

IBM DB2® Universal Database™
DB2 Problem Determination Tutorial Series

__

Application Problem Determination

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

2 © Copyright IBM Corp. 2003.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 3

Table of Contents
Application Problem Determination ... 4

About this tutorial.. 4
Introduction ... 4
Setup.. 4
About the author.. 4

Building applications... 5
How applications work.. 5
Compilation errors... 6
Linking errors.. 6

ODBC applications ... 8
Introduction ... 8
Tracing .. 8
Enabling CLI traces... 8
Application errors.. 9
Proper error handling .. 10

JDBC applications... 12
Tracing .. 12
Debugging ... 12

OLEDB/ADO applications ... 18
OLEDB/ADO applications ... 18

Stored procedures.. 20
Creating a stored procedure using the Stored Procedure Builder 20
Stored procedure source files .. 21
Executing a stored procedure .. 21

Summary and feedback ... 23
What you should know.. 23
For more information .. 23
Feedback.. 23

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

4 © Copyright IBM Corp. 2003.

Application Problem Determination

About this tutorial

Introduction
 This tutorial assists you in diagnosing common problems with application development and
execution involving DB2 databases. To understand concepts in this tutorial, you should have a
basic knowledge of database fundamentals, SQL error messages, and application interfaces -
specifically, ODBC, JDBC, and OLEDB/ADO. You will also need to understand basic concepts of
SQL and data manipulation.

This tutorial focuses on problem determination for building and executing the following kinds of
applications:

• ODBC Applications
• JDBC Applications
• OLEDB/ADO Applications
• Stored procedures

Setup
This tutorial shows examples installed on the Windows® operating system, but all concepts and
exercises can be completed on any DB2 distributed system.

In order to work through the examples in this tutorial, you should have completed the following
tasks:

• Installed DB2 and the samples
• Created an instance and two IDs to access (and create if necessary) a DB2 test database,

with permissions to create objects within the database. We will use the DB2 sample
database throughout the tutorial.

• Installed compilers for C/C++, Java™ and Microsoft® Visual Basic. These are necessary
only if you wish to complete all of the examples given in this tutorial.

About the author
Murray Chislett has an honours Bachelor of Computer Science degree and is a senior member of
the DB2 technical support team at the IBM Toronto Laboratory. A former developer in database
technology at IBM, he supports customers worldwide with expertise in the DB2 UDB engine and
application development. Murray is now primarily responsible for IBM Data Management Premier
Services customers.

You can reach Murray by locating his e-mail address in the IBM Global Directory at
http://www.ibm.com/contact/employees/us .

http://www.ibm.com/contact/employees/us

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 5

Building applications

How applications work
Applications or stored procedures are written in a variety of languages using a set of standard APIs
to manipulate database data.

It is important to know the layers involved in DB2 applications in order to diagnose issues. The
DB2 Call Level Interface (CLI), which is equivalent in functionality to ODBC, is often used
underneath other drivers, so it may be necessary to debug different layers to determine problems.
The figure below shows the typical application flow:

Errors that occur during compilation are often due to programming errors or environments that are
not correctly set up for application creation. This tutorial will look at some examples of
compilation and linking errors.

By following the DB2 Application Development manuals as well as the specific documentation
related to your programming interface, you can avoid most errors involved in creating and
executing DB2 applications. DB2 product manuals for application development can be found in
both HTML and PDF formats at
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v7pubs.d2w/en_main .

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v7pubs.d2w/en_main

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

6 © Copyright IBM Corp. 2003.

Compilation errors
In this section, we will look at an example of a compilation error in a CLI application written in
C/C++. Here is the sample program that we will use:

Sample.c (ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample.c)

Compile Sample.C with this command:

cl sample.c -I"%DB2PATH%\include" -link"%DB2PATH%\lib\db2cli.lib"

(You might have to modify the command if your compiler requires different options. You could
also choose to create a makefile to compile the sample.c program) If you compile the program you
will get the following error:

sample.c(22) : error C2198: 'SQLAllocHandle' : too few actual parameters

Line 22 of Sample.C contains the following code:

sqlrc = SQLAllocHandle(SQL_HANDLE_ENV, NULL) ;

Checking the CLI documentation for SQLAllocHandle, you see that the call is incorrect. You can
find the SQLAllocHandle call documented at
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7l0sqll1401.htm#HDRFNAH1 .
This is a simple error common to all types of programming. Errors such as this, received at
compile time, can usually be resolved by checking the related documentation and correcting the
code as necessary.

