/TIME COLUMN TYPE. IT
MUST ONLY BE USED WITH CHAR OR VARCHAR TYPE COLUMNS.

-415 THE DATA TYPES OF CORRESPONDING ITEMS IN THE
SELECT-CLAUSES CONNECTED BY A UNION ARE NOT IDENTICAL.

Appendix H. Incompatibilities Between Releases 383

SQLCODE DESCRIPTION

-416 YOU CANNOT SPECIFY A LONG FIELD COLUMN IN THE
SELECT-CLAUSE OF A UNION.

-419 THE PRECISION OF THE NUMERATOR AND/OR THE SCALE OF THE
DENOMINATOR ARE TOO LARGE FOR DECIMAL DIVISION.

-421 A HEXADECIMAL LITERAL WITH AN ODD LENGTH MAY NOT BE
USED WITH A DBCS COLUMN IN A PREDICATE.

V2R2 and V2R1 Incompatibilities

SQL and Data

1. Leading and Trailing zeros in Decimal Constants
Prior to V2R2, leading and trailing zeros of decimal constants were removed by
the system when calculating their scale and precision.
In V2R2, if the precision of a decimal constant is greater than 15, leading zeros
are removed to bring the precision down to 15. Trailing zeros are not removed.
If your current applications provide output from the result table without any
intervening formatting, this change has the potential of altering that output. If
formatting is involved, you may have to change the formatting logic to obtain
the same output.
Similarly, input to the database by means of INSERT or UPDATE may be
affected, if a decimal constant is involved.

2. Use of Host Variables with UNION
Prior to V2R2, two select-lists could be successfully UNION’ed even when they
contained corresponding items that were host variables of different data types
and different lengths. The statement below is an example of this, where host
variables :hw and :fw are halfword fixed binary (15) and fullword fixed binary
(31), respectively.

SELECT :hw FROM T1
UNION
SELECT :fw FROM T1

In V2R2, the above statement is no longer allowed. Issuing it will generate
SQLCODE -415.

Note: In V3R1, some restrictions on the use of data types within a UNION are
removed, including the above incompatibility.

Application Programming

3. Atomic Operations Against the Database
Prior to V2R2, many types of operational errors (that is, SQL statement errors)
against the database caused the system to roll back the entire current logical
unit of work (LUW), leaving the application with no control over the status of
the LUW.
In V2R2, all operations against the database are now atomic. That is, within an
LUW, each operation can succeed or fail separately, with no effect on other
operations, provided they do not depend on it. If an operation fails, the
application is free to either continue working on the same LUW, or commit the
changes made so far, or roll back the LUW. Some system errors, such as
deadlocks, still require the entire LUW to be rolled back by the system. Also,
atomic operation is not supported for:

384 System Administration

v Operations on data located in nonrecoverable storage pools
v Operations on data when running without a log (LOGMODE=N).

As a result of this change, you may want to extend the logic of your LUW
processing in your applications.

Note: The next incompatibility item contains a special case of atomic operation.
4. Multiple Row Changes Within an Atomic Operation

Prior to V2R2, if an error occurred during a single operation involving multiple
row changes to the database, the database was potentially left in an
inconsistent state. (This was one of those operational errors that was not rolled
back by the system.) Some of the rows were processed; the rest were not. The
only practical way to avoid this inconsistency was to have the application roll
back the entire current LUW.
There was one exception to this: in the case of a data definition statement, such
as CREATE TABLE, the system itself rolled back the LUW to avoid a partial
definition of a table in the catalog. The application had no control over the
status of the LUW.
In V2R2, with atomic operation in place, the system automatically undoes that
portion of the multiple row operation that was processed prior to the error.
This eliminates the potential of an inconsistent database resulting from such an
operation, and leaves the application free to control the current LUW as it sees
fit.
See “Detailed Notes on V2R2-V2R1 Incompatibilities” on page 386 for an
example.

5. Four-Byte Floating-point Data
Prior to V2R2, all floating-point data had to be eight bytes.
In V2R2, it can be four bytes.
This leads to a potential problem in V2R2 for programs that allocate eight bytes
when using DESCRIBE on a FLOAT column. When using DESCRIBE,
applications should allocate storage based on the SQLLEN of a column (as
given in the SQLDA), not the SQLTYPE.

6. Arithmetic and Conversion Errors
Prior to V2R2, an arithmetic or conversion error terminated processing of the
statement and generated SQLCODE -802.
In V2R2, these types of errors are tolerated when they involve a host variable
that has an indicator variable. In such cases, processing of the SQL statement
continues; SQLCODE +802 is generated; a -2 is placed in the indicator variable;
and the associated database variable remains unchanged.
If your application is checking for these errors, this could impact its logic. The
types of errors that can now be tolerated are:
v Fixed point overflow
v Decimal overflow
v Exponent overflow
v Exponent underflow
v Divide exception.

For more detail, see the Messages and Codes manual, V2R2 or later, for
SQLCODEs +802 and -802.

7. GRANT Authority for PUBLIC
Prior to V2R2, “WITH GRANT OPTION” in a GRANT statement passed
GRANT authority to the user receiving the privilege in question, even when
the user was PUBLIC.

Appendix H. Incompatibilities Between Releases 385

In V2R2, when “PUBLIC” and “WITH GRANT OPTION” are used together, the
privilege is granted to PUBLIC, but without GRANT authority. In such cases, a
warning is given to that effect.
This can impact your current authorization of views or programs, since these
objects, which previously could have been grantable (for example, a value of 'G'
recorded for a program in catalog table SYSPROGAUTH), will no longer be so
(a value of 'Y' now in SYSPROGAUTH) if they depend on PUBLIC access to an
object.
For example, if a program contains a static SELECT statement involving table
T1, and the owner of the program is dependent on PUBLIC access to T1, then
'Y' is the highest authorization value attainable for that statement — and
therefore for the program. This means that the owner is still able to run the
program, but not to grant the RUN privilege on it to others. This, in turn,
means that when this program is preprocessed under V2R2, users who
previously may have had authority to run it (by virtue of receiving RUN
authority from the owner) will no longer have that authority.

System Environment

8. Change to Message Numbers
Prior to V2R2, the ARI message numbers were three digits long and were
followed by an action indicator. This identification formed a header for each
line of the message text, as illustrated below:

ARI297A RESPONSE TO ARCHIVE PROMPT
ARI297A IS NOT VALID.

In V2R2, these message numbers are expanded to four digits to accommodate
future expansion of the system. Message numbers existing in the earlier
releases now contain a high-order zero. Also, the message header is now only
used on the first line of the message. The above example becomes:

ARI0297A RESPONSE TO ARCHIVE PROMPT
IS NOT VALID.

This could impact any automated operating system facility that you may be
using (for example, the VM Programmable Operator) to scan the message
number and text.

Detailed Notes on V2R2-V2R1 Incompatibilities
1. Multiple Row Changes Within an Atomic Operation

In the following example, the operations are contained in one LUW. The second
operation involves multiple row changes to the database.

DELETE FROM SUPPLIER WHERE SUPPNO = 64
UPDATE INVENTORY SET PARTNO = PARTNO + 1
INSERT INTO QUOTATIONS VALUES (64, 221, .25, 5, 100)

The DELETE statement removes a supplier from the SUPPLIER table. The
UPDATE statement changes the first two rows of the INVENTORY table, but
fails on the third row because the operation would create a duplicate primary
key value.9

Prior to V2R2, the system would have left the new values in the first two rows
of INVENTORY, with the rest of the table unchanged. To avoid this undesirable

9. In V3R2 this error will not occur, because the enforcement of uniqueness is done after all the rows are updated.

386 System Administration

inconsistency, the application would have had to contain logic to recognize this
error and roll back the entire LUW, thus undoing the DELETE.

In V2R2, when this error occurs, the system undoes the UPDATE statement by
reversing the changes made to the first two rows. Because neither the DELETE
nor the INSERT depends on the success of the UPDATE (these operations are
atomic), the application has the following options open to it:
v Proceed and perform the INSERT, or
v Commit the successful DELETE, or
v Roll back the LUW to undo the DELETE.

V3R1 and V2R2 Incompatibilities

SQL and Data

1. Table Designation Rules
Prior to V3R1, the following set of ANS/ISO SQL rules for table designation
in FROM clauses were not fully enforced:
v Duplicate table or view names in a FROM clause must all have a correlation

name assigned to them.
v Correlation names in a FROM clause must be distinct from each other.
v Correlation names in a FROM clause must be distinct from the table or

view names in the same clause.

When the application contained ambiguities, such as
SELECT A.COL1
FROM A B, B A

where COL1 appeared in both table A and table B, the system accepted the
statement, employing its own set of rules to resolve the ambiguity. This
example represents only one type of ambiguity that could occur.

In V3R1, the ANS/ISO rules are fully enforced. Any violations generate
SQLCODE -211 (SQLSTATE 52012).

2. New Reserved Words
Prior to V3R1, the following were not reserved words in SQL and could
therefore be used as ordinary identifiers:
v CHAR
v CHARACTER
v DOUBLE
v EXECUTE
v FIELDPROC
v GRAPHIC
v LONG
v PACKAGE.

Similarly, the following were not reserved words for the DBS Utility:
v REORGANIZE
v SCHEMA.

In V3R1, these are reserved words, so an existing application that uses any
words in the SQL group above as an ordinary identifier will have to be
changed before it is preprocessed, or SQLCODE -105 (SQLSTATE 37501) will
be generated. Similarly, the words in the DBS Utility group above can no
longer be used in DBS Utility commands as ordinary identifiers.

Appendix H. Incompatibilities Between Releases 387

You can address this incompatibility by changing these ordinary identifiers to
use nonreserved words, or you can retain the original names by redefining
them as delimited identifiers.

3. Significance of Trailing Blanks
Prior to V3R1, trailing blanks were treated as significant in both object names
and VARCHAR and VARGRAPHIC column values.
In V3R1, such trailing blanks are not considered significant.
If your applications must continue to treat trailing blanks as significant, you
may have to undertake some redesign. See “Detailed Notes on V3R1-V2R2
Incompatibilities” on page 392 for further discussion and examples.

4. Timestamp at the 24th Hour
Prior to V3R1, a timestamp value in which the hour portion was 24 and the
minute, second, or microsecond portion was not zero, was accepted as valid
data for insertion or updating.
In V3R1, an attempt to insert or update a column with such a value generates
SQLCODE -181 (SQLSTATE 22007). When the hour portion is 24, the other
time portions must now be zero.
If you have any of these invalid values in your tables after migrating to V3R1,
they will prevent you from doing a DBS Utility unload/reload operation or an
INSERT using a subselect. You will have to first correct these values to
conform to the rule mentioned above.

Application Programming

5. Invalid Pointers in SQLDA and RDIIN
Prior to V3R1, the system checked for invalid pointers in the SQLDA and
RDIIN structures. This checking was extensive, often resulting in poor
performance.
In V3R1, in the interest of better performance, this checking has been
eliminated. It is up to the application programmer to follow the rules on
setting pointers in the SQLDA, as outlined in the chapter “Using Dynamic
Statements” in the V3R1 Application Programming manual. Pointers in the
RDIIN must not be changed by the application. If your application does not
satisfy these rules, the results will be unpredictable.

6. Continuation Characters in FORTRAN
Prior to V3R1, the FORTRAN preprocessor ignored any continuation character
located in front of an EXEC SQL on the same line, provided it was not part of
an IF or ELSE statement — even though such coding was incorrect.
In V3R1, the continuation character is acknowledged and the EXEC SQL is
ignored.

7. Missing Comma in COBOL Continuation Lines
Prior to V3R1, if you left out an intended comma from a list of parameters in
an SQL statement embedded in a COBOL program (as illustrated below) and
did not code a continuation character in the next line, the system would
assume a continuation character and misinterpret the parameter list, giving
potentially wrong results.

SELECT *
FROM T1
WHERE COL1 IN ('AB' <--- missing comma

'CD', <--- no continuation character
'EF')

In V3R1, this error is detected and reported at preprocessor time.

388 System Administration

8. DROP PROGRAM Statement Containing Host Variables
Prior to V3R1, the processing of a DROP PROGRAM statement that contained
host variables required a specific section in the access module. (In this form of
the statement, the name of the owner of the program or the name of the
program or both are expressed as host variables.)

Note on New Terminology: As of V3R1, PACKAGE becomes the new
reserved word for PROGRAM, the latter
remaining as a synonym. Access modules are
now referred to as packages. This new
terminology is used below.

In V3R1, the host variable form of the DROP PACKAGE statement no longer
requires a section in the package. All the information required to execute the
statement is sent with the execution-time request. You will be affected if you
have this form of the DROP PACKAGE coded in your application programs.

If the programs that use these packages are explicitly repreprocessed, they will
have to be recompiled (or reassembled) and relinked in order to execute
successfully. Otherwise, errors will result, since there will be fewer sections in
the new package and this will cause a mismatch between section numbers in
the RDIIN structure and the new package.

9. Data Type of String Constants
Prior to V3R1, application programs that assumed that string constants have a
data type of VARGRAPHIC because they are used in the context of GRAPHIC
and VARGRAPHIC data, were accepted.
In V3R1, such constants are considered to be VARCHAR, and if used in
conjunction with GRAPHIC or VARGRAPHIC data will result in an error,
such as SQLCODE -171 (SQLSTATE 53015) or SQLCODE -408 (SQLSTATE
53021).
If the host language is COBOL, PL/I, or C, you should use explicitly coded
graphic constants. See the section of the V3R1 SQL Reference manual that
discusses graphic string constants.

10. New Options in CREATE PROGRAM Statement
Prior to V3R1, when the following three options:

ISOL({RR|CS|USER})
DATE({ISO|USA|EUR|JIS|LOCAL})
TIME({ISO|USA|EUR|JIS|LOCAL})

were used in conjunction with an extended dynamic access module, the
values for these options were determined when statements referencing the
extended dynamic access module were executed. The values were set based
on the corresponding preprocessing options of the program containing the
extended dynamic statements.

Note on New Terminology: As of V3R1, PACKAGE becomes the new
reserved word for PROGRAM, the latter
remaining as a synonym of the former. Access
modules are now referred to as packages. This
new terminology is used below.

In V3R1, these options are added to the CREATE PACKAGE statement, so that
they become preprocessing options. This means that their values are stored

Appendix H. Incompatibilities Between Releases 389

with the package itself, and are enforced when the sections of the package are
executed. Consequently, your programs may now run at a different isolation
level than they did in V2R2.

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 392 for
examples that illustrate how incompatibilities may arise as a result of this
change.

11. Views Created from SELECT *
Prior to V3R1, views created as SELECT * FROM T1 required no special
attention when being migrated from release to release, even when columns
had been added to table T1 after the creation of the view.
In V3R1, a necessary change to the system now requires special attention in
the above situation. The first time the system encounters such a view in an
application, it attempts to rebuild the view, and fails with SQLCODE -835
(SQLSTATE 56049).
To avoid this failure, drop and recreate the view before running the
application on V3R1. Depending on how your application logic is coded, you
may have to change that logic in order to handle the extra columns that were
added to table T1. The best practice is to avoid the use of SELECT * for view
creation, and specify the explicit columns that the application requires.

12. Semicolon Delimiter in SYSVIEW Table
Prior to V3R1, when a view was created through the DBS Utility or by
running a preprocessed program, the CREATE VIEW statement was inserted
into column VIEWTEXT of catalog table SYSVIEWS with a semicolon
delimiter.
In V3R1, this delimiter is no longer included.
If your application has a dependency on the existence of this delimiter in the
SYSVIEWS table, you will need to change it accordingly.

13. Replacement of Error Message ARI0565E
Prior to V3R1, error message ARI0565E was issued during preprocessing of
FORTRAN programs whenever the input source contained no SQL statements
that required creation of a package.
In V3R1, this message is replaced by information message ARI0565I. In
addition, related message, ARI0598I, dealing with the status of the package, is
modified.
This could impact any automated operating system facility that you may be
using (for example, the VM Programmable Operator) to scan the message
number and text.

14. Replacement of SQLCODE -150
Prior to V3R1, an attempt to modify data through a view based on more than
one table generated SQLCODE -150.
In V3R1, this is replaced with SQLCODE +149 at preprocessor time, and
SQLCODE -149 (SQLSTATE 53007) at run time.

