
IBM®

DB2

Universal

Database™

Administrative

API

Reference

Version

8.2

SC09-4824-01

���

IBM®

DB2

Universal

Database™

Administrative

API

Reference

Version

8.2

SC09-4824-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

. vii

Who

Should

Use

this

Book

.

.

.

.

.

.

.

.

. vii

Chapter

1.

Application

Programming

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

DB2

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

How

the

API

descriptions

are

organized

.

.

.

.

. 12

db2AddContact

-

Add

Contact

.

.

.

.

.

.

.

. 15

db2AddContactGroup

-

Add

Contact

Group

.

.

. 16

db2AdminMsgWrite

-

Administration

Message

Write

18

db2ArchiveLog

-

Archive

Active

Log

.

.

.

.

.

. 19

db2AutoConfig

-

Autoconfigure

.

.

.

.

.

.

. 21

db2AutoConfigFreeMemory

-

Free

Autoconfigure

Memory

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

db2Backup

-

Backup

database

.

.

.

.

.

.

.

. 26

db2CfgGet

-

Get

Configuration

Parameters

.

.

.

. 33

db2CfgSet

-

Set

Configuration

Parameters

.

.

.

. 36

db2ConvMonStream

-

Convert

Monitor

Stream

.

. 38

db2DatabasePing

-

Ping

Database

.

.

.

.

.

.

. 41

db2DatabaseQuiesce

-

Database

Quiesce

.

.

.

.

. 43

db2DatabaseUnquiesce

-

Database

Unquiesce

.

.

. 45

db2DatabaseRestart

-

Restart

Database

.

.

.

.

. 46

db2DbDirCloseScan

-

Close

Database

Directory

Scan

48

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

.

.

.

.

.

.

.

.

.

.

.

.

. 49

db2DbDirOpenScan

-

Open

Database

Directory

Scan

53

db2DropContact

-

Drop

Contact

.

.

.

.

.

.

. 55

db2DropContactGroup

-

Drop

Contact

Group

.

.

. 56

db2Export

-

Export

.

.

.

.

.

.

.

.

.

.

.

. 57

File

type

modifiers

for

export

.

.

.

.

.

.

.

. 64

db2GetAlertCfg

-

Get

Alert

Configuration

.

.

.

. 68

db2GetAlertCfgFree

-

Free

Get

Alert

Configuration

Memory

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

db2GetContactGroup

-

Get

Contact

Group

.

.

.

. 72

db2GetContactGroups

-

Get

Contact

Groups

.

.

. 74

db2GetContacts

-

Get

Contacts

.

.

.

.

.

.

.

. 75

db2GetHealthNotificationList

-

Get

Health

Notification

List

.

.

.

.

.

.

.

.

.

.

.

.

. 77

db2GetRecommendations

-

Get

Recommendations

for

a

Health

Indicator

in

Alert

State

.

.

.

.

.

. 78

db2GetRecommendationsFree

-

Free

db2GetRecommendations

Memory

.

.

.

.

.

. 80

db2GetSnapshot

-

Get

Snapshot

.

.

.

.

.

.

. 81

db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer

.

.

.

.

.

.

.

. 84

db2GetSyncSession

-

Get

Satellite

Sync

Session

.

. 87

db2HADRStart

-

Start

HADR

.

.

.

.

.

.

.

. 88

db2HADRStop

-

Stop

HADR

.

.

.

.

.

.

.

. 90

db2HADRTakeover

-

Take

Over

as

Primary

Database

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

db2HistoryCloseScan

-

Close

History

File

Scan

.

. 93

db2HistoryGetEntry

-

Get

Next

History

File

Entry

94

db2HistoryOpenScan

-

Open

History

File

Scan

.

. 97

db2HistoryUpdate

-

Update

History

File

.

.

.

. 101

db2Import

-

Import

.

.

.

.

.

.

.

.

.

.

. 104

File

type

modifiers

for

import

.

.

.

.

.

.

.

. 115

db2Inspect

-

Inspect

database

.

.

.

.

.

.

.

. 123

db2InstanceQuiesce

-

Instance

Quiesce

.

.

.

.

. 129

db2InstanceStart

-

Instance

Start

.

.

.

.

.

.

. 131

db2InstanceStop

-

Instance

Stop

.

.

.

.

.

.

. 135

db2InstanceUnquiesce

-

Instance

Unquiesce

.

.

. 139

db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

db2LdapCatalogNode

-

Catalog

Node

LDAP

Entry

142

db2LdapDeregister

-

LDAP

Deregister

Server

.

.

. 143

db2LdapRegister

-

LDAP

Register

Server

.

.

.

. 144

db2LdapUncatalogDatabase

-

Uncatalog

Database

LDAP

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

db2LdapUncatalogNode

-

Uncatalog

Node

LDAP

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

db2LdapUpdate

-

LDAP

Update

Server

.

.

.

. 149

db2LdapUpdateAlternateServerForDB

-

LDAP

Update

Alternate

Server

For

Database

.

.

.

.

. 152

db2Load

-

Load

.

.

.

.

.

.

.

.

.

.

.

. 153

File

type

modifiers

for

load

.

.

.

.

.

.

.

.

. 175

Delimiter

restrictions

for

moving

data

.

.

.

.

. 185

db2LoadQuery

-

Load

Query

.

.

.

.

.

.

.

. 187

db2MonitorSwitches

-

Get/Update

Monitor

Switches

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

db2Prune

-

Prune

History

File

.

.

.

.

.

.

.

. 194

db2QuerySatelliteProgress

-

Query

Satellite

Sync

196

db2ReadLog

-

Asynchronous

Read

Log

.

.

.

.

. 198

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

.

.

.

.

.

.

.

.

.

.

. 200

db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection

.

.

.

.

.

.

. 203

db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection

.

.

.

.

.

.

. 205

db2Recover

-

Recover

database

.

.

.

.

.

.

. 206

db2Reorg

-

Reorganize

.

.

.

.

.

.

.

.

.

. 211

db2ResetAlertCfg

-

Reset

Alert

Configuration

.

. 217

db2ResetMonitor

-

Reset

Monitor

.

.

.

.

.

.

. 218

db2Restore

-

Restore

database

.

.

.

.

.

.

.

. 221

db2Rollforward

-

Rollforward

Database

.

.

.

. 232

db2Runstats

-

Runstats

.

.

.

.

.

.

.

.

.

. 241

db2SetSyncSession

-

Set

Satellite

Sync

Session

.

. 249

db2SetWriteForDB

-

Set

or

Resume

I/O

.

.

.

. 250

db2SyncSatellite

-

Sync

Satellite

.

.

.

.

.

.

. 251

db2SyncSatelliteStop

-

Stop

Satellite

Sync

.

.

.

. 252

db2SyncSatelliteTest

-

Test

Satellite

Sync

.

.

.

. 253

db2UpdateAlertCfg

-

Update

Alert

Configuration

254

db2UpdateAlternateServerForDB

-

Update

Alternate

Server

for

Database

.

.

.

.

.

.

.

. 258

db2UpdateContact

-

Update

Contact

.

.

.

.

. 260

db2UpdateContactGroup

-

Update

Contact

Group

261

db2UpdateHealthNotificationList

-

Update

Health

Notification

List

.

.

.

.

.

.

.

.

.

.

.

. 263

db2UtilityControl

-

Utility

Control

.

.

.

.

.

. 265

sqlabndx

-

Bind

.

.

.

.

.

.

.

.

.

.

.

. 266

sqlaintp

-

Get

Error

Message

.

.

.

.

.

.

.

. 269

sqlaprep

-

Precompile

Program

.

.

.

.

.

.

. 271

©

Copyright

IBM

Corp.

1993

-

2004

iii

||
|
||
||

||

|
||
|
||

||
||
|
||

|

|

|

|

|

|

|

|

|

|

sqlarbnd

-

Rebind

.

.

.

.

.

.

.

.

.

.

.

. 273

sqlbctcq

-

Close

Table

Space

Container

Query

.

. 276

sqlbctsq

-

Close

Table

Space

Query

.

.

.

.

.

. 277

sqlbftcq

-

Fetch

Table

Space

Container

Query

.

.

. 278

sqlbftpq

-

Fetch

Table

Space

Query

.

.

.

.

.

. 280

sqlbgtss

-

Get

Table

Space

Statistics

.

.

.

.

.

. 282

sqlbmtsq

-

Table

Space

Query

.

.

.

.

.

.

.

. 283

sqlbotcq

-

Open

Table

Space

Container

Query

.

. 285

sqlbotsq

-

Open

Table

Space

Query

.

.

.

.

.

. 287

sqlbstpq

-

Single

Table

Space

Query

.

.

.

.

.

. 289

sqlbstsc

-

Set

Table

Space

Containers

.

.

.

.

. 291

sqlbtcq

-

Table

Space

Container

Query

.

.

.

.

. 293

sqlcspqy

-

List

DRDA

Indoubt

Transactions

.

.

. 295

sqle_activate_db

-

Activate

Database

.

.

.

.

.

. 296

sqle_deactivate_db

-

Deactivate

Database

.

.

.

. 298

sqleaddn

-

Add

Node

.

.

.

.

.

.

.

.

.

. 300

sqleatcp

-

Attach

and

Change

Password

.

.

.

. 302

sqleatin

-

Attach

.

.

.

.

.

.

.

.

.

.

.

. 305

sqlecadb

-

Catalog

Database

.

.

.

.

.

.

.

. 308

sqlecran

-

Create

Database

at

Node

.

.

.

.

.

. 313

sqlecrea

-

Create

Database

.

.

.

.

.

.

.

.

. 314

sqlectnd

-

Catalog

Node

.

.

.

.

.

.

.

.

.

. 321

sqledcgd

-

Change

Database

Comment

.

.

.

.

. 325

sqledpan

-

Drop

Database

at

Node

.

.

.

.

.

. 327

sqledreg

-

Deregister

.

.

.

.

.

.

.

.

.

.

. 329

sqledrpd

-

Drop

Database

.

.

.

.

.

.

.

.

. 330

sqledrpn

-

Drop

Node

Verify

.

.

.

.

.

.

.

. 332

sqledtin

-

Detach

.

.

.

.

.

.

.

.

.

.

.

. 334

sqlefmem

-

Free

Memory

.

.

.

.

.

.

.

.

. 335

sqlefrce

-

Force

Application

.

.

.

.

.

.

.

.

. 336

sqlegdad

-

Catalog

DCS

Database

.

.

.

.

.

. 339

sqlegdcl

-

Close

DCS

Directory

Scan

.

.

.

.

.

. 341

sqlegdel

-

Uncatalog

DCS

Database

.

.

.

.

.

. 342

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

344

sqlegdgt

-

Get

DCS

Directory

Entries

.

.

.

.

. 345

sqlegdsc

-

Open

DCS

Directory

Scan

.

.

.

.

. 347

sqlegins

-

Get

Instance

.

.

.

.

.

.

.

.

.

. 348

sqleintr

-

Interrupt

.

.

.

.

.

.

.

.

.

.

.

. 349

sqleisig

-

Install

Signal

Handler

.

.

.

.

.

.

. 351

sqlemgdb

-

Migrate

Database

.

.

.

.

.

.

.

. 352

sqlencls

-

Close

Node

Directory

Scan

.

.

.

.

. 354

sqlengne

-

Get

Next

Node

Directory

Entry

.

.

. 355

sqlenops

-

Open

Node

Directory

Scan

.

.

.

.

. 357

sqleqryc

-

Query

Client

.

.

.

.

.

.

.

.

.

. 359

sqleqryi

-

Query

Client

Information

.

.

.

.

.

. 360

sqleregs

-

Register

.

.

.

.

.

.

.

.

.

.

.

. 362

sqlesact

-

Set

Accounting

String

.

.

.

.

.

.

. 364

sqlesdeg

-

Set

Runtime

Degree

.

.

.

.

.

.

. 365

sqlesetc

-

Set

Client

.

.

.

.

.

.

.

.

.

.

. 367

sqleseti

-

Set

Client

Information

.

.

.

.

.

.

. 369

sqleuncd

-

Uncatalog

Database

.

.

.

.

.

.

. 371

sqleuncn

-

Uncatalog

Node

.

.

.

.

.

.

.

.

. 373

sqlgaddr

-

Get

Address

.

.

.

.

.

.

.

.

.

. 375

sqlgdref

-

Dereference

Address

.

.

.

.

.

.

. 375

sqlgmcpy

-

Copy

Memory

.

.

.

.

.

.

.

.

. 376

sqlogstt

-

Get

SQLSTATE

Message

.

.

.

.

.

. 377

sqluadau

-

Get

Authorizations

.

.

.

.

.

.

.

. 379

sqludrdt

-

Redistribute

Database

Partition

Group

381

sqlugrpn

-

Get

Row

Partitioning

Number

.

.

.

. 384

sqlugtpi

-

Get

Table

Partitioning

Information

.

.

. 387

sqlurcon

-

Reconcile

.

.

.

.

.

.

.

.

.

.

. 389

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

.

.

.

. 391

Chapter

2.

Additional

REXX

APIs

.

.

. 395

Change

Isolation

Level

(REXX)

.

.

.

.

.

.

. 395

Chapter

3.

Data

Structures

.

.

.

.

.

. 397

db2HistData

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

SQL-AUTHORIZATIONS

.

.

.

.

.

.

.

.

. 401

SQL-DIR-ENTRY

.

.

.

.

.

.

.

.

.

.

.

. 402

SQLA-FLAGINFO

.

.

.

.

.

.

.

.

.

.

.

. 403

SQLB-TBS-STATS

.

.

.

.

.

.

.

.

.

.

.

. 404

SQLB-TBSCONTQRY-DATA

.

.

.

.

.

.

.

. 405

SQLB-TBSPQRY-DATA

.

.

.

.

.

.

.

.

.

. 407

SQLCA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

SQLCHAR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

SQLDA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 412

SQLDCOL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

SQLE-ADDN-OPTIONS

.

.

.

.

.

.

.

.

.

. 416

SQLE-CLIENT-INFO

.

.

.

.

.

.

.

.

.

.

. 417

SQLE-CONN-SETTING

.

.

.

.

.

.

.

.

.

. 419

SQLE-NODE-APPC

.

.

.

.

.

.

.

.

.

.

. 422

SQLE-NODE-APPN

.

.

.

.

.

.

.

.

.

.

. 423

SQLE-NODE-CPIC

.

.

.

.

.

.

.

.

.

.

. 424

SQLE-NODE-IPXSPX

.

.

.

.

.

.

.

.

.

.

. 424

SQLE-NODE-LOCAL

.

.

.

.

.

.

.

.

.

.

. 425

SQLE-NODE-NETB

.

.

.

.

.

.

.

.

.

.

. 426

SQLE-NODE-NPIPE

.

.

.

.

.

.

.

.

.

.

. 426

SQLE-NODE-STRUCT

.

.

.

.

.

.

.

.

.

. 427

SQLE-NODE-TCPIP

.

.

.

.

.

.

.

.

.

.

. 428

SQLE-REG-NWBINDERY

.

.

.

.

.

.

.

.

. 429

SQLEDBTERRITORYINFO

.

.

.

.

.

.

.

.

. 430

SQLEDBDESC

.

.

.

.

.

.

.

.

.

.

.

.

. 430

SQLENINFO

.

.

.

.

.

.

.

.

.

.

.

.

. 435

SQLFUPD

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

SQLM-COLLECTED

.

.

.

.

.

.

.

.

.

.

. 443

SQLM-RECORDING-GROUP

.

.

.

.

.

.

.

. 444

SQLMA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

SQLOPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

SQLU-LSN

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

SQLU-MEDIA-LIST

.

.

.

.

.

.

.

.

.

.

. 450

SQLU-RLOG-INFO

.

.

.

.

.

.

.

.

.

.

. 453

SQLUPI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

SQLXA-XID

.

.

.

.

.

.

.

.

.

.

.

.

.

. 455

Appendix

A.

Naming

Conventions

.

. 457

Appendix

B.

Heuristic

APIs

.

.

.

.

. 459

Heuristic

APIs

.

.

.

.

.

.

.

.

.

.

.

.

. 459

db2XaGetInfo

-

Get

Information

for

Resource

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

db2XaListIndTrans

-

List

Indoubt

Transactions

.

. 461

sqlxhfrg

-

Forget

Transaction

Status

.

.

.

.

.

. 464

sqlxphcm

-

Commit

an

Indoubt

Transaction

.

.

. 465

sqlxphrl

-

Roll

Back

an

Indoubt

Transaction

.

.

. 466

Appendix

C.

Precompiler

Customization

APIs

.

.

.

.

.

.

.

.

. 467

iv

Administrative

API

Reference

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

.

.

.

.

.

.

.

. 469

APIs

for

backup

and

restore

to

storage

managers

469

Operational

overview

.

.

.

.

.

.

.

.

. 469

Operational

hints

and

tips

.

.

.

.

.

.

.

. 474

Invoking

a

backup

or

a

restore

operation

using

vendor

products

.

.

.

.

.

.

.

.

.

.

. 474

sqluvint

-

Initialize

and

Link

to

Device

.

.

.

.

. 476

sqluvget

-

Reading

Data

from

Device

.

.

.

.

. 479

sqluvput

-

Writing

Data

to

Device

.

.

.

.

.

. 480

sqluvend

-

Unlink

the

Device

and

Release

its

Resources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

sqluvdel

-

Delete

Committed

Session

.

.

.

.

. 484

db2VendorQueryApiVersion

-

Query

Device

Supported

API

Level

.

.

.

.

.

.

.

.

.

.

. 485

db2VendorGetNextObj

-

Get

Next

Object

on

Device

485

DB2-INFO

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

VENDOR-INFO

.

.

.

.

.

.

.

.

.

.

.

. 489

INIT-INPUT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

INIT-OUTPUT

.

.

.

.

.

.

.

.

.

.

.

.

. 490

DATA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

RETURN-CODE

.

.

.

.

.

.

.

.

.

.

.

. 491

APIs

for

compressed

backups

.

.

.

.

.

.

.

. 492

Compression

plug-in

interface

.

.

.

.

.

.

. 492

Appendix

E.

Threaded

applications

with

concurrent

access

.

.

.

.

.

.

. 499

Threaded

Applications

with

Concurrent

Access

.

. 499

sqleAttachToCtx

-

Attach

to

Context

.

.

.

.

.

. 500

sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

sqleDetachFromCtx

-

Detach

From

Context

.

.

. 502

sqleEndCtx

-

Detach

and

Destroy

Application

Context

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

sqleGetCurrentCtx

-

Get

Current

Context

.

.

.

. 504

sqleInterruptCtx

-

Interrupt

Context

.

.

.

.

.

. 505

sqleSetTypeCtx

-

Set

Application

Context

Type

.

. 506

Appendix

F.

DB2

UDB

Log

Records

509

Log

Manager

Header

.

.

.

.

.

.

.

.

.

.

. 511

Data

Manager

Log

Records

.

.

.

.

.

.

.

.

. 513

Initialize

Table

.

.

.

.

.

.

.

.

.

.

.

. 515

Import

Replace

(Truncate)

.

.

.

.

.

.

.

. 516

Rollback

Insert

.

.

.

.

.

.

.

.

.

.

.

. 516

Reorg

Table

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Create

Index,

Drop

Index

.

.

.

.

.

.

.

. 517

Create

Table,

Drop

Table,

Rollback

Create

Table,

Rollback

Drop

Table

.

.

.

.

.

.

.

.

.

. 518

Alter

Table

Attribute

.

.

.

.

.

.

.

.

.

. 518

Alter

Table

Add

Columns,

Rollback

Add

Columns

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

Insert

Record,

Delete

Record,

Rollback

Delete

Record,

Rollback

Update

Record

.

.

.

.

.

. 519

Insert

Multiple

Records,

Rollback

Insert

Multiple

Records

.

.

.

.

.

.

.

.

.

.

. 520

Formatted

User

Data

Record

for

table

without

VALUE

COMPRESSION

.

.

.

.

.

.

.

.

. 521

Formatted

User

Data

Record

for

table

with

VALUE

COMPRESSION

.

.

.

.

.

.

.

.

. 523

Insert

Record

to

Empty

Page,

Delete

Record

to

Empty

Page,

Rollback

Delete

Record

to

Empty

Page,

Rollback

Insert

Record

to

Empty

Page

.

. 523

Update

Record

.

.

.

.

.

.

.

.

.

.

.

. 524

Long

Field

Manager

Log

Records

.

.

.

.

.

.

. 525

Add/Delete/Non-update

Long

Field

Record

526

Transaction

Manager

Log

Records

.

.

.

.

.

. 526

Normal

Commit

.

.

.

.

.

.

.

.

.

.

. 526

Heuristic

Commit

.

.

.

.

.

.

.

.

.

.

. 527

MPP

Coordinator

Commit

.

.

.

.

.

.

.

. 527

MPP

Subordinator

Commit

.

.

.

.

.

.

.

. 527

Normal

Abort

.

.

.

.

.

.

.

.

.

.

.

. 527

Heuristic

Abort

.

.

.

.

.

.

.

.

.

.

.

. 528

Local

Pending

List

.

.

.

.

.

.

.

.

.

.

. 528

Global

Pending

List

.

.

.

.

.

.

.

.

.

. 528

XA

Prepare

.

.

.

.

.

.

.

.

.

.

.

.

. 529

MPP

Subordinator

Prepare

.

.

.

.

.

.

.

. 529

Backout

Free

.

.

.

.

.

.

.

.

.

.

.

. 530

Utility

Manager

Log

Records

.

.

.

.

.

.

. 530

Datalink

Manager

Log

Records

.

.

.

.

.

. 533

Appendix

G.

Application

migration

537

Administrative

APIs

and

application

migration

.

. 537

Changed

APIs

and

Data

Structures

.

.

.

.

.

. 537

Appendix

H.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 541

DB2

documentation

and

help

.

.

.

.

.

.

.

. 541

DB2

documentation

updates

.

.

.

.

.

.

. 541

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 542

DB2

Information

Center

installation

scenarios

.

. 543

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 546

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 548

Invoking

the

DB2

Information

Center

.

.

.

.

. 550

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 551

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 552

DB2

PDF

and

printed

documentation

.

.

.

.

. 553

Core

DB2

information

.

.

.

.

.

.

.

.

. 553

Administration

information

.

.

.

.

.

.

. 553

Application

development

information

.

.

.

. 554

Business

intelligence

information

.

.

.

.

.

. 555

DB2

Connect

information

.

.

.

.

.

.

.

. 555

Getting

started

information

.

.

.

.

.

.

.

. 555

Tutorial

information

.

.

.

.

.

.

.

.

.

. 556

Optional

component

information

.

.

.

.

.

. 556

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 557

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 558

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 558

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 559

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 560

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 560

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 561

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 561

Contents

v

|
||
||

||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

DB2

troubleshooting

information

.

.

.

.

.

.

. 562

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

Keyboard

input

and

navigation

.

.

.

.

.

. 563

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 563

Compatibility

with

assistive

technologies

.

.

. 564

Accessible

documentation

.

.

.

.

.

.

.

. 564

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 564

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 566

Appendix

I.

Notices

.

.

.

.

.

.

.

.

. 567

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 569

Appendix

J.

Contacting

IBM

.

.

.

.

. 571

Product

information

.

.

.

.

.

.

.

.

.

.

. 571

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 573

vi

Administrative

API

Reference

||
|
||

About

This

Book

This

book

provides

information

about

the

use

of

application

programming

interfaces

(APIs)

to

execute

database

administrative

functions.

It

presents

detailed

information

on

the

use

of

database

manager

API

calls

in

applications

written

in

the

following

programming

languages:

v

C

v

C++

v

COBOL

v

FORTRAN

v

REXX.

For

a

compiled

language,

an

appropriate

precompiler

must

be

available

to

process

the

statements.

Precompilers

are

provided

for

all

supported

languages.

Who

Should

Use

this

Book

It

is

assumed

that

the

reader

has

an

understanding

of

database

administration

and

application

programming,

plus

a

knowledge

of:

v

Structured

Query

Language

(SQL)

v

The

C,

C++,

COBOL,

FORTRAN,

or

REXX

programming

language

v

Application

program

design.

©

Copyright

IBM

Corp.

1993

-

2004

vii

viii

Administrative

API

Reference

Chapter

1.

Application

Programming

Interfaces

This

section

describes

the

DB2

application

programming

interfaces

in

alphabetical

order.

The

APIs

enable

most

of

the

administrative

functions

from

within

an

application

program.

Note:

Slashes

(/)

in

directory

paths

are

specific

to

UNIX

based

systems,

and

are

equivalent

to

back

slashes

(\)

in

directory

paths

on

Windows

operating

systems.

DB2

APIs

The

following

tables

show

the

DB2

APIs

with

the

DB2

samples.

The

first

table

lists

the

DB2

APIs

grouped

by

functional

category,

their

respective

include

files,

and

the

sample

programs

that

demonstrate

them

(See

the

note

after

the

table

for

more

information

on

the

include

files).

The

second

table

lists

the

C/C++

sample

programs

and

shows

the

DB2

APIs

demonstrated

in

each

C/C++

program.

The

third

table

shows

the

COBOL

sample

programs

and

the

DB2

APIs

demonstrated

in

each

COBOL

program.

DB2

APIs,

Include

files,

and

Sample

Programs

Table

1.

C/C++

Sample

Programs

with

DB2

APIs

Table

2

on

page

7.

COBOL

Sample

Programs

with

DB2

APIs

Table

3

on

page

10.

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

DB2

API

Include

File

Sample

Programs

Database

Manager

Control

db2DatabaseQuiesce

-

Database

Quiesce

db2ApiDf

n/a

db2DatabaseUnquiesce

-

Database

Unquiesce

db2ApiDf

n/a

db2InstanceStart

-

Instance

Start

db2ApiDf

C:

instart.c

C++:

instart.C

db2InstanceStop

-

Instance

Stop

db2ApiDf

C:

instart.c

C++:

instart.C

db2InstanceQuiesce

-

Instance

Quiesce

db2ApiDf

n/a

db2InstanceUnquiesce

-

Instance

Unquiesce

db2ApiDf

n/a

sqlesdeg

-

Set

Runtime

Degree

sqlenv

C:

ininfo.c

C++:

ininfo.C

Database

Control

db2DatabaseRestart

-

Restart

Database

db2ApiDf

C:

dbconn.sqc

C++:

dbconn.sqC

sqlecrea

-

Create

Database

sqlenv

C:

dbcreate.c

dbrecov.sqc

dbsample.sqc

C++:

dbcreate.C

dbrecov.sqC

COBOL:

db_udcs.cbl

dbconf.cbl

ebcdicdb.cbl

sqlecran

-

Create

Database

at

Node

sqlenv

n/a

sqledrpd

-

Drop

Database

sqlenv

C:

dbcreate.c

C++:

dbcreate.C

COBOL:

dbconf.cbl

sqledpan

-

Drop

Database

at

Node

sqlenv

n/a

©

Copyright

IBM

Corp.

1993

-

2004

1

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

sqlemgdb

-

Migrate

Database

sqlenv

C:

dbmigrat.c

C++:

dbmigrat.C

COBOL:

migrate.cbl

db2XaListIndTrans

-

List

Indoubt

Transactions

db2ApiDf

n/a

sqle_activate_db

-

Activate

Database

sqlenv

n/a

sqle_deactivate_db

-

Deactivate

Database

sqlenv

n/a

sqlcspqy

-

List

DRDA

Indoubt

Transactions

sqlxa

n/a

Database

Manager

and

Database

Configuration

db2CfgGet

-

Get

Configuration

Parameters

db2ApiDf

C:

dbinfo.c

dbrecov.sqc

inauth.sqc

ininfo.c

tscreate.sqc

C++:

dbinfo.C

dbrecov.sqC

inauth.sqC

ininfo.C

tscreate.sqC

db2CfgSet

-

Set

Configuration

Parameters

db2ApiDf

C:

dbinfo.c

dbrecov.sqc

ininfo.c

C++:

dbinfo.C

dbrecov.sqC

ininfo.C

Database

Directory

Management

sqlecadb

-

Catalog

Database

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcat.cbl

sqleuncd

-

Uncatalog

Database

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcat.cbl

sqlegdad

-

Catalog

DCS

Database

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

sqlegdel

-

Uncatalog

DCS

Database

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

sqledcgd

-

Change

Database

Comment

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcmt.cbl

db2DbDirOpenScan

-

Open

Database

Directory

Scan

db2ApiDf

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcat.cbl

dbcmt.cbl

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

db2ApiDf

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcat.cbl

dbcmt.cbl

db2DbDirCloseScan

-

Close

Database

Directory

Scan

db2ApiDf

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbcat.cbl

dbcmt.cbl

sqlegdsc

-

Open

DCS

Directory

Scan

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

sqlegdgt

-

Get

DCS

Directory

Entries

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

sqlegdcl

-

Close

DCS

Directory

Scan

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dcscat.cbl

Client/Server

Directory

Management

sqlectnd

-

Catalog

Node

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

nodecat.cbl

sqleuncn

-

Uncatalog

Node

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

nodecat.cbl

sqlenops

-

Open

Node

Directory

Scan

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

nodecat.cbl

sqlengne

-

Get

Next

Node

Directory

Entry

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

nodecat.cbl

sqlencls

-

Close

Node

Directory

Scan

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

nodecat.cbl

Network

Support

sqleregs

-

Register

sqlenv

n/a

sqledreg

-

Deregister

sqlenv

n/a

db2LdapRegister

-

LDAP

Register

Server

db2ApiDf

n/a

db2LdapUpdate

-

LDAP

Update

Server

db2ApiDf

n/a

db2LdapDeregister

-

LDAP

Deregister

Server

db2ApiDf

n/a

DB2

APIs

2

Administrative

API

Reference

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

db2LdapCatalogNode

-

Catalog

Node

LDAP

Entry

db2ApiDf

n/a

db2LdapUncatalogNode

-

Uncatalog

Node

LDAP

Entry

db2ApiDf

n/a

db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry

db2ApiDf

n/a

db2LdapUncatalogDatabase

-

Uncatalog

Database

LDAP

Entry

db2ApiDf

n/a

Recovery

db2Backup

-

Backup

database

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

sqlurcon

-

Reconcile

sqlutil

n/a

db2Restore

-

Restore

database

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2Rollforward

-

Rollforward

Database

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2HistoryOpenScan

-

Open

History

File

Scan

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2HistoryGetEntry

-

Get

Next

History

File

Entry

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2HistoryCloseScan

-

Close

History

File

Scan

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2Prune

-

Prune

History

File

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2HistoryUpdate

-

Update

History

File

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

High

Availability

db2HADRStart

-

Start

HADR

db2ApiDf

n/a

db2HADRStop

-

Stop

HADR

db2ApiDf

n/a

db2HADRTakeover

-

Take

Over

as

Primary

Database

db2ApiDf

n/a

Operational

Utilities

sqlefrce

-

Force

Application

sqlenv

C:

dbconn.sqc

dbsample.sqc

instart.c

C++:

dbconn.sqC

instart.C

COBOL:

dbstop.cbl

db2Reorg

-

Reorganize

db2ApiDf

C:

tbreorg.sqc

C++:

tbreorg.sqC

COBOL:

dbstat.sqb

db2Runstats

-

Runstats

db2ApiDf

C:

tbreorg.sqc

C++:

tbreorg.sqC

COBOL:

dbstat.sqb

Database

Monitoring

db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer

db2ApiDf

n/a

db2MonitorSwitches

-

Get/Update

Monitor

Switches

db2ApiDf

C:

utilsnap.c

C++:

utilsnap.C

db2GetSnapshot

-

Get

Snapshot

db2ApiDf

C:

utilsnap.c

C++:

utilsnap.C

db2ResetMonitor

-

Reset

Monitor

db2ApiDf

n/a

db2ConvMonStream

-

Convert

Monitor

Stream

db2ApiDf

n/a

Health

Monitoring

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

3

|||

|||

|
|
||

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

db2AddContact

-

Add

Contact

db2ApiDf

n/a

db2AddContactGroup

-

Add

Contact

Group

db2ApiDf

n/a

db2DropContact

-

Drop

Contact

db2ApiDf

n/a

db2DropContactGroup

-

Drop

Contact

Group

db2ApiDf

n/a

db2GetAlertCfg

-

Get

Alert

Configuration

db2ApiDf

n/a

db2GetContactGroup

-

Get

Contact

Group

db2ApiDf

n/a

db2GetContactGroups

-

Get

Contact

Groups

db2ApiDf

n/a

db2GetContacts

-

Get

Contacts

db2ApiDf

n/a

db2GetHealthNotificationList

-

Get

Health

Notification

List

db2ApiDf

n/a

db2ResetAlertCfg

-

Reset

Alert

Configuration

db2ApiDf

n/a

db2UpdateAlertCfg

-

Update

Alert

Configuration

db2ApiDf

n/a

db2UpdateContact

-

Update

Contact

db2ApiDf

n/a

db2UpdateContactGroup

-

Update

Contact

Group

db2ApiDf

n/a

db2UpdateHealthNotificationList

-

Update

Health

Notification

List

db2ApiDf

n/a

Data

Utilities

db2Export

-

Export

sqlutil

C:

tbmove.sqc

C++:

tbmove.sqC

COBOL:

expsamp.sqb

impexp.sqb

tload.sqb

db2Import

-

Import

db2ApiDf

C:

dtformat.sqc

tbmove.sqc

C++:

tbmove.sqC

COBOL:

expsamp.sqb

impexp.sqb

db2Load

-

Load

db2ApiDf

C:

dtformat.sqc

tbmove.sqc

C++:

tbmove.sqC

db2LoadQuery

-

Load

Query

db2ApiDf

C:

tbmove.sqc

C++:

tbmove.sqC

COBOL:

loadqry.sqb

General

Application

Programming

db2AutoConfig

-

Autoconfigure

db2AuCfg

C:

dbcfg.sqc

C++:

dbcfg.sqC

db2AutoConfigFreeMemory

-

Free

Autoconfigure

Memory

db2AuCfg

C:

dbcfg.sqc

C++:

dbcfg.sqC

sqlaintp

-

Get

Error

Message

sql

C:

dbcfg.sqc

utilapi.c

C++:

dbcfg.sqC

utilapi.C

COBOL:

checkerr.cbl

sqlogstt

-

Get

SQLSTATE

Message

sql

C:

utilapi.c

C++:

utilapi.C

COBOL:

checkerr.cbl

sqleisig

-

Install

Signal

Handler

sqlenv

COBOL:

dbcmt.cbl

sqleintr

-

Interrupt

sqlenv

n/a

sqlgdref

-

Dereference

Address

sqlutil

n/a

sqlgmcpy

-

Copy

Memory

sqlutil

n/a

sqlefmem

-

Free

Memory

sqlenv

C:

dbrecov.sqc

tsinfo.sqc

C++:

dbrecov.sqC

tsinfo.sqC

COBOL:

tabscont.sqb

tabspace.sqb

tspace.sqb

DB2

APIs

4

Administrative

API

Reference

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

sqlgaddr

-

Get

Address

sqlutil

n/a

Application

Preparation

sqlaprep

-

Precompile

Program

sql

C:

dbpkg.sqc

C++:

dbpkg.sqC

sqlabndx

-

Bind

sql

C:

dbpkg.sqc

dbsample.sqc

C++:

dbpkg.sqC

sqlarbnd

-

Rebind

sql

C:

dbpkg.sqc

dbsample.sqc

C++:

dbpkg.sqC

COBOL:

rebind.sqb

Remote

Server

Utilities

sqleatin

-

Attach

sqlenv

C:

inattach.c

utilapi.c

C++:

inattach.C

utilapi.C

COBOL:

dbinst.cbl

sqleatcp

-

Attach

and

Change

Password

sqlenv

C:

inattach.c

C++:

inattach.C

COBOL:

dbinst.cbl

sqledtin

-

Detach

sqlenv

C:

inattach.c

utilapi.c

C++:

inattach.C

utilapi.C

COBOL:

dbinst.cbl

Table

Space

Management

sqlbtcq

-

Table

Space

Container

Query

sqlutil

C:

dbrecov.sqc

tsinfo.sqc

C++:

dbrecov.sqC

tsinfo.sqC

COBOL:

tabscont.sqb

tspace.sqb

sqlbotcq

-

Open

Table

Space

Container

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabscont.sqb

tspace.sqb

sqlbftcq

-

Fetch

Table

Space

Container

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabscont.sqb

tspace.sqb

sqlbctcq

-

Close

Table

Space

Container

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabscont.sqb

tspace.sqb

sqlbstsc

-

Set

Table

Space

Containers

sqlutil

C:

dbrecov.sqc

C++:

dbrecov.sqC

COBOL:

tabscont.sqb

tspace.sqb

sqlbmtsq

-

Table

Space

Query

sqlutil

C:

dbrecov.sqc

tsinfo.sqc

C++:

dbrecov.sqC

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqlbstpq

-

Single

Table

Space

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqlbotsq

-

Open

Table

Space

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqlbftpq

-

Fetch

Table

Space

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqlbctsq

-

Close

Table

Space

Query

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqlbgtss

-

Get

Table

Space

Statistics

sqlutil

C:

tsinfo.sqc

C++:

tsinfo.sqC

COBOL:

tabspace.sqb

tspace.sqb

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

sqlutil

C:

tbmove.sqc

C++:

tbmove.sqC

COBOL:

tload.sqb

Node

Management

sqleaddn

-

Add

Node

sqlenv

n/a

sqledrpn

-

Drop

Node

Verify

sqlenv

n/a

Satellite

db2GetSyncSession

-

Get

Satellite

Sync

Session

db2ApiDf

n/a

db2QuerySatelliteProgress

-

Query

Satellite

Sync

db2ApiDf

n/a

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

5

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

db2SetSyncSession

-

Set

Satellite

Sync

Session

db2ApiDf

n/a

db2SyncSatellite

-

Sync

Satellite

db2ApiDf

n/a

db2SyncSatelliteStop

-

Stop

Satellite

Sync

db2ApiDf

n/a

db2SyncSatelliteTest

-

Test

Satellite

Sync

db2ApiDf

n/a

Database

Partition

Group

Management

sqludrdt

-

Redistribute

Database

Partition

Group

sqlutil

n/a

Additional

APIs

sqluadau

-

Get

Authorizations

sqlutil

C:

dbauth.sqc

inauth.sqc

C++:

dbauth.sqC

inauth.sqC

sqlegins

-

Get

Instance

sqlenv

C:

ininfo.c

C++:

ininfo.C

COBOL:

dbinst.cbl

sqleqryc

-

Query

Client

sqlenv

C:

cli_info.c

C++:

cli_info.C

COBOL:

client.cbl

sqleqryi

-

Query

Client

Information

sqlenv

C:

cli_info.c

C++:

cli_info.C

sqlesetc

-

Set

Client

sqlenv

C:

cli_info.c

dbcfg.sqc

dbmcon.sqc

C++:

cli_info.C

dbcfg.sqC

dbmcon.sqC

COBOL:

client.cbl

sqleseti

-

Set

Client

Information

sqlenv

C:

cli_info.c

C++:

cli_info.C

sqlesact

-

Set

Accounting

String

sqlenv

C:

cli_info.c

C++:

cli_info.C

COBOL:

setact.cbl

db2ReadLog

-

Asynchronous

Read

Log

db2ApiDf

C:

dbrecov.sqc

C++:

dbrecov.sqC

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

db2ApiDf

n/a

db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection

db2ApiDf

n/a

db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection

db2ApiDf

n/a

sqlugrpn

-

Get

Row

Partitioning

Number

sqlutil

n/a

sqlugtpi

-

Get

Table

Partitioning

Information

sqlutil

n/a

db2AdminMsgWrite

-

Administration

Message

Write

db2ApiDf

n/a

db2SetWriteForDB

-

Set

or

Resume

I/O

db2ApiDf

n/a

db2ArchiveLog

-

Archive

Active

Log

db2ApiDf

n/a

db2DatabasePing

-

Ping

Database

db2ApiDf

n/a

db2Inspect

-

Inspect

database

db2ApiDf

n/a

DB2

APIs

6

Administrative

API

Reference

Table

1.

DB2

APIs,

Include

files,

and

Sample

Programs

(continued)

DB2

API

Include

File

Sample

Programs

Note:

Include

file

extensions

vary

with

programming

language.

C/C++

include

files

have

a

file

extension

of

.h.

COBOL

include

files

have

a

file

extension

of

.cbl.

The

include

files

can

be

found

in

the

following

directories:

C/C++

(UNIX):

sqllib/include

C/C++

(Windows):

sqllib\include

COBOL

(UNIX):

sqllib/include/cobol_a

sqllib/include/cobol_i

sqllib/include/cobol_mf

COBOL

(Windows):

sqllib\include\cobol_a

sqllib\include\cobol_i

sqllib\include\cobol_mf

Table

2.

C/C++

Sample

Programs

with

DB2

APIs

Sample

Program

Included

APIs

cli_info.c,

cli_info.C

v

sqlesact

-

Set

Accounting

String

v

sqlesetc

-

Set

Client

v

sqleseti

-

Set

Client

Information

v

sqleqryc

-

Query

Client

v

sqleqryi

-

Query

Client

Information

dbauth.sqc,

dbauth.sqC

v

sqluadau

-

Get

Authorizations

dbcfg.sqc,

dbcfg.sqC

v

db2AutoConfig

-

Autoconfigure

v

db2AutoConfigMemory

-

Free

Autoconfigure

Memory

v

sqlesetc

-

Set

Client

v

sqlaintp

-

Get

Error

Message

dbconn.sqc,

dbconn.sqC

v

db2DatabaseRestart

-

Restart

Database

v

sqlefrce

-

Force

Application

dbcreate.c,

dbcreate.C

v

sqlecrea

-

Create

Database

v

sqledrpd

-

Drop

Database

dbinfo.c,

dbinfo.C

v

db2CfgGet

-

Get

Configuration

v

db2CfgSet

-

Set

Configuration

dbmcon.sqc,

dbmcon.sqC

v

sqlesetc

-

Set

Client

dbmigrat.c,

dbmigrat.C

v

sqlemgdb

-

Migrate

Database

dbpkg.sqc,

dbpkg.sqC

v

sqlaprep

-

Precompile

Program

v

sqlabndx

-

Bind

v

sqlarbnd

-

Rebind

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

7

Table

2.

C/C++

Sample

Programs

with

DB2

APIs

(continued)

Sample

Program

Included

APIs

dbrecov.sqc,

dbrecov.sqC

v

db2HistoryCloseScan

-

Close

History

File

Scan

v

db2HistoryGetEntry

-

Get

Next

History

File

Entry

v

db2HistoryOpenScan

-

Open

History

File

Scan

v

db2HistoryUpdate

-

Update

History

File

v

db2Prune

-

Prune

History

File

v

db2CfgGet

-

Get

Configuration

Parameters

v

db2CfgSet

-

Set

Configuration

Parameters

v

sqlbmtsq

-

Table

Space

Query

v

sqlbstsc

-

Set

Table

Space

Containers

v

sqlbtcq

-

Table

Space

Container

Query

v

sqlecrea

-

Create

Database

v

sqledrpd

-

Drop

Database

v

sqlefmem

-

Free

Memory

v

db2Backup

-

Backup

Database

v

db2Restore

-

Restore

Database

v

db2ReadLog

-

Asynchronous

Read

Log

v

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

v

db2Rollforward

-

Rollforward

Database

dbsample.sqc

v

db2DatabaseRestart

-

Restart

Database

v

sqlecrea

-

Create

Database

v

sqlefrce

-

Force

Application

v

sqlabndx

-

Bind

Package

dbthrds.sqc,

dbthrds.sqC

v

sqleAttachToCtx

-

Attach

to

Context

v

sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context

v

sqleDetachFromCtx

-

Detach

From

Context

v

sqleSetTypeCtx

-

Set

Application

Context

Type

dtformat.sqc

v

db2Load

-

Load

v

db2Import

-

Import

inattach.c,

inattach.C

v

sqleatcp

-

Attach

and

Change

Password

v

sqleatin

-

Attach

v

sqledtin

-

Detach

inauth.sqc,

inauth.sqC

v

db2CfgGet

-

Get

Configuration

Parameters

v

sqluadau

-

Get

Authorizations

DB2

APIs

8

Administrative

API

Reference

Table

2.

C/C++

Sample

Programs

with

DB2

APIs

(continued)

Sample

Program

Included

APIs

ininfo.c,

ininfo.C

v

db2CfgGet

-

Get

Configuration

Parameters

v

db2CfgSet

-

Set

Configuration

Parameters

v

sqlegins

-

Get

Instance

v

sqlectnd

-

Catalog

Node

v

sqlenops

-

Open

Node

Directory

Scan

v

sqlengne

-

Get

Next

Node

Directory

Entry

v

sqlencls

-

Close

Node

Directory

Scan

v

sqleuncn

-

Uncatalog

Node

v

sqlecadb

-

Catalog

Database

v

db2DbDirOpenScan

-

Open

Database

Directory

Scan

v

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

v

sqledcgd

-

Change

Database

Comment

v

db2DbDirCloseScan

-

Close

Database

Directory

Scan

v

sqleuncd

-

Uncatalog

Database

v

sqlegdad

-

Catalog

DCS

Database

v

sqlegdsc

-

Open

DCS

Directory

Scan

v

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

v

sqlegdgt

-

Get

DCS

Directory

Entries

v

sqlegdcl

-

Close

DCS

Directory

Scan

v

sqlegdel

-

Uncatalog

DCS

Database

v

sqlesdeg

-

Set

Runtime

Degree

instart.c,

instart.C

v

sqlefrce

-

Force

Application

v

db2InstanceStart

-

Instance

Start

v

db2InstanceStop

-

Instance

Stop

tbmove.sqc,

tbmove.sqC

v

db2Export

-

Export

v

db2Import

-

Import

v

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

v

db2Load

-

Load

v

db2LoadQuery

-

Load

Query

tbreorg.sqc,

tbreorg.sqC

v

db2Reorg

-

Reorganize

v

db2Runstats

-

Runstats

tscreate.sqc,

tscreate.sqC

v

db2CfgGet

-

Get

Configuration

Parameters

tsinfo.sqc,

tsinfo.sqC

v

sqlbstpq

-

Single

Table

Space

Query

v

sqlbgtss

-

Get

Table

Space

Statistics

v

sqlbmtsq

-

Table

Space

Query

v

sqlefmem

-

Free

Memory

v

sqlbotsq

-

Open

Table

Space

Query

v

sqlbftpq

-

Fetch

Table

Space

Query

v

sqlbctsq

-

Close

Table

Space

Query

v

sqlbtcq

-

Table

Space

Container

Query

v

sqlbotcq

-

Open

Table

Space

Container

Query

v

sqlbftcq

-

Fetch

Table

Space

Container

Query

v

sqlbctcq

-

Close

Table

Space

Container

Query

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

9

Table

2.

C/C++

Sample

Programs

with

DB2

APIs

(continued)

Sample

Program

Included

APIs

utilapi.c,

utilapi.C

v

sqlaintp

-

Get

Error

Message

v

sqlogstt

-

Get

SQLSTATE

Message

v

sqleatin

-

Attach

v

sqledtin

-

Detach

utilsnap.c,

utilsnap.C

v

db2GetSnapshot

-

Get

Snapshot

v

db2MonitorSwitches

-

Get/Update

Monitor

Switches

Table

3.

COBOL

Sample

Programs

with

DB2

APIs

Sample

Program

Included

APIs

checkerr.cbl

v

sqlaintp

-

Get

Error

Message

v

sqlogstt

-

Get

SQLSTATE

Message

client.cbl

v

sqleqryc

-

Query

Client

v

sqlesetc

-

Set

Client

db_udcs.cbl

v

sqleatin

-

Attach

v

sqlecrea

-

Create

Database

v

sqledrpd

-

Drop

Database

dbcat.cbl

v

sqlecadb

-

Catalog

Database

v

db2DbDirCloseScan

-

Close

Database

Directory

Scan

v

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

v

db2DbDirOpenScan

-

Open

Database

Directory

Scan

v

sqleuncd

-

Uncatalog

Database

dbcmt.cbl

v

sqledcgd

-

Change

Database

Comment

v

db2DbDirCloseScan

-

Close

Database

Directory

Scan

v

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

v

db2DbDirOpenScan

-

Open

Database

Directory

Scan

v

sqleisig

-

Install

Signal

Handler

dbinst.cbl

v

sqleatcp

-

Attach

and

Change

Password

v

sqleatin

-

Attach

v

sqledtin

-

Detach

v

sqlegins

-

Get

Instance

dbstat.sqb

v

db2Reorg

-

Reorganize

v

db2Runstats

-

Runstats

dcscat.cbl

v

sqlegdad

-

Catalog

DCS

Database

v

sqlegdcl

-

Close

DCS

Directory

Scan

v

sqlegdel

-

Uncatalog

DCS

Database

v

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

v

sqlegdgt

-

Get

DCS

Directory

Entries

v

sqlegdsc

-

Open

DCS

Directory

Scan

ebcdicdb.cbl

v

sqleatin

-

Attach

v

sqlecrea

-

Create

Database

v

sqledrpd

-

Drop

Database

DB2

APIs

10

Administrative

API

Reference

Table

3.

COBOL

Sample

Programs

with

DB2

APIs

(continued)

Sample

Program

Included

APIs

expsamp.sqb

v

db2Export

-

Export

v

db2Import

-

Import

impexp.sqb

v

db2Export

-

Export

v

db2Import

-

Import

loadqry.sqb

v

db2LoadQuery

-

Load

Query

migrate.cbl

v

sqlemgdb

-

Migrate

Database

nodecat.cbl

v

sqlectnd

-

Catalog

Node

v

sqlencls

-

Close

Node

Directory

Scan

v

sqlengne

-

Get

Next

Node

Directory

Entry

v

sqlenops

-

Open

Node

Directory

Scan

v

sqleuncn

-

Uncatalog

Node

rebind.sqb

v

sqlarbnd

-

Rebind

tabscont.sqb

v

sqlbctcq

-

Close

Table

Space

Container

Query

v

sqlbftcq

-

Fetch

Table

Space

Container

Query

v

sqlbotcq

-

Open

Table

Space

Container

Query

v

sqlbtcq

-

Table

Space

Container

Query

v

sqlefmem

-

Free

Memory

tabspace.sqb

v

sqlbctsq

-

Close

Table

Space

Query

v

sqlbftpq

-

Fetch

Table

Space

Query

v

sqlbgtss

-

Get

Table

Space

Statistics

v

sqlbmtsq

-

Table

Space

Query

v

sqlbotsq

-

Open

Table

Space

Query

v

sqlbstpq

-

Single

Table

Space

Query

v

sqlefmem

-

Free

Memory

tload.sqb

v

db2Export-

Export

v

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

tspace.sqb

v

sqlbctcq

-

Close

Table

Space

Container

Query

v

sqlbctsq

-

Close

Table

Space

Query

v

sqlbftcq

-

Fetch

Table

Space

Container

Query

v

sqlbftpq

-

Fetch

Table

Space

Query

v

sqlbgtss

-

Get

Table

Space

Statistics

v

sqlbmtsq

-

Table

Space

Query

v

sqlbotcq

-

Open

Table

Space

Container

Query

v

sqlbotsq

-

Open

Table

Space

Query

v

sqlbstpq

-

Single

Table

Space

Query

v

sqlbstsc

-

Set

Table

Space

Containers

v

sqlbtcq

-

Table

Space

Container

Query

v

sqlefmem

-

Free

Memory

setact.cbl

v

sqlesact

-

Set

Accounting

String

Related

reference:

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

11

v

“Include

Files

for

C

and

C++”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“Include

Files

for

COBOL”

in

the

Application

Development

Guide:

Programming

Client

Applications

v

“C

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“COBOL

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

How

the

API

descriptions

are

organized

A

short

description

of

each

API

precedes

some

or

all

of

the

following

subsections.

Scope:

The

API’s

scope

of

operation

within

the

instance.

In

a

single-partition

database

environment,

the

scope

is

that

single

database

partition

only.

In

a

partitioned

database

environment,

the

scope

can

be

the

collection

of

all

logical

database

partition

servers

defined

in

the

node

configuration

file

(db2nodes.cfg)

or

the

database

partition

from

which

the

API

is

called.

Authorization:

The

authority

required

to

successfully

call

the

API.

Required

connection:

One

of

the

following:

database,

instance,

none,

or

establishes

a

connection.

Indicates

whether

the

function

requires

a

database

connection,

an

instance

attachment,

or

no

connection

to

operate

successfully.

None

means

that

no

database

connection

is

required

in

order

for

the

API

to

work

successfully.

Establishes

a

connection

means

that

the

API

will

establish

a

connection

to

the

database

when

the

API

is

called.

An

explicit

connection

to

the

database

or

attachment

to

the

instance

may

be

required

before

a

particular

API

can

be

called.

APIs

that

require

a

database

connection

or

an

instance

attachment

can

be

executed

either

locally

or

remotely.

Those

that

require

neither

cannot

be

executed

remotely;

when

called

at

the

client,

they

affect

the

client

environment

only.

API

include

file:

The

name

of

the

include

file

that

contains

the

API

prototype,

and

any

necessary

predefined

constants

and

parameters.

Note:

Include

file

extensions

vary

with

programming

language.

C/C++

include

files

have

a

file

extension

of

.h.

COBOL

include

files

have

a

file

extension

of

.cbl.

The

include

files

can

be

found

in

the

following

directories:

C/C++

(UNIX):

sqllib/include

C/C++

(Windows):

sqllib\include

DB2

APIs

12

Administrative

API

Reference

COBOL

(UNIX):

sqllib/include/cobol_a

sqllib/include/cobol_i

sqllib/include/cobol_mf

COBOL

(Windows):

sqllib\include\cobol_a

sqllib\include\cobol_i

sqllib\include\cobol_mf

C

API

syntax:

The

C

syntax

of

the

API

call.

Since

Version

6,

a

new

standard

has

been

applied

to

the

DB2

administrative

APIs.

Implementation

of

the

new

API

definitions

is

being

carried

out

in

a

staged

manner.

Following

is

a

brief

overview

of

the

changes:

v

The

new

API

names

contain

the

prefix

″db2″,

followed

by

a

meaningful

mixed

case

string

(for

example,

db2LoadQuery).

Related

APIs

have

names

that

allow

them

to

be

logically

grouped.

For

example:

db2HistoryCloseScan

db2HistoryGetEntry

db2HistoryOpenScan

db2HistoryUpdate

v

Generic

APIs

have

names

that

contain

the

prefix

″db2g″,

followed

by

a

string

that

matches

the

C

API

name.

Data

structures

used

by

generic

APIs

have

names

that

also

contain

the

prefix

″db2g″.

v

The

first

parameter

into

the

function

(versionNumber)

represents

the

version,

release,

or

PTF

level

to

which

the

code

is

to

be

compiled.

This

version

number

is

used

to

specify

the

level

of

the

structure

that

is

passed

in

as

the

second

parameter.

v

The

second

parameter

into

the

function

is

a

void

pointer

to

the

primary

interface

structure

for

the

API.

Each

element

in

the

structure

is

either

an

atomic

type

(for

example,

db2Long32)

or

a

pointer.

Each

parameter

name

adheres

to

the

following

naming

conventions:

piCamelCase

-

pointer

to

input

data

poCamelCase

-

pointer

to

output

data

pioCamelCase

-

pointer

to

input

or

output

data

iCamelCase

-

input

data

ioCamelCase

-

input/output

data

oCamelCase

-

output

data

v

The

third

parameter

is

a

pointer

to

the

SQLCA,

and

is

mandatory.

Generic

API

syntax:

The

syntax

of

the

API

call

for

the

COBOL

and

FORTRAN

programming

languages.

Attention:

Provide

one

extra

byte

for

every

character

string

passed

to

an

API.

Failure

to

do

so

may

cause

unexpected

errors.

This

extra

byte

is

modified

by

the

database

manager.

API

parameters:

DB2

APIs

Chapter

1.

Application

Programming

Interfaces

13

A

description

of

each

API

parameter

and

its

values.

Predefined

values

are

listed

with

the

appropriate

symbolics.

Actual

values

for

symbolics

can

be

obtained

from

the

appropriate

language

include

files.

COBOL

programmers

should

substitute

a

hyphen

(-)

for

the

underscore

(_)

in

all

symbolics.

For

more

information

about

parameter

data

types

in

each

host

language,

see

the

sample

programs.

Note:

Applications

calling

database

manager

APIs

must

properly

check

for

error

conditions

by

examining

return

codes

and

the

SQLCA

structure.

Most

database

manager

APIs

return

a

zero

return

code

when

successful.

In

general,

a

non-zero

return

code

indicates

that

the

secondary

error

handling

mechanism,

the

SQLCA

structure,

may

be

corrupt.

In

this

case,

the

called

API

is

not

executed.

A

possible

cause

for

a

corrupt

SQLCA

structure

is

passing

an

invalid

address

for

the

structure.

Error

information

is

returned

in

the

SQLCODE

and

SQLSTATE

fields

of

the

SQLCA

structure,

which

is

updated

after

most

database

manager

API

calls.

Source

files

calling

database

manager

APIs

can

provide

one

or

more

SQLCA

structures;

their

names

are

arbitrary.

An

SQLCODE

value

of

zero

means

successful

execution

(with

possible

SQLWARN

warning

conditions).

A

positive

value

means

that

the

statement

was

successfully

executed

but

with

a

warning,

as

with

truncation

of

a

host

variable.

A

negative

value

means

that

an

error

condition

occurred.

An

additional

field,

SQLSTATE,

contains

a

standardized

error

code

that

is

consistent

across

other

IBM

database

products,

and

across

SQL92

compliant

database

managers.

Use

SQLSTATEs

when

concerned

about

portability,

since

SQLSTATEs

are

common

across

many

database

managers.

The

SQLWARN

field

contains

an

array

of

warning

indicators,

even

if

SQLCODE

is

zero.

REXX

API

syntax:

The

REXX

syntax

of

the

API

call,

where

appropriate.

The

SQLDB2

interface

supports

calling

APIs

from

REXX.

The

SQLDB2

interface

was

created

to

provide

support

in

REXX

for

new

or

previously

unsupported

APIs

that

do

not

have

any

output

other

than

the

SQLCA.

Invoking

a

command

through

the

SQLDB2

interface

is

syntactically

the

same

as

invoking

the

command

through

the

command

line

processor

(CLP),

except

that

the

token

call

db2

is

replaced

by

CALL

SQLDB2.

Using

the

CALL

SQLDB2

from

REXX

has

the

following

advantages

over

calling

the

CLP

directly:

v

The

compound

REXX

variable

SQLCA

is

set

v

By

default,

all

CLP

output

messages

are

turned

off.

REXX

API

parameters:

A

description

of

each

REXX

API

parameter

and

its

values,

where

appropriate.

Usage

notes:

Other

information.

DB2

APIs

14

Administrative

API

Reference

db2AddContact

-

Add

Contact

Adds

a

contact

to

the

contact

list.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Contacts

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2AddContact

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2AddContact

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2AddContactData

{

char

*piUserid;

char

*piPassword;

char

*piName;

db2Uint32

iType;

char

*piAddress;

db2Uint32

iMaxPageLength;

char

*piDescription;

}

db2AddContactData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2AddContactData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piUserid;

Input.

The

user

name.

piPassword

Input.

The

password

for

piUserid.

piName

Input.

The

contact

name.

db2AddContact

-

Add

Contact

Chapter

1.

Application

Programming

Interfaces

15

iType

Input.

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_EMAIL

v

DB2CONTACT_PAGE

piAddress

Input.

The

e-mail

or

pager

address

of

the

iType

parameter.

iMaxPageLength

Input.

The

maximum

message

length

for

when

iType

is

set

to

DB2CONTACT_PAGE.

piDescription

Input.

User

supplied

description

of

the

contact.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2DropContact

-

Drop

Contact”

on

page

55

v

“db2GetContacts

-

Get

Contacts”

on

page

75

v

“db2UpdateContact

-

Update

Contact”

on

page

260

db2AddContactGroup

-

Add

Contact

Group

Adds

a

new

contact

group

to

the

list

of

contact

groups.

A

contact

group

contains

a

list

of

users

to

whom

notification

messages

can

be

sent.

Contact

groups

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2AddContactGroup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2AddContactGroup

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2AddContactGroupData

{

char

*piUserid;

char

*piPassword;

char

*piGroupName;

db2AddContact

-

Add

Contact

16

Administrative

API

Reference

char

*piDescription;

db2Uint32

iNumContacts;

struct

db2ContactTypeData

*piContacts;

}

db2AddContactGroupData;

typedef

SQL_STRUCTURE

db2ContactTypeData

{

db2Uint32

contactType;

char

*pName;

}

db2ContactTypeData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2AddContactGroupData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piUserid

Input.

The

user

name.

piPassword

Input.

The

password

for

piUserid.

piGroupName

Input.

The

name

of

the

group

to

be

retrieved.

piDescription

Input.

The

description

of

the

group.

iNumContacts

Input.

The

number

of

piContacts.

piContacts

A

pointer

to

the

db2ContactTypeData

structure.

contactType

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_SINGLE

v

DB2CONTACT_GROUP

pName

The

contact

group

name,

or

the

contact

name

if

contactType

is

set

to

DB2CONTACT_SINGLE.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2DropContactGroup

-

Drop

Contact

Group”

on

page

56

v

“db2GetContactGroup

-

Get

Contact

Group”

on

page

72

v

“db2GetContactGroups

-

Get

Contact

Groups”

on

page

74

v

“db2UpdateContactGroup

-

Update

Contact

Group”

on

page

261

db2AddContactGroup

-

Add

Contact

Group

Chapter

1.