Correct the error by modifying line 22 of Sample.c as follows:

sqlrc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, NULL) ;

Once modified, the program should compile and execute successfully. If not, check the DB2
Application Development Guide and your compiler documentation to ensure that your
environment is set up correctly. Success means your environment is set up correctly to run CLI
applications.

Linking errors
Compiler and linker errors for DB2 applications are often the same as those you encounter when
creating any type of application. The linking step sometimes results in difficulty creating the
executable.

Ensure your environment is correctly installed and you are using the proper DB2 libraries
contained in C:\Program Files\SQLLIB\LIB or \BIN. This is the best way to avoid
compilation/linking problems. You should check the DB2 Application Development guides relating

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample.c
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7l0sqll1401.htm#HDRFNAH1

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 7

to your programming interface and your compiler specific documentation. They will guide you to
set up the correct environment.

Here are some of the common items that relate to having your environment setup correctly:

• Ensure makefiles contain the correct compiler information
• Set all compiler-related variables for include files and libraries
• Ensure any command line arguments point to the correct DB2 directories

Here are some of the common mistakes that can lead to linker errors:

• Improper API/function calls
• Multiple versions of linked libraries in the LIBPATH
• API/function definitions not matching the code contained in the library files

You can look at the samples included with DB2 as they also include scripts and instructions to
compile and link them.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

8 © Copyright IBM Corp. 2003.

ODBC applications

Introduction
When you receive unexpected behaviour from DB2 applications, tracing is often the best way to
determine the root cause. Remember that many of the supported programming interfaces for DB2
will eventually go through the CLI application layer. These include JDBC and OLEDB. So, even if
you are not writing or supporting CLI or ODBC applications, it may be important to understand
how it works and its tracing methods.

In this tutorial, we will look at tracing for CLI, JDBC and OLEDB applications.

Tracing
ODBC applications use the DB2 CLI interface to access DB2. The DB2 CLI library is also an
ODBC library. When diagnosing ODBC applications it is often easiest to determine the problem
by using an ODBC trace or DB2 CLI trace. If you are using an ODBC driver manager, it will
likely provide the capability to take an ODBC trace. Consult your driver manager documentation
on how to enable ODBC tracing. DB2 CLI traces are DB2-specific and will often contain more
information than a generic ODBC trace. Both traces are usually quite similar, listing entry and exit
points for all CLI calls from an application; including any parameters and return codes to those
calls.

The CLI trace is enabled by adding the following entries to the db2cli.ini file, which is located on
Windows systems in the C:\Program Files\SQLLIB\ directory:

TRACEFLUSH=1
TRACEPATHNAME=C:\TEMP
TRACE=ON

To find out what these parameters mean, read the DB2 Call Level Interface Guide and Reference at
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7l0clikeyw.htm#HDRHDCONFG .

Note that there are lots of keywords that can be added to the db2cli.ini file that can affect
application behavior. These keywords can resolve or be the cause of application problems. There
are also some keywords that are not covered in the CLI documentation. Those are only available
from DB2 Service and Support. If you have keywords in your db2cli.ini file that are not
documented, it is likely that they were a recommendation from the DB2 support team.

Enabling CLI traces
Turn on your CLI trace, as shown in the previous page. Here is an example of the entries you
might see in your db2cli.ini file:

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7l0clikeyw.htm#HDRHDCONFG

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 9

; Comment lines start with a semi-colon.

[tstcli1x]
uid=userid
pwd=password
autocommit=0
TableType="'TABLE','VIEW','SYSTEM TABLE'"

[tstcli2x]
; Assuming dbalias2 is a database in DB2 for MVS.
SchemaList="'OWNER1','OWNER2',CURRENT SQLID"

[MyVeryLongDBALIASName]
dbalias=dbalias3
SysSchema=MYSCHEMA

[DWCTRLDB]
DBALIAS=DWCTRLDB

[COMMON]
trace=1
traceflush=1
Tracefilename=C:\temp\cli.trc

When you use the trace facility to diagnose application issues, keep in mind that it does have an impact on
application performance and that it affects all applications, not only your test application. Remember to
turn it off after the problem has been identified.