15. New Positive SQLCODEs
Prior to V3R1, a number of negative SQLCODEs and associated positive
RDSCODEs were returned during preprocessing to indicate a warning
situation.
In V3R1, new positive SQLCODEs are returned instead, which correspond
identically to the above negative SQLCODEs in code number and (in most
cases) message text and explanation. If the error is not removed, the
corresponding negative SQLCODEs will be issued at run time.

390 System Administration

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 392 for a list of
these new positive SQLCODEs.

System Environment

16. Uppercase and Mixed Case in Message Text
Prior to V3R1, all message text was in uppercase for all the languages
available in the product except German, which was available only in mixed
case.

Note: The uppercase applied to both English language offerings, AMENG and
UCENG. It also applied to the English text embedded in the DBCS
languages Japanese and Korean (for example, “FORCE”, “SQLEND”).

In V3R1, the message text of three more languages is now changed to mixed
case only. These languages are AMENG (the default language setting), Italian,
and Spanish. If you are using any of these three languages and you have
existing case-sensitive applications that scan for specific message text in
uppercase only, you will have to modify them to detect lowercase as well.
This could impact any automated operating system facility that you may be
using for this purpose (for example, the VM Programmable Operator).

An alternative approach (for English users only) to modifying your
applications would be to specify UCENG instead of AMENG, through the SET
LANGUAGE command.

17. Authorization for Changing System Catalog Tables
Prior to V3R1, certain portions of the catalog could be updated, deleted, or
inserted into, by any user with DBA authority.
In V3R1, the number of columns in the catalog tables for which these changes
are allowed is reduced.
This change may affect the authorization of some of your applications. See
Appendix E of the V3R1 SQL Reference manual for a list of the columns that
can now be updated, deleted, or inserted.

18. Modification of Sample Tables and Applications
Prior to V3R1, the sample tables shipped with the product consisted of five
Manufacturing tables and four Organizational-project tables. The sample
applications shipped with the product used the Manufacturing tables.
In V3R1, the Manufacturing tables are not included, but can be installed
optionally. The Organization-project tables are enhanced to provide more
guidance on referential integrity and also consistency across the IBM relational
database products. The enhancements include:
v Two new tables
v A new column in an existing table
v Renaming of a table
v Modification of a foreign key definition.

The sample applications are now modified to use the enhanced
Organization-project tables. They now issue a ROLLBACK instead of a
COMMIT, so that they can be rerun without having to first restore the sample
database.

If you have any applications that use these tables, such as an online tutorial or
a test package for new releases, you will need to upgrade them accordingly.

Appendix H. Incompatibilities Between Releases 391

Detailed Notes on V3R1-V2R2 Incompatibilities
1. Significance of Trailing Blanks

Prior to V3R1, delimited identifiers "TABLE1" and "TABLE1�" would be
considered two different tables, and VARCHAR values 'ABC' and 'ABC��' two
different values, where '�' represents a blank character.
In V3R1, in the case of the table names, the system would not accept the two
tables because they now have identical names. In the case of the VARCHAR
values, they are considered equal, except in a LIKE comparison. However, if
specified at INSERT or UPDATE time, trailing blanks are included in the
varying length string data stored in the database.
If your applications must continue to treat trailing blanks as significant, you
may have to undertake some redesign. For example, prior to V3R1, if your
table had a VARCHAR column, COLX, containing 'AAA���' and you wanted to
select all values from COLX that were not equal to 'AAA', the following search
condition would satisfy this requirement, because it would return value
'AAA���' along with any other values not equal to 'AAA':

WHERE COLX <> 'AAA'

In V3R1, value 'AAA���' does not get returned in the above example. This
search condition must be redesigned in order to get the same results as in prior
releases. One solution is:

WHERE COLX NOT LIKE 'AAA'

For more discussion on migration considerations for this item, see
“Considerations for VARCHAR and VARGRAPHIC Compare” in the chapter
which discusses migrating from V2R2, in the System Administration manual,
V3R1 or later.

2. New Options in CREATE PROGRAM Statement
The following examples illustrate the incompatibilities that may arise when you
migrate to V3R1.

Load Module

Package

Execution

2.2 3.1

Figure 128. Legend

392 System Administration

Figure 129 illustrates how isolation levels are determined for packages created
using extended dynamic SQL in V2R2. For example, program PROG1 contains
the CREATE PROGRAM statement for package PACKA, and prepares a section
in the package. Program PROG2 subsequently executes the section in PACKA.
Since program PROG2 was preprocessed with isolation level cursor stability
(CS), the section executes using CS.

PACKA

section n section n

PACKB

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

. . .
EXECUTE :SECTION IN PACK A

. . .

CREATE PROGRAM PACKA

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

. . .

CREATE PROGRAM PACKB

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

PROG4 (ISOL=USER)

Figure 129. Version 2 Release 2

Appendix H. Incompatibilities Between Releases 393

Figure 130 shows the same scenario in V3R1. In this case, the isolation level RR
is specified when the PACKA package is created. When program PROG2
executes a section in PACKA, isolation level RR is used.

PACKA

section n section n

PACKB

(run at CS)

(run at RR)

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

. . .
EXECUTE :SECTION IN PACK A

(run at RR)

PROG4 (ISOL=USER)PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA
OPTION ISOL(RR)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

. . .

CREATE PACKAGE PACKB
OPTION ISOL(USER)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKB

(run at RR)

Figure 130. Version 3 Release 1

394 System Administration

Figure 131 shows packages being migrated to V3R1. In this case, the isolation
level bind option will be automatically set to USER. Applications will notice no
change in isolation level handling from previous releases.

PACKA PACKB

section nsection n

section n section n

. . .
EXECUTE :SECTION IN PACK A

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

MIGRATION

PROG2 (ISOL=CS)

PACKB (ISOL=USER)PACKA (ISOL=USER)

PROG3 (ISOL=USER)

Figure 131. Migration

Appendix H. Incompatibilities Between Releases 395

Figure 132 and Figure 133 show that once an extended dynamic package has
been dropped and recreated in V3R1 with an isolation level other than USER,
the isolation level bind option will be enforced whenever the executing
application has also been preprocessed, assembled, and re-linked under V3R1.
If the PACKA package has been dropped and recreated in V3R1, with an
isolation level of RR, then:
v If program PROG2 is still pre-V3R1, when the section in PACKA is executed,

isolation level CS will be used.
v Otherwise, isolation level RR will be enforced whenever sections in PACKA

are executed.
3. New Positive SQLCODEs

These codes are shown in the table below.

SQLCODE SQLSTATE DESCRIPTION

+117 01525 The number of data values to be inserted does not equal
the number of columns specified or implied.

PACKA

section n

(run at CS)

. . .
EXECUTE :SECTION IN PACK A

PROG1 (ISOL=RR)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA
OPTION ISOL(RR)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

Figure 132. Dropping and Re-creating PACKA Without Repreprocessing PROG2

PACKA

section n

. . .
EXECUTE :SECTION IN PACK A

(run at RR)

PROG2 (ISOL=CS)

Figure 133. Re-preprocessing PROG2

396 System Administration

SQLCODE SQLSTATE DESCRIPTION

+134 Improper use of long string.

+135 The input for a long string column in an INSERT
statement or UPDATE statement must be from a host
variable or be the keyword NULL.

+149 The view cannot be used to modify data because it is
based on more than one table.

+151 A column of a view cannot be updated since it is derived
from an expression.

+154 View limitations do not allow you to use the following
operation: xxxxxx

+202 01533 Column xxxxxx was not found in any table referenced by
the statement.

+204 01532 xxxxxx was not found in the system catalog.

+205 01533 Column xxxxxx was not found in table yyyyyy.

+206 01533 The xxxxxx on yyyyyy was not found.

+401 Incompatible data types found in an expression or
compare operation.

+404 A character string specified in an INSERT or UPDATE
statement is too large for the target column.

+405 The numeric value, xxxxxx, is not within the range of the
data type.

+407 Either an UPDATE statement or an INSERT statement
with a null value for a column defined as NOT NULL is
not allowed, or a null host variable value is not allowed in
a SELECT list.

+408 An UPDATE or INSERT of a data value is incompatible
with the data type of the associated target column.

+414 The LIKE clause was used for a numeric or date/time
column type. LIKE must only be used with character or
graphic compatible columns.

+415 The corresponding columns, n, of the operand of a
UNION or a UNION ALL do not have comparable
column descriptions.

+416 You cannot specify a long string column in the SELECT
clause of a UNION.

+419 The precision of the numerator and/or the scale of the
denominator are too large for decimal division.

+421 A hexadecimal literal associated with a graphic compatible
column in a predicate cannot have an odd length.

+551 01548 User xxxxxx does not have the yyyyyy privilege.

+552 01542 xxxxxx is not authorized to perform this statement.

+668 Table xxxxxx is inactive and you cannot access it.

V3R2 and V3R1 Incompatibilities

SQL and Data

1. Nonexposed Table Names

Appendix H. Incompatibilities Between Releases 397

Prior to V3R2, nonexposed table names (those that have an associated
correlation name in the FROM clause) could be referenced within the SQL
statement containing such a name.
In V3R2, this is no longer the case. Any application code that makes such a
reference will have to be changed to reference the associated correlation name
instead. Otherwise, SQLCODE -201 (SQLSTATE 52003) will be generated.
For example, if both tables in the FROM clause

FROM TABLE1, TABLE2 A

have a column named DESCR, any reference in the query to this column for
the second table would have to be written as A.DESCR, not TABLE2.DESCR,
because TABLE2 is a nonexposed table name.

2. DISTINCT Column Functions in HAVING Clauses
Prior to V3R2, a DISTINCT column function was allowed in conjunction with
a dyadic operator in the predicate of a HAVING clause. (A dyadic operator is
an operator having two operands.) For example, the following would be
accepted as valid:

SELECT JOB, AVG(SALARY), AVG(BONUS)
FROM EMPLOYEE
GROUP BY JOB
HAVING AVG(DISTINCT BONUS) + 50 > 100

In V3R2, as part of the product’s compliance with SQL-89 in the introduction
of unary minus in DISTINCT column functions, this code is no longer
allowed. Using it will generate SQLCODE -112 (SQLSTATE 37507).

3. New Reserved Word, SOME
Prior to V3R2, SOME was not a reserved word in SQL and could therefore be
used as an ordinary identifier.
In V3R2, SOME is a reserved word that is used in quantified predicates as a
synonym for ANY, so any existing applications that use it as an ordinary
identifier will have to be changed before they are preprocessed under V3R2.
Id SOME is used as an ordinary identifier, SQLCODE -105 (SQLSTATE 37501)
will be generated.
You can address this incompatibility by changing this ordinary identifier to
use a nonreserved word, or you can retain the original name by redefining it
as a delimited identifier.

4. Comparing Character Data with Unquoted Numeric Data
Prior to V3R2, applications that compared character data type columns to an
unquoted numeric, represented invalid SQL code that was accepted. For
example,

WHERE C1 = 3

where C1 was defined as CHAR(1).

In V3R2, this is no longer accepted. Doing this comparison will generate
SQLCODE -401 (SQLSTATE 53018).

5. CHAR Scalar Function with a Timestamp Argument
Prior to V3R2, applications that used a second argument for the CHAR scalar
function, when the first argument was a timestamp expression, represented
invalid SQL code that was accepted. The second argument was ignored.
In V3R2, this is no longer accepted. Using this argument will generate
SQLCODE -171 (SQLSTATE 53015).

398 System Administration

6. No Column Name in a Column Function Within a HAVING Clause
Prior to V3R2, applications that used a column function within a HAVING
clause with no explicit column name in its argument, represented invalid SQL
code that was accepted. For example:

HAVING MIN(1) > 30

In V3R2, this is no longer accepted. Using this function will generate
SQLCODE -111 (SQLSTATE 56001).

7. Even-numbered Precision for Columns
Prior to V3R2, columns that were specified with even-numbered precision
were rounded up to the next odd-numbered precision, when creating or
altering a table. For example, DECIMAL(6,2) became DECIMAL(7,2) at
CREATE time.
Similar rounding up is also performed for arithmatic expressions found inside
statements. For example, the expression 99.9999/12*(12+3) will become
099.9999/12*(12+3) during processing.
In V3R2, this rounding is no longer done. In the above example, any
application code that relies on such rounding in order to store seven digits in
the column will require a redefinition of the column to DECIMAL(7,2), if the
table gets recreated in V3R2. Otherwise, one of the following error conditions
(depending on where the mismatch between column and length of the
variable occurs) will be generated: SQLCODE -302 (SQLSTATE 22003),
SQLCODE -405 (SQLSTATE 53020), or SQLCODE -413 (SQLSTATE 22003).
Arithmatic expression that relies on such rounding to obtain enough precision
to accomodate the result of the calculation will need modification. In the
above example, the 99.9999 in the expression 99.9999/12*(12+3) must be
changed to 099.9999 in order to accomodate the result which is 124.99988.
Otherwise, SQLCODE -802 (SQLSTATE 22003) will be generated.

Date/time Durations: Date and time durations are specified as DECIMAL(8,0)
and DECIMAL(6,0) respectively, but if stored in the
database prior to V3R2, they became DECIMAL(9,0)
and DECIMAL(7,0) columns. Because of this, V3R2 still
accepts the odd-numbered precision for these durations,
when they are used as input.

Performance of Assembler Programs: Assembler does not support
even-numbered precision. If such table
columns are referenced in a predicate
containing a comparative host variable
in an Assembler program, the latter
must be declared with a precision one
higher than the column. This leads to
inefficient processing. You should
consider redefining such table columns
to odd-numbered precision to avoid
this reduction in performance.

8. Floating-point Ranges
Prior to V3R2, there was a certain range of floating-point values that went
beyond the allowable values for the database and if encountered, would
generate SQLCODE -405 (SQLSTATE 53020).

Appendix H. Incompatibilities Between Releases 399

In V3R2, because of a necessary change in the checking algorithm for
floating-point constants, the following two narrow ranges have been added to
the original range and will now also trigger SQLCODE -405 when
encountered:
v Approximately +7.2370055773322608E+75 to +7.23700557733622E+75
v Approximately -7.2370055773322608E+75 to -7.23700557733622E+75.

9. Decimal Precision in Internal Sorts
Prior to V3R2, an arithmetic operation involving decimal columns, such as
COL1*COL2/100 or SUM(COL3), allowed a precision of up to 15 digits,
unless the SQL query specified something less.
In V3R2, with the enhancement of decimal precision, this allowable precision
is now expanded to 31 digits. As a result, it is possible for a query that has
been migrated from V3R1 to generate SQLCODE -101 (SQLSTATE 54001) with
a value of 'ARIXECK' in the SQLERRP field of the SQLCA. This error
indicates that the maximum allowable size (255) of an internal sort key has
been exceeded. This can only occur if the query is fairly complex and requires
an internal sort.

Note: Queries that use internal sorts are typically those that use ORDER BY,
UNION, or DISTINCT.

If you experience this error, you can reduce the precision of the arithmetic
operations in the select list of your query by applying the DECIMAL scalar
function. This, in turn, may reduce the internal sort key to an acceptable
length.

10. Quantified Predicates Involving Null Values
Prior to V3R2, null values in quantified predicates (ALL, ANY) were not
handled according to the FIPS standard.
In V3R2, the FIPS standard applies. As a result, the truth value of these
predicates is different from previous releases for some cases involving null
values.
See “Detailed Notes on V3R2-V3R1 Incompatibilities” on page 401 for a
discussion on these cases and examples to illustrate the incompatibilities.

Application Programming

11. Negative Indicator Variables in Predicates
Prior to V3R2, the use of negative indicator variables in predicates was limited
to the basic equal-to (=) predicate in static, dynamic, and extended dynamic
SQL.
In V3R2, the use of negative indicator variables in predicates is extended in
some areas and restricted in others. This use is now allowed in all predicates
of static SQL and extended dynamic SQL when a descriptor is specified on the
PREPARE statement. SQLCODE -309 (SQLSTATE 22512) is generated when a
negative indicator variable is used in any predicate within dynamic SQL, or
extended dynamic SQL when no descriptor is specified on the PREPARE
statement.

12. Declaration of Indicator Variables
Prior to V3R2, existing application programs that used indicator variables
declared with a data type other than the equivalent of SMALLINT were
accepted.

400 System Administration

In V3R2, these programs are no longer accepted. For FORTRAN programs,
error message ARI0550E is generated at preprocessing time; for Assembler, C,
COBOL, and PL/I programs, SQLCODE -326 (SQLSTATE spaces) is generated
at preprocessor time.

