

IBM DB2® Universal Database™
DB2 Problem Determination Tutorial Series

__

DB2 Problem Determination Tools
Revision 1.01

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

2 © Copyright IBM Corp. 2003.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 3

Table of Contents

DB2 Problem Determination Tools .. 4

About this tutorial ... 4
Tutorial objectives .. 4
Audience and assumptions.. 4
Pre-tutorial setup... 4
Tutorial conventions used... 5
About the author ... 5

Basic PD/PSI tools.. 6
Displaying the service level: db2level command ... 6
Generating EDU call stacks: db2nstck and db2_call_stack commands 6
List active processes: db2_local_ps and db2stat commands .. 7
Check the validity of a backup image: db2ckbkp command .. 8
Identifying the log file associated with an LSN: db2flsn command... 9
Display the contents of a bind file: db2bfd tool.. 11

DB2's database inspection tool: db2dart command .. 13
Overview of the db2dart tool .. 13
Inspecting databases, table spaces, and tables .. 13
Dumping formatted table data .. 15
Marking an index object as “bad”... 16
Displaying formatted table space file information ... 18
New DB2 Version 8 INSPECT command.. 19

DB2's trace facility: db2trc command .. 20
Overview of tracing and the db2trc facility .. 20
Trace parameters and turning trace on.. 20
Dumping and formatting a trace ... 22
Matching up flow and format output .. 24

Mimicking databases: db2look command .. 31
Overview of the db2look tool ... 31
Using db2look to mimic the tables in a database.. 31
Mimicking statistics for tables.. 33
Generating database layout including node groups, buffer pools, and table spaces................. 34
Extracting configuration parameters and environment variables ... 34

Memory debugging... 35
Overview of the memory debug facility ... 35
Enabling memory debug... 35

Summary and Feedback.. 37
What you should now know ... 37
For more information.. 37

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

4 © Copyright IBM Corp. 2003.

DB2 Problem Determination Tools

About this tutorial

Tutorial objectives
There are many tools and commands that are shipped with the DB2 product that are intended to aid
in the process of problem determination and problem source identification (PD/PSI). The primary
objective of this tutorial is to introduce some of these tools to you and to provide you with the
knowledge required to use them in "real life" scenarios. In some cases, the use of these tools will
allow you to resolve problems on your own without further assistance from DB2 Support. In other
cases, DB2 Support must still be involved but knowing about the tools and how to use them will
assist you in collecting information in an accurate and timely fashion.

Some of the topics that will be covered in this tutorial include the db2trc tracing facility, the
db2dart database inspection tool, and the memory debugging facility.

Along with an overview of these tools and commands, examples are used to show you how they
work and how they should be used in a given situation.

Audience and assumptions
Prior to taking this tutorial, you should already be familiar with the terminology and functionality
of the DB2 product and should be comfortable executing DB2 commands and SQL statements.
This includes a familiarity with backup and restore, crash and roll-forward recovery, object
creation, and data access. It is also recommended that you take the "Introduction to Problem
Determination" tutorial before taking this one.

Pre-tutorial setup
In order to use the examples in this tutorial, you need to create the sample database and several
other objects by executing the following commands and SQL statements:

db2start
db2sampl
db2 "connect to sample"
db2 "create bufferpool bp2 size 100"
db2 "create tablespace dms1 managed by database using (file 'DMS1' 1000)"
db2 "create tablespace dms2 managed by database using (file 'DMS2' 1000)"
db2 "create table t1 (c1 int, c2 int) in dms1"
db2 "create table t2 (c1 int, c2 int) in dms1 index in dms2"
db2 "create table kelly.t3 (c1 int) in dms1"
db2 "create index ix1 on t1 (c1)"
db2 "create index ix2 on t2 (c1)"
db2 "connect reset"

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 5

Some of the examples in this tutorial make reference to the "database directory". For the purposes
of this tutorial, the database directory is the directory that holds the control files (such as the
SQLDBCON and SQLOGCTL.LFH files) for a given database. For example,
C:\DB2\NODE0000\SQL00001 in Windows®, and /home/db2inst/db2inst/NODE0000/SQL00001
in UNIX®. Determine what the database directory is for database SAMPLE before moving on.

Also, some of the examples make reference to the "diagnostic directory". This is the directory
where the db2diag.log file is located. This can be determined by viewing the DIAGPATH database
manager configuration parameter. If this parameter is empty then the defaults are in use:
SQLLIB\<INSTANCE> in Windows and sqllib/db2dump in UNIX.

Tutorial conventions used
When a tool or utility is first mentioned, it is shown in bold text.

All commands, statements, and their output are shown in a monospace font.

In general, examples shown are Windows-based. However, they should work fine in the UNIX
environment as well (unless otherwise noted).

Some of the examples in this tutorial show the supported options for some of the utilities. These
options may change over time but the basics should always remain the same.

About the author
Kelly Schlamb has worked at the IBM Toronto Laboratory since 1995. His first two years were
spent on the customer support team that specialized in the core engine components of the DB2
UDB workstation product. Kelly is currently a developer in the Buffer Pool Services team, a
component of the data management group in DB2 UDB development. The main responsibilities of
this team include buffer pools and storage management.

You can reach Kelly Schlamb by locating his email address in the IBM Global Directory at
http://www.ibm.com/contact/employees/us .

http://www.ibm.com/contact/employees/us

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

6 © Copyright IBM Corp. 2003.

Basic PD/PSI tools

Displaying the service level: db2level command
If it appears that DB2 is not functioning as expected or that there may be a defect in the product,
you may need to search the list of known APARs or call DB2 Support for assistance. In either
case, it is essential that you know what service level your instance is running at.

This information is available by running the db2level command:

C:\>db2level
db2level: DB21085I Instance "DB2" uses DB2 code release "SQL07025" with
level identifier "03060105" and informational tokens "DB2 v7.1.0.65",
"s020616" and "WR21306".

Do this now to see what level of DB2 you are using.

The last token in the message, WR21306, contains the PTF number and can be used to identify the
FixPak number on the DB2 Technical Support Web site. The token prior to that, s020616, shows
the date that the product was built and is used by DB2 service personnel and development when
diagnosing problems. In this example, the build date is June 16, 2002.

Generating EDU call stacks: db2nstck and db2_call_stack commands
The term EDU stands for "engine dispatch unit" and refers to a thread (Windows) or process
(UNIX) that is doing work on behalf of DB2. The db2nstck and db2_call_stack commands are
used to generate call stacks for the EDUs that are running under an instance. A call stack, also
known as a stack traceback, shows the processing path that an EDU is currently in. The function
that the EDU is currently executing is at the top of the stack, the function that called that one is
below it, and so on.

These commands are mainly used when it appears that the DB2 engine has become "hung". (In
most cases, problems that appear to be with DB2 are in reality caused by application problems.
For example, a long-running transaction may be holding locks that all other applications are
waiting on. All of the applications will appear to be hung but they are really just waiting for one or
more locks to be released. Situations like this can usually be identified using DB2's snapshot and
event monitor tools. See the "Performance Problem Determination" tutorial for more information
on monitoring.)

Operating system commands (such as iostat and ps in UNIX) can be used to determine if EDUs
are actually doing any work. If it appears that none of the EDUs are doing any processing, an
engine hang may be a possibility. By generating multiple call stacks for each EDU (with a
sufficient amount of time in between -- 1 to 2 minutes for example), you can compare the call
stacks to see if the EDUs are in a different processing path from one stack to the next. If all of the
EDUs are stuck in the same function that was shown in the previous call stack then there may in

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 7

fact be a problem with the DB2 engine. In that case, the call stacks must be provided to IBM so
that the hang can be analyzed.