Application errors
Here we have a sample application that has a problem upon execution.

Sample1.c (ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample1.c)

When you run the application, it uses the current user ID and password to connect with a database named
sample.

You will need to modify the program to change the database name to the database that you are actually
using for these exercises.

Compile Sample1.c with the following command. (You many need to alter this command to accommodate
you specific C/C++ compiler.)

cl sample1.c -I"%DB2PATH%\include" -link"%DB2PATH%\lib\db2cli.lib"

Execute the program against a database by calling the executable created in the above compile step. This
will result in the following error:

Error Fetching.

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample1.c

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

10 © Copyright IBM Corp. 2003.

Examine Sample1.C to find where the application would return this error. You will find in order for the
application to return the above error, the SQLFetch call must have returned an SQL_ERROR. Since the
application didn't request the error info, we need more information to find out the cause.

You can examine the CLI trace, since it was enabled in a previous section. It will be the file you specified
in the TRACEFILENAME keyword in your db2cli.ini file. Look at the portion of the CLI trace that
includes the SQLFetch call:

SQLFetch(hStmt=1:1)
---> Time elapsed - +2.200000E-004 seconds

SQLFetch()
<--- SQL_ERROR Time elapsed - +1.238000E-003
seconds

This shows the error being returned, but no error detail.

ODBC error detail is returned only when an application requests that information. Taking
a CLI trace may reveal more information than the application returns. In the above case,
you see that it does not. Next we will look at ensuring that the application returns enough
information to permit problem diagnosis.

Proper error handling
The trace has not revealed any further info, so we will now add the calls necessary to
request the error information.

Often applications are difficult to troubleshoot because not enough error information is
provided by the application. If you were to rewrite the sample program to gather the
proper error information, you would need to add SQLGetDiagRec calls to obtain the
information from the server. The application has been rewritten to add a new function to
gather DB2 error information should any of the calls fail. Look at Sample2.c to see how
this was done.

Sample2.c (ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample2.c)

Delete the cli.trc file created from running sample1 in the previous panel.

Now, compile sample2.c as you did sample1.c above and execute the new program
created.

You will see the following error returned:

Error Fetching.

SQLSTATE = HY010
Native Error Code = -99999

[IBM][CLI Driver] CLI0125E Function sequence error.

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Sample2.c

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 11

SQLSTATE=HY010

Application Complete.

You can also see the error if you check the new cli.trc file created from running
sample2.c. It will be in the same location as before. Examine just the portion of the file
related to the SQLFetch call that returned an error:

SQLFetch(hStmt=1:1)
---> Time elapsed - +2.130000E-004 seconds

SQLFetch()
<--- SQL_ERROR Time elapsed - +2.769000E-003
seconds

SQLGetDiagRec(fHandleType=SQL_HANDLE_STMT,
hHandle=1:1, iRecNumber=1, pszSqlState=&0012ff10,
pfNativeError=&0012fb08, pszErrorMsg=&0012fb0c,
cbErrorMsgMax=1025, pcbErrorMsg=&0012ff1c)

---> Time elapsed - +5.350000E-004 seconds

SQLGetDiagRec(pszSqlState="HY010",
pfNativeError=-99999, pszErrorMsg="[IBM][CLI Driver]
CLI0125E Function sequence error. SQLSTATE=HY010" -
X"5B49424D5D5B434C49204472697665725D20434C4930313235
45202046756E6374696F6E2073657175656E6365206572726F72
2E2053514C53544154453D4859303130", pcbErrorMsg=67)

<--- SQL_SUCCESS Time elapsed - +3.274000E-003
seconds

SQLGetDiagRec(fHandleType=SQL_HANDLE_STMT,
hHandle=1:1, iRecNumber=2, pszSqlState=&0012ff10,
pfNativeError=&0012fb08, pszErrorMsg=&0012fb0c,
cbErrorMsgMax=1025, pcbErrorMsg=&0012ff1c)

---> Time elapsed - +1.142700E-002 seconds

SQLGetDiagRec()
<--- SQL_NO_DATA_FOUND Time elapsed -
+2.361000E-003 seconds

By checking the ODBC Standard or DB2 CLI documentation, you will learn that a
function sequence error is returned from an SQLFetch call if you do not call SQLExecute
first. The statement needs to be executed before you can fetch any data it may return.