13. Incorrect Data Inserted from Variable Length Host Variables
Prior to V3R2, incorrect data could get inserted into the database from a
variable length host variable that had a length value greater than the
maximum that was defined at preprocessing time.
In V3R2, this is prevented. If it is attempted, SQLCODE -311 (SQLSTATE
22501) will be generated.

14. Incorrect String Representations of Date/time Values
Prior to V3R2, incorrect string representations of date/time values generated
errors at preprocessor time.
In V3R2, warning messages are issued instead; then if the string
representations are not corrected, they will result in errors at run time.

15. COBOL Host Variable Names
Prior to V3R2, if a COBOL program contained a hyphen (-) in the declaration
of a host variable name, this hyphen could be represented as an underscore
(_) where the name was used within an SQL statement.
In V3R2, the preprocessor no longer accepts this substitution within the
program.
If you have any such substitutions in your COBOL source code, they will have
to be converted to hyphens before preprocessing under V3R2.

16. Validation of Host Variables
Prior to Version 3, applications containing any of the SQL statements SELECT,
SELECT INTO, UPDATE, INSERT, or DELETE, could be preprocessed from a
user machine on one release of the product to a database machine on another
release of the same version.
In V3R2, there is a change to the validation of host variables for these
statements. As a result, this preprocessing fails when the two releases
involved are V3R1 and a later release of Version 3. To circumvent this
problem, you must preprocess the application from a user machine at the
same release level as the database machine on which you would like the
package created before compiling, linking, and executing the application from
the user machine.

Detailed Notes on V3R2-V3R1 Incompatibilities
1. Quantified Predicates Involving Null Values

Those cases for which your applications will give different results than they did
in earlier releases can be divided into three types, as described below. The
accompanying examples are based on these two tables, where the question
mark represents a null value:

Table T1: C1 C2 Table T2: C3
-- -- --
? 1 ?
2 2 2

Recalling that a quantified predicate involves the structure
<expression> <quantifier> <subquery>

the three types can be described as follows:

Appendix H. Incompatibilities Between Releases 401

a. Prior to V3R2, when
v The value of the expression is NULL, and
v The subselect returns an empty set,

the truth value of the quantified predicate was UNKNOWN.

In V3R2, the truth value is TRUE if the quantifier is ALL, and FALSE if the
quantifier is ANY.

In the example below, the second row of T1 is returned by any release of
the database manager, but the first row of T1 is only returned by V3R2.

SELECT * FROM T1
WHERE C1 > ALL (SELECT C3 FROM T2 WHERE C3 > 2)

b. Prior to V3R2, when
v The quantifier is ALL, and
v The subselect returns at least one NULL, and
v There are no values in the result of the subselect for which the implied

predicate (the predicate applied to just one value in the result) is FALSE;

or when
v The quantifier is ANY, and
v The subselect returns at least one NULL, and
v There are no values in the result of the subselect for which the implied

predicate (the predicate applied to just one value in the result) is TRUE,

the truth value of the quantified predicate was FALSE, except when the
expression was NULL.

In V3R2, the truth value is UNKNOWN.

Note: This change will only affect the results of queries in which a NOT
has been applied to the quantified predicate in the situations
described above. When a NOT is applied, the truth value is TRUE for
prior releases, but is UNKNOWN for V3R2.

In the example below, both rows of T1 are returned by previous releases,
but only the first row of T1 is returned by V3R2:

SELECT * FROM T1
WHERE NOT C2 = ALL (SELECT C3 FROM T2)

See the following references for performance implications of queries similar
to those shown in the above examples:
v Chapter 2 of the V3R2 Database Administration manual for a discussion on

nulls in quantified predicates where null columns are allowed, under
“Creating Tables”.

v Chapter 5 of the V3R2 Diagnosis Guide and Reference manual for a
discussion on inefficient search where nullable expressions are involved,
under “Analysis of Performance Problems”.

c. Prior to V3R2, when:
v The expression contains an arithmetic expression, scalar function or

column function
v The quantifier is ALL
v The subselect returns at least one NULL, and

402 System Administration

v There are no values in the result of the subselect for which the implied
predicate (the predicate applied to just one value in the result) is FALSE,

the truth value of the quantified predicate was TRUE, except when the
expression was NULL.

In V3R2, the truth value is UNKNOWN.

In the example below, the second row of T1 is not returned by any release
of the database manager. However, the first row of T1 is returned by
previous releases, but not by V3R2.

SELECT * FROM T1
WHERE C2 + 1 = ALL (SELECT C3 FROM T2)

Comparison of types (b) and (c): Type (c) is really a subset of the more general
case outlined in type (b), by virtue of its
extra condition about the expression.
However, type (c) is included separately
here, because it represents an exception to
the more general case. The exception lies in
the fact that these two types generated
different results for the truth value prior to
V3R2. In V3R2, however, this exception
disappears, because their results are now the
same (truth value = UNKNOWN).

V3R4 and V3R2 Incompatibilities (VSE Only)

SQL and Data

1. New Reserved Word, CONCAT
Prior to V3R4, CONCAT was not a reserved word in SQL and could therefore
be used as an ordinary identifier.
In V3R4, CONCAT is a reserved word, and can be used as an alternative to
the concatenation operator (||). Any existing applications that use it as an
ordinary identifier will have to be changed before they are preprocessed
under V3R4; otherwise SQLCODE -105 (SQLSTATE 37501) will be generated.
You can address this incompatibility by changing this ordinary identifier to
use a nonreserved word, or you can retain the original name by redefining it
as a delimited identifier.

2. REVOKE UPDATE
Prior to V3R4, the REVOKE statement for the UPDATE privilege ignored any
column names that might be present as parameters of the UPDATE option —
even though such coding was invalid. (This statement is only done on a table
basis, never a column basis.)
In V3R4, such parameters are not allowed. If they are used, SQLCODE -105
(SQLSTATE 37501) will be generated.

3. Numeric Data in Character Strings
Prior to V3R4, columns with a data type of CHAR or VARCHAR accepted
numeric data, including FLOAT, on insert or update. For example, the
following statements did not create an error:

CREATE TABLE T1 (COL CHAR(8))
CREATE TABLE T2 (COL VARCHAR(8))

INSERT INTO T1 (123)

Appendix H. Incompatibilities Between Releases 403

INSERT INTO T2 (123)
INSERT INTO T1 (1E1)
INSERT INTO T2 (1E1)

UPDATE T1 SET COL = 123
UPDATE T2 SET COL = 123
UPDATE T1 SET COL = 1E1
UPDATE T2 SET COL = 1E1

In V3R4, these inserts and updates now generate SQLCODE -408 (SQLSTATE
53021).

If you want to use the value 123, you must now use it as a character literal
('123'). Float literals are no longer allowed for character columns.

4. Invalid String Representation of Datetime
Prior to V3R4, when a predicate was being evaluated that contained an
operand that was one of the special registers CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, and one of the other operands was a
character column of the correct length but containing a value that was not a
valid string representation of a datetime, the application ran successfully. Any
row containing such an invalid value was returned if it met the search
condition. For example, all invalid date values in column, ORDERDATE, were
returned for the following condition:

WHERE CURRENT DATE <> ORDERDATE

In V3R4, SQLCODE -180 (SQLSTATE 22007) is generated under the above
condition.

5. Internally Generated Table Names
Prior to V3R4, the system internally built a composite table name that
included the name of the relational database, based on a certain maximum
length.
In V3R4, this length is slightly increased, and the internal process is the same,
whether DRDA server support is involved or not. As a result, there is a very
small probability that some of your SQL statements could exceed an internal
limitation of the system and generate an SQLCODE -101 (SQLSTATE 54001).
The more table names you have in a statement, the greater the probability of
this occurring. If you experience this error, one possible solution would be to
break the statement down into two separate statements.

6. Enhanced EXPLAIN Tables
Prior to V3R4, the tables used by the EXPLAIN statement had some major
differences from the corresponding tables in the DB2* product.
In V3R4, these differences are minimized to enhance the EXPLAIN functions
and make them more compatible with those in the DB2 product. As a result,
there are significant changes to the design of these tables and the EXPLAIN
statement no longer works on the old tables. These changes include new
columns dispersed among old ones, the loss of one column, a column data
type change, and a column length change.
See the DB2 Server for VSE & VM SQL Reference manual for the new design of
these tables.
If you have used the EXPLAIN tables in prior releases, you will have to
recreate the revised tables before using the EXPLAIN statement in V3R4. To
assist you in this task, a DBSU job file containing the necessary create
statements is now included as an A-type member (called ARIXEXP) with the
product.

404 System Administration

Similarly, if you have applications which depend upon the design of the old
EXPLAIN tables, you will need to modify these applications to reflect the new
design.

Application Programming

7. Setting of SQLN Field
Prior to V3R4, if field SQLD in the SQLDA area held a greater value than the
SQLN field after a DESCRIBE, the system set SQLN to zero.
In V3R4, the value of SQLN is not changed.
If your application tests SQLN for zero to verify successful completion of the
DESCRIBE, the logic will have to be revised to test for SQLD > SQLN.

8. C NUL-Terminated Strings - Variable Length
Prior to V3R4, a C input string with a length greater than 1 was treated as a
fixed length character host variable. It was not mandatory to have a NUL
present in it except when the input host variable length was 255, in which
case SQLCODE -426 (SQLSTATE 22523) was generated.
In V3R4, a C input string is no longer treated as fixed length. A NUL must be
present on all C NUL-terminated input strings except those with a length of 1;
otherwise SQLCODE -302 (SQLSTATE 22001) is generated. SQLCODE -426
(SQLSTATE 22523) is no longer generated.

9. C NUL-Terminated Strings - NUL Byte
Prior to V3R4, the NUL byte in a C NUL-terminated string was treated as a
blank.
In V3R4, it is treated as a string terminator.

10. C NUL-Terminated Strings - Trailing Blanks
Prior to V3R4, any trailing blanks in a C NUL-terminated string were
removed when using the string to update or insert a VARCHAR column or to
compare to a VARCHAR column.
In V3R4, these blanks will no longer be removed.

11. C NUL-Terminated Strings - Length
Prior to V3R4, the SQL/DS scalar function, LENGTH, with a C
NUL-terminated string as its argument, returned the defined length.
In V3R4, this function now returns the length according to the position of the
NUL terminator. (This length excludes the terminator itself.)

12. SQL Statement String
Prior to V3R4, an SQL statement string could end with a statement terminator,
when used in conjunction with EXECUTE IMMEDIATE, PREPARE, or
Extended PREPARE. An example of such a statement is

DROP TABLE T1;

which has a trailing semicolon. This was allowed in application programs,
even though such coding was invalid. It was also allowed in ISQL and QMF*,
since those facilities also use the above three statements to process
interactively issued statements.

In V3R4, this statement terminator is not allowed. If it is used, SQLCODE -104
(SQLSTATE 37501) will be generated.

If you have been using such a terminator for the CREATE VIEW statement,
your use of catalog table SYSVIEWS could be affected, as described in the DB2
Server for VSE & VM SQL Reference manual.

Appendix H. Incompatibilities Between Releases 405

13. SQL/DS Preprocessing of Extended Dynamic Statements
Prior to V3R4, a cursor-variable with a defined length greater than 18 was
accepted by the preprocessor, even though such variables should only be
defined with a length of 18.
In V3R4, the preprocessor traps this condition and generates SQLCODE -324
(SQLSTATE spaces). You will have to change any applications that use these
invalid cursor-variable lengths in your extended dynamic statements.

14. Reason Codes for Incorrect Host Variable Declarations
Prior to V3R4, a large number of SQLERRD1 codes were associated with
SQLCODE -314 (SQLSTATE spaces) at preprocessor time for invalid host
variables.
In V3R4, with the introduction of host structures and the associated parsing of
declaration statements by the preprocessor, the values of some of these
SQLERRD1 codes have changed.
If your application has dependencies on specific SQLERRD1 values, you
should look for these changes in the DB2 Server for VM Messages and Codes or
DB2 Server for VSE Messages and Codes manual and modify your application
accordingly.

15. Structured Declarations in COBOL and C
Prior to V3R4, there were a number of error situations for structure
declarations in the SQL DECLARE SECTION that were not checked by the
COBOL and C preprocessors.
In V3R4, these situations are subjected to validation checks, resulting in the
following potential errors, which must be corrected before compilation:

SQLCODE SQLSTATE Condition

-107 54003 Host variable name too long

-307 spaces Duplicate host variable names

-314 spaces Syntax and semantic errors in a host variable

16. Data Type of Hexadecimal Constants
Prior to V3R4, application programs that assumed that hexadecimal constants
have a data type of VARGRAPHIC, because they are used in the context of
GRAPHIC and VARGRAPHIC data, were accepted.
In V3R4, such constants are considered to be VARCHAR. If used in
conjunction with GRAPHIC or VARGRAPHIC data, they will cause a number
of specific SQLCODEs and corresponding SQLSTATEs, dependent on
individual cases.
This also means that SQLCODE -421 (SQLSTATE 53055), dealing with
hexadecimal literals of odd length, is no longer generated.

17. Non-updatable View
Prior to V3R4, a user with DBA authority who tried to update a view that was
not updatable got an appropriate error, such as SQLCODE -154 (SQLSTATE
56009). A user without DBA authority, however, got an authorization error,
SQLCODE -551 (SQLSTATE 59001).
In V3R4, the latter user receives the same error message as the DBA user,
instead of the authorization message.

18. SYSTEM Table Missing from the System Catalog

406 System Administration

Prior to V3R4, if you tried to INSERT, DELETE, or UPDATE a table or view
created by 'SYSTEM', but which was not in the system catalog, SQLCODE
-823 (SQLSTATE 53032) was generated, indicating that you lacked proper
authorization.
In V3R4, SQLCODE -204 (SQLCODE 52004) is generated instead, indicating
that the object could not be found in the system catalog.

19. Folding of Lowercase in PREP and DBSU
Prior to V3R4, folding of lowercase into uppercase in PREP and the DBS
Utility was done by adding X’40’ to the hexadecimal representation of the
lowercase character. Sometimes this resulted in characters being folded
incorrectly (for example, in the Katakana character set).
In V3R4, this is done using the 370 built-in Assembler instruction
TRANSLATE and the user-specified character translation table, in order to be
consistent with how the application server handles this operation. One
exception to this is when the DBS Utility processes SCHEMA input files.
Folding is no longer done on these files; this makes it consistent with the DBS
Utility control file, which only allows uppercase input.
If your applications have built-in dependencies on the previous folding
scheme, you could get different results. For example, a Katakana user may
have a character in his or her coding scheme that has a hexadecimal value
that appears to the SQL/DS system as one of the 26 lowercase English letters.
Instead of being folded to uppercase English, the Katakana character will now
be folded according to the Katakana character translation table.
If you have lowercase in your DBS Utility SCHEMA input file, you will have
to change it to uppercase.

20. Loading Audit Trace
Prior to V3R4, the Database Administration manual contained sample table
definition and DATALOAD parameters for creating a security audit table and
loading trace records into it.
In V3R4, the position of the columns within the table are changed and a new
column, EXTLUWID, added. If you have been loading audit trace data using
this table definition and a DATALOAD job, you will need to change the
DATALOAD job, as documented in the V3R4 Database Administration manual.
If you also want to make use of the new EXTLUWID column, you will need
to recreate the table as well.

21. Use of Host Variables in CONNECT Statement
Prior to V3R4, if you used a host variable for the userid or password in a
CONNECT statement and the data type of that variable did not satisfy one of
the conditions listed below, an error was generated at run time:
v C programs: C-NUL string of length 9
v Assembler, COBOL, or PL/I programs: fixed length character string of

length 8.

In V3R4, these conditions are checked by the preprocessor. If they fail the
check, SQLCODE -324 (SQLSTATE spaces) is generated.

22. Data Types of Parameter Markers in Predicates
Prior to V3R4, the resolution of data types for a parameter marker was
dependent on the highest order of the data types of all the operands to the
left of the parameter marker. Highest order, in the case of numeric operands,
implies FLOAT > DECIMAL > INTEGER > SMALLINT.
In V3R4, this resolution process is changed to become more consistent with
the DB2 product. If there is an operand expressed as a column name in a
BETWEEN predicate, the data type of any parameter marker is resolved as

Appendix H. Incompatibilities Between Releases 407

that of the leftmost such operand. Otherwise, the data type of the parameter
marker is resolved as that of the leftmost operand that is not a parameter
marker — whether in a BETWEEN predicate or an IN predicate.
This could cause a different result from previous releases for predicates that
can have more than two operands (namely BETWEEN and IN), but only if
your application assigns parameter marker values that are inappropriate for
your data.
See “Detailed Notes on V3R4-V3R2 Incompatibilities” on page 411 for some
examples and further discussion.