Application

Programming

Interfaces

17

db2AdminMsgWrite

-

Administration

Message

Write

Provides

a

mechanism

for

users

and

Replication

to

write

information

to

the

db2diag.log,

and

the

administration

notification

log.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2AdminMsgWrite

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2AdminMsgWrite

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iMsgType;

db2Uint32

iComponent;

db2Uint32

iFunction;

db2Uint32

iProbeID;

char

*piData_title;

void

*piData;

db2Uint32

iDataLen;

db2Uint32

iError_type;

}

db2AdminMsgWriteStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2AdminMsgWriteStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iMsgType

Input.

Specify

the

type

of

data

to

be

logged.

Valid

values

are

BINARY_MSG

for

binary

data,

and

STRING_MSG

for

string

data.

iComponent

Input.

Specify

zero.

iFunction

Input.

Specify

zero.

db2AdminMsgWrite

-

Administration

Message

Write

18

Administrative

API

Reference

iProbeID

Input.

Specify

the

numeric

probe

point.

piData_title

Input.

A

pointer

to

the

title

string

describing

the

data

to

be

logged.

Can

be

set

to

NULL

if

a

title

is

not

needed.

piData

Input.

A

pointer

to

the

data

to

be

logged.

Can

be

set

to

NULL

if

data

logging

is

not

needed.

iDataLen

Input.

The

number

of

bytes

of

binary

data

to

be

used

for

logging

if

iMsgType

is

BINARY_MSG.

Not

used

if

iMsgType

is

STRING_MSG.

iError_type

Input.

Valid

values

are:

DB2LOG_SEVERE_ERROR

(1)

-

Severe

error

has

occurred

DB2LOG_ERROR

(2)

-

Error

has

occurred

DB2LOG_WARNING

(3)

-

Warning

has

occurred

DB2LOG_INFORMATION

(4)

-

Informational

Usage

notes:

This

API

will

log

to

the

administration

notification

log

only

if

the

specified

error

type

is

less

than

or

equal

to

the

value

of

the

notifylevel

database

manager

configuration

parameter.

It

will

log

to

db2diag.log

only

if

the

specified

error

type

is

less

than

or

equal

to

the

value

of

the

diaglevel

database

manager

configuration

parameter.

However,

all

information

written

to

the

administration

notification

log

is

duplicated

in

the

db2diag.log

unless

the

diaglevel

database

manager

configuration

parameter

is

set

to

zero.

Related

reference:

v

“SQLCA”

on

page

410

db2ArchiveLog

-

Archive

Active

Log

Closes

and

truncates

the

active

log

file

for

a

recoverable

database.

If

user

exit

is

enabled,

issues

an

archive

request.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

This

API

automatically

establishes

a

connection

to

the

specified

database.

If

a

connection

to

the

specified

database

already

exists,

the

API

will

return

an

error.

API

include

file:

db2ApiDf.h

db2AdminMsgWrite

-

Administration

Message

Write

Chapter

1.

Application

Programming

Interfaces

19

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ArchiveLog

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ArchiveLog

(

db2Uint32

version,

void

*pDB2ArchiveLogStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseAlias;

char

*piUserName;

char

*piPassword;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iOptions;

}

db2ArchiveLogStruct

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gArchiveLog

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gArchiveLog

(

db2Uint32

version,

void

*pDB2ArchiveLogStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iAliasLen;

db2Uint32

iUserNameLen;

db2Uint32

iPasswordLen;

char

*piDatabaseAlias;

char

*piUserName;

char

*piPassword;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iOptions;

}

db2ArchiveLogStruct

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

variable

passed

in

as

the

second

parameter,

pDB2ArchiveLogStruct.

pDB2ArchiveLogStruct

Input.

A

pointer

to

the

db2ArchiveLogStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

db2ArchiveLog

-

Archive

Active

Log

20

Administrative

API

Reference

iUserNameLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

user

name.

Set

to

zero

if

no

user

name

is

used.

iPasswordLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

password.

Set

to

zero

if

no

password

is

used.

piDatabaseAlias

Input.

A

string

containing

the

database

alias

(as

cataloged

in

the

system

database

directory)

of

the

database

for

which

the

active

log

is

to

be

archived.

piUserName

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

piPassword

Input.

A

string

containing

the

password

to

be

used

when

attempting

a

connection.

iAllNodeFlag

Partitioned

database

environment

only.

Input.

Flag

indicating

whether

the

operation

should

apply

to

all

nodes

listed

in

the

db2nodes.cfg

file.

Valid

values

are:

DB2ARCHIVELOG_NODE_LIST

Apply

to

nodes

in

a

node

list

that

is

passed

in

piNodeList.

DB2ARCHIVELOG_ALL_NODES

Apply

to

all

nodes.

piNodeList

should

be

NULL.

This

is

the

default

value.

DB2ARCHIVELOG_ALL_EXCEPT

Apply

to

all

nodes

except

those

in

the

node

list

passed

in

piNodeList.

iNumNodes

Partitioned

database

environment

only.

Input.

Specifies

the

number

of

nodes

in

the

piNodeList

array.

piNodeList

Partitioned

database

environment

only.

Input.

A

pointer

to

an

array

of

node

numbers

against

which

to

apply

the

archive

log

operation.

iOptions

Input.

Reserved

for

future

use.

Related

reference:

v

“ARCHIVE

LOG

Command”

in

the

Command

Reference

db2AutoConfig

-

Autoconfigure

Allows

application

programs

to

access

the

Configuration

Advisor

in

the

Control

Center.

Detailed

information

about

this

advisor

is

provided

through

the

online

help

facility

within

the

Control

Center.

Authorization:

sysadm

db2ArchiveLog

-

Archive

Active

Log

Chapter

1.

Application

Programming

Interfaces

21

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

Required

connection:

Database

API

include

file:

db2AuCfg.h

C

API

syntax:

/*

File:

db2AuCfg.h

*/

/*

API:

db2AutoConfig

*/

/*

...

*/

SQL_API_RC_SQL_API_FN

db2AutoConfig(

db2Uint32

db2VersionNumber,

void

*pAutoConfigInterface,

struct

sqlca

*pSqlca);

typedef

struct

{

db2int32

iProductID;

char

iProductVersion[DB2_SG_PROD_VERSION_SIZE];

char

iDbAlias[SQL_ALIAS_SZ];

db2int32

iApply;

db2AutoConfigInput

iParams;

db2AutoConfigOutput

oResult;

}

db2AutoConfigInterface;

typedef

struct

{

db2int32

token;

db2int32

value;

}

db2AutoConfigElement;

typedef

struct

{

db2Uint32

numElements;

db2AutoConfigElement

*pElements;

}

db2AutoConfigArray;

typedef

db2AutoConfigArray

db2AutoConfigInput;

typedef

db2AutoConfigArray

db2AutoConfigDiags;

typedef

struct

{

db2Uint32

numElements;

struct

sqlfupd

*pConfigs;

void

*pDataArea;

}

db2ConfigValues;

typedef

struct

{

char

*pName;

db2int32

value;

}

db2AutoConfigNameElement;

typedef

struct

{

db2Uint32

numElements;

db2AutoConfigElement

*pElements;

}

db2AutoConfigNameArray;

typedef

db2AutoConfigNameArray

db2BpValues;

typedef

struct

{

db2ConfigValues

oOldDbValues;

db2ConfigValues

oOldDbmValues;

db2ConfigValues

oNewDbValues;

db2ConfigValues

oNewDbmValues

db2AutoConfigDiags

oDiagnostics;

db2AutoConfig

-

Autoconfigure

22

Administrative

API

Reference

db2BpValues

oOldBpValues;

db2BpValues

oNewBpValues;

}

db2AutoConfigOutput;

/*

...

*/

API

parameters:

db2VersionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pAutoConfigInterface.

pAutoConfigInterface

Input.

A

pointer

to

the

db2AutoConfigInterface

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iProductID

Input.

Specifies

a

unique

product

identifier.

For

valid

Product

ID

values

see

the

API

include

file

db2AuCfg.h.

iProductVersion

Input.

A

16

byte

string

specifying

the

product

version.

iDbAlias

Input.

A

string

specifying

a

database

alias.

iApply

Input.

Updates

the

configuration

automatically.

For

valid

values

see

the

API

Include

File

db2AuCfg.h.

iParams

Input.

Passes

parameters

into

the

advisor.

oResult

Output.

Includes

all

results

from

the

advisor.

token

Specifies

the

configuration

value

for

both

the

input

parameters

and

the

output

diagnostics.

value

Holds

the

data

specified

by

the

token.

numElements

The

number

of

array

elements.

pElements

A

pointer

to

the

element

array.

db2AutoConfigDiags

Returns

tokens

and

values

for

diagnostics

and

problem

determination.

The

tokens

identify

the

problems

and

the

values

state

the

recommendations

when

appropriate.

For

a

list

of

tokens

and

values

see

the

API

Include

File

db2AuCfg.h.

pConfigs

A

pointer

to

the

SQLFUPD

structure.

pDataArea

A

pointer

to

the

data

area

containing

the

values

of

the

configuration.

pName

Output.

The

name

of

the

output

buffer

pool.

value

Holds

the

size

(in

pages)

of

the

buffer

pool

specified

in

the

name.

db2AutoConfig

-

Autoconfigure

Chapter

1.

Application

Programming

Interfaces

23

|

|

oOldDbValues

Output.

If

the

iApply

value

is

set

to

update

the

database

configuration

or

all

configurations,

this

value

represents

the

database

configuration

value

prior

to

using

the

advisor.

Otherwise,

this

is

the

current

value.

oOldDbmValues

Output.

If

the

iApply

value

is

set

to

update

all

configurations,

this

value

represents

the

database

manager

configuration

value

prior

to

using

the

advisor.

Otherwise,

this

is

the

current

value.

oNewDbValues

Output.

If

the

iApply

value

is

set

to

update

the

database

configuration

or

all

configurations,

this

value

represents

the

current

database

configuration

value.

Otherwise,

this

is

the

recommended

value

for

the

advisor.

oNewDbmValues

Output.

If

the

iApply

value

is

set

to

update

all

configurations,

this

value

represents

the

current

database

manager

configuration

value.

Otherwise,

this

is

the

recommended

value

for

the

advisor.

oDiagnostics

Output.

Includes

diagnostics

from

the

advisor.

oOldBpValues

Output.

If

the

iApply

value

is

set

to

update

database

configuration

or

all

configurations,

this

value

represents

the

buffer

pool

sizes

in

pages

prior

to

using

the

advisor.

Otherwise,

this

value

is

the

current

value.

oNewBpValues

Output.

If

the

iApply

value

is

set

to

update

database

configuration

or

all

configurations,

this

value

represents

the

current

buffer

pool

sizes

in

pages.

Otherwise,

this

is

the

recommended

value

for

the

advisor.

Usage

notes:

To

free

the

memory

allocated

by

db2AutoConfig,

call

db2AutoConfigFreeMemory.

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLFUPD”

on

page

437

v

“db2AutoConfigFreeMemory

-

Free

Autoconfigure

Memory”

on

page

25

v

“db2CfgSet

-

Set

Configuration

Parameters”

on

page

36

Related

samples:

v

“dbcfg.sqc

--

Configure

database

and

database

manager

configuration

parameters

(C)”

v

“dbcfg.sqC

--

Configure

database

and

database

manager

configuration

parameters

(C++)”

db2AutoConfig

-

Autoconfigure

24

Administrative

API

Reference

|

|

|

|

|

|

|

db2AutoConfigFreeMemory

-

Free

Autoconfigure

Memory

Frees

the

memory

allocated

by

db2AutoConfig.

Authorization:

sysadm

Required

connection:

Database

API

include

file:

db2AuCfg.h

C

API

syntax:

/*

File:

db2AuCfg.h

*/

/*

API:

db2AutoConfigFreeMemory

*/

/*

...

*/

SQL_API_RC_SQL_API_FN

db2AutoConfigFreeMemory(

db2Uint32

db2VersionNumber,

void

*pAutoConfigInterface,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

db2VersionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pAutoConfigInterface.

pAutoConfigInterface

Input.

A

pointer

to

the

db2AutoConfigInterface

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2AutoConfig

-

Autoconfigure”

on

page

21

Related

samples:

v

“dbcfg.sqc

--

Configure

database

and

database

manager

configuration

parameters

(C)”

v

“dbcfg.sqC

--

Configure

database

and

database

manager

configuration

parameters

(C++)”

db2AutoConfigFreeMemory

-

Free

Autoconfigure

Memory

Chapter

1.

Application

Programming

Interfaces

25

db2Backup

-

Backup

database

Creates

a

backup

copy

of

a

database

or

a

table

space.

Scope:

This

API

only

affects

the

database

partition

on

which

it

is

executed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Database.

This

API

automatically

establishes

a

connection

to

the

specified

database.

The

connection

will

be

terminated

upon

the

completion

of

the

backup.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Backup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Backup

(

db2Uint32

versionNumber,

void

*pDB2BackupStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2BackupStruct

{

char

*piDBAlias;

char

oApplicationId[SQLU_APPLID_LEN+1];

char

oTimestamp[SQLU_TIME_STAMP_LEN+1];

struct

db2TablespaceStruct

*piTablespaceList;

struct

db2MediaListStruct

*piMediaList;

char

*piUsername;

char

*piPassword;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

oBackupSize;

db2Uint32

iCallerAction;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iParallelism;

db2Uint32

iOptions;

db2Uint32

iUtilImpactPriority;

char

*piComprLibrary;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

}

db2BackupStruct;

typedef

SQL_STRUCTURE

db2TablespaceStruct

{

db2Backup

-

Backup

database

26

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char

**tablespaces;

db2Uint32

numTablespaces;

}

db2TablespaceStruct;

typedef

SQL_STRUCTURE

db2MediaListStruct

{

char

**locations;

db2Uint32

numLocations;

char

locationType;

}

db2MediaListStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Backup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gBackup

(

db2Uint32

versionNumber,

void

*pDB2gBackupStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gBackupStruct

{

char

*piDBAlias;

db2Uint32

iDBAliasLen;

char

*poApplicationId;

db2Uint32

iApplicationIdLen;

char

*poTimestamp;

db2Uint32

iTimestampLen;

struct

db2gTablespaceStruct

*piTablespaceList;

struct

db2gMediaListStruct

*piMediaList;

char

*piUsername;

db2Uint32

iUsernameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

oBackupSize;

db2Uint32

iCallerAction;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iParallelism;

db2Uint32

iOptions;

db2Uint32

iUtilImpactPriority;

char

*piComprLibrary;

db2Uint32

iComprLibraryLen;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

}

db2gBackupStruct;

typedef

SQL_STRUCTURE

db2gTablespaceStruct

{

struct

db2Char

*tablespaces;

db2Uint32

numTablespaces;

}

db2gTablespaceStruct;

typedef

SQL_STRUCTURE

db2gMediaListStruct

{

struct

db2Char

*locations;

db2Uint32

numLocations;

char

locationType;

}

db2gMediaListStruct;

typedef

SQL_STRUCTURE

db2Char

{

db2Backup

-

Backup

database

Chapter

1.

Application

Programming

Interfaces

27

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char

*pioData;

db2Uint32

iLength;

db2Uint32

oLength;

}

db2Char;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2BackupStruct.

pDB2BackupStruct

Input.

A

pointer

to

the

db2BackupStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDBAlias

Input.

A

string

containing

the

database

alias

(as

cataloged

in

the

system

database

directory)

of

the

database

to

back

up.

iDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

oApplicationId

Output.

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

poApplicationId

Output.

Supply

a

buffer

of

length

SQLU_APPLID_LEN+1

(defined

in

sqlutil.h).

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

iApplicationIdLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poApplicationId

buffer.

Should

be

equal

to

SQLU_APPLID_LEN+1

(defined

in

sqlutil.h).

oTimestamp

Output.

The

API

will

return

the

time

stamp

of

the

backup

image

poTimestamp

Output.

Supply

a

buffer

of

length

SQLU_TIME_STAMP_LEN+1

(defined

in

sqlutil.h).

The

API

will

return

the

time

stamp

of

the

backup

image.

iTimestampLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poTimestamp

buffer.

Should

be

equal

to

SQLU_TIME_STAMP_LEN+1

(defined

in

sqlutil.h).

piTablespaceList

Input.

List

of

table

spaces

to

be

backed

up.

Required

for

table

space

level

backup

only.

Must

be

NULL

for

a

database

level

backup.

See

structure

DB2TablespaceStruct.

piMediaList

Input.

This

structure

allows

the

caller

to

specify

the

destination

for

the

db2Backup

-

Backup

database

28

Administrative

API

Reference

|
|
|
|
|

backup

operation.

The

information

provided

depends

on

the

value

of

the

locationType

parameter.

The

valid

values

for

locationType

(defined

in

sqlutil.h

)

are:

SQLU_LOCAL_MEDIA

Local

devices

(a

combination

of

tapes,

disks,

or

diskettes).

SQLU_TSM_MEDIA

TSM.

If

the

locations

pointer

is

set

to

NULL,

the

TSM

shared

library

provided

with

DB2

is

used.

If

a

different

version

of

the

TSM

shared

library

is

desired,

use

SQLU_OTHER_MEDIA

and

provide

the

shared

library

name.

SQLU_OTHER_MEDIA

Vendor

product.

Provide

the

shared

library

name

in

the

locations

field.

SQLU_USER_EXIT

User

exit.

No

additional

input

is

required

(only

available

when

server

is

on

OS/2).

For

more

information,

see

the

db2MediaListStruct

structure

.

piUsername

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

Can

be

NULL.

iUsernameLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

user

name.

Set

to

zero

if

no

user

name

is

provided.

piPassword

Input.

A

string

containing

the

password

to

be

used

with

the

user

name.

Can

be

NULL.

iPasswordLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

password.

Set

to

zero

if

no

password

is

provided.

piVendorOptions

Input.

Used

to

pass

information

from

the

application

to

the

vendor

functions.

This

data

structure

must

be

flat;

that

is,

no

level

of

indirection

is

supported.

Note

that

byte-reversal

is

not

done,

and

code

page

is

not

checked

for

this

data.

iVendorOptionsSize

Input.

The

length

of

the

piVendorOptions

field,

which

cannot

exceed

65535

bytes.

oBackupSize

Output.

Size

of

the

backup

image

(in

MB).

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2BACKUP_BACKUP

Start

the

backup.

DB2BACKUP_NOINTERRUPT

Start

the

backup.

Specifies

that

the

backup

will

run

unattended,

and

that

scenarios

which

normally

require

user

intervention

will

either

be

attempted

without

first

returning

to

the

caller,

or

will

db2Backup

-

Backup

database

Chapter

1.

Application

Programming

Interfaces

29

generate

an

error.

Use

this

caller

action,

for

example,

if

it

is

known

that

all

of

the

media

required

for

the

backup

have

been

mounted,

and

utility

prompts

are

not

desired.

DB2BACKUP_CONTINUE

Continue

the

backup

after

the

user

has

performed

some

action

requested

by

the

utility

(mount

a

new

tape,

for

example).

DB2BACKUP_TERMINATE

Terminate

the

backup

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

DB2BACKUP_DEVICE_TERMINATE

Remove

a

particular

device

from

the

list

of

devices

used

by

backup.

When

a

particular

medium

is

full,

backup

will

return

a

warning

to

the

caller

(while

continuing

to

process

using

the

remaining

devices).

Call

backup

again

with

this

caller

action

to

remove

the

device

which

generated

the

warning

from

the

list

of

devices

being

used.

DB2BACKUP_PARM_CHK

Used

to

validate

parameters

without

performing

a

backup.

This

option

does

not

terminate

the

database

connection

after

the

call

returns.

After

successful

return

of

this

call,

it

is

expected

that

the

user

will

issue

a

call

with

SQLUB_CONTINUE

to

proceed

with

the

action.

DB2BACKUP_PARM_CHK_ONLY

Used

to

validate

parameters

without

performing

a

backup.

Before

this

call

returns,

the

database

connection

established

by

this

call

is

terminated,

and

no

subsequent

call

is

required.

iBufferSize

Input.

Backup

buffer

size

in

4

KB

allocation

units

(pages).

Minimum

is

8

units.

iNumBuffers

Input.

Specifies

number

of

backup

buffers

to

be

used.

Minimum

is

2.

Maximum

is

limited

by

memory.

iParallelism

Input.

Degree

of

parallelism

(number

of

buffer

manipulators).

Minimum

is

1.

Maximum

is

1024.

iOptions

Input.

A

bitmap

of

backup

properties.

The

options

are

to

be

combined

using

the

bitwise

OR

operator

to

produce

a

value

for

iOptions.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2BACKUP_OFFLINE

Offline

gives

an

exclusive

connection

to

the

database.

DB2BACKUP_ONLINE

Online

allows

database

access

by

other

applications

while

the

backup

operation

occurs.

Note:

An

online

backup

operation

may

appear

to

hang

if

users

are

holding

locks

on

SMS

LOB

data.

DB2BACKUP_DB

Full

database

backup.

db2Backup

-

Backup

database

30

Administrative

API

Reference

DB2BACKUP_TABLESPACE

Table

space

level

backup.

For

a

table

space

level

backup,

provide

a

list

of

table

spaces

in

the

piTablespaceList

parameter.

DB2BACKUP_INCREMENTAL

Specifies

a

cumulative

(incremental)

backup

image.

An

incremental

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful,

full

backup

operation.

DB2BACKUP_DELTA

Specifies

a

noncumulative

(delta)

backup

image.

A

delta

backup

image

is

a

copy

of

all

database

data

that

has

changed

since

the

most

recent

successful

backup

operation

of

any

type.

DB2BACKUP_COMPRESS

Specifies

that

the

backup

should

be

compressed.

DB2BACKUP_INCLUDE_COMPR_LIB

Specifies

that

the

library

used

for

compressing

the

backup

should

be

included

in

the

backup

image.

DB2BACKUP_EXCLUDE_COMPR_LIB

Specifies

that

the

library

used

for

compressing

the

backup

should

be

not

included

in

the

backup

image.

DB2BACKUP_INCLUDE_LOGS

Specifies

that

the

backup

image

should

also

include

the

range

of

log

files

required

to

restore

and

roll

forward

this

image

to

some

consistent

point

in

time.

This

option

is

not

valid

for

an

offline

backup

or

a

multi-partition

backup.

DB2BACKUP_EXCLUDE_LOGS

Specifies

that

the

backup

image

should

not

include

any

log

files.

Note:

When

performing

an

offline

backup

operation,

logs

are

excluded

whether

or

not

this

option

is

specified.

iUtilImpactPriority

Specifies

the

priority

value

that

will

be

used

during

a

backup.

The

priority

value

can

be

any

number

between

0

and

100,

with

0

representing

unthrottled

and

100

representing

the

highest

priority.

piComprLibrary

Input.

Indicates

the

name

of

the

external

library

to

be

used

to

perform

compression

of

the

backup

image.

The

name

must

be

a

fully-qualified

path

referring

to

a

file

on

the

server.

If

the

value

is

a

null

pointer

or

a

pointer

to

an

empty

string,

DB2

will

use

the

default

library

for

compression.

If

the

specified

library

is

not

found,

the

backup

will

fail.

piComprLibraryLen

Input.

A

four-byte

unsigned

integer

representing

the

length

in

bytes

of

the

name

of

the

library

specified

in

piComprLibrary.

Set

to

zero

if

no

library

name

is

given.

piComprOptions

Input.

Describes

a

block

of

binary

data

that

will

be

passed

to

the

initialization

routine

in

the

compression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte-reversal

or

code-page

conversion

will

have

to

be

handled

by

the

compression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

db2Backup

-

Backup

database

Chapter

1.

Application

Programming

Interfaces

31

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

then

replace

the

contents

of

piComprOptions

and

iComprOptionsSize

with

the

contents

and

size

of

this

file

respectively

and

will

pass

these

new

values

to

the

initialization

routine

instead.

iComprOptionsSize

Input.

A

four-byte

unsigned

integer

representing

the

size

of

the

block

of

data

passed

as

piComprOptions.

iComprOptionsSize

shall

be

zero

if

and

only

if

piComprOptions

is

a

null

pointer.

tablespaces

A

pointer

to

the

list

of

table

spaces

to

be

backed

up.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numTablespaces

Number

of

entries

in

the

tablespaces

parameter.

locations

A

pointer

to

the

list

of

media

locations.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numLocations

The

number

of

entries

in

the

locations

parameter.

locationType

A

character

indicated

the

media

type.

Valid

values

(defined

in

sqlutil.h.)

are:

SQLU_LOCAL_MEDIA

Local

devices

(tapes,

disks,

diskettes,

or

named

pipes).

SQLU_TSM_MEDIA

Tivoli

Storage

Manager.

SQLU_OTHER_MEDIA

Vendor

library.

SQLU_USER_EXIT

User

exit

(only

available

when

the

server

is

on

OS/2).

pioData

A

pointer

to

the

character

data

buffer.

iLength

Input.

The

size

of

the

pioData

buffer.

oLength

Output.

Reserved

for

future

use.

Related

reference:

v

“sqlemgdb

-

Migrate

Database”

on

page

352

v

“db2Rollforward

-

Rollforward

Database”

on

page

232

v

“SQLCA”

on

page

410

v

“db2Restore

-

Restore

database”

on

page

221

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2Backup

-

Backup

database

32

Administrative

API

Reference

|
|
|

|
|
|
|

db2CfgGet

-

Get

Configuration

Parameters

Returns

the

values

of

individual

entries

in

a

specific

database

configuration

file

or

a

database

manager

configuration

file.

Scope:

Information

about

a

specific

database

configuration

file

is

returned

only

for

the

database

partition

on

which

it

is

executed.

Authorization:

None

Required

connection:

To

obtain

the

current

online

value

of

a

configuration

parameter

for

a

specific

database

configuration

file,

a

connection

to

the

database

is

required.

To

obtain

the

current

online

value

of

a

configuration

parameter

for

the

database

manager,

an

instance

attachment

is

required.

Otherwise,

a

connection

to

a

database

or

an

attachment

to

an

instance

is

not

required.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2CfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2CfgGet

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2Cfg

{

db2Uint32

numItems;

struct

db2CfgParam

*paramArray;

db2Uint32

flags;

char

*dbname;

}

db2Cfg;

typedef

SQL_STRUCTURE

db2CfgParam

{

db2Uint32

token;

char

*ptrvalue;

db2Uint32

flags;

}

db2CfgParam;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API

db2gCfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gCfgGet

(

db2Uint32

versionNumber,

void

*pParmStruct,

db2CfgGet

-

Get

Configuration

Parameters

Chapter

1.

Application

Programming

Interfaces

33

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gCfg

{

db2Uint32

numItems;

struct

db2gCfgParam

*paramArray;

db2Uint32

flags;

db2Uint32

dbname_len;

char

*dbname;

}

db2gCfg;

typedef

SQL_STRUCTURE

db2gCfgParam

{

db2Uint32

token;

db2Uint32

ptrvalue_len;

char

*ptrvalue;

db2Uint32

flags;

}

db2gCfgParam;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2Cfg

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

numItems

Input.

The

number

of

configuration

parameters

in

the

paramArray

array.

Set

this

value

to

db2CfgMaxParam

to

specify

the

largest

number

of

elements

in

the

paramArray.

paramArray

Input.

A

pointer

to

the

db2CfgParam

structure.

flags

(db2Cfg

structure)

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgDatabase

Specifies

to

return

the

values

in

the

database

configuration

file.

db2CfgDatabaseManager

Specifies

to

return

the

values

in

the

database

manager

configuration

file.

db2CfgImmediate

Returns

the

current

values

of

the

configuration

parameters

stored

in

memory.

db2CfgDelayed

Gets

the

values

of

the

configuration

parameters

on

disk.

These

do

not

become

the

current

values

in

memory

until

the

next

database

connection

or

instance

attachment.

db2CfgGetDefaults

Returns

the

default

values

for

the

configuration

parameter.

dbname_len

Input.

The

length

in

bytes

of

dbname.

db2CfgGet

-

Get

Configuration

Parameters

34

Administrative

API

Reference

dbname

Input.

The

database

name.

token

Input.

The

configuration

parameter

identifier.

Valid

entries

and

data

types

for

the

db2CfgParam

token

element

are

listed

in

Configuration

parameters

summary.

ptrvalue_len

Input.

The

length

in

bytes

of

ptrvalue.

ptrvalue

Output.

The

configuration

parameter

value.

flags

(db2CfgParam

structure)

Input.

Provides

specific

information

for

each

parameter

in

a

request.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgParamAutomatic

Indicates

whether

the

retrieved

parameter

has

a

value

of

automatic.

To

determine

whether

a

given

configuration

parameter

has

been

set

to

automatic,

perform

a

boolean

AND

operation

against

the

value

returned

by

the

flag

and

the

db2CfgParamAutomatic

keyword

defined

in

db2ApiDf.h.

Related

concepts:

v

“Configuration

parameter

tuning”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

in

the

Administration

Guide:

Performance

Related

reference:

v

“SQLCA”

on

page

410

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

v

“db2CfgSet

-

Set

Configuration

Parameters”

on

page

36

Related

samples:

v

“dbinfo.c

--

Set

and

get

information

at

the

database

level

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“inauth.sqc

--

How

to

display

authorities

at

instance

level

(C)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“tscreate.sqc

--

How

to

create

and

drop

buffer

pools

and

table

spaces

(C)”

v

“dbinfo.C

--

Set

and

get

information

at

the

database

level

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“inauth.sqC

--

How

to

display

authorities

at

instance

level

(C++)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“tscreate.sqC

--

How

to

create

and

drop

buffer

pools

and

table

spaces

(C++)”

db2CfgGet

-

Get

Configuration

Parameters

Chapter

1.

Application

Programming

Interfaces

35

|
|

|
|
|
|
|
|

db2CfgSet

-

Set

Configuration

Parameters

Modifies

individual

entries

in

a

specific

database

configuration

file

or

a

database

manager

configuration

file.

A

database

configuration

file

resides

on

every

node

on

which

the

database

has

been

created.

Scope:

Modifications

to

the

database

configuration

file

affect

the

node

on

which

it

is

executed.

Authorization:

For

modifications

to

the

database

configuration

file,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

For

modifications

to

the

database

manager

configuration

file:

v

sysadm

Required

connection:

To

make

an

online

modification

of

a

configuration

parameter

for

a

specific

database,

a

connection

to

the

database

is

required.

To

make

an

online

modification

of

a

configuration

parameter

for

the

database

manager,

an

instance

attachment

is

required.

Otherwise

a

connection

to

a

database

or

an

attachment

to

an

instance

is

not

required.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2CfgSet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2CfgSet

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2Cfg

{

db2Uint32

numItems;

struct

db2CfgParam

*paramArray;

db2Uint32

flags;

char

*dbname;

}

db2Cfg;

typedef

SQL_STRUCTURE

db2CfgParam

{

db2Uint32

token;

char

*ptrvalue;

db2Uint32

flags;

}

db2CfgParam;

/*

...

*/

db2CfgSet

-

Set

Configuration

Parameters

36

Administrative

API

Reference

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API

db2gCfgGet

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gCfgSet

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gCfg

{

db2Uint32

numItems;

struct

db2gCfgParam

*paramArray;

db2Uint32

flags;

db2Uint32

dbname_len;

char

*dbname;

}

db2gCfg;

typedef

SQL_STRUCTURE

db2gCfgParam

{

db2Uint32

token;

db2Uint32

ptrvalue_len;

char

*ptrvalue;

db2Uint32

flags;

}

db2gCfgParam;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2Cfg

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

numItems

Input.

The

number

of

configuration

parameters

in

the

paramArray

array.

paramArray

Input.

A

pointer

to

the

db2CfgParam

structure.

flags

(db2Cfg

structure)

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgDatabase

Specifies

to

return

the

values

in

the

database

configuration

file.

db2CfgDatabaseManager

Specifies

to

return

the

values

in

the

database

manager

configuration

file.

db2CfgImmediate

Sets

the

current

values

of

the

configuration

parameters

in

memory.

db2CfgDelayed

Sets

the

values

of

the

configuration

parameters

on

disk.

These

do

not

become

the

current

values

in

memory

until

the

next

database

connection

or

instance

attachment.

db2CfgSet

-

Set

Configuration

Parameters

Chapter

1.

Application

Programming

Interfaces

37

db2CfgReset

Resets

the

configuration

parameters

to

the

default

values.

dbname_len

Input.

The

length

in

bytes

of

dbname.

dbname

Input.

The

database

name.

token

Input.

The

configuration

parameter

identifier.

Valid

entries

and

data

types

for

the

db2CfgParam

token

element

are

listed

in

Configuration

parameters

summary.

ptrvalue_len

Input.

The

length

in

bytes

of

ptrvalue.

ptrvalue

Input.

The

configuration

parameter

value.

flags

(db2CfgParam

structure)

Input.

Specifies

the

type

of

action

to

be

taken

for

each

parameter

in

a

request.

By

default,

this

field

should

be

set

to

zero.

Valid

values

(defined

in

db2ApiDf.h)

are:

db2CfgParamAutomatic

Sets

the

configuration

parameter

value

to

automatic.

DB2

will

automatically

adjust

this

parameter

to

reflect

the

current

resource

requirements.

Only

parameters

that

support

the

automatic

behavior

can

be

set

to

automatic.

Related

concepts:

v

“Configuration

parameters”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Configuring

DB2

with

configuration

parameters”

in

the

Administration

Guide:

Performance

Related

reference:

v

“SQLCA”

on

page

410

v

“Configuration

parameters

summary”

in

the

Administration

Guide:

Performance

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

Related

samples:

v

“dbinfo.c

--

Set

and

get

information

at

the

database

level

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“dbinfo.C

--

Set

and

get

information

at

the

database

level

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

db2ConvMonStream

-

Convert

Monitor

Stream

Converts

the

new,

self-describing

format

for

a

single

logical

data

element

(for

example,

SQLM_ELM_DB2)

to

the

corresponding

pre-version

6

external

monitor

structure

(for

example,

sqlm_db2).

When

upgrading

API

calls

to

use

the

post-version

5

stream,

one

must

traverse

the

monitor

data

using

the

new

stream

db2CfgSet

-

Set

Configuration

Parameters

38

Administrative

API

Reference

|
|

format

(for

example,

the

user

must

find

the

SQLM_ELM_DB2

element).

This

portion

of

the

stream

can

then

be

passed

into

the

conversion

API

to

get

the

associated

pre-version

6

data.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ConvMonStream

*/

/*

...

*/

db2ConvMonStream

(

unsigned

char

version,

db2ConvMonStreamData

*data,

struct

sqlca

*pSqlca);

typedef

struct

{

void

*poTarget;

sqlm_header_info

*piSource;

db2Uint32

iTargetType;

db2Uint32

iTargetSize;

db2Uint32

iSourceType

}

db2ConvMonStreamData;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

data.

data

Input.

A

pointer

to

the

db2ConvMonStreamData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

poTarget

Output.

A

pointer

to

the

target

monitor

output

structure

(for

example,

sqlm_db2).

A

list

of

output

types,

and

their

corresponding

input

types,

is

given

below.

piSource

Input.

A

pointer

to

the

logical

data

element

being

converted

(for

example,

SQLM_ELM_DB2).

A

list

of

output

types,

and

their

corresponding

input

types,

is

given

below.

iTargetType

Input.

The

type

of

conversion

being

performed.

Specify

the

value

for

the

v5

type

in

sqlmon.h

for

instance

SQLM_DB2_SS.

iTargetSize

Input.

This

parameter

can

usually

be

set

to

the

size

of

the

structure

pointed

db2ConvMonStream

-

Convert

Monitor

Stream

Chapter

1.

Application

Programming

Interfaces

39

to

by

poTarget;

however,

for

elements

that

have

usually

been

referenced

by

an

offset

value

from

the

end

of

the

structure

(for

example,

statement

text

in

sqlm_stmt),

specify

a

buffer

that

is

large

enough

to

contain

the

sqlm_stmt

statically-sized

elements,

as

well

as

a

statement

of

the

largest

size

to

be

extracted;

that

is,

SQL_MAX_STMT_SIZ

plus

sizeof(sqlm_stmt).

iSourceType

Input.

The

type

of

source

stream.

Valid

values

are

SQLM_STREAM_SNAPSHOT

(snapshot

stream),

or

SQLM_STREAM_EVMON

(event

monitor

stream).

Usage

notes:

Following

is

a

list

of

supported

convertible

data

elements:

Table

4.

Supported

convertible

data

elements:

snapshot

variables

Snapshot

variable

datastream

type

Structure

SQLM_ELM_APPL

sqlm_appl

SQLM_ELM_APPL_INFO

sqlm_applinfo

SQLM_ELM_DB2

sqlm_db2

SQLM_ELM_FCM

sqlm_fcm

SQLM_ELM_FCM_NODE

sqlm_fcm_node

SQLM_ELM_DBASE

sqlm_dbase

SQLM_ELM_TABLE_LIST

sqlm_table_header

SQLM_ELM_TABLE

sqlm_table

SQLM_ELM_DB_LOCK_LIST

sqlm_dbase_lock

SQLM_ELM_APPL_LOCK_LIST

sqlm_appl_lock

SQLM_ELM_LOCK

sqlm_lock

SQLM_ELM_STMT

sqlm_stmt

SQLM_ELM_SUBSECTION

sqlm_subsection

SQLM_ELM_TABLESPACE_LIST

sqlm_tablespace_header

SQLM_ELM_TABLESPACE

sqlm_tablespace

SQLM_ELM_ROLLFORWARD

sqlm_rollfwd_info

SQLM_ELM_BUFFERPOOL

sqlm_bufferpool

SQLM_ELM_LOCK_WAIT

sqlm_lockwait

SQLM_ELM_DCS_APPL

sqlm_dcs_appl,

sqlm_dcs_applid_info,

sqlm_dcs_appl_snap_stats,

sqlm_xid,

sqlm_tpmon

SQLM_ELM_DCS_DBASE

sqlm_dcs_dbase

SQLM_ELM_DCS_APPL_INFO

sqlm_dcs_applid_info

SQLM_ELM_DCS_STMT

sqlm_dcs_stmt

SQLM_ELM_COLLECTED

sqlm_collected

Table

5.

Supported

convertible

data

elements:

event

monitor

variables

Event

monitor

variable

datastream

type

Structure

SQLM_ELM_EVENT_DB

sqlm_db_event

SQLM_ELM_EVENT_CONN

sqlm_conn_event

SQLM_ELM_EVENT_TABLE

sqlm_table_event

db2ConvMonStream

-

Convert

Monitor

Stream

40

Administrative

API

Reference

Table

5.

Supported

convertible

data

elements:

event

monitor

variables

(continued)

Event

monitor

variable

datastream

type

Structure

SQLM_ELM_EVENT_STMT

sqlm_stmt_event

SQLM_ELM_EVENT_XACT

sqlm_xaction_event

SQLM_ELM_EVENT_DEADLOCK

sqlm_deadlock_event

SQLM_ELM_EVENT_DLCONN

sqlm_dlconn_event

SQLM_ELM_EVENT_TABLESPACE

sqlm_tablespace_event

SQLM_ELM_EVENT_DBHEADER

sqlm_dbheader_event

SQLM_ELM_EVENT_START

sqlm_evmon_start_event

SQLM_ELM_EVENT_CONNHEADER

sqlm_connheader_event

SQLM_ELM_EVENT_OVERFLOW

sqlm_overflow_event

SQLM_ELM_EVENT_BUFFERPOOL

sqlm_bufferpool_event

SQLM_ELM_EVENT_SUBSECTION

sqlm_subsection_event

SQLM_ELM_EVENT_LOG_HEADER

sqlm_event_log_header

The

sqlm_rollfwd_ts_info

structure

is

not

converted;

it

only

contains

a

table

space

name

that

can

be

accessed

directly

from

the

stream.

The

sqlm_agent

structure

is

also

not

converted;

it

only

contains

the

pid

of

the

agent,

which

can

also

be

accessed

directly

from

the

stream.

Related

reference:

v

“SQLCA”

on

page

410

db2DatabasePing

-

Ping

Database

Tests

the

network

response

time

of

the

underlying

connectivity

between

a

client

and

a

database

server.

This

API

can

be

used

by

an

application

when

a

host

database

server

is

accessed

via

DB2

Connect

either

directly

or

through

a

gateway.

Authorization:

None

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabasePing

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabasePing

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

db2ConvMonStream

-

Convert

Monitor

Stream

Chapter

1.

Application

Programming

Interfaces

41

|
|
|
|
|
|
|
|
|

typedef

SQL_STRUCTURE

db2DatabasePingStruct

{

char

iDbAlias[SQL_ALIAS_SZ

+

1];

db2int32

RequestPacketSz;

db2int32

ResponsePacketSz;

db2Uint16

iNumIterations;

db2Uint32

*poElapsedTime;

}

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDatabasePing

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDatabasePing

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gDatabasePingStruct

{

db2Uint16

iDbAliasLength;

char

iDbAlias[SQL_ALIAS_SZ];

db2int32

RequestPacketSz;

db2int32

ResponsePacketSz;

db2Uint16

iNumIterations;

db2Uint32

*poElapsedTime;

}

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

of

the

DB2

Universal

Database

or

DB2

Connect

product

that

the

application

is

using.

pParmStruct

Input.

A

pointer

to

the

db2DatabasePingStruct

Structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDbAliasLength

Input.

Length

of

the

database

alias

name.

Reserved

for

future

use.

iDbAlias

Input.

Database

alias

name.

Reserved

for

future

use.

RequestPacketSz

Input.

Size

of

the

packet

(in

bytes)

to

be

sent

to

server.

The

size

must

be

between

0

and

32767

inclusive.

This

parameter

is

only

valid

on

servers

running

DB2

UDB

for

Linux,

UNIX

and

Windows

Version

8

or

higher,

or

DB2

UDB

for

z/OS

Version

8

or

higher.

ResponsePacketSz

Input.

Size

of

the

packet

(in

bytes)

to

be

returned

back

to

client.

The

size

must

be

between

0

and

32767

inclusive.

This

parameter

is

only

valid

on

servers

running

DB2

UDB

for

Linux,

UNIX

and

Windows

Version

8

or

higher,

or

DB2

UDB

for

z/OS

Version

8

or

higher.

iNumIterations

Input.

Number

of

test

request

iterations.

The

value

must

be

between

1

and

32767

inclusive.

db2DatabasePing

-

Ping

Database

42

Administrative

API

Reference

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

poElapsedTime

Output.

A

pointer

to

an

array

of

32-bit

integers

where

the

number

of

elements

is

equal

to

iNumIterations.

Each

element

in

the

array

will

contain

the

elapsed

time

in

microseconds

for

one

test

request

iteration.

Note:

The

application

is

responsible

for

allocating

the

memory

for

this

array

prior

to

calling

this

API.

Usage

notes:

This

function

can

also

be

invoked

using

the

PING

command.

Related

reference:

v

“SQLCA”

on

page

410

v

“PING

Command”

in

the

Command

Reference

db2DatabaseQuiesce

-

Database

Quiesce

Forces

all

users

off

the

database,

immediately

rolls

back

all

active

transactions,

and

puts

the

database

into

quiesce

mode.

This

API

provides

exclusive

access

to

the

database.

During

this

quiesced

period,

system

administration

can

be

performed

on

the

database.

After

administration

is

complete,

you

can

unquiesce

the

database,

using

the

db2DatabaseUnquiesce

API.

The

db2DatabaseUnquiesce

API

allows

other

users

to

connect

to

the

database,

without

having

to

shut

down

and

perform

another

database

start.

In

this

mode

only

groups

or

users

with

QUIESCE

CONNECT

authority

and

sysadm,

sysmaint,

or

sysctrl

will

have

access

to

the

database

and

its

objects.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DbQuiesceStruct

{

char

*piDatabaseName;

db2DatabasePing

-

Ping

Database

Chapter

1.

Application

Programming

Interfaces

43

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2DbQuiesceStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDatabaseQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDatabaseQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gDbQuiesceStruct

{

db2Uint32

iDatabaseNameLen;

char

*piDatabaseName;

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2gDbQuiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbQuiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDatabaseNameLen

Input.

Specifies

the

length

in

bytes

of

piDatabaseName.

piDatabaseName

Input.

The

database

name.

iImmediate

Input.

Reserved

for

future

use.

iForce

Input.

Reserved

for

future

use.

iTimeout

Input.

Specifies

the

time,

in

minutes,

to

wait

for

applications

to

commit

the

current

unit

of

work.

If

iTimeout

is

not

specified,

in

a

single-partition

database

environment,

the

default

value

is

10

minutes.

In

a

partitioned

database

environment

the

value

specified

by

the

start_stop_timeout

database

manager

configuration

parameter

will

be

used.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2DatabaseUnquiesce

-

Database

Unquiesce”

on

page

45

db2DatabaseQuiesce

-

Database

Quiesce

44

Administrative

API

Reference

|
|
|
|
|
|

db2DatabaseUnquiesce

-

Database

Unquiesce

Restores

user

access

to

databases

which

have

been

quiesced

for

maintenance

or

other

reasons.

User

access

is

restored

without

necessitating

a

shutdown

and

database

restart.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseUnquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DbUnquiesceStruct

{

char

*piDatabaseName;

}

db2DbUnquiesceStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDatabaseunquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDatabaseUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gDbUnquiesceStruct

{

db2Uint32

iDatabaseNameLen;

char

*piDatabaseName;

}

db2gDbUnquiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

db2DatabaseUnquiesce

-

Database

Unquiesce

Chapter

1.

Application

Programming

Interfaces

45

pParmStruct

Input.

A

pointer

to

the

db2DbUnquiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDatabaseNameLen

Input.

Specifies

the

length

in

bytes

of

piDatabaseName.

piDatabaseName

Input.

The

database

name.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

43

db2DatabaseRestart

-

Restart

Database

Restarts

a

database

that

has

been

abnormally

terminated

and

left

in

an

inconsistent

state.

At

the

successful

completion

of

this

API,

the

application

remains

connected

to

the

database

if

the

user

has

CONNECT

privilege.

Scope:

This

API

affects

only

the

database

partition

server

on

which

it

is

executed.

Authorization:

None

Required

connection:

This

API

establishes

a

database

connection.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseRestart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseRestart

(

db2Uint32

versionNumber;

void

*pParamStruct;

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseName;

char

*piUserId;

char

*piPassword;

char

*piTablespaceNames;

int

*iOption;

}

db2RestartDbStruct;

/*

...

*/

db2DatabaseUnquiesce

-

Database

Unquiesce

46

Administrative

API

Reference

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DatabaseRestart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseRestart

(

db2Uint32

versionNumber;

void

*pParamStruct;

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseName;

char

*piUserId;

char

*piPassword;

char

*piTablespaceNames;

int

*iOption;

}

db2RestartDbStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2RestartDbStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDatabaseName

Input.

A

pointer

to

a

string

containing

the

alias

of

the

database

that

is

to

be

restarted.

piUserId

Input.

A

pointer

to

a

string

containing

the

user

name

of

the

application.

May

be

NULL.

piPassword

Input.

A

pointer

to

a

string

containing

a

password

for

the

specified

user

name

(if

any).

May

be

NULL.

piTablespaceNames

Input.

A

pointer

to

a

string

containing

a

list

of

table

space

names

to

be

dropped

during

the

restart

operation.

May

be

NULL.

iOption

Input.

Valid

values

are:

DB2_DB_SUSPEND_NONE

Performs

normal

crash

recovery.

DB2_DB_RESUME_WRITE

Required

to

perform

crash

recovery

on

a

database

that

has

I/O

writes

suspended.

REXX

API

syntax:

RESTART

DATABASE

database_alias

[USER

username

USING

password]

REXX

API

parameters:

db2DatabaseRestart

-

Restart

Database

Chapter

1.

Application

Programming

Interfaces

47

database_alias

Alias

of

the

database

to

be

restarted.

username

User

name

under

which

the

database

is

to

be

restarted.

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

Call

this

API

if

an

attempt

to

connect

to

a

database

returns

an

error

message,

indicating

that

the

database

must

be

restarted.

This

action

occurs

only

if

the

previous

session

with

this

database

terminated

abnormally

(due

to

power

failure,

for

example).

At

the

completion

of

this

API,

a

shared

connection

to

the

database

is

maintained

if

the

user

has

CONNECT

privilege,

and

an

SQL

warning

is

issued

if

any

indoubt

transactions

exist.

In

this

case,

the

database

is

still

usable,

but

if

the

indoubt

transactions

are

not

resolved

before

the

last

connection

to

the

database

is

dropped,

another

call

to

the

API

must

be

completed

before

the

database

can

be

used

again.

In

the

case

of

circular

logging,

a

database

restart

operation

will

fail

if

there

is

any

problem

with

the

table

spaces,

such

as

an

I/O

error,

an

unmounted

file

system,

and

so

on.

If

losing

such

table

spaces

is

not

an

issue,

their

names

can

be

explicitly

specified;

this

will

put

them

into

drop

pending

state,

and

the

restart

operation

can

complete

successfully.

Related

reference:

v

“SQLCA”

on

page

410

Related

samples:

v

“dbconn.sqc

--

How

to

connect

to

and

disconnect

from

a

database

(C)”

v

“dbconn.sqC

--

How

to

connect

to

and

disconnect

from

a

database

(C++)”

db2DbDirCloseScan

-

Close

Database

Directory

Scan

Frees

the

resources

allocated

by

db2DbDirOpenScan.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DbDirCloseScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DatabaseRestart

-

Restart

Database

48

Administrative

API

Reference

|

|

|

|

|

|

|

|

|

|
|
|
|

db2DbDirCloseScan

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle;

}

db2DbDirCloseScanStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDbDirCloseScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDbDirCloseScan

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle;

}

db2gDbDirCloseScanStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbDirCloseScanStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iHandle

Input.

Identifier

returned

from

the

associated

db2DbDirOpenScan

API.

Related

reference:

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

on

page

49

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

on

page

53

v

“SQLCA”

on

page

410

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

Returns

the

next

entry

in

the

system

database

directory

or

the

local

database

directory

copy

returned

by

db2DbDirOpenScan.

Subsequent

calls

to

this

API

return

additional

entries.

Authorization:

None

db2DbDirCloseScan

-

Close

Database

Directory

Scan

Chapter

1.

Application

Programming

Interfaces

49

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DbDirGetNextEntry

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DbDirGetNextEntry

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle;

struct

db2DbDirInfo

*poDbDirEntry;

}

db2DbDirNextEntryStruct;

SQL_STRUCTURE

db2DbDirInfo

{

_SQLOLDCHAR

alias[SQL_ALIAS_SZ];

_SQLOLDCHAR

dbname[SQL_DBNAME_SZ];

_SQLOLDCHAR

drive[SQL_DRIVE_SZ];

_SQLOLDCHAR

intname[SQL_INAME_SZ];

_SQLOLDCHAR

nodename[SQL_NNAME_SZ];

_SQLOLDCHAR

dbtype[SQL_DBTYP_SZ];

_SQLOLDCHAR

comment[SQL_CMT_SZ];

short

com_codepage;

_SQLOLDCHAR

type;

unsigned

short

authentication;

char

glbdbname[SQL_DIR_NAME_SZ];

_SQLOLDCHAR

dceprincipal[SQL_DCEPRIN_SZ];

short

cat_nodenum;

short

nodenum;

_SQLOLDCHAR

althostname[SQL_HOSTNAME_SZ];

_SQLOLDCHAR

altportnumber[SQL_SERVICE_NAME_SZ];

};

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDbDirGetNextEntry

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDbDirGetNextEntry

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle;

struct

db2DbDirInfo

*poDbDirEntry;

}

db2gDbDirNextEntryStruct;

};

/*

...

*/

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

50

Administrative

API

Reference

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbDirGetNextEntryStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iHandle

Input.

Identifier

returned

from

the

associated

db2DbDirOpenScan

API.

poDbDirEntry

Output.

A

pointer

to

a

db2DbDirInfo

structure.

The

space

for

the

directory

data

is

allocated

by

the

API,

and

a

pointer

to

that

space

is

returned

to

the

caller.

alias

An

alternate

database

name.

dbname

The

name

of

the

database.

drive

The

local

database

directory

path

name

where

the

database

resides.

This

field

is

returned

only

if

the

system

database

directory

is

opened

for

scan.

Note:

On

Windows

NT,

this

parameter

is

CHAR(12).

intname

A

token

identifying

the

database

subdirectory.

This

field

is

returned

only

if

the

local

database

directory

is

opened

for

scan.

nodename

The

name

of

the

node

where

the

database

is

located.

This

field

is

returned

only

if

the

cataloged

database

is

a

remote

database.

dbtype

Database

manager

release

information.

comment

The

comment

associated

with

the

database.

com_codepage

The

code

page

of

the

comment.

Not

used.

type

Entry

type.

Valid

values

are:

SQL_INDIRECT

Database

created

by

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable).

SQL_REMOTE

Database

resides

at

a

different

instance.

SQL_HOME

Database

resides

on

this

volume

(always

HOME

in

local

database

directory).

SQL_DCE

Database

resides

in

DCE

directories.

authentication

Authentication

type.

Valid

values

are:

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

Chapter

1.

Application

Programming

Interfaces

51

|

|
|
|

|
|

|
|

|
|

|
|
|
|

||

|
|

||
|

|

|
|
|

|
|
|

|
|

|
|

|
|

||

|
|
|

|
|

|
|
|

|
|

|
|

SQL_AUTHENTICATION_SERVER

Authentication

of

the

user

name

and

password

takes

place

at

the

server.

SQL_AUTHENTICATION_CLIENT

Authentication

of

the

user

name

and

password

takes

place

at

the

client.

SQL_AUTHENTICATION_DCS

Used

for

DB2

Connect.

SQL_AUTHENTICATION_DCE

Authentication

takes

place

using

DCE

Security

Services.

SQL_AUTHENTICATION_KERBEROS

Authentication

takes

place

using

Kerberos

Security

Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED

DB2

no

longer

requires

authentication

to

be

kept

in

the

database

directory.

Specify

this

value

when

connecting

to

anything

other

than

a

down-level

(DB2

V2

or

less)

server.

SQL_AUTHENTICATION_SVR_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

the

authentication

password

is

to

be

encrypted.

SQL_AUTHENTICATION_DATAENC

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

SQL_AUTHENTICATION_GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

glbdbname

The

global

name

of

the

target

database

in

the

global

(DCE)

directory,

if

the

entry

is

of

type

SQL_DCE.

dceprincipal

The

principal

name

if

the

authentication

is

of

type

DCE

or

KERBEROS.

cat_nodenum

Catalog

node

number.

nodenum

Node

number.

althostname

The

hostname

or

IP

address

of

the

alternate

server

where

the

database

is

reconnected

at

failover

time.

altportnumber

The

port

number

of

the

alternate

server

where

the

database

is

reconnected

at

failover

time.

Usage

notes:

All

fields

of

the

directory

entry

information

buffer

are

padded

to

the

right

with

blanks.

A

subsequent

db2DbDirGetNextEntry

obtains

the

entry

following

the

current

entry.

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

52

Administrative

API

Reference

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|

|
|

|

The

sqlcode

value

of

sqlca

is

set

to

1014

if

there

are

no

more

entries

to

scan

when

db2DbDirGetNextEntry

is

called.

The

count

value

returned

by

the

db2DbDirOpenScan

API

can

be

used

to

scan

through

the

entire

directory

by

issuing

db2DbDirGetNextEntry

calls,

one

at

a

time,

until

the

number

of

scans

equals

the

count

of

entries.

Related

reference:

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

on

page

48

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

on

page

53

v

“SQLCA”

on

page

410

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

db2DbDirOpenScan

-

Open

Database

Directory

Scan

Stores

a

copy

of

the

system

database

directory

or

the

local

database

directory

in

memory,

and

returns

the

number

of

entries.

This

copy

represents

a

snapshot

of

the

directory

at

the

time

the

directory

is

opened.

This

copy

is

not

updated,

even

if

the

directory

itself

is

changed

later.

Use

db2DbDirGetNextEntry

to

advance

through

the

database

directory,

examining

information

about

the

database

entries.

Close

the

scan

using

db2DbDirCloseScan.

This

removes

the

copy

of

the

directory

from

memory.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DbDirOpenScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DbDirOpenScan

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piPath;

db2Uint16

oHandle;

db2Uint16

oNumEntries;

}

db2DbDirOpenScanStruct;

/*

...

*/

db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry

Chapter

1.

Application

Programming

Interfaces

53

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gDbDirOpenScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gDbDirOpenScan

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

*iPath_len;

char

*piPath;

db2Uint16

oHandle;

db2Uint16

oNumEntries;

}

db2gDbDirOpenScanStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DbDirOpenScanStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iPath_len

Input.

The

length

in

bytes

of

piPath.

piPath

Input.

The

name

of

the

path

on

which

the

local

database

directory

resides.

If

the

specified

path

is

a

NULL

pointer,

the

system

database

directory

is

used.

oHandle

Output.

A

2-byte

area

for

the

returned

identifier.

This

identifier

must

be

passed

to

db2DbDirGetNextEntry

for

scanning

the

database

entries,

and

to

db2DbDirCloseScan

to

release

the

resources.

oNumEntries

Output.

A

2-byte

area

where

the

number

of

directory

entries

is

returned.

Usage

notes:

Storage

allocated

by

this

API

is

freed

by

db2DbDirCloseScan.

Multiple

db2DbDirOpenScan

APIs

can

be

issued

against

the

same

directory.

However,

the

results

may

not

be

the

same.

The

directory

may

change

between

openings.

There

can

be

a

maximum

of

eight

opened

database

directory

scans

per

process.

Related

reference:

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

on

page

48

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

on

page

49

v

“SQLCA”

on

page

410

db2DbDirOpenScan

-

Open

Database

Directory

Scan

54

Administrative

API

Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

||
|
|

|
|
|
|

|
|

|

|

|
|
|

|

|

|

|

|

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

db2DropContact

-

Drop

Contact

Removes

a

contact

from

the

list

of

contacts.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DropContact

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DropContact

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DropContactData

{

char

*piUserid;

char

*piPassword;

char

*piName;

}

db2DropContactData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DropContactData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piUserid;

Input.

The

user

name.

piPassword

Input.

The

password

for

piUserid.

piName

Input.

The

name

of

the

contact

to

be

dropped.

db2DbDirOpenScan

-

Open

Database

Directory

Scan

Chapter

1.

Application

Programming

Interfaces

55

|

|

|

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContact

-

Add

Contact”

on

page

15

v

“db2GetContacts

-

Get

Contacts”

on

page

75

v

“db2UpdateContact

-

Update

Contact”

on

page

260

db2DropContactGroup

-

Drop

Contact

Group

Removes

a

contact

group

from

the

list

of

contacts.

A

contact

group

contains

a

list

of

users

to

whom

notification

messages

can

be

sent.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2DropContactGroup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2DropContactGroup

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2DropContactData

{

char

*piUserid;

char

*piPassword;

char

*piName;

}

db2DropContactData;

/*

..

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2DropContactData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piUserid

Input.

The

user

name.

db2DropContact

-

Drop

Contact

56

Administrative

API

Reference

piPassword

Input.

The

password

for

piUserid.

piName

Input.

The

name

of

the

contact

group

to

be

dropped.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContactGroup

-

Add

Contact

Group”

on

page

16

v

“db2GetContactGroup

-

Get

Contact

Group”

on

page

72

v

“db2GetContactGroups

-

Get

Contact

Groups”

on

page

74

v

“db2UpdateContactGroup

-

Update

Contact

Group”

on

page

261

db2Export

-

Export

Exports

data

from

a

database

to

one

of

several

external

file

formats.

The

user

specifies

the

data

to

be

exported

by

supplying

an

SQL

SELECT

statement,

or

by

providing

hierarchical

information

for

typed

tables.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

or

CONTROL

or

SELECT

privilege

on

each

participating

table

or

view.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Export

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Export

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2ExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

db2DropContactGroup

-

Drop

Contact

Group

Chapter

1.

Application

Programming

Interfaces

57

|

|
|
|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

}

db2ExportStruct;

typedef

SQL_STRUCTURE

db2ExportOut

{

db2Uint64

oRowsExported;

}

db2ExportOut;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gExport

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gExport

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gExportStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2ExportStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDataFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

data

file

name.

iFileTypeLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

file

type.

iMsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

message

file

name.

db2Export

-

Export

58

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

file

into

which

the

data

is

to

be

exported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

are

to

be

stored.

When

file

space

is

exhausted

on

the

first

path

in

this

list,

the

API

will

use

the

second

path,

and

so

on.

piLobFileList

Input.

An

sqlu_media_list

using

media_type

SQLU_CLIENT_LOCATION,

and

the

sqlu_location_entry

structure

containing

base

file

names.

When

the

name

space

is

exhausted

using

the

first

name

in

this

list,

the

API

will

use

the

second

name,

and

so

on.

When

creating

LOB

files

during

an

export

operation,

file

names

are

constructed

by

appending

the

current

base

name

from

this

list

to

the

current

path

(from

pLobFilePath),

and

then

appending

a

3-digit

sequence

number.

For

example,

if

the

current

LOB

path

is

the

directory

/u/foo/lob/path,

and

the

current

LOB

file

name

is

bar,

the

created

LOB

files

will

be

/u/foo/lob/path/bar.001,

/u/foo/lob/pah/bar.002,

and

so

on.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

specifying

the

column

names

for

the

output

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

export

utility.

Valid

values

for

this

parameter

(defined

in

sqlutil)

are:

SQL_METH_N

Names.

Specify

column

names

to

be

used

in

the

output

file.

SQL_METH_D

Default.

Existing

column

names

from

the

table

are

to

be

used

in

the

output

file.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

The

column

names

are

derived

from

the

output

of

the

SELECT

statement

specified

in

pActionString.

piActionString

Input.

Pointer

to

an

sqllob

structure

containing

a

valid

dynamic

SQL

SELECT

statement.

The

structure

contains

a

4-byte

long

field,

followed

by

the

characters

that

make

up

the

SELECT

statement.

The

SELECT

statement

specifies

the

data

to

be

extracted

from

the

database

and

written

to

the

external

file.