Attempt to correct this programming error in sample2.c by adding an SQLExecute call.
Recompile and re-execute the program to ensure you have made the correct changes.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

12 © Copyright IBM Corp. 2003.

JDBC applications

Tracing
The JDBC interface accesses DB2 by making use of the DB2 CLI interface. Debugging
JDBC applications will often involve using multiple trace facilities.

For solving JDBC issues, enable JDBC tracing by adding JDBC trace keywords to your
db2cli.ini file. The keywords added are in bold font. If you were enabling JDBC tracing,
your file would look similar to this:

; Comment lines start with a semi-colon.

[tstcli1x]
uid=userid
pwd=password
autocommit=0
TableType="'TABLE','VIEW','SYSTEM TABLE'"

[tstcli2x]
; Assuming dbalias2 is a database in DB2 for MVS.
SchemaList="'OWNER1','OWNER2',CURRENT SQLID"

[MyVeryLongDBALIASName]
dbalias=dbalias3
SysSchema=MYSCHEMA

[DWCTRLDB]
DBALIAS=DWCTRLDB

[COMMON]
trace=1
traceflush=1
Tracefilename=C:\temp\cli.trc

JDBCTRACE=1
JDBCFILENAME=C:\TEMP\JDBC.TRC

JDBCTRACE=FLUSH

You do not need to enable JDBC tracing at this time. This is an example of how to enable
JDBC tracing in your environment.

Debugging
In this next exercise, executing the Java sample program and SQL statements in your
environment might not return exactly the same errors as described here. You should
follow through this example and try to find the cause of the errors from the information
provided.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 13

Executing sample3.java in your environment will have unkown results. Suppose you
have the following JDBC program:

sample3.java (ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/sample3.java)

Your users have described the following problems with this program. When the program
is executed with USER1 logged in, it runs successfully. When it is executed with USER2
logged in, it fails with the error stating that the object USER1.TABLE is not defined.

You can see from the code that the application is attempting to execute the following
SQL statement:

Insert into TABLE values ('sample3')

If you receive errors while attempting to execute SQL from within an application, it is
often quite valuable to attempt the same SQL from another interface, for example the
DB2 command line.

In this example, if you issue the statement exactly as it is in the application, from the
command line, it is successful. It is not understood at this time why the application is
looking for the object USER2.TABLE when it is not specified in the application. To
continue your investigation, you would take a JDBC trace of the failing application.
Below is a sample section of a JDBC trace from the failing application. Try to locate any
reason that would cause the above problem:

jdbc.app.DB2Connection -> prepareStatement(insert
into Test values ('sample3')) (2002-11-25 00:24:22.53)
| jdbc.app.DB2PreparedStatement -> DB2Statement(con,
1003, 1007) (2002-11-25 00:24:22.53)
| | jdbc.app.DB2PreparedStatement ->
checkResultSetType(1003, 1007)
(2002-11-25 00:24:22.53)
| | jdbc.app.DB2PreparedStatement <-
checkResultSetType() [Time Elapsed = 0.0]
(2002-11-25 00:24:22.53)
| | 10: Peak statements = 1
| | 10: Statement Handle = 1:1
| jdbc.app.DB2PreparedStatement <- DB2Statement()
[Time Elapsed = 0.01] (2002-11-25 00:24:22.54)
| jdbc.app.DB2PreparedStatement ->
DB2PreparedStatement("insert into Test values
('sample3')", con, 1003, 1007)
(2002-11-25 00:24:22.54)
| | jdbc.app.DB2PreparedStatement ->
getStatementType(insert into Test values ('sample3')
) (2002-11-25 00:24:22.54)
| | jdbc.app.DB2PreparedStatement <- getStatementType()
returns STMT_TYPE_OTHER (26) [Time Elapsed = 0.0]
(2002-11-25 00:24:22.54)
| | 10: maxNumParam = 0

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/sample3.java

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

14 © Copyright IBM Corp. 2003.