23. Bad Input Records in DATALOAD
Prior to V3R4, a bad input record would terminate DATALOAD command
processing on multiple tables when the DBS Utility was running in multiple
user mode — whether or not it was preprocessed with the NOBLOCK option.
An insert error would be indicated with one of the following codes, followed
by message ARI0862E:

SQLCODE SQLSTATE
-405 53020
-424 22502
-530 23503
-802 22003, 22012, or 22502
-803 23505

In V3R4, such command processing is no longer terminated, if the DBS Utility
is preprocessed with the NOBLOCK option. The error indications are still
generated, but the processing skips over the bad record and continues.

If you have a dependency in your application on this termination approach
prior to V3R4, you may want to address this change in the case of the
NOBLOCK option.

24. Index Dependency of a Package
Prior to V3R4, when a SELECT DISTINCT was applied to a single column
that had a unique index, the system assumed uniqueness within the column,
rather than applying a sort. However, this kind of index dependency was not
recorded in the package.
In V3R4, this technique now records the index dependency in the package (for
system integrity), even though the index is not actually used to access the
table. In addition, the technique is extended to column functions that use
DISTINCT — for example, SELECT COUNT(DISTINCT(COL4)), where COL4
has a unique index.
If the index is dropped, the package will now be marked as invalid, causing a
dynamic reprep. After the reprep, the application will take longer to execute,
because a sort will be needed to process DISTINCT correctly.

25. SQLSTATE Changes
Prior to V3R4, certain SQLCODEs had associated SQLSTATEs that did not
conform to the SAA standards.
In V3R4, these SQLSTATEs are replaced with ones that do conform. See
“Detailed Notes on V3R4-V3R2 Incompatibilities” on page 411 for a list of
these codes, along with their old and new SQLSTATEs.

System Environment

26. The Use of DBCS Characters with the CHARNAME Setting

408 System Administration

Prior to V3R4, you could use graphic or mixed constants, the VARGRAPHIC
scalar function, or you could define columns as GRAPHIC or FOR MIXED
DATA, independent of the CHARNAME setting on the application server.
Furthermore, you could use graphic or mixed constants, independent of the
CHARNAME setting on the application requester.
In V3R4, the above usages result in error conditions such as SQLCODE -640
(SQLSTATE 56031) and SQLCODE -332 (SQLSTATE 57017), if the
corresponding CHARNAME does not define a character set with mixed
CCSID (that is, if CCSIDMIXED = 0).

27. Setting of CHARNAME
Prior to V3R4, if no CHARNAME is specified, SQLSTART defaulted to
CHARNAME = ENGLISH.
In V3R4, it defaults to the CHARNAME used on the previous invocation. If
the CHARNAME setting does not define a character set with mixed CCSID
(that is, if CCSIDMIXED = 0), then the default character subtype (CHARSUB)
will be forced to a value of SBCS.
See the V3R4 System Administration manual for the initial default
CHARNAME value after installation or migration.

28. Addressing Mode 31-Bit
Prior to V3R4, user exits and field procedures , executed in a VSE
environment, only ran in 24-bit addressing mode.
In V3R4, with VSE/ESA* 1.3 or later releases, they can be executed in 31-bit
addressing mode. If the SQL/DS system is running in 31-bit addressing mode
(that is, ESA or VMESA supervisor mode) on the application server, then user
exits (except accounting) will be executed in 31-bit addressing mode.
If you have user exits (except accounting) that fit into this category, you must
do one of the following to avoid any potential problems:
v Ensure that they can accommodate 31-bit addressing mode
v Operate the application server in 370 or VM supervisor mode.

For more information on user exits, see the DB2 Server for VSE System
Administration manual.

29. Section Size in a Package
Prior to V3R4, during the preprocessing of a program, the system allocated a
section size for each statement in the package.
In V3R4, due to other design changes, it is necessary to increase the size of
these sections for SELECT statements. As a result, when an existing package is
subjected to a dynamic repreparation, it may cause the dbspace to become
full, generating SQLCODE -946 (SQLSTATE 57025).
If this occurs in your installation, you will have to explicitly prepare the
program with the SQLPREP EXEC, making sure that you have a dbspace that
can accommodate the revised package.
Also, the larger sections increase the amount of virtual storage required to run
the package. For example, if you have many dynamic SELECT statements in a
logical unit of work, they will use up more storage than in the previous
release.

30. Three-Part Object Names
Prior to V3R4, an object that was created on a database named (for example)
DBX could be successfully referenced later by an application, even though the
name for that database had been changed (to, say, DBY). All you had to do
was use the revised name, DBY, when you established the database for the
application.

Appendix H. Incompatibilities Between Releases 409

In V3R4, the system maintains the name of the database that was used at the
time of the object’s creation (DBX in this example), as the first part of the
object name, thereby making it a three-part name. If you now establish the
database for the application under a different name (for example, DBY), the
system uses that name as the new qualifier when you try to reference the
object. This results in a mismatch of object names, and causes SQLCODE -114
(SQLSTATE 56061) to be generated.
This problem can be avoided by simply not changing the names of your
databases.

31. Special Characters for CONCAT Operation and Not Equal Condition
Prior to V3R4, the class of the hexadecimal values in the table below was 0.

CHARNAME Hexadecimal Values

ENGLISH X'5A', X'B0'

FRENCH X'BA', X'BB'

GERMAN X'BA', X'BB'

ITALIAN X'BA', X'BB'

KATAKANA X'5A', X'B0'

SPANISH X'BA', X'BB'

In V3R4, the class of these hexadecimal characters is changed to 6. This is
reflected in the CHARCLASS column values of the SYSTEM.SYSCHARSETS
catalog table. This change provides additional special characters that can be
used to depict the CONCAT operation and the not equal condition in SQL
syntax. This, in turn, provides greater flexibility in the use of these two SQL
facilities between application requesters and servers that are assigned different
CHARNAMES.

This could affect your applications, if they are dependent on previous
reclassifications of any of the above characters from class 0 to class 3, for use
in ordinary identifiers. For example, if you had reclassified the explanation
mark (!) so that DANGER! could be used as an ordinary identifier, this will no
longer work because the explanation mark is one of the characters that is now
assigned to class 6.

See the DB2 Server for VSE System Administration manual for details on these
classifications.

32. Invocation of TRACE for Storage
Prior to V3R4, if you specified level 2 trace for the STAT or PA component of
the TRACDBSS or TRACRDS parameter, respectively, when starting the
SQL/DS system, you received the Working Storage Manager tracing.
In V3R4, you can use the same specifications, but the Working Storage
manager tracing is no longer part of the output.
In order to get this part, you must now use the TRACSTG parameter, or select
the STG component when using the TRACE operator command. The format
from this trace is different.

33. Change to Headers in Multiline Operator Console Messages
Prior to V3R4, for ease of reading, only the first line of a multiline message
contained the message header identification, as illustrated below:

ARI0418A SQL/DS is not ready. Retry the enable
transaction CIRB after SQL/DS starts.

410 System Administration

However, operator console messages which were multiline could not be
handled by the VSE Programmed Operator tool, because the system sent such
messages one line at a line. The tool could not identify the extra lines.

In V3R4, these operating console messages are sent as one multiline record, so
that the VSE Programmed Operator tool can handle them. (For the console
operator, there is no change to the appearance of these messages.)

If you have your own application equivalent to the above tool, it could be
affected by this change.

Detailed Notes on V3R4-V3R2 Incompatibilities
1. Data Types of Parameter Markers in Predicates

In this first example, prior releases would resolve the data type of the
parameter marker as DEC(4,2), whereas V3R4 would resolve it as INTEGER
(assuming INTEGERCOL is the name of a column with a data type of
INTEGER).

23.55 BETWEEN ? AND INTEGERCOL

The next two examples illustrate how these data type differences can produce
quite different end results when the SQL statement is executed. In this next
example, the predicate would generate SQLCODE -302 (SQLSTATE 22003) in
prior releases, when the leftmost parameter marker is assigned a value of 345
and the rightmost parameter marker is assigned a value of 206.7. This error will
not occur in V3R4.

EDLEVEL IN (16, ?, 17.3, ?)

This is because the prior releases assign a data type of DEC(3,1) to the
rightmost parameter marker, to which the value 206.7 cannot be assigned. V3R4
assigns a data type of SMALLINT to the rightmost parameter marker (based on
the column EDLEVEL) and then truncates 206.7 to accommodate this data type.

In the next example, the predicate would generate SQLCODE -302 (SQLSTATE
22001) in V3R4, but not in prior releases, when the parameter marker is
assigned a value of 'GHIJKL'.

DEPTNO IN ('ABCDEF', ?, 'ABC')

This is because V3R4 assigns a data type of CHAR(3) to the parameter marker
(based on column DEPTNO), to which the value 'GHIJKL' cannot be assigned.
Prior releases assign a data type of CHAR(6) to the parameter marker.

2. SQLSTATE Changes
These changes are shown in the following table.

SQLCODE Old
SQLSTATE

New
SQLSTATE

DESCRIPTION

-131 53004 22019 Either the LIKE predicate has an invalid escape character, or the
string pattern contains an invalid occurrence of the escape
character.

-551 59001 42501 User wwwwww does not have the xxxxxx privilege to perform
yyyyyy on zzzzzz.

-552 59002 42502 xxxxxx is not authorized to yyyyyy.

-554 59002 42502 You cannot grant a privilege to yourself.

-555 59002 42502 You cannot revoke an authority or a privilege from yourself.

Appendix H. Incompatibilities Between Releases 411

SQLCODE Old
SQLSTATE

New
SQLSTATE

DESCRIPTION

-556 59002 42502 An attempt to revoke a privilege from xxxxxx was denied.
Either xxxxxx does not have this privilege, or yyyyyy does not
have this authority to revoke this privilege.

-556 59004 42504 An attempt to revoke a privilege from xxxxxx was denied.
Either xxxxxx does not have this privilege, or yyyyyy does not
have this authority to revoke this privilege.

-558 59004 42504 You cannot revoke an authority from xxxxxx because xxxxxx
has DBA authority.

-560 59005 42505 A CONNECT statement contains an incorrect password for
xxxxxx.

-561 59005 42505 User xxxxxx does not have CONNECT authority.

-566 59001 42501 User ID xxxxxx does not have authorization to modify package
yyyyyy.

-606 59002 42502 The COMMENT ON or LABEL on statement failed because the
specified table or column is not owned by xxxxxx.

-610 59002 42502 The statement failed because a user without DBA authority
attempted to create a table in a DBSPACE owner by another
user or by the system.

-708 59002 42502 You cannot ALTER, LOCK, or DROP a PUBLIC DBSPACE
because you do not have DBA authority.

-713 37515 53015 Incorrect isolation level value xxxxxx specified. Only values C
or R may be used.

-801 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on
zzzzzz data.

-802 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on
zzzzzz data, position nnnnnn. psw1 psw2.

-815 59005 42502 CONNECT denied by accounting user exit routine.

-30053 59006 42506 Owner xxxxxx authorization failed.

V3R5 and V3R4 Incompatibilities
1. SQL/DS Database Archive Incompatibilities

Archives that were created on prior releases of SQL/DS cannot be restored by
the SQL/DS V3R5 database manager. If this is attempted, the database manager
will issue message ARI2038E and terminate. See the DB2 Server for VM Messages
and Codes or DB2 Server for VSE Messages and Codes manual for more details on
this message.

2. SQL/DS VSAM Shareoptions Changes under VSE
In prior releases of SQL/DS (VSE), the VSAM SQL/DS directory, data and log
data sets were defined with SHAREOPTIONS(1). In SQL/DS V3R5, these
VSAM files must now be defined with SHAREOPTIONS(2).

3. SQLSTATE Values Changes
Many SQLSTATE values have changed in SQL/DS V3R5. The new SQLSTATE
values and their former values can be found in the DB2 Server for VM Messages
and Codes or DB2 Server for VSE Messages and Codes manuals. Changing
SQLSTATEs is an incompatible change since many SQLSTATE values that are
returned from diagnostic situations will be different from previous releases of

412 System Administration

SQL/DS. Application programmers should review any programs that use
SQLSTATE in the SQLCA each time an SQL statement is executed.

4. Messages and Codes Changes
Some SQL/DS messages and codes have changed, and some new ones have
been added in SQL/DS V3R5. See the DB2 Server for VM Messages and Codes
and DB2 Server for VSE Messages and Codes manuals for details.

5. Display CICS Information on SHOW CONNECT
If the package that the connected user is running was created in SQL/DS
Version 2 Release 2 or earlier, the CICS information will not be displayed by
the SHOW CONNECT command because the RDIIN for V2R2 or earlier does
not contain the RDIIN extension area. The package must be reprepped with
SQL/DS V3R5 and recompiled to make the CICS information available.

V5R1 and V3R5 Incompatibilities
1. Messages and Codes Changes

Many messages and codes have changed, and some new ones have been added
in DB2 Server for VSE & VM Version 5 Release 1. See the DB2 Server for VM
Messages and Codes and DB2 Server for VSE Messages and Codes manuals.

2. DB2 Database Archive Incompatibilities
Archives that were created on prior releases cannot be restored by the DB2
Server for VSE & VM Version 5 Release 1 database manager. If this is
attempted the database manager will issue message ARI2038E and terminate.
See the DB2 Server for VSE Messages and Codes manual.

3. DBSU
If you use R350 DBSU to unload and reload a table in a R510 database, the
value of the DATACAPTURE column will be lost.

4. Date/Time Exits and Field Procedures
VM Users with Date/Time or Field Procedure Exits that are dependant on
running in a 370 Mode virtual machine must convert to execute in a ESA mode
virtual machine. Note that exits requiring AMODE=24 are not affected, as we
still support running the Server code in AMODE=24. The above also applies to
Single User Mode application programs. The above also applies to Vendor
programs that run on the Server, such as database monitoring or tape mount
handling programs.

V6R1 and V5R1 Incompatibilities
1. Exploiting RDS above the 16 Megabyte Line

With Version 7 Release 1, the RDS component is linkedited with the ″RMODE
ANY″ option. This allows RDS to be loaded and executed above the 16MB line.
This will free up valuable storage below the 16 MB line. As the RDS code will
be loaded above the 16MB line before other storage is allocated, extremely
storage constrained systems may need to increase their partition size to
maximize their below the 16MB line free storage.

2. DBNAME Directory format change
The format of the DBNAME directory source member, ARISDIRD, has been
changed to support DRDA Online Requester support. See “Setting Up the
DBNAME Directory” on page 23. See the DB2 Server for VSE System
Administration manual.

Appendix H. Incompatibilities Between Releases 413

V7R1 and V6R1 Incompatibilities
1. DBNAME Directory format change

ARISDIRD has been restructured to improve readability and flexibility. Each
DBNAME entry is now defined explicitly by its type (Local, Remote or Host
VM (Guest Sharing)). CICS AXE Transaction TPNs (Transaction Program
Names) are still included in the directory as a type of ’LOCALAXE’. The
DBNAME Directory Builder program, ARICBDID has been rewritten as a
REXX/VSE procedure with extensive error and dependency checking. Support
for TCP/IP information is added and ’alias’ DBNAMEs are supported. ALL
DBNAMEs must be specified in the new DBNAME Directory, including the
Product Default DBNAME ″SQLDS″. A migration REXX/VSE procedure,
ARICCDID, is provided to assist in migrating to the new format.

414 System Administration

|

|

|
|
|
|
|
|
|
|
|
|

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2000 415

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

416 System Administration

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

Programming Interface Information
This manual is intended to help system administrators plan and maintain the DB2
Server for VSE database manager.

This manual also documents General-Use Programming Interface and Associated
Guidance Information provided by the DB2 Server for VSE database manager.

General-Use programming interfaces allow the customer to write programs that
obtain the services of the DB2 Server for VSE database manager.

General-Use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-Use Programming Interface

General-Use Programming Interface and Associated Guidance Information...