In UNIX, the db2_call_stack command generates call stacks for both single and multi-node
instances. The call stacks are placed in files in the diagnostic directory (sqllib/db2dump by
default). Each EDU has its own file which is called tprocessID.node number. The files are text-
based and can be viewed using any editor. Here is an example of a portion of a call stack on
UNIX:

*** Start stack traceback ***

0xD02E2B88 semop + 0x94
 [NO FDPR] (= offset 0x1153E8 in library libc.a)
0xD2A245A4 wl_sysv_sem_op__FP13sqlo_waitlisti + 0x50
 [NO FDPR] (= offset 0x36444 in library libdb2sys.a)
0xD2A28264 sqloqwait2 + 0x4FC
 [NO FDPR] (= offset 0x3A104 in library libdb2sys.a)
0xD2DFCBA8 sqle_resync_agent_loop__FP20SQLE_RESYNC_AGENT_CB + 0x614
 [NO FDPR] (= offset 0x153A48 in library libdb2engn.a)
0xD2DFC4B8 sqle_run_resync_agent__FPcUl + 0x54
 [NO FDPR] (= offset 0x153358 in library libdb2engn.a)
0xD2A0F8D0 sqloCreateEDU__FPFPcUl_vPcUlP13SQLO_EDU_INFOPl + 0x48C
 [NO FDPR] (= offset 0x21770 in library libdb2sys.a)
0xD2A0F174 sqloRunGDS__Fv + 0x240
 [NO FDPR] (= offset 0x21014 in library libdb2sys.a)
0xD2A0C164 sqloInitEDUServices__Fv + 0x22C
 [NO FDPR] (= offset 0x1E004 in library libdb2sys.a)
0xD2A33004 sqloRunInstance__FPFv_iPFi_vPPvPiT4 + 0x634
 [NO FDPR] (= offset 0x44EA4 in library libdb2sys.a)
0x100087D8 main + 0x1038

*** End stack traceback ***

In Windows, the db2nstck command is used for single-node instances and db2_call_stack is used
for multi-node instances. All of the call stacks will be placed into a single file in the diagnostic
directory (sqllib/instance by default). The db2nstck command tells you the name of the. For
example:

C:\>db2nstck
The stack dump has been saved in the file C:\SQLLIB\DB2\P2292.000

This file is in a binary format. To convert it to readable text, you need the db2xprt tool and the DB2
for Windows .dbg files (the tool and the files might not be available in all installations of DB2).
The call stack will look similar to the UNIX one shown above.

List active processes: db2_local_ps and db2stat commands
In UNIX, all of the DB2 processes running under an instance can be displayed using the
db2_local_ps command:

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

8 © Copyright IBM Corp. 2003.

/home/db2inst> db2_local_ps

Node 0
 UID PID PPID C STIME TTY TIME CMD
 db2inst 29868 59654 0 22:15:09 - 0:00 db2sysc
 db2inst 115934 29868 0 22:15:09 - 0:00 db2ipccm
 db2inst 132686 29868 0 22:15:09 - 0:00 db2gds
 db2inst 168192 115934 0 22:20:06 - 0:00 db2agent (SAMPLE)
 db2inst 25836 132686 0 22:15:09 - 0:00 db2srvlst
 db2inst 50294 132686 0 22:20:06 - 0:00 db2loggr (SAMPLE)
 db2inst 52472 132686 0 22:20:06 - 0:00 db2pclnr
 db2inst 81474 132686 0 22:20:06 - 0:00 db2pfchr
 db2inst 109366 132686 0 22:20:06 - 0:00 db2pfchr
 db2inst 110922 132686 0 22:20:06 - 0:00 db2dlock (SAMPLE)
 db2inst 120434 132686 0 22:20:06 - 0:00 db2pfchr
 db2inst 164430 132686 0 22:15:09 - 0:00 db2resyn

Note that no processes will be shown if the instance is stopped. Run the db2start command if no
processes are listed.

In Windows, all of the DB2 processes running under an instance can be displayed using the
db2stat command:

C:\>db2stat

Environment Strings
 --> DB2INSTANCE=DB2
 --> DB2TEMPDIR=C:\SQLLIB

DB2 Processes
 DB2SYSCS 2292 x8F4
 DB2STAT 2136 x858

One thing to note in the Windows case is that because DB2 is thread-based (not process-based),
you will only see one process (DB2SYSCS) for all of an instance's EDUs. It is obvious that the
same degree of information is not returned in Windows as is returned in UNIX, but it is still useful
at times to know the process ID for a running instance. For example, you can use the Task
Manager utility to determine the CPU and memory usage for a given process ID.

Try the appropriate command yourself, based on the platform you are using.

Check the validity of a backup image: db2ckbkp command
The db2ckbkp utility can be used to test the integrity of a backup image and to determine whether
or not the image can be restored. It can also be used to display the metadata stored in the backup
header. To see the syntax for this command, execute it without any parameters. Run the command
yourself now to see how to use it.

Once you have familiarized yourself with the options available, try it on a backup of the sample
database. First, take a full database backup of SAMPLE (noting the backup timestamp) and then
run the tool against the resulting backup image.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 9

Example Windows usage:

C:\>db2 backup database sample

Backup successful. The timestamp for this backup image is :
20021104225354

C:\>db2ckbkp sample.0\db2\node0000\catn0000\20021104\225354.001

[1] Buffers processed: ###

Image Verification Complete - successful.

Example UNIX usage:

/home/db2inst> db2 backup database sample

Backup successful. The timestamp for this backup image is :
20021104225640

/home/db2inst> db2ckbkp
SAMPLE.0.db2inst.NODE0000.CATN0000.20021104225640.001

[1] Buffers processed: ####

Image Verification Complete - successful.

Identifying the log file associated with an LSN: db2flsn command
When working on recovery problems, you may come across log sequence numbers (LSNs) in the
db2diag.log file. These LSNs uniquely identify log records within the database log files and might
be dumped to the db2diag.log file at crash or roll-forward recovery time.

You usually see LSNs when crash recovery or roll-forward recovery starts (showing the starting
point in the log files for the recovery), but you may also see one if a problem is encountered. In
that case it will indicate the log record being replayed at the time of the failure.

When investigating a recovery problem, it is usually necessary to collect log files from the failing
system. Given an LSN, the db2flsn tool can be used to identify the log file that the log record
resides in. Note that this tool can only be used on recoverable databases (that is, databases that are
enabled for log retain).

In the following example, you will force a crash recovery of a database and then use the db2flsn
tool to find the log file for one of the LSNs shown in the db2diag.log file.

As mentioned above, the tool works only for recoverable databases. If you have not already
enabled log retain for the database then do so now:

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

10 © Copyright IBM Corp. 2003.

C:\>db2 update db cfg for sample using logretain on
DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.
DB21026I For most configuration parameters, all applications must
disconnect
from this database before the changes become effective.

C:\>db2 backup database sample

Backup successful. The timestamp for this backup image is :
20021104231827

Next, connect to the database, create a table, and then kill the instance before committing the create
operation:

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

C:\>db2 -c- "create table lsntest (c1 int) in userspace1"
DB20000I The SQL command completed successfully.

C:\>db2stop -kill
SQL1064N DB2STOP processing was successful.

Because the database was not shut down properly, it will have to go through crash recovery when a
connection attempt is made against it. Note that because of the way in which the instance was
killed, you must terminate the old back-end process first.