| jdbc.app.DB2PreparedStatement <-
DB2PreparedStatement() [Time Elapsed = 0.01]
(2002-11-25 00:24:22.55)
jdbc.app.DB2Connection <- prepareStatement()
[Time Elapsed = 0.02] (2002-11-25 00:24:22.55)

jdbc.app.DB2PreparedStatement -> execute()
(2002-11-25 00:24:22.55)
| 10: Statement Handle = 1:1
| jdbc.app.DB2PreparedStatement -> execute2()
(2002-11-25 00:24:22.55)
| | 10: Statement Handle = 1:1
| | 10: SQLExecute()- returnCode = -1
| | jdbc.DB2Exception -> DB2Exception()
(2002-11-25 00:24:22.56)
| | | 10: SQLError = [IBM][CLI Driver][DB2/NT]
SQL0204N "USER1.TEST" is an undefined name.
SQLSTATE=42704

| | | SQLState = 42S02
| | | SQLNativeCode = -204
| | | LineNumber = 0
| | | SQLerrmc = USER1.TEST
| | jdbc.DB2Exception <- DB2Exception()
[Time Elapsed = 0.0] (2002-11-25 00:24:22.56)
| | 20: executed (Exit) = false
| jdbc.app.DB2PreparedStatement <- execute2()
[Time Elapsed = 0.02] (2002-11-25 00:24:22.57)
jdbc.app.DB2PreparedStatement <- execute() returns

false [Time Elapsed = 0.02] (2002-11-25 00:24:22.57)

In this trace, the only information that might be relevant is the error message that the
application itself returned. You still need more diagnostic information to discover the
root of this problem.

As stated earlier, JDBC applications use the CLI interface as well, so we may need to
examine both layers to debug problems in JDBC applications. The next step would be to
execute the program while CLI tracing is enabled. Next a CLI trace of the failing
sample3.java has been included.

Cli.trc (ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Cli.trc)

Examine the SQLPrepare and SQLExecute call from the above trace:

SQLPrepareW(hStmt=1:1, pszSqlStr="insert into Test values ('sample3')" -
X"69006E007300650072007400200069006E0074006F00200054006500730074002000760
061006C00750065007300200028002700730061006D0070006C006500330027002900",
cbSqlStr=35)

---> Time elapsed - +5.211000E-003 seconds
(StmtOut="insert into Test values ('sample3')")

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/tutorials/Cli.trc

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 15

SQLPrepareW()
<--- SQL_SUCCESS Time elapsed - +2.277000E-003 seconds

SQLNumParams(hStmt=1:1, pcPar=&0006fa04)
---> Time elapsed - +2.160000E-004 seconds

SQLNumParams(pcPar=0)
<--- SQL_SUCCESS Time elapsed - +1.136000E-003 seconds

SQLExecute(hStmt=1:1)
---> Time elapsed - +3.290000E-003 seconds
sqlccsend(ulBytes - 256)
sqlccsend(Handle - 152786688)
sqlccsend() - rc - 0, time elapsed - +1.083000E-003
sqlccrecv()
sqlccrecv(ulBytes - 163) - rc - 0, time elapsed - +2.020000E-004

SQLExecute()
<--- SQL_ERROR Time elapsed - +5.108000E-003 seconds

SQLGetDiagFieldW(fHandleType=SQL_HANDLE_STMT, hHandle=1:1, iRecNumber=1,
fDiagIdentifier=Unknown value 2467, pDiagInfo=&0006f8ec, cbDiagInfoMax=140,
pcbDiagInfo=&0006f99a)

---> Time elapsed - +6.290000E-004 seconds

SQLGetDiagFieldW(pDiagInfo=5439573, pcbDiagInfo=20)
<--- SQL_SUCCESS Time elapsed - +3.003000E-003 seconds

SQLGetDiagFieldW(fHandleType=SQL_HANDLE_STMT, hHandle=1:1, iRecNumber=1,
fDiagIdentifier=Unknown value 2461, pDiagInfo=&0006f988, cbDiagInfoMax=4,
pcbDiagInfo=&0006f99a)

---> Time elapsed - +2.130000E-004 seconds

SQLGetDiagFieldW(pDiagInfo=0, pcbDiagInfo=20)
<--- SQL_SUCCESS Time elapsed - +2.255000E-003 seconds

SQLErrorW(hEnv=0:0, hDbc=0:0, hStmt=1:1, pszSqlState=&0006f978,
pfNativeError=&0006f984, pszErrorMsg=&0006f0e8, cbErrorMsgMax=1024,
pcbErrorMsg=&0006f98e)