End of General-Use Programming Interface

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX/6000
CICS CICS/VSE
DATABASE 2 DB2
DB2 for AIX DB2 Server for VM
DB2 Server for VSE DB2 Server for VSE & VM
Distributed Relational Database Architecture DRDA
IBM OS/2
OS/400 SQL/DS
System/370 System/390
Virtual Machine/Enterprise Systems Architecture VM/ESA
VSE/ESA VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 417

418 System Administration

Bibliography

This bibliography lists publications that are
referenced in this manual or that may be helpful.

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VSE Messages and Codes,

GC09-2985
v DB2 Server for VSE & VM Operation, SC09-2986
v DB2 Server for VSE System Administration,

SC09-2981
v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987
v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,
SC09-2991

v DRDA: Every Manager's Guide, GC26-3195
v IBM SQL Reference, Version 2, Volume 1,

SC26-8416
v IBM SQL Reference, SC26-8415

Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505
v IBM VSE/ESA Diagnosis Tools, SC33-6514
v IBM VSE/ESA General Information, GC33-6501
v IBM VSE/ESA Guide for Solving Problems,

SC33-6510
v IBM VSE/ESA Guide to System Functions,

SC33-6511
v IBM VSE/ESA Installation, SC33-6504

v IBM VSE/ESA Messages & Codes, SC33-6507
v IBM VSE/ESA Networking Support, SC33-6508
v IBM VSE/ESA Operation, SC33-6506
v IBM VSE/ESA Planning, SC33-6503
v IBM VSE/ESA System Control Statements,

SC33-6513
v IBM VSE/ESA System Macros User’s Guide,

SC33-6515
v IBM VSE/ESA System Macros Reference,

SC33-6516
v IBM VSE/ESA System Utilities, SC33-6517
v IBM VSE/ESA Unattended Node Support,

SC33-6512
v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,
SC33-0713

v CICS/VSE Application Programming Guide,
SC33-0712

v CICS Application Programming Primer (VS
COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710
v CICS/VSE Customization Guide, SC33-0707
v CICS/VSE Facilities and Planning Guide,

SC33-0718
v CICS/VSE Intercommunication Guide, SC33-0701
v CICS/VSE Performance Guide, SC33-0703
v CICS/VSE Problem Determination Guide,

SC33-0716
v CICS/VSE Recovery and Restart Guide, SC33-0702
v CICS/VSE Release Guide, GC33-1645
v CICS/VSE Report Controller User’s Guide,

SC33-0705
v CICS/VSE Resource Definition (Macro), SC33-0709
v CICS/VSE Resource Definition (Online),

SC33-0708
v CICS/VSE System Definition and Operations

Guide, SC33-0706
v CICS/VSE System Programming Reference,

SC33-0711
v CICS/VSE User’s Handbook, SX33-6079
v CICS/VSE XRF Guide, SC33-0704

© Copyright IBM Corp. 1987, 2000 419

CICS/ESA Publications

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)
Publications

v VSE/VSAM Commands and Macros, SC33-6532
v VSE/VSAM Introduction, GC33-6531
v VSE/VSAM Messages and Codes, SC24-5146
v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility
(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,
SC33-6562

v VSE/ICCF Primer, SC33-6561
v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,
SC33-6571

v VSE/POWER Application Programming,
SC33-6574

v VSE/POWER Networking, SC33-6573
v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture
(DRDA) Library

v Application Programming Guide, SC26-4773
v Architecture Reference, SC26-4651
v Connectivity Guide, SC26-4783
v DRDA: Every Manager's Guide, GC26-3195
v Planning for Distributed Relational Database,

SC26-4650
v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386
v IBM C/370 Programming Guide for VSE,

SC09-1399
v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417
v IBM C/370 Reference Summary for VSE,

SX09-1246
v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 4,
SC21-9526

v IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’s Guide,
SC21-9529

v VM/Directory Maintenance Licensed Program
Specification, GC20-1836

v IBM Distributed Relational Database Architecture
Reference, SC26-4651

v IBM Systems Network Architecture, Format and
Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269
v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808
v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,
Executive Overview, GC09-2207

v Character Data Representation Architecture
Reference and Registry, SC09-2190

C/370 Publications

v IBM C/370 Installation and Customization Guide,
GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189
v Network Administration and Subsystem

Management Guide, SC31-8181
v Command Reference, SC31-8183
v Message Reference, SC31-8185
v Problem Determination Guide, SC31-8186

Distributed Database Connection Services
(DDCS) Publications

v DDCS User’s Guide for Common Servers,
S20H-4793

v DDCS for OS/2 Installation and Configuration
Guide, S20H-4795

VTAM Publications

v VTAM Messages and Codes, SC31-6493
v VTAM Network Implementation Guide, SC31-6494
v VTAM Operation, SC31-6495

420 System Administration

v VTAM Programming, SC31-6496
v VTAM Programming for LU 6.2, SC31-6497
v VTAM Resource Definition Reference, SC31-6498
v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435
v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764
v Administering CSP/AD and CSP/AE on VM,

SH20-6766
v Administering CSP/AD and CSP/AE on VSE,

SH20-6767
v CSP/AD and CSP/AE Planning, SH20-6770
v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714
v Installing and Managing QMF for VSE,

GC27-0721
v QMF Reference, SC27-0715
v Installing and Managing QMF for VM,

GC27-0720
v Developing QMF Applications, SC27-0718
v QMF Messages and Codes, GC27-0717
v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows
Publications

v Getting Started with QMF for Windows,
SC27-0723

v Installing and Managing QMF for Windows,
GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,
SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,
GC26-3150

v VS COBOL II Migration Guide for MVS and
CMS, GC26-3151

v VS COBOL II General Information, GC26-4042
v VS COBOL II Language Reference, GC26-4047
v VS COBOL II Application Programming Guide,

SC26-4045
v VS COBOL II Application Programming

Debugging, SC26-4049

v VS COBOL II Installation and Customization for
CMS, SC26-4213

v VS COBOL II Installation and Customization for
VSE, SC26-4696

v VS COBOL II Application Programming Guide for
VSE, SC26-4697

Systems Network Architecture (SNA)
Publications

v SNA Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699
v APL2 Programming: Using Structured Query

Language, SH21-1056
v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VSE Control Center Operations Guide,
GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

Bibliography 421

422 System Administration

Index

Numerics
3370 storage device 10

directory size 15
3375 storage device 10

directory size 15
3380 storage device 10

directory size 15
3390 storage device 10

directory size 15
9332 storage device 10

directory size 15
9335 storage device 10

directory size 15
9345 storage device 10

directory size 15

A
abnormal end

CICS code AEY9 81, 112
CICS code ASP7 112, 114
CICS code ASRA 112
in a field procedure 287
log-full condition 62
SLOGCUSH 62
STXIT exit 73

access method services LISTCAT
command 183

ACCOUNT initialization parameter 53
accounting

in DRDA environment 190
job control 181

accounting facility
account numbers for users 257
accounting exits 257
converting data 203
dbspace 197
displaying statistics 53
enabling 53
exit 262
generating records 189
introduction 181
job control 181
loading data 201
maintaining accounting data 197
records 191
setting up your system 181
tables 198

accounting file, alternate 181
accounting file job control

Native SAM example 185
tape example 187
VSAM example 183

accounting record format
DRDA records 195
initialization 192
operator/checkpoint 193
remote user 195
termination 193
user 194

accounting record format (continued)
VSE guest user 196

acquiring dbspace
for packages 127

ADD DBEXTENT operation
initialization parameters 138

ADD DBSPACE operation
control statements 124
initialization parameters 125

adding
dbextents 134

initialization parameters 138
dbspaces

initialization parameters 125
storage pools 131

addressing type
TRACEBUF initialization

parameter 65
agent

priority 58
allocating dbextent data sets 132
ALTACCT command 181
ALTER TABLE statement 287
altering

sorting sequence of a column 284
alternate accounting file 181
alternative character sets 228
application development

configuration 4
application program

batch, multiple user mode 69
eye-catcher usage 74
multiple user mode 69
running in single user mode 71
VSE/ICCF 69

application requester
default CCSID 246, 249
determining CCSID 242
setting default CHARNAME 246
setting default DBCS 249

application requester defaults
choosing CCSID after migration 45
choosing CHARNAME after

migration 45
application server

default 30
default subtype

uses 31
name 23
setting DBCS option 248
setting default CCSID 243
setting default character subtype 247
setting default CHARNAME 243

application server defaults
choosing CCSID after migration 40
choosing CHARNAME after

migration 40
APPLID

See basic dbname 23
archiving

after ADD DBEXTENT 137

archiving (continued)
after COLDLOG operation 165
after DELETE DBEXTENT 137
ARCHIVE command 150
ARCHPCT initialization

parameter 62, 150
commands 150
concurrently 63
database 144, 150, 151
effects on nonrecoverable data 174
facilities 144
LARCHIVE command 152
log archive

introduction 145
process 152

log continuity 164
log size impact 16
LOGMODE initialization parameter

description 61
of unallocated pages 145
procedures 149
processing 144
restart procedures 155
restore set and history area 169
restoring the database 155
SQLEND ARCHIVE command 150
SQLEND LARCHIVE command 152
SQLEND UARCHIVE command 151
tape requirements 11
tape support for 67
user

example backup command 152
example RESTORE command 157

user archive 151
using database manager facilities 144
using user facilities 144

ARCHPCT
initialization parameter

archiving 150
description 62
log archiving 153

log activity 63
ARIARCH file name for database archive

tape 212
ARIBFPPB mapping macro 288
ARILARC file name for log archive

tape 212
ARIMEXBD utility 126
ARIMLBK member 255
ARIS250D procedure 134
ARIS341D procedure 43
ARIS71HD job control member

used in ADD DBEXTENT
operation 134

used in DELETE DBEXTENT
operation 134

ARISADD member
used in ADD DBEXTENT

operation 135
used in DELETE DBEXTENT

operation 135

© Copyright IBM Corp. 1987, 2000 423

ARISCCSD phase file 374
ARISDBU member 214
ARISDTM member 270, 278
ARISQLDS EXEC 125
ARISRST procedure 156
ARISSCRD phase file 374
ARISSTRD phase file 374
arithmetic operator

in syntax diagrams xii
ARITRAC file name for trace tape 212
ARIUEXI

parameter list 259
ARIUEXI parameter list

associated areas 262
ARIUXDT

IBM-supplied version 274
job control 278
parameter list 271

ARIUXIT module
branching 258
example user version 266
IBM-supplied version 263
installing 268
job control for installing 269
service considerations 269

ARIUXTM
IBM-supplied version 276
job control 278
parameter list 271

Assembler
preprocessor 335
release level 6

auditing security
tracing 65

automatic restart resynchronization 91,
96

B
backout

nonrecoverable data 173
basic DBNAME 23
batch application programs 69
batch/interactive

application processing 1
batch/interactive configuration 1
batch storage requirements 335
bias of the dispatcher, adjusting 58
blank

in column with a field procedure 286
buffer

data pages in storage 56
buffer pool 8

C
calculations

resource utilization 331
storage space 337

CALL/RETURN protocols for application
programs in single user mode 72

cancel exit 281
capacities of a starter database 10
capacity planning 13

planning 39
catalog

row length 341

catalog table
average row lengths 341
modified by CHARNAME 51

catalog table rows 344
cataloging

database 212
CCSID-related

reloading package 220
CEMT transaction 114
character data 239
character set

alternative 228
classification and translation 366
classification table 362
defining your own 359
ENGLISH 230
example 228, 361
FRENCH 231
GERMAN 231
ITALIAN 233
PORTUGUESE 360
selection 50
SPANISH 235
starting application server 236

character sets
JAPANESE (Katakana) 234

character string
constants 237, 238

character subtype
application server default 32
changing default 221
changing existing column

attributes 245
CHARSUB 31, 32
choosing default 31
setting application server default 247

CHARNAME
application requester default 225
application server default 225
catalog tables modified 51
change to catalog tables

SQLDBA.ROUTINE 51
SQLDBA.STORED QUERIES 51
SQLDBA.SYSLANGUAGE 51
SQLDBA.SYSTEXT2 51
SQLDBA.SYSUSERLIST 51

changing 51
changing default

considerations 226
during database generation 220

changing pre-Euro 227
choosing application requester

default 33
choosing application requester default

after migration 45
choosing application server

default 30
choosing application server default

after migration 40
default CCSIDs 50
differences between international and

english code pages 244
initialization parameter 50, 235
INTERNATIONAL 243
setting for application requester

all application requesters 246
an application requester 246

CHARNAME (continued)
setting for application requester

(continued)
hierarchy used 245
using DSQU 246
using SQLGLOB VSAM file 246

setting for application server 243
checklist for database generation 34
checkpoint

accounting 192
before an online log archive 153
caused by nonrecoverable storage

pools 173
CHKINTVL initialization

parameter 62
definition 62
log archive 153
records on the log 143

CHKINTVL
initialization parameter 62

choose
in syntax diagrams xii

choosing
application requester default

CHARNAME 33
application server default

CHARNAME 30
application server default coded

character set identifier (CCSID) 30
default character subtype 31, 32
default coded character set identifier

(CCSID) 33
CICS/VSE

product options 3
CIRA syntax 88
CIRA transaction 92, 94
CIRB syntax 81
CIRB transaction 92, 94, 100, 101
CIRC syntax 97
CIRC transaction 100, 101
CIRD transaction 101
CIRR syntax 98
CIRR transaction 84, 107
CIRT syntax 110
CIRT transaction 84, 107
CISQ transaction 70
classification, character 362
classification table

character sets 366
coded character set identifier

(CCSID) 253
identifying 50

clearing the log 165, 167
CMS work unit

accounting exit
work unit ID 195

CNVSZ parameter of VSAM DEFINE
command 209, 210

COBOL
preprocessor 335
release level 6

code point 239
coded character set identifier (CCSID)

application requester default 33, 245
application server default 30, 51, 243
attribute 239
catalog tables modified 51

424 System Administration

coded character set identifier (CCSID)
(continued)

changing CHARNAME
repreprocess 51

changing defaults
summary 226

CHARNAME change
SQLDBA.ROUTINE 51
SQLDBA.STORED QUERIES 51
SQLDBA.SYSLANGUAGE 51
SQLDBA.SYSTEXT2 51
SQLDBA.SYSUSERLIST 51

CHARNAME mapping 239
choosing a national language 225
choosing application requester default

after migration 45
choosing application server default

after migration 40
DBCS conversion 279
default CCSIDs 50
defining character sets 225
determining for an application

requester 242
identifying classification table 253
identifying translation table 253
loading information to CMS files 374
MCCSIDGRAPHIC 41, 42, 243
MCCSIDMIXED 41, 42, 243
MCCSIDSBCS 41, 42, 243
migration considerations 40, 243
mixed 241
performance overhead 31, 225, 243
SBCS 240
setting for application server 243

differences between international
and english code pages 244

uses 31
uses for application requester

default 33
coding data by field procedures 284
coding your own exit

accounting 262
requirements 273
TRANSPROC 279

coexistence
considerations 45

cold start of database manager 213
COLDLOG operation 165

archiving considerations 165
example job control 165
increasing log size 166
log reconfiguration and

reformatting 166
reconfiguration 165
reformatting 165
restarting from a failure 161

command
ARCHIVE 150
COMMIT WORK 189
COUNTER 57
FORCE 96
LARCHIVE 152
ROLLBACK WORK 189
SHOW ACTIVE 96
SHOW LOCK MATRIX 57
SHOW LOG

scheduling archives 151

command (continued)
SHOW LOG (continued)

scheduling log archives 154
scheduling user archives 152

SHOW USERS 77
SQLEND 76
SQLEND ARCHIVE 150
SQLEND DVERIFY 76
SQLEND LARCHIVE 152
SQLEND QUICK 76
SQLEND UARCHIVE 151

COMMIT WORK 142, 189
committing changes, nonrecoverable

data 173
concurrent

archive 63
specifying users 54
users, limit 54

configuration
application development 4
batch/interactive 1
concepts 205
multiple database partitions and

multiple databases 207
one database partition and one

database 206
online transaction processing 2
query/report writing 5

constant
data type, character string 238

CONTINUE response 158
continuity of log archives 164
controlling

access to ISQL 117
access to remote users 119
active user number 88
data location 130
device and channel utilization 130

conventions
syntax diagram notation xi

converting
accounting data 203
packages 40

count-key-data DASD storage
dbextent capacity 337
directory capacity 338
log capacity 337