C:\>db2 terminate
DB20000I The TERMINATE command completed successfully.

C:\>db2start
SQL1063N DB2START processing was successful.

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

In the db2diag.log file you should now see something like the following crash recovery section:

2002-11-04-23.23.37.489000 Instance:DB2 Node:000
PID:596(db2syscs.exe) TID:1968 Appid:*LOCAL.DB2.021105042337
base_sys_utilities sqledint Probe:0 Database:SAMPLE

Crash Recovery is needed.

2002-11-04-23.23.37.549000 Instance:DB2 Node:000
PID:596(db2syscs.exe) TID:1968 Appid:*LOCAL.DB2.021105042337
recovery_manager sqlpresr Probe:1 Database:SAMPLE

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 11

DIA3908W Crash recovery has been initiated. Lowtran LSN is
"0000003E800C",
Minbuff LSN is "0000003E800C".

Remember the Lowtran LSN value (which is "0000003E800C" in the example above) and then
execute the db2flsn tool from within the database directory:

C:\>cd DB2\NODE0000\SQL00001

C:\DB2\NODE0000\SQL00001>db2flsn 0000003E800C
Given LSN is contained in log file S0000000.LOG

As shown in the output, the log record associated with LSN 0000003E800C can be found in log file
S0000000.LOG.

Display the contents of a bind file: db2bfd tool
There are times when it is beneficial to examine the contents of a DB2 bind file. For example, a
vendor might supply an executable and bind file and you might want to see what kinds of SQL
statements the application might execute. Also, consider the case where an errant application is
deleting data from a table that is supposed to remain read-only but you aren't sure which
application is responsible. By examining the bind files for all of the applications that run against
the database, you might be able to find a DELETE statement against the table in question and from
there dig further into the application's logic to determine what is going wrong.

The db2bfd tool can be used to display these kinds of thing as well as some other information.

Execute the tool without any parameters to see its usage. Try this yourself now.

C:\>db2bfd

Usage: db2bfd [[-b] [-h] [-s] [-v]] <filespec>

 Where: <filespec> is a bind file

 Options: -b = display bind file header
 -h = display this information
 -s = display SQL statements
 -v = display host variable declarations

Now try the tool on the db2sampl application's bind file that is shipped with DB2. Use the -s
option to see what SQL statements are contained within it:

Windows: db2bfd -s C:\SQLLIB\BND\DB2SAMPL.BND
UNIX: db2bfd -s ~/sqllib/bnd/db2sampl.bnd

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

12 © Copyright IBM Corp. 2003.

Next, use the -v option to see the corresponding host variables that would have been defined in the
source code for db2sampl:

Windows: db2bfd -v C:\SQLLIB\BND\DB2SAMPL.BND
UNIX: db2bfd -v ~/sqllib/bnd/db2sampl.bnd

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 13

DB2's database inspection tool: db2dart command

Overview of the db2dart tool
db2dart is DB2's tool for verifying the architectural correctness of databases and the objects within
them. It can also be used to display the contents of database control files to extract data from tables
that might otherwise be inaccessible.

To display all of the possible options, simply execute the db2dart utility without any parameters.
As each help page is displayed, you will be prompted to press Enter to move to the next page.

Some options that require parameters, such as the table space ID, are prompted for if they are not
explicitly specified on the command line.

By default, db2dart will create a report file with the name databaseName.RPT. For single-partition
databases (DB2 EE), the file is created in the current directory. For multiple-partition databases
(DB2 EEE), the file is created under a subdirectory in the diagnostic directory. The subdirectory is
called DART####, where #### is the node number.

db2dart accesses the data and metadata in a database by reading them directly from disk. Because
of that, db2dart should never be run against a database that still has active connections. If there are
connections, db2dart will not know about pages in the buffer pool, control structures in memory,
etc. and may report false errors as a result. Similarly, if you run db2dart against a database that
requires crash recovery or that has not completed roll-forward recovery, similar inconsistencies
might result due to the inconsistent nature of the data on disk.

Inspecting databases, table spaces, and tables
The default behaviour for db2dart is to inspect the entire database. Only the database name must
be provided in this case. Try running db2dart yourself against the sample database.

C:\>db2dart sample

 <portions of the report have been removed to save space>

 The requested DB2DART processing has completed successfully!
 All operation completed without error;
 no problems were detected in the database.

 Complete DB2DART report found in: SAMPLE.RPT

As the output states, the full db2dart report can be found in the file SAMPLE.RPT. You will also
notice that in this case db2dart did not find any problems with the database.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

14 © Copyright IBM Corp. 2003.

If a database is very large and you are only interested in one table space, you can use the /TS
option. When using this option, you must either provide the table space ID on the command line
(by specifying the /TSI parameter) or you can let db2dart prompt you for it. For example, to
inspect the USERSPACE1 table space (which has a table space ID of 2 in the sample database),
either of these commands will work:

db2dart sample /ts /tsi 2
db2dart sample /ts <= When prompted for the table space ID,
enter "2".

Similarly, a single table and its associated objects (LOBs, indexes, etc.) can be inspected using the
/T option. When using this option, you must provide either the table name or object ID and the ID
of the table space in which the table resides.

To determine the object ID and table space ID for a table, you can query the FID and TID columns
of the SYSIBM.SYSTABLES catalog table. For example, determine the object ID and table space
ID for the EMP_PHOTO table in the sample database by executing the following query:

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

C:\>db2 "select creator,name,tid,fid from sysibm.systables where name =
'EMP_PHOTO'"

CREATOR NAME TID FID
------------------ --------------------- ------ ------
DB2 EMP_PHOTO 2 8

 1 record(s) selected.

C:\>db2 connect reset
DB20000I The SQL command completed successfully.

To inspect this table, execute either of the following db2dart commands:

db2dart sample /t /tsi 2 /oi 8
db2dart sample /t <= When prompted for the table ID and
 table space ID, enter "8 2".

As mentioned above, the table name can be specified instead of the object ID:

db2dart sample /t /tsi 2 /tn EMP_PHOTO
db2dart sample /t <= When prompted for the table
 name and table space ID,enter
 "EMP_PHOTO 2".

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 15

Dumping formatted table data
If a table space or table becomes corrupt for any reason (for example due to a bad disk or disk
controller), attempts to access the table through SQL may not work. (The SQL statement may fail
with an error or the database may be marked bad and all connections will be dropped.) In such a
case, entries will likely be written to the db2diag.log file, indicating that a bad page was
encountered. The db2diag.log entries will contain function names such as sqlbReadPage,
sqlbrdpg, and sqlbcres. If you see such entries, you should run db2dart against the database (or
table space) to determine the extent of the damage.

If this happens, it may be necessary to extract all of the data possible so that the table space and
table can be rebuilt. In such a situation, the /DDEL option of db2dart can be used to extract the
table data and place it into a delimited ASCII file. Note that due to the nature of ASCII files, some
columns (such as LOB columns) cannot be extracted from the table. db2dart will tell you if this is
the case.

When using the /DDEL option, you must provide a table space ID, object ID, starting page number,
and number of pages. To extract all of the pages, use 0 for the starting page number and some very
large number for the number of pages. (Specifying more pages than actually exist will not cause
any problems.)