---> Time elapsed - +2.100000E-004 seconds

SQLErrorW(pszSqlState="42S02 4ÿ " - X"34003200530030003200000034FFFFFF0
0000000", pfNativeError=-204, pszErrorMsg="[IBM][CLI Driver][DB2/NT]
SQL0204N "USER1.TEST" is an undefined name. SQLSTATE=42704

" - -
X"5B00490042004D005D005B0043004C00490020004400720069007600650072005D005B0
04400420032002F004E0054005D002000530051004C0030003200300034004E0020002000
2200550053004500520031002E0054004500530054002200200069007300200061006E002
00075006E0064006500660069006E006500640020006E0061006D0065002E002000200053
0051004C00530054004100540045003D00340032003700300034000D000A00",
pcbErrorMsg=88)

<--- SQL_SUCCESS Time elapsed - +3.066000E-003 seconds

SQLGetDiagFieldW(fHandleType=SQL_HANDLE_STMT, hHandle=1:1, iRecNumber=1,
fDiagIdentifier=Unknown value 2467, pDiagInfo=&0006f8ec, cbDiagInfoMax=140,
pcbDiagInfo=&0006f99a)

---> Time elapsed - +1.824000E-003 seconds

SQLGetDiagFieldW(pDiagInfo=5439573, pcbDiagInfo=20)

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

16 © Copyright IBM Corp. 2003.

<--- SQL_SUCCESS Time elapsed - +2.603000E-003 seconds

SQLGetDiagFieldW(fHandleType=SQL_HANDLE_STMT, hHandle=1:1, iRecNumber=1,
fDiagIdentifier=Unknown value 2461, pDiagInfo=&0006f988, cbDiagInfoMax=4,
pcbDiagInfo=&0006f99a)

---> Time elapsed - +2.100000E-004 seconds

SQLGetDiagFieldW(pDiagInfo=0, pcbDiagInfo=20)
<--- SQL_SUCCESS Time elapsed - +2.268000E-003 seconds

SQLErrorW(hEnv=0:0, hDbc=0:0, hStmt=1:1, pszSqlState=&0006f978,
pfNativeError=&0006f984, pszErrorMsg=&0006f0e8, cbErrorMsgMax=1024,
pcbErrorMsg=&0006f98e)

---> Time elapsed - +2.030000E-004 seconds

SQLErrorW()
 <--- SQL_NO_DATA_FOUND Time elapsed - +2.143000E-003 seconds

You still have not found any information that shows the cause of this error. This problem
requires examining the entire trace.

As previously mentioned, CLI keywords placed in the db2cli.ini file may affect
applications, so we should look for any evidence of keywords being set. They will be
included in the CLI trace along with the SQLDriverConnectW call. Look at the
SQLDriverConnect call from the following CLI trace section:

SQLDriverConnectW(hDbc=0:1, hwnd=0:0, szConnStrIn=
"DSN=sample;UID=;PWD=", cbConnStrIn=20, szConnStrOut
=NULL, cbConnStrOutMax=0, pcbConnStrOut=NULL,
fDriverCompletion=SQL_DRIVER_NOPROMPT)

---> Time elapsed - +8.110000E-004 seconds
sqlccsend(ulBytes - 1616)
sqlccsend(Handle - 152786688)
sqlccsend() - rc - 0, time elapsed -
+8.190000E-004
sqlccrecv()
sqlccrecv(ulBytes - 1262) - rc - 0, time
elapsed - +1.990000E-004
sqlccsend(ulBytes - 599)
sqlccsend(Handle - 152786688)
sqlccsend() - rc - 0, time elapsed -
+4.410000E-004
sqlccrecv()
sqlccrecv(ulBytes - 237) - rc - 0, time
elapsed - +1.180900E-002

(DBMS NAME="DB2/NT", Version="07.02.0005",
Fixpack="0x23060105")

(Application Codepage=1252, Database Codepage=
1252, Char Send/Recv Codepage=1252, Graphic
Send/Recv Codepage=1200, Application Char
Codepage=1252, Application Graphic Codepage=1200)

(StmtOut="SET CURRENT SCHEMA = 'USER1'")

sqlccsend(ulBytes - 220)
sqlccsend(Handle - 152786688)
sqlccsend() - rc - 0, time elapsed -