COUNTER command 57
CREATE TABLE statement 287
creating

database archive 150
log archive 152
parameter data sets 75
user archive 151

CSMT transaction 114
CUREXTNT

estimating 18
CUREXTNT control statement 214
CUREXTNT control statement for

database generation 215
Customer Information Control System

(CICS)
CEMT transaction 114
CIRD transaction

active transactions 112
transaction information 101

CIRT transaction 110

Customer Information Control System
(CICS) (continued)

CISQ transaction 70
CSMT transaction 114
DBDCCICS 87
DFHPPT macro instruction 334
dynamic storage considerations 335
ISQL transaction 70
partition 334
pseudo-conversational

transactions 70
release level 6
transactions 69

customizing database manager 257
CVD (column value descriptor) 288, 289

D
damaged data set

damaged
log 162

damaged dataset
database 145
database and log 146
log 146

DASD
failures

damaged database 145
damaged database and log 146
damaged log 146

storage for starter database 10
data

coding by a field procedure 284
data areas

RMAR 283
data location

controlling 130
data object 121
data pages

SYS0001 345
data recovery 121
data sets

DB2 Server for VSE parameter 75
dbextents 9
define VSAM 34
directory 9, 210
example VSAM data sets for a

database 209
log 9
protecting VSAM 117
starting the application server with

password protected data sets 50
Data System Control (DSC) 121
data type

character string
constants 238
subtypes 238

constants 238
database

adding
dbextents 131
dbspaces 123

archiving 144, 153
capacity planning 13, 39
data set definition 208
defining a log 16
defining the directory for 210
deleting

dbextents 133

Index 425

database (continued)
design 121
example 156
example storage estimate

for a production database 347
for a test database 346
for an application development

database 346
extents 9
generation

checklist 34
design considerations 14
job control 213
keyword control statements 215
parameters 13
planning 13
process 207
regeneration 33
restarting from a failure 161
summary of parameters 13

identification statements 211
identification statements (DBNAME01

procedure) 212
installing optional components

into 219
job control 132, 133, 211, 212
maintenance procedures 117
maximum size 15
maximums 17, 354
migration 39
minimum sizes 9
moving

dbextents 138
log disks 139

multiple 45, 206
name 23
parameters set at database generation

time 13
physical

concept 122
design 122

physical design 138
recovery considerations 141, 181
regeneration 33
restoring 153, 155, 156
sizes 15
starter 10, 13
storage estimating 337

database manager
startup with password-protected

VSAM data sets 50
database manager archiving facilities

description 144
using to archive databases 150
using to archive logs 152

database partition
configuration 206
creating 205

database services utility (DBS utility)
non-DB2 Server for VM application

server 315
storage requirement 335

dataset
damaged

database 145
database and log 146
log 146

date
exit 270, 271

DATE parameter of the VSE STDOPT
JCC/JCS 103

datetime
exits 269, 271

DB2 Server for VM database manager
operator

VSE guest sharing 80
DB2 Server for VSE

database
design 121

DB2 Server for VSE database manager
database

physical design 122
DBCS 237

setting for application requester
all application requesters 249
an application requester 249
using DSQU 249
using SQLGLOB VSAM file 249

DBCS (double-byte character set) 237
option 237

DBCS conversion
CCSID to CCSID 279
TRANSPROC exit 279

DBCS option
setting for application server 248

dbextent
adding 131
allocating dbextent data sets 131
capacities of IBM DASDs 337
definition 214
deleting dbextent data sets 134
deleting from a database 133
determining initial requirements 21
estimating sizes 130
example ARISADD 135
example job control 134
file names (such as DDSK1) 211
initialization parameters 138
maximum number 14
purpose 9
replacing 161
sizes 13, 208
specifying initial 216

DBNAME directory
define remote connection 30
guest sharing 79
IBM-supplied default 28
requirements 11
sample 29
set up 23
updating 28

DBNAME Directory format
incompatibilities 414

DBNAME parameter
specifying 49
starting the application server 49

DBNAME01 procedure
contents 212
used in ADD DBSPACE

operation 124
DBPSWD parameter 117
DBS utility

maintenance of a database 117

dbspace
acquiring for packages 127
adding 123
concept defined 122
control statements 124
definition 214
determining internal dbspace

requirements 20
determining requirements

initial 18, 20
system dbspaces 18
user dbspace 20

index in 122
initialization parameters 125
internal 21
maximum number 14
nonrecoverable 172
nonrecoverable storage pools 178
overcommitting storage 130
private 217
public 19, 217
requirement 341
size for system dbspaces 20
special

catalog 14
HELP text 14, 39
HELPTEXT 19
internal 14
ISQL 19, 349
package 14
SYS0001 19
SYS0002 19

specifying initial 217
system dbspace requirements 18
table in 122
undercommitting storage 130
user dbspace requirements 20

dbspaces
internal 124

deadlock
problems 57

default
changing CCSID

summary 226
changing CHARNAME

summary 226
in syntax diagrams xiii

default server 83
default server_name 100, 101, 107
default server-name 97
DEFINE statements (VSAM) 132, 210
defining

database
log 16

database data sets 208
VSAM data sets for the database 34,

208
delete

SQLGLOB parameters 247
DELETE DBEXTENT operation

initialization parameters 138
DELETE statements (VSAM) 134
deleting

dbextents 133
initialization parameters 138

deleting dbextent data sets 134

426 System Administration

design
database generation

considerations 14
determining

initial dbextent requirements 21
internal dbspace requirements 20

DFHPCT macro instruction 309
DFHPPT macro instruction 334
direct access storage device (DASD)

directory capacity 338
storage capacities 337

dbextent capacity 337
directory capacity 338
log capacity 337

directory
allocation considerations 15
allocations and database size 15
capacities of IBM DASDs 338
data set 210
EXPAND DIRECTORY operation 126
expansion 126
file name (BDISK) 211
minidisk 10
purpose 9
size 14

calculating 340
defining 14

space estimating 340
verifying 76
volume considerations 15

disciplines of dispatching 58
disk

log archiving to 11
dispatcher 58
DISPBIAS initialization parameter 58
display terminal

requirements 11
displaying

transaction information 101
distributed relational database

AR restrictions 377
restrictions 381

distributed relational database
architecture

installing DRDA code 312
removing DRDA code 312

DLBL statements
database data sets 211
updating job control 133

double-byte character set (DBCS) 237
identifiers 237
programming languages

supported 237
DRDA (Distributed Relational Database

Architecture)
controlling access to 119
security 120

DRDA protocol
AR restrictions 377
benefits 305
checklist 308
DBS utility 315
heuristic decision 321
installing DRDA code 312
removing DRDA code 312
responsibilities 306
restrictions 381

DRDA server support
accounting records 190

DSC (Data System Control) 121
DSPLYDEV initialization parameter 64
DSPSTATS initialization parameter 53
DSQU CICS transaction

setting default CHARNAME 246
setting default DBCS 249

dual log recovery 142
dual logging

placement of logs 17
using 165

DUALLOG initialization parameter 165
DUMPTYPE initialization parameter 64
DVERIFY parameter 76

E
END RESTORE response 158
ENGLISH character set (CCSID=37) 230
equipment failures 159
ESCALATE counter 57
escalation 56
ESDS

files managed by 185
space management

accounting files 185
estimating

catalog dbspace
(SYSTEM.SYS0001) 341

CUREXTNT 18
dbextent sizes 130
dbspace size for routines 349
dbspace sizes for stored SQL

statements 350
directory space requirement 340
internal dbspace requirements 20
ISQL dbspace requirements 349
MAXDBSPC parameter 18
MAXEXTNT parameter 18
MAXPOOLS parameter 17
storage for a database 337
storage pool requirements 340
storage pool sizes 130

EUC (Extended UNIX Code) 250
example

accounting file job control (tape) 187
cataloging database job control 212
DASD accounting file job control

(SAM) 185
DASD accounting file job control

(VSAM) 183
DBS utility commands

creating accounting tables 198
DBS Utility commands

loading accounting tables 202
defining the directory data set 211
defining VSAM data sets for a

database 208, 209
field procedure 296
generating your own database 213
running an application program under

VSE/ICCF 69
starting the application server in

single user mode 71
SYS0001 storage estimating

formula 346
EXEC

ARISMEX 155

EXEC (continued)
SQLADBEX 155
SQLADBSP 155
SQLBINS 155
SQLCIREO 155
SQLDBGEN 155
SQLLOG 155
SQLSTART 155
STARTUP parameter 155

exit
installation 257

exit point
for field procedures 285

exits
accounting 262
cancel 281
coding your own 273
date 270, 271
time 270, 271

EXPAND DIRECTORY operation
ARIMEXBD utility 126

EXTEND initialization parameter 64
eye-catcher

application program 74

F
failure

DASD
damaged database 145
damaged database and log 146
damaged log 146

equipment 159
system 154

fair-share auditing 59
fast DB2 Server for VSE shutdown 77
fast restore 49
FB-512 storage devices 9, 10
field-decoding

definition 284
input and output 294

field-definition
definition 284
input and output 290

field-encoding
definition 284
input and output 293

field procedure
abnormal end 287
control blocks

CVD 289
FPIB 289
FPPL 288
FPPVL 290
FVD 289

description 284
example 296
exit point 285
value descriptors 289

field procedure information block
(FPIB) 289

field procedure parameter list
(FPPL) 288

field procedure parameter value list
(FPPVL) 290

field procedures
data type considerations 286

Index 427

FIELDPROC
clause of CREATE or ALTER

TABLE 285
FIELDPROC clause 287
fixed-block architecture devices

dbextent capacity 337
log capacity 337

folding rules
coded character set identifier

(CCSID) 253
SBCS character set 225
TRANSLATE scalar function 228

FORCE 96
format

data passed to a field procedure
(FPPVL) 290

FPIB 289
value descriptors (CVDs) 290

FORTRAN
preprocessor 335
release level 6

FPIB (field procedure information
block) 289

FPPL (field procedure parameter
list) 288

FPPVL (field procedure parameter value
list) 288, 290

fragment of syntax
in syntax diagrams xiv

FREEPCT column 128
SYSDBSPACES 128

FRENCH character set 231
FVD (field value descriptor) 288, 289

G
generating a database 13

example job control 213
planning 13

GERMAN character set 232
GETVIS area usage 334
guest sharing

accessing and operator
responsibilities 79

DBNAME directory 79
starting 79

H
hardware requirements 8
header pages

SYS0001 345
Help text

multiple language 226
HELP text

national language 253
HELPTEXT dbspace 18
heuristic decision 321
hexadecimal values of the sample

character sets 228
history area 167
host variable

in syntax diagrams xii

I
IDCAMS program 131, 133, 208
identification statements for database

data sets 211
identifiers

national language 254
immediate DB2 Server for VSE

shutdown 77
implicit CONNECT support 86
in-doubt logical units of work 91, 94, 96
incompatibilities, release to release

2.1 and 1.3.5 382, 384
2.2 and 2.1 384, 387
3.1 and 2.2 387, 397
3.2 and 3.1 397, 403
3.4 and 3.2 (VSE only) 403, 412
3.5 and 3.4 412
5.1 and 3.5 413
6.1 and 5.1 413
7.1 and 6.1 414
description 381

increasing log size 166
index

invalid 40
location in dbspaces 123

initialization parameters
ACCOUNT 53
ADD DBEXTENT 138
ADD DBSPACE operation 125
ARCHPCT 62
CHARNAME 50
CHKINTVL 62
DBNAME 49
DELETE DBEXTENT 138
DISPBIAS 58
DSPLYDEV 64
DSPSTATS 53
DUMPTYPE 64
EXTEND 64
LOGMODE 61
LTIMOUT 60
multiple user mode 47
NCSCANS 59
NCUSERS 54
NDIRBUF 56
NLRBS 56
NLRBU 56
NPACKAGE 55
NPACKPCT 55
NPAGBUF 56
overriding 50, 74
parameter data set creation 75
PARMID 50, 74
PROCMXAB 61
PTIMEOUT 61
RMTUSERS 49
SECALVER 53
SECTYPE 54
single user mode application

programs 65
SOSLEVEL 63
STARTUP 49
SYNCPNT 53
SYSMODE 49
TCPPORT 54
TRACCONV 65
TRACDBSS 65

initialization parameters (continued)
TRACDRRM 65
TRACDSC 65
TRACEBUF 65
TRACRDS 65
TRACSTG 65
TRACWUM 65

insert
SQLGLOB parameters 247

installation
defaults

changing CCSID 226
changing CHARNAME 226

exit 257, 296
installation planning 1
installation process

DBNAME directory 23
hardware requirements 1
software requirements 1

installation replaceable exits 270
installing

optional components 219, 220
interactive application development

configuration 4
internal dbspace

requirements 20
invalid indexes 40
ISQL (Interactive Structured Query

Language)
changing the default language 255
CICS dynamic storage

considerations 335
controlling access to 117
controlling active user number 88
dbspace 19
estimating dbspace requirements 349
routines

estimating dbspace size 349
stored SQL statements

estimating dbspace size 350
transaction 70

ITALIAN character set 233

J
JAPANESE (Katakana) character set 234
job control

database 211
for accounting 181
multiple user mode 67
redefining for a database 132, 133

job control example
accounting files on tape 187
cataloging a database 212
COLDLOG operation 165
DASD accounting files 183, 185
generating a database 213
installing optional components 220
installing optional database

components 219
reloading CCSID-related package 220
startup with accounting enabled 188

job control examples
adding dbextents 134
ARIUXDT installation 278
ARIUXIT installation 263
ARIUXTM installation 278
deleting dbextents 134

428 System Administration

job control examples (continued)
for a batch application program 69
for starting the application server in

multiple user mode 68
for starting the application server in

single user mode 71
starting the application server in

single user mode with user
parameters 71

K
key

language keys and language
identifiers 254

key processing 11
keyword

in syntax diagrams xii
keyword control statements 215

L
labeling

archive tapes 154
LANGBLK 255
LANGKEY 254
language key 254
languages

choosing 225
messages 253
national 253

keys and identifiers 254
messages 53
SYSLANGUAGE table 254

LARCHIVE 152
LIBDEF statements

DB2 Server for VM libraries 211
library

space required 9
LISTCAT command 183
loading

accounting data 201
lock escalation 56
lock wait timeout 60
LOCKLMT counter 57
log

activity when ARCHPCT is
reached 63

allocation considerations 17
archive

checkpoint 153
continuity 164
creating 152
introduction 145
LARCHIVE command for 152
SQLEND LARCHIVE

command 152
capacities of IBM DASDs 337
continuity 164
damaged data set 162
database information 121
defining 208
description 142
dual

defining 16, 208
placing 17
recovery 142

log (continued)
dual (continued)

using 165
file names (LOGDSK1 and

LOGDSK2) 211
full processing 62
history area 167
increasing size 166
log-full processing 62
maximum size by DASD type 355
mode switching 163, 167
placement of dual logs 17
purpose 9
reconfiguration 165
reconfiguring 166
reformatting 165, 167
replacing 162

damaged dataset 146
size 14, 17
space 61
starter database size and

placement 10
switching log modes 163
usage by DBS Utility loading 17
volume considerations 17

logical unit of work (LUW)
heuristic decision 321
in-doubt 96

LOGMODE initialization parameter
archiving 61
restoring 157
switching log modes 163

M
MAINT program 207, 212
maintaining

accounting data 197
storage pools 131

maintenance procedures for a
database 117

managing
storage pools 129

mapped DBNAME 23
mapping macro

ARIBFPPB 288
MAXDBSPC control statement

during database generation 215
establishing database maximums 17
estimating 18

MAXEXTNT control statement
during database generation 215
establishing database maximums 17
estimating 18

maximum values
database 17
database size 15
system 353

MAXPOOLS control statement
during database generation 215
establishing database maximums 17
estimating 17