The ORG table in the sample database resides in table space 2 and has an object ID of 2. To
extract all of the data from this table, execute this command:

db2dart sample /ddel

When prompted, enter either of the following lines of input:

2 2 0 1000
ORG 2 0 1000

You will then be presented with the column definitions for the table and will be asked to specify an
output file name:

 Table object data formatting start.
 Please enter
Table ID or name, tablespace ID, first page, num of pages:
(suffic page number with 'p' for pool relative)
2 2 0 1000

 5 of 5 columns in the table will be dumped.
 Column numbers and datatypes of the columns dumped:
 0 SMALLINT
 1 VARCHAR() -VARIABLE LENGTH CHARACTER STRING
 2 SMALLINT
 3 VARCHAR() -VARIABLE LENGTH CHARACTER STRING
 4 VARCHAR() -VARIABLE LENGTH CHARACTER STRING
 Default filename for output data file is TS2T2.DEL,
do you wish to change filename used? y/n

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

16 © Copyright IBM Corp. 2003.

You can choose the default or specify a new one. The output file will be created in the current
directory be default.

Marking an index object as “bad”
You might encounter a situation where an index on a table has become corrupt. This might result
in queries failing or in wrong results being returned. In some cases, the index can be dropped and
recreated but it might be easier to mark the index as "bad". What this means is that DB2 will
recognize the index as being broken and will rebuild it. The time at which the index gets rebuilt is
dependent on the INDEXREC database manager configuration parameter.

The /MI option in db2dart is used to do this. A table space ID and the index object ID specify
which index needs to be rebuilt. Note that all indexes for a table are stored in a single index object
which means that all indexes will be marked for rebuild.

In most cases, the index object has the same object ID as its base table but this is not always the
case. If the index object resides in the same table space as the table then they definitely will have
the same ID. However, the IDs can be different if they reside in different table spaces.

To determine the index object ID for a table, inspect that table. For example, inspect tables T1 and
T2 in table space DMS1 (which has a table space ID of 3):

db2dart sample /t /tsi 3 /tn T1

Look for the T1 entry. It should look something like this:

 Table inspection start: DB2.T1

 Data inspection phase start. Data obj: 4 In pool: 3
 Data inspection phase end.

 Index inspection phase start. Index obj: 4 In pool: 3
 Scanning pages for index itoken(1) root page:258p.
 Index inspection phase end.

 Table inspection end.

As you can see, both the data object (the table) and the index object have the same table space ID
(3) and object ID (4). To mark this index object as bad, execute the following db2dart command:

db2dart sample /mi /tsi 3 /oi 4

If this is successful, you will see the following:

Connecting to Buffer Pool Services...
Attempting to mark index (p=3;o=4) as bad.

Modification for page (obj rel 0, pool rel 256) of pool ID (3) obj ID

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 17

(4), written out to disk successfully.

 The requested DB2DART processing has completed successfully!
 All operation completed without error;
 no problems were detected in the database.

When T2 was created, it was created such that its table was in one table space and its indexes were
in another. Find the index object ID for this table:

db2dart sample /t /tsi 3 /tn T2

Look for the T2 entry. It should look something like this:

 Table inspection start: DB2.T2

 Data inspection phase start. Data obj: 5 In pool: 3
 Data inspection phase end.

 Index inspection phase start. Index obj: 4 In pool: 4
 Index inspection phase end.

 Table inspection end.

In this case, the table space IDs are different (this is expected) and the object IDs are different as
well. To mark the index object bad, specify the index table space (4) and index object ID (4):

db2dart sample /mi /tsi 4 /oi 4

If this is successful, you will see the following:

Connecting to Buffer Pool Services...
Attempting to mark index (p=4;o=4) as bad.

Modification for page (obj rel 0, pool rel 128) of pool ID (4) obj ID
(4), written out to disk successfully.

 The requested DB2DART processing has completed successfully!
 All operation completed without error;
 no problems were detected in the database.

If you accidentally use the table space ID and object ID of the base table, it will fail because the
index object will not be found:

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

18 © Copyright IBM Corp. 2003.

db2dart sample /mi /tsi 3 /oi 5

Connecting to Buffer Pool Services...
Attempting to mark index (p=3;o=5) as bad.

 DB2DART Processing completed with error!

 WARNING:
 The inspection phase did not complete!

Displaying formatted table space file information
Within the database directory you will find two files called SQLSPCS.1 and SQLSPCS.2. These
files are copies of each other and contain all information about the table spaces and containers
belonging to the database.

The /DTSF option of db2dart can be used to display all of the information in these files. You might
want to do this if you are interested in information about a table space that is not available through
the LIST TABLESPACES SHOW DETAIL command. For example, the quiesce user ID for a table
space is not available in the output of that command but it is stored in the SQLSPCS files. Also,
the table space map is only available by looking directly at these files. (The table space map is the
conversion table that maps logical page numbers in a DMS table space to physical disk locations.)

Try quiescing a table space in the sample database and use the /DTSF option to view the contents
of the SQLSPCS.1 files:

db2 "connect to sample"
db2 "quiesce tablespaces for table kelly.t3 share"
db2 "connect reset"
db2dart sample /dtsf

The report file will contain entries for each table space defined in the database. Each entry will
look something like the one below. Note the "quiescer" information in the output:

 Information for Tablespace ID: 3

 Tablespace name: DMS1
 Table space flags (HEX): 0102
 Table space type: Database Managed Space (DMS)
 Page size: 4096
 Extent size: 32
 Prefetch size: 16
 Version: 5
 Tablespace state: 1
 Number of quiescers: 1

 1) Userid of quiescer: DB2
 Quiesce state: 1
 Tbspace ID of quiesced object: 3
 Table ID of quiesced object: 6

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 19

 EDU ID: 0
 Agent ID: 0

 Usable pages in tablespace: 960
 Total pages in tablespace: 1000
 SMP page for first free extent: 32
 SMP page for last allocated tablespace extent. 63
 SMP extent number of the last initialized SMP extent: 0
 High Water Mark: 352
 Number of containers associated with this tablespace: 1
 Container list:
 Total Useable Container Container
 # Pages Pages Type Name
 === ======== ======== ============== ============================
 0 1000 960 striped file C:\DB2\NODE0000\SQL00001\DMS1
 Container checksum for disk space: 827411818
 Number of ranges in the map: 1
 Size of the map: 1
 Map entry size: 52
 Current map:
 MaxPage MaxExtent StartStripe EndStripe Adj
Containers
 [0] 959 29 0 29 0 1
(0)
 Map checksum for disk space: 958

Before moving on to the next section, reset the quiesce state for table space DMS1:

db2 "connect to sample"
db2 "quiesce tablespaces for table kelly.t3 reset"
db2 "connect reset"

New DB2 Version 8 INSPECT command
A new online inspection command called INSPECT was introduced in DB2 Version 8. This
command allows you to perform similar database, table space, and table checking as is done by
db2dart. There are many benefits to using the INSPECT command including the ability to run it
while there are active connections against the database. Also, it is built into the engine which
means that significant performance gains are achieved through the use of buffer pools and
prefetchers.

The INSPECT command is documented in the DB2 Version 8 Command Reference.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

20 © Copyright IBM Corp. 2003.

DB2's trace facility: db2trc command

Overview of tracing and the db2trc facility
The db2trc command controls the trace facility provided with DB2. The trace facility records
information about operations and formats this information into a readable form. Please keep in
mind that there is added overhead when a trace is running so enabling the trace facility may impact
your system's performance.

In general, traces are used by the DB2 support and development teams when debugging customer
problems. You might run a trace to gain further information about a problem that you are
investigating, but its use is rather limited without the DB2 source code.

In any case, it is important to know how to correctly turn on tracing and how to dump trace files,
just in case you need to send one to the DB2 support and development teams.