The

columns

for

the

external

file

(from

piDataDescriptor),

and

the

database

columns

from

the

SELECT

statement,

are

matched

according

to

their

respective

list/structure

positions.

The

first

column

of

data

selected

from

the

database

is

placed

in

the

first

column

of

the

external

file,

and

its

column

name

is

taken

from

the

first

element

of

the

external

column

array.

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

(defined

in

sqlutil)

are:

db2Export

-

Export

Chapter

1.

Application

Programming

Interfaces

59

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table.

Data

exported

to

this

file

format

can

later

be

imported

or

loaded

into

the

same

table

or

into

another

database

manager

table.

piFileTypeMod

Input.

A

pointer

to

an

sqldcol

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

export.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

export

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

poExportInfoOut

A

pointer

to

the

db2ExportOut

structure.

oRowsExported

Output.

Returns

the

number

of

records

exported

to

the

target

file.

db2Export

-

Export

60

Administrative

API

Reference

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

REXX

API

syntax:

EXPORT

:stmt

TO

datafile

OF

filetype

[MODIFIED

BY

:filetmod]

[USING

:dcoldata]

MESSAGES

msgfile

[ROWS

EXPORTED

:number]

CONTINUE

EXPORT

STOP

EXPORT

REXX

API

parameters:

stmt

A

REXX

host

variable

containing

a

valid

dynamic

SQL

SELECT

statement.

The

statement

specifies

the

data

to

be

extracted

from

the

database.

datafile

Name

of

the

file

into

which

the

data

is

to

be

exported.

filetype

The

format

of

the

data

in

the

export

file.

The

supported

file

formats

are:

DEL

Delimited

ASCII

WSF

Worksheet

format

IXF

PC

version

of

Integrated

Exchange

Format.

filetmod

A

host

variable

containing

additional

processing

options.

dcoldata

A

compound

REXX

host

variable

containing

the

column

names

to

be

used

in

the

export

file.

In

the

following,

XXX

represents

the

name

of

the

host

variable:

XXX.0

Number

of

columns

(number

of

elements

in

the

remainder

of

the

variable).

XXX.1

First

column

name.

XXX.2

Second

column

name.

XXX.3

and

so

on.

If

this

parameter

is

NULL,

or

a

value

for

dcoldata

has

not

been

specified,

the

utility

uses

the

column

names

from

the

database

table.

msgfile

File,

path,

or

device

name

where

error

and

warning

messages

are

to

be

sent.

number

A

host

variable

that

will

contain

the

number

of

exported

rows.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

export

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Table

aliases

can

be

used

in

the

SELECT

statement.

The

messages

placed

in

the

message

file

include

the

information

returned

from

the

message

retrieval

service.

Each

message

begins

on

a

new

line.

db2Export

-

Export

Chapter

1.

Application

Programming

Interfaces

61

|

|
|
|
|
|
|
|

|

||
|

|
|

|
|

||

||

||

|
|

|
|
|
|

||
|

||

||

||

|
|

|
|
|

|
|

|

|
|
|

|

|
|

The

export

utility

produces

a

warning

message

whenever

a

character

column

with

a

length

greater

than

254

is

selected

for

export

to

DEL

format

files.

A

warning

message

is

issued

if

the

number

of

columns

(dcolnum)

in

the

external

column

name

array,

piDataDescriptor,

is

not

equal

to

the

number

of

columns

generated

by

the

SELECT

statement.

In

this

case,

the

number

of

columns

written

to

the

external

file

is

the

lesser

of

the

two

numbers.

Excess

database

columns

or

external

column

names

are

not

used

to

generate

the

output

file.

If

the

db2uexpm.bnd

module

or

any

other

shipped

.bnd

files

are

bound

manually,

the

format

option

on

the

binder

must

not

be

used.

PC/IXF

import

should

be

used

to

move

data

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

DB2

Connect

can

be

used

to

export

tables

from

DRDA

servers

such

as

DB2

for

z/OS

and

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

iSeries.

Only

PC/IXF

export

is

supported.

The

export

utility

will

not

create

multiple-part

PC/IXF

files

when

invoked

from

an

AIX

system.

Index

definitions

for

a

table

are

included

in

the

PC/IXF

file

when

the

contents

of

a

single

database

table

are

exported

to

a

PC/IXF

file

with

a

pActionString

beginning

with

SELECT

*

FROM

tablename,

and

the

piDataDescriptor

parameter

specifying

default

names.

Indexes

are

not

saved

for

views,

or

if

the

SELECT

clause

of

the

piActionString

includes

a

join.

A

WHERE

clause,

a

GROUP

BY

clause,

or

a

HAVING

clause

in

the

piActionString

will

not

prevent

the

saving

of

indexes.

In

all

of

these

cases,

when

exporting

from

typed

tables,

the

entire

hierarchy

must

be

exported.

The

export

utility

will

store

the

NOT

NULL

WITH

DEFAULT

attribute

of

the

table

in

an

IXF

file

if

the

SELECT

statement

provided

is

in

the

form

SELECT

*

FROM

tablename.

When

exporting

typed

tables,

subselect

statements

can

only

be

expressed

by

specifying

the

target

table

name

and

the

WHERE

clause.

Fullselect

and

select-statement

cannot

be

specified

when

exporting

a

hierarchy.

For

file

formats

other

than

IXF,

it

is

recommended

that

the

traversal

order

list

be

specified,

because

it

tells

DB2

how

to

traverse

the

hierarchy,

and

what

sub-tables

to

export.

If

this

list

is

not

specified,

all

tables

in

the

hierarchy

are

exported,

and

the

default

order

is

the

OUTER

order.

The

alternative

is

to

use

the

default

order,

which

is

the

order

given

by

the

OUTER

function.

Note:

Use

the

same

traverse

order

during

an

import

operation.

The

load

utility

does

not

support

loading

hierarchies

or

sub-hierarchies.

DB2

Data

Links

Manager

considerations:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

referenced

by

the

DATALINK

columns

are

copied

for

export,

do

the

following:

1.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

SHARE.

db2Export

-

Export

62

Administrative

API

Reference

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|

This

ensures

that

no

update

transactions

are

in

progress

when

EXPORT

is

run.

2.

Issue

the

EXPORT

command.

3.

Run

the

dlfm_export

utility

at

each

Data

Links

server.

Input

to

the

dlfm_export

utility

is

the

control

file

name,

which

is

generated

by

the

export

utility.

This

produces

a

tar

(or

equivalent)

archive

of

the

files

listed

within

the

control

file.

dlfm_export

does

not

capture

the

ACLs

information

of

the

files

that

are

archived.

4.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

RESET.

This

makes

the

table

available

for

updates.

EXPORT

is

executed

as

an

SQL

application.

The

rows

and

columns

satisfying

the

SELECT

statement

conditions

are

extracted

from

the

database.

For

the

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

function.

Successful

execution

of

EXPORT

results

in

generation

of

the

following

files:

v

An

export

data

file

as

specified

in

the

EXPORT

command.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

IMPORT

and

LOAD

utilities.

When

the

DATALINK

column

value

is

the

SQL

NULL

value,

handling

is

the

same

as

that

for

other

data

types.

v

Control

files

server_name,

which

are

generated

for

each

Data

Links

server.

On

the

Windows

NT

operating

system,

a

single

control

file,

ctrlfile.lst,

is

used

by

all

Data

Links

servers.

These

control

files

are

placed

in

the

directory

<data-file

path>/dlfm/YYYYMMDD/HHMMSS

(on

the

Windows

NT

operating

system,

ctrlfile.lst

is

placed

in

the

directory

<data-file

path>\dlfm\YYYYMMDD\HHMMSS).

YYYYMMDD

represents

the

date

(year

month

day),

and

HHMMSS

represents

the

time

(hour

minute

second).

The

dlfm_export

utility

is

provided

to

export

files

from

a

Data

Links

server.

This

utility

generates

an

archive

file,

which

can

be

used

to

restore

files

in

the

target

Data

Links

server.

Related

concepts:

v

“Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLCHAR”

on

page

411

v

“SQLDCOL”

on

page

413

v

“SQLU-MEDIA-LIST”

on

page

450

v

“File

type

modifiers

for

export”

on

page

64

v

“Delimiter

restrictions

for

moving

data”

on

page

185

Related

samples:

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

v

“tload.sqb

--

How

to

export

and

load

table

data

(IBM

COBOL)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Export

-

Export

Chapter

1.

Application

Programming

Interfaces

63

|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

File

type

modifiers

for

export

Table

6.

Valid

file

type

modifiers

for

export:

All

file

formats

Modifier

Description

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

If

you

specify

the

“lobsinfile”

modifier

when

using

EXPORT,

the

LOB

data

is

placed

in

the

locations

specified

by

the

LOBS

TO

clause.

Otherwise

the

LOB

data

is

sent

to

the

current

working

directory.

The

LOBS

TO

clause

specifies

one

or

more

paths

to

directories

in

which

the

LOB

files

are

to

be

stored.

There

will

be

at

least

one

file

per

LOB

path,

and

each

file

will

contain

at

least

one

LOB.

To

indicate

a

null

LOB

,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

Table

7.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.2

If

you

want

to

explicitly

specify

the

double

quotation

mark

as

the

character

string

delimiter,

it

should

be

specified

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter

as

follows:

modified

by

chardel''

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

output

data

set.

Converts

character

data

to

this

code

page

from

the

application

code

page

during

the

export

operation.

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

Note:

The

codepage

modifier

cannot

be

used

with

the

lobsinfile

modifier.

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.2

In

the

following

example,

coldel;

causes

the

export

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

column

delimiter:

db2

"export

to

temp

of

del

modified

by

coldel;

select

*

from

staff

where

dept

=

20"

datesiso

Date

format.

Causes

all

date

data

values

to

be

exported

in

ISO

format

(″YYYY-MM-DD″).3

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

db2Export

-

Export

64

Administrative

API

Reference

|
|
|
|
|

Table

7.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.2

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

2

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

nochardel

Column

data

will

not

be

surrounded

by

character

delimiters.

This

option

should

not

be

specified

if

the

data

is

intended

to

be

imported

or

loaded

using

DB2.

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.2

striplzeros

Removes

the

leading

zeros

from

all

exported

decimal

columns.

Consider

the

following

example:

db2

create

table

decimalTable

(

c1

decimal(

31,

2

)

)

db2

insert

into

decimalTable

values

(

1.1

)

db2

export

to

data

of

del

select

*

from

decimalTable

db2

export

to

data

of

del

modified

by

STRIPLZEROS

select

*

from

decimalTable

In

the

first

export

operation,

the

content

of

the

exported

file

data

will

be

+00000000000000000000000000001.10.

In

the

second

operation,

which

is

identical

to

the

first

except

for

the

striplzeros

modifier,

the

content

of

the

exported

file

data

will

be

+1.10.

db2Export

-

Export

Chapter

1.

Application

Programming

Interfaces

65

||
|
|
|

|
|

||

|

|
|
|
|
|
|
|

|
|
|
|

Table

7.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.4

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

MMM

element

will

produce

the

following

values:

’Jan’,

’Feb’,

’Mar’,

’Apr’,

’May’,

’Jun’,

’Jul’,

’Aug’,

’Sep’,

’Oct’,

’Nov’,

and

’Dec’.

’Jan’

is

equal

to

month

1,

and

’Dec’

is

equal

to

month

12.

The

following

example

illustrates

how

to

export

data

containing

user-defined

time

stamp

formats

from

a

table

called

’schedule’:

db2

export

to

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

select

*

from

schedule

db2Export

-

Export

66

Administrative

API

Reference

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

|
|
|

Table

8.

Valid

file

type

modifiers

for

export:

WSF

file

format

Modifier

Description

1

Creates

a

WSF

file

that

is

compatible

with

Lotus

1-2-3

Release

1,

or

Lotus

1-2-3

Release

1a.5

This

is

the

default.

2

Creates

a

WSF

file

that

is

compatible

with

Lotus

Symphony

Release

1.0.5

3

Creates

a

WSF

file

that

is

compatible

with

Lotus

1-2-3

Version

2,

or

Lotus

Symphony

Release

1.1.5

4

Creates

a

WSF

file

containing

DBCS

characters.

Notes:

1.

The

export

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

export

operation

fails,

and

an

error

code

is

returned.

2.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

3.

The

export

utility

normally

writes

v

date

data

in

YYYYMMDD

format

v

char(date)

data

in

″YYYY-MM-DD″

format

v

time

data

in

″HH.MM.SS″

format

v

time

stamp

data

in

″YYYY-MM-DD-HH.

MM.SS.uuuuuu″

format

Data

contained

in

any

datetime

columns

specified

in

the

SELECT

statement

for

the

export

operation

will

also

be

in

these

formats.

4.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

5.

These

files

can

also

be

directed

to

a

specific

product

by

specifying

an

L

for

Lotus

1-2-3,

or

an

S

for

Symphony

in

the

filetype-mod

parameter

string.

Only

one

value

or

product

designator

may

be

specified.

Related

reference:

v

“db2Export

-

Export”

on

page

57

v

“EXPORT

Command”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

on

page

185

db2Export

-

Export

Chapter

1.

Application

Programming

Interfaces

67

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

db2GetAlertCfg

-

Get

Alert

Configuration

Returns

the

alert

configuration

settings

for

the

health

indicators.

Authorization:

None

Required

connection:

Instance.

If

there

is

not

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetAlertCfg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetAlertCfg(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca

);

typedef

SQL_STRUCTURE

db2GetAlertCfgData

{

db2Uint32

iObjType;

char

*piObjName;

db2Uint32

iDefault;

char

*piDbname;

db2Uint32

ioNumIndicators;

db2GetAlertCfgInd

*pioIndicators;

}

db2GetAlertCfgData;

typedef

SQL_STRUCTURE

db2GetAlertCfgInd

{

db2Uint32

ioIndicatorID;

db2int32

oAlarm;

db2int32

oWarning;

db2Uint32

oSensitivity;

char

*poFormula;

db2Uint32

oActionEnabled;

db2Uint32

oCheckThresholds;

db2Uint32

oNumTaskActions;

db2AlertTaskAction

*poTaskActions;

db2Uint32

oNumScriptActions;

db2AlertScriptAction

*poScriptActions;

db2Uint32

oDefault;

}

db2GetAlertCfgInd;

typedef

SQL_STRUCTURE

db2AlertTaskAction

{

char

*pTaskname;

db2Uint32

condition;

char

*pUserId;

char

*pPassword;

char

*pHostName;

}

db2AlertTaskAction;

db2GetAlertCfg

-

Get

Alert

Configuration

68

Administrative

API

Reference

typedef

SQL_STRUCTURE

db2AlertScriptAction

{

db2Uint32

scriptType;

db2Uint32

condition;

char

*pPathname;

char

*pWorkingDir;

char

*pCmdLineParms;

char

stmtTermChar;

char

*pUserID;

char

*pPassword;

char

*pHostname;

}

db2AlertScriptAction;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetAlertCfgData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iObjType

Input.

Specifies

the

type

of

object

for

which

configuration

is

requested.

Valid

values

are:

v

DB2ALERTCFG_OBJTYPE_DBM

v

DB2ALERTCFG_OBJTYPE_DATABASES

v

DB2ALERTCFG_OBJTYPE_TABLESPACES

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINERS

v

DB2ALERTCFG_OBJTYPE_DATABASE

v

DB2ALERTCFG_OBJTYPE_TABLESPACE

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName

Input.

The

name

of

the

table

space

or

table

space

container

when

the

object

type,

iObjType,

is

set

to

DB2ALERTCFG_OBJTYPE_TABLESPACE

or

DB2ALERTCFG_OBJTYPE_TS_CONTAINER.

iDefault

Input.

Indicates

that

the

default

installation

configuration

values

are

to

be

retrieved.

piDbname

Input.

The

alias

name

for

the

database

for

which

configuration

is

requested

when

object

type,

iObjType,

is

DB2ALERTCFG_OBJTYPE_TS_CONTAINER,

DB2ALERTCFG_OBJTYPE_TABLESPACE,

and

DB2ALERTCFG_OBJTYPE_DATABASE.

ioNumIndicators

This

parameter

can

be

used

as

either

an

input

or

output

parameter.

Input.

Indicates

the

number

of

pioIndicators

submitted

when

requesting

the

settings

for

a

subset

of

health

indicators.

Output.

Indicates

the

total

number

of

health

indicators

returned

by

the

API.

db2GetAlertCfg

-

Get

Alert

Configuration

Chapter

1.

Application

Programming

Interfaces

69

pioIndicators

A

pointer

to

the

db2GetAlertCfgInd

structure.

If

it

is

set

to

NULL,

all

health

indicators

for

that

object

will

be

returned.

ioIndicatorID

The

health

indicator

(defined

in

sqlmon.h).

oAlarm

Output.

The

health

indicator

alarm

threshold

setting.

This

setting

is

valid

for

threshold-based

health

indicators

only.

oWarning

Output.

The

health

indicator

warning

threshold

setting.

This

setting

is

valid

for

threshold-based

health

indicators

only.

oSensitivity

Output.

The

period

of

time

a

health

indicator’s

value

must

remain

within

a

threshold

zone

before

the

associated

alarm

or

warning

condition

is

registered.

poFormula

Output.

A

string

representation

of

the

formula

used

to

compute

the

health

indicator’s

value.

oActionEnabled

Output.

If

TRUE,

then

any

alert

actions

that

are

defined

in

poTaskActions

or

poScriptActions

will

be

invoked

if

a

threshold

is

breached.

If

FALSE,

none

of

the

defined

actions

will

be

invoked.

oCheckThresholds

Output.

If

TRUE,

the

threshold

breaches

or

state

changes

will

be

evaluated.

If

threshold

breaches

or

states

are

not

evaluated,

then

alerts

will

not

be

issued

and

alert

actions

will

not

be

invoked

regardless

of

whether

oActionEnabled

is

TRUE.

oNumTaskActions

Output.

The

number

of

task

alert

actions

in

the

pTaskAction

array.

poTaskActions

A

pointer

to

the

db2AlertTaskAction

structure.

oNumScriptActions

Output.

The

number

of

script

actions

in

the

poScriptActions

array.

poScriptActions

A

pointer

to

the

db2AlertScriptAction

structure.

oDefault

Output.

Indicates

whether

current

settings

are

inherited

from

the

default.

Set

to

TRUE

to

indicate

the

current

settings

are

inherited

from

the

default;

set

to

FALSE

otherwise.

pTaskname

The

name

of

the

task.

condition

The

condition

for

which

to

run

the

action.

scriptType

Specifies

the

type

of

script.

Valid

values

are:

v

DB2ALERTCFG_SCRIPTTYPE_DB2CMD

v

DB2ALERTCFG_SCRIPTTYPE_OS

db2GetAlertCfg

-

Get

Alert

Configuration

70

Administrative

API

Reference

|
|
|
|

pPathname

The

absolute

pathname

of

the

script.

pWorkingDir

The

absolute

pathname

of

the

directory

in

which

the

script

is

to

be

executed.

pCmdLineParms

The

command

line

parameters

to

be

passed

to

the

script

when

it

is

invoked.

Optional

for

DB2ALERTCFG_SCRIPTTYPE_OS

only.

stmtTermChar

The

character

that

is

used

in

the

script

to

terminate

statements.

Optional

for

DB2ALERTCFG_SCRIPTTYPE_DB2CMD

only.

pUserID

The

user

account

under

which

the

script

will

be

executed.

pPassword

The

password

for

the

user

account

pUserId.

pHostName

The

host

name

on

which

to

run

the

script.

This

applies

for

both

task

and

script.

Script

The

hostname

for

where

the

script

resides

and

will

be

run.

Task

The

hostname

for

where

the

scheduler

resides.

Usage

notes:

If

pioIndicators

is

left

NULL,

all

health

indicators

for

that

object

will

be

returned.

This

parameter

can

be

set

to

an

array

of

db2GetAlertCfgInd

structures

with

the

ioIndicatorID

set

to

the

health

indicator

we

desire

to

have

the

configuration

for.

When

used

in

this

manner,

be

sure

to

set

ioNumIndicators

to

the

input

array

length

and

to

set

all

other

fields

in

db2GetAlertCfgInd

to

0

or

NULL.

All

of

the

memory

under

this

pointer

is

allocated

by

the

engine

and

must

be

freed

with

a

db2GetAlertCfgFree

call

whenever

db2GetAlertCfg

returns

with

no

error.

See

db2ApiDf.h

for

information

about

db2GetAlertCfgFree.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2ResetAlertCfg

-

Reset

Alert

Configuration”

on

page

217

v

“db2UpdateAlertCfg

-

Update

Alert

Configuration”

on

page

254

v

“Health

indicators”

in

the

System

Monitor

Guide

and

Reference

v

“db2GetAlertCfgFree

-

Free

Get

Alert

Configuration

Memory”

on

page

71

db2GetAlertCfgFree

-

Free

Get

Alert

Configuration

Memory

Frees

the

memory

allocated

by

db2GetAlertCfg.

Authorization:

None

Required

connection:

db2GetAlertCfg

-

Get

Alert

Configuration

Chapter

1.

Application

Programming

Interfaces

71

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetAlertCfgFree

*/

/*

...

*/

SQL_API_RC_SQL_API_FN

db2GetAlertCfgFree

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetAlertCfgData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Reference

Text

Related

reference:

v

“SQLCA”

on

page

410

v

“db2GetAlertCfg

-

Get

Alert

Configuration”

on

page

68

v

“db2ResetAlertCfg

-

Reset

Alert

Configuration”

on

page

217

v

“db2UpdateAlertCfg

-

Update

Alert

Configuration”

on

page

254

db2GetContactGroup

-

Get

Contact

Group

Returns

the

contacts

included

in

a

single

contact

group.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Contacts

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

db2GetAlertCfg

-

Get

Alert

Configuration

72

Administrative

API

Reference

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetContactGroup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetContactGroup

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2ContactGroupData

{

char

*pGroupName;

char

*pDescription;

db2Uint32

numContacts;

struct

db2ContactTypeData

*pContacts;

}

db2ContactGroupData;

typedef

SQL_STRUCTURE

db2ContactTypeData

{

db2Uint32

contactType;

char

*pName;

}

db2ContactTypeData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetContactGroupData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pGroupName

Input.

The

name

of

the

group

to

be

retrieved.

pDescription

The

description

of

the

group.

numContacts

The

number

of

pContacts.

pContacts

A

pointer

to

the

db2ContactTypeData

structure.

The

fields

pGroupName,

pDescription,

pContacts,

and

pContacts.pName

should

be

preallocated

by

the

user

with

their

respective

maximum

sizes.

Call

db2GetContactGroup

with

numContacts=0

and

pContacts=NULL

to

have

the

required

length

for

pContacts

returned

in

numContacts.

contactType

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_SINGLE

v

DB2CONTACT_GROUP

pName

The

contact

group

name,

or

the

contact

name

if

ioContactType

is

set

to

DB2CONTACT_SINGLE.

Related

reference:

v

“SQLCA”

on

page

410

db2GetContactGroup

-

Get

Contact

Group

Chapter

1.

Application

Programming

Interfaces

73

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContactGroup

-

Add

Contact

Group”

on

page

16

v

“db2DropContactGroup

-

Drop

Contact

Group”

on

page

56

v

“db2GetContactGroups

-

Get

Contact

Groups”

on

page

74

v

“db2UpdateContactGroup

-

Update

Contact

Group”

on

page

261

db2GetContactGroups

-

Get

Contact

Groups

Returns

the

list

of

contact

groups.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Contact

groups

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetContactGroups

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetContactGroups

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2GetContactGroupsData

{

db2Uint32

ioNumGroups;

struct

db2ContactGroupDesc

*poGroups;

}

db2GetContactGroupsData;

typedef

SQL_STRUCTURE

db2ContactGroupDesc

{

char

*poName;

char

*poDescription;

}

db2ContactGroupDesc;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetContactGroupsData

structure.

db2GetContactGroup

-

Get

Contact

Group

74

Administrative

API

Reference

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

ioNumGroups

The

number

of

groups.

If

oNumGroups

=

0

and

poGroups

=

NULL,

it

will

contain

the

number

of

db2ContactGroupDesc

structures

needed

in

poGroups.

poGroups

Output.

A

pointer

to

the

db2ContactGroupDesc

structure.

poName

Output.

The

group

name.

This

parameter

should

be

preallocated

by

the

caller

with

the

respective

maximum

size.

poDescription

Output.

The

group

description.

This

parameter

should

be

preallocated

by

the

caller

with

the

respective

maximum

size.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContactGroup

-

Add

Contact

Group”

on

page

16

v

“db2DropContactGroup

-

Drop

Contact

Group”

on

page

56

v

“db2GetContactGroup

-

Get

Contact

Group”

on

page

72

v

“db2UpdateContactGroup

-

Update

Contact

Group”

on

page

261

db2GetContacts

-

Get

Contacts

Returns

the

list

of

contacts.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Contacts

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetContacts

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetContacts

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2GetContactsData

db2GetContactGroups

-

Get

Contact

Groups

Chapter

1.

Application

Programming

Interfaces

75

{

db2Uint32

ioNumContacts;

struct

db2ContactData

*poContacts;

}

db2GetContactsData;

typedef

SQL_STRUCTURE

db2ContactData

{

char

*pName;

db2Uint32

type;

char

*pAddress;

db2Uint32

maxPageLength;

char

*pDescription;

}

db2ContactData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetContactsData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

ioNumContacts

The

number

of

poContacts.

poContacts

Output.

A

pointer

to

the

db2ContactData

structure.

The

fields

poContacts,

pocontacts.pAddress,

pocontacts.pDescription,

and

pocontacts.pName

should

be

preallocated

by

the

user

with

their

respective

maximum

sizes.

Call

db2GetContacts

with

numContacts=0

and

poContacts=NULL

to

have

the

required

length

for

poContacts

returned

in

numContacts.

pName

The

contact

name.

type

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_EMAIL

v

DB2CONTACT_PAGE

pAddress

The

address

of

the

type

parameter.

maxPageLength

The

maximum

message

length

for

when

type

is

set

to

DB2CONTACT_PAGE.

pDescription

User

supplied

description

of

the

contact.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContact

-

Add

Contact”

on

page

15

v

“db2DropContact

-

Drop

Contact”

on

page

55

v

“db2UpdateContact

-

Update

Contact”

on

page

260

db2GetContacts

-

Get

Contacts

76

Administrative

API

Reference

db2GetHealthNotificationList

-

Get

Health

Notification

List

Returns

the

list

of

contacts

and/or

contact

groups

that

are

notified

about

the

health

of

an

instance.

A

contact

list

consists

of

e-mail

addresses

or

pager

internet

addresses

of

individuals

who

are

to

be

notified

when

non-normal

health

conditions

are

present

for

an

instance

or

any

of

its

database

objects.

Authorization:

None

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetHealthNotificationList

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetHealthNotificationList

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2GetHealthNotificationListData

{

db2Uint32

ioNumContacts;

struct

db2ContactTypeData

*poContacts;

}

db2GetHealthNotificationListData;

typedef

SQL_STRUCTURE

db2ContactTypeData

{

db2Uint32

contactType;

char

*pName;

}

db2ContactTypeData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetHealthNotificationListData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

ioNumContacts

The

number

of

contacts.

If

the

API

was

called

with

a

NULL

poContact,

then

ioNumContacts

will

be

set

to

the

number

of

contacts

the

user

should

allocate

to

perform

a

successful

call.

db2GetHealthNotificationList

-

Get

Health

Notification

List

Chapter

1.

Application

Programming

Interfaces

77

poContacts

Output.

A

pointer

to

the

db2ContactTypeData

structure.

contactType

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_SINGLE

v

DB2CONTACT_GROUP

pName

The

contact

group

name,

or

the

contact

name

if

contactType

is

set

to

DB2CONTACT_SINGLE.

Set

this

value

to

a

preallocated

buffer

of

size

DB2CONTACT_MAX_SZ.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2UpdateHealthNotificationList

-

Update

Health

Notification

List”

on

page

263

db2GetRecommendations

-

Get

Recommendations

for

a

Health

Indicator

in

Alert

State

Retrieves

a

set

of

recommendations

to

resolve

a

health

indicator

in

alert

state

on

a

particular

object.

The

recommendations

are

returned

as

an

XML

document.

Authorization:

None

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetRecommendations

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetRecommendations(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca

)

;

typedef

struct

db2GetRecommendationsData

{

db2Uint32

iSchemaVersion;

db2Uint32

iNodeNumber;

db2Uint32

iIndicatorID

;

db2Uint32

iObjType

;

char

*piObjName

;

char

*piDbname

;

char

*poRecommendation

;

}

db2GetRecommendationsData

;

/*

...

*/

db2GetHealthNotificationList

-

Get

Health

Notification

List

78

Administrative

API

Reference

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetRecommendationsData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iSchemaVersion

Input.

Version

ID

of

the

schema

used

to

represent

the

XML

document.

The

recommendation

document

will

only

contain

elements

or

attributes

that

were

defined

for

that

schema

version.

Set

this

parameter

to

one

of

the

following

constants:

DB2HEALTH_RECSCHEMA_VERSION8_2

iNodeNumber

Input.

Specifies

the

partition

number

where

the

health

indicator

(HI)

entered

an

alert

state.

Use

the

constant

SQLM_ALL_NODES

to

retrieve

recommendations

for

a

given

object

on

a

given

HI

across

all

partitions.

If

the

HI

has

the

same

recommendations

on

different

partitions,

those

recommendations

will

be

grouped

into

a

single

recommendation

set,

where

the

problem

is

the

group

of

HIs

on

different

partitions

and

the

recommendations

apply

to

all

of

these

HIs.

To

retrieve

recommendations

on

the

current

partition,

use

SQLM_CURRENT_NODE.

For

standalone

instances,

SQLM_CURRENT_NODE

should

be

used.

iIndicatorID

Input.

The

health

indicator

that

has

entered

an

alert

state

and

for

which

we

are

asking

a

recommendation.

Values

are

externalized

in

sqlmon.h.

iObjType

Input.

Specifies

the

type

of

object

on

which

the

health

indicator

(identified

by

iIndicatorID)

entered

an

alert

state.

Value

values

are:

DB2HEALTH_OBJTYPE_DBM

DB2HEALTH_OBJTYPE_DATABASE

DB2HEALTH_OBJTYPE_TABLESPACE

DB2HEALTH_OBJTYPE_TS_CONTAINER

piObjName

Input.

The

name

of

the

table

space

or

table

space

container

when

the

object

type,

iObjType,

is

set

to

DB2HEALTH_OBJTYPE_TABLESPACE

or

DB2HEALTH_OBJTYPE_TS_CONTAINER.

Specify

NULL

if

not

required.

In

the

case

of

a

table

space

container,

the

object

name

is

specified

as

<tablespace

name>.<container

name>.

piDbname

Input.

The

alias

name

for

the

database

on

which

the

HI

entered

an

alert

state

when

object

type,

iObjType,

is

DB2HEALTH_OBJTYPE_TS_CONTAINER,

DB2HEALTH_OBJTYPE_TABLESPACE,

and

DB2HEALTH_OBJTYPE_DATABASE.

Specify

NULL

otherwise.

poRecommendation

Output.

Character

pointer

that

will

be

set

to

the

address

of

a

buffer

in

memory

containing

the

recommendation

text,

formatted

as

an

XML

document

according

to

the

schema

provided

in

db2GetRecommendations

-

Get

Recommendations

Chapter

1.

Application

Programming

Interfaces

79

|

|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

sqllib/misc/DB2RecommendationSchema.xsd.

The

XML

document

will

be

encoded

in

UTF-8,

and

text

in

the

document

will

be

in

the

caller’s

locale.

The

xml:lang

attribute

on

the

DB2_HEALTH

node

will

be

set

to

the

appropriate

client

language.

The

API

should

be

considered

as

a

trusted

source

and

the

XML

document

should

not

be

validated.

XML

is

used

as

a

means

of

structuring

the

output

data.

All

memory

under

this

pointer

is

allocated

by

the

engine

and

must

be

freed

with

a

db2GetRecommendationsFree

call

whenever

db2GetRecommendations

returns

with

no

error.

Usage

notes:

v

Invoke

this

API

to

retrieve

a

set

of

recommendations

to

resolve

a

health

alert

on

a

specific

DB2

object.

If

the

input

health

indicator

is

not

in

an

alert

state

on

the

object

identified,

an

error

will

be

returned.

v

The

recommendations

are

returned

as

an

XML

document,

and

contain

information

about

actions

and

scripts

that

can

be

run

to

resolve

the

alert.

Any

scripts

returned

by

the

API

must

be

executed

on

the

instance

on

which

the

health

indicator

entered

the

alert

state.

For

information

about

the

structure

and

content

of

the

recommendation

XML

document

returned,

refer

to

the

schema

at

sqllib/misc/DB2RecommendationSchema.xsd

v

All

memory

allocated

by

the

engine

and

returned

by

this

function

(the

recommendation

document)

must

be

freed

with

a

db2GetRecommendationsFree

call

whenever

db2GetRecommendations

returns

with

no

error.

Related

reference:

v

“db2GetRecommendationsFree

-

Free

db2GetRecommendations

Memory”

on

page

80

db2GetRecommendationsFree

-

Free

db2GetRecommendations

Memory

Frees

the

memory

allocated

by

the

db2GetRecommendations

API.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetRecommendationsFree

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetRecommendationsFree(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca

)

;

/*

...

*/

db2GetRecommendations

-

Get

Recommendations

80

Administrative

API

Reference

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetRecommendationsData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“db2GetRecommendations

-

Get

Recommendations

for

a

Health

Indicator

in

Alert

State”

on

page

78

db2GetSnapshot

-

Get

Snapshot

Collects

database

manager

monitor

information

and

returns

it

to

a

user-allocated

data

buffer.

The

information

returned

represents

a

snapshot

of

the

database

manager

operational

status

at

the

time

the

API

was

called.

Scope:

This

API

can

return

information

for

the

database

partition

server

on

the

instance,

or

all

database

partitions

on

the

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

sysmon

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

To

obtain

a

snapshot

from

a

remote

instance

(or

a

different

local

instance),

it

is

necessary

to

first

attach

to

that

instance.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetSnapshot

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetSnapshot

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

db2GetRecommendationsFree

-

Free

db2GetRecommendations

Memory

Chapter

1.

Application

Programming

Interfaces

81

|

|
|
|

|
|

|
|

|

|
|

|

typedef

SQL_STRUCTURE

db2GetSnapshotData

{

struct

sqlma

*piSqlmaData;

struct

sqlm_collected

*poCollectedData;

void

*poBuffer;

db2Uint32

iVersion;

db2Uint32

iBufferSize;

db2Uint32

iStoreResult;

db2int32

iNodeNumber;

db2Uint32

*poOutputFormat;

db2Uint32

iSnapshotClass;

}

db2GetSnapshotData;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gGetSnapshot

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gGetSnapshot

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gGetSnapshotData

{

struct

sqlma

*piSqlmaData;

struct

sqlm_collected

*poCollectedData;

void

*poBuffer;

db2Uint32

iVersion;

db2Uint32

iBufferSize;

db2Uint32

iStoreResult;

db2int32

iNodeNumber;

db2Uint32

*poOutputFormat;

db2Uint32

iSnapshotClass;

}

db2gGetSnapshotData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

To

use

the

structure

as

described

above,

specify

db2Version810.

If

you

want

to

use

a

different

version

of

this

structure,

check

the

db2ApiDf.h

header

file

in

the

include

directory

for

the

complete

list

of

supported

versions.

Ensure

that

you

use

the

version

of

the

db2GetSnapshotData

structure

that

corresponds

to

the

version

number

that

you

specify.

pParmStruct

Input/Output.

A

pointer

to

the

db2GetSnapshotData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSqlmaData

Input.

Pointer

to

the

user-allocated

sqlma

(monitor

area)

structure.

This

structure

specifies

the

type(s)

of

data

to

be

collected.

poCollectedData

Output.

A

pointer

to

the

sqlm_collected

structure

into

which

the

database

monitor

delivers

summary

statistics

and

the

number

of

each

type

of

data

structure

returned

in

the

buffer

area.

db2GetSnapshot

-

Get

Snapshot

82

Administrative

API

Reference

|
|
|
|
|
|
|

Note:

This

structure

is

only

used

for

pre-Version

6

data

streams.

However,

if

a

snapshot

call

is

made

to

a

back-level

remote

server,

this

structure

must

be

passed

in

for

results

to

be

processed.

It

is

therefore

recommended

that

this

parameter

always

be

passed

in.

poBuffer

Output.

Pointer

to

the

user-defined

data

area

into

which

the

snapshot

information

will

be

returned.

iVersion

Input.

Version

ID

of

the

database

monitor

data

to

collect.

The

database

monitor

only

returns

data

that

was

available

for

the

requested

version.

Set

this

parameter

to

one

of

the

following

symbolic

constants:

v

SQLM_DBMON_VERSION1

v

SQLM_DBMON_VERSION2

v

SQLM_DBMON_VERSION5

v

SQLM_DBMON_VERSION5_2

v

SQLM_DBMON_VERSION6

v

SQLM_DBMON_VERSION7

v

SQLM_DBMON_VERSION8

Note:

If

SQLM_DBMON_VERSION1

is

specified

as

the

version,

the

APIs

cannot

be

run

remotely.

iBufferSize

Input.

The

length

of

the

data

buffer.

Use

db2GetSnapshotSize

to

estimate

the

size

of

this

buffer.

If

the

buffer

is

not

large

enough,

a

warning

is

returned,

along

with

the

information

that

will

fit

in

the

assigned

buffer.

It

may

be

necessary

to

resize

the

buffer

and

call

the

API

again.

iStoreResult

Input.

An

indicator

set

to

TRUE

or

FALSE,

depending

on

whether

the

snapshot

results

are

to

be

stored

at

the

DB2

server

for

viewing

through

SQL.

This

parameter

should

only

be

set

to

TRUE

when

the

snapshot

is

being

taken

over

a

database

connection,

and

when

one

of

the

snapshot

types

in

the

sqlma

is

SQLMA_DYNAMIC_SQL.

iNodeNumber

Input.

The

node

where

the

request

is

to

be

sent.

Based

on

this

value,

the

request

will

be

processed

for

the

current

node,

all

nodes

or

a

user

specified

node.

Valid

values

are:

v

SQLM_CURRENT_NODE

v

SQLM_ALL_NODES.

Only

allowed

when

iVersion

is

set

to

SQLM_DBMON_VERSION7

or

SQLM_DBMON_VERSION8.

v

node

value

Note:

For

standalone

instances

SQLM_CURRENT_NODE

must

be

used.

poOutputFormat

The

format

of

the

stream

returned

by

the

server.

It

will

be

one

of

the

following:

v

SQLM_STREAM_STATIC_FORMAT

v

SQLM_STREAM_DYNAMIC_FORMAT

db2GetSnapshot

-

Get

Snapshot

Chapter

1.

Application

Programming

Interfaces

83

iSnapshotClass

Input.

The

class

qualifier

for

the

snapshot.

Valid

values

(defined

in

sqlmon.h)

are:

v

SQLM_CLASS_DEFAULT

for

a

standard

snapshot

v

SQLM_CLASS_HEALTH

for

a

health

snapshot

v

SQLM_CLASS_HEALTH_WITH_DETAIL

for

a

health

snapshot

including

additional

details

Usage

notes:

If

an

alias

for

a

database

residing

at

a

different

instance

is

specified,

an

error

message

is

returned.

To

retrieve

a

health

snapshot

with

full

collection

information,

use

the

AGENT_ID

field

in

the

SQLMA

data

structure.

Related

reference:

v

“db2MonitorSwitches

-

Get/Update

Monitor

Switches”

on

page

191

v

“db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer”

on

page

84

v

“db2ResetMonitor

-

Reset

Monitor”

on

page

218

v

“SQLCA”

on

page

410

v

“SQLM-COLLECTED”

on

page

443

v

“SQLMA”

on

page

446

v

“db2ConvMonStream

-

Convert

Monitor

Stream”

on

page

38

Related

samples:

v

“utilsnap.c

--

Utilities

for

the

snapshot

monitor

samples

(C)”

v

“utilsnap.C

--

Utilities

for

the

snapshot

monitor

samples

(C++)”

db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer

Estimates

the

buffer

size

needed

by

db2GetSnapshot.

Scope:

This

API

can

either

affect

the

database

partition

server

on

the

instance,

or

all

database

partitions

on

the

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

sysmon

Required

connection:

db2GetSnapshot

-

Get

Snapshot

84

Administrative

API

Reference

|
|

|

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

To

obtain

information

from

a

remote

instance

(or

a

different

local

instance),

it

is

necessary

to

first

attach

to

that

instance.

If

an

attachment

does

not

exist,

an

implicit

instance

attachment

is

made

to

the

node

specified

by

the

DB2INSTANCE

environment

variable.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetSnapshotSize

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetSnapshotSize

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2GetSnapshotSizeData

{

struct

sqlma

*piSqlmaData;

sqluint32

*poBufferSize;

db2Uint32

iVersion;

db2int32

iNodeNumber;

db2Uint32

iSnapshotClass;

}

db2GetSnapshotSizeData;

/*

...*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gGetSnapshotSize

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gGetSnapshotSize

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gGetSnapshotSizeData

{

struct

sqlma

*piSqlmaData;

sqluint32

*poBufferSize;

db2Uint32

iVersion;

db2int32

iNodeNumber;

db2Uint32

iSnapshotClass;

}

db2gGetSnapshotSizeData;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

To

use

the

structure

as

described

above,

specify

db2Version810.

If

you

want

to

use

a

different

version

of

this

structure,

check

the

db2ApiDf.h

header

file

in

the

include

directory

for

the

db2GetSnapshotSize

-

Estimate

Output

Buffer

Chapter

1.

Application

Programming

Interfaces

85

|
|
|
|

complete

list

of

supported

versions.

Ensure

that

you

use

the

version

of

the

db2GetSnapshotSizeStruct

structure

that

corresponds

to

the

version

number

that

you

specify.

pParmStruct

Input.

A

pointer

to

the

db2GetSnapshotSizeStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSqlmaData

Input.

Pointer

to

the

user-allocated

sqlma

(monitor

area)

structure.

This

structure

specifies

the

type(s)

of

snapshot

data

to

be

collected,

and

can

be

reused

as

input

to

db2GetSnapshot.

poBufferSize

Output.

A

pointer

to

the

returned

estimated

buffer

size

needed

by

the

GET

SNAPSHOT

API.

iVersion

Input.

Version

ID

of

the

database

monitor

data

to

collect.

The

database

monitor

only

returns

data

that

was

available

for

the

requested

version.

Set

this

parameter

to

one

of

the

following

symbolic

constants:

v

SQLM_DBMON_VERSION1

v

SQLM_DBMON_VERSION2

v

SQLM_DBMON_VERSION5

v

SQLM_DBMON_VERSION5_2

v

SQLM_DBMON_VERSION6

v

SQLM_DBMON_VERSION7

v

SQLM_DBMON_VERSION8

Note:

If

SQLM_DBMON_VERSION1

is

specified

as

the

version,

the

APIs

cannot

be

run

remotely.

iNodeNumber

Input.

The

database

partition

server

where

the

request

is

to

be

sent.

Based

on

this

value,

the

request

will

be

processed

for

the

current

database

partition

server,

all

database

partition

servers,

or

a

user

specified

database

partition

server.

Valid

values

are:

v

SQLM_CURRENT_NODE

v

SQLM_ALL_NODES.

Only

allowed

when

iVersion

is

set

to

SQLM_DBMON_VERSION7

or

SQLM_DBMON_VERSION8.

v

node

value

For

stand-alone

instances,

SQLM_CURRENT_NODE

must

be

used.

For

iSnapshotClass

Input.

The

class

qualifier

for

the

snapshot.

Valid

values

(defined

in

sqlmon.h)

are:

v

SQLM_CLASS_DEFAULT

for

a

standard

snapshot

v

SQLM_CLASS_HEALTH

for

a

health

snapshot

v

SQLM_CLASS_HEALTH_WITH_DETAIL

for

a

health

snapshot

including

additional

details

Usage

notes:

db2GetSnapshotSize

-

Estimate

Output

Buffer

86

Administrative

API

Reference

|
|
|

This

function

generates

a

significant

amount

of

overhead.

Allocating

and

freeing

memory

dynamically

for

each

db2GetSnapshot

call

is

also

expensive.

If

calling

db2GetSnapshot

repeatedly,

for

example,

when

sampling

data

over

a

period

of

time,

it

may

be

preferable

to

allocate

a

buffer

of

fixed

size,

rather

than

call

db2GetSnapshotSize.

If

the

database

system

monitor

finds

no

active

databases

or

applications,

it

may

return

a

buffer

size

of

zero

(if,

for

example,

lock

information

related

to

a

database

that

is

not

active

is

requested).

Verify

that

the

estimated

buffer

size

returned

by

this

API

is

non-zero

before

calling

db2GetSnapshot.

If

an

error

is

returned

by

db2GetSnapshot

because

of

insufficient

buffer

space

to

hold

the

output,

call

this

API

again

to

determine

the

new

size

requirements.

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“db2MonitorSwitches

-

Get/Update

Monitor

Switches”

on

page

191

v

“db2ResetMonitor

-

Reset

Monitor”

on

page

218

v

“SQLCA”

on

page

410

v

“SQLMA”

on

page

446

v

“Snapshot

monitor

logical

data

groups

and

monitor

elements”

in

the

System

Monitor

Guide

and

Reference

v

“Event

monitor

logical

data

groups

and

monitor

elements”

in

the

System

Monitor

Guide

and

Reference

db2GetSyncSession

-

Get

Satellite

Sync

Session

Gets

the

satellite’s

current

synchronization

session

identifier.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GetSyncSession

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GetSyncSession

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*poSyncSessionID;

}

db2GetSyncSessionStruct;

/*

...

*/

db2GetSnapshotSize

-

Estimate

Output

Buffer

Chapter

1.

Application

Programming

Interfaces

87

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2GetSyncSessionStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

poSyncSessionID

Output.

Specifies

an

identifier

for

the

synchronization

session

that

a

satellite

is

currently

using.

Related

reference:

v

“SQLCA”

on

page

410

db2HADRStart

-

Start

HADR

Starts

HADR

operations

on

a

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

The

API

establishes

a

database

connection

if

one

does

not

exist,

and

closes

the

database

connection

when

the

API

completes.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HADRStart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HADRStart

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2HADRStartStruct

{

char

*piDbAlias;

char

*piUserName;

char

*piPassword;

db2Uint32

iDbRole;

db2Uint16

iByForce;

}

db2HADRStartStruct;

Generic

API

syntax:

db2GetSyncSession

-

Get

Satellite

Sync

Session

88

Administrative

API

Reference

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

/*

File:

db2ApiDf.h

*/

/*

API:

db2gHADRStart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gHADRStart

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gHADRStartStruct

{

char

*piDbAlias;

db2Uint32

iAliasLen;

char

*piUserName;

db2Uint32

iUserNameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

db2Uint32

iDbRole;

db2Uint16

iByForce;

}

db2gHADRStartStruct;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2HADRStartStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDbAlias

Input.

A

pointer

to

the

database

alias.

iAliasLen

Input.

Specifies

the

length

in

bytes

of

the

database

alias.

piUserName

Input.

A

pointer

to

the

user

name

under

which

the

command

will

be

executed.

iUserNameLen

Input.

Specifies

the

length

in

bytes

of

the

user

name.

piPassword

Input.

A

pointer

to

a

string

containing

the

password.

iPasswordLen

Input.

Specifies

the

length

in

bytes

of

the

password.

iDbRole

Input.

Specifies

whether

the

database

is

to

be

started

as

the

HADR

primary

database

or

as

the

HADR

standby

database.

Valid

values

are:

DB2HADR_DB_ROLE_PRIMARY

DB2HADR_DB_ROLE_STANDBY

iByForce

Input.

This

argument

is

ignored

if

iDbRole

is

set

to

DB2HADR_DB_ROLE_STANDBY.

Valid

values

are:

DB2HADR_NO_FORCE

Specifies

that

HADR

is

started

on

the

primary

database

only

if

a

standby

database

connects

to

it

within

a

prescribed

time

limit.

db2HADRStart

-

Start

HADR

Chapter

1.

Application

Programming

Interfaces

89

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|

|

|
|
|

|
|
|

DB2HADR_FORCE

Specifies

that

HADR

is

to

be

started

by

force,

without

waiting

for

the

standby

database

to

connect

to

the

primary

database.

Related

reference:

v

“db2HADRStop

-

Stop

HADR”

on

page

90

v

“db2HADRTakeover

-

Take

Over

as

Primary

Database”

on

page

91

v

“START

HADR

Command”

in

the

Command

Reference

db2HADRStop

-

Stop

HADR

Stops

HADR

operations

on

a

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

The

API

establishes

a

database

connection

if

one

does

not

exist,

and

closes

the

database

connection

when

the

API

completes.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HADRStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HADRStop

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2HADRStopStruct

{

char

*piDbAlias;

char

*piUserName;

char

*piPassword;

}

db2HADRStopStruct;

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gHADRStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gHADRStop

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gHADRStopStruct

{

db2HADRStart

-

Start

HADR

90

Administrative

API

Reference

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

char

*piDbAlias;

db2Uint32

iAliasLen;

char

*piUserName;

db2Uint32

iUserNameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

}

db2gHADRStopStruct;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2HADRStopStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDbAlias

Input.

A

pointer

to

the

database

alias.

iAliasLen

Input.

Specifies

the

length

in

bytes

of

the

database

alias.

piUserName

Input.

A

pointer

to

the

user

name

under

which

the

command

will

be

executed.

iUserNameLen

Input.

Specifies

the

length

in

bytes

of

the

user

name.

piPassword

Input.

A

pointer

to

a

string

containing

the

password.

iPasswordLen

Input.

Specifies

the

length

in

bytes

of

the

password.

Related

reference:

v

“db2HADRStart

-

Start

HADR”

on

page

88

v

“db2HADRTakeover

-

Take

Over

as

Primary

Database”

on

page

91

v

“STOP

HADR

Command”

in

the

Command

Reference

db2HADRTakeover

-

Take

Over

as

Primary

Database

Instructs

a

standby

database

to

take

over

as

the

primary

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

The

API

establishes

a

database

connection

if

one

does

not

exist,

and

closes

the

database

connection

when

the

API

completes.

db2HADRStop

-

Stop

HADR

Chapter

1.

Application

Programming

Interfaces

91

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HADRTakeover

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HADRTakeover

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2HADRTakeoverStruct

{

char

*piDbAlias;

char

*piUserName;

char

*piPassword;

db2Uint16

iByForce;

}

db2HADRTakeoverStruct;

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gHADRTakeover

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gHADRTakeover

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gHADRTakeoverStruct

{

char

*piDbAlias;

db2Uint32

iAliasLen;

char

*piUserName;

db2Uint32

iUserNameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

db2Uint16

iByForce;

}

db2gHADRTakeoverStruct;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2HADRStartStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDbAlias

Input.

A

pointer

to

the

database

alias.

iAliasLen

Input.

Specifies

the

length

in

bytes

of

the

database

alias.

piUserName

Input.

A

pointer

to

the

user

name

under

which

the

command

will

be

executed.

db2HADRTakeover

-

Take

Over

as

Primary

Database

92

Administrative

API

Reference

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

iUserNameLen

Input.

Specifies

the

length

in

bytes

of

the

user

name.

piPassword

Input.

A

pointer

to

a

string

containing

the

password.

iPasswordLen

Input.

Specifies

the

length

in

bytes

of

the

password.

iByForce

Input.

Valid

values

are:

DB2HADR_NO_FORCE

Specifies

that

a

takeover

occurs

only

if

the

two

systems

are

in

peer

state

with

communication

established;

this

results

in

a

role

reversal

between

the

HADR

primary

and

HADR

standby

databases.

DB2HADR_FORCE

Specifies

that

the

standby

database

takes

over

as

the

primary

database

without

waiting

for

confirmation

that

the

original

primary

database

has

been

shut

down.

Related

reference:

v

“db2HADRStart

-

Start

HADR”

on

page

88

v

“db2HADRStop

-

Stop

HADR”

on

page

90

v

“TAKEOVER

HADR

Command”

in

the

Command

Reference

db2HistoryCloseScan

-

Close

History

File

Scan

Ends

a

history

file

scan

and

frees

DB2

resources

required

for

the

scan.

This

API

must

be

preceded

by

a

successful

call

to

db2HistoryOpenScan.

Authorization:

None

Required

connection:

Instance.

It

is

not

necessary

to

call

sqleatin

before

calling

this

API.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HistoryCloseScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HistoryCloseScan

(

db2Uint32

version,

void

*piHandle,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

db2HADRTakeover

-

Take

Over

as

Primary

Database

Chapter

1.

Application

Programming

Interfaces

93

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

/*

File:

db2ApiDf.h

*/

/*

API:

db2GenHistoryCloseScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GenHistoryCloseScan

(

db2Uint32

version,

void

*piHandle,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

second

parameter,

piHandle.

piHandle

Input.

Specifies

a

pointer

to

the

handle

for

scan

access

that

was

returned

by

db2HistoryOpenScan.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

CLOSE

RECOVERY

HISTORY

FILE

:scanid

REXX

API

parameters:

scanid

Host

variable

containing

the

scan

identifier

returned

from

OPEN

RECOVERY

HISTORY

FILE

SCAN.

Usage

notes:

For

a

detailed

description

of

the

use

of

the

history

file

APIs,

see

db2HistoryOpenScan.

Related

reference:

v

“db2Prune

-

Prune

History

File”

on

page

194

v

“db2HistoryUpdate

-

Update

History

File”

on

page

101

v

“db2HistoryOpenScan

-

Open

History

File

Scan”

on

page

97

v

“db2HistoryGetEntry

-

Get

Next

History

File

Entry”

on

page

94

v

“SQLCA”

on

page

410

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2HistoryGetEntry

-

Get

Next

History

File

Entry

Gets

the

next

entry

from

the

history

file.

This

API

must

be

preceded

by

a

successful

call

to

db2HistoryOpenScan.

Authorization:

None

Required

connection:

db2HistoryCloseScan

-

Close

History

File

Scan

94

Administrative

API

Reference

Instance.

It

is

not

necessary

to

call

sqleatin

before

calling

this

API.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HistoryGetEntry

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HistoryGetEntry

(

db2Uint32

version,

void

*pDB2HistoryGetEntryStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle,

db2Uint16

iCallerAction,

struct

db2HistData

*pioHistData

}

db2HistoryGetEntryStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GenHistoryGetEntry

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GenHistoryGetEntry

(

db2Uint32

version,

void

*pDB2GenHistoryGetEntryStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint16

iHandle,

db2Uint16

iCallerAction,

struct

db2HistData

*pioHistData

}

db2GenHistoryGetEntryStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pDB2HistoryGetEntryStruct.

pDB2HistoryGetEntryStruct

Input.

A

pointer

to

the

db2HistoryGetEntryStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iHandle

Input.

Contains

the

handle

for

scan

access

that

was

returned

by

db2HistoryOpenScan.

iCallerAction

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf)

are:

DB2HISTORY_GET_ENTRY

Get

the

next

entry,

but

without

any

command

data.

db2HistoryGetEntry

-

Get

Next

History

File

Entry

Chapter

1.

Application

Programming

Interfaces

95

DB2HISTORY_GET_DDL

Get

only

the

command

data

from

the

previous

fetch.

DB2HISTORY_GET_ALL

Get

the

next

entry,

including

all

data.

pioHistData

Input.

A

pointer

to

the

db2HistData

structure.

REXX

API

syntax:

GET

RECOVERY

HISTORY

FILE

ENTRY

:scanid

[USING

:value]

REXX

API

parameters:

scanid

Host

variable

containing

the

scan

identifier

returned

from

OPEN

RECOVERY

HISTORY

FILE

SCAN.

value

A

compound

REXX

host

variable

into

which

the

history

file

entry

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name:

XXX.0

Number

of

first

level

elements

in

the

variable

(always

15)

XXX.1

Number

of

table

space

elements

XXX.2

Number

of

used

table

space

elements

XXX.3

OPERATION

(type

of

operation

performed)

XXX.4

OBJECT

(granularity

of

the

operation)

XXX.5

OBJECT_PART

(time

stamp

and

sequence

number)

XXX.6

OPTYPE

(qualifier

of

the

operation)

XXX.7

DEVICE_TYPE

(type

of

device

used)

XXX.8

FIRST_LOG

(earliest

log

ID)

XXX.9

LAST_LOG

(current

log

ID)

XXX.10

BACKUP_ID

(identifier

for

the

backup)

XXX.11

SCHEMA

(qualifier

for

the

table

name)

XXX.12

TABLE_NAME

(name

of

the

loaded

table)

XXX.13.0

NUM_OF_TABLESPACES

(number

of

table

spaces

involved

in

backup

or

restore)

XXX.13.1

Name

of

the

first

table

space

backed

up/restored

XXX.13.2

Name

of

the

second

table

space

backed

up/restored

XXX.13.3

and

so

on

XXX.14

LOCATION

(where

backup

or

copy

is

stored)

XXX.15

COMMENT

(text

to

describe

the

entry).

Usage

notes:

The

records

that

are

returned

will

have

been

selected

using

the

values

specified

on

the

call

to

db2HistoryOpenScan.

For

a

detailed

description

of

the

use

of

the

history

file

APIs,

see

db2HistoryOpenScan.

db2HistoryGetEntry

-

Get

Next

History

File

Entry

96

Administrative

API

Reference

Related

reference:

v

“db2Prune

-

Prune

History

File”

on

page

194

v

“db2HistoryUpdate

-

Update

History

File”

on

page

101

v

“db2HistoryOpenScan

-

Open

History

File

Scan”

on

page

97

v

“db2HistoryCloseScan

-

Close

History

File

Scan”

on

page

93

v

“SQLCA”

on

page

410

v

“db2HistData”

on

page

397

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2HistoryOpenScan

-

Open

History

File

Scan

Starts

a

history

file

scan.

Authorization:

None

Required

connection:

Instance.

If

the

database

is

cataloged

as

remote,

call

sqleatin

before

calling

this

API.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HistoryOpenScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HistoryOpenScan

(

db2Uint32

version,

void

*pDB2HistoryOpenStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseAlias,

char

*piTimestamp,

char

*piObjectName,

db2Uint32

oNumRows,

db2Uint32

oMaxTbspaces,

db2Uint16

iCallerAction,

db2Uint16

oHandle

}

db2HistoryOpenStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GenHistoryOpenScan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GenHistoryOpenScan

(

db2Uint32

version,

db2HistoryGetEntry

-

Get

Next

History

File

Entry

Chapter

1.

Application

Programming

Interfaces

97

void

*pDB2GenHistoryOpenStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piDatabaseAlias,

char

*piTimestamp,

char

*piObjectName,

db2Uint32

oNumRows,

db2Uint32

oMaxTbspaces,

db2Uint16

iCallerAction,

db2Uint16

oHandle

}

db2GenHistoryOpenStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pDB2HistoryOpenStruct.

pDB2HistoryOpenStruct

Input.

A

pointer

to

the

db2HistoryOpenStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDatabaseAlias

Input.

A

pointer

to

a

string

containing

the

database

alias.

piTimestamp

Input.

A

pointer

to

a

string

specifying

the

time

stamp

to

be

used

for

selecting

records.

Records

whose

time

stamp

is

equal

to

or

greater

than

this

value

are

selected.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

prevents

the

filtering

of

entries

using

a

time

stamp.

piObjectName

Input.

A

pointer

to

a

string

specifying

the

object

name

to

be

used

for

selecting

records.

The

object

may

be

a

table

or

a

table

space.

If

it

is

a

table,

the

fully

qualified

table

name

must

be

provided.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

prevents

the

filtering

of

entries

using

the

object

name.

oNumRows

Output.

Upon

return

from

the

API,

this

parameter

contains

the

number

of

matching

history

file

entries.

oMaxTbspaces

Output.

The

maximum

number

of

table

space

names

stored

with

any

history

entry.

iCallerAction

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf)

are:

DB2HISTORY_LIST_HISTORY

Lists

all

events

that

are

currently

logged

in

the

history

file.

DB2HISTORY_LIST_BACKUP

Lists

backup

and

restore

operations.

DB2HISTORY_LIST_ROLLFORWARD

Lists

rollforward

operations.

db2HistoryOpenScan

-

Open

History

File

Scan

98

Administrative

API

Reference

DB2HISTORY_LIST_DROPPED_TABLE

Lists

dropped

table

records.

The

DDL

field

associated

with

an

entry

is

not

returned.

To

retrieve

the

DDL

information

for

an

entry,

db2HistoryGetEntry

must

be

called

with

a

caller

action

of

DB2HISTORY_GET_DDL

immediately

after

the

entry

is

fetched.

DB2HISTORY_LIST_LOAD

Lists

load

operations.

DB2HISTORY_LIST_CRT_TABLESPACE

Lists

table

space

create

and

drop

operations.

DB2HISTORY_LIST_REN_TABLESPACE

Lists

table

space

renaming

operations.

DB2HISTORY_LIST_ALT_TABLESPACE

Lists

alter

table

space

operations.

The

DDL

field

associated

with

an

entry

is

not

returned.

To

retrieve

the

DDL

information

for

an

entry,

db2HistoryGetEntry

must

be

called

with

a

caller

action

of

DB2HISTORY_GET_DDL

immediately

after

the

entry

is

fetched.

DB2HISTORY_LIST_REORG

Lists

REORGANIZE

TABLE

operations.

This

value

is

not

currently

supported.

oHandle

Output.

Upon

return

from

the

API,

this

parameter

contains

the

handle

for

scan

access.

It

is

subsequently

used

in

db2HistoryGetEntry,

and

db2HistoryCloseScan.