MCCSIDGRAPHIC 41, 42, 243
MCCSIDMIXED 41, 42, 243
MCCSIDSBCS 41, 42, 243
megabytes of data on 4-kilobyte

pages 339

message
ARI0039E 64
ARI0041E 64
ARI0915I 125
ARI7044I 70
choosing a national language for 253
multiple language messages 253
multiple national languages 226
SET LANGUAGE command 53

methods of dispatching 58
migration

CCSID considerations 40
CHARNAME considerations 40
considerations 39
conversion of packages 40
databases

multiple 45
defaults

changing CCSID 226
changing CHARNAME 226

directory space verification 40
elimination of SET XPCC

command 40
handling mixed data 42
handling SBCS data 41
HELPTEXT dbspace 39
invalid indexes 40
MCCSIDGRAPHIC 41, 42
MCCSIDMIXED 41, 42
MCCSIDSBCS 41, 42
mixed primary keys 43
planning 39
server name 40
setting an application requester

default CCSID 45
setting an application requester

default CHARNAME 45
setting an application server default

CCSID 40
setting an application server default

CHARNAME 40
minidisk

starter database 10
minimum sizes

for a starter database 10
mixed data

handling after migration 42
MCCSIDGRAPHIC 42, 243
MCCSIDMIXED 42, 243
MCCSIDSBCS 42, 243
using 237

mode switching for logs 163, 167
modes of operation

multiple user mode 47
single user mode 47

moving
dbextents 138, 161
log disks 139

multiple database migration 45
multiple language HELP text 226
multiple language messages 226, 253
multiple user mode

definition 47
initialization parameters 47
job control 67
job control to start the application

server 68

Index 429

multiple user mode (continued)
operating the application server 47
running application programs 69
starting the application server 47
starting the application server with

password protected data sets 50
multiple virtual machine mode

definition 47

N
name

application server 23
database 23

national language 225
character set 225
choosing 225
keys and identifiers 254
messages

and HELP text 253
VSE guest sharing 256

support 225
SYSLANGUAGE table 254

NCSCANS initialization parameter 59
NCUSERS

limit 54, 353
NCUSERS initialization parameter

guidelines 55
setting 55
VSE guest sharing 55

NDIRBUF initialization parameter 56
NLRBS initialization parameter 56
NLRBU initialization parameter 56
non-DB2 Server for VM application

server
DBS utility 315

non-IBM products 6
nonrecoverable data 174

backing out 173
committing 173
dbspaces 172
restoring 174
rolling back 173

nonrecoverable storage pool
data placement 175
dbspaces 178
querying 179

NPACKAGE parameter 55
NPACKPCT parameter 55
NPAGBUF initialization parameter 56
NPAGBUF parameter 56

O
objects 121
one-phase commit 91
online resource adapter 84, 100, 112, 114
online resource adapter data areas

RMAR 283
online support

considerations for stopping 78
implicit CONNECT support 86
operation 80
starting 81
stopping 110

online transaction processing
configuration 2

operating
modes 47
multiple user mode 47
online support 80
planning 47
VSE guest sharing 80

operator response during restore
CONTINUE 158
END RESTORE 158
STOP SYSTEM 158

optional
default parameter

in syntax diagrams xiv
item

in syntax diagrams xii
keyword

in syntax diagrams xiv
overcommitting dbspace storage 130
overriding initialization parameters 50,

74
owning a database

definition 206

P
package 18, 127

conversion 40
dbspace 127
unused 129

page
data

SYS0001 345
dbspace storage 122
header

SYS0001 345
megabytes and 4-kilobyte pages 339
storage buffers 56

parameter
ACCOUNT 53
CHARNAME 235
database parameters set at database

generation time 13
DATE 103
DSPSTATS 53
DVERIFY 76
MAXDBSPC 18
MAXEXTNT 18
MAXPOOLS 17
PROCMXAB 61
PTIMEOUT 61
ranges 13
SECALVER 53
SECTYPE 54
starter database 13
SYNCPNT 53
TCPPORT 54

parameter data set
creation 75

parentheses
in syntax diagrams xii

PARMID initialization parameter 50, 74
partial row updates 175
partition size for database manager 8
password implications 114
password protected data sets

starting the application server 50
VSAM 50

phase file
ARISCCSD 374
ARISSCRD 374
ARISSTRD 374

physical database 122
PL/I

preprocessor 335
release level 6

planning
database generation 13
database manager 11
DB2 Server for VSE 1
installation 1, 13
migration 39
operation 47

POOL control statements 216
PORTUGUESE character set 360
preprocessor

storage requirement 335
prerequisite programs 7
priority dispatcher 58
PROCMXAB initialization parameter 61
product-supplied archiving facilities

description 144
using to archive databases 150
using to archive logs 152

program products required by database
manager 6

programming languages
double-byte character set (DBCS)

support 237
programs, prerequisite 7
protecting VSAM data sets 117
pseudo-conversational transactions 70
PTIMEOUT initialization parameter 61
public dbspace 19
punctuation mark

in syntax diagrams xii

Q
query

SQLGLOB parameters 247
query/report writing

configuration 5
querying

nonrecoverable storage pools 179
quick DB2 Server for VSE shutdown 77

R
READY/RECOVERY agent 92
real storage requirements

summary 9
reconfiguring the log 166
recoverable

DBS utility command 175
SQL statements 174

recovery 174
abnormal end in a field

procedure 287
considerations 141, 181
DASD failures

damaged database 145
damaged database and log 146
damaged log 146

dual logging 165

430 System Administration

recovery 174 (continued)
dual logs 142
history area 167
log reformatting 167
nonrecoverable data 172
nonrecoverable dbspaces 172
nonrecoverable storage pools 171,

175
processing failures with

nonrecoverable data 174
special topics 163
SQLEND 79
switching log modes 163
system failure 154

recovery list 92
RECSZ parameter of VSAM DEFINE

command 209, 210
reference information for storage space

calculations 337
reformatting

log 165, 167
regenerating a database 33
release level

coexistence 45
release levels of products required by

database manager 6
release to release incompatibilities

2.1 and 1.3.5 382, 384
2.2 and 2.1 384, 387
3.1 and 2.2 387, 397
3.2 and 3.1 397, 403
3.4 and 3.2 (VSE only) 403, 412
3.5 and 3.4 412
5.1 and 3.5 413
6.1 and 5.1 413
7.1 and 6.1 414
description 381

reloading
CCSID-related package 220

repeat symbol
in syntax diagrams xiii

replacing
database and log dataset 146
dbextents 161
log data set 162
log dataset 146

report writing
DB2 Server for VSE 5

required item
in syntax diagrams xii

required program products for database
manager 6

reserved words
SQL xv

resetting
the log 165, 167

resource adapter
definition 258

resource adapter data areas
RMAR 283

resource and performance trade-offs 331
resource utilization calculations 331
restart recovery

definition 143
restarting

ARISMEX 155

restarting (continued)
from COLDLOG operation

failure 161
from database generation failure 161
from database restore operation 159
from system failure while

archiving 160
procedures 155
SQLADBEX 155
SQLADBSP 155
SQLCIREO 155
SQLSTART 155
STARTUP parameter 155

restore set 169
restoring

database
restarting from failure of 159
restore set and history area 169
starting the application server

when restoring 156
STARTUP=R 156

nonrecoverable data 174
restoring a database

ARISRST procedure 156
procedures 155

restrictions
DRDA AR protocol 381
DRDA protocol 377

RESYNCH command 96
resynchronization 101
resynchronization transaction 91
RMAR 283
RMTUSERS initialization parameter 49
ROLLBACK WORK 189
ROLLBACK WORK command 142
rolling back

nonrecoverable data 173
round-robin dispatcher 58
routine

estimating dbspace size 349
running

application programs
multiple user mode 69
single user mode 71

S
SAM

files managed by 183
space management

accounting files 185
sample

character sets 228
database sizes 10

SBCS character set
folding rules 225

SBCS data
handling after migration 41
MCCSIDGRAPHIC 41
MCCSIDMIXED 41
MCCSIDSBCS 41

scan control blocks 59
scan table 59
SECALVER initialization parameter 53
SECTYPE initialization parameter 54
security

auditing 65

security (continued)
DRDA 120
maintaining 117, 119

selecting
character sets 50

sequential access method
files managed by 183
space management 182

server name 23
choosing 23
migration consideration 40

server_names
on the CIRA transaction 89
on the CIRB transaction 84

SET APPCVM 79
setting

default character subtype 247
setting up job control for the accounting

files 181
setting up your database job control 211
shadow paging 340
shared system area (SVA)

eligible phases 222
sample 222

shared virtual area (SVA)
defining components 221
eligible phases 221

SHOW ACTIVE 96
SHOW LOCK MATRIX command 57
SHOW LOG

scheduling archives 151
scheduling log archives 154
scheduling user archives 152

SHOW USERS 77
shutdown of the application server 76
single user mode

CALL/RETURN protocols for
application programs 72

definition 47
initialization parameters 65
running application programs 71
starting application server 71

single virtual machine mode
definition 47

size
database 15
directory 14
internal dbspaces needed 20
log 14, 17

by DASD type 355
SLOGCUSH initialization parameter

description 62
freeing log space 150, 153

slots
use of 129

sorting sequence, altering by a field
procedure 284

SOSLEVEL initialization parameter 63
source members

ARISDTM member 270, 278
cataloguing 75

space allocations
log and dbextent data sets 338

SPANISH character set 235
specifying

user parameters 71

Index 431

SQLCODE
-522 60
-932 334
-937 114
-945 129
-946 129

SQLDBA.ROUTINE
CHARNAME change 51

SQLDBA.STORED QUERIES
CHARNAME change 51

SQLDBA.SYSLANGUAGE
CHARNAME change 51

SQLDBA.SYSLANGUAGE table 254
SQLDBA.SYSTEXT2

CHARNAME change 51
SQLDBA.SYSUSERLIST

CHARNAME change 51
SQLEND

ARCHIVE 150
DVERIFY 76
LARCHIVE 152
QUICK 76
recovery considerations 79
UARCHIVE 151

SQLEND operator command 76
SQLERRD2

-30 60
SQLGLOB

program to query, update, insert or
delete 247

SQLGLOB VSAM file
setting default CHARNAME 246
setting default DBCS 249

starter database
size allocations 10

starting
online support 81

starting application server
after restoring the database 157
FRENCH character set example 236
restoring a database 156
STARTUP=R 156

starting the application server 47
STARTUP=C initialization of database

manager 213
STARTUP initialization parameter

restart procedures 155
restoring 156

STDOPT JCC/JCS 103
STOP SYSTEM response 158
stopping the application server

online support 78, 110
recovery considerations 76

storage
capacity IBM DASD 337
concepts 121
devices 15
estimating 337
initial storage requirements 333
requirements

CICS 335
virtual storage requirements

CICS partitions 333
partitions 333

storage pool 216
adding dbextents 131
concepts 121

storage pool 216 (continued)
controlling

channel utilization 130
device utilization 130

controlling data location 130
deleting dbextents 133
design considerations 129
estimating size 130
maintaining 131
management 129
monitoring 130
nonrecoverable 171
requirements 340
space 61
specifying initial 216
support

application dbspaces 22
internal dbspaces 22
system dbspaces 21

storage required for the starter
database 10

storage requirements
batch environment 335
processor 331
virtual 331

storage space calculations 337
stored SQL statements

estimating dbspace size 350
STXIT exit 73
subtype

application server uses 31
switching

log modes 163
SYNCPNT initialization parameter 53
syntax diagram

notation conventions xi
SYS0001 dbspace 18, 218

storage estimating 341
derivation of the formula 345
examples 346
modifying the formula 347

SYS0002 dbspace 18, 218
allocation 127

SYS000n dbspace 128
SYSCCSIDS catalog table 228
SYSCHARSETS catalog table 228
SYSLANGUAGE catalog table

example 254
SYSMODE initialization parameter 49
SYSOPTIONS catalog table

updating 278
SYSSTRINGS catalog table 228
system

dbspaces
size 20

failure 154
maximums 353
virtual storage requirements 8

T
table

character classification 362
location in dbspaces 123

tape
accounting

example 187

tape (continued)
archiving 11
DBS utility processing 11
labeling 154
requirements 11
tracing 11

TCPPORT initialization parameter 54
terminal

requirements 11
terminal printer 3
terminating

online applications 113
the application server

starting 47
time

exit 270, 271
TPN

See transaction program name 23
TRACCONV initialization parameter 65
TRACDBSS initialization parameter 65
TRACDRRM initialization parameter 65
TRACDSC initialization parameter 65
TRACEBUF initialization parameter 65
TRACEBUF parameter

SQLSTART 65
tracing

tape requirements 11
tape support for 67

TRACRDS initialization parameter 65
TRACSTG initialization parameter 65
TRACWUM initialization parameter 65
transaction information

displaying 101
transaction program name 23
transactions

CEMT 114
CIRD 81
CIRT 110
CSMT 114

TRANSLATE function
folding rules 228

translation table
character sets 366
coded character set identifier

(CCSID) 253
identifying 50

TRANSPROC exit
coding your own 279

two-phase commit 91

U
unallocated pages

archiving 145
undercommitting dbspace storage 130
unused package 129
update

SQLGLOB parameters 247
updating

partial rows 175
updating up your DBNAME

directory 208
user archive

creating 151
VSAM backup command 152
VSAM RESTORE command 157

user parameters
for starting the application server 71

432 System Administration

user parameters (continued)
user application program 72

user restore
definition 156

using
dual logging 165

using AMODE(24)
incompatibilities 413

V
value

descriptors in field procedures 289
verifying

directory 76
virtual disk support

internal dbspaces 21, 124
virtual storage

batch 335
batch or VSE/ICCF 335
CICS partition 333
for application partitions 8
partition 333
partition size 8
requirements 8, 331, 335
VSE/ICCF 335

VOLID parameter, as applies to log
archiving 212

volume considerations
directory 15
log 17

VSAM
access method services statements 34
catalogs 10, 208
data set password 117
data sets for a database 209
defining a data set 34
definition of database data sets 208
definition of directory data set 210
example backup command for user

archive 152
example RESTORE command for user

archive 157
release level 6
restriction 117
space management

accounting files 183, 185
VSE/ESA

library, DASD storage
requirements 9

VSE guest sharing
accessing and operator

responsibilities 79
DBNAME directory 79
national language messages 256
online support 78

VSE guest user accounting record 196
VSE/ICCF

application programs 69
control statements for running an

application program 69
release level 6

VSE/Power facility 3
VSE/POWER product

release level 6
VSE STDOPT JCC/JCS 103

VSE/VSAM BACKUP command,
example of 152

VSE/VSAM Backup/Restore 144

VSE/VSAM RESTORE command 157

VSE/VSAM space management for SAM
feature 182

W
warm start of the application server 49

work units

accounting exit
work unit ID 195

Index 433

434 System Administration

Readers’ Comments — We’d Like to Hear from You

DB2 Server for VSE
System Administration
Version 7 Release 1

Publication No. SC09-2981-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC09-2981-00

SC09-2981-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CANADA LTD.
DB2 Server for VSE & VM
2S/240/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada M3C 1H7

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/4300-50
Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2981-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
D

B
2

Se
rv

er
fo

r
VS

E
Sy

st
em

Ad
m

in
is

tr
at

io
n

Ve
rs

io
n

7
R

el
ea

se
1

	Contents
	About This Manual
	Organization of This Manual
	How to Send Your Comments
	Syntax Notation Conventions
	SQL Reserved Words

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 1
	Enhancements, New Functions, and New Capabilities
	TCP/IP Support for DB2 Server for VSE
	DRDA RUOW Application Requester for VSE (Batch)
	Stored Procedures Application Requester
	Simplified DB2 Server for VSE Installation/Migration
	New Code Page and Euro Symbol Code Page Support
	Control Center for VM Enhancements
	Control Center for VSE Enhancements
	QMF for VSE & VM Optional Feature
	QMF for Windows® Optional Feature

	Reliability, Availability, and Serviceability Improvements
	DBNAME Directory Restructuring
	Migration Considerations

	Library Enhancements

	Chapter 1. Planning for Installation
	Usage Environments
	Batch Application Processing
	Online (CICS) Transaction Processing
	Interactive Application Development
	Query/Report Writing
	Components of the Relational Database Management System
	Prerequisite Programs
	Virtual Storage Requirements
	Hardware Requirements
	Real Storage Requirements
	DASD Space Requirements
	Tape Requirements
	Display Terminal Requirements

	DBNAME Directory Requirements
	DB2 Key Processing

	Chapter 2. Planning for Database Generation
	Setting Up the DB2 Product Key
	Database Generation Parameters
	Defining Database Directory Size
	Directory Allocation Considerations

	Defining the Database Log
	Log Size Considerations

	Establishing Database Capacity Parameters
	Estimating MAXPOOLS
	Estimating MAXEXTNT
	Estimating MAXDBSPC
	Estimating CUREXTNT