Trace parameters and turning trace on
To get a general idea of the options available, execute the db2trc command without any parameters:

C:\>db2trc
Usage: db2trc (chg|clr|dmp|flw|fmt|inf|off|on) options

 chg|change
 change the trace mask, maxSysErrors or maxRecordSize
 clr|clear
 clear the trace
 dmp|dump
 dump the trace to a binary trace file
 flw|flow
 show control flow of the trace
 fmt|format
 format the trace
 inf|info|information
 get information on the trace
 off
 turn the trace off
 on
 turn the trace on

 For more information type db2trc (chg|clr|dmp|flw|fmt|inf|off|on)
-u

To get more information on a specific option, use the -u option. For example, for more
information on turning trace on, execute the following command:

C:\>db2trc on -u
Usage: db2trc on
 [-m <mask>]
 <mask> = <prods>.<events>.<comps>.<fncs>

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 21

 <prods> is ignored.
 <events>, <comps>, and lt;fncs> may be comma (,)
separated lists
 and/or hyphan (-) separated ranges, or single entries.
 An askerisk (*) may be used to match anything.
 [-p <pid>[.<tid>]]
 (trace only this proc/thread)
 [-c <cpid>]
 (trace only this companion proc)
 [-rc <rc>]
 (treat rc as a SysError)
 [-e <maxSysErrors>]
 (stop trace after maxSysErrors)
 [-r <maxRecordSize>]
 (truncate records to maxRecordSize bytes)
 [-s | -f <fileName>]
 (send to shared mem, or file)
 [-l [<bufferSize>] | -i [<bufferSize>]]
 (retain the last or the initial records)
 [-crash mask [-passno loop_count] [-sleep sleep_time]]
 <mask> = <prods>.<events>.<comps>.<fncs>.<tracepoints>
 loop_count: crash/sleep on loop_count iteration only.
 sleep_time: sleep for sleep_time seconds instead of
crashing.
 [-d]
 (check data pointer validity)

The most important option that you need to be aware for turning on trace is -L. This specifies the
size of the memory buffer that will be used to store the information being traced. If the buffer is
too small, information might be lost. (By default only the most recent trace information is kept if
the buffer becomes full.) If the buffer is too large, it might be difficult to send the file to the DB2
support team.

The size of the buffer is given in bytes. If tracing an operation that is relatively short (such as a
database connection), a size of 8000000 (approximately 8MB) might be sufficient:

C:\>db2trc on -l 8000000
Trace is turned on

However, if you are tracing a larger operation or if a lot of work is going on at the same time, a
larger trace buffer might be required. The next panel will discuss how to determine whether the
trace buffer chosen is large enough.

On most platforms, tracing can be turned on at any time and works as described above. However,
there are things that you need to know before tracing on the Solaris platform. On Solaris, if the
trace is turned off after the instance has been started, a very small buffer will be used regardless of
the size specified. To effectively run a trace on Solaris, turn the trace on before starting the
instance and "clear" it as necessary afterwards (see the next panel for more details on this).

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

22 © Copyright IBM Corp. 2003.

Dumping and formatting a trace
Once the trace facility has been enabled using the on option, all subsequent work done by the
instance will be traced.

While the trace is running, you can use the clr option to clear out the trace buffer. (All existing
information in the trace buffer will be removed.)

C:\>db2trc clr
Trace has been cleared

Once the operation being traced has finished, use the dmp option followed by a trace file name to
dump the memory buffer to disk. For example:

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

The trace facility will continue to run after dumping the trace buffer to disk. To turn tracing off,
use the off option:

C:\>db2trc off
Trace is turned off

The dump file created above is in a binary format that is not readable. You can use the flw and
fmt options to convert this binary file to readable ASCII files. (Descriptions of "formatted" and
"flowed" traces will be covered in the next panel.) You must provide the binary dump file along
with the name of the ASCII file that you want to create:

C:\>db2trc flw trace.dmp trace.flw
Trace wrapped : NO
Size of trace : 533244 bytes
Records in trace : 10667
Records formatted : 12 (pid: 120; tid: 380; node: 0)
Records formatted : 1152 (pid: 1528; tid: 1444; node: 0)
...

C:\>db2trc fmt trace.dmp trace.fmt
Trace wrapped : NO
Size of trace : 533244 bytes
Records in trace : 10667
Records formatted : 10667

When you format or flow a binary trace file, the output will tell you whether or not the trace
wrapped. If a trace has wrapped, it means that the trace buffer was not large enough to contain all
of the information collected during the trace period. The most recent information is maintained by
default.

A wrapped trace might be okay depending on the situation. If you are interested in the most recent
information then what is in the trace file might be sufficient. However, if you are interested in
what happened at the beginning of the trace period or if you are interested in everything that
occurred, you might want to redo the operation with a larger trace buffer.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 23

In the following example, a small buffer size is chosen. When the trace is dumped and formatted,
we are told that the trace wrapped. The trace is then started again but with a larger buffer. The
trace does not wrap the second time.

C:\>db2trc on -l 70000
Trace is turned on

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

C:\>db2trc off
Trace is turned off

C:\>db2trc fmt trace.dmp trace.fmt
Trace wrapped : YES
Size of trace : 64112 bytes
Records in trace : 1268
Records formatted : 1268

C:\>db2 connect reset
DB20000I The SQL command completed successfully.

C:\>db2trc on -l 2000000
Trace is turned on

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

C:\>db2trc off
Trace is turned off

C:\>db2trc fmt trace.dmp trace.fmt
Trace wrapped : NO
Size of trace : 501368 bytes
Records in trace : 9909
Records formatted : 9909

Another thing to be aware of is that DB2 will automatically dump the trace buffer to disk when it
shuts the instance down due to a severe error. In this case, the file will be created in the diagnostic
directory and its name will be db2trdmp.###, where ### is the node number.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

24 © Copyright IBM Corp. 2003.

Matching up flow and format output
Flowed and formatted traces are different representations of the same thing. One of them may be
sufficient to solve a problem but in general they are used together to get a better understanding of
what is going on.

The records in a flowed trace are sorted by process or thread, allowing you to follow the code path
of a particular EDU. Functions that are executed are listed in an indented fashion that shows the
function nesting. Other than return codes from functions, there is little information provided with
each function.

The records in a formatted trace are listed chronologically. Some of the trace entries may actually
have special information that is important for PD/PSI logged with them.

As an example, let's trace a database connection. (When you try this, the number of trace records
will likely not match the number listed below.)

C:\>db2trc on -l 8000000
Trace is turned on

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

C:\>db2trc off
Trace is turned off

C:\>db2trc flw trace.dmp trace.flw
Trace wrapped : NO
Size of trace : 541720 bytes
Records in trace : 10862
Records formatted : 1146 (pid: 1668; tid: 304; node: 0)
...