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 17

+3.990000E-004
sqlccrecv()
sqlccrecv(ulBytes - 163) - rc - 0, time
elapsed - +4.920000E-004

(COMMIT=1)

sqlccsend(ulBytes - 196)
sqlccsend(Handle - 152786688)
sqlccsend() - rc - 0, time elapsed -
+4.660000E-004
sqlccrecv()
sqlccrecv(ulBytes - 27) - rc - 0, time
elapsed - +1.920000E-004

SQLDriverConnectW()
<--- SQL_SUCCESS Time elapsed -
+4.637400E-002 seconds

(DSN="SAMPLE")

(UID=" ")

(PWD="*")

(CURRENTSQLID="USER1")

The problem is the CURRENTSQLID keyword included in the connect call. By
examining the db2cli.ini file that is being used by USER1 we would see the following
entry:

CURRENTSQLID=USER1

You can see that USER2 has the CURRENTSQLID keyword set to USER1. The
CURRENTSQLID keyword keyword will add 'USER1' as the schema to unqualified
SQL statements. So, even though the application used the correct ID (USER2) to connect
to the database and issued an SQL statement that had been successful when executed
from the command line, there are still other factors that can affect it upon execution.

Even though our application was written in Java, the solution came from examining the
CLI trace. This is why it is very important to understand all aspects of how the
applications work and where to look when problems arise. Potentially, you could have
also found the problem with this application by examining the db2cli.ini files for the
users in this scenario before taking any traces. For instance, searching through the CLI
trace for 'USER1' may also have lead you to the problem.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

18 © Copyright IBM Corp. 2003.

OLEDB/ADO applications

OLEDB/ADO applications
OLEDB/ADO applications also go through the DB2 CLI layer to access a db2 database,
so you should leave our DB2 CLI tracing on for this section. Before you execute the
Visual Basic program used in the next exercise, remove the CLI trace (cli.trc) file from
the last sample.

OLEDB applications are only available on the Windows operating system and the most
common language for developing them is Visual Basic using the ADO interface. Often
errors do not reveal all of the information needed to find out what is wrong at execution
time. For these types of applications, if a user has only the binary executable, a DB2 CLI
trace may be the best thing for debugging.

Connect to your test database with the user ID USER1 and create a table with the
command below:

CREATE TABLE TEST (C1 CHAR(20) NOT NULL PRIMARY KEY)

Create a Visual Basic application and use it to execute the following section of code. (For
assistance in writing Visual Basic applications, DB2 includes samples the DB2 samples
directory.)

Sub Main()

Dim db As Connection
On Error GoTo DisplayError
Set db = New Connection
db.CursorLocation = adUseClient
db.Open "PROVIDER=IBMDADB2;dsn=SAMPLE;uid=;pwd=;"

db.Execute "insert into test values ('VBSample')"
MsgBox "Success!"
Exit Sub

DisplayError:
MsgBox Err.Description

End Sub

You will need to update the above code to change the dsn from SAMPLE to the name of
your test database.

If it runs successfully, the application opens a pop-up window containing the word
Success! Run the application a second time. This time it fails with the following error:

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 19

[DB2/NT] SQL0803N One or more values in the INSERT statement,
UPDATE statement, or foreign key update caused by a DELETE
statement are not valid because the primary key, unique constraint or
unique index identified by "1" constrains tabl "

Sometimes it is surprising when application runs successfully at least once, and then fails.
In this case, the error message describes the error sufficiently - a primary key is being
violated on the table.

Read the description of an SQL0803 error in the Messages Reference at
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7m0sql0800.htm#HDRSQL0800

Although the application returned the error in this case, the error could also have been
found using the CLI trace facility. Often there are multiple ways to determine what is at
the root of application errors.

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7m0sql0800.htm#HDRSQL0800

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

20 © Copyright IBM Corp. 2003.

Stored procedures

Creating a stored procedure using the Stored Procedure Builder
Stored procedures are perhaps the most difficult applications to debug, because they
execute within the database engine. The best technique is to write robust procedures that
contain error-handling logic.

For this section, you will need two user IDs, which we will refer to as USER1 and
USER2. You will need to create and test the procedure as part of the setup for this
problem.