	Establishing Initial Dbspace Requirements
	Determining the System Dbspace Requirements
	Determining the Initial User Dbspace Requirements
	Determining the Internal Dbspace Requirements

	Determining Initial Dbextent Requirements

	Choosing an Application Server Name
	Setting Up the DBNAME Directory
	The IBM-Supplied DBNAME Directory
	Updating the DBNAME Directory
	Sample DBNAME Directory

	CICS CEDA DEF CONNECTIONS Command for a RemoteEntry

	Choosing the Application Server Default CHARNAME and CCSID
	Choosing the Application Server Default Character Subtype
	Choosing the Default CHARNAME and CCSID for ApplicationRequesters
	Preparing for Database Regeneration
	Database Generation Worksheet

	Chapter 3. Planning for Database Migration
	Migration Considerations
	Increasing the HELPTEXT Dbspace

	Migrating from Version 3 Release 1
	Considerations for Invalid Indexes
	Conversion of Packages

	Migrating from Version 3 Release 2
	Choosing a Server Name
	Elimination of the SET XPCC Command
	Choosing an Application Server Default CHARNAME
	Setting Migration CCSID Values

	Considerations for Mixed Primary Keys with Field Procedures
	Considerations for EXPLAIN Tables
	Considerations for VSE Guest Sharing

	Migrating from Version 3 Release 4
	Considerations for Assembler Even Precision Packed Decimal
	Considerations for SQLSTATE Changes for SQL92 Support

	Migrating from Version 3 Release 5
	Considerations for Uncommitted Read
	Considerations for Support of ESA-mode Processors Only
	Considerations for the Renaming of the Product
	Considerations for the Removal of the User Facility Subset

	Migrating from Version 5 Release 1
	Choosing the Default CHARNAME for All ApplicationRequesters
	Considerations for VSE DRDA Online Requester Support
	Considerations for RDS Above 16M

	Migrating from Version 6 Release 1
	Considerations for the DBNAME Directory
	Considerations for Key Enablement

	Release Coexistence Considerations
	Changing the Server Name and Application Server Identifier

	Chapter 4. Planning for Operation of the Database Manager
	Starting the Application Server
	Modes of Operation
	Multiple User Mode Initialization Parameters
	Environment Parameters
	DBNAME
	RMTUSERS
	SYSMODE
	STARTUP
	PARMID
	DBPSWD
	CHARNAME
	ACCOUNT
	SYNCPNT
	DSPSTATS
	SECALVER
	SECTYPE
	TCPPORT
	Performance Parameters
	NCUSERS
	NPACKAGE
	NPACKPCT
	NPAGBUF
	NDIRBUF
	NLRBU and NLRBS
	DISPBIAS
	NCSCANS
	LTIMEOUT
	PROCMXAB
	PTIMEOUT
	Recovery Parameters
	LOGMODE
	CHKINTVL
	SLOGCUSH
	ARCHPCT
	SOSLEVEL
	Service Parameters
	DSPLYDEV
	DUMPTYPE
	EXTEND
	TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC,TRACCONV, and TRACSTG
	TRACEBUF

	Single User Mode Initialization Parameters
	Tape Support
	Starting the Application Server in Multiple User Mode
	Running Multiple User Mode Application Programs
	Batch Application Programs
	VSE/ICCF Application Programs
	CICS Transactions

	Starting the Application Server in Single User Mode
	Specifying User Parameters
	CALL/RETURN Protocols for Application Programs in SingleUser Mode

	Overriding Initialization Parameters
	Creating a Parameter Data Set

	Stopping the Application Server
	Taking an Archive
	Verifying the Directory
	Online Support Considerations

	Chapter 5. Operating the Online Support
	Operating VSE Guest Sharing
	Operator Responsibilities
	Starting the Online Resource Adapter -- The CIRB Transaction
	Starting the CIRB Transaction
	SCHEDULE Authority for VSE Guest Sharing
	Implicit CONNECT Support
	Supporting Multiple User Online Access
	CIRB Impact to System Resources
	Supporting Multiple CICS Partitions

	Adding Connections -- The CIRA Transaction
	Automatic Restart Resynchronization
	Resolving In-Doubt Transactions

	Changing the Default Server -- The CIRC Transaction
	Removing Connections -- The CIRR Transaction
	Displaying Information -- The CIRD Transaction
	Stopping the Online Support -- The CIRT Transaction
	Effect of a Shutdown on Online Applications
	Terminal Availability During Online Shutdown
	Shutdown Impact to Online Applications

	Password Implications on Online Resource AdapterTermination

	Chapter 6. Maintaining Database Security
	Protecting VSAM Data Sets
	VSAM Restrictions
	Controlling Access by ISQL Users
	Controlling Access by Remote Users
	DRDA Security

	Chapter 7. Managing Database Storage
	Storage Concepts
	How Information is Stored in Dbspaces

	Adding Dbspaces to the Database
	The ADD DBSPACE Operation
	Considerations for Adding Dbspaces
	Initialization Parameters for ADD DBSPACE

	Expanding the Database Directory
	Acquiring Dbspaces for Packages
	Managing Storage Pools
	Design Considerations for Storage Pools
	Estimating Storage Requirements
	Controlling Device and Channel Utilization
	Controlling Data Location

	Monitoring Storage Pools
	Maintaining Storage Pools
	Adding Dbextents to a Storage Pool
	Deleting Dbextents from a Storage Pool
	Using the ARIS250D Procedure
	Initialization Parameters for ADD and DELETE Dbextents
	Moving Dbextents
	Moving the Log

	Chapter 8. Making Backups and Recovering from Failures
	Understanding Recovery Concepts
	What is a Logical Unit of Work?
	What is a Log?
	What is a Checkpoint?
	What Happens after a System Failure?
	Restart Recovery with a Log
	Restart Recovery Without a Log

	What is an Archive?
	Database Archives
	Log Archives

	Recovering from DASD Failures that Damage the Database
	Recovering from DASD Failures that Damage a Log
	Recovering from DASD Failures that Damage the Databaseand Log

	Establishing DASD Recovery Procedures
	Choosing a Log Mode
	Deciding between LOGMODE=A or L

	Backing Up the History Area
	Choosing Dynamic or Static Tape Devices

	Archiving Procedures
	Performing Database Archives With Database ManagerFacilities
	Contention During an Archive

	Performing Database Archives With User Facilities
	Freeing Log Space during a User Archive

	Performing Log Archives
	Contention During an Archive

	Labeling Your Archive Tapes

	Recovery Procedures
	Restarting Procedures
	Restoring the Database
	Selecting the Archive Copy to Use
	Restoring from a Database Manager Archive
	Restoring from a User Archive
	When to Use LOGMODE=A
	When to Use LOGMODE=L

	Restarting from Failure of a Database Restore
	Restarting from a System Failure While Archiving
	Restarting from Failure of a Database Generation orCOLDLOG Operation
	Relocating the Database Manager
	Replacing a Dbextent
	Replacing a Log
	Recovering to a Secondary System

	Chapter 9. Special Topics in Recovery Design
	Switching Log Modes
	From LOGMODE=A
	From LOGMODE=L
	From LOGMODE=Y or N

	Using Dual Logging
	Reconfiguring and Reformatting the Logs
	Log Reconfiguration
	Archiving Considerations

	Log Reformatting
	History Area
	How the History Area is Used

	Nonrecoverable Storage Pools
	Characteristics of Dbspaces in Nonrecoverable Storage Pools
	Data That Can be Placed in Nonrecoverable Storage Pools
	Example 1
	Example 2
	Example 3

	Data That Should Not Be Placed in Nonrecoverable Dbspaces
	Setting Up Nonrecoverable Storage Pools and Dbspaces
	Querying for Nonrecoverable Storage Pools and Dbspaces

	Chapter 10. Using the Accounting Facility
	Preparing to Use the Accounting Facility
	Setting Up Your System
	Setting Up a Job Control for the Accounting Files
	Managing DASD Accounting Files
	Managing Tape Accounting Files

	Starting the Accounting Facility
	Operating the Accounting Facility
	Generation of Accounting Records
	Using DRDA Accounting
	Supplying Accounting Data from DRDA Applications
	Formats of the Accounting Records
	Initialization Records
	Operator and Checkpoint Records
	Termination Records
	User Records
	Remote User Records
	DRDA Records
	VSE Guest User Records

	Maintaining Accounting Data
	Considerations for an Accounting Dbspace
	Tables to Hold Accounting Data
	SQLDETAIL Table
	SYSDETAIL Table
	USERDETAIL Table
	DRDADETAIL Table

	Loading the Accounting Data
	Converting VSAM ESDS Accounting File Records into VSAMManaged SAM Feature Records

	Chapter 11. Generating Additional Databases
	Learning about Configuration Concepts
	Reasons for Adding a Database Partition

	Database Generation Process
	Step 1: Update the DBNAME Directory
	Step 2: Defining the Database Data Sets
	Step 3: Setting Up Your Database Job Control
	Step 4: Generating the Database
	Specifying Keyword Control Statements
	Specifying Initial Storage Pools and Dbextents
	Specifying Initial Dbspaces

	Step 5: Installing the Database Components
	Step 6: Reload CCSID-Related Packages
	Step 7: Optionally Changing the Application Server DefaultCHARNAME
	Step 8: Optionally Changing the Application Server DefaultCharacter Subtype
	Step 9: Optionally Setting the DBCS Option to YES
	Step 10: Changing the Password of Authorization ID SQLDBA
	Step 11: Optionally Install the DRDA Code
	Step 12: Optionally Load Phases into SVA

	Chapter 12. Choosing a National Language and DefiningCharacter Sets
	Considerations when changing default CHARNAME and CCSID
	Changing from pre-Euro CHARNAME to Euro-compatibleCHARNAME

	Using Alternative Character Sets
	Hexadecimal Values of the Sample Character Sets
	Specifying an IBM-Supplied Character Set at Run Time

	Using Double-Byte Character Set (DBCS)
	Identifiers Containing DBCS Characters
	Constants and Data Containing DBCS Characters

	CCSID Conversion
	Determining CCSID Values
	Setting the Application Server Default CHARNAME and CCSIDs
	Changing the CCSID Attribute of an Existing Column
	Changing the Subtype Attribute of an Existing Column

	Setting the Application Requester Default CHARNAME and CCSIDs
	The SQLGLOB File Batch Query/Update Program

	Setting the Application Server Default Character Subtype
	Setting the DBCS Option for the Application Server
	Setting the Default Application Requester DBCS Option
	EUC Conversions
	Examples of Setting Values for an Installation
	Example 1
	Example 2
	Identifying Classification and Translation Tables for a CCSID

	National Language Support for Messages and HELP Text
	Changing the ISQL Default Language
	National Language Messages in a VSE Guest SharingEnvironment

	Chapter 13. Creating Installation Exits
	Supplying Account Numbers for Users
	How the ARIUXIT Module Works
	Coding Your Own Accounting Exit
	Installing Your Version of ARIUXIT
	Service Considerations for ARIUXIT

	Defining Your Own Datetime Format
	Datetime Formats
	Default Output Format

	How Datetime Exits Work
	When Date and Time Exits are Called (Exit Points)

	Coding Your Own Datetime Exit
	Installing Your Version of ARIUXDT or ARIUXTM
	Updating the SYSTEM.SYSOPTIONS Catalog Table

	Coding Your Own TRANSPROC Exit
	

	Coding Your Own Cancel Exit
	
	ARIRCAN Macro
	RMAR (Resource Adapter Asynchronous Request)

	Field Procedures
	Specifying the Field Procedure
	When Field Procedures are Called
	General Considerations for Writing Field Procedures
	A Warning about Blanks
	Maintaining Field Procedures
	Recovering from Abends in Exits
	Security with Field Procedures
	Field Procedures for Cultural Sorts
	Field Procedure Interface to the Database Manager
	The Field Procedure Parameter List (FPPL)
	The Work Area
	The Field Procedure Information Block (FPIB)
	Value Descriptors
	The Field Procedure Parameter Value List (FPPVL)

	Field-Definition (Function Code 8)
	On ENTRY
	On EXIT

	Field-Encoding (Function Code 0)
	On ENTRY
	On EXIT

	Field-Decoding (Function Code 4)
	On ENTRY
	On EXIT
	A Sample Exit

	Chapter 14. Using a DRDA Environment
	
	Benefits of Using the DRDA Protocol
	Added Responsibilities in Using the DRDA Protocol
	Types of Distributed Access
	Remote Unit of Work
	Distributed Unit of Work
	Summary of DRDA Support in DB2 Server for VSE

	Preparing to Implement DRDA
	On the Application Requester
	On the Application Server
	Entries Required in CICS System Definition File
	CICS Program Definitions Required for DRDA
	Entries Required in DFHSIT
	Terminal Definitions Required by AXE
	Entries Required in DFHCSDUP
	Entries Required in DFHSNT
	CICS Transaction Server (TS) Considerations

	Installing and Removing the DRDA Code
	Installing the DRDA Code on the Application Server
	Removing the DRDA Code on the Application Server
	Installing the DRDA Code on the Application Requester
	Removing the DRDA Code on the Application Requester

	Using DRDA
	Creating Packages on the Remote Server
	Using the DBS Utility on Remote Application Servers
	Using ISQL on non-DB2 Server for VM Application Servers
	Two-Phase Commit Processing
	Using the Two-Phase Commit Protocol

	CICS/VSE Syncpoint Manager and the Task Related User Exit (TRUE)
	Managing In-Doubt LUW's
	Operator Commands

	Making Heuristic Decisions
	Resynchronization
	Resync When Partner is Not Active
	Resolution of In-doubts

	Chapter 15. Using TCP/IP with DB2 Server for VSE
	Preparing the Application Server to use TCP/IP
	Preparing the Application Requester to use TCP/IP

	Appendix A. Processor Storage Requirements
	Virtual Storage Requirements of Components
	CICS Dynamic Storage Considerations
	Use of SELECT
	Use of Routines
	CICS Temporary Storage Queues

	Appendix B. Estimating Database Storage
	Storage Capacities of IBM DASD Devices
	Relationship of Megabytes to 4-Kilobyte Pages
	Estimating Directory Space Requirements
	Estimating Storage Pool Requirements
	Estimating SYS0001 Dbspace Requirements
	SYS0001 Storage Estimating General Formula Assumptions
	Average Row Lengths for Catalog Table Rows
	Assumptions on the Number of Catalog Table Rows

	Derivation of the General Formula for SYS0001 StorageEstimating
	Formula for SYS0001 Storage Estimating
	Examples of Using the SYS0001 Storage Estimating Formula
	For a Test Database
	For an Application Development Database
	For a Production Database

	Modifying the SYS0001 Storage Estimating General Formula

	Estimating ISQL Dbspace Requirements
	Estimating Dbspace Sizes for Routines
	Estimating Dbspace Size for Stored SQL Statements (StoredQueries)

	Appendix C. Maximum Values
	Database Manager Maximum Values
	Database Maximum Values

	Appendix D. Updating SYSTEM.SYSSTRINGS
	Appendix E. Defining Your Own Character Set
	Step 1: Identify All Characters in Your Character Set
	Step 2: Classify the Characters
	Step 3: Determine Translation Characters
	Step 4: Update the SYSTEM.SYSCHARSETS Catalog Table
	Step 5: Update the SYSTEM.SYSCCSIDS Catalog Table
	Step 6: Update the SYSTEM.SYSSTRINGS Catalog Table
	Step 7: Update the CCSID-Related Phases

	Appendix F. Macro List
	Appendix G. DRDA Considerations
	Omissions from the Standards
	Extensions to the Standards
	DB2 Server for VSE Facility Restrictions

	Appendix H. Incompatibilities Between Releases
	Definition of an Incompatibility
	Impact on Existing Applications
	V2R1 and V1R3.5 Incompatibilities
	V2R2 and V2R1 Incompatibilities
	Detailed Notes on V2R2-V2R1 Incompatibilities

	V3R1 and V2R2 Incompatibilities
	Detailed Notes on V3R1-V2R2 Incompatibilities

	V3R2 and V3R1 Incompatibilities
	Detailed Notes on V3R2-V3R1 Incompatibilities

	V3R4 and V3R2 Incompatibilities (VSE Only)
	Detailed Notes on V3R4-V3R2 Incompatibilities

	V3R5 and V3R4 Incompatibilities
	V5R1 and V3R5 Incompatibilities
	V6R1 and V5R1 Incompatibilities
	V7R1 and V6R1 Incompatibilities

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