C:\>db2trc fmt trace.dmp trace.fmt
Trace wrapped : NO
Size of trace : 541720 bytes
Records in trace : 10862
Records formatted : 10862

Open the trace.flw file in an editor and search for the function sqlbOpenPTF. You should see
something like the section below. From this, you can see that the function sqlbOpenPTF calls
function sqloopenp, which in turn calls sqlogmblk.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 25

...
5303 | | | | | | | | | | | | | | | |sqlbOpenPTF cei_entry ...
5304 | | | | | | | | | | | | | | | | |sqloopenp cei_entry ...
5305 | | | | | | | | | | | | | | | | |sqloopenp cei_data ...
5306 | | | | | | | | | | | | | | | | | |sqlogmblk cei_entry ...
5307 | | | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
5308 | | | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
5309 | | | | | | | | | | | | | | | | | |sqlogmblk cei_retcode 0
5310 | | | | | | | | | | | | | | | | |sqloopenp cei_data ...
5311 | | | | | | | | | | | | | | | | |sqloopenp cei_errcode 0x1 = 1
5312 | | | | | | | | | | | | | | | | |sqloopenp cei_entry ...
5313 | | | | | | | | | | | | | | | | |sqloopenp cei_data ...
5314 | | | | | | | | | | | | | | | | | |sqlogmblk cei_entry ...
5315 | | | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
5316 | | | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
5317 | | | | | | | | | | | | | | | | | |sqlogmblk cei_retcode 0
5318 | | | | | | | | | | | | | | | | |sqloopenp cei_data ...
5319 | | | | | | | | | | | | | | | | |sqloopenp cei_errcode 0x1 = 1
5320 | | | | | | | | | | | | | | | |sqlbOpenPTF cei_retcode 0
...

Open the trace.fmt file in another editor window and look for the trace point numbers listed above
(5303 - 5320 in this example). You should see something like this:

5303 DB2 cei_entry buffer_pool_services sqlbOpenPTF (1.20.2.24)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20A1C

5304 DB2 cei_entry oper_system_services sqloopenp (1.20.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20A44

5305 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 2
 433a 5c44 4232 5c4e 4f44 4530 3030 305c C:\DB2\NODE0000\
 5351 4c30 3030 3031 5c53 514c 5350 4353 SQL00001\SQLSPCS
 2e31 3f00 0000 .1?...

5306 DB2 cei_entry oper_system_services sqlogmblk (1.20.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20AB8

5307 DB2 cei_data oper_system_services sqlogmblk (1.25.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 1
 f8ff 22db 0c00 0000 0000 0000 ..".........

5308 DB2 cei_data oper_system_services sqlogmblk (1.25.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 250
 a0e8 a201

5309 DB2 cei_retcode oper_system_services sqlogmblk (1.21.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 254
 rc = 0

5310 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 7
 f406 0000

5311 DB2 cei_errcode oper_system_services sqloopenp (1.6.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 254
 rc = 0x1 = 1

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

26 © Copyright IBM Corp. 2003.

5312 DB2 cei_entry oper_system_services sqloopenp (1.20.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20BB0

5313 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 2
 433a 5c44 4232 5c4e 4f44 4530 3030 305c C:\DB2\NODE0000\
 5351 4c30 3030 3031 5c53 514c 5350 4353 SQL00001\SQLSPCS
 2e32 3f00 0000 .2?...

5314 DB2 cei_entry oper_system_services sqlogmblk (1.20.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20C24

5315 DB2 cei_data oper_system_services sqlogmblk (1.25.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 1
 f8ff 22db 0c00 0000 0000 0000 ..".........

5316 DB2 cei_data oper_system_services sqlogmblk (1.25.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 250
 c0e8 a201

5317 DB2 cei_retcode oper_system_services sqlogmblk (1.21.15.60)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 254
 rc = 0

5318 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 7
 f806 0000

5319 DB2 cei_errcode oper_system_services sqloopenp (1.6.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 254
 rc = 0x1 = 1

5320 DB2 cei_retcode buffer_pool_services sqlbOpenPTF (1.21.2.24)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 254
 rc = 0

From this, you can see that each record has a corresponding entry in both traces. For example:

5303 | | | | | | | | | | | | | | | |sqlbOpenPTF cei_entry ...

 5303 DB2 cei_entry buffer_pool_services sqlbOpenPTF (1.20.2.24)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20A1C

5304 | | | | | | | | | | | | | | | | |sqloopenp cei_entry ...

 5304 DB2 cei_entry oper_system_services sqloopenp (1.20.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 0
 called_from 00C20A44

5305 | | | | | | | | | | | | | | | | |sqloopenp cei_data ...

 5305 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 120; tid 1732; node 0; cpid 1500; msec 87956004; tpoint 2
 433a 5c44 4232 5c4e 4f44 4530 3030 305c C:\DB2\NODE0000\
 5351 4c30 3030 3031 5c53 514c 5350 4353 SQL00001\SQLSPCS
 2e31 3f00 0000 .1?...

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 27

You can also see that the sqloopenp function has some information with it in the formatted trace
that is not shown in the flowed trace. In this particular case, the formatted trace shows the name of
a file that is being opened.

There are thousands of different functions within the DB2 source code that cannot all be explained
without access to the source code. However, the sqloopenp function is one that you should be
aware of. As you saw in the last example, it indicates that DB2 is trying to open a file.

A problem that will occasionally occur is when somebody accidentally erases or moves a control
file for a database and a subsequent connection attempt fails as a result. Depending on the file, this
could result in an SQL1036C, SQL5005C, or SQL1042C error.

As an example, let's erase an important database control file for the sample database. The
SQLOGCTL.LFH file is a file that keeps track of the database log files and when it is missing an
SQL1036C error is returned. This file is located in the database directory. Make sure that there are
no connections active against the sample database and then rename the file so that DB2 will not be
able to find it:

C:\>cd \DB2\NODE0000\SQL00001

C:\DB2\NODE0000\SQL00001>rename SQLOGCTL.LFH SQLOGCTL.BAK

C:\DB2\NODE0000\SQL00001>cd \

C:\>db2 connect to sample
SQL1036C An I/O error occurred while accessing the database.
SQLSTATE=58030

Next, take a trace of the SQL1036C error:

C:\>db2trc on -l 8000000
Trace is turned on

C:\>db2 connect to sample
SQL1036C An I/O error occurred while accessing the database.
SQLSTATE=58030

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

C:\>db2trc off
Trace is turned off

C:\>db2trc flw trace.dmp trace.flw
Trace wrapped : NO
Size of trace : 174612 bytes
Records in trace : 3690
...

C:\>db2trc fmt trace.dmp trace.fmt
Trace wrapped : NO
Size of trace : 174612 bytes
Records in trace : 3690
Records formatted : 3690

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

28 © Copyright IBM Corp. 2003.

Open the trace.flw file and find all occurrences of -1036. You may see more than one but you want
to locate the one with the lowest trace entry number on the left hand side (note that this might not
be the first occurrence of it in the file). In the output here, the trace entry in question is 2741:

2629 | | | | | | | | | | | | |sqlpgint fnc_entry ...
2630 | | | | | | | | | | | | | |sqlpgolf fnc_entry ...
2631 | | | | | | | | | | | | | | |sqloopenp cei_entry ...
2632 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2633 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2634 | | | | | | | | | | | | | | |sqloopenp non-fatal_err...
2635 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2636 | | | | | | | | | | | | | | |sqloopenp cei_errcode 0xffffe60a
= -6646
2637 | | | | | | | | | | | | | |sqlpgolf fnc_errcode 0xffffe60a =
-6646
2638 | | | | | | | | | | | | | |sqltfast2 cei_entry ...
...
2656 | | | | | | | | | | | | | | |sqloopenp cei_entry ...
2657 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2658 | | | | | | | | | | | | | | | |sqlogmblk cei_entry ...
2659 | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
2660 | | | | | | | | | | | | | | | |sqlogmblk cei_data ...
2661 | | | | | | | | | | | | | | | |sqlogmblk cei_retcode 0
2662 | | | | | | | | | | | | | | | |sqloflock cei_entry ...
2663 | | | | | | | | | | | | | | | |sqloflock cei_data ...
2664 | | | | | | | | | | | | | | | |sqloflock cei_retcode 0
2665 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2666 | | | | | | | | | | | | | | |sqloopenp cei_errcode 0x1 = 1
...
2738 | | | | | | | | | | | | | |sqltfast2 cei_retcode 0
2739 | | | | | | | | | | | | |sqlpgint fnc_errcode 0xffffe60a = -
6646
2740 | | | | | | | | | | | |sqlpinit cei_errcode 0xffffe60a = -
6646
2741 | | | | | | | | | | |sqledint fnc_errcode 0xfffffbf4 = -1036
2742 | | | | | | | | | |sqleFirstConnect non-fatal_err...