Using the ID USER1, connect to your database and execute the following DDL to create
the table needed for this example:

Create table Table table1 (C1 char(20))
Insert into table1 values ('Row 1')
Insert into table1 values ('Row 2')

Create the following JDBC stored procedure by invoking the Stored Procedure Builder
and opening a project file or creating a new one. When invoking the stored procedure,
connect to the database with USER1. Name the procedure StoredProc.GetData and have
it return a result set. On the SQLStatement panel enter the statement

Select C1 from table1

On the options panel give the procedure the specific name GetData and a JarID of
StoredProc.

Upon completion you should be able to build successfully. Try executing the procedure
from the DB2 command line with the following statement:

Call storedproc.getdata()

You should see a successful execution. The results should return the contents of Table1.

C1
Row 1
Row 2

"GETDATA" RETURN_STATUS: "0"

So far, so good - your stored procedure is now complete.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 21

Stored procedure source files
Suppose that USER1 and USER2 are the only people you want to access this procedure
you created. Using the Windows explorer, locate the STOREDPROC.jar file (in the
\Program Files\sqllib\fuction\jar directory) and modify the permissions on the file so that
only USER1 and USER2 have full control, and no one else has access to the file.

Now, connect to the database as USER2 and attempt to execute the procedure again with
the same call statement as above.

You will now get the following error:

SQL4304N Java stored procedure or user-defined
function "STOREDPROC.GETDATA", specific name
"GETDATA" could not load Java class "GetData",

reason code "1". SQLSTATE=42724

Stored procedures are executed within the database engine, so access to the executable
programs that run the procedures is also required by the ID under which the database
engine runs. For this reason, access to your stored procedures should be controlled by
GRANT and REVOKE commands, not by manipulating file permissions. (Note,
however, that you may need to alter file permissions when binary files for stored
procedures are copied to a database. For example, if you create a C/C++ stored procedure
outside of the Stored Procedure Builder environment, the binary file would typically be
copied into your stored procedure directory. Once this is done, if access to the file is
restricted, you may need to add execute permission to that file.)

Another common problem with stored procedures can be finding and loading the stored
procedure itself.. Ensuring the procedure is in the correct location and that file
permissions are correct, you can eliminate most SQL4304 errors.

Executing a stored procedure
Now that the file permissions have been restored, execute the stored procedure again
from the command line interface. You should get the following error:

SQL0204N "DB2ADMIN.TABLE1"
is an undefined name. SQLSTATE=42704

Even though the procedure was created with the same ID that was used to create the
table, and executes under the engine process, it will still use the current ID as the default
schema.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

22 © Copyright IBM Corp. 2003.

Launch the stored procedure builder again and open the GetData procedure. You will
need to modify the SQL statement to include the schema USER1. Your new SQL
statement should look like this:

Select c1 from user1.table1

Execute the stored procedure once again from the command line. It should now be
successful.

DB2 Problem Determination Tutorial Series
Application Problem Determination
__

© Copyright IBM Corp. 2003. 23

Summary and feedback

What you should know
You should now be familiar with many different types of DB2 applications, such as CLI,
Java and OLEDB, and how they work with DB2 databases. Also, you should be familiar
with some of the methods you can use to debug applications and how to invoke them.

Experiment with the samples included with your DB2 installation. Try making
modifications to the samples that will both succeed and fail. Make sure you work with the
DB2 sample database or a suitable database that is only for testing and not a production
environment.

For more information
For more information see the DB2 product manuals, specifically the Application and
Development Guide and the Administration Guide.

Complete all of tutorials contained in the Certified for Support program. Other tutorials in
this series include ways to find problems that will also assist in debugging application
errors, such as the db2trace facility.

Also check the various articles available through http://www.ibm.com as well as courses
available through IBM Education to build your application development and debugging
skills.

Check the DB2 Technical Support Web site at
http://www.ibm.com/software/data/db2/udb/winos2unix/support for Technotes on DB2
Applications can also be an excellent resource for assisting in application debugging and
development.

Feedback
Please take a moment to give us your thoughts on this tutorial by completing the
feedback form on the DB2 Technical Support site at
http://www.ibm.com/software/data/db2/udb/winos2unix/support .

http://www.ibm.com
http://www.ibm.com/software/data/db2/udb/winos2unix/support
http://www.ibm.com/software/data/db2/udb/winos2unix/support