REXX

API

syntax:

OPEN

[BACKUP]

RECOVERY

HISTORY

FILE

FOR

database_alias

[OBJECT

objname]

[TIMESTAMP

:timestamp]

USING

:value

REXX

API

parameters:

database_alias

The

alias

of

the

database

whose

history

file

is

to

be

listed.

objname

Specifies

the

object

name

to

be

used

for

selecting

records.

The

object

may

be

a

table

or

a

table

space.

If

it

is

a

table,

the

fully

qualified

table

name

must

be

provided.

Setting

this

parameter

to

NULL

prevents

the

filtering

of

entries

using

objname.

timestamp

Specifies

the

time

stamp

to

be

used

for

selecting

records.

Records

whose

time

stamp

is

equal

to

or

greater

than

this

value

are

selected.

Setting

this

parameter

to

NULL

prevents

the

filtering

of

entries

using

timestamp.

value

A

compound

REXX

host

variable

to

which

history

file

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

XXX.0

Number

of

elements

in

the

variable

(always

2)

XXX.1

Identifier

(handle)

for

future

scan

access

XXX.2

Number

of

matching

history

file

entries.

Usage

notes:

db2HistoryOpenScan

-

Open

History

File

Scan

Chapter

1.

Application

Programming

Interfaces

99

The

combination

of

time

stamp,

object

name

and

caller

action

can

be

used

to

filter

records.

Only

records

that

pass

all

specified

filters

are

returned.

The

filtering

effect

of

the

object

name

depends

on

the

value

specified:

v

Specifying

a

table

will

return

records

for

load

operations,

because

this

is

the

only

information

for

tables

in

the

history

file.

v

Specifying

a

table

space

will

return

records

for

backup,

restore,

and

load

operations

for

the

table

space.

Note:

To

return

records

for

tables,

they

must

be

specified

as

schema.tablename.

Specifying

tablename

will

only

return

records

for

table

spaces.

A

maximum

of

eight

history

file

scans

per

process

is

permitted.

To

list

every

entry

in

the

history

file,

a

typical

application

will

perform

the

following

steps:

1.

Call

db2HistoryOpenScan,

which

will

return

oNumRows.

2.

Allocate

an

db2HistData

structure

with

space

for

n

oTablespace

fields,

where

n

is

an

arbitrary

number.

3.

Set

the

iDB2NumTablespace

field

of

the

db2HistData

structure

to

n.

4.

In

a

loop,

perform

the

following:

v

Call

db2HistoryGetEntry

to

fetch

from

the

history

file.

v

If

db2HistoryGetEntry

returns

an

SQLCODE

of

SQL_RC_OK,

use

the

sqld

field

of

the

db2HistData

structure

to

determine

the

number

of

table

space

entries

returned.

v

If

db2HistoryGetEntry

returns

an

SQLCODE

of

SQLUH_SQLUHINFO_VARS_WARNING,

not

enough

space

has

been

allocated

for

all

of

the

table

spaces

that

DB2

is

trying

to

return;

free

and

reallocate

the

db2HistData

structure

with

enough

space

for

oDB2UsedTablespace

table

space

entries,

and

set

iDB2NumTablespace

to

oDB2UsedTablespace.

v

If

db2HistoryGetEntry

returns

an

SQLCODE

of

SQLE_RC_NOMORE,

all

history

file

entries

have

been

retrieved.

v

Any

other

SQLCODE

indicates

a

problem.
5.

When

all

of

the

information

has

been

fetched,

call

db2HistoryCloseScan

to

free

the

resources

allocated

by

the

call

to

db2HistoryOpenScan.

The

macro

SQLUHINFOSIZE(n)

(defined

in

sqlutil)

is

provided

to

help

determine

how

much

memory

is

required

for

an

db2HistData

structure

with

space

for

n

oTablespace

fields.

Related

reference:

v

“db2Prune

-

Prune

History

File”

on

page

194

v

“db2HistoryUpdate

-

Update

History

File”

on

page

101

v

“db2HistoryGetEntry

-

Get

Next

History

File

Entry”

on

page

94

v

“db2HistoryCloseScan

-

Close

History

File

Scan”

on

page

93

v

“SQLCA”

on

page

410

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2HistoryOpenScan

-

Open

History

File

Scan

100

Administrative

API

Reference

db2HistoryUpdate

-

Update

History

File

Updates

the

location,

device

type,

or

comment

in

a

history

file

entry.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database.

To

update

entries

in

the

history

file

for

a

database

other

than

the

default

database,

a

connection

to

the

database

must

be

established

before

calling

this

API.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2HistoryUpdate

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2HistoryUpdate

(

db2Uint32

version,

void

*pDB2HistoryUpdateStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2HistoryUpdateStruct

{

char

*piNewLocation;

char

*piNewDeviceType;

char

*piNewComment;

char

*piNewStatus;

db2HistoryEID

iEID;

}

db2HistoryUpdateStruct;

/*

Structure

db2HistoryEID

*/

typedef

SQL_STRUCTURE

db2HistoryEID

{

SQL_PDB_NODE_TYPE

ioNode;

db2Uint32

ioHID;

}

db2HistoryEID;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gHistoryUpdate

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GenHistoryUpdate

(

db2Uint32

version,

void

*pDB2GenHistoryUpdateStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gHistoryUpdateStruct

db2HistoryUpdate

-

Update

History

File

Chapter

1.

Application

Programming

Interfaces

101

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

{

char

*piNewLocation;

char

*piNewDeviceType;

char

*piNewComment;

char

*piNewStatus;

db2Uint32

iNewLocationLen;

db2Uint32

iNewDeviceLen;

db2Uint32

iNewCommentLen;

db2Uint32

iNewStatusLen;

db2HistoryEID

iEID;

}

db2gHistoryUpdateStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pDB2HistoryUpdateStruct.

pDB2HistoryUpdateStruct

Input.

A

pointer

to

the

db2HistoryUpdateStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piNewLocation

Input.

A

pointer

to

a

string

specifying

a

new

location

for

the

backup,

restore,

or

load

copy

image.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

leaves

the

value

unchanged.

piNewDeviceType

Input.

A

pointer

to

a

string

specifying

a

new

device

type

for

storing

the

backup,

restore,

or

load

copy

image.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

leaves

the

value

unchanged.

piNewComment

Input.

A

pointer

to

a

string

specifying

a

new

comment

to

describe

the

entry.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

leaves

the

comment

unchanged.

piNewStatus

Input.

A

pointer

to

a

string

specifying

a

new

status

type

for

the

entry.

Setting

this

parameter

to

NULL,

or

pointing

to

zero,

leaves

the

status

unchanged.

iNewLocationLen

Input.

Length

of

the

piNewLocationLen

field.

iNewDeviceLen

Input.

Length

of

the

piNewDeviceLen

field.

iNewCommentLen

Input.

Length

of

the

piNewCommentLen

field.

iNewStatusLen

Input.

Length

of

the

piNewStatusLen

field.

iEID

Input.

A

unique

identifier

that

can

be

used

to

update

a

specific

entry

in

the

history

file.

ioNode

This

parameter

can

be

used

as

either

an

input

or

output

parameter.

Indicates

the

node

number.

db2HistoryUpdate

-

Update

History

File

102

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

ioHID

This

parameter

can

be

used

as

either

an

input

or

output

parameter.

Indicates

the

local

history

file

entry

ID.

REXX

API

syntax:

UPDATE

RECOVERY

HISTORY

USING

:value

REXX

API

parameters:

value

A

compound

REXX

host

variable

containing

information

pertaining

to

the

new

location

of

a

history

file

entry.

In

the

following,

XXX

represents

the

host

variable

name:

XXX.0

Number

of

elements

in

the

variable

(must

be

between

1

and

4)

XXX.1

OBJECT_PART

(time

stamp

with

a

sequence

number

from

001

to

999)

XXX.2

New

location

for

the

backup

or

copy

image

(this

parameter

is

optional)

XXX.3

New

device

used

to

store

the

backup

or

copy

image

(this

parameter

is

optional)

XXX.4

New

comment

(this

parameter

is

optional).

Usage

notes:

This

is

an

update

function,

and

all

information

prior

to

the

change

is

replaced

and

cannot

be

recreated.

These

changes

are

not

logged.

The

primary

purpose

of

the

database

history

file

is

to

record

information,

but

the

data

contained

in

the

history

is

used

directly

by

automatic

restore

operations.

During

any

restore

where

the

AUTOMATIC

option

is

specified,

the

history

of

backup

images

and

their

locations

will

be

referenced

and

used

by

the

restore

utility

to

fulfill

the

automatic

restore

request.

If

the

automatic

restore

function

is

to

be

used

and

backup

images

have

been

relocated

since

they

were

created,

it

is

recommended

that

the

database

history

record

for

those

images

be

updated

to

reflect

the

current

location.

If

the

backup

image

location

in

the

database

history

is

not

updated,

automatic

restore

will

not

be

able

to

locate

the

backup

images,

but

manual

restore

commands

can

still

be

used

successfully.

Related

reference:

v

“db2Rollforward

-

Rollforward

Database”

on

page

232

v

“db2Prune

-

Prune

History

File”

on

page

194

v

“db2HistoryOpenScan

-

Open

History

File

Scan”

on

page

97

v

“db2HistoryGetEntry

-

Get

Next

History

File

Entry”

on

page

94

v

“db2HistoryCloseScan

-

Close

History

File

Scan”

on

page

93

v

“SQLCA”

on

page

410

v

“UPDATE

HISTORY

FILE

Command”

in

the

Command

Reference

v

“db2Backup

-

Backup

database”

on

page

26

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2HistoryUpdate

-

Update

History

File

Chapter

1.

Application

Programming

Interfaces

103

||

|

db2Import

-

Import

Inserts

data

from

an

external

file

with

a

supported

file

format

into

a

table,

hierarchy,

or

view.

A

faster

alternative

is

Load

however,

the

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

v

IMPORT

using

the

INSERT

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

each

participating

table

or

view

–

INSERT

and

SELECT

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

INSERT_UPDATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

UPDATE

and

DELETE

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

REPLACE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

and

DELETE

privilege

on

the

table

or

view
v

IMPORT

to

a

new

table

using

the

CREATE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space,

as

well

as

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

-

CREATIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema
v

IMPORT

to

a

table

or

a

hierarchy

that

does

not

exist

using

the

CREATE,

or

the

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database,

and

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

schema

name

of

the

table

does

not

exist

-

CREATEIN

privilege

on

the

schema,

if

the

schema

of

the

table

exists

-

CONTROL

privilege

on

every

sub-table

in

the

hierarchy,

if

the

REPLACE_CREATE

option

on

the

entire

hierarchy

is

used
v

IMPORT

to

an

existing

hierarchy

using

the

REPLACE

option

requires

one

of

the

following:

–

sysadm

db2Import

-

Import

104

Administrative

API

Reference

–

dbadm

–

CONTROL

privilege

on

every

sub-table

in

the

hierarchy

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

db2Import

-

API

*/

SQL_API_RC

SQL_API_FN

db2Import

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2Import

parameter

structure

*/

typedef

SQL_STRUCTURE

db2ImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ImportIn

*piImportInfoIn;

struct

db2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

}

db2ImportStruct;

/*

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2ImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2ImportIn;

/*

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2ImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsInserted;

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2ImportOut;

Generic

API

syntax:

/*

db2gImport

-

Generic

API

*/

SQL_API_RC

SQL_API_FN

db2gImport

(

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

105

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2gImport

parameter

structure

*/

typedef

SQL_STRUCTURE

db2gImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2gImportIn

*piImportInfoIn;

struct

dbg2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gImportStruct;

/*

Generic

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2gImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2gImportIn;

/*

Generic

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2gImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsInserted;

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2gImportOut;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter

pParmStruct.

pParmStruct

Input/Output.

A

pointer

to

the

db2ImportStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

input

file

from

which

the

data

is

to

be

imported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

can

be

found.

db2Import

-

Import

106

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

import

from

the

external

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

import

utility.

Valid

values

for

this

parameter

are:

SQL_METH_N

Names.

Selection

of

columns

from

the

external

input

file

is

by

column

name.

SQL_METH_P

Positions.

Selection

of

columns

from

the

external

input

file

is

by

column

position.

SQL_METH_L

Locations.

Selection

of

columns

from

the

external

input

file

is

by

column

location.

The

database

manager

rejects

an

import

call

with

a

location

pair

that

is

invalid

because

of

any

one

of

the

following

conditions:

v

Either

the

beginning

or

the

ending

location

is

not

in

the

range

from

1

to

the

largest

signed

2-byte

integer.

v

The

ending

location

is

smaller

than

the

beginning

location.

v

The

input

column

width

defined

by

the

location

pair

is

not

compatible

with

the

type

and

the

length

of

the

target

column.

A

location

pair

with

both

locations

equal

to

zero

indicates

that

a

nullable

column

is

to

be

filled

with

NULLs.

SQL_METH_D

Default.

If

piDataDescriptor

is

NULL,

or

is

set

to

SQL_METH_D,

default

selection

of

columns

from

the

external

input

file

is

done.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

For

DEL,

IXF,

or

WSF

files,

the

first

n

columns

of

data

in

the

external

input

file

are

taken

in

their

natural

order,

where

n

is

the

number

of

database

columns

into

which

the

data

is

to

be

imported.

piActionString

Input.

Pointer

to

an

sqlchar

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

identifying

the

columns

into

which

data

is

to

be

imported.

The

character

array

is

of

the

form:

{INSERT

|

INSERT_UPDATE

|

REPLACE

|

CREATE

|

REPLACE_CREATE}

INTO

{tname[(tcolumn-list)]

|

[{ALL

TABLES

|

(tname[(tcolumn-list)][,

tname[(tcolumn-list)]])}]

[IN]

HIERARCHY

{STARTING

tname

|

(tname[,

tname])}

[UNDER

sub-table-name

|

AS

ROOT

TABLE]}

[DATALINK

SPECIFICATION

datalink-spec]

INSERT

Adds

the

imported

data

to

the

table

without

changing

the

existing

table

data.

INSERT_UPDATE

Adds

the

imported

rows

if

their

primary

key

values

are

not

in

the

table,

and

uses

them

for

update

if

their

primary

key

values

are

found.

This

option

is

only

valid

if

the

target

table

has

a

primary

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

107

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

key,

and

the

specified

(or

implied)

list

of

target

columns

being

imported

includes

all

columns

for

the

primary

key.

This

option

cannot

be

applied

to

views.

REPLACE

Deletes

all

existing

data

from

the

table

by

truncating

the

table

object,

and

inserts

the

imported

data.

The

table

definition

and

the

index

definitions

are

not

changed.

(Indexes

are

deleted

and

replaced

if

indexixf

is

in

FileTypeMod,

and

FileType

is

SQL_IXF.)

If

the

table

is

not

already

defined,

an

error

is

returned.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

CREATE

Creates

the

table

definition

and

the

row

contents

using

the

information

in

the

specified

PC/IXF

file,

if

the

specified

table

is

not

defined.

If

the

file

was

previously

exported

by

DB2,

indexes

are

also

created.

If

the

specified

table

is

already

defined,

an

error

is

returned.

This

option

is

valid

for

the

PC/IXF

file

format

only.

REPLACE_CREATE

Replaces

the

table

contents

using

the

PC/IXF

row

information

in

the

PC/IXF

file,

if

the

specified

table

is

defined.

If

the

table

is

not

already

defined,

the

table

definition

and

row

contents

are

created

using

the

information

in

the

specified

PC/IXF

file.

If

the

PC/IXF

file

was

previously

exported

by

DB2,

indexes

are

also

created.

This

option

is

valid

for

the

PC/IXF

file

format

only.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

tname

The

name

of

the

table,

typed

table,

view,

or

object

view

into

which

the

data

is

to

be

inserted.

An

alias

for

REPLACE,

INSERT_UPDATE,

or

INSERT

can

be

specified,

except

in

the

case

of

a

down-level

server,

when

a

qualified

or

unqualified

name

should

be

specified.

If

it

is

a

view,

it

cannot

be

a

read-only

view.

tcolumn-list

A

list

of

table

or

view

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

column

names

are

not

specified,

column

names

as

defined

in

the

CREATE

TABLE

or

the

ALTER

TABLE

statement

are

used.

If

no

column

list

is

specified

for

typed

tables,

data

is

inserted

into

all

columns

within

each

sub-table.

sub-table-name

Specifies

a

parent

table

when

creating

one

or

more

sub-tables

under

the

CREATE

option.

ALL

TABLES

An

implicit

keyword

for

hierarchy

only.

When

importing

a

hierarchy,

the

default

is

to

import

all

tables

specified

in

the

traversal-order-list.

HIERARCHY

Specifies

that

hierarchical

data

is

to

be

imported.

db2Import

-

Import

108

Administrative

API

Reference

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

||
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

STARTING

Keyword

for

hierarchy

only.

Specifies

that

the

default

order,

starting

from

a

given

sub-table

name,

is

to

be

used.

UNDER

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

under

a

given

sub-table.

AS

ROOT

TABLE

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

as

a

stand-alone

hierarchy.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links

Manager.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

IMPORT

command.

The

tname

and

the

tcolumn-list

parameters

correspond

to

the

tablename

and

the

colname

lists

of

SQL

INSERT

statements,

and

have

the

same

restrictions.

The

columns

in

tcolumn-list

and

the

external

columns

(either

specified

or

implied)

are

matched

according

to

their

position

in

the

list

or

the

structure

(data

from

the

first

column

specified

in

the

sqldcol

structure

is

inserted

into

the

table

or

view

field

corresponding

to

the

first

element

of

the

tcolumn-list).

If

unequal

numbers

of

columns

are

specified,

the

number

of

columns

actually

processed

is

the

lesser

of

the

two

numbers.

This

could

result

in

an

error

(because

there

are

no

values

to

place

in

some

non-nullable

table

fields)

or

an

informational

message

(because

some

external

file

columns

are

ignored).

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

imported

later

into

the

same

table

or

into

another

database

manager

table.

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

piFileTypeMod

Input.

A

pointer

to

a

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

109

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

import.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

appended

to.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

import

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

piImportInfoIn

Input.

Pointer

to

the

db2ImportIn

structure.

poImportInfoOut

Output.

Pointer

to

the

db2ImportOut

structure.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

The

number

of

elements

in

this

array

must

match

the

number

of

columns

in

the

input

file;

there

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

imported

from

the

data

file.

Therefore,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

piDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

column

in

the

data

file

that

is

to

be

used

as

a

null

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

column

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

iRowcount

rows

in

a

file.

If

iRowcount

is

0,

import

will

attempt

to

process

all

the

rows

from

the

file.

db2Import

-

Import

110

Administrative

API

Reference

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

iSkipcount

Input.

The

number

of

records

to

skip

before

starting

to

insert

or

update

records.

Functionally

equivalent

to

iRestartcount.

piCommitcount

Input.

The

number

of

records

to

import

before

committing

them

to

the

database.

A

commit

is

performed

whenever

piCommitcount

records

are

imported.

A

NULL

value

specifies

the

default

commit

count

value,

which

is

zero

for

offline

import

and

AUTOMATIC

for

online

import.

Commitcount

AUTOMATIC

is

specified

by

passing

in

the

value

DB2IMPORT_COMMIT_AUTO.

iWarningcount

Input.

Stops

the

import

operation

after

iWarningcount

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

import

file

or

the

target

table

is

specified

incorrectly,

the

import

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

import,

which

will

cause

the

import

to

fail.

If

iWarningcount

is

0,

or

this

option

is

not

specified,

the

import

operation

will

continue

regardless

of

the

number

of

warnings

issued.

iNoTimeout

Input.

Specifies

that

the

import

utility

will

not

time

out

while

waiting

for

locks.

This

option

supersedes

the

locktimeout

database

configuration

parameter.

Other

applications

are

not

affected.

Valid

values

are:

DB2IMPORT_LOCKTIMEOUT

Indicates

that

the

value

of

the

locktimeout

configuration

parameter

is

respected.

DB2IMPORT_NO_LOCKTIMEOUT

Indicates

there

is

no

timeout.

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

import

utility

locks

the

table

exclusively.

SQLU_ALLOW_WRITE_ACCESS

Specifies

that

the

data

in

the

table

should

still

be

accessible

to

readers

and

writers

while

the

import

is

in

progress.

oRowsRead

Output.

Number

of

records

read

from

the

file

during

import.

oRowsSkipped

Output.

Number

of

records

skipped

before

inserting

or

updating

begins.

oRowsInserted

Output.

Number

of

rows

inserted

into

the

target

table.

oRowsUpdated

Output.

Number

of

rows

in

the

target

table

updated

with

information

from

the

imported

records

(records

whose

primary

key

value

already

exists

in

the

table).

oRowsRejected

Output.

Number

of

records

that

could

not

be

imported.

oRowsCommitted

Output.

Number

of

records

imported

successfully

and

committed

to

the

database.

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

111

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

import

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

The

import

utility

adds

rows

to

the

target

table

using

the

SQL

INSERT

statement.

The

utility

issues

one

INSERT

statement

for

each

row

of

data

in

the

input

file.

If

an

INSERT

statement

fails,

one

of

two

actions

result:

v

If

it

is

likely

that

subsequent

INSERT

statements

can

be

successful,

a

warning

message

is

written

to

the

message

file,

and

processing

continues.

v

If

it

is

likely

that

subsequent

INSERT

statements

will

fail,

and

there

is

potential

for

database

damage,

an

error

message

is

written

to

the

message

file,

and

processing

halts.

The

utility

performs

an

automatic

COMMIT

after

the

old

rows

are

deleted

during

a

REPLACE

or

a

REPLACE_CREATE

operation.

Therefore,

if

the

system

fails,

or

the

application

interrupts

the

database

manager

after

the

table

object

is

truncated,

all

of

the

old

data

is

lost.

Ensure

that

the

old

data

is

no

longer

needed

before

using

these

options.

If

the

log

becomes

full

during

a

CREATE,

REPLACE,

or

REPLACE_CREATE

operation,

the

utility

performs

an

automatic

COMMIT

on

inserted

records.

If

the

system

fails,

or

the

application

interrupts

the

database

manager

after

an

automatic

COMMIT,

a

table

with

partial

data

remains

in

the

database.

Use

the

REPLACE

or

the

REPLACE_CREATE

option

to

rerun

the

whole

import

operation,

or

use

INSERT

with

the

iRestartcount

parameter

set

to

the

number

of

rows

successfully

imported.

By

default,

automatic

COMMITs

are

not

performed

for

the

INSERT

or

the

INSERT_UPDATE

option.

They

are,

however,

performed

if

the

*piCommitcount

parameter

is

not

zero.

A

full

log

results

in

a

ROLLBACK.

Whenever

the

import

utility

performs

a

COMMIT,

two

messages

are

written

to

the

message

file:

one

indicates

the

number

of

records

to

be

committed,

and

the

other

is

written

after

a

successful

COMMIT.

When

restarting

the

import

operation

after

a

failure,

specify

the

number

of

records

to

skip,

as

determined

from

the

last

successful

COMMIT.

The

import

utility

accepts

input

data

with

minor

incompatibility

problems

(for

example,

character

data

can

be

imported

using

padding

or

truncation,

and

numeric

data

can

be

imported

with

a

different

numeric

data

type),

but

data

with

major

incompatibility

problems

is

not

accepted.

One

cannot

REPLACE

or

REPLACE_CREATE

an

object

table

if

it

has

any

dependents

other

than

itself,

or

an

object

view

if

its

base

table

has

any

dependents

(including

itself).

To

replace

such

a

table

or

a

view,

do

the

following:

1.

Drop

all

foreign

keys

in

which

the

table

is

a

parent.

2.

Run

the

import

utility.

3.

Alter

the

table

to

recreate

the

foreign

keys.

If

an

error

occurs

while

recreating

the

foreign

keys,

modify

the

data

to

maintain

referential

integrity.

db2Import

-

Import

112

Administrative

API

Reference

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

Importing

to

a

remote

database

requires

enough

disk

space

on

the

server

for

a

copy

of

the

input

data

file,

the

output

message

file,

and

potential

growth

in

the

size

of

the

database.

If

an

import

operation

is

run

against

a

remote

database,

and

the

output

message

file

is

very

long

(more

than

60

KB),

the

message

file

returned

to

the

user

on

the

client

may

be

missing

messages

from

the

middle

of

the

import

operation.

The

first

30

KB

of

message

information

and

the

last

30

KB

of

message

information

are

always

retained.

Importing

PC/IXF

files

to

a

remote

database

is

much

faster

if

the

PC/IXF

file

is

on

a

hard

drive

rather

than

on

diskettes.

Non-default

values

for

piDataDescriptor,

or

specifying

an

explicit

list

of

table

columns

in

piActionString,

makes

importing

to

a

remote

database

slower.

The

database

table

or

hierarchy

must

exist

before

data

in

the

ASC,

DEL,

or

WSF

file

formats

can

be

imported;

however,

if

the

table

does

not

already

exist,

IMPORT

CREATE

or

IMPORT

REPLACE_CREATE

creates

the

table

when

it

imports

data

from

a

PC/IXF

file.

For

typed

tables,

IMPORT

CREATE

can

create

the

type

hierarchy

and

the

table

hierarchy

as

well.

PC/IXF

import

should

be

used

to

move

data

(including

hierarchical

data)

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

data

in

ASC

and

DEL

files

is

assumed

to

be

in

the

code

page

of

the

client

application

performing

the

import.

PC/IXF

files,

which

allow

for

different

code

pages,

are

recommended

when

importing

data

in

different

code

pages.

If

the

PC/IXF

file

and

the

import

utility

are

in

the

same

code

page,

processing

occurs

as

for

a

regular

application.

If

the

two

differ,

and

the

FORCEIN

option

is

specified,

the

import

utility

assumes

that

data

in

the

PC/IXF

file

has

the

same

code

page

as

the

application

performing

the

import.

This

occurs

even

if

there

is

a

conversion

table

for

the

two

code

pages.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

a

conversion

table,

all

data

in

the

PC/IXF

file

will

be

converted

from

the

file

code

page

to

the

application

code

page.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

no

conversion

table,

the

import

operation

will

fail.

This

applies

only

to

PC/IXF

files

on

DB2

for

AIX

clients.

For

table

objects

on

an

8KB

page

that

are

close

to

the

limit

of

1012

columns,

import

of

PC/IXF

data

files

may

cause

DB2

to

return

an

error,

because

the

maximum

size

of

an

SQL

statement

was

exceeded.

This

situation

can

occur

only

if

the

columns

are

of

type

CHAR,

VARCHAR,

or

CLOB.

The

restriction

does

not

apply

to

import

of

DEL

or

ASC

files.

DB2

Connect

can

be

used

to

import

data

to

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

import

(INSERT

option)

is

supported.

The

restartcnt

parameter,

but

not

the

commitcnt

parameter,

is

also

supported.

When

using

the

CREATE

option

with

typed

tables,

create

every

sub-table

defined

in

the

PC/IXF

file;

sub-table

definitions

cannot

be

altered.

When

using

options

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

113

other

than

CREATE

with

typed

tables,

the

traversal

order

list

enables

one

to

specify

the

traverse

order;

therefore,

the

traversal

order

list

must

match

the

one

used

during

the

export

operation.

For

the

PC/IXF

file

format,

one

need

only

specify

the

target

sub-table

name,

and

use

the

traverse

order

stored

in

the

file.

The

import

utility

can

be

used

to

recover

a

table

previously

exported

to

a

PC/IXF

file.

The

table

returns

to

the

state

it

was

in

when

exported.

Data

cannot

be

imported

to

a

system

table,

a

declared

temporary

table,

or

a

summary

table.

Views

cannot

be

created

through

the

import

utility.

On

the

Windows

NT

operating

system:

v

Importing

logically

split

PC/IXF

files

is

not

supported.

v

Importing

bad

format

PC/IXF

or

WSF

files

is

not

supported.

DB2

Data

Links

Manager

Considerations

Before

running

the

DB2

import

utility,

do

the

following:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Register

the

required

prefix

names

to

the

DB2

Data

Links

Managers.

There

may

be

other

administrative

tasks,

such

as

registering

the

database,

if

required.

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

original

configuration’s

Data

Links

servers

are

the

same

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated.)

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

During

the

insert

operation,

DATALINK

column

processing

links

the

files

in

the

appropriate

Data

Links

servers

according

to

the

column

specifications

at

the

target

database.

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLDCOL”

on

page

413

v

“SQLU-MEDIA-LIST”

on

page

450

v

“File

type

modifiers

for

import”

on

page

115

v

“Delimiter

restrictions

for

moving

data”

on

page

185

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

db2Import

-

Import

114

Administrative

API

Reference

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

File

type

modifiers

for

import

Table

9.

Valid

file

type

modifiers

for

import:

All

file

formats

Modifier

Description

compound=x

x

is

a

number

between

1

and

100

inclusive.

Uses

nonatomic

compound

SQL

to

insert

the

data,

and

x

statements

will

be

attempted

each

time.

If

this

modifier

is

specified,

and

the

transaction

log

is

not

sufficiently

large,

the

import

operation

will

fail.

The

transaction

log

must

be

large

enough

to

accommodate

either

the

number

of

rows

specified

by

COMMITCOUNT,

or

the

number

of

rows

in

the

data

file

if

COMMITCOUNT

is

not

specified.

It

is

therefore

recommended

that

the

COMMITCOUNT

option

be

specified

to

avoid

transaction

log

overflow.

This

modifier

is

incompatible

with

INSERT_UPDATE

mode,

hierarchical

tables,

and

the

following

modifiers:

usedefaults,

identitymissing,

identityignore,

generatedmissing,

and

generatedignore.

generatedignore

This

modifier

informs

the

import

utility

that

data

for

all

generated

columns

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

values

for

the

generated

columns

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

the

generatedmissing

modifier.

generatedmissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

generated

columns

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

This

modifier

cannot

be

used

with

the

generatedignore

modifier.

identityignore

This

modifier

informs

the

import

utility

that

data

for

the

identity

column

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

identity

values

being

generated

by

the

utility.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

means

that

for

GENERATED

ALWAYS

columns,

no

rows

will

be

rejected.

This

modifier

cannot

be

used

with

the

identitymissing

modifier.

identitymissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

identity

column

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

modifier

cannot

be

used

with

the

identityignore

modifier.

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

The

LOBS

FROM

clause

specifies

where

the

LOB

files

are

located

when

the

“lobsinfile”

modifier

is

used.

The

LOBS

FROM

clause

means

nothing

outside

the

context

of

the

lobsinfile

modifier.

The

LOBS

FROM

clause

conveys

to

the

IMPORT

utility

the

list

of

paths

to

search

for

the

LOB

files

while

importing

the

data.

To

indicate

a

null

LOB,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

115

|
|
|
|
|

Table

9.

Valid

file

type

modifiers

for

import:

All

file

formats

(continued)

Modifier

Description

no_type_id

Valid

only

when

importing

into

a

single

sub-table.

Typical

usage

is

to

export

data

from

a

regular

table,

and

then

to

invoke

an

import

operation

(using

this

modifier)

to

convert

the

data

into

a

single

sub-table.

nodefaults

If

a

source

column

for

a

target

table

column

is

not

explicitly

specified,

and

the

table

column

is

not

nullable,

default

values

are

not

loaded.

Without

this

option,

if

a

source

column

for

one

of

the

target

table

columns

is

not

explicitly

specified,

one

of

the

following

occurs:

v

If

a

default

value

can

be

specified

for

a

column,

the

default

value

is

loaded

v

If

the

column

is

nullable,

and

a

default

value

cannot

be

specified

for

that

column,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

and

a

default

value

cannot

be

specified,

an

error

is

returned,

and

the

utility

stops

processing.

norowwarnings

Suppresses

all

warnings

about

rejected

rows.

usedefaults

If

a

source

column

for

a

target

table

column

has

been

specified,

but

it

contains

no

data

for

one

or

more

row

instances,

default

values

are

loaded.

Examples

of

missing

data

are:

v

For

DEL

files:

",,"

is

specified

for

the

column

v

For

ASC

files:

The

NULL

indicator

is

set

to

yes

for

the

column

v

For

DEL/ASC/WSF

files:

A

row

that

does

not

have

enough

columns,

or

is

not

long

enough

for

the

original

specification.

Without

this

option,

if

a

source

column

contains

no

data

for

a

row

instance,

one

of

the

following

occurs:

v

If

the

column

is

nullable,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

the

utility

rejects

the

row.

Table

10.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

Modifier

Description

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

output

data

set.

Converts

character

data

to

this

code

page

from

the

application

code

page

during

the

import

operation.

The

following

rules

apply:

v

For

pure

DBCS

(graphic)

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

v

nullindchar

must

specify

symbols

included

in

the

standard

ASCII

set

between

code

points

x20

ans

x7F,

inclusive.

This

refers

to

ASCII

symbols

and

code

points.

Notes:

1.

The

codepage

modifier

cannot

be

used

with

the

lobsinfile

modifier.

2.

If

data

expansion

occurs

when

the

code

page

is

converted

from

the

application

code

page

to

the

database

code

page,

the

data

may

be

truncated

and

loss

of

data

can

occur.

db2Import

-

Import

116

Administrative

API

Reference

||

Table

10.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

dateformat=″x″

x

is

the

format

of

the

date

in

the

source

file.2

Valid

date

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

1

-

12;

mutually

exclusive

with

M)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

A

default

value

of

1

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

date

formats

are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

implieddecimal

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition;

it

is

no

longer

assumed

to

be

at

the

end

of

the

value.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

noeofchar

The

optional

end-of-file

character

x’1A’

is

not

recognized

as

the

end

of

file.

Processing

continues

as

if

it

were

a

normal

character.

timeformat=″x″

x

is

the

format

of

the

time

in

the

source

file.2

Valid

time

elements

are:

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

0

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

time

formats

are:

"HH:MM:SS"

"HH.MM

TT"

"SSSSS"

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

117

Table

10.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.2

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

1

is

assigned

for

unspecified

YYYY,

M,

MM,

D,

DD,

or

DDD

elements.

A

default

value

of

’Jan’

is

assigned

to

an

unspecified

MMM

element.

A

default

value

of

0

is

assigned

for

all

other

unspecified

elements.

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

valid

values

for

the

MMM

element

include:

’jan’,

’feb’,

’mar’,

’apr’,

’may’,

’jun’,

’jul’,

’aug’,

’sep’,

’oct’,

’nov’

and

’dec’.

These

values

are

case

insensitive.

The

following

example

illustrates

how

to

import

data

containing

user

defined

date

and

time

formats

into

a

table

called

schedule:

db2

import

from

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

insert

into

schedule

db2Import

-

Import

118

Administrative

API

Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

Table

10.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

usegraphiccodepage

If

usegraphiccodepage

is

given,

the

assumption

is

made

that

data

being

imported

into

graphic

or

double-byte

character

large

object

(DBCLOB)

data

fields

is

in

the

graphic

code

page.

The

rest

of

the

data

is

assumed

to

be

in

the

character

code

page.

The

graphic

code

page

is

associated

with

the

character

code

page.

IMPORT

determines

the

character

code

page

through

either

the

codepage

modifier,

if

it

is

specified,

or

through

the

code

page

of

the

application

if

the

codepage

modifier

is

not

specified.

This

modifier

should

be

used

in

conjunction

with

the

delimited

data

file

generated

by

drop

table

recovery

only

if

the

table

being

recovered

has

graphic

data.

Restrictions

The

usegraphiccodepage

modifier

MUST

NOT

be

specified

with

DEL

or

ASC

files

created

by

the

EXPORT

utility,

as

these

files

contain

data

encoded

in

only

one

code

page.

The

usegraphiccodepage

modifier

is

also

ignored

by

the

double-byte

character

large

objects

(DBCLOBs)

in

files.

Table

11.

Valid

file

type

modifiers

for

import:

ASC

(non-delimited

ASCII)

file

format

Modifier

Description

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

import

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

imported

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

nullindchar=x

x

is

a

single

character.

Changes

the

character

denoting

a

null

value

to

x.

The

default

value

of

x

is

Y.3

This

modifier

is

case

sensitive

for

EBCDIC

data

files,

except

when

the

character

is

an

English

letter.

For

example,

if

the

null

indicator

character

is

specified

to

be

the

letter

N,

then

n

is

also

recognized

as

a

null

indicator.

reclen=x

x

is

an

integer

with

a

maximum

value

of

32

767.

x

characters

are

read

for

each

row,

and

a

new-line

character

is

not

used

to

indicate

the

end

of

the

row.

striptblanks

Truncates

any

trailing

blank

spaces

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

blank

spaces

are

kept.

In

the

following

example,

striptblanks

causes

the

import

utility

to

truncate

trailing

blank

spaces:

db2

import

from

myfile.asc

of

asc

modified

by

striptblanks

method

l

(1

10,

12

15)

messages

msgs.txt

insert

into

staff

This

option

cannot

be

specified

together

with

striptnulls.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

t

option,

which

is

supported

for

back-level

compatibility

only.

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

119

||
|
|
|
|
|
|

|
|
|

|

|
|
|
|

Table

11.

Valid

file

type

modifiers

for

import:

ASC

(non-delimited

ASCII)

file

format

(continued)

Modifier

Description

striptnulls

Truncates

any

trailing

NULLs

(0x00

characters)

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

NULLs

are

kept.

This

option

cannot

be

specified

together

with

striptblanks.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

padwithzero

option,

which

is

supported

for

back-level

compatibility

only.

Table

12.

Valid

file

type

modifiers

for

import:

DEL

(delimited

ASCII)

file

format

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.34

If

you

want

to

explicitly

specify

the

double

quotation

mark

as

the

character

string

delimiter,

it

should

be

specified

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter.

In

the

following

example,

chardel''

causes

the

import

utility

to

interpret

any

single

quotation

mark

(')

it

encounters

as

a

character

string

delimiter:

db2

"import

from

myfile.del

of

del

modified

by

chardel''

method

p

(1,

4)

insert

into

staff

(id,

years)"

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.34

In

the

following

example,

coldel;

causes

the

import

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

column

delimiter:

db2

import

from

myfile.del

of

del

modified

by

coldel;

messages

msgs.txt

insert

into

staff

datesiso

Date

format.

Causes

all

date

data

values

to

be

imported

in

ISO

format.

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.34

In

the

following

example,

decpt;

causes

the

import

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

decimal

point:

db2

"import

from

myfile.del

of

del

modified

by

chardel'

decpt;

messages

msgs.txt

insert

into

staff"

db2Import

-

Import

120

Administrative

API

Reference

Table

12.

Valid

file

type

modifiers

for

import:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

delprioritychar

The

current

default

priority

for

delimiters

is:

record

delimiter,

character

delimiter,

column

delimiter.

This

modifier

protects

existing

applications

that

depend

on

the

older

priority

by

reverting

the

delimiter

priorities

to:

character

delimiter,

record

delimiter,

column

delimiter.

Syntax:

db2

import

...

modified

by

delprioritychar

...

For

example,

given

the

following

DEL

data

file:

"Smith,

Joshua",4000,34.98<row

delimiter>

"Vincent,<row

delimiter>,

is

a

manager",

...

...

4005,44.37<row

delimiter>

With

the

delprioritychar

modifier

specified,

there

will

be

only

two

rows

in

this

data

file.

The

second

<row

delimiter>

will

be

interpreted

as

part

of

the

first

data

column

of

the

second

row,

while

the

first

and

the

third

<row

delimiter>

are

interpreted

as

actual

record

delimiters.

If

this

modifier

is

not

specified,

there

will

be

three

rows

in

this

data

file,

each

delimited

by

a

<row

delimiter>.

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

34

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

keepblanks

Preserves

the

leading

and

trailing

blanks

in

each

field

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB.

Without

this

option,

all

leading

and

trailing

blanks

that

are

not

inside

character

delimiters

are

removed,

and

a

NULL

is

inserted

into

the

table

for

all

blank

fields.

nochardel

The

import

utility

will

assume

all

bytes

found

between

the

column

delimiters

to

be

part

of

the

column’s

data.

Character

delimiters

will

be

parsed

as

part

of

column

data.

This

option

should

not

be

specified

if

the

data

was

exported

using

DB2

(unless

nochardel

was

specified

at

export

time).

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx,

delprioritychar

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.

Table

13.

Valid

file

type

modifiers

for

import:

IXF

file

format

Modifier

Description

forcein

Directs

the

utility

to

accept

data

despite

code

page

mismatches,

and

to

suppress

translation

between

code

pages.

Fixed

length

target

fields

are

checked

to

verify

that

they

are

large

enough

for

the

data.

If

nochecklengths

is

specified,

no

checking

is

done,

and

an

attempt

is

made

to

import

each

row.

indexixf

Directs

the

utility

to

drop

all

indexes

currently

defined

on

the

existing

table,

and

to

create

new

ones

from

the

index

definitions

in

the

PC/IXF

file.

This

option

can

only

be

used

when

the

contents

of

a

table

are

being

replaced.

It

cannot

be

used

with

a

view,

or

when

a

insert-column

is

specified.

indexschema=schema

Uses

the

specified

schema

for

the

index

name

during

index

creation.

If

schema

is

not

specified

(but

the

keyword

indexschema

is

specified),

uses

the

connection

user

ID.

If

the

keyword

is

not

specified,

uses

the

schema

in

the

IXF

file.

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

121

||
|
|
|
|
|

|
|

Table

13.

Valid

file

type

modifiers

for

import:

IXF

file

format

(continued)

Modifier

Description

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

import

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

imported

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

Notes:

1.

The

import

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

import

operation

fails,

and

an

error

code

is

returned.

2.

Double

quotation

marks

around

the

date

format

string

are

mandatory.

Field

separators

cannot

contain

any

of

the

following:

a-z,

A-Z,

and

0-9.

The

field

separator

should

not

be

the

same

as

the

character

delimiter

or

field

delimiter

in

the

DEL

file

format.

A

field

separator

is

optional

if

the

start

and

end

positions

of

an

element

are

unambiguous.

Ambiguity

can

exist

if

(depending

on

the

modifier)

elements

such

as

D,

H,

M,

or

S

are

used,

because

of

the

variable

length

of

the

entries.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

Some

characters,

such

as

double

quotation

marks

and

back

slashes,

must

be

preceded

by

an

escape

character

(for

example,

\).

3.

The

character

must

be

specified

in

the

code

page

of

the

source

data.

The

character

code

point

(instead

of

the

character

symbol),

can

be

specified

using

the

syntax

xJJ

or

0xJJ,

where

JJ

is

the

hexadecimal

representation

of

the

code

point.

For

example,

to

specify

the

#

character

as

a

column

delimiter,

use

one

of

the

following:

...

modified

by

coldel#

...

...

modified

by

coldel0x23

...

...

modified

by

coldelX23

...

4.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

Table

14.

IMPORT

behavior

when

using

codepage

and

usegraphiccodepage

codepage=N

usegraphiccodepage

IMPORT

behavior

Absent

Absent

All

data

in

the

file

is

assumed

to

be

in

the

application

code

page.

db2Import

-

Import

122

Administrative

API

Reference

||

|||

|||
|

Table

14.

IMPORT

behavior

when

using

codepage

and

usegraphiccodepage

(continued)

codepage=N

usegraphiccodepage

IMPORT

behavior

Present

Absent

All

data

in

the

file

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

imported

into

the

database

if

N

is

a

single-byte

code

page.

Absent

Present

Character

data

in

the

file

is

assumed

to

be

in

the

application

code

page.

Graphic

data

is

assumed

to

be

in

the

code

page

of

the

application

graphic

data.

If

the

application

code

page

is

single-byte,

then

all

data

is

assumed

to

be

in

the

application

code

page.

Warning:

If

the

application

code

page

is

single-byte,

graphic

data

will

be

corrupted

when

imported

into

the

database,

even

if

the

database

contains

graphic

columns.

Present

Present

Character

data

is

assumed

to

be

in

code

page

N.

Graphic

data

is

assumed

to

be

in

the

graphic

code

page

of

N.

If

N

is

a

single-byte

or

double-byte

code

page,

then

all

data

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

imported

into

the

database

if

N

is

a

single-byte

code

page.

Related

reference:

v

“db2Import

-

Import”

on

page

104

v

“IMPORT

Command”

in

the

Command

Reference

v

“Delimiter

restrictions

for

moving

data”

on

page

185

db2Inspect

-

Inspect

database

Inspects

the

database

for

architectural

integrity

and

checks

the

pages

of

the

database

for

page

consistency.

Scope:

In

a

single

partition

database,

the

scope

is

the

single

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

partitions

defined

in

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table

Required

connection:

db2Import

-

Import

Chapter

1.

Application

Programming

Interfaces

123

|

|||

|||

|
|
|

|||
|
|

|
|

|
|
|

|||
|

|
|

|
|
|
|

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Inspect

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Inspect

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InspectStruct

{

char

*piTablespaceName;

char

*piTableName;

char

*piSchemaName;

char

*piResultsName;

char

*piDataFileName;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iAction;

db2int32

iTablespaceID;

db2int32

iObjectID;

db2Uint32

iBeginCheckOption;

db2int32

iLimitErrorReported;

db2Uint16

iObjectErrorState;

db2Uint16

iKeepResultfile;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

db2Uint16

iLevelObjectData;

db2Uint16

iLevelObjectIndex;

db2Uint16

iLevelObjectLong;

db2Uint16

iLevelObjectLOB;

db2Uint16

iLevelObjectBlkMap;

db2Uint16

iLevelExtentMap;

}

db2InspectStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInspect

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gInspect

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInspectStruct

{

char

*piTablespaceName;

char

*piTableName;

char

*piSchemaName;

char

*piResultsName;

char

*piDataFileName;

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint32

iResultsNameLength;

db2Uint32

iDataFileNameLength;

db2Uint32

iTablespaceNameLength;

db2Uint32

iTableNameLength;

db2Uint32

iSchemaNameLength;

db2Inspect

-

Inspect

database

124

Administrative

API

Reference

db2Uint32

iAction;

db2int32

iTablespaceID;

db2int32

iObjectID;

db2Uint32

iBeginCheckOption;

db2int32

iLimitErrorReported;

db2Uint16

iObjectErrorState;

db2Uint16

iKeepResultfile;

db2Uint16

iAllNodeFlag;

db2Uint16

iNumNodes;

db2Uint16

iLevelObjectData;

db2Uint16

iLevelObjectIndex;

db2Uint16

iLevelObjectLong;

db2Uint16

iLevelObjectLOB;

db2Uint16

iLevelObjectBlkMap;

db2Uint16

iLevelExtentMap;

}

db2gInspectStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2InspectStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piTablespaceName

Input.

A

string

containing

the

table

space

name.

The

table

space

must

be

identified

for

operations

on

a

table

space.

If

the

pointer

is

NULL,

the

table

space

ID

value

is

used

as

input.

piTableName

Input.

A

string

containing

the

table

name.

The

table

must

be

identified

for

operations

on

a

table

or

a

table

object.

If

the

pointer

is

NULL,

the

table

space

ID

and

table

object

ID

values

are

used

as

input.

piSchemaName

Input.

A

string

containing

the

schema

name.

piResultsName

Input.

A

string

containing

the

name

for

results

output

file.

This

input

must

be

provided.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

piDataFileName

Input.

Reserved

for

future

use.

Must

be

set

to

NULL.

piNodeList

Input.

A

pointer

to

an

array

of

partition

numbers

on

which

to

perform

the

operation.

iResultsNameLength

Input.

The

string

length

of

the

results

file

name.

iDataFileNameLength

Input.

The

string

length

of

the

data

output

file

name.

iTablespaceNameLength

Input.

The

string

length

of

the

table

space

name.

db2Inspect

-

Inspect

database

Chapter

1.

Application

Programming

Interfaces

125

iTableNameLength

Input.

The

string

length

of

the

table

name.

iSchemaNameLength

Input.

The

string

length

of

the

schema

name.

iAction

Input.

Specifies

the

inspect

action.

Valid

values

are:

DB2INSPECT_ACT_CHECK_DB

Inspect

the

entire

database.

DB2INSPECT_ACT_CHECK_TABSPACE

Inspect

a

table

space.

DB2INSPECT_ACT_CHECK_TABLE

Inspect

a

table.

iTablespaceID

Input.

Specifies

the

table

space

ID.

If

the

table

space

must

be

identified,

the

table

space

ID

value

is

used

as

input

if

the

pointer

to

table

space

name

is

NULL.

iObjectID

Input.

Specifies

the

object

ID.

If

the

table

must

be

identified,

the

object

ID

value

is

used

as

input

if

the

pointer

to

table

name

is

NULL.

iBeginCheckOption

Input.

Option

for

check

database

or

check

table

space

operation

to

indicate

where

operation

should

begin.

It

must

be

set

to

zero

to

begin

from

the

normal

start.

Values

are:

DB2INSPECT_BEGIN_TSPID

Use

this

value

for

check

database

to

begin

with

the

table

space

specified

by

the

table

space

ID

field,

the

table

space

ID

must

be

set.

DB2INSPECT_BEGIN_TSPID_OBJID

Use

this

value

for

check

database

to

begin

with

the

table

specified

by

the

table

space

ID

and

object

ID

field.

To

use

this

option,

the

table

space

ID

and

object

ID

must

be

set.

DB2INSPECT_BEGIN_OBJID

Use

this

value

for

check

table

space

to

begin

with

the

table

specified

by

the

object

ID

field,

the

object

ID

must

be

set.

iLimitErrorReported

Input.

Specifies

the

reporting

limit

of

the

number

of

pages

in

error

for

an

object.

Specify

the

number

you

want

to

use

as

the

limit

value

or

specify

one

the

following

values:

DB2INSPECT_LIMIT_ERROR_DEFAULT

Use

this

value

to

specify

that

the

maximum

number

of

pages

in

error

to

be

reported

is

the

extent

size

of

the

object.

DB2INSPECT_LIMIT_ERROR_ALL

Use

this

value

to

report

all

pages

in

error.

iObjectErrorState

Input.

Specifies

whether

to

scan

objects

in

error

state.

Valid

values

are:

DB2INSPECT_ERROR_STATE_NORMAL

Process

object

only

in

normal

state.

db2Inspect

-

Inspect

database

126

Administrative

API

Reference

DB2INSPECT_ERROR_STATE_ALL

Process

all

objects,

including

objects

in

error

state.

iKeepResultfile

Input.

Specifies

result

file

retention.

Valid

values

are:

DB2INSPECT_RESFILE_CLEANUP

If

errors

are

reported,

the

result

output

file

will

be

retained.

Otherwise,

the

result

file

will

be

removed

at

the

end

of

the

operation.

DB2INSPECT_RESFILE_KEEP_ALWAYS

The

result

output

file

will

be

retained.

iAllNodeFlag

Input.

Indicates

whether

the

operation

is

to

be

applied

to

all

nodes

defined

in

db2nodes.cfg.

Valid

values

are:

DB2_NODE_LIST

Apply

to

all

nodes

in

a

node

list

that

is

passed

in

pNodeList.

DB2_ALL_NODES

Apply

to

all

nodes.

pNodeList

should

be

NULL.

This

is

the

default

value.

DB2_ALL_EXCEPT

Apply

to

all

nodes

except

those

in

a

node

list

that

is

passed

in

pNodeList.

iNumNodes

Input.

Specifies

the

number

of

nodes

in

the

pNodeList

array.

iLevelObjectData

Input.

Specifies

processing

level

for

data

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectIndex

Input.

Specifies

processing

level

for

index

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectLong

Input.

Specifies

processing

level

for

long

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

db2Inspect

-

Inspect

database

Chapter

1.

Application

Programming

Interfaces

127

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectLOB

Input.

Specifies

processing

level

for

LOB

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelObjectBlkMap

Input.

Specifies

processing

level

for

block

map

object.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

iLevelExtentMap

Input.

Specifies

processing

level

for

extent

map.

Valid

values

are:

DB2INSPECT_LEVEL_NORMAL

Level

is

normal.

DB2INSPECT_LEVEL_LOW

Level

is

low.

DB2INSPECT_LEVEL_NONE

Level

is

none.

Usage

notes:

The

online

inspect

processing

will

access

database

objects

using

isolation

level

uncommitted

read.

Commit

processing

will

be

done

during

the

inspect

processing.

It

is

advisable

to

end

the

unit

of

work

by

issuing

a

COMMIT

or

ROLLBACK

before

starting

the

inspect

operation.

The

inspect

check

processing

will

write

out

unformatted

inspection

data

results

to

the

result

file.

The

file

will

be

written

out

to

the

diagnostic

data

directory

path.

If

there

are

no

errors

found

by

the

check

processing,

the

result

output

file

will

be

erased

at

the

end

of

the

inspect

operation.

If

there

are

errors

found

by

the

check

processing,

the

result

output

file

will

not

be

erased

at

the

end

of

the

inspect

operation.

To

see

the

inspection

details,

format

the

inspection

result

output

file

with

the

db2inspf

utility.

In

a

partitioned

database

environment,

the

extension

of

the

result

output

file

will

correspond

to

the

database

partition

number.

The

file

is

located

in

the

database

manager

diagnostic

data

directory

path.

A

unique

results

output

file

name

must

be

specified.

If

the

result

output

file

already

exists,

the

operation

will

not

be

processed.

db2Inspect

-

Inspect

database

128

Administrative

API

Reference

The

processing

of

table

spaces

will

process

only

the

objects

that

reside

in

that

table

space.

Related

reference:

v

“SQLCA”

on

page

410

db2InstanceQuiesce

-

Instance

Quiesce

Forces

all

users

off

the

instance,

immediately

rolls

back

all

active

transaction,

and

puts

the

database

into

quiesce

mode.

This

API

provides

exclusive

access

to

the

instance.

During

this

quiesced

period,

system

administration

can

be

performed

on

the

instance.

After

administration

is

complete,

you

can

unquiesce

the

database

using

the

db2DatabaseUnquiesce

API.

This

API

allows

other

users

to

connect

to

the

database

without

having

to

shut

down

and

perform

another

database

start.

In

this

mode

only

groups

or

users

with

QUIESCE

CONNECT

authority

and

sysadm,

sysmaint,

or

sysctrl

will

have

access

to

the

database

and

its

objects.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InsQuiesceStruct

{

char

*piInstanceName;

char

*piUserId;

char

*piGroupId;

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2InsQuiesceStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceQuiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Inspect

-

Inspect

database

Chapter

1.

Application

Programming

Interfaces

129

db2gInstanceQuiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInsQuiesceStruct

{

db2Uint32

iInstanceNameLen;

char

*piInstanceName;

db2Uint32

iUserIdLen;

char

*piUserId;

db2Uint32

iGroupIdLen;

char

*piGroupId;

db2Uint32

iImmediate;

db2Uint32

iForce;

db2Uint32

iTimeout;

}

db2gInsQuiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InsQuiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iInstanceNameLen

Input.

Specifies

the

length

in

bytes

of

piInstanceName.

piInstanceName

Input.

The

instance

name.

iUserIdLen

Input.

Specifies

the

length

in

bytes

of

piUserID.

piUserId

Input.

The

name

of

the

a

user

who

will

be

allowed

access

to

the

instance

while

it

is

quiesced.

iGroupIdLen

Input.

Specifies

the

length

in

bytes

of

piGroupId.

piGroupId

Input.

The

name

of

a

group

that

will

be

allowed

access

to

the

instance

while

the

instance

is

quiesced.

iImmediate

Input.

Reserved

for

future

use.

iForce

Input.

Reserved

for

future

use.

iTimeout

Input.

Specifies

the

time,

in

minutes,

to

wait

for

applications

to

commit

the

current

unit

of

work.

If

iTimeout

is

not

specified,

in

a

single-partition

database

environment,

the

default

value

is

10

minutes.

In

a

partitioned

database

environment

the

value

specified

by

the

start_stop_timeout

database

manager

configuration

parameter

will

be

used.

Related

reference:

v

“SQLCA”

on

page

410

db2InstanceQuiesce

-

Instance

Quiesce

130

Administrative

API

Reference

|
|
|
|
|
|

v

“db2InstanceUnquiesce

-

Instance

Unquiesce”

on

page

139

db2InstanceStart

-

Instance

Start

Starts

a

local

or

remote

instance.

Scope:

In

a

single-partition

database

environment,

the

scope

is

that

single

database

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

database

partition

servers

defined

in

the

node

configuration

file,

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceStart

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceStart

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InstanceStartStruct

{

db2int8

iIsRemote;

char

*piRemoteInstName;

db2DasCommData

*piCommData;

db2StartOptionsStruct

*piStartOpts;

}

db2InstanceStartStruct;

typedef

SQL_STRUCTURE

db2DasCommData

{

db2int8

iCommParam;

char

*piNodeOrHostName;

char

*piUserId;

char

*piUserPw;

}

db2DasCommData;

typedef

SQL_STRUCTURE

db2StartOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2InstanceQuiesce

-

Instance

Quiesce

Chapter

1.

Application

Programming

Interfaces

131

db2NodeType

iNodeNum;

db2Uint32

iOption;

db2Uint32

iIsHostName;

char

*piHostName;

db2Uint32

iIsPort;

db2PortType

iPort;

db2Uint32

iIsNetName;

char

*piNetName;

db2Uint32

iTblspaceType;

db2NodeType

iTblspaceNode;

db2Uint32

iIsComputer;

char

*piComputer;

char

*piUserName;

char

*piPassword;

db2QuiesceStartStruct

iQuiesceOpts;

}

db2StartOptionsStruct;

typedef

SQL_STRUCTURE

db2QuiesceStartStruct

{

db2int8

iIsQRequested;

char

*piQUsrName;

char

*piQGrpName;

db2int8

iIsQUsrGrpDef;

}

db2QuiesceStartStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceStart

*/

SQL_API_RC

SQL_API_FN

db2gInstanceStart

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInstanceStStruct

{

db2int8

iIsRemote;

db2Uint32

iRemoteInstLen;

char

*piRemoteInstName;

db2gDasCommData

*piCommData;

db2gStartOptionsStruct

*piStartOpts;

}

db2gInstanceStStruct;

typedef

SQL&STRUCTURE

db2gDasCommData

{

db2int8

iCommParam;

db2Uint32

iNodeOrHostNameLen;

char

*piNodeOrHostName;

db2Uint32

iUserIdLen;

char

*piUserId;

db2Uint32

iUserPwLen;

char

*piUserPw;

}

db2gDasCommData;

typedef

SQL_STRUCTURE

db2gStartOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iOption;

db2Uint32

iIsHostName;

char

*piHostName;

db2Uint32

iIsPort;

db2PortType

iPort;

db2InstanceStart

-

Instance

Start

132

Administrative

API

Reference

db2Uint32

iIsNetName;

char

*piNetName;

db2Uint32

iTblspaceType;

db2NodeType

iTblspaceNode;

db2Uint32

iIsComputer;

char

*piComputer;

char

*piUserName;

char

*piPassword;

db2gQuiesceStartStruct

iQuiesceOpts;

}

db2gStartOptionsStruct;

typedef

SQL_STRUCTURE

db2gQuiesceStartStruct

{

db2int8

iIsQRequested;

db2Uint32

iQUsrNameLen;

char

*piQUsrName;

db2Uint32

iQGrpNameLen;

char

*piQGrpName;

db2int8

iIsQUsrGrpDef;

}

db2gQuiesceStartStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InstanceStartStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

name

of

the

remote

instance.

piCommData

Input.

A

pointer

to

the

db2DasCommData

structure.

piStartOpts

Input.

A

pointer

to

the

db2StartOptionsStruct

structure.

iCommParam

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iNodeOrHostNameLen

Input.

Specifies

the

length

in

bytes

of

piNodeOrHostName.

piNodeOrHostName

Input.

The

database

partition

or

hostname.

iUserIdLen

Input.

Specifies

the

length

in

bytes

of

piUserId.

piUserId

Input.

The

user

name.

db2InstanceStart

-

Instance

Start

Chapter

1.

Application

Programming

Interfaces

133

iUserPwLen

Input.

Specifies

the

length

in

bytes

of

piUserPw.

piUserPw

Input.

The

user

password.

iIsProfile

Input.

Indicates

whether

a

profile

is

specified.

If

this

field

indicates

that

a

profile

is

not

specified,

the

file

db2profile

is

used.

piProfile

Input.

The

name

of

the

profile

file

to

be

executed

at

each

node

to

define

the

DB2

environment

(MPP

only).

This

file

is

executed

before

the

nodes

are

started.

The

default

value

is

db2profile.

iIsNodeNum

Input.

Indicates

whether

a

node

number

is

specified.

If

specified,

the

start

command

only

affects

the

specified

node.

iNodeNum

Input.

The

database

partition

number.

iOption

Input.

Specifies

an

action.

Valid

values

for

OPTION

(defined

in

sqlenv.h)

are:

SQLE_NONE

Issue

the

normal

db2start

operation.

SQLE_ADDNODE

Issue

the

ADD

NODE

command.

SQLE_RESTART

Issue

the

RESTART

DATABASE

command.

SQLE_STANDALONE

Start

the

node

in

STANDALONE

mode.

iIsHostName

Input.

Indicates

whether

a

host

name

is

specified.

piHostName

Input.

The

system

name.

iIsPort

Input.

Indicates

whether

a

port

number

is

specified.

iPort

Input.

The

port

number.

iIsNetName

Input.

Indicates

whether

a

net

name

is

specified.

piNetName

Input.

The

network

name.

iTblspaceType

Input.

Specifies

the

type

of

system

temporary

table

space

definitions

to

be

used

for

the

node

being

added.

Valid

values

are:

SQLE_TABLESPACES_NONE

Do

not

create

any

system

temporary

table

spaces.

SQLE_TABLESPACES_LIKE_NODE

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

specified

node.

db2InstanceStart

-

Instance

Start

134

Administrative

API

Reference

SQLE_TABLESPACES_LIKE_CATALOG

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

catalog

node

of

each

database.

iTblspaceNode

Input.

Specifies

the

node

number

from

which

the

system

temporary

table

space

definitions

should

be

obtained.