When looking at this entry, you should see sqloopenp functions shortly before it (trace entries 2656
- 2666 in this case). This isn't actually the sqloopenp call that is failing though. If you look at
entry 2657 (or whatever the corresponding number is in your case) in the formatted trace file
(trace.fmt) you should see this:

2657 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 2
 453a 5c53 514c 4c49 425c 4442 325c 6462 C:\SQLLIB\DB2\db
 3264 6961 672e 6c6f 674b 0200 00 2diag.logK...

This is actually DB2 opening the db2diag.log file to write out a "file not found" diagnostic entry to
it. The sqltfast2 function is the function that writes entries to the db2diag.log file so you can
ignore the sqloopenp calls that it makes. If you then look for the previous sqloopenp function, you
should find it a few trace entries before the sqltfast2 function (entries 2631 - 2636 in the example
above):

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 29

2631 | | | | | | | | | | | | | | |sqloopenp cei_entry ...
2632 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2633 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2634 | | | | | | | | | | | | | | |sqloopenp non-fatal_err...
2635 | | | | | | | | | | | | | | |sqloopenp cei_data ...
2636 | | | | | | | | | | | | | | |sqloopenp cei_errcode 0xffffe60a
= -6646

As you can see, this sqloopenp call failed (0xffffe60a is an internal DB2 error code that represents
a "file not found" error). If you look at the corresponding entries in the formatted trace you should
see this:

2631 DB2 cei_entry oper_system_services sqloopenp (1.20.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 0
 called_from 00BFE83C

2632 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 2
 433a 5c44 4232 5c4e 4f44 4530 3030 305c C:\DB2\NODE0000\
 5351 4c30 3030 3031 5c53 514c 4f47 4354 SQL00001\SQLOGCT
 4c2e 4c46 485c 0080 00 L.LFH\...

2633 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 98
 0200 0000

2634 DB2 non-fatal_err oper_system_services sqloopenp (1.4.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 6
 433a 5c44 4232 5c4e 4f44 4530 3030 305c C:\DB2\NODE0000\
 5351 4c30 3030 3031 5c53 514c 4f47 4354 SQL00001\SQLOGCT
 4c2e 4c46 48 L.LFH

2635 DB2 cei_data oper_system_services sqloopenp (1.25.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 7
 ffff ffff

2636 DB2 cei_errcode oper_system_services sqloopenp (1.6.15.97)
 pid 596; tid 1620; node 0; cpid 1308; msec 29982322; tpoint 254
 rc = 0xffffe60a = -6646

From the output above, we see that the file that DB2 is attempting to open is
C:\DB2\NODE0000\SQL00001\SQLOGCTL.LFH. As you know, that is the file that we renamed!
Problem solved. If you ever encounter this problem in a real life scenario, hopefully the file was
just renamed or moved to a different location accidentally. In that case, moving the file back
should fix the problem. However, if the file was actually deleted, restoring the database from a
backup image is the only supported method of recovery.

Before moving on, rename the file back to its original name and ensure that you can connect to the
database again:

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

30 © Copyright IBM Corp. 2003.

C:\>cd \DB2\NODE0000\SQL00001

C:\DB2\NODE0000\SQL00001>rename SQLOGCTL.BAK SQLOGCTL.LFH

C:\DB2\NODE0000\SQL00001>cd \

C:\>db2 connect to sample

 Database Connection Information

 Database server = DB2/NT 7.2.5
 SQL authorization ID = DB2
 Local database alias = SAMPLE

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 31

Mimicking databases: db2look command

Overview of the db2look tool
There are many times when it is advantageous to be able to create a database that is similar in
structure to another database. For example, rather than testing out new applications or recovery
plans on a production system, it makes more sense to create a test system that is similar in structure
and data, and to then do the tests against it instead. This way, the production system will not be
affected by the adverse performance impact of the tests or by the accidental destruction of data by
an errant application.

Also, when you are investigating a problem (such as invalid results, performance issues, and so
on), it may be easier to debug the problem on a test system that is identical to the production
system.

You can use the db2look tool to extract the required DDL statements needed to reproduce the
database objects of one database in another database. The tool can also generate the required SQL
statements needed to replicate the statistics from the one database to the other, as well as the
statements needed to replicate the database configuration, database manager configuration, and
registry variables. This is important because the new database may not contain the exact same set
of data as the original database but you may still want the same access plans chosen for the two
systems.

The db2look tool is described in detail in the DB2 Command Reference but you can view the list of
options by executing the tool without any parameters. Try this yourself before moving.

A more detailed usage can be displayed using the -h option.

Using db2look to mimic the tables in a database
To extract the DDL for the tables in the database, use the -e option. As an example, let's create a
copy of the SAMPLE database called SAMPLE2 such that all of the objects in the first database
are created in the new database:

C:\>db2 create database sample2
DB20000I The CREATE DATABASE command completed successfully.

C:\>db2look -d sample -e > sample.ddl
% USER is:
% Creating DDL for table(s)

Bring up the file sample.ddl in a text editor. Because we want to execute the DDL in this file
against the new database, you must change the CONNECT TO SAMPLE statement to CONNECT
TO SAMPLE2. While you are at it, take a look at the rest of the contents of the file. You should

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

32 © Copyright IBM Corp. 2003.

see CREATE TABLE, ALTER TABLE, and CREATE INDEX statements for all of the user tables
in the sample database:

...
--
-- DDL Statements for table "DB2"."ORG"
--

 CREATE TABLE "DB2"."ORG" (
 "DEPTNUMB" SMALLINT NOT NULL ,
 "DEPTNAME" VARCHAR(14) ,
 "MANAGER" SMALLINT ,
 "DIVISION" VARCHAR(10) ,
 "LOCATION" VARCHAR(13))
 IN "USERSPACE1" ;

--
-- DDL Statements for table "DB2"."STAFF"
--

 CREATE TABLE "DB2"."STAFF" (
 "ID" SMALLINT NOT NULL ,
 "NAME" VARCHAR(9) ,
 "DEPT" SMALLINT ,
 "JOB" CHAR(5) ,
 "YEARS" SMALLINT ,
 "SALARY" DECIMAL(7,2) ,
 "COMM" DECIMAL(7,2))
 IN "USERSPACE1" ;
...

Once you have changed the connect statement, execute the statements:

C:\>db2 -tvf sample.ddl > sample2.out

Take a look at the sample2.out output file -- everything should have been executed successfully. If
errors have occurred, the error messages should state what the problem is. Fix those problems and
execute the statements again.

As you can see in the output, DDL for all of the user tables are exported. This is the default
behaviour but there are other options available to be more specific about the tables included. For
example, to only include the STAFF and ORG tables, use the -t option:

C:\>db2look -d sample -e -t staff org > staff_org.ddl

To only include tables with the schema KELLY, use the -z option:

C:\>db2look -d sample -e -z kelly > kelly.ddl

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 33

Mimicking statistics for tables
If the intent of the test database is to do performance testing or to debug a performance problem, it
is essential that access plans generated for both databases are identical. The optimizer generates
access plans based on statistics, configuration parameters, registry variables, and environment
variables. If these things are identical between the two systems then it is very likely that the access
plans will be the same.