The

node

number

must

exist

in

the

db2nodes.cfg

file,

and

is

only

used

if

the

tblspace_type

field

is

set

to

SQLE_TABLESPACES_LIKE_NODE.

iIsComputer

Input.

Indicates

whether

a

computer

name

is

specified.

Valid

on

the

Windows

operating

system

only.

piComputer

Input.

Computer

name.

Valid

on

the

Windows

operating

system

only.

piUserName

Input.

Logon

account

user

name.

Valid

on

the

Windows

operating

system

only.

piPassword

Input.

The

password

corresponding

to

the

logon

account

user

name.

iQuiesceOpts

Input.

A

pointer

to

the

db2QuiesceStartStruct

structure.

iIsQRequested

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

quiesce

is

requested.

iQUsrNameLen

Input.

Specifies

the

length

in

bytes

of

piQusrName.

piQUsrName

Input.

The

quiesced

username.

iQGrpNameLen

Input.

Specifies

the

length

in

bytes

of

piQGrpName.

piQGrpName

Input.

The

quiesced

group

name.

iIsQUsrGrpDef

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

a

quiesced

user

or

quiesced

group

is

defined.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2InstanceStop

-

Instance

Stop”

on

page

135

Related

samples:

v

“instart.c

--

Stop

and

start

the

current

local

instance

(C)”

v

“instart.C

--

Stop

and

start

the

current

local

instance

(C++)”

db2InstanceStop

-

Instance

Stop

Stops

the

local

or

remote

DB2

instance.

Scope:

db2InstanceStart

-

Instance

Start

Chapter

1.

Application

Programming

Interfaces

135

In

a

single-partition

database

environment,

the

scope

is

that

single

database

partition

only.

In

a

partitioned

database

environment,

it

is

the

collection

of

all

logical

database

partition

servers

defined

in

the

node

configuration

file,

db2nodes.cfg.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None

API

include

file:

db2ApiDf.h

sqlenv.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceStop

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InstanceStopStruct

{

db2int8

iIsRemote;

char

*piRemoteInstName;

db2DasCommData

*piCommData;

db2StopOptionsStruct

*piStopOpts;

}

db2InstanceStopStruct;

typedef

SQL_STRUCTURE

db2DasCommData

{

db2int8

iCommParam;

char

*piNodeOrHostName;

char

*piUserId;

char

*piUserPw;

}

db2DasCommData;

typedef

SQL_STRUCTURE

db2StopOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iStopOption;

db2Uint32

iCallerac;

}

db2StopOptionsStruct;

/*

...

*/

Generic

API

syntax:

db2InstanceStop

-

Instance

Stop

136

Administrative

API

Reference

|

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gInstanceStop

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInstanceStopStruct

{

db2int8

iIsRemote;

db2Uint32

iRemoteInstLen;

char

*piRemoteInstName;

db2gDasCommData

*piCommData;

db2StopOptionsStruct

*piStopOpts;

}

db2gInstanceStopStruct;

typedef

SQL_STRUCTURE

db2gDasCommData

{

db2int8

iCommParam;

db2Uint32

iNodeOrHostNameLen;

char

*piNodeOrHostName;

db2Uint32

iUserIdLen;

char

*piUserId;

db2Uint32

iUserPwLen;

char

*piUserPw;

}

db2gDasCommData;

typedef

SQL_STRUCTURE

db2StopOptionsStruct

{

db2Uint32

iIsProfile;

char

*piProfile;

db2Uint32

iIsNodeNum;

db2NodeType

iNodeNum;

db2Uint32

iStopOption;

db2Uint32

iCallerac;

}

db2StopOptionsStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InstanceStopStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

start.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

name

of

the

remote

instance.

piCommData

Input.

A

pointer

to

the

db2DasCommData

structure.

db2InstanceStop

-

Instance

Stop

Chapter

1.

Application

Programming

Interfaces

137

piStopOpts

Input.

A

pointer

to

the

db2StopOptionsStruct

structure.

iCommParam

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

stop.

iNodeOrHostNameLen

Input.

Specifies

the

length

in

bytes

of

piNodeOrHostName.

piNodeOrHostName

Input.

The

database

partition

or

hostname.

iUserIdLen

Input.

Specifies

the

length

in

bytes

of

piUserId.

piUserId

Input.

The

user

name.

iUserPwLen

Input.

Specifies

the

length

in

bytes

of

piUserPw.

piUserPw

Input.

The

user

password.

iIsRemote

Input.

An

indicator

set

to

TRUE

or

FALSE.

This

parameter

should

be

set

to

TRUE

if

this

is

a

remote

stop.

iRemoteInstLen

Input.

Specifies

the

length

in

bytes

of

piRemoteInstName.

piRemoteInstName

Input.

The

remote

instance

name.

iIsProfile

Input.

Indicates

whether

a

profile

is

specified.

Possible

values

are

TRUE

and

FALSE.

If

this

field

indicates

that

a

profile

is

not

specified,

the

file

db2profile

is

used.

piProfile

Input.

The

name

of

the

profile

file

that

was

executed

at

startup

to

define

the

DB2

environment

for

those

nodes

that

were

started

(MPP

only).

If

a

profile

for

the

db2InstanceStart

API

was

specified,

the

same

profile

must

be

specified

here.

iIsNodeNum

Input.

Indicates

whether

a

node

number

is

specified.

Possible

values

are

TRUE

and

FALSE.

If

specified,

the

stop

command

only

affects

the

specified

node.

iNodeNum

Input.

The

database

partition

number.

iStopOption

Input.

Option.

Valid

values

are:

SQLE_NONE

Issue

the

normal

db2stop

operation.

SQLE_FORCE

Issue

the

FORCE

APPLICATION

(ALL)

command.

SQLE_DROP

Drop

the

node

from

the

db2nodes.cfg

file.

db2InstanceStop

-

Instance

Stop

138

Administrative

API

Reference

iCallerac

Input.

This

field

is

valid

only

for

the

SQLE_DROP

value

of

the

OPTION

field.

Valid

values

are:

SQLE_DROP

Initial

call.

This

is

the

default

value.

SQLE_CONTINUE

Subsequent

call.

Continue

processing

after

a

prompt.

SQLE_TERMINATE

Subsequent

call.

Terminate

processing

after

a

prompt.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2InstanceStart

-

Instance

Start”

on

page

131

Related

samples:

v

“instart.c

--

Stop

and

start

the

current

local

instance

(C)”

v

“instart.C

--

Stop

and

start

the

current

local

instance

(C++)”

db2InstanceUnquiesce

-

Instance

Unquiesce

Unquiesce

all

databases

in

the

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2InstanceUnquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2InstanceUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2InsUnquiesceStruct

{

char

*piInstanceName

}

db2InsUnquiesceStruct;

/*

...

*/

Generic

API

syntax:

db2InstanceStop

-

Instance

Stop

Chapter

1.

Application

Programming

Interfaces

139

/*

File:

db2ApiDf.h

*/

/*

API:

db2gInstanceUnquiesce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gInstanceUnquiesce

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gInsUnquiesceStruct

{

db2Uint32

iInstanceNameLen;

char

*piInstanceName;

}

db2gInsUnquiesceStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct

.

pParmStruct

Input.

A

pointer

to

the

db2InsUnquiesceStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iInstanceNameLen

Input.

Specifies

the

length

in

bytes

of

piInstanceName.

piInstanceName

Input.

The

instance

name.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2InstanceQuiesce

-

Instance

Quiesce”

on

page

129

db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry

Catalogs

a

database

entry

in

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapCatalogDatabase

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapCatalogDatabase(

db2InstanceUnquiesce

-

Instance

Unquiesce

140

Administrative

API

Reference

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piAlias;

char

*piDatabaseName;

char

*piComment

char

*piNodeName;

char

*piGWNodeName;

char

*piParameters;

char

*piARLibrary;

unsigned

short

iAuthentication;

char

*piDCEPrincipalName;

char

*piBindDN;

char

*piPassword;

}

db2LdapCatalogDatabaseStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapCatalogDatabaseStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piAlias

Input.

Specify

an

alias

to

be

used

as

an

alternate

name

for

the

database

being

cataloged.

If

an

alias

is

not

specified,

the

database

manager

uses

the

database

name

as

the

alias

name.

piDatabaseName

Input.

Specify

the

name

of

the

database

to

catalog.

This

parameter

is

mandatory.

piComment

Input.

Describes

the

DB2

server.

Any

comment

that

helps

to

describe

the

server

registered

in

the

network

directory

can

be

entered.

Maximum

length

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

piNodeName

Input.

Specify

the

node

name

of

the

database

server

on

which

the

database

resides.

This

parameter

is

required

if

the

database

resides

on

a

remote

database

server.

piGWNodename

Input.

Specify

the

node

name

of

the

DB2

Connect

gateway

server.

If

the

database

server

node

type

is

DCS

(reserved

for

host

database

servers),

and

the

client

does

not

have

DB2

Connect

installed,

the

client

will

connect

to

the

DB2

Connect

gateway

server.

piParameters

Input.

Specify

a

parameter

string

that

is

to

be

passed

to

the

application

requester

(AR).

Authentication

DCE

is

not

supported.

piARLibrary

Input.

Specify

the

name

of

the

application

requester

(AR)

library.

db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry

Chapter

1.

Application

Programming

Interfaces

141

iAuthentication

Input.

Specifying

an

authentication

type

can

result

in

a

performance

benefit.

piDCEPrincipalName

Input.

Specify

the

fully

qualified

DCE

principal

name

for

the

target

server.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

create

and

update

the

object

in

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

Usage

notes:

A

database

may

need

to

be

manually

registered

or

cataloged

in

LDAP

if:

v

The

database

server

does

not

support

LDAP.

In

this

case,

the

administrator

needs

to

manually

register

each

database

in

LDAP

to

allow

clients

that

support

LDAP

to

access

the

database

without

having

to

catalog

the

database

locally

on

each

client

machine.

v

The

application

wants

to

use

a

different

name

to

connect

to

the

database.

In

this

case,

the

administrator

needs

to

catalog

the

database

using

a

different

alias

name.

v

During

CREATE

DATABASE

IN

LDAP,

the

database

name

already

exists

in

LDAP.

The

database

is

still

created

on

the

local

machine

(and

can

be

accessed

by

local

applications),

but

the

existing

entry

in

LDAP

will

not

be

modified

to

reflect

the

new

database.

In

this

case,

the

administrator

can:

–

Remove

the

existing

database

entry

from

LDAP,

and

manually

register

the

new

database

in

LDAP.

–

Register

the

new

database

in

LDAP

using

a

different

alias

name.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapCatalogNode

-

Catalog

Node

LDAP

Entry

Specifies

an

alternate

name

for

the

node

entry

in

LDAP

(Lightweight

Directory

Access

Protocol),

or

a

different

protocol

type

for

connecting

to

the

database

server.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry

142

Administrative

API

Reference

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapCatalogNode

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapCatalogNode(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piAlias;

char

*piNodeName;

char

*piBindDN;

char

*piPassword;

}

db2LdapCatalogNodeStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapCatalogNodeStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piAlias

Input.

Specify

a

new

alias

to

be

used

as

an

alternate

name

for

the

node

entry.

piNodeName

Input.

Specify

a

node

name

that

represents

the

DB2

server

in

LDAP.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

create

and

update

the

object

in

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapDeregister

-

LDAP

Deregister

Server

Deregisters

the

DB2

server

from

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

db2LdapCatalogNode

-

Catalog

Node

LDAP

Entry

Chapter

1.

Application

Programming

Interfaces

143

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapDeregister

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapDeregister

(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piNodeName;

char

*piBindDN;

char

*piPassword;

}

db2LdapDeregisterStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapDeregisterStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piNodeName

Input.

Specify

a

short

name

that

represents

the

DB2

server

in

LDAP.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

delete

the

object

from

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapRegister

-

LDAP

Register

Server

Registers

the

DB2

server

in

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

db2LdapDeregister

-

LDAP

Deregister

Server

144

Administrative

API

Reference

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapRegister

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapRegister

(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piNodeName;

char

*piComputer;

char

*piInstance;

unsigned

short

iNodeType;

db2LdapProtocolInfo

iProtocol;

char

*piComment;

char

*piBindDN;

char

*piPassword;

}

db2LdapRegisterStruct;

typedef

struct

{

char

iType;

char

*piHostName;

char

*piServiceName;

char

*piNetbiosName;

char

*piNetworkId;

char

*piPartnerLU;

char

*piTPName;

char

*piMode;

unsigned

short

iSecurityType;

char

*piLanAdapterAddress;

char

*piChangePasswordLU;

char

*piIpxAddress;

}

db2LdapProtocolInfo;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapRegisterStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piNodeName

Input.

Specify

a

short

name

(less

than

8

characters)

that

represents

the

DB2

server

in

LDAP.

piComputer

Input.

Specify

the

name

of

the

computer

system

on

which

the

DB2

server

resides.

The

computer

name

value

must

be

the

same

as

the

value

specified

when

adding

the

server

machine

to

LDAP.

On

Windows

NT,

this

is

the

NT

computer

name.

On

UNIX

based

systems,

this

is

the

TCP/IP

host

name.

db2LdapRegister

-

LDAP

Register

Server

Chapter

1.

Application

Programming

Interfaces

145

On

OS/2,

this

is

the

value

specified

for

the

DB2SYSTEM

registry

variable.

Specify

NULL

to

register

the

DB2

server

on

the

local

computer.

piInstance

Input.

Specify

the

instance

name

of

the

DB2

server.

The

instance

name

must

be

specified

if

the

computer

name

is

specified

to

register

a

remote

server.

Specify

NULL

to

register

the

current

instance

(as

defined

by

the

DB2SYSTEM

environment

variable).

iNodeType

Input.

Specify

the

node

type

for

the

database

server.

Valid

values

are:

SQLF_NT_SERVER

SQLF_NT_MPP

SQLF_NT_DCS

iProtocol

Input.

Specify

the

protocol

information

in

the

db2LdapProtocolInfo

structure.

piComment

Input.

Describes

the

DB2

server.

Any

comment

that

helps

to

describe

the

server

registered

in

the

network

directory

can

be

entered.

Maximum

length

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

create

and

update

the

object

in

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

iType

Input.

Specify

the

protocol

type

that

this

server

supports.

If

the

server

supports

more

than

one

protocol,

multiple

registrations

(each

with

a

different

node

name

and

protocol

type)

are

required.

Valid

values

are:

SQL_PROTOCOL_APPN

-

For

APPC/APPN

support

SQL_PROTOCOL_NETB

-

For

NetBIOS

support

SQL_PROTOCOL_TCPIP

-

For

TCP/IP

support

SQL_PROTOCOL_SOCKS

-

For

TCP/IP

with

socket

security

SQL_PROTOCOL_IPXSPX

-

For

IPX/SPX

support

SQL_PROTOCOL_NPIPE

-

For

Windows

NT

Named

Pipe

support

piHostName

Input.

Specify

the

TCP/IP

host

name

or

the

IP

address.

piServiceName

Input.

Specify

the

TCP/IP

service

name

or

port

number.

piNetbiosName

Input.

Specify

the

NetBIOS

workstation

name.

The

NetBIOS

name

must

be

specified

for

NetBIOS

support.

piNetworkID

Input.

Specify

the

network

ID.

The

network

ID

must

be

specified

for

APPC/APPN

support.

piPartnerLU

Input.

Specify

the

partner

LU

name

for

the

DB2

server

machine.

The

partner

LU

must

be

specified

for

APPC/APPN

support.

piTPName

Input.

Specify

the

transaction

program

name.

The

transaction

program

name

must

be

specified

for

APPC/APPN

support.

db2LdapRegister

-

LDAP

Register

Server

146

Administrative

API

Reference

piMode

Input.

Specify

the

mode

name.

The

mode

must

be

specified

for

APPC/APPN

support.

iSecurityType

Input.

Specify

the

APPC

security

level.

Valid

values

are:

SQL_CPIC_SECURITY_NONE

(default)

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

piLanAdapterAddress

Input.

Specify

the

network

adapter

address.

This

parameter

is

only

required

for

APPC

support.

For

APPN,

this

parameter

can

be

set

to

NULL.

piChangePasswordLU

Input.

Specify

the

name

of

the

partner

LU

to

use

when

changing

the

password

for

the

host

database

server.

piIpxAddress

Input.

Specify

the

complete

IPX

address.

The

IPX

address

must

be

specified

for

IPX/SPX

support.

Usage

notes:

Register

the

DB2

server

once

for

each

protocol

that

the

server

supports

each

time

specifying

a

unique

node

name.

If

any

protocol

configuration

parameter

is

specified

when

registering

a

DB2

server

locally,

it

will

override

the

value

specified

in

the

database

manager

configuration

file.

Only

a

remote

DB2

server

can

be

registered

in

LDAP.

The

computer

name

and

the

instance

name

of

the

remote

server

must

be

specified,

along

with

the

protocol

communication

for

the

remote

server.

When

registering

a

host

database

server,

a

value

of

SQLF_NT_DCS

must

be

specified

for

the

iNodeType

parameter.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapUncatalogDatabase

-

Uncatalog

Database

LDAP

Entry

Removes

a

database

entry

from

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

db2LdapRegister

-

LDAP

Register

Server

Chapter

1.

Application

Programming

Interfaces

147

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapUncatalogDatabase

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapUncatalogDatabase(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piAlias[SQL_ALIAS_SZ];

char

*piBindDN;

char

*piPassword;

}

db2LdapUncatalogDatabaseStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapUncatalogDatabaseStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piAlias

Input.

Specify

an

alias

name

for

the

database

entry.

This

parameter

is

mandatory.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

delete

the

object

from

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapUncatalogNode

-

Uncatalog

Node

LDAP

Entry

Removes

a

node

entry

from

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

API

include

file:

db2LdapUncatalogDatabase

-

Uncatalog

Database

LDAP

Entry

148

Administrative

API

Reference

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapUncatalogNode

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapUncatalogNode(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piAlias;

char

*piBindDN;

char

*piPassword;

}

db2LdapUncatalogNodeStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapUncatalogNodeStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piAlias

Input.

Specify

the

alias

of

the

node

to

uncatalog

from

LDAP.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

delete

the

object

from

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

Related

reference:

v

“SQLCA”

on

page

410

db2LdapUpdate

-

LDAP

Update

Server

Updates

the

communication

protocol

information

for

the

DB2

server

in

LDAP

(Lightweight

Directory

Access

Protocol).

Authorization:

None

Required

connection:

None

db2LdapUncatalogNode

-

Uncatalog

Node

LDAP

Entry

Chapter

1.

Application

Programming

Interfaces

149

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapUpdate

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapUpdate

(

sqlint32

versionNumber,

void

*pParamStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piNodeName;

char

*piComment;

unsigned

short

iNodeType;

db2LdapProtocolInfo

iProtocol;

char

*piBindDN;

char

*piPassword;

}

db2LdapUpdateStruct;

typedef

struct

{

char

iType;

char

*piHostName;

char

*piServiceName;

char

*piNetbiosName;

char

*piNetworkId;

char

*piPartnerLU;

char

*piTPName;

char

*piMode;

unsigned

short

iSecurityType;

char

*piLanAdapterAddress;

char

*piChangePasswordLU;

char

*piIpxAddress;

}

db2LdapProtocolInfo;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParamStruct.

pParamStruct

Input.

A

pointer

to

the

db2LdapUpdateStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piNodeName

Input.

Specify

the

node

name

that

represents

the

DB2

server

in

LDAP.

piComment

Input.

Specify

a

new

description

for

the

DB2

server.

Maximum

length

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

iNodeType

Input.

Specify

a

new

node

type.

Valid

values

are:

db2LdapUpdate

-

LDAP

Update

Server

150

Administrative

API

Reference

SQLF_NT_SERVER

SQLF_NT_MPP

SQLF_NT_DCS

SQL_PARM_UNCHANGE

iProtocol

Input.

Specify

the

updated

protocol

information

in

the

db2LdapProtocolInfo

structure.

piBindDN

Input.

Specify

the

user’s

LDAP

distinguished

name

(DN).

The

LDAP

user

DN

must

have

sufficient

authority

to

create

and

update

the

object

in

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

logon

user

will

be

used.

piPassword

Input.

Account

password.

iType

Input.

Specify

the

protocol

type

that

this

server

supports.

Valid

values

are:

SQL_PROTOCOL_APPN

-

For

APPC/APPN

support

SQL_PROTOCOL_NETB

-

For

NetBIOS

support

SQL_PROTOCOL_TCPIP

-

For

TCP/IP

support

SQL_PROTOCOL_SOCKS

-

For

TCP/IP

with

socket

security

SQL_PROTOCOL_IPXSPX

-

For

IPX/SPX

support

SQL_PROTOCOL_NPIPE

-

For

Windows

NT

Named

Pipe

support

piHostName

Input.

Specify

a

new

TCP/IP

host

name

or

IP

address.

piServiceName

Input.

Specify

a

new

TCP/IP

service

name

or

port

number.

piNetbiosName

Input.

Specify

a

new

NetBIOS

workstation

name.

piNetworkID

Input.

Specify

a

new

network

ID.

piPartnerLU

Input.

Specify

a

new

partner

LU

name

for

the

DB2

server

machine.

piTPName

Input.

Specify

a

new

transaction

program

name.

piMode

Input.

Specify

a

new

mode

name.

iSecurityType

Input.

Specify

a

new

security

level.

Valid

values

are:

SQL_CPIC_SECURITY_NONE

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

SQL_PARM_UNCHANGE

piLanAdapterAddress

Input.

Specify

a

new

network

adapter

address.

piChangePasswordLU

Input.

Specify

a

new

name

of

the

partner

LU

to

use

when

changing

the

password

for

the

host

database

server.

piIpxAddress

Input.

Specify

a

new

IPX

address.

Related

reference:

db2LdapUpdate

-

LDAP

Update

Server

Chapter

1.

Application

Programming

Interfaces

151

v

“SQLCA”

on

page

410

db2LdapUpdateAlternateServerForDB

-

LDAP

Update

Alternate

Server

For

Database

Updates

the

alternate

server

for

a

database

in

Lightweight

Directory

Access

Protocol

(LDAP).

Authorization:

Read/write

access

to

the

LDAP

server.

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LdapUpdateAlternateServerForDB

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LdapUpdateAlternateServerForDB

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2LdapUpdateAltServerStruct

{

char

*piDbAlias;

char

*piNode;

char

*piGWNode;

char

*piBindDN;

char

*piPassword;

}

db2LdapUpdateAltServerStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LdapUpdateAltServerStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piDbAlias

Input.

A

string

containing

an

alias

for

the

database

to

be

updated.

piNode

Input.

A

string

containing

the

alternate

node

name.

This

node

name

must

exist

in

LDAP.

db2LdapUpdate

-

LDAP

Update

Server

152

Administrative

API

Reference

|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

piGWNode

Input.

A

string

containing

the

alternate

gateway

node

name.

This

node

name

must

exist

in

LDAP.

This

is

used

by

the

runtime

client

to

connect

to

the

host

via

the

gateway.

piBindDN

Input.

Specifies

the

user’s

LDAP

distinguished

name

(DN).

The

user’s

LDAP

DN

must

have

sufficient

authority

to

create

and

update

objects

in

the

LDAP

directory.

If

the

user’s

LDAP

DN

is

not

specified,

the

credentials

of

the

current

user

will

be

used.

piPassword

Input.

Account

password.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2LdapCatalogDatabase

-

Catalog

Database

LDAP

Entry”

on

page

140

v

“db2LdapUncatalogDatabase

-

Uncatalog

Database

LDAP

Entry”

on

page

147

v

“db2UpdateAlternateServerForDB

-

Update

Alternate

Server

for

Database”

on

page

258

db2Load

-

Load

Loads

data

into

a

DB2

table.

Data

residing

on

the

server

may

be

in

the

form

of

a

file,

cursor,

tape,

or

named

pipe.

Data

residing

on

a

remotely

connected

client

may

be

in

the

form

of

a

fully

qualified

file,

a

cursor,

or

named

pipe.

The

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

v

load

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Note:

In

general,

all

load

processes

and

all

DB2

server

processes

are

owned

by

the

instance

owner.

All

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files.

Therefore,

the

instance

owner

must

have

read

access

to

the

input

files,

regardless

of

who

invokes

the

command.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

db2LdapUpdateAlternateServerForDB

-

LDAP

Update

Alternate

Server

For

Database

Chapter

1.

Application

Programming

Interfaces

153

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|

Instance.

An

explicit

attachment

is

not

required.

If

a

connection

to

the

database

has

been

established,

an

implicit

attachment

to

the

local

instance

is

attempted.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Load

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2LoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2LoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2PartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

}

db2LoadStruct;

typedef

SQL_STRUCTURE

db2LoadIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

}

db2LoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Load

-

Load

154

Administrative

API

Reference

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2PartLoadIn

{

char

*piHostname;

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

}

db2PartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gLoad

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

155

typedef

SQL_STRUCTURE

db2gLoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2gLoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2gPartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

db2Uint16

iFileTypeLen;

db2Uint16

iLocalMsgFileLen;

db2Uint16

iTempFilesPathLen;

}

db2gLoadStruct;

typedef

SQL_STRUCTURE

db2gLoadIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

db2Uint16

iUseTablespaceLen;

}

db2gLoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2gPartLoadIn

{

char

*piHostname;

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Load

-

Load

156

Administrative

API

Reference

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

db2Uint16

iHostnameLen;

db2Uint16

iFileTransferLen;

db2Uint16

iPartFileLocLen;

db2Uint16

iMapFileInputLen;

db2Uint16

iMapFileOutputLen;

db2Uint16

iDistfileLen;

}

db2gPartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LoadStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSourceList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

to

provide

a

list

of

source

files,

devices,

vendors,

pipes,

or

SQL

statements.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

157

SQLU_SQL_STMT

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

an

SQL

query

through

the

pStatement

field

of

the

target

field.

The

pStatement

field

is

of

type

sqlu_statement_entry.

The

sessions

field

must

be

set

to

the

value

of

1,

since

the

load

utility

only

accepts

a

single

SQL

query

per

load.

SQLU_SERVER_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

files,

devices,

and

named

pipes.

SQLU_CLIENT_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

fully

qualified

files

and

named

pipes.

Note

that

this

media_type

is

only

valid

if

the

API

is

being

called

via

a

remotely

connected

client.

SQLU_TSM_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piLobPathList

Input.

A

pointer

to

an

sqlu_media_list

structure.

For

IXF,

ASC,

and

DEL

file

types,

a

list

of

fully

qualified

paths

or

devices

to

identify

the

location

of

the

individual

LOB

files

to

be

loaded.

The

file

names

are

found

in

the

IXF,

ASC,

or

DEL

files,

and

are

appended

to

the

paths

provided.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

set

to

this

value,

the

caller

provides

information

through

sqlu_media_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_media_entry

structures

provided.

SQLU_TSM_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

db2Load

-

Load

158

Administrative

API

Reference

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

loading

from

the

external

file.

If

the

pFileType

parameter

is

set

to

SQL_ASC,

the

dcolmeth

field

of

this

structure

must

either

be

set

to

SQL_METH_L

or

be

set

to

SQL_METH_D

and

specifies

a

file

name

with

POSITIONSFILE

pFileTypeMod

modifier

which

contains

starting

and

ending

pairs

and

null

indicator

positions.

The

user

specifies

the

start

and

end

locations

for

each

column

to

be

loaded.

If

the

file

type

is

SQL_DEL,

dcolmeth

can

be

either

SQL_METH_P

or

SQL_METH_D.

If

it

is

SQL_METH_P,

the

user

must

provide

the

source

column

position.

If

it

is

SQL_METH_D,

the

first

column

in

the

file

is

loaded

into

the

first

column

of

the

table,

and

so

on.

If

the

file

type

is

SQL_IXF,

dcolmeth

can

be

one

of

SQL_METH_P,

SQL_METH_D,

or

SQL_METH_N.

The

rules

for

DEL

files

apply

here,

except

that

SQL_METH_N

indicates

that

file

column

names

are

to

be

provided

in

the

sqldcol

structure.

piActionString

Input.

Pointer

to

an

sqlchar

structure,

followed

by

an

array

of

characters

specifying

an

action

that

affects

the

table.

The

character

array

is

of

the

form:

"INSERT|REPLACE|RESTART|TERMINATE

INTO

tbname

[(column_list)]

[DATALINK

SPECIFICATION

datalink-spec]

[FOR

EXCEPTION

e_tbname]"

INSERT

Adds

the

loaded

data

to

the

table

without

changing

the

existing

table

data.

REPLACE

Deletes

all

existing

data

from

the

table,

and

inserts

the

loaded

data.

The

table

definition

and

the

index

definitions

are

not

changed.

RESTART

Restarts

a

previously

interrupted

load

operation.

The

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

TERMINATE

Terminates

a

previously

interrupted

load

operation,

and

rolls

back

the

operation

to

the

point

in

time

at

which

it

started,

even

if

consistency

points

were

passed.

The

states

of

any

table

spaces

involved

in

the

operation

return

to

normal,

and

all

table

objects

are

made

consistent

(index

objects

may

be

marked

as

invalid,

in

which

case

index

rebuild

will

automatically

take

place

at

next

access).

If

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

159

the

table

spaces

in

which

the

table

resides

are

not

in

load

pending

state,

this

option

does

not

affect

the

state

of

the

table

spaces.

The

load

terminate

option

will

not

remove

a

backup

pending

state

from

table

spaces.

tbname

The

name

of

the

table

into

which

the

data

is

to

be

loaded.

The

table

cannot

be

a

system

table

or

a

declared

temporary

table.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

(column_list)

A

list

of

table

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

a

name

contains

spaces

or

lowercase

characters,

it

must

be

enclosed

by

quotation

marks.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

LOAD

command.

FOR

EXCEPTION

e_tbname

Specifies

the

exception

table

into

which

rows

in

error

will

be

copied.

Any

row

that

is

in

violation

of

a

unique

index

or

a

primary

key

index

is

copied.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

piFileType

Input.

A

string

that

indicates

the

format

of

the

input

data

source.

Supported

external

formats

(defined

in

sqlutil)

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

loaded

later

into

the

same

table

or

into

another

database

manager

table.

SQL_CURSOR

An

SQL

query.

The

sqlu_media_list

structure

passed

in

through

the

piSourceList

parameter

is

of

type

SQLU_SQL_STMT,

and

refers

to

an

actual

SQL

query

and

not

a

cursor

declared

against

one.

piFileTypeMod

Input.

A

pointer

to

the

sqlchar

structure,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

load.

db2Load

-

Load

160

Administrative

API

Reference

piLocalMsgFileName

Input.

A

string

containing

the

name

of

a

local

file

to

which

output

messages

are

to

be

written.

piTempFilesPath

Input.

A

string

containing

the

path

name

to

be

used

on

the

server

for

temporary

files.

Temporary

files

are

created

to

store

messages,

consistency

points,

and

delete

phase

information.

piVendorSortWorkPaths

Input.

A

pointer

to

the

sqlu_media_list

structure

which

specifies

the

Vendor

Sort

work

directories.

piCopyTargetList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

(if

a

copy

image

is

to

be

created)

to

provide

a

list

of

target

paths,

devices,

or

a

shared

library

to

which

the

copy

image

is

to

be

written.

The

values

provided

in

this

structure

depend

on

the

value

of

the

media_type

field.

Valid

values

for

this

field

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

the

copy

is

to

be

written

to

local

media,

set

the

media_type

to

this

value

and

provide

information

about

the

targets

in

sqlu_media_entry

structures.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

SQLU_TSM_MEDIA

If

the

copy

is

to

be

written

to

TSM,

use

this

value.

No

further

information

is

required.

SQLU_OTHER_MEDIA

If

a

vendor

product

is

to

be

used,

use

this

value

and

provide

further

information

via

an

sqlu_vendor

structure.

Set

the

shr_lib

field

of

this

structure

to

the

shared

library

name

of

the

vendor

product.

Provide

only

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

provided

in

the

one

sqlu_vendor

entry.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

There

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

loaded

from

the

data

file.

That

is,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

pDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

location

in

the

data

file

that

is

to

be

used

as

a

NULL

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

location

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

piLoadInfoIn

Input.

A

pointer

to

the

db2LoadIn

structure.

poLoadInfoOut

Input.

A

pointer

to

the

db2LoadOut

structure.

piPartLoadInfoIn

Input.

A

pointer

to

the

db2PartLoadIn

structure.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

161

poPartLoadInfoOut

Output.

A

pointer

to

the

db2PartLoadOut

structure.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

(or

SQLU_NOINTERRUPT)

must

be

used

on

the

first

call

to

the

API.

SQLU_NOINTERRUPT

Initial

call.

Do

not

suspend

processing.

This

value

(or

SQLU_INITIAL)

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

load

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_ABORT

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_RESTART

Restart

processing.

SQLU_DEVICE_TERMINATE

Terminate

a

single

device.

This

option

should

be

specified

if

the

utility

is

to

stop

reading

data

from

the

device,

but

further

processing

of

the

data

is

to

be

done.

iFileTypeLen

Input.

Specifies

the

length

in

bytes

of

iFileType.

iLocalMsgFileLen

Input.

Specifies

the

length

in

bytes

of

iLocalMsgFileName.

iTempFilesPathLen

Input.

Specifies

the

length

in

bytes

of

iTempFilesPath.

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

rowcnt

rows

in

a

file.

iRestartcount

Input.

Reserved

for

future

use.

db2Load

-

Load

162

Administrative

API

Reference

piUseTablespace

Input.

If

the

indexes

are

being

rebuilt,

a

shadow

copy

of

the

index

is

built

in

tablespace

iUseTablespaceName

and

copied

over

to

the

original

tablespace

at

the

end

of

the

load.

Only

system

temporary

table

spaces

can

be

used

with

this

option.

If

not

specified

then

the

shadow

index

will

be

created

in

the

same

tablespace

as

the

index

object.

If

the

shadow

copy

is

created

in

the

same

tablespace

as

the

index

object,

the

copy

of

the

shadow

index

object

over

the

old

index

object

is

instantaneous.

If

the

shadow

copy

is

in

a

different

tablespace

from

the

index

object

a

physical

copy

is

performed.

This

could

involve

considerable

I/O

and

time.

The

copy

happens

while

the

table

is

offline

at

the

end

of

a

load.

This

field

is

ignored

if

iAccessLevel

is

SQLU_ALLOW_NO_ACCESS.

This

option

is

ignored

if

the

user

does

not

specify

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT.

This

option

will

also

be

ignored

if

INDEXING

MODE

AUTOSELECT

is

chosen

and

load

chooses

to

incrementally

update

the

index.

iSavecount

The

number

of

records

to

load

before

establishing

a

consistency

point.

This

value

is

converted

to

a

page

count,

and

rounded

up

to

intervals

of

the

extent

size.

Since

a

message

is

issued

at

each

consistency

point,

this

option

should

be

selected

if

the

load

operation

will

be

monitored

using

db2LoadQuery

-

Load

Query.

If

the

value

of

savecnt

is

not

sufficiently

high,

the

synchronization

of

activities

performed

at

each

consistency

point

will

impact

performance.

The

default

value

is

0,

meaning

that

no

consistency

points

will

be

established,

unless

necessary.

iDataBufferSize

The

number

of

4KB

pages

(regardless

of

the

degree

of

parallelism)

to

use

as

buffered

space

for

transferring

data

within

the

utility.

If

the

value

specified

is

less

than

the

algorithmic

minimum,

the

required

minimum

is

used,

and

no

warning

is

returned.

This

memory

is

allocated

directly

from

the

utility

heap,

whose

size

can

be

modified

through

the

util_heap_sz

database

configuration

parameter.

If

a

value

is

not

specified,

an

intelligent

default

is

calculated

by

the

utility

at

run

time.

The

default

is

based

on

a

percentage

of

the

free

space

available

in

the

utility

heap

at

the

instantiation

time

of

the

loader,

as

well

as

some

characteristics

of

the

table.

iSortBufferSize

Input.

This

option

specifies

a

value

that

overrides

the

SORTHEAP

database

configuration

parameter

during

a

load

operation.

It

is

relevant

only

when

loading

tables

with

indexes

and

only

when

the

iIndexingMode

parameter

is

not

specified

as

SQLU_INX_DEFERRED.

The

value

that

is

specified

cannot

exceed

the

value

of

SORTHEAP.

This

parameter

is

useful

for

throttling

the

sort

memory

used

by

LOAD

without

changing

the

value

of

SORTHEAP,

which

would

also

affect

general

query

processing.

iWarningcount

Input.

Stops

the

load

operation

after

warningcnt

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

load

file

or

the

target

table

is

specified

incorrectly,

the

load

utility

will

generate

a

warning

for

each

row

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

163

that

it

attempts

to

load,

which

will

cause

the

load

to

fail.

If

warningcnt

is

0,

or

this

option

is

not

specified,

the

load

operation

will

continue

regardless

of

the

number

of

warnings

issued.

If

the

load

operation

is

stopped

because

the

threshold

of

warnings

was

exceeded,

another

load

operation

can

be

started

in

RESTART

mode.

The

load

operation

will

automatically

continue

from

the

last

consistency

point.

Alternatively,

another

load

operation

can

be

initiated

in

REPLACE

mode,

starting

at

the

beginning

of

the

input

file.

iHoldQuiesce

Input.

A

flag

whose

value

is

set

to

TRUE

if

the

utility

is

to

leave

the

table

in

quiesced

exclusive

state

after

the

load,

and

to

FALSE

if

it

is

not.

iCpuParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

parsing,

converting

and

formatting

records

when

building

table

objects.

This

parameter

is

designed

to

exploit

intra-partition

parallelism.

It

is

particularly

useful

when

loading

presorted

data,

because

record

order

in

the

source

data

is

preserved.

If

the

value

of

this

parameter

is

zero,

the

load

utility

uses

an

intelligent

default

value

at

run

time.

Note:

If

this

parameter

is

used

with

tables

containing

either

LOB

or

LONG

VARCHAR

fields,

its

value

becomes

one,

regardless

of

the

number

of

system

CPUs,

or

the

value

specified

by

the

user.

iDiskParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

writing

data

to

the

table

space

containers.

If

a

value

is

not

specified,

the

utility

selects

an

intelligent

default

based

on

the

number

of

table

space

containers

and

the

characteristics

of

the

table.

iNonrecoverable

Input.

Set

to

SQLU_NON_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

non-recoverable,

and

it

will

not

be

possible

to

recover

it

by

a

subsequent

roll

forward

action.

The

rollforward

utility

will

skip

the

transaction,

and

will

mark

the

table

into

which

data

was

being

loaded

as

″invalid″.

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

roll

forward

is

completed,

such

a

table

can

only

be

dropped.

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

Set

to

SQLU_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

recoverable.

iIndexingMode

Input.

Specifies

the

indexing

mode.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INX_AUTOSELECT

LOAD

chooses

between

REBUILD

and

INCREMENTAL

indexing

modes.

SQLU_INX_REBUILD

Rebuild

table

indexes.

SQLU_INX_INCREMENTAL

Extend

existing

indexes.

SQLU_INX_DEFERRED

Do

not

update

table

indexes.

db2Load

-

Load

164

Administrative

API

Reference

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

load

locks

the

table

exclusively.

SQLU_ALLOW_READ_ACCESS

Specifies

that

the

original

data

in

the

table

(the

non-delta

portion)

should

still

be

visible

to

readers

while

the

load

is

in

progress.

This

option

is

only

valid

for

load

appends,

such

as

a

load

insert,

and

will

be

ignored

for

load

replace.

iLockWithForce

Input.

A

boolean

flag.

If

set

to

TRUE

load

will

force

other

applications

as

necessary

to

ensure

that

it

obtains

table

locks

immediately.

This

option

requires

the

same

authority

as

the

FORCE

APPLICATIONS

command

(SYSADM

or

SYSCTRL).

SQLU_ALLOW_NO_ACCESS

loads

may

force

conflicting

applications

at

the

start

of

the

load

operation.

At

the

start

of

the

load

the

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

SQLU_ALLOW_READ_ACCESS

loads

may

force

conflicting

applications

at

the

start

or

end

of

the

load

operation.

At

the

start

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

modify

the

table.

At

the

end

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

iCheckPending

Input.

Specifies

to

put

the

table

into

check

pending

state.

If

SQLU_CHECK_PENDING_CASCADE_IMMEDIATE

is

specified,

check

pending

state

will

be

immediately

cascaded

to

all

dependent

and

descendent

tables.

If

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

specified,

the

cascade

of

check

pending

state

to

dependent

tables

will

be

deferred

until

the

target

table

is

checked

for

integrity

violations.

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

the

default

if

the

option

is

not

specified.

iRestartphase

Input.

Reserved.

Valid

value

is

a

single

space

character

’

’.

iStatsOpt

Input.

Granularity

of

statistics

to

collect.

Valid

values

are:

SQLU_STATS_NONE

No

statistics

to

be

gathered.

SQLU_STATS_USE_PROFILE

Statistics

are

collected

based

on

the

profile

defined

for

the

current

table.

This

profile

must

be

created

using

the

RUNSTATS

command.

If

no

profile

exists

for

the

current

table,

a

warning

is

returned

and

no

statistics

are

collected.

iUseTablespaceLen

Input.

The

length

in

bytes

of

piUseTablespace.

oRowsRead

Output.

Number

of

records

read

during

the

load

operation.

oRowsSkipped

Output.

Number

of

records

skipped

before

the

load

operation

begins.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

165

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

oRowsLoaded

Output.

Number

of

rows

loaded

into

the

target

table.

oRowsRejected

Output.

Number

of

records

that

could

not

be

loaded.

oRowsDeleted

Output.

Number

of

duplicate

rows

deleted.

oRowsCommitted

Output.

The

total

number

of

processed

records:

the

number

of

records

loaded

successfully

and

committed

to

the

database,

plus

the

number

of

skipped

and

rejected

records.

piHostname

Input.

The

hostname

for

the

iFileTransferCmd

parameter.

If

NULL,

the

hostname

will

default

to

″nohost″.

piFileTransferCmd

Input.

File

transfer

command

parameter.

If

not

required,

it

must

be

set

to

NULL.

See

the

Data

Movement

Guide

for

a

full

description

of

this

parameter.

piPartFileLocation

Input.

In

PARTITION_ONLY,

LOAD_ONLY,

and

LOAD_ONLY_VERIFY_PART

modes,

this

parameter

can

be

used

to

specify

the

location

of

the

partitioned

files.

This

location

must

exist

on

each

partition

specified

by

the

piOutputNodes

option.

For

the

SQL_CURSOR

file

type,

this

parameter

cannot

be

NULL

and

the

location

does

not

refer

to

a

path,

but

to

a

fully

qualified

file

name.

This

will

be

the

fully

qualified

base

file

name

of

the

partitioned

files

that

are

created

on

each

output

partition

for

PARTITION_ONLY

mode,

or

the

location

of

the

files

to

be

read

from

each

partition

for

LOAD_ONLY

mode.

For

PARTITION_ONLY

mode,

multiple

files

may

be

created

with

the

specified

base

name

if

there

are

LOB

columns

in

the

target

table.

For

file

types

other

than

SQL_CURSOR,

if

the

value

of

this

parameter

is

NULL,

it

will

default

to

the

current

directory.

piOutputNodes

Input.

The

list

of

Load

output

partitions.

A

NULL

indicates

that

all

nodes

on

which

the

target

table

is

defined.

piPartitioningNodes

Input.

The

list

of

partitioning

nodes.

A

NULL

indicates

the

default.

Refer

to

the

Load

command

in

the

Data

Movement

Guide

and

Reference

for

a

description

of

how

the

default

is

determined.

piMode

Input.

Specifies

the

load

mode

for

partitioned

databases.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_PARTITION_AND_LOAD

Data

is

partitioned

(perhaps

in

parallel)

and

loaded

simultaneously

on

the

corresponding

database

partitions.

DB2LOAD_PARTITION_ONLY

Data

is

partitioned

(perhaps

in

parallel)

and

the

output

is

written

to

files

in

a

specified

location

on

each

loading

partition.

For

file

types

other

than

SQL_CURSOR,

the

name

of

the

output

file

on

each

partition

will

have

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

input

file

specified

by

piSourceList

and

xxx

is

db2Load

-

Load

166

Administrative

API

Reference

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

the

partition

number.For

the

SQL_CURSOR

file

type,

the

name

of

the

output

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

Note:

This

mode

cannot

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY

Data

is

assumed

to

be

already

partitioned;

the

partition

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

For

file

types

other

than

SQL_CURSOR,

the

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

For

the

SQL_CURSOR

file

type,

the

name

of

the

input

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART

Data

is

assumed

to

be

already

partitioned,

but

the

data

file

does

not

contain

a

partition

header.

The

partitioning

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

During

the

load

operation,

each

row

is

checked

to

verify

that

it

is

on

the

correct

partition.

Rows

containing

partition

violations

are

placed

in

a

dumpfile

if

the

dumpfile

file

type

modifier

is

specified.

Otherwise,

the

rows

are

discarded.

If

partition

violations

exist

on

a

particular

loading

partition,

a

single

warning

will

be

written

to

the

load

message

file

for

that

partition.

The

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_ANALYZE

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

generated.

piMaxNumPartAgents

Input.

The

maximum

number

of

partitioning

agents.

A

NULL

value

indicates

the

default,

which

is

25.

piIsolatePartErrs

Input.

Indicates

how

the

load

operation

will

react

to

errors

that

occur

on

individual

partitions.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_SETUP_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup,

such

as

problems

accessing

a

partition

or

problems

accessing

a

table

space

or

table

on

a

partition,

will

cause

the

load

operation

to

stop

on

the

failing

partitions

but

to

continue

on

the

remaining

partitions.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

167

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

Errors

that

occur

on

a

partition

while

data

is

being

loaded

will

cause

the

entire

operation

to

fail

and

rollback

to

the

last

point

of

consistency

on

each

partition.

DB2LOAD_LOAD_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup

will

cause

the

entire

load

operation

to

fail.

When

an

error

occurs

while

data

is

being

loaded,

the

partitions

with

errors

will

be

rolled

back

to

their

last

point

of

consistency.

The

load

operation

will

continue

on

the

remaining

partitions

until

a

failure

occurs

or

until

all

the

data

is

loaded.

On

the

partitions

where

all

of

the

data

was

loaded,

the

data

will

not

be

visible

following

the

load

operation.

Because

of

the

errors

in

the

other

partitions

the

transaction

will

be

aborted.

Data

on

all

of

the

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

This

will

make

the

newly

loaded

data

visible

on

the

partitions

where

the

load

operation

completed

and

resume

the

load

operation

on

partitions

that

experienced

an

error.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

DB2LOAD_SETUP_AND_LOAD_ERRS

In

this

mode,

partition-level

errors

during

setup

or

loading

data

cause

processing

to

stop

only

on

the

affected

partitions.

As

with

the

DB2LOAD_LOAD_ERRS_ONLY

mode,

when

partition

errors

do

occur

while

data

is

being

loaded,

the

data

on

all

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

DB2LOAD_NO_ISOLATION

Any

error

during

the

Load

operation

causes

the

transaction

to

be

aborted.

If

this

parameter

is

NULL,

it

will

default

to

DB2LOAD_LOAD_ERRS_ONLY,

unless

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified,

in

which

case

the

default

is

DB2LOAD_NO_ISOLATION.

piStatusInterval

Input.

Specifies

the

number

of

megabytes

(MB)

of

data

to

load

before

generating

a

progress

message.

Valid

values

are

whole

numbers

in

the

range

of

1

to

4000.

If

NULL

is

specified,

a

default

value

of

100

will

be

used.

piPortRange

Input.

The

TCP

port

range

for

internal

communication.

If

NULL,

the

port

range

used

will

be

6000-6063.

piCheckTruncation

Input.

Causes

Load

to

check

for

record

truncation

at

Input/Output.

Valid

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

db2Load

-

Load

168

Administrative

API

Reference

|
|
|

|
|
|

|
|
|
|

piMapFileInput

Input.

Partition

map

input

filename.

If

the

mode

is

not

ANALYZE,

this

parameter

should

be

set

to

NULL.

If

the

mode

is

ANALYZE,

this

parameter

must

be

specified.

piMapFileOutput

Input.

Partition

map

output

filename.

The

rules

for

piMapFileInput

apply

here

as

well.

piTrace

Input.

Specifies

the

number

of

records

to

trace

when

you

need

to

review

a

dump

of

all

the

data

conversion

process

and

the

output

of

hashing

values.

If

NULL,

the

number

of

records

defaults

to

0.

piNewline

Input.

Forces

Load

to

check

for

newline

characters

at

end

of

ASC

data

records

if

RECLEN

file

type

modifier

is

also

specified.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

value

defaults

to

FALSE.

piDistfile

Input.

Name

of

the

partition

distribution

file.

If

a

NULL

is

specified,

the

value

defaults

to

″DISTFILE″.

piOmitHeader

Input.

Indicates

that

a

partition

map

header

should

not

be

included

in

the

partition

file

when

using

DB2LOAD_PARTITION_ONLY

mode.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

piRunStatDBPartNum

Specifies

the

database

partition

on

which

to

collect

statistics.

The

default

value

is

the

first

database

partition

in

the

output

partition

list.

iHostnameLen

Input.

The

length

in

bytes

of

piHostname.

iFileTransferLen

Input.

The

length

in

bytes

of

piFileTransferCmd.

iPartFileLocLen

Input.

The

length

in

bytes

of

piPartFileLocation.

iMapFileInputLen

Input.

The

length

in

bytes

of

piMapFileInput.

iMapFileOutputLen

Input.

The

length

in

bytes

of

piMapFileOutput.

iDistfileLen

Input.

The

length

in

bytes

of

piDistfile.

piNodeList

Input.

An

array

of

node

numbers.

iNumNodes

Input.

The

number

of

nodes

in

the

piNodeList

array.

A

0

indicates

the

default,

which

is

all

nodes

on

which

the

target

table

is

defined.

iPortMin

Input.

Lower

port

number.

iPortMax

Input.

Higher

port

number.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

169

oRowsRdPartAgents

Output.

Total

number

of

rows

read

by

all

partitioning

agents.

oRowsRejPartAgents

Output.

Total

number

of

rows

rejected

by

all

partitioning

agents.

oRowsPartitioned

Output.

Total

number

of

rows

partitioned

by

all

partitioning

agents.

poAgentInfoList

Output.

During

a

load

operation

into

a

partitioned

database,

the

following

load

processing

entities

may

be

involved:

load

agents,

partitioning

agents,

pre-partitioing

agents,

file

transfer

command

agents

and

load-to-file

agents

(these

are

described

in

the

Data

Movement

Guide).

The

purpose

of

the

poAgentInfoList

output

parameter

is

to

return

to

the

caller

information

about

each

load

agent

that

participated

in

a

load

operation.

Each

entry

in

the

list

contains

the

following

information:

v

oAgentType.

A

tag

indicating

what

kind

of

load

agent

the

entry

describes.

v

oNodeNum.

The

number

of

the

partition

on

which

the

agent

executed.

v

oSqlcode.

The

final

sqlcode

resulting

from

the

agent’s

processing.

v

oTableState.

The

final

status

of

the

table

on

the

partition

on

which

the

agent

executed

(relevant

only

for

load

agents).

It

is

up

to

the

caller

of

the

API

to

allocate

memory

for

this

list

prior

to

calling

the

API.

The

caller

should

also

indicate

the

number

of

entries

for

which

they

allocated

memory

in

the

iMaxAgentInfoEntries

parameter.

If

the

caller

sets

poAgentInfoList

to

NULL

or

sets

iMaxAgentInfoEntries

to

0,

then

no

information

will

be

returned

about

the

load

agents.

iMaxAgentInfoEntries

Input.

The

maximum

number

of

agent

information

entries

allocated

by

the

user

for

poAgentInfoList.

In

general,

setting

this

parameter

to

3

times

the

number

of

partitions

involved

in

the

load

operation

should

be

sufficient.

oNumAgentInfoEntries

Output.

The

actual

number

of

agent

information

entries

produced

by

the

load

operation.

This

number

of

entries

will

be

returned

to

the

user

in

the

poAgentInfoList

parameter

as

long

as

iMaxAgentInfoEntries

is

greater

than

or

equal

to

oNumAgentInfoEntries.

If

iMaxAgentInfoEntries

is

less

than

oNumAgentInfoEntries,

then

the

number

of

entries

returned

in

poAgentInfoList

is

equal

to

iMaxAgentInfoEntries.

oSqlcode

Output.

The

final

sqlcode

resulting

from

the

agent’s

processing.

oTableState

Output.

The

purpose

of

this

output

parameter

is

not

to

report

every

possible

state

of

the

table

after

the

load

operation.

Rather,

its

purpose

is

to

report

only

a

small

subset

of

possible

tablestates

in

order

to

give

the

caller

a

general

idea

of

what

happened

to

the

table

during

load

processing.

This

value

is

relevant

for

load

agents

only.

The

possible

values

are:

DB2LOADQUERY_NORMAL

Indicates

that

the

load

completed

successfully

on

the

partition

and

the

table

was

taken

out

of

the

LOAD

IN

PROGRESS

(or

LOAD

PENDING)

state.

In

this

case,

the

table

still

could

be

in

CHECK

PENDING

state

due

to

the

need

for

further

constraints

processing,

but

this

will

not

reported

as

this

is

normal.

db2Load

-

Load

170

Administrative

API

Reference

DB2LOADQUERY_UNCHANGED

Indicates

that

the

load

job

aborted

processing

due

to

an

error

but

did

not

yet

change

the

state

of

the

table

on

the

partition

from

whatever

state

it

was

in

prior

to

calling

db2Load.

It

is

not

necessary

to

perform

a

load

restart

or

terminate

operation

on

such

partitions.

DB2LOADQUERY_LOADPENDING

Indicates

that

the

load

job

aborted

during

processing

but

left

the

table

on

the

partition

in

the

LOAD

PENDING

state,

indicating

that

the

load

job

on

that

partition

must

be

either

terminated

or

restarted.

oNodeNum

Output.

The

number

of

the

partition

on

which

the

agent

executed.

oAgentType

Output.

The

agent

type.

Valid

values

(defined

in

db2ApiDf)

are

:

DB2LOAD_LOAD_AGENT

DB2LOAD_PARTITIONING_AGENT

DB2LOAD_PRE_PARTITIONING_AGENT

DB2LOAD_FILE_TRANSFER_AGENT

DB2LOAD_LOAD_TO_FILE_AGENT

Usage

notes:

Data

is

loaded

in

the

sequence

that

appears

in

the

input

file.

If

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

is

attempted.

The

load

utility

builds

indexes

based

on

existing

definitions.

The

exception

tables

are

used

to

handle

duplicates

on

unique

keys.

The

utility

does

not

enforce

referential

integrity,

perform

constraints

checking,

or

update

summary

tables

that

are

dependent

on

the

tables

being

loaded.

Tables

that

include

referential

or

check

constraints

are

placed

in

check

pending

state.

Summary

tables

that

are

defined

with

REFRESH

IMMEDIATE,

and

that

are

dependent

on

tables

being

loaded,

are

also

placed

in

check

pending

state.

Issue

the

SET

INTEGRITY

statement

to

take

the

tables

out

of

check

pending

state.

Load

operations

cannot

be

carried

out

on

replicated

summary

tables.

For

clustering

indexes,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

The

data

need

not

be

sorted

when

loading

into

an

multi-dimensionally

clustered

(MDC)

table.

DB2

Data

Links

Manager

Considerations

For

each

DATALINK

column,

there

can

be

one

column

specification

within

parentheses.

Each

column

specification

consists

of

one

or

more

of

DL_LINKTYPE,

prefix

and

a

DL_URL_SUFFIX

specification.

The

prefix

information

can

be

either

DL_URL_REPLACE_PREFIX,

or

the

DL_URL_DEFAULT_PREFIX

specification.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

as

found

within

the

insert-column

list

(if

specified

by

INSERT

INTO

(insert-column,

...)),

or

within

the

table

definition

(if

insert-column

is

not

specified).

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

171

For

example,

if

a

table

has

columns

C1,

C2,

C3,

C4,

and

C5,

and

among

them

only

columns

C2

and

C5

are

of

type

DATALINK,

and

the

insert-column

list

is

(C1,

C5,

C3,

C2),

there

should

be

two

DATALINK

column

specifications.

The

first

column

specification

will

be

for

C5,

and

the

second

column

specification

will

be

for

C2.

If

an

insert-column

list

is

not

specified,

the

first

column

specification

will

be

for

C2,

and

the

second

column

specification

will

be

for

C5.

If

there

are

multiple

DATALINK

columns,

and

some

columns

do

not

need

any

particular

specification,

the

column

specification

should

have

at

least

the

parentheses

to

unambiguously

identify

the

order

of

specifications.

If

there

are

no

specifications

for

any

of

the

columns,

the

entire

list

of

empty

parentheses

can

be

dropped.

Thus,

in

cases

where

the

defaults

are

satisfactory,

there

need

not

be

any

DATALINK

specification.

If

data

is

being

loaded

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary).

1.

Ensure

that

the

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

3.

Copy

to

the

appropriate

Data

Links

servers,

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

The

connection

between

DB2

and

the

Data

Links

server

may

fail

while

running

the

load

utility,

causing

the

load

operation

to

fail.

If

this

occurs:

1.

Start

the

Data

Links

server

and

the

DB2

Data

Links

Manager.

2.

Invoke

a

load

restart

operation.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Representation

of

DATALINK

Information

in

an

Input

File

The

LINKTYPE

(currently

only

URL

is

supported)

is

not

specified

as

part

of

DATALINK

information.

The

LINKTYPE

is

specified

in

the

LOAD

or

the

IMPORT

command,

and

for

input

files

of

type

PC/IXF,

in

the

appropriate

column

descriptor

records.

The

syntax

of

DATALINK

information

for

a

URL

LINKTYPE

is

as

follows:

��

urlname

dl_delimiter

comment

��

Note

that

both

urlname

and

comment

are

optional.

If

neither

is

provided,

the

NULL

value

is

assigned.

db2Load

-

Load

172

Administrative

API

Reference

urlname

The

URL

name

must

conform

to

valid

URL

syntax.

Notes:

1.

Currently

″http″,

″file″,

and

″unc″

are

permitted

as

a

schema

name.

2.

The

prefix

(schema,

host,

and

port)

of

the

URL

name

is

optional.

If

a

prefix

is

not

present,

it

is

taken

from

the

DL_URL_DEFAULT_PREFIX

or

the

DL_URL_REPLACE_PREFIX

specification

of

the

load

or

the

import

utility.

If

none

of

these

is

specified,

the

prefix

defaults

to

″file://localhost″.

Thus,

in

the

case

of

local

files,

the

file

name

with

full

path

name

can

be

entered

as

the

URL

name,

without

the

need

for

a

DATALINK

column

specification

within

the

LOAD

or

the

IMPORT

command.

3.

Prefixes,

even

if

present

in

URL

names,

are

overridden

by

a

different

prefix

name

on

the

DL_URL_REPLACE_PREFIX

specification

during

a

load

or

import

operation.

4.

The

″path″

(after

appending

DL_URL_SUFFIX,

if

specified)

is

the

full

path

name

of

the

remote

file

in

the

remote

server.

Relative

path

names

are

not

allowed.

The

http

server

default

path-prefix

is

not

taken

into

account.

dl_delimiter

For

the

delimited

ASCII

(DEL)

file

format,

a

character

specified

via

the

dldel

modifier,

or

defaulted

to

on

the

LOAD

or

the

IMPORT

command.

For

the

non-delimited

ASCII

(ASC)

file

format,

this

should

correspond

to

the

character

sequence

\;

(a

backslash

followed

by

a

semicolon).

Whitespace

characters

(blanks,

tabs,

and

so

on)

are

permitted

before

and

after

the

value

specified

for

this

parameter.

comment

The

comment

portion

of

a

DATALINK

value.

If

specified

for

the

delimited

ASCII

(DEL)

file

format,

the

comment

text

must

be

enclosed

by

the

character

string

delimiter,

which

is

double

quotation

marks

(″)

by

default.

This

character

string

delimiter

can

be

overridden

by

the

MODIFIED

BY

filetype-mod

specification

of

the

LOAD

or

the

IMPORT

command.

If

no

comment

is

specified,

the

comment

defaults

to

a

string

of

length

zero.

Following

are

DATALINK

data

examples

for

the

delimited

ASCII

(DEL)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg;

"Intro

Movie"

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang;

"InderPal’s

Home

Page"

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

for

the

non-delimited

ASCII

(ASC)

file

format:

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

173

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro

Movie

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang\;

InderPal’s

Home

Page

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

in

which

the

load

or

import

specification

for

the

column

is

assumed

to

be

DL_URL_REPLACE_PREFIX

(″http://qso″):

v

http://www.almaden.ibm.com/mrep/intro.mpeg

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/mrep/intro.mpeg

–

comment

=

NULL

string
v

/u/me/myfile.ps

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/u/me/myfile.ps

–

comment

=

NULL

string

Related

reference:

v

“sqluvqdp

-

Quiesce

Table

Spaces

for

Table”

on

page

391

v

“db2LoadQuery

-

Load

Query”

on

page

187

v

“SQLDCOL”

on

page

413

v

“SQLU-MEDIA-LIST”

on

page

450

v

“db2Export

-

Export”

on

page

57

v

“db2Import

-

Import”

on

page

104

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

43

v

“db2InstanceQuiesce

-

Instance

Quiesce”

on

page

129

v

“File

type

modifiers

for

load”

on

page

175

v

“Delimiter

restrictions

for

moving

data”

on

page

185

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbload.sqc

--

How

to

load

into

a

partitioned

database

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Load

-

Load

174

Administrative

API

Reference

File

type

modifiers

for

load

Table

15.

Valid

file

type

modifiers

for

load:

All

file

formats

Modifier

Description

anyorder

This

modifier

is

used

in

conjunction

with

the

cpu_parallelism

parameter.

Specifies

that

the

preservation

of

source

data

order

is

not

required,

yielding

significant

additional

performance

benefit

on

SMP

systems.

If

the

value

of

cpu_parallelism

is

1,

this

option

is

ignored.

This

option

is

not

supported

if

SAVECOUNT

>

0,

since

crash

recovery

after

a

consistency

point

requires

that

data

be

loaded

in

sequence.

generatedignore

This

modifier

informs

the

load

utility

that

data

for

all

generated

columns

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedoverride

modifier.

generatedmissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

generated

column

(not

even

NULLs).

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedignore

or

the

generatedoverride

modifier.

generatedoverride

This

modifier

instructs

the

load

utility

to

accept

user-supplied

data

for

all

generated

columns

in

the

table

(contrary

to

the

normal

rules

for

these

types

of

columns).

This

is

useful

when

migrating

data

from

another

database

system,

or

when

loading

a

table

from

data

that

was

recovered

using

the

RECOVER

DROPPED

TABLE

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

a

non-nullable

generated

column

will

be

rejected

(SQL3116W).

Note:

When

this

modifier

is

used,

the

table

will

be

placed

in

CHECK

PENDING

state.

To

take

the

table

out

of

CHECK

PENDING

state

without

verifying

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

GENERATED

COLUMN

IMMEDIATED

UNCHECKED

To

take

the

table

out

of

CHECK

PENDING

state

and

force

verification

of

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

IMMEDIATE

CHECKED.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedignore

modifier.

identityignore

This

modifier

informs

the

load

utility

that

data

for

the

identity

column

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

identity

values

being

generated

by

the

utility.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

means

that

for

GENERATED

ALWAYS

columns,

no

rows

will

be

rejected.

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityoverride

modifier.

identitymissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

identity

column

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

modifier

cannot

be

used

with

either

the

identityignore

or

the

identityoverride

modifier.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

175

Table

15.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

identityoverride

This

modifier

should

be

used

only

when

an

identity

column

defined

as

GENERATED

ALWAYS

is

present

in

the

table

to

be

loaded.

It

instructs

the

utility

to

accept

explicit,

non-NULL

data

for

such

a

column

(contrary

to

the

normal

rules

for

these

types

of

identity

columns).

This

is

useful

when

migrating

data

from

another

database

system

when

the

table

must

be

defined

as

GENERATED

ALWAYS,

or

when

loading

a

table

from

data

that

was

recovered

using

the

DROPPED

TABLE

RECOVERY

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

the

identity

column

will

be

rejected

(SQL3116W).

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityignore

modifier.

Note:

The

load

utility

will

not

attempt

to

maintain

or

verify

the

uniqueness

of

values

in

the

table’s

identity

column

when

this

option

is

used.

indexfreespace=x

x

is

an

integer

between

0

and

99

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

index

page

that

is

to

be

left

as

free

space

when

load

rebuilds

the

index.

Load

with

INDEXING

MODE

INCREMENTAL

ignores

this

option.

The

first

entry

in

a

page

is

added

without

restriction;

subsequent

entries

are

added

the

percent

free

space

threshold

can

be

maintained.

The

default

value

is

the

one

used

at

CREATE

INDEX

time.

This

value

takes

precedence

over

the

PCTFREE

value

specified

in

the

CREATE

INDEX

statement;

the

registry

variable

DB2

INDEX

FREE

takes

precedence

over

indexfreespace.

The

indexfreespace

option

affects

index

leaf

pages

only.

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

The

ASC,

DEL,

or

IXF

load

input

files

contain

the

names

of

the

files

having

LOB

data

in

the

LOB

column.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

The

LOBS

FROM

clause

specifies

where

the

LOB

files

are

located

when

the

“lobsinfile”

modifier

is

used.

The

LOBS

FROM

clause

means

nothing

outside

the

context

of

the

“lobsinfile”

modifier.

The

LOBS

FROM

clause

conveys

to

the

LOAD

utility

the

list

of

paths

to

search

for

the

LOB

files

while

loading

the

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

To

indicate

a

null

LOB

,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

noheader

Skips

the

header

verification

code

(applicable

only

to

load

operations

into

tables

that

reside

in

a

single-partition

database

partition

group).

The

AutoLoader

utility

writes

a

header

to

each

file

contributing

data

to

a

table

in

a

multiple-partition

database

partition

group.

If

the

default

MPP

load

(mode

PARTITION_AND_LOAD)

is

used

against

a

table

residing

in

a

single-partition

database

partition

group,

the

file

is

not

expected

to

have

a

header.

Thus

the

noheader

modifier

is

not

needed.

If

the

LOAD_ONLY

mode

is

used,

the

file

is

expected

to

have

a

header.

The

only

circumstance

in

which

you

should

need

to

use

the

noheader

modifier

is

if

you

wanted

to

perform

LOAD_ONLY

operation

using

a

file

that

does

not

have

a

header.

norowwarnings

Suppresses

all

warnings

about

rejected

rows.

db2Load

-

Load

176

Administrative

API

Reference

|
|
|
|

Table

15.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

pagefreespace=x

x

is

an

integer

between

0

and

100

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

data

page

that

is

to

be

left

as

free

space.

If

the

specified

value

is

invalid

because

of

the

minimum

row

size,

(for

example,

a

row

that

is

at

least

3

000

bytes

long,

and

an

x

value

of

50),

the

row

will

be

placed

on

a

new

page.

If

a

value

of

100

is

specified,

each

row

will

reside

on

a

new

page.

Note:

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

a

pagefreespace

value

on

the

load

operation

or

a

PCTFREE

value

on

a

table

have

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

The

value

set

by

pagefreespace

overrides

the

PCTFREE

value

specified

for

the

table.

subtableconvert

Valid

only

when

loading

into

a

single

sub-table.

Typical

usage

is

to

export

data

from

a

regular

table,

and

then

to

invoke

a

load

operation

(using

this

modifier)

to

convert

the

data

into

a

single

sub-table.

totalfreespace=x

x

is

an

integer

greater

than

or

equal

to

0

.

The

value

is

interpreted

as

the

percentage

of

the

total

pages

in

the

table

that

is

to

be

appended

to

the

end

of

the

table

as

free

space.

For

example,

if

x

is

20,

and

the

table

has

100

data

pages

after

the

data

has

been

loaded,

20

additional

empty

pages

will

be

appended.

The

total

number

of

data

pages

for

the

table

will

be

120.

The

data

pages

total

does

not

factor

in

the

number

of

index

pages

in

the

table.

This

option

does

not

affect

the

index

object.

Note:

If

two

loads

are

done

with

this

option

specified,

the

second

load

will

not

reuse

the

extra

space

appended

to

the

end

by

the

first

load.

usedefaults

If

a

source

column

for

a

target

table

column

has

been

specified,

but

it

contains

no

data

for

one

or

more

row

instances,

default

values

are

loaded.

Examples

of

missing

data

are:

v

For

DEL

files:

",,"

is

specified

for

the

column

v

For

DEL/ASC/WSF

files:

A

row

that

does

not

have

enough

columns,

or

is

not

long

enough

for

the

original

specification.

Without

this

option,

if

a

source

column

contains

no

data

for

a

row

instance,

one

of

the

following

occurs:

v

If

the

column

is

nullable,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

the

utility

rejects

the

row.

Table

16.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

Modifier

Description

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

input

data

set.

Converts

character

data

(and

numeric

data

specified

in

characters)

from

this

code

page

to

the

database

code

page

during

the

load

operation.

The

following

rules

apply:

v

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

v

For

DEL

data

specified

in

an

EBCDIC

code

page,

the

delimiters

may

not

coincide

with

the

shift-in

and

shift-out

DBCS

characters.

v

nullindchar

must

specify

symbols

included

in

the

standard

ASCII

set

between

code

points

x20

and

x7F,

inclusive.

This

refers

to

ASCII

symbols

and

code

points.

EBCDIC

data

can

use

the

corresponding

symbols,

even

though

the

code

points

will

be

different.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

177

Table

16.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

dateformat=″x″

x

is

the

format

of

the

date

in

the

source

file.1

Valid

date

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

1

-

12;

mutually

exclusive

with

M)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

A

default

value

of

1

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

date

formats

are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

dumpfile

=

x

x

is

the

fully

qualified

(according

to

the

server

database

partition)

name

of

an

exception

file

to

which

rejected

rows

are

written.

A

maximum

of

32

KB

of

data

is

written

per

record.

Following

is

an

example

that

shows

how

to

specify

a

dump

file:

db2

load

from

data

of

del

modified

by

dumpfile

=

/u/user/filename

insert

into

table_name

The

file

will

be

created

and

owned

by

the

instance

owner.

To

override

the

default

file

permissions,

use

the

dumpfileaccessall

file

type

modifier.

Notes:

1.

In

a

partitioned

database

environment,

the

path

should

be

local

to

the

loading

database

partition,

so

that

concurrently

running

load

operations

do

not

attempt

to

write

to

the

same

file.

2.

The

contents

of

the

file

are

written

to

disk

in

an

asynchronous

buffered

mode.

In

the

event

of

a

failed

or

an

interrupted

load

operation,

the

number

of

records

committed

to

disk

cannot

be

known

with

certainty,

and

consistency

cannot

be

guaranteed

after

a

LOAD

RESTART.

The

file

can

only

be

assumed

to

be

complete

for

a

load

operation

that

starts

and

completes

in

a

single

pass.

3.

This

modifier

does

not

support

file

names

with

multiple

file

extensions.

For

example,

dumpfile

=

/home/svtdbm6/DUMP.FILE

is

acceptable

to

the

load

utility,

but

dumpfile

=

/home/svtdbm6/DUMP.LOAD.FILE

is

not.

dumpfileaccessall

=

x

Grants

read

access

to

’OTHERS’

when

a

dump

file

is

created.

This

file

type

modifier

is

only

valid

when:

1.

it

is

used

in

conjunction

with

dumpfile

file

type

modifier

2.

the

user

has

SELECT

privilege

on

the

load

target

table

3.

it

is

issued

on

a

DB2

server

database

partition

that

resides

on

a

UNIX-based

operating

system

db2Load

-

Load

178

Administrative

API

Reference

|
|

||

|

|

|

|
|

Table

16.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

fastparse

Reduced

syntax

checking

is

done

on

user-supplied

column

values,

and

performance

is

enhanced.

Tables

loaded

under

this

option

are

guaranteed

to

be

architecturally

correct,

and

the

utility

is

guaranteed

to

perform

sufficient

data

checking

to

prevent

a

segmentation

violation

or

trap.

Data

that

is

in

correct

form

will

be

loaded

correctly.

For

example,

if

a

value

of

123qwr4

were

to

be

encountered

as

a

field

entry

for

an

integer

column

in

an

ASC

file,

the

load

utility

would

ordinarily

flag

a

syntax

error,

since

the

value

does

not

represent

a

valid

number.

With

fastparse,

a

syntax

error

is

not

detected,

and

an

arbitrary

number

is

loaded

into

the

integer

field.

Care

must

be

taken

to

use

this

modifier

with

clean

data

only.

Performance

improvements

using

this

option

with

ASCII

data

can

be

quite

substantial.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

or

IXF

file

types.

implieddecimal

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition;

it

is

no

longer

assumed

to

be

at

the

end

of

the

value.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

This

modifier

cannot

be

used

with

the

packeddecimal

modifier.

timeformat=″x″

x

is

the

format

of

the

time

in

the

source

file.1

Valid

time

elements

are:

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

0

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

time

formats

are:

"HH:MM:SS"

"HH.MM

TT"

"SSSSS"

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

179

|

Table

16.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.1

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

1

is

assigned

for

unspecified

YYYY,

M,

MM,

D,

DD,

or

DDD

elements.

A

default

value

of

’Jan’

is

assigned

to

an

unspecified

MMM

element.

A

default

value

of

0

is

assigned

for

all

other

unspecified

elements.

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

valid

values

for

the

MMM

element

include:

’jan’,

’feb’,

’mar’,

’apr’,

’may’,

’jun’,

’jul’,

’aug’,

’sep’,

’oct’,

’nov’

and

’dec’.

These

values

are

case

insensitive.

The

following

example

illustrates

how

to

import

data

containing

user

defined

date

and

time

formats

into

a

table

called

schedule:

db2

import

from

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

insert

into

schedule

noeofchar

The

optional

end-of-file

character

x’1A’

is

not

recognized

as

the

end

of

file.

Processing

continues

as

if

it

were

a

normal

character.

db2Load

-

Load

180

Administrative

API

Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

Table

16.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

usegraphiccodepage

If

usegraphiccodepage

is

given,

the

assumption

is

made

that

data

being

loaded

into

graphic

or

double-byte

character

large

object

(DBCLOB)

data

field(s)

is

in

the

graphic

code

page.

The

rest

of

the

data

is

assumed

to

be

in

the

character

code

page.

The

graphic

codepage

is

associated

with

the

character

code

page.

LOAD

determines

the

character

code

page

through

either

the

codepage

modifier,

if

it

is

specified,

or

through

the

code

page

of

the

database

if

the

codepage

modifier

is

not

specified.

This

modifier

should

be

used

in

conjunction

with

the

delimited

data

file

generated

by

drop

table

recovery

only

if

the

table

being

recovered

has

graphic

data.

Restrictions

The

usegraphiccodepage

modifier

MUST

NOT

be

specified

with

DEL

or

ASC

files

created

by

the

EXPORT

utility,

as

these

files

contain

data

encoded

in

only

one

code

page.

The

usegraphiccodepage

modifier

is

also

ignored

by

the

double-byte

character

large

objects

(DBCLOBs)

in

files.

Table

17.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

Modifier

Description

binarynumerics

Numeric

(but

not

DECIMAL)

data

must

be

in

binary

form,

not

the

character

representation.

This

avoids

costly

conversions.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

The

following

rules

apply:

v

No

conversion

between

data

types

is

performed,

with

the

exception

of

BIGINT,

INTEGER,

and

SMALLINT.

v

Data

lengths

must

match

their

target

column

definitions.

v

FLOATs

must

be

in

IEEE

Floating

Point

format.

v

Binary

data

in

the

load

source

file

is

assumed

to

be

big-endian,

regardless

of

the

platform

on

which

the

load

operation

is

running.

Note:

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

nullindchar=x

x

is

a

single

character.

Changes

the

character

denoting

a

NULL

value

to

x.

The

default

value

of

x

is

Y.2

This

modifier

is

case

sensitive

for

EBCDIC

data

files,

except

when

the

character

is

an

English

letter.

For

example,

if

the

NULL

indicator

character

is

specified

to

be

the

letter

N,

then

n

is

also

recognized

as

a

NULL

indicator.

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

181

||
|
|
|
|
|
|

|
|
|

|

|
|
|
|

Table

17.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

(continued)

Modifier

Description

packeddecimal

Loads

packed-decimal

data

directly,

since

the

binarynumerics

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

Supported

values

for

the

sign

nibble

are:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

Regardless

of

the

server

platform,

the

byte

order

of

binary

data

in

the

load

source

file

is

assumed

to

be

big-endian;

that

is,

when

using

this

modifier

on

Windows

operating

systems,

the

byte

order

must

not

be

reversed.

This

modifier

cannot

be

used

with

the

implieddecimal

modifier.

reclen=x

x

is

an

integer

with

a

maximum

value

of

32

767.

x

characters

are

read

for

each

row,

and

a

new-line

character

is

not

used

to

indicate

the

end

of

the

row.

striptblanks

Truncates

any

trailing

blank

spaces

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

blank

spaces

are

kept.

This

option

cannot

be

specified

together

with

striptnulls.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

t

option,

which

is

supported

for

back-level

compatibility

only.

striptnulls

Truncates

any

trailing

NULLs

(0x00

characters)

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

NULLs

are

kept.

This

option

cannot

be

specified

together

with

striptblanks.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

padwithzero

option,

which

is

supported

for

back-level

compatibility

only.

zoneddecimal

Loads

zoned

decimal

data,

since

the

BINARYNUMERICS

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

RECLEN

option.

The

NOEOFCHAR

option

is

assumed.

Half-byte

sign

values

can

be

one

of

the

following:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

Supported

values

for

digits

are

0x0

to

0x9.

Supported

values

for

zones

are

0x3

and

0xF.

db2Load

-

Load

182

Administrative

API

Reference

Table

18.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.23

If

you

wish

to

explicitly

specify

the

double

quotation

mark(″)

as

the

character

string

delimiter,

you

should

specify

it

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter

as

follows:

modified

by

chardel''

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.23

datesiso

Date

format.

Causes

all

date

data

values

to

be

loaded

in

ISO

format.

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.23

delprioritychar

The

current

default

priority

for

delimiters

is:

record

delimiter,

character

delimiter,

column

delimiter.

This

modifier

protects

existing

applications

that

depend

on

the

older

priority

by

reverting

the

delimiter

priorities

to:

character

delimiter,

record

delimiter,

column

delimiter.

Syntax:

db2

load

...

modified

by

delprioritychar

...

For

example,

given

the

following

DEL

data

file:

"Smith,

Joshua",4000,34.98<row

delimiter>

"Vincent,<row

delimiter>,

is

a

manager",

...

...

4005,44.37<row

delimiter>

With

the

delprioritychar

modifier

specified,

there

will

be

only

two

rows

in

this

data

file.

The

second

<row

delimiter>

will

be

interpreted

as

part

of

the

first

data

column

of

the

second

row,

while

the

first

and

the

third

<row

delimiter>

are

interpreted

as

actual

record

delimiters.

If

this

modifier

is

not

specified,

there

will

be

three

rows

in

this

data

file,

each

delimited

by

a

<row

delimiter>.

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

234

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

keepblanks

Preserves

the

leading

and

trailing

blanks

in

each

field

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB.

Without

this

option,

all

leading

and

tailing

blanks

that

are

not

inside

character

delimiters

are

removed,

and

a

NULL

is

inserted

into

the

table

for

all

blank

fields.

The

following

example

illustrates

how

to

load

data

into

a

table

called

TABLE1,

while

preserving

all

leading

and

trailing

spaces

in

the

data

file:

db2

load

from

delfile3

of

del

modified

by

keepblanks

insert

into

table1

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

183

Table

18.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

(continued)

Modifier

Description

nochardel

The

load

utility

will

assume

all

bytes

found

between

the

column

delimiters

to

be

part

of

the

column’s

data.

Character

delimiters

will

be

parsed

as

part

of

column

data.

This

option

should

not

be

specified

if

the

data

was

exported

using

DB2

(unless

nochardel

was

specified

at

export

time).

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx,

delprioritychar

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.

Table

19.

Valid

file

type

modifiers

for

load:

IXF

file

format

Modifier

Description

forcein

Directs

the

utility

to

accept

data

despite

code

page

mismatches,

and

to

suppress

translation

between

code

pages.

Fixed

length

target

fields

are

checked

to

verify

that

they

are

large

enough

for

the

data.

If

nochecklengths

is

specified,

no

checking

is

done,

and

an

attempt

is

made

to

load

each

row.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

Notes:

1.

Double

quotation

marks

around

the

date

format

string

are

mandatory.

Field

separators

cannot

contain

any

of

the

following:

a-z,

A-Z,

and

0-9.

The

field

separator

should

not

be

the

same

as

the

character

delimiter

or

field

delimiter

in

the

DEL

file

format.

A

field

separator

is

optional

if

the

start

and

end

positions

of

an

element

are

unambiguous.

Ambiguity

can

exist

if

(depending

on

the

modifier)

elements

such

as

D,

H,

M,

or

S

are

used,

because

of

the

variable

length

of

the

entries.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

Some

characters,

such

as

double

quotation

marks

and

back

slashes,

must

be

preceded

by

an

escape

character

(for

example,

\).

db2Load

-

Load

184

Administrative

API

Reference

||
|
|
|
|
|

|
|

2.

The

character

must

be

specified

in

the

code

page

of

the

source

data.

The

character

code

point

(instead

of

the

character

symbol),

can

be

specified

using

the

syntax

xJJ

or

0xJJ,

where

JJ

is

the

hexadecimal

representation

of

the

code

point.

For

example,

to

specify

the

#

character

as

a

column

delimiter,

use

one

of

the

following:

...

modified

by

coldel#

...

...

modified

by

coldel0x23

...

...

modified

by

coldelX23

...

3.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

4.

Even

if

the

DATALINK

delimiter

character

is

a

valid

character

within

the

URL

syntax,

it

will

lose

its

special

meaning

within

the

scope

of

the

load

operation.

5.

The

load

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

load

operation

fails,

and

an

error

code

is

returned.

Table

20.

LOAD

behavior

when

using

codepage

and

usegraphiccodepage

codepage=N

usegraphiccodepage

LOAD

behavior

Absent

Absent

All

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

not

the

application

code

page,

even

if

the

CLIENT

option

is

specified.

Present

Absent

All

data

in

the

file

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Absent

Present

Character

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

even

if

the

CLIENT

option

is

specified.

Graphic

data

is

assumed

to

be

in

the

code

page

of

the

database

graphic

data,

even

if

the

CLIENT

option

is

specified.

If

the

database

code

page

is

single-byte,

then

all

data

is

assumed

to

be

in

the

database

code

page.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

a

single-byte

database.

Present

Present

Character

data

is

assumed

to

be

in

code

page

N.

Graphic

data

is

assumed

to

be

in

the

graphic

code

page

of

N.

If

N

is

a

single-byte

or

double-byte

code

page,

then

all

data

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Related

reference:

v

“LOAD

Command”

in

the

Command

Reference

v

“db2Load

-

Load”

on

page

153

v

“Delimiter

restrictions

for

moving

data”

on

page

185

Delimiter

restrictions

for

moving

data

Delimiter

restrictions:

db2Load

-

Load

Chapter

1.

Application

Programming

Interfaces

185

||

|||

|||
|
|

|||

|
|

|||
|
|
|
|

|
|

|
|

|||
|

|
|

|
|
|

It

is

the

user’s

responsibility

to

ensure

that

the

chosen

delimiter

character

is

not

part

of

the

data

to

be

moved.

If

it

is,

unexpected

errors

may

occur.

The

following

restrictions

apply

to

column,

string,

DATALINK,

and

decimal

point

delimiters

when

moving

data:

v

Delimiters

are

mutually

exclusive.

v

A

delimiter

cannot

be

binary

zero,

a

line-feed

character,

a

carriage-return,

or

a

blank

space.

v

The

default

decimal

point

(.)

cannot

be

a

string

delimiter.

v

The

following

characters

are

specified

differently

by

an

ASCII-family

code

page

and

an

EBCDIC-family

code

page:

–

The

Shift-In

(0x0F)

and

the

Shift-Out

(0x0E)

character

cannot

be

delimiters

for

an

EBCDIC

MBCS

data

file.

–

Delimiters

for

MBCS,

EUC,

or

DBCS

code

pages

cannot

be

greater

than

0x40,

except

the

default

decimal

point

for

EBCDIC

MBCS

data,

which

is

0x4b.

–

Default

delimiters

for

data

files

in

ASCII

code

pages

or

EBCDIC

MBCS

code

pages

are:

"

(0x22,

double

quotation

mark;

string

delimiter)

,

(0x2c,

comma;

column

delimiter)

–

Default

delimiters

for

data

files

in

EBCDIC

SBCS

code

pages

are:

"

(0x7F,

double

quotation

mark;

string

delimiter)

,

(0x6B,

comma;

column

delimiter)

–

The

default

decimal

point

for

ASCII

data

files

is

0x2e

(period).

–

The

default

decimal

point

for

EBCDIC

data

files

is

0x4B

(period).

–

If

the

code

page

of

the

server

is

different

from

the

code

page

of

the

client,

it

is

recommended

that

the

hex

representation

of

non-default

delimiters

be

specified.

For

example,

db2

load

from

...

modified

by

chardel0x0C

coldelX1e

...

The

following

information

about

support

for

double

character

delimiter

recognition

in

DEL

files

applies

to

the

export,

import,

and

load

utilities:

v

Character

delimiters

are

permitted

within

the

character-based

fields

of

a

DEL

file.

This

applies

to

fields

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB

(except

when

lobsinfile

is

specified).

Any

pair

of

character

delimiters

found

between

the

enclosing

character

delimiters

is

imported

or

loaded

into

the

database.

For

example,

"What

a

""nice""

day!"

will

be

imported

as:

What

a

"nice"

day!

In

the

case

of

export,

the

rule

applies

in

reverse.

For

example,

I

am

6"

tall.

will

be

exported

to

a

DEL

file

as:

"I

am

6""

tall."

v

In

a

DBCS

environment,

the

pipe

(|)

character

delimiter

is

not

supported.

db2Load

-

Load

186

Administrative

API

Reference

db2LoadQuery

-

Load

Query

Checks

the

status

of

a

load

operation

during

processing.

Authorization:

None

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LoadQuery

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LoadQuery

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iStringType;

char

*piString;

db2Uint32

iShowLoadMessages;

db2LoadQueryOutputStruct

*poOutputStruct;

char

*piLocalMessageFile;

}

db2LoadQueryStruct;

typedef

struct

{

db2Uint32

oRowsRead;

db2Uint32

oRowsSkipped;

db2Uint32

oRowsCommitted;

db2Uint32

oRowsLoaded;

db2Uint32

oRowsRejected;

db2Uint32

oRowsDeleted;

db2Uint32

oCurrentIndex;

db2Uint32

oNumTotalIndexes;

db2Uint32

oCurrentMPPNode;

db2Uint32

oLoadRestarted;

db2Uint32

oWhichPhase;

db2Uint32

oWarningCount;

db2Uint32

oTableState;

}

db2LoadQueryOutputStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gLoadQuery

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gLoadQuery

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

db2LoadQuery

-

Load

Query

Chapter

1.

Application

Programming

Interfaces

187

typedef

struct

{

db2Uint32

iStringType;

db2Uint32

iStringLen;

char

*piString;

db2Uint32

iShowLoadMessages;

db2LoadQueryOutputStruct

*poOutputStruct;

db2Uint32

iLocalMessageFileLen;

char

*piLocalMessageFile

}

db2gLoadQueryStruct;

typedef

struct

{

db2Uint32

oRowsRead;

db2Uint32

oRowsSkipped;

db2Uint32

oRowsCommitted;

db2Uint32

oRowsLoaded;

db2Uint32

oRowsRejected;

db2Uint32

oRowsDeleted;

db2Uint32

oCurrentIndex;

db2Uint32

oNumTotalIndexes;

db2Uint32

oCurrentMPPNode;

db2Uint32

oLoadRestarted;

db2Uint32

oWhichPhase;

db2Uint32

oWarningCount;

db2Uint32

oTableState;

}

db2LoadQueryOutputStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LoadQueryStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iStringType

Input.

Specifies

a

type

for

piString.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_TABLENAME

Specifies

a

table

name

for

use

by

the

db2LoadQuery

API.

iStringLen

Input.

Specifies

the

length

in

bytes

of

piString.

piString

Input.

Specifies

a

temporary

files

path

name

or

a

table

name,

depending

on

the

value

of

iStringType.

iShowLoadMessages

Input.

Specifies

the

level

of

messages

that

are

to

be

returned

by

the

load

utility.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_SHOW_ALL_MSGS

Return

all

load

messages.

DB2LOADQUERY_SHOW_NO_MSGS

Return

no

load

messages.

db2LoadQuery

-

Load

Query

188

Administrative

API

Reference

DB2LOADQUERY_SHOW_NEW_MSGS

Return

only

messages

that

have

been

generated

since

the

last

call

to

this

API.

poOutputStruct

Output.

A

pointer

to

the

db2LoadQueryOutputStruct

structure,

which

contains

load

summary

information.

Set

to

NULL

if

a

summary

is

not

required.

iLocalMessageFileLen

Input.

Specifies

the

length

in

bytes

of

piLocalMessageFile.

piLocalMessageFile

Input.

Specifies

the

name

of

a

local

file

to

be

used

for

output

messages.

oRowsRead

Output.

Number

of

records

read

so

far

by

the

load

utility.

oRowsSkipped

Output.

Number

of

records

skipped

before

the

load

operation

began.

oRowsCommitted

Output.

Number

of

rows

committed

to

the

target

table

so

far.

oRowsLoaded

Output.

Number

of

rows

loaded

into

the

target

table

so

far.

oRowsRejected

Output.

Number

of

rows

rejected

from

the

target

table

so

far.

oRowsDeleted

Output.

Number

of

rows

deleted

from

the

target

table

so

far

(during

the

delete

phase).

oCurrentIndex

Output.

Index

currently

being

built

(during

the

build

phase).

oCurrentMPPNode

Output.

Indicates

which

database

partition

server

is

being

queried

(for

partitioned

database

environment

mode

only).

oLoadRestarted

Output.

A

flag

whose

value

is

TRUE

if

the

load

operation

being

queried

is

a

load

restart

operation.

oWhichPhase

Output.

Indicates

the

current

phase

of

the

load

operation

being

queried.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_LOAD_PHASE

Load

phase.

DB2LOADQUERY_BUILD_PHASE

Build

phase.

DB2LOADQUERY_DELETE_PHASE

Delete

phase.

oNumTotalIndexes

Output.

Total

number

of

indexes

to

be

built

(during

the

build

phase).

oWarningCount

Output.

Total

number

of

warnings

returned

so

far.

db2LoadQuery

-

Load

Query

Chapter

1.

Application

Programming

Interfaces

189

oTableState

Output.

The

table

states.

Valid

values

(as

defined

in

db2ApiDf)

are:

DB2LOADQUERY_NORMAL

No

table

states

affect

the

table.

DB2LOADQUERY_CHECK_PENDING

The

table

has

constraints

and

the

constraints

have

yet

to

be

verified.

Use

the

SET

INTEGRITY

command

to

take

the

table

out

of

the

DB2LOADQUERY_CHECK_PENDING

state.

The

load

utility

puts

a

table

into

the

DB2LOADQUERY_CHECK_PENDING

state

when

it

begins

a

load

on

a

table

with

constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS

There

is

a

load

actively

in

progress

on

this

table.

DB2LOADQUERY_LOAD_PENDING

A

load

has

been

active

on

this

table

but

has

been

aborted

before

the

load

could

commit.

Issue

a

load

terminate,

a

load

restart,

or

a

load

replace

to

bring

the

table

out

of

the

DB2LOADQUERY_LOAD_PENDING

state.

DB2LOADQUERY_READ_ACCESS

The

table

data

is

available

for

read

access

queries.

Loads

using

the

DB2LOADQUERY_READ_ACCESS

option

put

the

table

into

Read

Access

Only

state.

DB2LOADQUERY_NOTAVAILABLE

The

table

is

unavailable.

The

table

may

only

be

dropped

or

it

may

be

restored

from

a

backup.

Rollforward

through

a

non-recoverable

load

will

put

a

table

into

the

unavailable

state.

DB2LOADQUERY_NO_LOAD_RESTART

The

table

is

in

a

partially

loaded

state

that

will

not

allow

a

load

restart.

The

table

will

also

be

in

the

Load

Pending

state.

Issue

a

load

terminate

or

a

load

replace

to

bring

the

table

out

of

the

No

Load

Restartable

state.

The

table

can

be

placed

in

the

DB2LOADQUERY_NO_LOAD_RESTART

state

during

a

rollforward

operation.

This

can

occur

if

you

rollforward

to

a

point

in

time

that

is

prior

to

the

end

of

a

load

operation,

or

if

you

roll

forward

through

an

aborted

load

operation

but

do

not

roll

forward

to

the

end

of

the

load

terminate

or

load

restart

operation.

DB2LOADQUERY_TYPE1_INDEXES

The

table

currently

uses

type-1

indexes.

The

indexes

can

be

converted

to

type-2

using

the

CONVERT

option

when

using

the

REORG

utility

on

the

indexes.

Usage

notes:

This

API

reads

the

status

of

the

load

operation

on

the

table

specified

by

piString,

and

writes

the

status

to

the

file

specified

by

pLocalMsgFileName.

Related

concepts:

v

“Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command”

in

the

Data

Movement

Utilities

Guide

and

Reference

Related

reference:

v

“SQLCA”

on

page

410

db2LoadQuery

-

Load

Query

190

Administrative

API

Reference

|
|
|
|

Related

samples:

v

“loadqry.sqb

--

Query

the

current

status

of

a

load

(MF

COBOL)”

v

“tbload.sqc

--

How

to

load

into

a

partitioned

database

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2MonitorSwitches

-

Get/Update

Monitor

Switches

Selectively

turns

on

or

off

switches

for

groups

of

monitor

data

to

be

collected

by

the

database

manager.

Returns

the

current

state

of

these

switches

for

the

application

issuing

the

call.

Scope:

This

API

can

return

information

for

the

database

partition

server

on

the

instance,

or

all

database

partitions

on

the

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

sysmon

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

To

display

the

settings

for

a

remote

instance

(or

a

different

local

instance),

it

is

necessary

to

first

attach

to

that

instance.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2MonitorSwitches

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2MonitorSwitches

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

struct

sqlm_recording_group

*piGroupStates;

void

*poBuffer;

db2Uint32

iBufferSize;

db2Uint32

iReturnData;

db2Uint32

iVersion;

db2LoadQuery

-

Load

Query

Chapter

1.

Application

Programming

Interfaces

191

|

db2int32

iNodeNumber;

db2Uint32

*poOutputFormat;

}db2MonitorSwitchesData;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gMonitorSwitches

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gMonitorSwitches

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gMonitorSwitchesData

{

struct

sqlm_recording_group

*piGroupStates;

void

*poBuffer;

db2Uint32

iBufferSize;

db2Uint32

iReturnData;

db2Uint32

iVersion;

db2int32

iNodeNumber;

db2Uint32

*poOutputFormat;

}

db2gMonitorSwitchesData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

To

use

the

structure

as

described

above,

specify

db2Version810.

If

you

want

to

use

a

different

version

of

this

structure,

check

the

db2ApiDf.h

header

file

in

the

include

directory

for

the

complete

list

of

supported

versions.

Ensure

that

you

use

the

version

of

the

db2MonitorSwitchesStruct

structure

that

corresponds

to

the

version

number

that

you

specify.

pParmStruct

Input.

A

pointer

to

the

db2MonitorSwitchesStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piGroupStates

Input.

A

pointer

to

the

sqlm-recording-group

structure

(defined

in

sqlmon.h)

containing

a

list

of

switches.

poBuffer

A

pointer

to

a

buffer

where

the

switch

state

data

will

be

written.

iBufferSize

Input.

Specifies

the

size

of

the

output

buffer.

iReturnData

Input.

A

flag

specifying

whether

or

not

the

current

switch

states

should

be

written

to

the

data

buffer

pointed

to

by

poBuffer.

iVersion

Input.

Version

ID

of

the

database

monitor

data

to

collect.

The

database

monitor

only

returns

data

that

was

available

for

the

requested

version.

Set

this

parameter

to

one

of

the

following

symbolic

constants:

v

SQLM_DBMON_VERSION1

db2MonitorSwitches

-

Get/Update

Monitor

Switches

192

Administrative

API

Reference

|
|
|
|
|
|
|

v

SQLM_DBMON_VERSION2

v

SQLM_DBMON_VERSION5

v

SQLM_DBMON_VERSION5_2

v

SQLM_DBMON_VERSION6

v

SQLM_DBMON_VERSION7

v

SQLM_DBMON_VERSION8

Note:

If

SQLM_DBMON_VERSION1

is

specified

as

the

version,

the

APIs

cannot

be

run

remotely.

iNodeNumber

Input.

The

database

partition

server

where

the

request

is

to

be

sent.

Based

on

this

value,

the

request

will

be

processed

for

the

current

database

partition

server,

all

database

partition

servers

or

a

user

specified

database

partition

server.

Valid

values

are:

v

SQLM_CURRENT_NODE

v

SQLM_ALL_NODES

v

node

value

Note:

For

standalone

instances

SQLM_CURRENT_NODE

must

be

used.

poOutputFormat

The

format

of

the

stream

returned

by

the

server.

It

will

be

one

of

the

following:

SQLM_STREAM_STATIC_FORMAT

Indicates

that

the

switch

states

are

returned

in

static,

pre-Version

7

switch

structures.

SQLM_STREAM_DYNAMIC_FORMAT

Indicates

that

the

switches

are

returned

in

a

self-describing

format,

similar

to

the

format

returned

for

db2GetSnapshot.

Usage

notes:

To

obtain

the

status

of

the

switches

at

the

database

manager

level,

call

db2GetSnapshot,

specifying

SQMA_DB2

for

OBJ_TYPE

(get

snapshot

for

database

manager).

The

timestamp

switch

is

unavailable

if

iVersion

is

less

than

SQLM_DBMON_VERSION8.

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer”

on

page

84

v

“db2ResetMonitor

-

Reset

Monitor”

on

page

218

v

“SQLCA”

on

page

410

v

“SQLM-RECORDING-GROUP”

on

page

444

Related

samples:

v

“utilsnap.c

--

Utilities

for

the

snapshot

monitor

samples

(C)”

v

“utilsnap.C

--

Utilities

for

the

snapshot

monitor

samples

(C++)”

db2MonitorSwitches

-

Get/Update

Monitor

Switches

Chapter

1.

Application

Programming

Interfaces

193

db2Prune

-

Prune

History

File

Deletes

entries

from

the

history

file

or

log

files

from

the

active

log

path.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database.

To

delete

entries

from

the

history

file

for

any

database

other

than

the

default

database,

a

connection

to

the

database

must

be

established

before

calling

this

API.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Prune

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Prune

(

db2Uint32

version,

void

*pDB2PruneStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piString,

db2Uint32

iEID,

db2Uint32

iCallerAction,

db2Uint32

iOptions

}

db2PruneStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2GenPrune

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2GenPrune

(

db2Uint32

version,

void

*pDB2GenPruneStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iStringLen;

char

*piString,

db2Uint32

iEID,

db2Prune

-

Prune

History

File

194

Administrative

API

Reference

db2Uint32

iCallerAction,

db2Uint32

iOptions

}

db2GenPruneStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pDB2PruneStruct.

pDB2PruneStruct

Input.

A

pointer

to

the

db2PruneStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iStringLen

Input.

Specifies

the

length

in

bytes

of

piString.

piString

Input.

A

pointer

to

a

string

specifying

a

time

stamp

or

a

log

sequence

number

(LSN).

The

time

stamp

or

part

of

a

time

stamp

(minimum

yyyy,

or

year)

is

used

to

select

records

for

deletion.

All

entries

equal

to

or

less

than

the

time

stamp

will

be

deleted.

A

valid

time

stamp

must

be

provided;

there

is

no

default

behavior

for

a

NULL

parameter.

This

parameter

can

also

be

used

to

pass

an

LSN,

so

that

inactive

logs

can

be

pruned.

iEID

Input.

Specifies

a

unique

identifier

that

can

be

used

to

prune

a

single

entry

from

the

history

file.

iCallerAction

Input.

Specifies

the

type

of

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2PRUNE_ACTION_HISTORY

Remove

history

file

entries.

DB2PRUNE_ACTION_LOG

Remove

log

files

from

the

active

log

path.

iOptions

Input.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2PRUNE_OPTION_FORCE

Force

the

removal

of

the

last

backup.

DB2PRUNE_OPTION_DELETE

Delete

log

files

that

are

pruned

from

the

history

file.

DB2PRUNE_OPTION_LSNSTRING

Specify

that

the

value

of

piString

is

an

LSN,

used

when

a

caller

action

of

DB2PRUNE_ACTION_LOG

is

specified.

REXX

API

syntax:

PRUNE

RECOVERY

HISTORY

BEFORE

:timestamp

[WITH

FORCE

OPTION]

REXX

API

parameters:

db2Prune

-

Prune

History

File

Chapter

1.

Application

Programming

Interfaces

195

|
|

timestamp

A

host

variable

containing

a

time

stamp.

All

entries

with

time

stamps

equal

to

or

less

than

the

time

stamp

provided

are

deleted

from

the

history

file.

WITH

FORCE

OPTION

If

specified,

the

history

file

will

be

pruned

according

to

the

time

stamp

specified,

even

if

some

entries

from

the

most

recent

restore

set

are

deleted

from

the

file.

If

not

specified,

the

most

recent

restore

set

will

be

kept,

even

if

the

time

stamp

is

less

than

or

equal

to

the

time

stamp

specified

as

input.

Usage

notes:

Pruning

the

history

file

does

not

delete

the

actual

backup

or

load

files.

The

user

must

manually

delete

these

files

to

free

up

the

space

they

consume

on

storage

media.

CAUTION:

If

the

latest

full

database

backup

is

deleted

from

the

media

(in

addition

to

being

pruned

from

the

history

file),

the

user

must

ensure

that

all

table

spaces,

including

the

catalog

table

space

and

the

user

table

spaces,

are

backed

up.

Failure

to

do

so

may

result

in

a

database

that

cannot

be

recovered,

or

the

loss

of

some

portion

of

the

user

data

in

the

database.

Related

reference:

v

“db2HistoryUpdate

-

Update

History

File”

on

page

101

v

“db2HistoryOpenScan

-

Open

History

File

Scan”

on

page

97

v

“db2HistoryGetEntry

-

Get

Next

History

File

Entry”

on

page

94

v

“db2HistoryCloseScan

-

Close

History

File

Scan”

on

page

93

v

“SQLCA”

on

page

410

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2QuerySatelliteProgress

-

Query

Satellite

Sync

Checks

on

the

status

of

a

satellite

synchronization

session.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

db2Prune

-

Prune

History

File

196

Administrative

API

Reference

/*

File:

db2ApiDf.h

*/

/*

API:

db2QuerySatelliteProgress

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2QuerySatelliteProgress

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2int32

oStep;

db2int32

oSubstep;

db2int32

oNumSubsteps;

db2int32

oScriptStep;

db2int32

oNumScriptSteps;

char

*poDescription;

char

*poError;

char

*poProgressLog;

}

db2QuerySatelliteProgressStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2QuerySatelliteProgressStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

oStep

Output.

The

current

step

of

the

synchronization

session

(defined

in

db2ApiDf.h).

oSubstep

Output.

If

the

synchronization

step

(oStep)

can

be

broken

down

into

substeps,

this

will

be

the

current

substep.

oNumSubsteps

Output.

If

there

exists

a

substep

(oSubstep)

for

the

current

step

of

the

synchronization

session,

this

will

be

the

total

number

of

substeps

that

comprise

the

synchronization

step.

oScriptStep

Output.

If

the

current

substep

is

the

execution

of

a

script,

this

parameter

reports

on

the

progress

of

the

script

execution,

if

available.

oNumScriptSteps

Output.

If

a

script

step

is

reported,

this

parameter

contains

the

total

number

of

steps

that

comprise

the

script’s

execution.

poDescription

Output.

A

description

of

the

state

of

the

satellite’s

synchronization

session.

poError

Output.

If

the

synchronization

session

is

in

error,

a

description

of

the

error

is

passed

by

this

parameter.

poProgressLog

Output.

The

entire

log

of

the

satellite’s

synchronization

session

is

returned

by

this

parameter.

db2QuerySatelliteProgress

-

Query

Satellite

Sync

Chapter

1.

Application

Programming

Interfaces

197

Related

reference:

v

“SQLCA”

on

page

410

db2ReadLog

-

Asynchronous

Read

Log

Extract

log

records

from

the

DB2

UDB

database

logs

and

the

Log

Manager

for

current

log

state

information.

This

API

can

only

be

used

with

recoverable

databases.

A

database

is

recoverable

if

it

is

configured

with

logretain

set

to

RECOVERY

or

userexit

set

to

ON.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ReadLog

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ReadLog

(

db2Uint32

versionNumber,

void

*pDB2ReadLogStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2ReadLogStruct

{

db2Uint32

iCallerAction;

SQLU_LSN

*piStartLSN;

SQLU_LSN

*piEndLSN;

char

*poLogBuffer;

db2Uint32

iLogBufferSize;

db2Uint32

iFilterOption;

db2ReadLogInfoStruct

*poReadLogInfo;

typedef

SQL_STRUCTURE

db2ReadLogInfoStruct

{

SQLU_LSN

initialLSN;

SQLU_LSN

firstReadLSN;

SQLU_LSN

nextStartLSN;

db2Uint32

logRecsWritten;

db2Uint32

logBytesWritten;

SQLU_LSN

firstReusedLSN;

db2Uint32

timeOfLSNReuse;

db2TimeOfLog

currentTimeValue;

}

db2ReadLogInfoStruct;

typedef

SQL_STRUCTURE

db2TimeOfLog

{

db2QuerySatelliteProgress

-

Query

Satellite

Sync

198

Administrative

API

Reference

db2Uint32

seconds;

db2Uint32

accuracy;

}

db2TimeOfLog;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter,

pDB2ReadLogStruct.

pDB2ReadLogStruct

Input.

A

pointer

to

the

db2ReadLogStruct.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iCallerAction

Input.

Specifies

the

action

to

be

performed.

DB2READLOG_READ

Read

the

database

log

from

the

starting

log

sequence

to

the

ending

log

sequence

number

and

return

log

records

within

this

range.

DB2READLOG_READ_SINGLE

Read

a

single

log

record

(propagatable

or

not)

identified

by

the

starting

log

sequence

number.

DB2READLOG_QUERY

Query

the

database

log.

Results

of

the

query

will

be

sent

back

via

the

db2ReadLogInfoStruct

structure.

piStartLsn

Input.

The

starting

log

sequence

number

specifies

the

starting

relative

byte

address

for

the

reading

of

the

log.

This

value

must

be

the

start

of

an

actual

log

record.

piEndLsn

Input.

The

ending

log

sequence

number

specifies

the

ending

relative

byte

address

for

the

reading

of

the

log.

This

value

must

be

greater

than

startLsn,

and

does

not

need

to

be

the

end

of

an

actual

log

record.

poLogBuffer

Output.

The

buffer

where

all

the

propagatable

log

records

read

within

the

specified

range

are

stored

sequentially.

This

buffer

must

be

large

enough

to

hold

a

single

log

record.

As

a

guideline,

this

buffer

should

be

a

minimum

of

32

bytes.

Its

maximum

size

is

dependent

on

the

size

of

the

requested

range.

Each

log

record

in

the

buffer

is

prefixed

by

a

six

byte

log

sequence

number

(LSN),

representing

the

LSN

of

the

following

log

record.

iLogBufferSize

Input.

Specifies

the

size,

in

bytes,

of

the

log

buffer.

iFilterOption

Input.

Specifies

the

level

of

log

record

filtering

to

be

used

when

reading

the

log

records.

Valid

values

are:

DB2READLOG_FILTER_OFF

Read

all

log

records

in

the

given

LSN

range.

DB2READLOG_FILTER_ON

Reads

only

log

records

in

the

given

LSN

range

marked

as

propagatable.

This

is

the

traditional

behaviors

of

the

asynchronous

log

read

API.

db2ReadLog

-

Asynchronous

Read

Log

Chapter

1.

Application

Programming

Interfaces

199

poReadLogInfo

Output.

A

structure

detailing

information

regarding

the

call

and

the

database

log.

Usage

notes:

If

the

requested

action

is

to

read

the

log,

the

caller

will

provide

a

log

sequence

number

range

and

a

buffer

to

hold

the

log

records.

This

API

reads

the

log

sequentially,

bounded

by

the

requested

LSN

range,

and

returns

log

records

associated

with

tables

having

the

DATA

CAPTURE

option

CHANGES,

and

a

db2ReadLogInfoStruct

structure

with

the

current

active

log

information.

If

the

requested

action

is

query,

the

API

returns

an

db2ReadLogInfoStruct

structure

with

the

current

active

log

information.

To

use

the

Asynchronous

Log

Reader,

first

query

the

database

log

for

a

valid

starting

LSN.

Following

the

query

call,

the

read

log

information

structure

(db2ReadLogInfoStruct)

will

contain

a

valid

starting

LSN

(in

the

initialLSN

member),

to

be

used

on

a

read

call.

The

value

used

as

the

ending

LSN

on

a

read

can

be

one

of

the

following:

v

A

value

greater

than

initialLSN

v

FFFF

FFFF

FFFF,

which

is

interpreted

by

the

asynchronous

log

reader

as

the

end

of

the

current

log.

The

propagatable

log

records

read

within

the

starting

and

ending

LSN

range

are

returned

in

the

log

buffer.

A

log

record

does

not

contain

its

LSN;

it

is

contained

in

the

buffer

before

the

actual

log

record.

Descriptions

of

the

various

DB2

log

records

returned

by

db2ReadLog

the

DB2

UDB

Log

Records

section.

To

read

the

next

sequential

log

record

after

the

initial

read,

use

the

nextStartLSN

field

returned

in

the

db2ReadLogStruct

structure.

Resubmit

the

call,

with

this

new

starting

LSN

and

a

valid

ending

LSN.

The

next

block

of

records

is

then

read.

An

sqlca

code

of

SQLU_RLOG_READ_TO_CURRENT

means

that

the

log

reader

has

read

to

the

end

of

the

current

active

log.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2Reorg

-

Reorganize”

on

page

211

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

Extract

log

records

from

the

DB2

UDB

database

logs

and

query

the

Log

Manager

for

current

log

state

information.

Prior

to

using

this

API,

use

db2ReadLogNoConnInit

to

allocate

the

memory

that

is

passed

as

an

input

parameter

to

this

API.

After

using

this

API,

use

db2ReadLogNoConnTerm

to

deallocate

the

memory.

Authorization:

None

db2ReadLog

-

Asynchronous

Read

Log

200

Administrative

API

Reference

|

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ReadLogNoConn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ReadLogNoConn

(

db2Uint32

versionNumber,

void

*pDB2ReadLogNoConnStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2ReadLogNoConnStruct

{

db2Uint32

iCallerAction;

SQLU_LSN

*piStartLSN;

SQLU_LSN

*piEndLSN;

char

*poLogBuffer;

db2Uint32

iLogBufferSize;

char

*piReadLogMemPtr;

db2ReadLogNoConnInfoStruct

*poReadLogInfo;

}

db2ReadLogNoConnStruct;

typedef

SQL_STRUCTURE

db2ReadLogNoConnInfoStruct

{

SQLU_LSN

firstAvailableLSN;

SQLU_LSN

firstReadLSN;

SQLU_LSN

nextStartLSN;

db2Uint32

logRecsWritten;

db2Uint32

logBytesWritten;

db2Uint32

lastLogFullyRead;

db2TimeOfLog

currentTimeValue;

}

db2ReadLogNoConnInfoStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2ReadLogNoConnStruct.

pDB2ReadLogNoConnStruct

Input.

A

pointer

to

the

db2ReadLogNoConnStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iCallerAction

Input.

Specifies

the

action

to

be

performed.

Valid

values

are:

DB2READLOG_READ

Read

the

database

log

from

the

starting

log

sequence

to

the

ending

log

sequence

number

and

return

log

records

within

this

range.

DB2READLOG_READ_SINGLE

Read

a

single

log

record

(propagatable

or

not)

identified

by

the

starting

log

sequence

number.

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

Chapter

1.

Application

Programming

Interfaces

201

|

|

DB2READLOG_QUERY

Query

the

database

log.

Results

of

the

query

will

be

sent

back

via

the

db2ReadLogNoConnInfoStruct

structure.

piStartLSN

Input.

The

starting

log

sequence

number

specifies

the

starting

relative

byte

address

for

the

reading

of

the

log.

This

value

must

be

the

start

of

an

actual

log

record.

piEndLSN

Input.

The

ending

log

sequence

number

specifies

the

ending

relative

byte

address

for

the

reading

of

the

log.

This

value

must

be

greater

than

piStartLsn,

and

does

not

need

to

be

the

end

of

an

actual

log

record.

poLogBuffer

Output.

The

buffer

where

all

the

propagatable

log

records

read

within

the

specified

range

are

stored

sequentially.

This

buffer

must

be

large

enough

to

hold

a

single

log

record.

As

a

guideline,

this

buffer

should

be

a

minimum

of

32

bytes.

Its

maximum

size

is

dependent

on

the

size

of

the

requested

range.

Each

log

record

in

the

buffer

is

prefixed

by

a

six

byte

log

sequence

number

(LSN),

representing

the

LSN

of

the

following

log

record.

iLogBufferSize

Input.

Specifies

the

size,

in

bytes,

of

the

log

buffer.

piReadLogMemPtr

Input.

Block

of

memory

of

size

iReadLogMemoryLimit

that

was

allocated

in

the

initialization

call.

This

memory

contains

persistent

data

that

the

API

requires

at

each

invocation.

This

memory

block

must

not

be

reallocated

or

altered

in

any

way

by

the

caller.

poReadLogInfo

Output.

A

pointer

to

the

db2ReadLogNoConnInfoStruct

structure.

firstAvailableLSN

First

available

LSN

in

available

logs.

firstReadLSN

First

LSN

read

on

this

call.

nextStartLSN

Next

readable

LSN.

logRecsWritten

Number

of

log

records

written

to

the

log

buffer

field,

poLogBuffer.

logBytesWritten

Number

of

bytes

written

to

the

log

buffer

field,

poLogBuffer.

lastLogFullyRead

Number

indicating

the

last

log

file

that

was

read

to

completion.

Usage

notes:

The

db2ReadLogNoConn

API

requires

a

memory

block

that

must

be

allocated

using

the

db2ReadLogNoConnInit

API.

The

memory

block

must

be

passed

as

an

input

parameter

to

all

subsequent

db2ReadLogNoConn

API

calls,

and

must

not

be

altered.

When

requesting

a

sequential

read

of

log,

the

API

requires

a

log

sequence

number

(LSN)

range

and

the

allocated

memory

.

The

API

will

return

a

sequence

of

log

records

based

on

the

filter

option

specified

when

initialized

and

the

LSN

range.

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

202

Administrative

API

Reference

When

requesting

a

query,

the

read

log

information

structure

will

contain

a

valid

starting

LSN,

to

be

used

on

a

read

call.

The

value

used

as

the

ending

LSN

on

a

read

can

be

one

of

the

following:

v

A

value

greater

than

the

caller-specified

startLSN.

v

FFFF

FFFF

FFFF

which

is

interpreted

by

the

asynchronous

log

reader

as

the

end

of

the

available

logs.

The

propagatable

log

records

read

within

the

starting

and

ending

LSN

range

are

returned

in

the

log

buffer.

A

log

record

does

not

contain

its

LSN,

it

is

contained

in

the

buffer

before

the

actual

log

record.

Descriptions

of

the

various

DB2

UDB

log

records

returned

by

db2ReadLogNoConn

can

be

found

in

the

DB2

UDB

Log

Records

section.

After

the

initial

read,

in

order

to

read

the

next

sequential

log

record,

use

the

nextStartLSN

value

returned

in

db2ReadLogNoConnInfoStruct.

Resubmit

the

call,

with

this

new

starting

LSN

and

a

valid

ending

LSN

and

the

next

block

of

records

is

then

read.

An

sqlca

code

of

SQLU_RLOG_READ_TO_CURRENT

means

the

log

reader

has

read

to

the

end

of

the

available

log

files.

When

the

API

will

no

longer

be

used,

use

db2ReadLogNoConnTerm

to

terminate

the

memory.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection”

on

page

203

v

“db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection”

on

page

205

db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection

Allocates

the

memory

to

be

used

by

db2ReadLogNoConn

in

order

to

extract

log

records

from

the

DB2

UDB

database

logs

and

query

the

Log

Manager

for

current

log

state

information.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ReadLogNoConnInit

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ReadLogNoConnInit

(

db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection

Chapter

1.

Application

Programming

Interfaces

203

|

|

db2Uint32

versionNumber,

void

*

pDB2ReadLogNoConnInitStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2ReadLogNoConnInitStruct

{

db2Uint32

iFilterOption;

char

*piLogFilePath;

char

*piOverflowLogPath;

db2Uint32

iRetrieveLogs;

char

*piDatabaseName;

char

*piNodeName;

db2Uint32

iReadLogMemoryLimit;

char

**poReadLogMemPtr;

}

db2ReadLogNoConnInitStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2ReadLogNoConnInitStruct.

pDB2ReadLogNoConnInitStruct

Input.

A

pointer

to

the

db2ReadLogNoConnInitStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iFilterOption

Input.

Specifies

the

level

of

log

record

filtering

to

be

used

when

reading

the

log

records.

Valid

values

are:

DB2READLOG_FILTER_OFF

Read

all

log

records

in

the

given

LSN

range.

DB2READLOG_FILTER_ON

Reads

only

log

records

in

the

given

LSN

range

marked

as

propagatable.

This

is

the

traditional

behavior

of

the

asynchronous

log

read

API.

piLogFilePath

Input.

Path

where

the

log

files

to

be

read

are

located.

piOverflowLogPath

Input.

Alternate

path

where

the

log

files

to

be

read

may

be

located.

iRetrieveLogs

Input.

Option

specifying

if

userexit

should

be

invoked

to

retrieve

log

files

that

cannot

be

found

in

either

the

log

file

path

or

the

overflow

log

path.

Valid

values

are:

DB2READLOG_RETRIEVE_OFF

Userexit

should

not

be

invoked

to

retrieve

missing

log

files.

DB2READLOG_RETRIEVE_LOGPATH

Userexit

should

be

invoked

to

retrieve

missing

log

files

into

the

specified

log

file

path.

DB2READLOG_RETRIEVE_OVERFLOW

Userexit

should

be

invoked

to

retrieve

missing

log

files

into

the

specified

overflow

log

path.

db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection

204

Administrative

API

Reference

|

piDatabaseName

Input.

Name

of

the

database

that

owns

the

recovery

logs

being

read.

This

is

required

if

the

retrieve

option

above

is

specified.

piNodeName

Input.

Name

of

the

node

that

owns

the

recovery

logs

being

read.

This

is

required

if

the

retrieve

option

above

is

specified.

iReadLogMemoryLimit

Input.

Maximum

number

of

bytes

that

the

API

may

allocate

internally.

poReadLogMemPtr

Output.

API-allocated

block

of

memory

of

size

iReadLogMemoryLimit.

This

memory

contains

persistent

data

that

the

API

requires

at

each

invocation.

This

memory

block

must

not

be

reallocated

or

altered

in

any

way

by

the

caller.

Usage

notes:

The

memory

initialized

by

db2ReadLogNoConnInit

must

not

be

altered.

When

db2ReadLogNoConn

will

no

longer

be

used,

invoke

db2ReadLogNoConnTerm

to

deallocate

the

memory

initialized

by

db2ReadLogNoConnInit.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection”

on

page

200

v

“db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection”

on

page

205

db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection

Deallocates

the

memory

used

by

db2ReadLogNoConn,

originally

initialized

by

db2ReadLogNoConnInit.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ReadLogNoConnTerm

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ReadLogNoConnTerm

(

db2Uint32

versionNumber,

db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection

Chapter

1.

Application

Programming

Interfaces

205

|

|

void

*

pDB2ReadLogNoConnTermStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2ReadLogNoConnTermStruct

{

char

**poReadLogMemPtr;

}

db2ReadLogNoConnTermStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2ReadLogNoConnTermStruct.

pDB2ReadLogNoConnTermStruct

Input.

A

pointer

to

the

db2ReadLogNoConnTermStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

poReadLogMemPtr

Output.

Pointer

to

the

block

of

memory

allocated

in

the

initialization

call.

This

pointer

will

be

freed

and

set

to

NULL.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2ReadLogNoConn

-

Read

Log

Without

a

Database

Connection”

on

page

200

v

“db2ReadLogNoConnInit

-

Initialize

Read

Log

Without

a

Database

Connection”

on

page

203

db2Recover

-

Recover

database

Restores

and

rolls

forward

a

database

to

a

particular

point

in

time

or

to

the

end

of

the

logs.

Scope:

In

a

partitioned

database

environment,

this

API

can

only

be

called

from

the

catalog

partition.

If

no

database

partition

servers

are

specified,

it

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

If

a

point

in

time

is

specified,

the

API

affects

all

database

partitions.

Authorization:

To

recover

an

existing

database,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

To

recover

to

a

new

database,

one

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

db2ReadLogNoConnTerm

-

Terminate

Read

Log

Without

a

Database

Connection

206

Administrative

API

Reference

|

|

|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

To

recover

an

existing

database,

a

database

connection

is

required.

This

API

automatically

establishes

a

connection

to

the

specified

database

and

will

release

the

connection

when

the

recover

operation

finishes.

Instance

and

database,

to

recover

to

a

new

database.

The

instance

attachment

is

required

to

create

the

database.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Recover

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Recover

(

db2Uint32

versionNumber,

void

*

pDB2RecovStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2RecoverStruct

{

char

*piSourceDBAlias;

char

*piUsername;

char

*piPassword;

db2Uint32

iRecoverCallerAction;

db2Uint32

iOptions;

sqlint32

*poNumReplies;

struct

sqlurf_info

*poNodeInfo;

char

*piStopTime;

char

*piOverflowLogPath;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

db2Uint32

iRollforwardFlags;

char

*piHistoryFile;

db2Uint32

iNumChngHistoryFile;

struct

sqlu_histFile

*piChngHistoryFile;

}

db2RecoverStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gRecover

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRecover

(

db2Uint32

versionNumber,

void

*

pDB2gRecoverStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gRecoverStruct

{

char

*piSourceDBAlias;

db2Uint32

iSourceDBAliasLen;

char

*piUserName;

db2Uint32

iUserNameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

db2Uint32

iRecoverCallerAction;

db2Uint32

iOptions;

sqlint32

*poNumReplies;

db2Recover

-

Recover

database

Chapter

1.

Application

Programming

Interfaces

207

|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

struct

sqlurf_info

*poNodeInfo;

char

*piStopTime;

db2Uint32

iStopTimeLen;

char

*piOverflowLogPath;

db2Uint32

iOverflowLogPathLen;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

db2Uint32

iRollforwardFlags;

char

*piHistoryFile;

db2Uint32

iHistoryFileLen;

db2Uint32

iNumChngHistoryFile;

struct

sqlu_histFile

*piChngHistoryFile;

}

db2gRecoverStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2RecoverStruct.

pDB2RecoverStruct

Input.