If both databases have the exact same data loaded into them and runstats is performed on both, the
statistics should be identical. However, if the databases contain different data or if only a subset of
data is being used in the test database then the statistics will likely be very different.

In such a case, you can use db2look to gather the statistics from the production database and place
them into the test database. This is done by creating UPDATE statements against the SYSSTAT
set of updatable catalog tables as well as RUNSTATS commands against all of the tables.

The option for creating the statistic statements is -m. Going back to the SAMPLE/SAMPLE2
example from the previous panel, let's gather the statistics from SAMPLE and add them into
SAMPLE2:

C:\>db2look -d sample -m > stats.dml
% USER is:
% Running db2look in mimic mode

As before, the output file must be edited such that the CONNECT TO SAMPLE statement is
changed to CONNECT TO SAMPLE2. Again, take a look at the rest of the file to see what some
of the runstats and update statements look like:

...
-- Mimic table ORG

RUNSTATS ON TABLE "DB2"."ORG" WITH DISTRIBUTION;

UPDATE SYSSTAT.INDEXES
SET NLEAF=-1,
 NLEVELS=-1,
 FIRSTKEYCARD=-1,
 FIRST2KEYCARD=-1,
 FIRST3KEYCARD=-1,
 FIRST4KEYCARD=-1,
 FULLKEYCARD=-1,
 CLUSTERFACTOR=-1,
 CLUSTERRATIO=-1,
 SEQUENTIAL_PAGES=-1,
 DENSITY=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2';

UPDATE SYSSTAT.COLUMNS
SET COLCARD=-1,
 NUMNULLS=-1
WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2';
...

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

34 © Copyright IBM Corp. 2003.

As with the -e option that extracts the DDL, the -t and -z options can be used to specify a set of
tables.

Generating database layout including node groups, buffer pools, and table
spaces
In addition to duplicating the tables and indexes from one database to another, db2look can also be
used to generate the definitions for node groups, buffer pools, and table spaces. This is done using
the -L option. For example:

C:\>db2look -d sample -l > structure.ddl
% USER is:

Note that the default node groups, buffer pools, and table spaces will not be listed. This is because
they already exist in every database by default. If you wish to mimic these, you must alter them
yourself manually.

Another thing to note is that if you wish to mimic these types of structures, this must be done
before creating the tables and indexes in the test database.

Extracting configuration parameters and environment variables
As mentioned in a previous panel, the optimizer chooses plans based on statistics, configuration
parameters, registry variables, and environment variables. As with the statistics, db2look can be
used to generate the necessary configuration update and set statements in the test database. This is
done using the -f option. For example:

C:\>db2look -d sample -f > config.txt
% USER is:

One thing to note is that only those parameters and variables that affect access plan generation will
be included.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 35

Memory debugging

Overview of the memory debug facility
DB2's memory debugging facility is controlled using the DB2MEMDBG registry variable. It
enables the tracking of memory allocations including the allocations of memory sets, memory
pools, and memory blocks. It can be used to help identify memory corruption or memory leak
conditions and to narrow down the point of failure. (Note that it will not completely identify an
offending line of code, just help in the process of finding it.)

Keep in mind that DB2 has many different memory heaps and their sizes need to be adjusted based
on the workloads being run. As a result, out-of-memory conditions (such as SQL0956C - Not
enough storage in the database heap) can occur due to poorly tuned configuration
parameters and do not necessarily indicate that there is a problem with DB2 itself. Cases where
memory debugging might be suggested are when a memory leak is suspected (a static workload is
running and memory usage increases over time) or when serious memory errors are encountered
(for example, signal #11's in UNIX or db2diag.log entries containing the sqlofmblk function).

Memory debugging is not a fully documented process. It is usually done at the request of the DB2
Support team when dealing with potential memory problems and the options used are dependent on
the type of problem being investigated. Because one must have an intimate knowledge of DB2's
memory architecture and have access to the DB2 source code to fully realize the power of this
facility, only the basics will be explained here (just enough so that you will be aware of what it is
and be somewhat comfortable with running it if ever asked to).

Enabling memory debug
To enable the memory debugging facility, set the DB2MEMDBG registry variable using the db2set
command. Note that the instance must be stopped and started before the variable can take effect.

A common setting for Windows is

W:16:0,S:0:655360:4:W:C:A,S:2:655360:4:W:C:A,S:9:5242880:4:W:C:A,
S:10:655360:4:W:C:A,S:11:655360:4:W:C:A

This is used for debugging memory corruption in all memory sets. To set this:

C:\>db2stop
SQL1064N DB2STOP processing was successful.

C:\>db2set
DB2MEMDBG=W:16:0,S:0:655360:4:W:C:A,S:2:655360:4:W:C:A,S:9:5242880:4:
W:C:A,S:10:655360:4:W:C:A,S:11:655360:4:W:C:A

C:\>db2start
SQL1063N DB2START processing was successful.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

36 © Copyright IBM Corp. 2003.

As mentioned before though, the actual value that you will use when debugging a real problem will
be given to you by the DB2 support or development analyst, depending on the problem being
investigated.

When memory debugging is enabled and the instance is started, a file called memdbg.log will be
created in the diagnostic directory. This file contains log entries for all processes that are enabled
for memory debugging.

The first portion in the above string (W:16:0) causes all memory allocations to be surrounded by a
"wall". If this wall ever gets overwritten, that condition will be detected and reported. (Of course,
this shouldn't occur if everything is working properly.) Following that are strings like
S:0:655360:4:W:C:A. Each of these specifies a particular DB2 memory pool (such as the
database heap, application heap, private heap, etc). You can actually match each one of these up
with the entries in the memdbg.log file.

The equivalent setting for UNIX is

W:16,S:0:655360:4:W:O:10:C:A,S:1:655360:4:W:O:10:C:A,S:2:655360:
4:W:O:10:C:A,S:9:5242880:4:W:O:10:C:A,S:10:655360:4:W:O:10:C:A,
S:11:655360:4:W:O:10:C:A,S:12:655360:4:W:O:10:C:A

If memory corruption is ever detected or if an out-of-memory condition is encountered, files with
the name pProcessID.mem will be created in the diagnostic directory. These files contain per-
process memory debugging information, including any information about corruptions that might
have occurred.

To turn off memory debugging, unset the registry variable and restart the instance:

C:\>db2stop
SQL1064N DB2STOP processing was successful.

C:\>db2set DB2MEMDBG=

C:\>db2start
SQL1063N DB2START processing was successful.

DB2 Problem Determination Tutorial Series
DB2 Problem Determination Tools
__

© Copyright IBM Corp. 2003. 37

Summary and Feedback

What you should now know
You should now be familiar with many of the PD/PSI tools that are shipped with DB2, including
when they should be used and how they are used.

Feel free to experiment with all of the tools and commands discussed in this tutorial. Unless
otherwise noted, they are perfectly safe to run and should not have any adverse affects on your
databases. (But of course, all experimentation should be avoided on production databases, just to
be safe.)

For more information
Most of the tools and commands described in this tutorial are documented in the DB2 manuals.
See the Command Reference and the Troubleshooting Guide for more information.

Feedback
Please take a moment to give us your thoughts on this tutorial by completing the feedback form on
the DB2 Technical Support site at http://www.ibm.com/software/data/db2/udb/winos2unix/support

http://www.ibm.com/software/data/db2/udb/winos2unix/support