A

pointer

to

the

db2RecoverStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSourceDBAlias

Input.

A

string

containing

the

database

alias

of

the

database

to

be

recovered.

iSourceDBAliasLen

Length

in

bytes

of

piSourceDBAlias.

piUserName

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

Can

be

NULL.

iUserNameLen

Length

in

bytes

of

piUsername.

piPassword

Input.

A

string

containing

the

password

to

be

used

with

the

user

name.

Can

be

NULL.

iPasswordLen

Length

in

bytes

of

piPassword.

iRecoverCallerAction

Input.

Valid

values

are:

DB2RESTORE_NOINTERRUPT

Starts

the

restore

operation.

Specifies

that

the

restore

will

run

unattended,

and

that

scenarios

that

normally

require

user

intervention

will

either

be

attempted

without

first

returning

to

the

caller,

or

will

generate

an

error.

Use

this

caller

action,

for

example,

if

it

is

known

that

all

of

the

media

required

for

the

restore

have

been

mounted,

and

utility

prompts

are

not

desired.

db2Recover

-

Recover

database

208

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

DB2RESTORE_CONTINUE

Continues

the

restore

operation

after

the

user

has

performed

some

action

requested

by

the

utility

(mounting

a

new

tape,

for

example).

DB2RESTORE_TERMINATE

Terminates

the

restore

operation

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

DB2RESTORE_DEVICE_TERMINATE

Removes

a

particular

device

from

the

list

of

devices

used

by

the

restore

operation.

When

a

particular

device

has

exhausted

its

input,

restore

will

return

a

warning

to

the

caller.

Call

the

restore

utility

again

with

this

caller

action

to

remove

the

device

that

generated

the

warning

from

the

list

of

devices

being

used.

DB2RESTORE_PARM_CHK

Used

to

validate

parameters

without

performing

a

restore

operation.

This

option

does

not

terminate

the

database

connection

after

the

call

returns.

After

successful

return

of

this

call,

it

is

expected

that

the

user

will

issue

a

call

with

DB2RESTORE_CONTINUE

to

proceed

with

the

action.

DB2RESTORE_PARM_CHK_ONLY

Used

to

validate

parameters

without

performing

a

restore

operation.

Before

this

call

returns,

the

database

connection

established

by

this

call

is

terminated,

and

no

subsequent

call

is

required.

DB2RESTORE_TERMINATE_INCRE

Terminates

an

incremental

restore

operation

before

completion.

DB2ROLLFORWARD_LOADREC_CONT

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted).

DB2ROLLFORWARD_DEVICE_TERM

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes).

DB2ROLLFORWARD_LOAD_REC_TERM

Terminate

all

devices

being

used

by

load

recovery.

iOptions

Input.

Valid

values

are:

DB2RECOVER_EMPTY_FLAG

No

flags

specified.

DB2RECOVER_LOCAL_TIME

Indicates

that

the

value

specified

for

the

stop

time

by

piStopTime

is

in

local

time,

not

GMT.

This

is

the

default

setting.

DB2RECOVER_GMT_TIME

This

flag

indicates

that

the

value

specified

for

the

stop

time

by

piStopTime

is

in

GMT

(Greenwich

Mean

Time).

poNumReplies

Output.

The

number

of

replies

received.

poNodeInfo

Output.

Database

partition

reply

information.

db2Recover

-

Recover

database

Chapter

1.

Application

Programming

Interfaces

209

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

piStopTime

Input.

A

character

string

containing

a

time

stamp

in

ISO

format.

Database

recovery

will

stop

when

this

time

stamp

is

exceeded.

Specify

SQLUM_INFINITY_TIMESTAMP

to

roll

forward

as

far

as

possible.

May

be

NULL

for

DB2ROLLFORWARD_QUERY,

DB2ROLLFORWARD_PARM_CHECK,

and

any

of

the

load

recovery

(DB2ROLLFORWARD_LOADREC_)

caller

actions.

iStopTimeLen

Length

in

bytes

of

piStopTime.

piOverflowLogPath

Input.

This

parameter

is

used

to

specify

an

alternate

log

path

to

be

used.

In

addition

to

the

active

log

files,

archived

log

files

need

to

be

moved

(by

the

user)

into

the

location

specified

by

the

logpath

configuration

parameter

before

they

can

be

used

by

this

utility.

This

can

be

a

problem

if

the

user

does

not

have

sufficient

space

in

the

log

path.

The

overflow

log

path

is

provided

for

this

reason.

During

roll-forward

recovery,

the

required

log

files

are

searched,

first

in

the

log

path,

and

then

in

the

overflow

log

path.

The

log

files

needed

for

table

space

rollforward

recovery

can

be

brought

into

either

the

log

path

or

the

overflow

log

path.

If

the

caller

does

not

specify

an

overflow

log

path,

the

default

value

is

the

log

path.

In

a

partitioned

database

environment,

the

overflow

log

path

must

be

a

valid,

fully

qualified

path;

the

default

path

is

the

default

overflow

log

path

for

each

database

partition.

In

a

single-partition

database

environment,

the

overflow

log

path

can

be

relative

if

the

server

is

local.

iOverflowLogPathLen

Length

in

bytes

of

piOverflowLogPath.

iNumChngLgOvrflw

Input.

Partitioned

database

environments

only.

The

number

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

piChngLogOvrflw

Input.

Partitioned

database

environments

only.

A

pointer

to

a

structure

containing

the

fully

qualified

names

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

iAllNodeFlag

Input.

Partitioned

database

environments

only.

Indicates

whether

the

rollforward

operation

is

to

be

applied

to

all

database

partition

servers

defined

in

db2nodes.cfg.

Valid

values

are:

DB2_NODE_LIST

Apply

to

database

partition

servers

in

a

list

that

is

passed

in

piNodeList.

DB2_ALL_NODES

Apply

to

all

database

partition

servers.

piNodeList

should

be

NULL.

This

is

the

default

value.

DB2_ALL_EXCEPT

Apply

to

all

database

partition

servers

except

those

in

a

list

that

is

passed

in

piNodeList.

DB2_CAT_NODE_ONLY

Apply

to

the

catalog

partition

only.

piNodeList

should

be

NULL.

db2Recover

-

Recover

database

210

Administrative

API

Reference

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

iNumNodes

Input.

Specifies

the

number

of

database

partition

servers

in

the

piNodeList

array.

piNodeList

Input.

A

pointer

to

an

array

of

database

partition

server

numbers

on

which

to

perform

the

rollforward

recovery.

iNumNodeInfo

Input.

Defines

the

size

of

the

output

parameter

poNodeInfo,

which

must

be

large

enough

to

hold

status

information

from

each

database

partition

that

is

being

rolled

forward.

In

a

single-partition

database

environment,

this

parameter

should

be

set

to

1.

The

value

of

this

parameter

should

be

the

same

as

the

number

of

database

partition

servers

for

which

this

API

is

being

called.

RollforwardFlags

Input.

Specifies

the

rollforward

flags.

Valid

values

(defined

in

db2ApiDf.h):

DB2ROLLFORWARD_EMPTY_FLAG

No

flags

specified.

DB2ROLLFORWARD_LOCAL_TIME

Allows

the

user

to

roll

forward

to

a

point

in

time

that

is

the

user’s

local

time

rather

than

GMT

time.

This

makes

it

easier

for

users

to

roll

forward

to

a

specific

point

in

time

on

their

local

machines,

and

eliminates

potential

user

errors

due

to

the

translation

of

local

to

GMT

time.

piHistoryFile

History

file.

iHistoryFileLen

Length

in

bytes

of

piHistoryFile.

iNumChngHistoryFile

Number

of

history

files

in

list.

piChngHistoryFile

List

of

history

files.

Usage

notes:

Related

reference:

v

“RECOVER

DATABASE

Command”

in

the

Command

Reference

db2Reorg

-

Reorganize

Reorganize

a

table

or

all

indexes

defined

on

a

table

by

compacting

the

information

and

reconstructing

the

rows

or

index

data

to

eliminate

fragmented

data.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

db2Recover

-

Recover

database

Chapter

1.

Application

Programming

Interfaces

211

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|

|

v

CONTROL

privilege

on

the

table

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Reorg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Reorg

(

db2Uint32

versionNumber,

void

*pReorgStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2ReorgStruct

{

db2Uint32

reorgType;

db2Uint32

reorgFlags;

db2int32

nodeListFlag;

db2Uint32

numNodes;

SQL_PDB_NODE_TYPE

*pNodeList;

union

db2ReorgObject

reorgObject;

}

db2ReorgStruct;

union

db2ReorgObject

{

struct

db2ReorgTable

tableStruct;

struct

db2ReorgIndexesAll

indexesAllStruct;

};

typedef

SQL_STRUCTURE

db2ReorgTable

{

char

*pTableName;

char

*pOrderByIndex;

char

*pSysTempSpace;

}

db2ReorgTable;

typedef

SQL_STRUCTURE

db2ReorgIndexesAll

{

char

*pTableName;

}

db2ReorgIndexesAll;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gReorg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gReorg

(

db2Uint32

versionNumber,

void

*pReorgStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gReorgStruct

{

db2Uint32

reorgType;

db2Uint32

reorgFlags;

db2int32

nodeListFlag;

db2Reorg

-

Reorganize

212

Administrative

API

Reference

db2Uint32

numNodes;

SQL_PDB_NODE_TYPE

*pNodeList;

union

db2gReorgObject

reorgObject;

}

db2gReorgStruct;

typedef

SQL_STRUCTURE

db2gReorgNodes

{

SQL_PDB_NODE_TYPE

nodeNum[SQL_PDB_MAX_NUM_NODE];

}

db2gReorgNodes;

union

db2gReorgObject

{

struct

db2gReorgTable

tableStruct;

struct

db2gReorgIndexesAll

indexesAllStruct;

};

typedef

SQL_STRUCTURE

db2gReorgTable

{

db2Uint32

tableNameLen;

char

*pTableName;

db2Uint32

orderByIndexLen;

char

*pOrderByIndex;

db2Uint32

sysTempSpaceLen;

char

*pSysTempSpace;

}

db2gReorgTable;

typedef

SQL_STRUCTURE

db2gReorgIndexesAll

{

db2Uint32

tableNameLen;

char

*pTableName;

}

db2gReorgIndexesAll;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter,

pReorgStruct.

pReorgStruct

Input.

A

pointer

to

the

db2ReorgStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

reorgType

Input.

Specifies

the

type

of

reorganization.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_OBJ_TABLE_OFFLINE

Reorganize

the

table

offline.

DB2REORG_OBJ_TABLE_INPLACE

Reorganize

the

table

inplace.

DB2REORG_OBJ_INDEXESALL

Reorganize

all

indexes.

reorgFlags

Input.

Reorganization

options.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_OPTION_NONE

Default

action.

db2Reorg

-

Reorganize

Chapter

1.

Application

Programming

Interfaces

213

DB2REORG_LONGLOB

Reorganize

long

fields

and

lobs,

used

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_INDEXSCAN

Recluster

utilizing

index

scan,

used

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_START_ONLINE

Start

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_PAUSE_ONLINE

Pause

an

existing

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_STOP_ONLINE

Stop

an

existing

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_RESUME_ONLINE

Resume

a

paused

online

reorganization,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_NOTRUNCATE_ONLINE

Do

not

perform

table

truncation,

used

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_NONE

No

read

or

write

access

to

the

table.

This

parameter

is

not

supported

when

DB2REORG_OBJ_TABLE_INPLACE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_WRITE

Allow

read

and

write

access

to

the

table.

This

parameter

is

not

supported

when

DB2REORG_OBJ_TABLE_OFFLINE

is

specified

as

the

reorgType.

DB2REORG_ALLOW_READ

Allow

only

read

access

to

the

table.

DB2REORG_CLEANUP_NONE

No

clean

up

is

required,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CLEANUP_ALL

Clean

up

the

indexes

on

a

table

by

removing

the

committed

pseudo

deleted

keys

and

committed

pseudo

empty

pages,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CLEANUP_PAGES

Clean

up

committed

pseudo

empty

pages

only,

but

do

not

clean

up

pseudo

deleted

keys

on

pages

that

are

not

pseudo

empty,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CONVERT_NONE

No

conversion

is

required,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

DB2REORG_CONVERT

Convert

to

type

2

index,

used

when

DB2REORG_OBJ_INDEXESALL

is

specified

as

the

reorgType.

db2Reorg

-

Reorganize

214

Administrative

API

Reference

nodeListFlag

Input.

Specifies

which

nodes

to

reorganize.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2REORG_NODE_LIST

Submit

to

all

nodes

in

the

nodelist

array.

DB2REORG_ALL_NODES

Submit

to

all

nodes

in

the

database

partition

group.

DB2REORG_ALL_EXCEPT

Submit

to

all

nodes

except

the

ones

specified

by

the

nodelist

parameter.

numNodes

Input.

Number

of

nodes

in

the

nodelist

array.

pNodeList

A

pointer

to

the

array

of

node

numbers.

reorgObject

Input.

Specifies

the

type

of

object

to

be

reorganized.

tableStruct

Specifies

the

options

for

a

table

reorganization.

indexesAllStruct

Specifies

the

options

for

an

index

reorganization.

tableNameLen

Input.

Specifies

the

length

in

bytes

of

pTableName.

pTableName

Input.

Specifies

the

name

of

the

object

to

reorganize.

orderByIndexLen

Input.

Specifies

the

length

in

byte

of

pOrderByIndex.

pOrderByIndex

Input.

Specifies

the

index

to

order

the

table

by.

sysTempSpaceLen

Input.

Specifies

the

length

in

bytes

of

pSysTempSpace.

pSysTempSpace

Input.

Specifies

the

system

temporary

table

space

to

create

temporary

object

in.

Usage

notes:

Performance

of

table

access,

index

scans,

and

the

effectiveness

of

index

page

prefetching

can

be

adversely

affected

when

the

table

data

has

been

modified

many

times,

becoming

fragmented

and

unclustered.

Use

REORGCHK

to

determine

whether

a

table

or

its

indexes

are

candidates

for

reorganizing.

All

work

will

be

committed

and

all

open

cursors

will

be

closed.

After

reorganizing

a

table

or

its

indexes,

use

db2Runstats

to

update

the

statistics

and

sqlarbnd

to

rebind

the

packages

that

use

this

table.

If

the

table

is

partitioned

onto

several

nodes

and

the

reorganization

fails

on

any

of

the

affected

nodes,

then

only

the

failing

nodes

will

have

the

table

reorganization

rolled

back.

db2Reorg

-

Reorganize

Chapter

1.

Application

Programming

Interfaces

215

Note:

If

table

reorganization

is

not

successful,

temporary

files

should

not

be

deleted.

The

database

manager

uses

these

files

to

recover

the

database.

If

the

name

of

an

index

is

specified,

the

database

manager

reorganizes

the

data

according

to

the

order

in

the

index.

To

maximize

performance,

specify

an

index

that

is

often

used

in

SQL

queries.

If

the

name

of

an

index

is

not

specified,

and

if

a

clustering

index

exists,

the

data

will

be

ordered

according

to

the

clustering

index.

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

the

value

has

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

To

complete

a

table

space

roll-forward

recovery

following

a

table

reorganization,

both

data

and

LONG

table

spaces

must

be

roll-forward

enabled.

If

the

table

contains

LOB

columns

that

do

not

use

the

COMPACT

option,

the

LOB

DATA

storage

object

can

be

significantly

larger

following

table

reorganization.

This

can

be

a

result

of

the

order

in

which

the

rows

were

reorganized,

and

the

types

of

table

spaces

used

(SMS/DMS).

When

reorganizing

indexes,

use

the

access

option

to

allow

other

transactions

either

read

only

or

read-write

access

to

the

table.

There

is

a

brief

lock-out

period

when

the

reorganized

indexes

are

being

made

available

during

which

no

access

to

the

table

is

allowed.

If

an

index

reorganization

with

allow

read

or

allow

write

access

fails

because

the

indexes

need

to

be

rebuilt,

the

reorganization

will

be

switched

to

allow

no

access

and

carry

on.

A

message

will

be

written

to

both

the

administration

notification

log

and

the

diagnostics

log

to

warn

the

user

about

the

change

in

access

mode.

If

an

index

reorganization

with

no

access

fails,

the

indexes

are

not

available

and

have

to

be

rebuilt

on

the

next

table

access.

This

API

cannot

be

used

with:

v

views

or

an

index

that

is

based

on

an

index

extension

v

a

DMS

table

while

an

online

backup

of

a

table

space

in

which

the

table

resides

is

being

performed

v

declared

temporary

tables

Related

reference:

v

“sqlarbnd

-

Rebind”

on

page

273

v

“SQLCA”

on

page

410

v

“db2Runstats

-

Runstats”

on

page

241

Related

samples:

v

“dbstat.sqb

--

Reorganize

table

and

run

statistics

(MF

COBOL)”

v

“tbreorg.sqc

--

How

to

reorganize

a

table

and

update

its

statistics

(C)”

v

“tbreorg.sqC

--

How

to

reorganize

a

table

and

update

its

statistics

(C++)”

db2Reorg

-

Reorganize

216

Administrative

API

Reference

db2ResetAlertCfg

-

Reset

Alert

Configuration

Resets

the

health

indicator

settings

for

specific

objects

to

the

current

defaults

for

that

object

type

or

resets

the

current

default

health

indicator

settings

for

an

object

type

to

the

install

defaults.

Authorization:

One

of

the

following:

v

sysadm

v

sysmaint

v

sysctrl

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ResetAlertCfg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ResetAlertCfg(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca

);

typedef

SQL_STRUCTURE

db2ResetAlertCfgData

{

db2Uint32

iObjType;

char

*piObjName;

char

*piDbname;

db2Uint32

iIndicatorID;

}

db2ResetAlertCfgData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2ResetAlertCfgData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iObjType

Input.

Specifies

the

type

of

object

for

which

configuration

should

be

reset.

Valid

values

(defined

in

db2ApiDf.h)

are:

v

DB2ALERTCFG_OBJTYPE_DBM

v

DB2ALERTCFG_OBJTYPE_DATABASES

db2ResetAlertCfg

-

Reset

Alert

Configuration

Chapter

1.

Application

Programming

Interfaces

217

v

DB2ALERTCFG_OBJTYPE_TABLESPACES

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINERS

v

DB2ALERTCFG_OBJTYPE_DATABASE

v

DB2ALERTCFG_OBJTYPE_TABLESPACE

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName

Input.

The

name

of

the

table

space

or

table

space

container

when

object

type,

iObjType,

is

set

to

DB2ALERTCFG_OBJTYPE_TS_CONTAINER

or

DB2ALERTCFG_OBJTYPE_TABLESPACE.

The

name

of

the

tablespace

container

is

defined

as

<tablespace-numericalID>.<tablespace-containter-
name>.

piDbname

Input.

The

alias

name

for

the

database

for

which

configuration

should

be

reset

when

object

type,

iObjType,

is

set

to

DB2ALERTCFG_OBJTYPE_TS_CONTAINER,

DB2ALERTCFG_OBJTYPE_TABLESPACE,

and

DB2ALERTCFG_OBJTYPE_DATABASE.

iIndicatorID

Input.

The

health

indicator

for

which

the

configuration

resets

are

to

apply.

Usage

notes:

The

current

default

for

the

object

type

is

reset

when

iObjType

is

DB2ALERTCFG_OBJTYPE_DBM,

DB2ALERTCFG_OBJTYPE_DATABASES,

DB2ALERTCFG_OBJTYPE_TABLESPACES,

DB2ALERTCFG_OBJTYPE_TS_CONTAINERS

or

when

piObjName

and

piDbName

are

both

NULL.

If

iObjType

is

DB2ALERTCFG_OBJTYPE_DATABASE,

DB2ALERTCFG_OBJTYPE_TABLESPACE,

DB2ALERTCFG_OBJTYPE_TS_CONTAINER

and

piDbName

and

piObjName

(not

needed

for

database)

are

specified,

then

the

current

settings

for

that

specific

object

will

be

reset.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2GetAlertCfg

-

Get

Alert

Configuration”

on

page

68

v

“db2UpdateAlertCfg

-

Update

Alert

Configuration”

on

page

254

db2ResetMonitor

-

Reset

Monitor

Resets

the

database

system

monitor

data

of

a

specified

database,

or

of

all

active

databases,

for

the

application

issuing

the

call.

Scope:

This

API

can

either

affect

a

given

database

partition

on

the

instance,

or

all

database

partitions

on

the

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

db2ResetAlertCfg

-

Reset

Alert

Configuration

218

Administrative

API

Reference

|
|

v

sysmaint

v

sysmon

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

To

reset

the

monitor

switches

for

a

remote

instance

(or

a

different

local

instance),

it

is

necessary

to

first

attach

to

that

instance.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2ResetMonitor

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2ResetMonitor

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iResetAll;

char

*piDbAlias;

db2Uint32

iVersion;

db2int32

iNodeNumber;

}db2ResetMonitorData;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gResetMonitor

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gResetMonitor

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gResetMonitorData

{

db2Uint32

iResetAll;

char

*piDbAlias;

db2Uint32

iDbAliasLength;

db2Uint32

iVersion;

db2int32

iNodeNumber;

}

db2gResetMonitorData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

db2ResetMonitor

-

Reset

Monitor

Chapter

1.

Application

Programming

Interfaces

219

|

pParmStruct

Input.

A

pointer

to

the

db2ResetMonitorData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iResetAll

Input.

The

reset

flag.

piDbAlias

Input.

A

pointer

to

the

database

alias.

iDbAliasLength

Input.

Specifies

the

length

in

bytes

of

piDbAlias.

iVersion

Input.

Version

ID

of

the

database

monitor

data

to

collect.

The

database

monitor

only

returns

data

that

was

available

for

the

requested

version.

Set

this

parameter

to

one

of

the

following

symbolic

constants:

v

SQLM_DBMON_VERSION1

v

SQLM_DBMON_VERSION2

v

SQLM_DBMON_VERSION5

v

SQLM_DBMON_VERSION5_2

v

SQLM_DBMON_VERSION6

v

SQLM_DBMON_VERSION7

v

SQLM_DBMON_VERSION8

Note:

If

SQLM_DBMON_VERSION1

is

specified

as

the

version,

the

APIs

cannot

be

run

remotely.

iNodeNumber

Input.

The

database

partition

server

where

the

request

is

to

be

sent.

Based

on

this

value,

the

request

will

be

processed

for

the

current

database

partition

server,

all

database

partition

servers

or

a

user

specified

database

partition

server.

Valid

values

are:

v

SQLM_CURRENT_NODE

v

SQLM_ALL_NODES

v

node

value

Note:

For

standalone

instances

SQLM_CURRENT_NODE

must

be

used.

Usage

notes:

Each

process

(attachment)

has

its

own

private

view

of

the

monitor

data.

If

one

user

resets,

or

turns

off

a

monitor

switch,

other

users

are

not

affected.

When

an

application

first

calls

any

database

monitor

function,

it

inherits

the

default

switch

settings

from

the

database

manager

configuration

file.

These

settings

can

be

overridden

with

db2MonitorSwitches

-

Get/Update

Monitor

Switches.

If

all

active

databases

are

reset,

some

database

manager

information

is

also

reset

to

maintain

the

consistency

of

the

data

that

is

returned.

This

API

cannot

be

used

to

selectively

reset

specific

data

items

or

specific

monitor

groups.

However,

a

specific

group

can

be

reset

by

turning

its

switch

off,

and

then

on,

using

db2MonitorSwitches

-

Get/Update

Monitor

Switches.

db2ResetMonitor

-

Reset

Monitor

220

Administrative

API

Reference

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“db2MonitorSwitches

-

Get/Update

Monitor

Switches”

on

page

191

v

“db2GetSnapshotSize

-

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer”

on

page

84

v

“SQLCA”

on

page

410

db2Restore

-

Restore

database

Rebuilds

a

damaged

or

corrupted

database

that

has

been

backed

up

using

db2Backup

-

Backup

Database.

The

restored

database

is

in

the

same

state

it

was

in

when

the

backup

copy

was

made.

This

utility

can

also

restore

to

a

database

with

a

name

different

from

the

database

name

in

the

backup

image

(in

addition

to

being

able

to

restore

to

a

new

database).

This

utility

can

also

be

used

to

restore

DB2

databases

created

in

the

two

previous

releases.

This

utility

can

also

restore

from

a

table

space

level

backup,

or

restore

table

spaces

from

within

a

database

backup

image.

Scope:

This

API

only

affects

the

database

partition

from

which

it

is

called.

Authorization:

To

restore

to

an

existing

database,

one

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

To

restore

to

a

new

database,

one

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Database,

to

restore

to

an

existing

database.

This

API

automatically

establishes

a

connection

to

the

specified

database

and

will

release

the

connection

when

the

restore

operation

finishes.

Instance

and

database,

to

restore

to

a

new

database.

The

instance

attachment

is

required

to

create

the

database.

To

restore

to

a

new

database

at

an

instance

different

from

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

it

is

necessary

to

first

attach

to

the

instance

where

the

new

database

will

reside.

API

include

file:

db2ApiDf.h

db2ResetMonitor

-

Reset

Monitor

Chapter

1.

Application

Programming

Interfaces

221

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Restore

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Restore

(

db2Uint32

versionNumber,

void

*pDB2RestoreStruct,

struct

sqlca

*pSqlca);

/*

...

*/

typedef

SQL_STRUCTURE

db2RestoreStruct

{

char

*piSourceDBAlias;

char

*piTargetDBAlias;

char

oApplicationId[SQLU_APPLID_LEN+1];

char

*piTimestamp;

char

*piTargetDBPath;

char

*piReportFile;

struct

db2TablespaceStruct

*piTablespaceList;

struct

db2MediaListStruct

*piMediaList;

char

*piUsername;

char

*piPassword;

char

*piNewLogPath;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

iParallelism;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iCallerAction;

db2Uint32

iOptions;

char

*piComprLibrary;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

char

*piLogTarget;

}

db2RestoreStruct;

typedef

SQL_STRUCTURE

db2TablespaceStruct

{

char

**tablespaces;

db2Uint32

numTablespaces;

}

db2TablespaceStruct;

typedef

SQL_STRUCTURE

db2MediaListStruct

{

char

**locations;

db2Uint32

numLocations;

char

locationType;

}

db2MediaListStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gRestore

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRestore

(

db2Uint32

versionNumber,

void

*pDB2gRestoreStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gRestoreStruct

{

char

*piSourceDBAlias;

db2Uint32

iSourceDBAliasLen;

char

*piTargetDBAlias;

db2Restore

-

Restore

database

222

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

db2Uint32

iTargetDBAliasLen;

char

*poApplicationId;

db2Uint32

iApplicationIdLen;

char

*piTimestamp;

db2Uint32

iTimestampLen;

char

*piTargetDBPath;

db2Uint32

iTargetDBPathLen;

char

*piReportFile;

db2Uint32

iReportFileLen;

struct

db2gTablespaceStruct

*piTablespaceList;

struct

db2gMediaListStruct

*piMediaList;

char

*piUsername;

db2Uint32

iUsernameLen;

char

*piPassword;

db2Uint32

iPasswordLen;

char

*piNewLogPath;

db2Uint32

iNewLogPathLen;

void

*piVendorOptions;

db2Uint32

iVendorOptionsSize;

db2Uint32

iParallelism;

db2Uint32

iBufferSize;

db2Uint32

iNumBuffers;

db2Uint32

iCallerAction;

db2Uint32

iOptions;

char

*piComprLibrary;

db2Uint32

iComprLibraryLen;

void

*piComprOptions;

db2Uint32

iComprOptionsSize;

char

*piLogTarget;

db2Uint32

iLogTargetLen;

}

db2gRestoreStruct;

typedef

SQL_STRUCTURE

db2gTablespaceStruct

{

struct

db2Char

*tablespaces;

db2Uint32

numTablespaces;

}

db2gTablespaceStruct;

typedef

SQL_STRUCTURE

db2gMediaListStruct

{

struct

db2Char

*locations;

db2Uint32

numLocations;

char

locationType;

}

db2gMediaListStruct;

typedef

SQL_STRUCTURE

db2Char

{

char

*pioData;

db2Uint32

iLength;

db2Uint32

oLength;

}

db2Char;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pDB2RestoreStruct.

pDB2RestoreStruct

Input.

A

pointer

to

the

db2RestoreStruct

structure

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

db2Restore

-

Restore

database

Chapter

1.

Application

Programming

Interfaces

223

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

piSourceDBAlias

Input.

A

string

containing

the

database

alias

of

the

source

database

backup

image.

iSourceDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

source

database

alias.

piTargetDBAlias

Input.

A

string

containing

the

target

database

alias.

If

this

parameter

is

null,

the

piSourceDBAlias

will

be

used.

iTargetDBAliasLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

target

database

alias.

oApplicationId

Output.

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

poApplicationId

Output.

Supply

a

buffer

of

length

SQLU_APPLID_LEN+1

(defined

in

sqlutil).

The

API

will

return

a

string

identifying

the

agent

servicing

the

application.

Can

be

used

to

obtain

information

about

the

progress

of

the

backup

operation

using

the

database

monitor.

iApplicationIdLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

poApplicationId

buffer.

Should

be

equal

to

SQLU_APPLID_LEN+1

(defined

in

sqlutil).

piTimestamp

Input.

A

string

representing

the

timestamp

of

the

backup

image.

This

field

is

optional

if

there

is

only

one

backup

image

in

the

source

specified.

iTimestampLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

piTimestamp

buffer.

piTargetDBPath

Input.

A

string

containing

the

relative

or

fully

qualified

name

of

the

target

database

directory

on

the

server.

Used

if

a

new

database

is

to

be

created

for

the

restored

backup;

otherwise

not

used.

piReportFile

Input.

The

file

name,

if

specified,

must

be

fully

qualified.

The

datalinks

files

that

become

unlinked

during

restore

(as

a

result

of

a

fast

reconcile)

will

be

reported.

iReportFileLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

the

piReportFile

buffer.

piTablespaceList

Input.

List

of

table

spaces

to

be

restored.

Used

when

restoring

a

subset

of

table

spaces

from

a

database

or

table

space

backup

image.

See

the

DB2TablespaceStruct

structure.

The

following

restrictions

apply:

v

The

database

must

be

recoverable;

that

is,

log

retain

or

user

exits

must

be

enabled.

db2Restore

-

Restore

database

224

Administrative

API

Reference

v

The

database

being

restored

to

must

be

the

same

database

that

was

used

to

create

the

backup

image.

That

is,

table

spaces

can

not

be

added

to

a

database

through

the

table

space

restore

function.

v

The

rollforward

utility

will

ensure

that

table

spaces

restored

in

a

partitioned

database

environment

are

synchronized

with

any

other

database

partition

containing

the

same

table

spaces.

If

a

table

space

restore

operation

is

requested

and

the

piTablespaceList

is

NULL,

the

restore

utility

will

attempt

to

restore

all

of

the

table

spaces

in

the

backup

image.

When

restoring

a

table

space

that

has

been

renamed

since

it

was

backed

up,

the

new

table

space

name

must

be

used

in

the

restore

command.

If

the

old

table

space

name

is

used,

it

will

not

be

found.

piMediaList

Input.

Source

media

for

the

backup

image.

The

information

provided

depends

on

the

value

of

the

locationType

field.

The

valid

values

for

locationType

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

Local

devices

(a

combination

of

tapes,

disks,

or

diskettes).

SQLU_XBSA_MEDIA

XBSA

interface.

Backup

Services

APIs

(XBSA)

are

an

open

application

programming

interface

for

applications

or

facilities

needing

data

storage

management

for

backup

or

archiving

purposes.

SQLU_TSM_MEDIA

TSM.

If

the

locations

pointer

is

set

to

NULL,

the

TSM

shared

library

provided

with

DB2

is

used.

If

a

different

version

of

the

TSM

shared

library

is

desired,

use

SQLU_OTHER_MEDIA

and

provide

the

shared

library

name.

SQLU_OTHER_MEDIA

Vendor

product.

Provide

the

shared

library

name

in

the

locations

field.

SQLU_USER_EXIT

User

exit.

No

additional

input

is

required

(only

available

when

server

is

on

OS/2).

piUsername

Input.

A

string

containing

the

user

name

to

be

used

when

attempting

a

connection.

Can

be

NULL.

iUsernameLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piUsername.

Set

to

zero

if

no

user

name

is

provided.

piPassword

Input.

A

string

containing

the

password

to

be

used

with

the

user

name.

Can

be

NULL.

iPasswordLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piPassword.

Set

to

zero

if

no

password

is

provided.

piNewLogPath

Input.

A

string

representing

the

path

to

be

used

for

logging

after

the

restore

has

completed.

If

this

field

is

null

the

default

log

path

will

be

used.

db2Restore

-

Restore

database

Chapter

1.

Application

Programming

Interfaces

225

iNewLogPathLen

Input.

A

4-byte

unsigned

integer

representing

the

length

in

bytes

of

piNewLogPath.

piVendorOptions

Input.

Used

to

pass

information

from

the

application

to

the

vendor

functions.

This

data

structure

must

be

flat;

that

is,

no

level

of

indirection

is

supported.

Note

that

byte-reversal

is

not

done,

and

the

code

page

is

not

checked

for

this

data.

iVendorOptionsSize

Input.

The

length

of

the

piVendorOptions,

which

cannot

exceed

65535

bytes.

iParallelism

Input.

Degree

of

parallelism

(number

of

buffer

manipulators).

Minimum

is

1.

Maximum

is

1024.

iBufferSize

Input.

Backup

buffer

size

in

4

KB

allocation

units

(pages).

Minimum

is

8

units.

The

size

entered

for

a

restore

must

be

equal

to

or

an

integer

multiple

of

the

buffer

size

used

to

produce

the

backup

image.

iNumBuffers

Input.

Specifies

number

of

restore

buffers

to

be

used.

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf)

are:

DB2RESTORE_RESTORE

Start

the

restore

operation.

DB2RESTORE_NOINTERRUPT

Start

the

restore.

Specifies

that

the

restore

will

run

unattended,

and

that

scenarios

which

normally

require

user

intervention

will

either

be

attempted

without

first

returning

to

the

caller,

or

will

generate

an

error.

Use

this

caller

action,

for

example,

if

it

is

known

that

all

of

the

media

required

for

the

restore

have

been

mounted,

and

utility

prompts

are

not

desired.

DB2RESTORE_CONTINUE

Continue

the

restore

after

the

user

has

performed

some

action

requested

by

the

utility

(mount

a

new

tape,

for

example).

DB2RESTORE_TERMINATE

Terminate

the

restore

after

the

user

has

failed

to

perform

some

action

requested

by

the

utility.

DB2RESTORE_DEVICE_TERMINATE

Remove

a

particular

device

from

the

list

of

devices

used

by

restore.

When

a

particular

device

has

exhausted

its

input,

restore

will

return

a

warning

to

the

caller.

Call

restore

again

with

this

caller

action

to

remove

the

device

which

generated

the

warning

from

the

list

of

devices

being

used.

DB2RESTORE_PARM_CHK

Used

to

validate

parameters

without

performing

a

restore.

This

option

does

not

terminate

the

database

connection

after

the

call

returns.

After

successful

return

of

this

call,

it

is

expected

that

the

user

will

issue

a

call

with

DB2RESTORE_CONTINUE

to

proceed

with

the

action.

db2Restore

-

Restore

database

226

Administrative

API

Reference

DB2RESTORE_PARM_CHK_ONLY

Used

to

validate

parameters

without

performing

a

restore.

Before

this

call

returns,

the

database

connection

established

by

this

call

is

terminated,

and

no

subsequent

call

is

required.

DB2RESTORE_TERMINATE_INCRE

Terminate

an

incremental

restore

operation

before

completion.

DB2RESTORE_RESTORE_STORDEF

Initial

call.

Table

space

container

redefinition

requested.

DB2RESTORE_STORDEF_NOINTERRUPT

Initial

call.

The

restore

will

run

uninterrupted.

Table

space

container

redefinition

requested.

iOptions

Input.

A

bitmap

of

restore

properties.

The

options

are

to

be

combined

using

the

bitwise

OR

operator

to

produce

a

value

for

iOptions.

Valid

values

(defined

in

db2ApiDf)

are:

DB2RESTORE_OFFLINE

Perform

an

offline

restore

operation.

DB2RESTORE_ONLINE

Perform

an

online

restore

operation.

DB2RESTORE_DB

Restore

all

table

spaces

in

the

database.

This

must

be

run

offline

DB2RESTORE_TABLESPACE

Restore

only

the

table

spaces

listed

in

the

piTablespaceList

parameter

from

the

backup

image.

This

can

be

online

or

offline.

DB2RESTORE_HISTORY

Restore

only

the

history

file.

DB2RESTORE_COMPR_LIB

Indicates

that

the

compression

library

is

to

be

restored.

This

option

cannot

be

used

simultaneously

with

any

other

restore

type.

If

the

object

exists

in

the

backup

image,

it

will

be

restored

into

the

database

directory.

If

the

object

does

not

exist

in

the

backup

image,

the

restore

operation

will

fail.

DB2RESTORE_LOGS

Specify

to

restore

only

the

set

of

log

files

contained

in

the

backup

image.

If

the

backup

image

did

not

include

log

files,

the

restore

operation

will

fail.

If

this

option

is

specified,

the

piLogTarget

parameter

must

also

be

supplied.

DB2RESTORE_INCREMENTAL

Perform

a

manual

cumulative

restore

operation.

DB2RESTORE_AUTOMATIC

Perform

an

automatic

cumulative

(incremental)

restore

operation.

Must

be

specified

with

DB2RESTORE_INCREMENTAL.

DB2RESTORE_DATALINK

Perform

reconciliation

operations.

Tables

with

a

defined

DATALINK

column

must

have

RECOVERY

YES

option

specified.

DB2RESTORE_NODATALINK

Do

not

perform

reconciliation

operations.

Tables

with

DATALINK

db2Restore

-

Restore

database

Chapter

1.

Application

Programming

Interfaces

227

|
|
|
|
|
|

|
|
|
|
|

columns

are

placed

into

DataLink_Roconcile_pending

(DRP)

state.

Tables

with

a

defined

DATALINK

column

must

have

the

RECOVERY

YES

option

specified.

DB2RESTORE_ROLLFWD

Place

the

database

in

rollforward

pending

state

after

it

has

been

successfully

restored.

DB2RESTORE_NOROLLFWD

Do

not

place

the

database

in

rollforward

pending

state

after

it

has

been

successfully

restored.

This

cannot

be

specified

for

backups

taken

online

or

for

table

space

level

restores.

If,

following

a

successful

restore,

the

database

is

in

roll-forward

pending

state,

db2Rollforward

-

Rollforward

Database

must

be

executed

before

the

database

can

be

used.

piComprLibrary

Input.

Indicates

the

name

of

the

external

library

to

be

used

to

perform

decompression

of

the

backup

image

if

the

image

is

compressed.

The

name

must

be

a

fully-qualified

path

referring

to

a

file

on

the

server.

If

the

value

is

a

null

pointer

or

a

pointer

to

an

empty

string,

DB2

will

attempt

to

use

the

library

stored

in

the

image.

If

the

backup

was

not

compressed,

the

value

of

this

parameter

will

be

ignored.

If

the

specified

library

is

not

found,

the

restore

will

fail.

piComprLibraryLen

Input.

A

four-byte

unsigned

integer

representing

the

length

in

bytes

of

the

name

of

the

library

specified

in

piComprLibrary.

Set

to

zero

if

no

library

name

is

given.

piComprOptions

Input.

Describes

a

block

of

binary

data

that

will

be

passed

to

the

initialization

routine

in

the

decompression

library.

DB2

will

pass

this

string

directly

from

the

client

to

the

server,

so

any

issues

of

byte-reversal

or

code-page

conversion

will

have

to

be

handled

by

the

compression

library.

If

the

first

character

of

the

data

block

is

’@’,

the

remainder

of

the

data

will

be

interpreted

by

DB2

as

the

name

of

a

file

residing

on

the

server.

DB2

will

then

replace

the

contents

of

piComprOptions

and

iComprOptionsSize

with

the

contents

and

size

of

this

file

respectively

and

will

pass

these

new

values

to

the

initialization

routine

instead.

iComprOptionsSize

Input.

A

four-byte

unsigned

integer

representing

the

size

of

the

block

of

data

passed

as

piComprOptions.

iComprOptionsSize

shall

be

zero

if

and

only

if

piComprOptions

is

a

null

pointer.

piLogTarget

Input.

The

absolute

path

of

an

existing

directory

on

the

database

server

to

be

used

as

the

target

directory

for

extracting

log

files

from

a

backup

image.

If

this

parameter

is

specified,

any

log

files

included

in

the

backup

image

will

be

extracted

into

the

target

directory.

If

this

parameter

is

not

specified,

log

files

included

in

the

backup

image

will

not

be

extracted.

To

extract

only

the

log

files

from

the

backup

image,

use

the

DB2RESTORE_LOGS

parameter.

iLogTargetLen

Input.

A

four-byte

unsigned

integer

representing

the

length,

in

bytes,

of

the

path

in

piLogTarget.

db2Restore

-

Restore

database

228

Administrative

API

Reference

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

tablespaces

A

pointer

to

the

list

of

table

spaces

to

be

backed

up.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numTablespaces

Number

of

entries

in

the

tablespaces

parameter.

locations

A

pointer

to

the

list

of

media

locations.

For

C,

the

list

is

null-terminated

strings.

In

the

generic

case,

it

is

a

list

of

db2Char

structures.

numLocations

The

number

of

entries

in

the

locations

parameter.

locationType

A

character

indicated

the

media

type.

Valid

values

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

Local

devices(tapes,

disks,

diskettes,

or

named

pipes).

SQLU_XBSA_MEDIA

XBSA

interface.

SQLU_TSM_MEDIA

Tivoli

Storage

Manager.

SQLU_OTHER_MEDIA

Vendor

library.

SQLU_USER_EXIT

User

exit

(only

available

when

the

server

is

on

OS/2).

pioData

A

pointer

to

the

character

data

buffer.

iLength

Input.

The

size

of

the

pioData

buffer

oLength

Output.

Reserved

for

future

use.

Usage

notes:

For

offline

restore,

this

utility

connects

to

the

database

in

exclusive

mode.

The

utility

fails

if

any

application,

including

the

calling

application,

is

already

connected

to

the

database

that

is

being

restored.

In

addition,

the

request

will

fail

if

the

restore

utility

is

being

used

to

perform

the

restore,

and

any

application,

including

the

calling

application,

is

already

connected

to

any

database

on

the

same

workstation.

If

the

connect

is

successful,

the

API

locks

out

other

applications

until

the

restore

is

completed.

The

current

database

configuration

file

will

not

be

replaced

by

the

backup

copy

unless

it

is

unusable.

If

the

file

is

replaced,

a

warning

message

is

returned.

The

database

or

table

space

must

have

been

backed

up

using

db2Backup

-

Backup

Database.

If

the

caller

action

is

DB2RESTORE_NOINTERRUPT,

the

restore

continues

without

prompting

the

application.

If

the

caller

action

is

DB2RESTORE_RESTORE,

and

the

utility

is

restoring

to

an

existing

database,

the

utility

returns

control

to

the

application

with

a

message

requesting

some

user

interaction.

After

handling

the

user

interaction,

the

application

calls

RESTORE

DATABASE

again,

with

the

caller

db2Restore

-

Restore

database

Chapter

1.

Application

Programming

Interfaces

229

|
|

action

set

to

indicate

whether

processing

is

to

continue

(DB2RESTORE_CONTINUE)

or

terminate

(DB2RESTORE_TERMINATE)

on

the

subsequent

call.

The

utility

finishes

processing,

and

returns

an

SQLCODE

in

the

sqlca.

To

close

a

device

when

finished,

set

the

caller

action

to

DB2RESTORE_DEVICE_TERMINATE.

If,

for

example,

a

user

is

restoring

from

3

tape

volumes

using

2

tape

devices,

and

one

of

the

tapes

has

been

restored,

the

application

obtains

control

from

the

API

with

an

SQLCODE

indicating

end

of

tape.

The

application

can

prompt

the

user

to

mount

another

tape,

and

if

the

user

indicates

″no

more″,

return

to

the

API

with

caller

action

SQLUD_DEVICE_TERMINATE

to

signal

end

of

the

media

device.

The

device

driver

will

be

terminated,

but

the

rest

of

the

devices

involved

in

the

restore

will

continue

to

have

their

input

processed

until

all

segments

of

the

restore

set

have

been

restored

(the

number

of

segments

in

the

restore

set

is

placed

on

the

last

media

device

during

the

backup

process).

This

caller

action

can

be

used

with

devices

other

than

tape

(vendor

supported

devices).

To

perform

a

parameter

check

before

returning

to

the

application,

set

caller

action

to

DB2RESTORE_PARM_CHK.

Set

caller

action

to

DB2RESTORE_RESTORE_STORDEF

when

performing

a

redirected

restore;

used

in

conjunction

with

sqlbstsc

-

Set

Tablespace

Containers.

If

a

system

failure

occurs

during

a

critical

stage

of

restoring

a

database,

the

user

will

not

be

able

to

successfully

connect

to

the

database

until

a

successful

restore

is

performed.

This

condition

will

be

detected

when

the

connection

is

attempted,

and

an

error

message

is

returned.

If

the

backed-up

database

is

not

configured

for

roll-forward

recovery,

and

there

is

a

usable

current

configuration

file

with

either

of

these

parameters

enabled,

following

the

restore,

the

user

will

be

required

to

either

take

a

new

backup

of

the

database,

or

disable

the

log

retain

and

user

exit

parameters

before

connecting

to

the

database.

Although

the

restored

database

will

not

be

dropped

(unless

restoring

to

a

nonexistent

database),

if

the

restore

fails,

it

will

not

be

usable.

If

the

restore

type

specifies

that

the

history

file

on

the

backup

is

to

be

restored,

it

will

be

restored

over

the

existing

history

file

for

the

database,

effectively

erasing

any

changes

made

to

the

history

file

after

the

backup

that

is

being

restored.

If

this

is

undesirable,

restore

the

history

file

to

a

new

or

test

database

so

that

its

contents

can

be

viewed

without

destroying

any

updates

that

have

taken

place.

If,

at

the

time

of

the

backup

operation,

the

database

was

enabled

for

roll

forward

recovery,

the

database

can

be

brought

to

the

state

it

was

in

prior

to

the

occurrence

of

the

damage

or

corruption

by

issuing

db2Rollforward

after

successful

execution

of

db2Restore.

If

the

database

is

recoverable,

it

will

default

to

roll

forward

pending

state

after

the

completion

of

the

restore.

If

the

database

backup

image

is

taken

offline,

and

the

caller

does

not

want

to

roll

forward

the

database

after

the

restore,

the

DB2RESTORE_NOROLLFWD

option

can

be

used

for

the

restore.

This

results

in

the

database

being

useable

immediately

after

the

restore.

If

the

backup

image

is

taken

online,

the

caller

must

roll

forward

through

the

corresponding

log

records

at

the

completion

of

the

restore.

To

restore

log

files

from

a

backup

image

which

contains

them,

the

LOGTARGET

option

must

be

specified,

providing

a

fully

qualified

and

valid

path

which

exists

db2Restore

-

Restore

database

230

Administrative

API

Reference

|
|

on

the

DB2

server.

If

those

conditions

are

satisfied,

the

restore

utility

will

write

the

log

files

from

the

image

to

the

target

path.

If

a

LOGTARGET

is

specified

during

a

restore

of

a

backup

image

which

does

not

include

logs,

the

restore

will

return

an

error

before

attempting

to

restore

any

table

space

data.

A

restore

will

also

fail

with

an

error

if

an

invalid,

or

read-only,

LOGTARGET

path

is

specified.

If

any

log

files

exist

in

the

LOGTARGET

path

at

the

time

the

Restore

command

is

issued,

a

warning

prompt

will

be

returned

to

user.

This

warning

will

not

be

returned

if

WITHOUT

PROMPTING

is

specified.

During

a

restore

where

a

LOGTARGET

is

specified,

if

any

log

file

can

not

be

extracted,

for

any

reason,

the

restore

will

fail

and

return

an

error.

If

any

of

the

log

files

being

extracted

from

the

backup

image

have

the

same

name

as

an

existing

file

already

in

the

LOGTARGET

path,

the

restore

operation

will

fail

and

an

error

will

be

returned.

The

restore

utility

will

not

overwrite

existing

log

files

in

the

LOGTARGET

directory.

It

is

also

possible

to

restore

only

the

saved

log

set

from

a

backup

image.

To

indicate

that

only

the

log

files

are

to

be

restored,

specify

the

LOGS

option

in

addition

to

the

LOGTARGET

path.

Specifying

the

LOGS

option

without

a

LOGTARGET

path

will

result

in

an

error.

If

any

problem

occurs

while

restoring

log

files

in

this

mode

of

operation,

the

restore

will

terminate

immediately

and

an

error

will

be

returned.

During

an

automatic

incremental

restore,

only

the

logs

included

in

the

target

image

of

the

restore

operation

will

be

retrived

from

the

backup

image.

Any

logs

included

in

intermediate

images

referenced

during

the

incremental

restore

process

will

not

be

extracted

from

those

intermediate

backup

images.

During

a

manual

incremental

restore,

the

LOGTARGET

path

should

only

be

specified

with

the

final

restore

command

to

be

issued.

If

a

backup

is

compressed,

DB2

will

detect

this

and

automatically

decompress

the

data

before

restoring

it.

If

a

library

is

specified

on

the

db2Restore

API,

it

will

be

used

for

decompressing

the

data.

Otherwise,

if

a

library

that

is

stored

in

the

backup

image

will

be

used.

Otherwise,

the

data

cannot

be

decompressed,

so

the

restore

will

fail.

If

the

compression

library

is

to

be

restored

from

a

backup

image

(either

explicitly

by

specifying

the

DB2RESTORE_COMPR_LIB

restore

type

or

implicitly

by

performing

a

normal

restore

of

a

compressed

backup),

the

restore

operation

must

be

done

on

the

same

platform

and

operating

system

that

the

backup

was

taken

on.

If

the

platform

the

backup

was

taken

on

is

not

the

same

as

the

platform

that

the

restore

is

being

done

on,

the

restore

operation

will

fail,

even

if

DB2

normally

supports

cross-platform

restores

involving

the

two

systems.

Related

reference:

v

“sqlemgdb

-

Migrate

Database”

on

page

352

v

“db2Rollforward

-

Rollforward

Database”

on

page

232

v

“SQLCA”

on

page

410

v

“db2Backup

-

Backup

database”

on

page

26

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

db2Restore

-

Restore

database

Chapter

1.

Application

Programming

Interfaces

231

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2Rollforward

-

Rollforward

Database

Recovers

a

database

by

applying

transactions

recorded

in

the

database

log

files.

Called

after

a

database

or

a

table

space

backup

has

been

restored,

or

if

any

table

spaces

have

been

taken

offline

by

the

database

due

to

a

media

error.

The

database

must

be

recoverable

(that

is,

the

logarchmeth1

database

configuration

parameter

must

be

set

to

on)

before

the

database

can

be

recovered

with

rollforward

recovery.

Scope:

In

a

partitioned

database

environment,

this

API

can

only

be

called

from

the

catalog

partition.

A

database

or

table

space

rollforward

call

specifying

a

point-in-time

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

A

database

or

table

space

rollforward

call

specifying

end

of

logs

affects

the

database

partition

servers

that

are

specified.

If

no

database

partition

servers

are

specified,

it

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file;

if

no

roll

forward

is

needed

on

a

particular

database

partition

server,

that

database

partition

server

is

ignored.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None.

This

API

establishes

a

database

connection.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Rollforward

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Rollforward

(

db2Uint32

versionNumber,

void

*pDB2RollforwardStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2RollforwardStruct

{

struct

db2RfwdInputStruct

*piRfwdInput;

struct

db2RfwdOutputStruct

*poRfwdOutput;

}

db2RollforwardStruct;

typedef

SQL_STRUCTURE

db2RfwdInputStruct

{

sqluint32

iVersion;

char

*piDbAlias;

db2Uint32

iCallerAction;

char

*piStopTime;

db2Restore

-

Restore

database

232

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char

*piUserName;

char

*piPassword;

char

*piOverflowLogPath;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2Uint32

iConnectMode;

struct

sqlu_tablespace_bkrst_list

*piTablespaceList;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

char

*piDroppedTblID;

char

*piExportDir;

db2Uint32

iRollforwardFlags;

}

db2RfwdInputStruct;

typedef

SQL_STRUCTURE

db2RfwdOutputStruct

{

char

*poApplicationId;

sqlint32

*poNumReplies;

struct

sqlurf_info

*poNodeInfo;

}

db2RfwdOutputStruct;

typedef

SQL_STRUCTURE

sqlurf_newlogpath

{

SQL_PDB_NODE_TYPE

nodenum;

unsigned

short

pathlen;

char

logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

}

sqlurf_newlogpath;

typedef

SQL_STRUCTURE

sqlu_tablespace_bkrst_list

{

long

num_entry;

struct

sqlu_tablespace_entry

*tablespace;

}

sqlu_tablespace_bkrst_list;

typedef

SQL_STRUCTURE

sqlu_tablespace_entry

{

sqluint32

reserve_len;

char

tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

char

filler[1];

}

sqlu_tablespace_entry;

typedef

SQL_STRUCTURE

sqlurf_info

{

SQL_PDB_NODE_TYPE

nodenum;

sqlint32

state;

unsigned

char

nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastcommit[SQLUM_TIMESTAMP_LEN+1];

}

sqlurf_info;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Rollforward

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRollforward

(

db2Uint32

versionNumber,

void

*pDB2gRollforwardStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2gRollforwardStruct

{

db2Rollforward

-

Rollforward

Database

Chapter

1.

Application

Programming

Interfaces

233

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

struct

db2gRfwdInputStruct

*piRfwdInput;

struct

db2RfwdOutputStruct

*poRfwdOutput;

}

db2gRollforwardStruct;

SQL_STRUCTURE

db2gRfwdInputStruct

{

db2Uint32

iDbAliasLen;

db2Uint32

iStopTimeLen;

db2Uint32

iUserNameLen;

db2Uint32

iPasswordLen;

db2Uint32

iOvrflwLogPathLen;

db2Uint32

iDroppedTblIDLen;

db2Uint32

iExportDirLen;

sqluint32

iVersion;

char

*piDbAlias;

db2Uint32

iCallerAction;

char

*piStopTime;

char

*piUserName;

char

*piPassword;

char

*piOverflowLogPath;

db2Uint32

iNumChngLgOvrflw;

struct

sqlurf_newlogpath

*piChngLogOvrflw;

db2Uint32

iConnectMode;

struct

sqlu_tablespace_bkrst_list

*piTablespaceList;

db2int32

iAllNodeFlag;

db2int32

iNumNodes;

SQL_PDB_NODE_TYPE

*piNodeList;

db2int32

iNumNodeInfo;

char

*piDroppedTblID;

char

*piExportDir;

db2Uint32

iRollforwardFlags;

}

db2gRfwdInputStruct;

typedef

SQL_STRUCTURE

db2RfwdOutputStruct

{

char

*poApplicationId;

sqlint32

*poNumReplies;

struct

sqlurf_info

*poNodeInfo;

}

db2RfwdOutputStruct;

typedef

SQL_STRUCTURE

sqlurf_newlogpath

{

SQL_PDB_NODE_TYPE

nodenum;

unsigned

short

pathlen;

char

logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

}

sqlurf_newlogpath;

typedef

SQL_STRUCTURE

sqlu_tablespace_bkrst_list

{

long

num_entry;

struct

sqlu_tablespace_entry

*tablespace;

}

sqlu_tablespace_bkrst_list;

typedef

SQL_STRUCTURE

sqlu_tablespace_entry

{

sqluint32

reserve_len;

char

tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];

char

filler[1];

}

sqlu_tablespace_entry;

typedef

SQL_STRUCTURE

sqlurf_info

{

SQL_PDB_NODE_TYPE

nodenum;

sqlint32

state;

unsigned

char

nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

db2Rollforward

-

Rollforward

Database

234

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

unsigned

char

lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];

unsigned

char

lastcommit[SQLUM_TIMESTAMP_LEN+1];

}

sqlurf_info;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter.

pDB2RollforwardStruct

Input.

A

pointer

to

the

db2RollforwardStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piRfwdInput

Input.

A

pointer

to

the

db2RfwdInputStruct

structure.

poRfwdOutput

Output.

A

pointer

to

the

db2RfwdOutputStruct

structure.

iDbAliasLen

Input.

Specifies

the

length

in

bytes

of

the

database

alias.

iStopTimeLen

Input.

Specifies

the

length

in

bytes

of

the

stop

time

parameter.

Set

to

zero

if

no

stop

time

is

provided.

iUserNameLen

Input.

Specifies

the

length

in

bytes

of

the

user

name.

Set

to

zero

if

no

user

name

is

provided.

iPasswordLen

Input.

Specifies

the

length

in

bytes

of

the

password.

Set

to

zero

if

no

password

is

provided.

iOverflowLogPathLen

Input.

Specifies

the

length

in

bytes

of

the

overflow

log

path.

Set

to

zero

if

no

overflow

log

path

is

provided.

iVersion

Input.

The

version

ID

of

the

rollforward

parameters.

It

is

defined

as

SQLUM_RFWD_VERSION.

piDbAlias

Input.

A

string

containing

the

database

alias.

This

is

the

alias

that

is

cataloged

in

the

system

database

directory.

iCallerAction

Input.

Specifies

action

to

be

taken.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2ROLLFORWARD_ROLLFWD

Rollforward

to

the

point

in

time

specified

by

piStopTime.

For

database

rollforward,

the

database

is

left

in

rollforward-pending

state.

For

table

space

rollforward

to

a

point

in

time,

the

table

spaces

are

left

in

rollforward-in-progress

state.

DB2ROLLFORWARD_STOP

End

roll-forward

recovery.

No

new

log

records

are

processed

and

uncommitted

transactions

are

backed

out.

The

rollforward-pending

db2Rollforward

-

Rollforward

Database

Chapter

1.

Application

Programming

Interfaces

235

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

state

of

the

database

or

table

spaces

is

turned

off.

Synonym

is

DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_RFWD_STOP

Rollforward

to

the

point

in

time

specified

by

piStopTime,

and

end

roll-forward

recovery.

The

rollforward-pending

state

of

the

database

or

table

spaces

is

turned

off.

Synonym

is

DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_QUERY

Query

values

for

nextarclog,

firstarcdel,

lastarcdel,

and

lastcommit.

Return

database

status

and

a

node

number.

DB2ROLLFORWARD_PARM_CHECK

Validate

parameters

without

performing

the

roll

forward.

DB2ROLLFORWARD_CANCEL

Cancel

the

rollforward

operation

that

is

currently

running.

The

database

or

table

space

are

put

in

recovery

pending

state.

Note:

This

option

cannot

be

used

while

the

rollforward

is

actually

running.

It

can

be

used

if

the

rollforward

is

paused

(that

is,

waiting

for

a

STOP),

or

if

a

system

failure

occurred

during

the

rollforward.

It

should

be

used

with

caution.

Rolling

databases

forward

may

require

a

load

recovery

using

tape

devices.

The

rollforward

API

will

return

with

a

warning

message

if

user

intervention

on

a

device

is

required.

The

API

can

be

called

again

with

one

of

the

following

three

caller

actions:

DB2ROLLFORWARD_LOADREC_CONT

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted).

DB2ROLLFORWARD_DEVICE_TERM

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes).

DB2ROLLFORWARD_LOAD_REC_TERM

Terminate

all

devices

being

used

by

load

recovery.

piStopTime

Input.

A

character

string

containing

a

time

stamp

in

ISO

format.

Database

recovery

will

stop

when

this

time

stamp

is

exceeded.

Specify

SQLUM_INFINITY_TIMESTAMP

to

roll

forward

as

far

as

possible.

May

be

NULL

for

DB2ROLLFORWARD_QUERY,

DB2ROLLFORWARD_PARM_CHECK,

and

any

of

the

load

recovery

(DB2ROLLFORWARD_LOADREC_xxx)

caller

actions.

piUserName

Input.

A

string

containing

the

user

name

of

the

application.

May

be

NULL.

piPassword

Input.

A

string

containing

the

password

of

the

supplied

user

name

(if

any).

May

be

NULL.

piOverflowLogPath

Input.

This

parameter

is

used

to

specify

an

alternate

log

path

to

be

used.

In

addition

to

the

active

log

files,

archived

log

files

need

to

be

moved

(by

the

user)

into

the

logpath

before

they

can

be

used

by

this

utility.

This

can

be

a

problem

if

the

user

does

not

have

sufficient

space

in

the

logpath.

The

overflow

log

path

is

provided

for

this

reason.

During

roll-forward

recovery,

the

required

log

files

are

searched,

first

in

the

logpath,

and

then

in

the

db2Rollforward

-

Rollforward

Database

236

Administrative

API

Reference

|

|

|

|

|

|

|

|

|

|

overflow

log

path.

The

log

files

needed

for

table

space

roll-forward

recovery

can

be

brought

into

either

the

logpath

or

the

overflow

log

path.

If

the

caller

does

not

specify

an

overflow

log

path,

the

default

value

is

the

logpath.

In

a

partitioned

database

environment,

the

overflow

log

path

must

be

a

valid,

fully

qualified

path;

the

default

path

is

the

default

overflow

log

path

for

each

node.

In

a

single-partition

database

environment,

the

overflow

log

path

can

be

relative

if

the

server

is

local.

iNumChngLgOvrflw

Input.

Partitioned

database

environments

only.

The

number

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

piChngLogOvrflw

Input.

Partitioned

database

environments

only.

A

pointer

to

a

structure

containing

the

fully

qualified

names

of

changed

overflow

log

paths.

These

new

log

paths

override

the

default

overflow

log

path

for

the

specified

database

partition

server

only.

iConnectMode

Input.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2ROLLFORWARD_OFFLINE

Offline

roll

forward.

This

value

must

be

specified

for

database

roll-forward

recovery.

DB2ROLLFORWARD_ONLINE

Online

roll

forward.

piTablespaceList

Input.

A

pointer

to

a

structure

containing

the

names

of

the

table

spaces

to

be

rolled

forward

to

the

end-of-logs

or

to

a

specific

point

in

time.

If

not

specified,

the

table

spaces

needing

rollforward

will

be

selected.

iAllNodeFlag

Input.

Partitioned

database

environments

only.

Indicates

whether

the

rollforward

operation

is

to

be

applied

to

all

database

partition

servers

defined

in

db2nodes.cfg.

Valid

values

are:

DB2_NODE_LIST

Apply

to

database

partition

servers

in

a

list

that

is

passed

in

piNodeList.

DB2_ALL_NODES

Apply

to

all

database

partition

servers.

piNodeList

should

be

NULL.

This

is

the

default

value.

DB2_ALL_EXCEPT

Apply

to

all

database

partition

servers

except

those

in

a

list

that

is

passed

in

piNodeList.

DB2_CAT_NODE_ONLY

Apply

to

the

catalog

partition

only.

piNodeList

should

be

NULL.

iNumNodes

Input.

Specifies

the

number

of

database

partition

servers

in

the

piNodeList

array.

piNodeList

Input.

A

pointer

to

an

array

of

database

partition

server

numbers

on

which

to

perform

the

roll-forward

recovery.

db2Rollforward

-

Rollforward

Database

Chapter

1.

Application

Programming

Interfaces

237

|

|

|

|

|

|

|

|

|

|

|

|

|

iNumNodeInfo

Input.

Defines

the

size

of

the

output

parameter

poNodeInfo,

which

must

be

large

enough

to

hold

status

information

from

each

database

partition

that

is

being

rolled

forward.

In

a

single-partition

database

environment,

this

parameter

should

be

set

to

1.

The

value

of

this

parameter

should

be

same

as

the

number

of

database

partition

servers

for

which

this

API

is

being

called.

piDroppedTblID

Input.

A

string

containing

the

ID

of

the

dropped

table

whose

recovery

is

being

attempted.

piExportDir

Input.

The

directory

into

which

the

dropped

table

data

will

be

exported.

RollforwardFlags

Input.

Specifies

the

rollforward

flags.

Valid

values

(defined

in

db2ApiDf.h):

DB2ROLLFORWARD_EMPTY_FLAG

No

flags

specified.

DB2ROLLFORWARD_LOCAL_TIME

Allows

the

user

to

rollforward

to

a

point

in

time

that

is

the

user’s

local

time

rather

than

GMT

time.

This

makes

it

easier

for

users

to

rollforward

to

a

specific

point

in

time

on

their

local

machines,

and

eliminates

potential

user

errors

due

to

the

translation

of

local

to

GMT

time.

DB2ROLLFORWARD_NO_RETRIEVE

Controls

which

log

files

to

be

rolled

forward

on

the

standby

machine

by

allowing

the

user

to

disable

the

retrieval

of

archived

logs.

By

controlling

the

log

files

to

be

rolled

forward,

one

can

ensure

that

the

standby

machine

is

X

hours

behind

the

production

machine,

to

prevent

the

user

affecting

both

systems.

This

option

is

useful

if

the

standby

system

does

not

have

access

to

archive,

for

example,

if

TSM

is

the

archive,

it

only

allows

the

original

machine

to

retrieve

the

files.

It

will

also

remove

the

possibility

that

the

standby

system

would

retrieve

an

incomplete

log

file

while

the

production

system

is

archiving

a

file

and

the

standby

system

is

retrieving

the

same

file.

poApplicationId

Output.

The

application

ID.

poNumReplies

Output.

The

number

of

replies

received.

poNodeInfo

Output.

Database

partition

reply

information.

nodenum

Node

number.

pathlen

The

length

of

the

new

logpath.

logpath

The

new

overflow

log

path.

num_entry

Number

of

entries

in

the

list

pointed

to

by

the

tablespace

field.

db2Rollforward

-

Rollforward

Database

238

Administrative

API

Reference

|

|

|

|
|

|

|

|

|

|

|
|

|
|

|
|

|
|

tablespace

A

pointer

to

the

sqlu_tablepsace_entry

structure.

reserve_len

Length

of

the

character

string

provided

in

the

tablespace_entry

field.

For

languages

other

than

C.

tablespace_entry

Table

space

name.

state

State

information.

nextarclog

A

buffer

to

hold

the

returned

name

of

the

next

archived

log

file

required.

If

a

caller

action

other

than

DB2ROLLFORWARD_QUERY

is

supplied,

the

value

returned

in

this

field

indicates

that

an

error

occurred

when

accessing

the

file.

Possible

causes

are:

v

The

file

was

not

found

in

the

database

log

directory,

nor

on

the

path

specified

by

the

overflow

log

path

parameter

v

The

log

archiving

method

failed

to

return

the

archived

file.

firstarcdel

A

buffer

to

hold

the

returned

name

of

the

first

archived

log

file

no

longer

needed

for

recovery.

This

file,

and

all

files

up

to

and

including

lastarcdel,

can

be

moved

to

make

room

on

the

disk.

For

example,

if

the

values

returned

in

firstarcdel

and

lastarcdel

are

S0000001.LOG

and

S0000005.LOG,

the

following

log

files

can

be

moved:

v

S0000001.LOG

v

S0000002.LOG

v

S0000003.LOG

v

S0000004.LOG

v

S0000005.LOG

lastarcdel

A

buffer

to

hold

the

returned

name

of

the

last

archived

log

file

that

can

be

removed

from

the

database

log

directory.

lastcommit

A

string

containing

a

time

stamp

in

ISO

format.

This

value

represents

the

time

stamp

of

the

last

committed

transaction

after

the

rollforward

operation

terminates.

Usage

notes:

The

database

manager

uses

the

information

stored

in

the

archived

and

the

active

log

files

to

reconstruct

the

transactions

performed

on

the

database

since

its

last

backup.

The

action

performed

when

this

API

is

called

depends

on

the

rollforward_pending

flag

of

the

database

prior

to

the

call.

This

can

be

queried

using

db2CfgGet

-

Get

Configuration

Parameters

The

rollforward_pending

flag

is

set

to

DATABASE

if

the

database

is

in

roll-forward

pending

state.

It

is

set

to

TABLESPACE

if

one

or

more

table

spaces

are

in

SQLB_ROLLFORWARD_PENDING

or

SQLB_ROLLFORWARD_IN_PROGRESS

state.

The

rollforward_pending

flag

is

set

to

NO

if

neither

the

database

nor

any

of

the

table

spaces

needs

to

be

rolled

forward.

db2Rollforward

-

Rollforward

Database

Chapter

1.

Application

Programming

Interfaces

239

|
|

|
|
|

|
|

||

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|

|

|

|

|

|
|
|

|
|
|
|

If

the

database

is

in

roll-forward

pending

state

when

this

API

is

called,

the

database

will

be

rolled

forward.

Table

spaces

are

returned

to

normal

state

after

a

successful

database

roll-forward,

unless

an

abnormal

state

causes

one

or

more

table

spaces

to

go

offline.

If

the

rollforward_pending

flag

is

set

to

TABLESPACE,

only

those

table

spaces

that

are

in

roll-forward

pending

state,

or

those

table

spaces

requested

by

name,

will

be

rolled

forward.

Note:

If

table

space

rollforward

terminates

abnormally,

table

spaces

that

were

being

rolled

forward

will

be

put

in

SQLB_ROLLFORWARD_IN_PROGRESS

state.

In

the

next

invocation

of

ROLLFORWARD

DATABASE,

only

those

table

spaces

in

SQLB_ROLLFORWARD_IN_PROGRESS

state

will

be

processed.

If

the

set

of

selected

table

space

names

does

not

include

all

table

spaces

that

are

in

SQLB_ROLLFORWARD_IN_PROGRESS

state,

the

table

spaces

that

are

not

required

will

be

put

into

SQLB_RESTORE_PENDING

state.

If

the

database

is

not

in

roll-forward

pending

state

and

no

point

in

time

is

specified,

any

table

spaces

that

are

in

rollforward-in-progress

state

will

be

rolled

forward

to

the

end

of

logs.

If

no

table

spaces

are

in

rollforward-in-progress

state,

any

table

spaces

that

are

in

rollforward

pending

state

will

be

rolled

forward

to

the

end

of

logs.

This

API

reads

the

log

files,

beginning

with

the

log

file

that

is

matched

with

the

backup

image.

The

name

of

this

log

file

can

be

determined

by

calling

this

API

with

a

caller

action

of

DB2ROLLFORWARD_QUERY

before

rolling

forward

any

log

files.

The

transactions

contained

in

the

log

files

are

reapplied

to

the

database.

The

log

is

processed

as

far

forward

in

time

as

information

is

available,

or

until

the

time

specified

by

the

stop

time

parameter.

Recovery

stops

when

any

one

of

the

following

events

occurs:

v

No

more

log

files

are

found

v

A

time

stamp

in

the

log

file

exceeds

the

completion

time

stamp

specified

by

the

stop

time

parameter

v

An

error

occurs

while

reading

the

log

file.

Some

transactions

might

not

be

recovered.

The

value

returned

in

lascommit

indicates

the

time

stamp

of

the

last

committed

transaction

that

was

applied

to

the

database.

If

the

need

for

database

recovery

was

caused

by

application

or

human

error,

the

user

may

want

to

provide

a

time

stamp

value

in

piStopTime,

indicating

that

recovery

should

be

stopped

before

the

time

of

the

error.

This

applies

only

to

full

database

roll-forward

recovery,

and

to

table

space

rollforward

to

a

point

in

time.

It

also

permits

recovery

to

be

stopped

before

a

log

read

error

occurs,

determined

during

an

earlier

failed

attempt

to

recover.

When

the

rollforward_recovery

flag

is

set

to

DATABASE,

the

database

is

not

available

for

use

until

roll-forward

recovery

is

terminated.

Termination

is

accomplished

by

calling

the

API

with

a

caller

action

of

DB2ROLLFORWARD_STOP

or

DB2ROLLFORWARD_RFWRD_STOP

to

bring

the

database

out

of

roll-forward

pending

state.

If

the

rollforward_recovery

flag

is

TABLESPACE,

the

database

is

available

for

use.

However,

the

table

spaces

in

SQLB_ROLLFORWARD_PENDING

and

SQLB_ROLLFORWARD_IN_PROGRESS

states

will

not

be

available

until

the

API

is

called

to

db2Rollforward

-

Rollforward

Database

240

Administrative

API

Reference

perform

table

space

roll-forward

recovery.

If

rolling

forward

table

spaces

to

a

point

in

time,

the

table

spaces

are

placed

in

backup

pending

state

after

a

successful

rollforward.

When

the

RollforwardFlags

option

is

set

to

DB2ROLLFORWARD_LOCAL_TIME,

all

messages

returned

to

the

user

will

also

be

in

local

time.

All

times

are

converted

on

the

server,

and

on

the

catalog

partition,

if

it

is

a

partitioned

database

environment.

The

timestamp

string

is

converted

to

GMT

on

the

server,

so

the

time

is

local

to

the

server’s

time

zone,

not

the

client’s.

If

the

client

is

in

one

time

zone

and

the

server

in

another,

the

server’s

local

time

should

be

used.

This

is

different

from

the

local

time

option

from

the

Control

Center,

which

is

local

to

the

client.

If

the

timestamp

string

is

close

to

the

time

change

of

the

clock

due

to

daylight

savings,

it

is

important

to

know

if

the

stop

time

is

before

or

after

the

clock

change,

and

specify

it

correctly.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2Restore

-

Restore

database”

on

page

221

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

db2Runstats

-

Runstats

Updates

statistics

about

the

characteristics

of

a

table

and/or

any

associated

indexes.

These

characteristics

include,

among

many

others,

number

of

records,

number

of

pages,

and

average

record

length.

The

optimizer

uses

these

statistics

when

determining

access

paths

to

the

data.

This

utility

should

be

called

when

a

table

has

had

many

updates,

after

reorganizing

a

table,

or

after

creating

a

new

index.

Statistics

are

collected

based

on

the

table

partition

that

is

resident

on

the

database

partition

where

the

API

executes.

Global

table

statistics

are

derived

by

multiplying

the

values

obtained

at

a

database

partition

by

the

number

of

database

partitions

on

which

the

table

is

completely

stored.

The

global

statistics

are

stored

in

the

catalog

tables.

The

database

partition

from

which

the

API

is

called

does

not

have

to

contain

a

partition

for

the

table:

v

If

the

API

is

called

from

a

database

partition

that

contains

a

partition

for

the

table,

the

utility

executes

at

this

database

partition.

v

If

the

API

is

called

from

a

database

partition

that

does

not

contain

a

table

partition,

the

request

is

sent

to

the

first

database

partition

in

the

database

partition

group

that

holds

a

partition

for

the

table.

The

utility

then

executes

at

this

database

partition.

Scope:

This

API

can

be

called

from

any

database

partition

server

in

the

db2nodes.cfg

file.

It

can

be

used

to

update

the

catalogs

on

the

catalog

database

partition.

Authorization:

db2Rollforward

-

Rollforward

Database

Chapter

1.

Application

Programming

Interfaces

241

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

CONTROL

privilege

on

the

table

v

LOAD

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Runstats

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Runstats

(

db2Uint32

versionNumber,

db2RunstatsData

*data,

struct

sqlca

*sqlca);

typedef

SQL_STRUCTURE

db2RunstatsData

{

double

iSamplingOption;

unsigned

char

*piTablename;

db2ColumnData

**piColumnList;

db2ColumnDistData

**piColumnDistributionList;

db2ColumnGrpData

**piColumnGroupList;

unsigned

char

**piIndexList;

db2Uint32

iRunstatsFlags;

db2int16

iNumColumns;

db2int16

iNumColdist;

db2int16

iNumColGroups;

db2int16

iNumIndexes;

db2int16

iParallelismOption;

db2int16

iTableDefaultFreqValues;

db2int16

iTableDefaultQuantiles;

db2Uint32

iUtilImpactPriority;

db2Uint32

iSamplingRepeatable;

}

db2RunstatsData;

typedef

SQL_STRUCTURE

db2ColumnData

{

unsigned

char

*piColumnName;

db2int16

iColumnFlags;

}

db2ColumnData;

typedef

SQL_STRUCTURE

db2ColumnDistData

{

unsigned

char

*piColumnName;

db2int16

iNumFreqValues;

db2int16

iNumQuantiles;

}

db2ColumnDistData;

typedef

SQL_STRUCTURE

db2ColumnGrpData

{

unsigned

char

**piGroupColumnNames;

db2int16

iGroupSize;

db2Runstats

-

Runstats

242

Administrative

API

Reference

db2int16

iNumFreqValues;

db2int16

iNumQuantiles;

}

db2ColumnGrpData;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gRunstats

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gRunstats

(

db2Uint32

versionNumber,

db2gRunstatsData

*data,

struct

sqlca

*sqlca);

typedef

SQL_STRUCTURE

db2gRunstatsData

{

double

iSamplingOption;

unsigned

char

*piTablename;

db2gColumnData

**piColumnList;

db2gColumnDistData

**piColumnDistributionList;

db2gColumnGrpData

**piColumnGroupList;

unsigned

char

**piIndexList;

db2Uint16

*piIndexNamesLen;

db2Uint32

iRunstatsFlags;

db2Uint16

iTablenameLen;

db2int16

iNumColumns;

db2int16

iNumColdist;

db2int16

iNumColGroups;

db2int16

iNumIndexes;

db2int16

iParallelismOption;

db2int16

iTableDefaultFreqValues;

db2int16

iTableDefaultQuantiles;

db2Uint32

iSamplingRepeatable;

db2Uint32

iUtilImpactPriority;

db2Uint32

iSamplingRepeatable;

}

db2gRunstatsData;

typedef

SQL_STRUCTURE

db2gColumnData

{

unsigned

char

*piColumnName;

db2Uint16

iColumnNameLen;

db2int16

iColumnFlags;

}

db2gColumnData;

typedef

SQL_STRUCTURE

db2gColumnDistData

{

unsigned

char

*piColumnName;

db2Uint16

iColumnNameLen;

db2int16

iNumFreqValues;

db2int16

iNumQuantiles;

}

db2gColumnDistData;

typedef

SQL_STRUCTURE

db2gColumnGrpData

{

unsigned

char

**piGroupColumnNames;

db2Uint16

*piGroupColumnNamesLen;

db2int16

iGroupSize;

db2int16

iNumFreqValues;

db2int16

iNumQuantiles;

}

db2gColumnGrpData;

/*

...

*/

API

parameters:

db2Runstats

-

Runstats

Chapter

1.

Application

Programming

Interfaces

243

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

data.

data

Input.

A

pointer

to

the

db2RunstatsData

structure.

sqlca

Output.

A

pointer

to

the

sqlca

structure.

iSamplingOption

Input.

Indicates

that

statistics

are

to

be

collected

on

a

sample

of

table

data.

iSamplingOption

represents

the

size

of

the

sample

as

a

percentage

P.

This

value

must

be

a

positive

number

that

is

less

than

or

equal

to

100,

but

may

be

between

1

and

0.

For

example,

a

value

of

0.01

represents

one

one-hundredth

of

a

percent,

such

that

1

row

in

10

000

would

be

sampled,

on

average.

A

value

of

0

or

100

will

be

treated

by

DB2

as

if

table

sampling

was

not

specified,

regardless

of

whether

DB2RUNSTATS_SAMPLING_SYSTEM

has

been

specified.

A

value

greater

than

100

or

less

than

0

will

be

treated

by

DB2

as

an

error

(SQL1197N).

The

two

possible

types

of

sampling

are

BERNOULLI

and

SYSTEM.

The

sampling

type

specification

is

controlled

by

the

indicated

setting

of

DB2RUNSTATS_SAMPLING_SYSTEM

in

the

iRunstatsFlags.

piTablename

Input.

A

pointer

to

the

fully

qualified

name

of

the

table

on

which

statistics

are

to

be

gathered.

The

name

can

be

an

alias.

For

row

types,

piTablename

must

be

the

name

of

the

hierarchy’s

root

table.

piColumnList

Input.

An

array

of

db2ColumnData

elements.

Each

element

of

this

array

is

made

up

of

two

sub-elements:

v

a

string

that

represents

the

name

of

the

column

on

which

to

collect

statistics

v

a

flags

field

indicating

statistic

options

for

the

column

If

iNumColumns

is

zero

then

piColumnList

is

ignored

if

provided.

piColumnDistributionList

Input.

An

array

of

db2ColumnDistData

elements.

These

elements

are

provided

when

collecting

distribution

statistics

on

a

particular

column

or

columns

is

desired.

Each

element

of

this

array

is

made

up

of

three

sub-elements

:

v

a

string

that

represents

the

name

of

the

column

on

which

to

collect

distribution

statistics

v

the

number

of

frequent

values

to

collect.

v

the

number

of

quantiles

to

collect.

Any

columns

which

appear

in

the

piColumnDistributionList

that

do

NOT

appear

in

the

piColumnList,

will

have

basic

column

statistics

collected

on

them.

This

would

be

the

same

effect

as

having

included

these

columns

in

the

piColumnList

in

the

first

place.

If

iNumColdist

is

zero

then

piColumnDistributionList

is

ignored.

piColumnGroupList

Input.

An

array

of

db2ColumnGrpData

elements.

These

elements

are

provided

when

collecting

column

statistics

on

a

group

of

columns.

That

is,

the

values

in

each

column

of

the

group

for

each

row

will

be

concatenated

together

and

treated

as

a

single

value.

Each

db2ColumnGrpData

is

made

up

of

3

integer

fields

and

an

array

of

strings.

The

first

integer

field

represents

the

number

of

strings

in

the

array

of

strings

piGroupColumns.

Each

string

in

db2Runstats

-

Runstats

244

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

this

array

contains

one

column

name.

For

example,

if

column

combinations

statistics

are

to

be

collected

on

column

groups

(c1,c2)

and

on

(c3,c4,c5)

then

there

are

2

db2ColumnGrpData

elements

in

piGroupColumns.

The

first

db2ColumnGrpData

element

is

as

follows:

piGroupSize

=

2

and

the

array

of

strings

contains

2

elements,

namely,

c1

and

c2.

The

second

db2ColumnGrpData

element

is

as

follows:

piGroupSize

=

3

and

the

array

of

strings

contains

3

elements,

namely,

c3,

c4

and

c5.

The

second

and

the

third

integer

fields

represent

the

number

of

frequent

values

and

the

number

of

quantiles

respectively

when

collecting

distribution

statistics

on

column

groups.

This

is

not

currently

supported.

Any

columns

which

appear

in

the

piColumnGroupList

that

do

NOT

appear

in

the

piColumnList,

will

have

basic

column

statistics

collected

on

them.

This

would

be

the

same

effect

as

having

included

these

columns

in

the

piColumnList

in

the

first

place.

If

iNumColGroups

is

zero

then

piColumnGroupList

is

ignored.

piIndexList

Input.

An

array

of

strings.

Each

string

contains

one

fully

qualified

index

name.

If

NumIndexes

is

zero

then

piIndexList

is

ignored.

piIndexNamesLen

Input.

An

array

of

values

representing

the

length

in

bytes

of

each

of

the

index

names

in

the

index

list.

If

NumIndexes

is

zero

then

piIndexNamesLen

is

ignored.

iRunstatsFlags

Input.

A

bit

mask

field

used

to

specify

statistics

options.

Valid

values

are:

DB2RUNSTATS_ALL_COLUMNS

Collect

statistics

on

all

columns

of

the

table.

This

option

can

be

specified

in

combination

with

column,

column

distribution,

column

group

or

index

structure

lists.

This

is

useful

if

you

would

like

to

collect

statistics

on

all

columns

of

the

table

but

would

like

to

provide

statistics

options

for

specific

columns.

DB2RUNSTATS_KEY_COLUMNS

Collect

statistics

only

on

the

columns

that

make

up

all

the

indexes

defined

on

the

table.

This

option

can

be

specified

in

combination

with

column,

column

distribution,

column

group

or

index

structure

lists.

This

is

useful

if

you

would

like

to

collect

statistics

on

all

key

columns

of

the

table

but

would

also

like

to

gather

statistics

for

some

non-key

columns

or

would

like

to

provide

statistics

options

for

specific

key

columns.

DB2RUNSTATS_DISTRIBUTION

Collect

distribution

statistics.

This

option

can

only

be

used

with

DB2RUNSTATS_ALL_COLUMNS

and

DB2RUNSTATS_KEY_COLUMNS.

When

used

with

DB2RUNSTATS_ALL_COLUMNS,

distribution

statistics

are

gathered

for

all

columns

of

the

table.

When

used

with

DB2RUNSTATS_KEY_COLUMNS,

distribution

statistics

are

gathered

for

all

columns

that

make

up

all

the

indexes

defined

on

the

table.

When

used

with

both

DB2RUNSTATS_ALL_COLUMNS

and

DB2RUNSTATS_KEY_COLUMNS,

basic

statistics

are

gathered

for

all

columns

of

the

table

and

distribution

statistics

are

gathered

for

only

columns

that

make

up

all

the

indexes

defined

on

the

table.

db2Runstats

-

Runstats

Chapter

1.

Application

Programming

Interfaces

245

DB2RUNSTATS_ALL_INDEXES

Collect

statistics

on

all

indexes

defined

on

the

table.

DB2RUNSTATS_EXT_INDEX

Collect

detailed

index

statistics.

The

option

must

be

specified

with

either

DB2RUNSTATS_ALL_INDEXES

or

an

explicit

list

of

index

names

(piIndexList

and

iNumIndexes

>

0).

DB2RUNSTATS_EXT_INDEX_SAMPLED

Collect

detailed

index

statistics

using

sampling

methods.

The

option

must

be

specified

with

either

DB2RUNSTATS_ALL_INDEXES

or

an

explicit

list

of

index

names

(piIndexList

and

iNumIndexes

>

0).

DB2RUNSTATS_EXT_INDEX

will

be

ignored

if

specified

at

the

same

time.

DB2RUNSTATS_ALLOW_READ

Allows

others

to

have

read-only

access

while

the

statistics

are

being

gathered.

The

default

is

to

allow

read

and

write

access.

DB2RUNSTATS_SAMPLING_SYSTEM

Collect

statistics

on

a

percentage

of

the

data

pages

as

specified

by

the

user

via

the

iSamplingOption

parameter.

SYSTEM

sampling

considers

each

page

individually,

including

that

page

with

probability

P/100

(where

P

is

the

value

of

iSamplingOption)

and

excluding

it

with

probability

1-P/100.

Thus,

if

iSamplingOption

is

the

value

10,

representing

a

10

percent

sample,

each

page

would

be

included

with

probability

0.1

and

be

excluded

with

probability

0.9.

If

DB2RUNSTATS_SAMPLING_SYSTEM

is

not

specified,

DB2

will

assume

that

BERNOULLI

sampling

is

to

be

used

as

the

sampling

method.

BERNOULLI

sampling

considers

each

row

individually,

including

that

row

with

probability

P/100

(where

P

is

the

value

of

iSamplingOption)

and

excluding

it

with

probability

1-P/100.

In

both

SYSTEM

and

BERNOULLI

sampling,

unless

the

DB2RUNSTATS_SAMPLING_REPEAT

flag

is

specified,

each

execution

of

statistics

collection

will

usually

yield

a

different

sample

of

the

table.

DB2RUNSTATS_SAMPLING_REPEAT

Specifies

that

a

seed

has

been

passed

through

the

iSamplingRepeatable

parameter.

The

iSamplingRepeatable

value

will

be

used

as

the

seed

to

generate

the

data

sample.

The

iSamplingOption

parameter

must

also

be

specified

to

indicate

the

sampling

rate.

DB2RUNSTATS_USE_PROFILE

Collect

statistics

for

a

table

by

using

a

statistics

profile

already

registered

in

the

catalogs

of

the

table.

If

the

USE

PROFILE

option

is

specified

by

this

flag

set

in

iRunstatsFlags

bit

mask,

all

other

options

in

db2RunstatsData

will

be

ignored.

DB2RUNSTATS_SET_PROFILE

Generate

and

store

a

profile

in

the

catalogs

recording

the

statistics

options

specified

and

collect

statistics

using

those

same

options.

DB2RUNSTATS_SET_PROFILE_ONLY

Generate

and

store

a

profile

in

the

catalogs

recording

the

statistics

options

specified

without

actually

collecting

statistics

for

the

table.

db2Runstats

-

Runstats

246

Administrative

API

Reference

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

DB2RUNSTATS_UPDATE_PROFILE

Modify

an

existing

statistics

profile

in

the

catalogs

and

collect

statistics

using

the

options

from

the

updated

profile.

DB2RUNSTATS_UPDATE_PROFILE_ONLY

Modify

an

existing

statistics

profile

in

the

catalogs

without

actually

collecting

statistics

for

the

table.

iTablenameLen

Input.

A

value

representing

the

length

in

bytes

of

the

table

name.

iNumColumns

Input.

The

number

of

items

specified

in

the

piColumnList

list.

iNumColdist

Input.

The

number

of

items

specified

in

the

piColumnDistributionList

list.

iNumColGroups

Input.

The

number

of

items

specified

in

the

piColumnGroupList

list.

iNumIndexes

Input.

The

number

of

items

specified

in

the

piIndexList

list.

iParallelismOption

Input.

Reserved

for

future

use.

Valid

values

are

0.

iTableDefaultFreqValues

Input.

Specifies

the

default

number

of

frequent

values

to

collect

for

the

table.

Valid

values

are:

n

n

frequent

values

will

be

collected

unless

otherwise

specified

at

the

column

level.

0

No

frequent

values

will

be

collected

unless

otherwise

specified

at

the

column

level.

-1

Use

the

default

database

configuration

parameter

NUM_FREQVALUES

for

the

number

of

frequent

values

to

collect.

iTableDefaultQuantiles

Input.

Specifies

the

default

number

of

quantiles

to

collect

for

the

table.

Valid

values

are:

n

n

quantiles

will

be

collected

unless

otherwise

specified

at

the

column

level.

0

No

quantiles

will

be

collected

unless

otherwise

specified

at

the

column

level.

-1

Use

the

default

database

configuration

parameter

NUM_QUANTILES

for

the

number

of

quantiles

to

collect.

iUtilImpactPriority

Input.

Priority

for

the

runstats

invocation.

Valid

values

must

fall

in

the

range

0-100,

with

0

representing

unthrottled

and

100

representing

the

highest

possible

priority.

piColumnName

Input.

Pointer

to

a

string

representing

a

column

name.

iColumnNameLen

Input.

A

value

representing

the

length

in

bytes

of

the

column

name.

db2Runstats

-

Runstats

Chapter

1.

Application

Programming

Interfaces

247

|
|
|

|
|
|

|
|
|
|

iColumnFlags

Input.

A

bit

mask

field

used

to

specify

statistics

options

for

the

column.

Valid

values

are:

DB2RUNSTATS_COLUMN_LIKE_STATS

Collect

LIKE

statistics

on

the

column.

iNumFreqValues

Input.

The

number

of

frequent

values

to

collect

on

the

column.

Valid

values

are:

n

Collect

n

frequent

values

on

the

column.

-1

Use

the

table

default

number

of

frequent

values,

such

as

iTableDefaultFreqValues

if

set,

or

the

database

configuration

parameter

NUM_FREQVALUES.

iNumQuantiles

Input.

The

number

of

quantiles

to

collect

on

the

column.

Valid

values

are:

n

Collect

n

quantiles

on

the

column.

-1

Use

the

table

default

number

of

quantiles,

iTableDefaultQuantiles

if

set,

or

the

database

configuration

parameter

NUM_QUANTILES.

piGroupColumnNames

Input.

An

array

of

strings.

Each

string

represents

a

column

name

that

is

part

of

the

column

group

on

which

to

collect

statistics.

piGroupColumnNamesLen

Input.

An

array

of

values

representing

the

length

in

bytes

of

each

of

the

column

names

in

the

column

names

list.

iGroupSize

Input.

Number

of

columns

in

the

column

group.

Valid

values

are:

n

The

column

group

is

made

up

of

n

columns.

iNumFreqValues

Input.

Reserved

for

future

use.

iNumQuantiles

Input.

Reserved

for

future

use.

iSamplingRepeatable

Input.

A

non-negative

integer

representing

the

seed

to

be

used

in

table

sampling.

Passing

a

negative

seed

will

result

in

an

error

(SQL1197N).

The

DB2RUNSTATS_SAMPLING_REPEAT

flag

must

be

set

to

use

this

seed.

This

option

is

used

in

conjunction

with

the

iSamplingOption

parameter

to

generate

the

same

sample

of

data

in

subsequent

statistics

collection.

The

sample

set

may

still

vary

between

repeatable

requests

if

activity

against

the

table

resulted

in

changes

to

the

table

data

since

the

last

time

a

repeatable

request

was

run.

Also,

the

method

by

which

the

sample

was

obtained

(BERNOULLI

or

SYSTEM)

must

also

be

the

same

to

ensure

consistent

results.

Usage

notes:

Use

db2Runstats

to

update

statistics:

v

On

tables

that

have

been

modified

many

times

(for

example,

if

a

large

number

of

updates

have

been

made,

or

if

a

significant

amount

of

data

has

been

inserted

or

deleted)

db2Runstats

-

Runstats

248

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|

v

On

tables

that

have

been

reorganized

v

When

a

new

index

has

been

created.

After

statistics

have

been

updated,

new

access

paths

to

the

table

can

be

created

by

rebinding

the

packages

using

sqlabndx

-

Bind.

If

index

statistics

are

requested,

and

statistics

have

never

been

run

on

the

table

containing

the

index,

statistics

on

both

the

table

and

indexes

are

calculated.

If

the

db2Runstats

API

is

collecting

statistics

on

indexes

only

then

previously

collected

distribution

statistics

are

retained.

Otherwise,

the

API

will

drop

previously

collected

distribution

statistics.

After

calling

this

API,

the

application

should

issue

a

COMMIT

to

release

the

locks.

To

allow

new

access

plans

to

be

generated,

the

packages

that

reference

the

target

table

must

be

rebound

after

calling

this

API.

Running

this

API

on

the

table

only

may

result

in

a

situation

where

the

table

level

statistics

are

inconsistent

with

the

already

existing

index

level

statistics.

For

example,

if

index

level

statistics

are

collected

on

a

particular

table

and

later

a

significant

number

of

rows

is

deleted

from

this

table,

issuing

this

API

on

the

table

only

may

end

up

with

the

table

cardinality

less

than

FIRSTKEYCARD

which

is

an

inconsistent

state.

Likewise,

issuing

this

API

for

indexes

only

may

leave

the

already

existing

table

level

statistics

in

an

inconsistent

state.

For

example,

if

table

level

statistics

are

collected

on

a

particular

table

and

later

a

significant

number

of

rows

is

deleted

from

this

table,

issuing

the

db2Runstats

API

for

the

indexes

only

may

end

up

with

some

columns

having

a

COLCARD

greater

than

the

table

cardinality.

A

warning

will

be

returned

if

such

an

inconsistency

is

detected.

Related

reference:

v

“sqlabndx

-

Bind”

on

page

266

v

“SQLCA”

on

page

410

v

“REORGCHK

Command”

in

the

Command

Reference

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

v

“db2Reorg

-

Reorganize”

on

page

211

Related

samples:

v

“dbstat.sqb

--

Reorganize

table

and

run

statistics

(MF

COBOL)”

v

“tbreorg.sqc

--

How

to

reorganize

a

table

and

update

its

statistics

(C)”

v

“tbreorg.sqC

--

How

to

reorganize

a

table

and

update

its

statistics

(C++)”

db2SetSyncSession

-

Set

Satellite

Sync

Session

Sets

the

synchronization

session

for

a

satellite.

A

synchronization

session

is

associated

with

the

version

of

the

user

application

executing

on

the

satellite.

Each

version

of

an

application

is

supported

by

a

particular

database

configuration,

and

manipulates

particular

data

sets,

each

of

which

can

be

synchronized

with

a

central

site.

Authorization:

None

db2Runstats

-

Runstats

Chapter

1.

Application

Programming

Interfaces

249

|
|
|

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SetSyncSession

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SetSyncSession

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

char

*piSyncSessionID;

}

db2SetSyncSessionStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2SetSyncSessionStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piSyncSessionID

Input.

Specifies

an

identifier

for

the

synchronization

session

that

a

satellite

will

use.

The

specified

value

must

match

the

appropriate

application

version

for

the

satellite’s

group,

as

defined

at

the

satellite

control

server.

Related

reference:

v

“SQLCA”

on

page

410

db2SetWriteForDB

-

Set

or

Resume

I/O

Sets

the

database

to

be

I/O

write

suspended,

or

resumes

I/O

writes

to

disk.

I/O

writes

must

be

suspended

for

a

database

before

a

split

mirror

can

be

taken.

To

avoid

potential

problems,

keep

the

same

connection

to

do

the

write

suspension

and

resumption.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

db2SetSyncSession

-

Set

Satellite

Sync

Session

250

Administrative

API

Reference

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SetWriteForDB

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SetWriteForDB

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

db2SetWriteDbStruct

{

db2int32

iOption;

char

*piTablespaceNames;

}

db2SetWriteDbStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2SetWriteDbStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iOption

Input.

Specifies

the

action.

Valid

values

are:

DB2_DB_SUSPEND_WRITE

Suspends

I/O

write

to

disk.

DB2_DB_RESUME_WRITE

Resumes

I/O

write

to

disk.

piTablespaceNames

Input.

Reserved

for

future

use.

db2SyncSatellite

-

Sync

Satellite

Synchronizes

a

satellite.

Authorization:

None

Required

connection:

None

db2SetWriteForDB

-

Set

or

Resume

I/O

Chapter

1.

Application

Programming

Interfaces

251

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SyncSatellite

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SyncSatellite

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

Set

to

NULL.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

db2SyncSatelliteStop

-

Stop

Satellite

Sync

Stops

the

satellite’s

currently

active

synchronization

session.

The

session

is

stopped

in

such

a

way

that

synchronization

for

this

satellite

can

be

restarted

where

it

left

off

by

invoking

db2SyncSatellite.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SyncSatelliteStop

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SyncSatelliteStop

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

/*

...

*/

db2SyncSatellite

-

Sync

Satellite

252

Administrative

API

Reference

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

Set

to

NULL.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2SyncSatellite

-

Sync

Satellite”

on

page

251

db2SyncSatelliteTest

-

Test

Satellite

Sync

Tests

the

ability

of

a

satellite

to

synchronize.

Authorization:

None

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2SyncSatelliteTest

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2SyncSatelliteTest

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

Set

to

NULL.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

db2SyncSatelliteStop

-

Stop

Satellite

Sync

Chapter

1.

Application

Programming

Interfaces

253

db2UpdateAlertCfg

-

Update

Alert

Configuration

Updates

the

alert

configuration

settings

for

health

indicators.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UpdateAlertCfg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UpdateAlertCfg

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2UpdateAlertCfgData

{

db2Uint32

iObjType;

char

*piObjName;

char

*piDbName;

db2Uint32

iIndicatorID;

db2Uint32

iNumIndAttribUpdates;

struct

db2AlertAttrib

*piIndAttribUpdates;

db2Uint32

iNumActionUpdates;

struct

db2AlertActionUpdate

*piActionUpdates;

db2Uint32

iNumActionDeletes;

struct

db2AlertActionDelete

*piActionDeletes;

db2Uint32

iNumNewActions;

struct

db2AlertActionNew

*piNewActions;

}

db2UpdateAlertCfgData;

typedef

SQL_STRUCTURE

db2AlertAttrib

{

db2Uint32

iAttribID;

char

*piAttribValue;

}

db2AlertAttrib;

typedef

SQL_STRUCTURE

db2AlertActionUpdate

{

db2Uint32

iActionType;

char

*piActionName;

db2Uint32

iCondition;

db2Uint32

iNumParmUpdates;

struct

db2AlertAttrib

*piParmUpdates;

}

db2AlertActionUpdate;

db2UpdateAlertCfg

-

Update

Alert

Configuration

254

Administrative

API

Reference

typedef

SQL_STRUCTURE

db2AlertActionDelete

{

db2Uint32

iActionType;

char

*piName;

db2Uint32

iCondition;

}

db2AlertActionDelete;

typedef

SQL_STRUCTURE

db2AlertActionNew

{

db2Uint32

iActionType;

struct

db2AlertScriptAction

*piScriptAttribs;

struct

db2AlertTaskAction

*piTaskAttribs;

}

db2AlertActionNew;

typedef

SQL_STRUCTURE

db2AlertScriptAction

{

db2Uint32

scriptType;

db2Uint32

condition;

char

*pPathName;

char

*pWorkingDir;

char

*pCmdLineParms;

char

stmtTermChar;

char

*pUserID;

char

*pPassword;

char

*pHostName;

}

db2AlertScriptAction;

typedef

SQL_STRUCTURE

db2AlertTaskAction

{

char

*pTaskName;

db2Uint32

condition;

char

*pUserID;

char

*pPassword;

char

*pHostName;

}

db2AlertTaskAction;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2UpdateAlertCfgData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iObjType

Input.

Specifies

the

type

of

object

for

which

configuration

is

requested.

Valid

values

are:

v

DB2ALERTCFG_OBJTYPE_DBM

v

DB2ALERTCFG_OBJTYPE_DATABASES

v

DB2ALERTCFG_OBJTYPE_TABLESPACES

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINERS

v

DB2ALERTCFG_OBJTYPE_DATABASE

v

DB2ALERTCFG_OBJTYPE_TABLESPACE

v

DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName

Input.

The

name

of

the

table

space

or

table

space

container

when

object

db2UpdateAlertCfg

-

Update

Alert

Configuration

Chapter

1.

Application

Programming

Interfaces

255

type,

iObjType,

is

set

to

DB2ALERTCFG_OBJTYPE_TABLESPACE

or

DB2ALERTCFG_OBJTYPE_TS_CONTAINER,

otherwise

set

to

NULL.

piDbName

Input.

The

alias

name

for

the

database

for

which

configuration

is

requested

when

object

type,

iObjType,

is

DB2ALERTCFG_OBJTYPE_TS_CONTAINER,

DB2ALERTCFG_OBJTYPE_TABLESPACE,

and

DB2ALERTCFG_OBJTYPE_DATABASE,

otherwise

set

to

NULL.

iIndicatorID

Input.

The

health

indicator

for

which

the

configuration

updates

are

to

apply.

iNumIndAttribUpdates

Input.

The

number

of

alert

attributes

to

be

updated

for

the

iIndicatorID

health

indicator.

piIndAttribUpdates

Input.

A

pointer

to

the

db2AlertAttrib

structure

array.

iNumActionUpdates

Input.

The

number

of

alert

actions

to

be

updated

for

the

iIndicatorID

health

indicator.

piActionUpdates

Input.

A

pointer

to

the

db2AlertActionUpdate

structure

array.

iNumActionDeletes

Input.

The

number

of

alert

actions

to

be

deleted

from

the

iIndicatorID

health

indicator.

piActionDeletes

Input.

A

pointer

to

the

db2AlertActionDelete

structure

array.

iNumNewActions

Input.

The

number

of

new

alert

actions

to

be

added

to

the

iIndicatorID

health

indicator.

piNewActions

Input.

A

pointer

to

the

db2AlertActionNew

structure

array.

iAttribID

Input.

Specifies

the

alert

attribute

that

will

be

updated.

Valid

values

include:

v

DB2ALERTCFG_ALARM

v

DB2ALERTCFG_WARNING

v

DB2ALERTCFG_SENSITIVITY

v

DB2ALERTCFG_ACTIONS_ENABLED

v

DB2ALERTCFG_THRESHOLD_CHECK

piAttribValue

Input.

The

new

value

of

the

alert

attribute.

Valid

values

include:

v

DB2ALERTCFG_ALARM

v

DB2ALERTCFG_WARNING

v

DB2ALERTCFG_SENSITIVITY

v

DB2ALERTCFG_ACTIONS_ENABLED

v

DB2ALERTCFG_THRESHOLD_CHECK

iActionType

Input.

Specifies

the

alert

action.

Valid

values

include:

db2UpdateAlertCfg

-

Update

Alert

Configuration

256

Administrative

API

Reference

v

DB2ALERTCFG_ACTIONTYPE_SCRIPT

v

DB2ALERTCFG_ACTIONTYPE_TASK

piActionName

Input.

The

alert

action

name.

The

name

of

a

script

action

is

the

absolute

pathname

of

the

script.

The

name

of

a

task

action

is

a

string

in

the

form:

<task-numberical-ID>.<task-numberical-suffix>.

iCondition

The

condition

on

which

to

run

the

action.

Valid

values

for

threshold

based

health

indicators

are:

v

DB2ALERTCFG_CONDITION_ALL

v

DB2ALERTCFG_CONDITION_WARNING

v

DB2ALERTCFG_CONDITION_ALARM

For

state

based

health

indicators,

use

the

numerical

value

defined

in

sqlmon.

iNumParmUpdates

Input.

The

number

of

action

attributes

to

be

updated

in

the

piParmUpdates

array.

piParmUpdates

Input.

A

pointer

to

the

db2AlertAttrib

structure.

piName

Input.

The

name

of

the

alert

action

or

the

script

action.

The

name

of

the

script

action

is

the

absolute

pathname

of

the

script,

whereas

the

name

of

the

task

action

is

a

string

in

the

form:

<task-numerical-ID>.<task-
numerical-suffix>.

piScriptAttribs

Input.

A

pointer

to

the

db2AlertScriptAction

structure.

piTaskAttribs

Input.

A

pointer

to

the

db2AlertTaskAction

structure.

scriptType

Specifies

whether

the

script

is

a

DB2

Command

script

or

an

operating

system

script.

Valid

values

are:

v

DB2ALERTCFG_SCRIPTTYPE_DB2CMD

v

DB2ALERTCFG_SCRIPTTYPE_OS

condition

The

condition

on

which

to

run

the

action.

Valid

values

for

threshold

based

health

indicators

are:

v

DB2ALERTCFG_CONDITION_ALL

v

DB2ALERTCFG_CONDITION_WARNING

v

DB2ALERTCFG_CONDITION_ALARM

For

state

based

health

indicators,

use

the

numerical

value

defined

in

sqlmon.

pPathName

Absolute

path

name

of

the

script

to

execute.

pWorkingDir

The

absolute

pathname

of

the

directory

in

which

the

script

will

execute.

db2UpdateAlertCfg

-

Update

Alert

Configuration

Chapter

1.

Application

Programming

Interfaces

257

pCmdLineParms

The

command

line

parameters

when

scriptType

is

DB2ALERTCFG_SCRIPTTYPE_OSCMD.

stmtTermChar

The

character

that

terminates

each

statement

in

the

DB2

command

script

when

scriptType

is

DB2ALERTCFG_SCRIPTTYPE_OS.

pUserID

The

user

account

that

will

execute

the

script.

pPassword

The

valid

password

for

pUserId.

pHostName

The

hostName

on

which

to

run

the

script

or

task

on.

See

db2GetAlertCfg

for

a

description

of

pHostName.

pTaskName

The

task

name.

Related

reference:

v

“db2GetAlertCfg

-

Get

Alert

Configuration”

on

page

68

v

“db2ResetAlertCfg

-

Reset

Alert

Configuration”

on

page

217

db2UpdateAlternateServerForDB

-

Update

Alternate

Server

for

Database

Updates

the

alternate

server

for

a

database

alias

in

the

system

database

directory.

Scope:

This

API

affects

the

system

database

directory.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UpdateAlternateServerForDB

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UpdateAlternateServerForDB

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

db2UpdateAlertCfg

-

Update

Alert

Configuration

258

Administrative

API

Reference

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

typedef

SQL_STRUCTURE

db2UpdateAltServerStruct

{

char

*piDbAlias;

char

*piHostName;

char

*piPort;

}

db2UpdateAltServerStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gUpdateAlternateServerForDB

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gUpdateAlternateServerForDB

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gUpdateAltServerStruct

{

db2Uint32

iDbAlias_len;

char

*piDbAlias;

db2Uint32

iHostName_len;

char

*piHostName;

db2Uint32

iPort_len;

char

*piPort;

}

db2gUpdateAltServerStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2UpdateAltServerStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDbAlias_len

Input.

The

length

in

bytes

of

piDbAlias.

piDatabaseAlias

Input.

A

string

containing

an

alias

for

the

database.

iHostName_len

Input.

The

length

in

bytes

of

piHostName.

piHostName

Input.

A

string

containing

the

host

name

or

the

IP

address

of

the

node

where

the

alternate

server

for

the

database

resides.

The

host

name

is

the

name

of

the

node

that

is

known

to

the

TCP/IP

network.

The

maximum

length

of

the

host

name

is

255

characters.

iPort_len

Input.

The

length

in

bytes

of

piPort.

piPort

Input.

The

port

number

of

the

alternate

server

database

manager

instance.

The

maximum

length

of

the

port

number

is

14

characters.

Usage

notes:

db2UpdateAlternateServerForDB

-

Update

Alternate

Server

for

Database

Chapter

1.

Application

Programming

Interfaces

259

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

||
|

|

The

API

will

only

be

applied

to

the

system

database

directory.

The

API

should

only

be

used

on

a

server.

If

it

is

issued

on

a

client,

it

will

be

ignored

and

warning

SQL1889W

will

be

issued.

If

LDAP

(Lightweight

Directory

Access

Protocol)

support

is

enabled

on

the

current

machine,

the

alternate

server

for

the

database

will

automatically

be

updated

in

the

LDAP

directory.

Related

reference:

v

“sqlecadb

-

Catalog

Database”

on

page

308

v

“sqleuncd

-

Uncatalog

Database”

on

page

371

v

“SQLCA”

on

page

410

v

“db2LdapUpdateAlternateServerForDB

-

LDAP

Update

Alternate

Server

For

Database”

on

page

152

db2UpdateContact

-

Update

Contact

Updates

the

attributes

of

a

contact.

Contacts

are

users

to

whom

notification

messages

can

be

sent.

Contacts

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UpdateContact

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UpdateContact

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2UpdateContactData

{

char

*piUserid;

char

*piPassword;

char

*piContactName;

db2Uint32

iNumAttribsUpdated;

struct

db2ContactAttrib

*piAttribs;

}

db2UpdateContactData;

typedef

SQL_STRUCTURE

db2ContactAttrib

{

db2UpdateAlternateServerForDB

-

Update

Alternate

Server

for

Database

260

Administrative

API

Reference

|

|
|

|
|
|

|

|

|

|

|
|

db2Uint32

iAttribID;

char

*piAttribValue;

}

db2ContactAttrib;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2UpdateContactData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piContactName

Input.

Specifies

the

name

of

the

contact

to

be

updated.

iNumAttribsUpdated

Input.

The

number

attributes

to

be

updated.

piAttribs

Input.

A

pointer

to

the

db2ContactAttrib

structure.

iAttribID

Input.

Specifies

the

contact

attribute.

Valid

values

are:

v

DB2CONTACT_ADDRESS

v

DB2CONTACT_TYPE

v

DB2CONTACT_MAXPAGELEN

v

DB2CONTACT_DESCRIPTION

piAttribValue

Input.

The

new

value

of

the

contact

attribute.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContact

-

Add

Contact”

on

page

15

v

“db2DropContact

-

Drop

Contact”

on

page

55

v

“db2GetContacts

-

Get

Contacts”

on

page

75

db2UpdateContactGroup

-

Update

Contact

Group

Updates

the

attributes

of

a

contact

group.

A

contact

group

contains

a

list

of

users

to

whom

notification

messages

can

be

sent.

Contact

groups

can

be

either

defined

locally

on

the

system

or

in

a

global

list.

The

setting

of

the

DB2

administration

server

(DAS)

configuration

parameter

contact_host

determines

whether

the

list

is

local

or

global.

Authorization:

None.

Required

connection:

db2UpdateContact

-

Update

Contact

Chapter

1.

Application

Programming

Interfaces

261

None.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UpdateContactGroup

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UpdateContactGroup

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2UpdateContactGroupData

{

char

*piUserId;

char

*piPassword;

char

*piGroupName;

db2Uint32

iNumNewContacts;

struct

db2ContactTypeData

*piNewContacts;

db2Uint32

iNumDroppedContacts;

struct

db2ContactTypeData

*piDroppedContacts;

char

*piNewDescription;

}

db2UpdateContactGroupData;

typedef

SQL_STRUCTURE

db2ContactTypeData

{

db2Uint32

contactType;

char

*pName;

}

db2ContactTypeData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2ResetMonitorData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piUserid

Input.

The

user

name.

piPassword

Input.

The

password

for

piUserid.

piGroupName

Input.

The

name

of

the

contact

group

to

update.

iNumNewContacts

Input.

The

number

of

new

contacts

to

be

added

to

the

group

piNewContacts

Input.

A

pointer

to

the

db2ContactTypeData

structure.

iNumDroppedContacts

Input.

The

number

of

contacts

in

the

group

to

be

dropped.

db2UpdateContactGroup

-

Update

Contact

Group

262

Administrative

API

Reference

piDroppedContacts

Input.

A

pointer

to

the

db2ContactTypeData

structure.

piNewDescription

Input.

The

new

description

for

the

group.

Set

this

parameter

to

NULL

if

the

old

description

should

not

be

changed.

contactType

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_SINGLE

v

DB2CONTACT_GROUP

pName

The

contact

group

name,

or

the

contact

name

if

contactType

is

set

to

DB2CONTACT_SINGLE.

Related

reference:

v

“SQLCA”

on

page

410

v

“contact_host

-

Location

of

contact

list

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“db2AddContactGroup

-

Add

Contact

Group”

on

page

16

v

“db2DropContactGroup

-

Drop

Contact

Group”

on

page

56

v

“db2GetContactGroup

-

Get

Contact

Group”

on

page

72

v

“db2GetContactGroups

-

Get

Contact

Groups”

on

page

74

db2UpdateHealthNotificationList

-

Update

Health

Notification

List

Updates

the

contact

list

for

notification

about

health

alerts

issued

by

an

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

If

there

is

no

instance

attachment,

a

default

instance

attachment

is

created.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UpdateHealthNotificationList

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UpdateHealthNotificationList

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

db2UpdateContactGroup

-

Update

Contact

Group

Chapter

1.

Application

Programming

Interfaces

263

typedef

SQL_STRUCTURE

db2UpdateHealthNotificationListData

{

db2Uint32

iNumUpdates;

struct

db2HealthNotificationListUpdate

*piUpdates;

}

db2UpdateHealthNotificationListData;

typedef

SQL_STRUCTURE

db2HealthNotificationListUpdate

{

db2Uint32

iUpdateType;

struct

db2ContactTypeData

*piContact;

}

db2HealthNotificationListUpdate;

typedef

SQL_STRUCTURE

db2ContactTypeData

{

db2Uint32

contactType;

char

*pName;

}

db2ContactTypeData;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2UpdateHealthNotificationListData

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iNumUpdates

Input.

The

number

of

updates.

piUpdates

Input.

A

pointer

to

the

db2HealthNotificationListUpdate

structure.

iUpdateType

Input.

Specifies

the

type

of

update.

Valid

values

are:

v

DB2HEALTHNOTIFICATIONLIST_ADD

v

DB2HEALTHNOTIFICATIONLIST_DROP

piContact

Input.

A

pointer

to

the

db2ContactTypeData

structure.

contactType

Specifies

the

type

of

contact.

Valid

values

are:

v

DB2CONTACT_SINGLE

v

DB2CONTACT_GROUP

pName

The

contact

group

name

if

contactType

is

set

to

DB2CONTACT_GROUP,

or

the

contact

name

if

ioContactType

is

set

to

DB2CONTACT_SINGLE.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2GetHealthNotificationList

-

Get

Health

Notification

List”

on

page

77

db2UpdateHealthNotificationList

-

Update

Health

Notification

List

264

Administrative

API

Reference

db2UtilityControl

-

Utility

Control

Controls

the

priority

level

of

running

utilities.

Can

be

used

to

throttle

and

unthrottle

utility

invocations.

Authorization:

sysadm

Required

connection:

Instance

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2UtilityControl

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2UtilityControl

(

db2Uint32

version,

void

*pUtilityControlStruct,

struct

sqlca

*pSqlca

);

typedef

struct

{

db2Uint32

iId,

db2Uint32

iAttribute,

void

*pioValue

}

db2UtilityControlStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gUtilityControl

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gUtilityControl

(

db2Uint32

version,

void

*pgUtilityControlStruct,

struct

sqlca

*pSqlca

);

typedef

struct

{

db2Uint32

iId,

db2Uint32

iAttribute,

void

*pioValue

}

db2gUtilityControlStruct;

/*

...

*/

API

parameters:

version

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pUtilitlyControlStruct.

pUtilityControlStruct

Input.

A

pointer

to

the

db2UtilityControlStruct

structure.

db2UtilityControl

-

Utility

Control

Chapter

1.

Application

Programming

Interfaces

265

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iId

Input.

Specifies

the

ID

of

the

utility

to

modify.

iAttribute

Input.

Specifies

the

attribute

to

modify.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2UTILCTRL_PRIORITY_ATTRIB

Modify

the

throttling

priority

of

the

utility.

pioValue

Input.

Specifies

the

new

attribute

value

associated

with

the

iAttribute

parameter.

Note:

If

the

iAttribute

parameter

is

set

to

DB2UTILCTRL_PRIORITY_ATTRIB,

then

the

pioValue

parameter

must

point

to

a

db2Uint32

containing

the

priority.

Usage

notes:

SQL1153N

will

be

returned

if

there

is

no

existing

utility

with

the

specified

iId.

This

may

indicate

that

the

function

was

invoked

with

invalid

arguments

or

that

the

utility

has

completed.

SQL1154N

will

be

returned

if

the

utility

does

not

support

throttling.

sqlabndx

-

Bind

Invokes

the

bind

utility,

which

prepares

SQL

statements

stored

in

the

bind

file

generated

by

the

precompiler,

and

creates

a

package

that

is

stored

in

the

database.

Scope:

This

API

can

be

called

from

any

database

partition

server

in

db2nodes.cfg.

It

updates

the

database

catalogs

on

the

catalog

partition.

Its

effects

are

visible

to

all

database

partition

servers.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

db2UtilityControl

-

Utility

Control

266

Administrative

API

Reference

|
|

||

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

|

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlabndx

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlabndx

(

_SQLOLDCHAR

*pBindFileName,

_SQLOLDCHAR

*pMsgFileName,

struct

sqlopt

*pBindOptions,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgbndx

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgbndx

(

unsigned

short

MsgFileNameLen,

unsigned

short

BindFileNameLen,

struct

sqlca

*pSqlca,

struct

sqlopt

*pBindOptions,

_SQLOLDCHAR

*pMsgFileName,

_SQLOLDCHAR

*pBindFileName);

/*

...

*/

API

parameters:

MsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

message

file

name

in

bytes.

BindFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

bind

file

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pBindOptions

Input.

A

structure

used

to

pass

bind

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

pMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages.

Can

be

the

path

and

the

name

of

an

operating

system

file,

or

a

standard

device.

If

a

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

pBindFileName

Input.

A

string

containing

the

name

of

the

bind

file,

or

the

name

of

a

file

containing

a

list

of

bind

file

names.

The

bind

file

names

must

contain

the

extension

.bnd.

A

path

for

these

files

can

be

specified.

sqlabndx

-

Bind

Chapter

1.

Application

Programming

Interfaces

267

Precede

the

name

of

a

bind

list

file

with

the

at

sign

(@).

For

example,

a

fully

qualified

bind

list

file

name

might

be:

/u/user1/bnd/@all.lst

The

bind

list

file

should

contain

one

or

more

bind

file

names,

and

must

have

the

extension

.lst.

Precede

all

but

the

first

bind

file

name

with

a

plus

symbol

(+).

The

bind

file

names

may

be

on

one

or

more

lines.

For

example,

the

bind

list

file

all.lst

might

contain:

mybind1.bnd+mybind2.bnd+

mybind3.bnd+

mybind4.bnd

Path

specifications

on

bind

file

names

in

the

list

file

can

be

used.

If

no

path

is

specified,

the

database

manager

takes

path

information

from

the

bind

list

file.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

Binding

can

be

done

as

part

of

the

precompile

process

for

an

application

program

source

file,

or

as

a

separate

step

at

a

later

time.

Use

BIND

when

binding

is

performed

as

a

separate

process.

The

name

used

to

create

the

package

is

stored

in

the

bind

file,

and

is

based

on

the

source

file

name

from

which

it

was

generated

(existing

paths

or

extensions

are

discarded).

For

example,

a

precompiled

source

file

called

myapp.sqc

generates

a

default

bind

file

called

myapp.bnd

and

a

default

package

name

of

MYAPP.

(However,

the

bind

file

name

and

the

package

name

can

be

overridden

at

precompile

time

by

using

the

SQL_BIND_OPT

and

the

SQL_PKG_OPT

options

of

sqlaprep.)

BIND

executes

under

the

transaction

that

the

user

has

started.

After

performing

the

bind,

BIND

issues

a

COMMIT

(if

bind

is

successful)

or

a

ROLLBACK

(if

bind

is

unsuccessful)

operation

to

terminate

the

current

transaction

and

start

another

one.

Binding

halts

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

occurs

during

binding,

BIND

stops

binding,

attempts

to

close

all

files,

and

discards

the

package.

Binding

application

programs

have

prerequisite

requirements

and

restrictions

beyond

the

scope

of

this

manual.

For

example,

an

application

cannot

be

bound

from

a

V8

client

to

a

V8

server,

and

then

executed

against

a

V7

server.

The

Bind

option

types

and

values

are

defined

in

sql.

Related

reference:

v

“sqlaprep

-

Precompile

Program”

on

page

271

v

“SQLCA”

on

page

410

v

“SQLCHAR”

on

page

411

v

“SQLOPT”

on

page

448

sqlabndx

-

Bind

268

Administrative

API

Reference

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

sqlaintp

-

Get

Error

Message

Retrieves

the

message

associated

with

an

error

condition

specified

by

the

sqlcode

field

of

the

sqlca

structure.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlaintp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlaintp

(

char

*pBuffer,

short

BufferSize,

short

LineWidth,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgintp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgintp

(

short

BufferSize,

short

LineWidth,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pBuffer);

/*

...

*/

API

parameters:

BufferSize

Input.

Size,

in

bytes,

of

a

string

buffer

to

hold

the

retrieved

message

text.

LineWidth

Input.

The

maximum

line

width

for

each

line

of

message

text.

Lines

are

broken

on

word

boundaries.

A

value

of

zero

indicates

that

the

message

text

is

returned

without

line

breaks.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqlabndx

-

Bind

Chapter

1.

Application

Programming

Interfaces

269

pBuffer

Output.

A

pointer

to

a

string

buffer

where

the

message

text

is

placed.

If

the

message

must

be

truncated

to

fit

in

the

buffer,

the

truncation

allows

for

the

null

string

terminator

character.

REXX

API

syntax:

GET

MESSAGE

INTO

:msg

[LINEWIDTH

width]

REXX

API

parameters:

msg

REXX

variable

into

which

the

text

message

is

placed.

width

Maximum

line

width

for

each

line

in

the

text

message.

The

line

is

broken

on

word

boundaries.

If

width

is

not

given

or

set

to

0,

the

message

text

returns

without

line

breaks.

Usage

notes:

One

message

is

returned

per

call.

A

new

line

(line

feed,

LF,

or

carriage

return/line

feed,

CR/LF)

sequence

is

placed

at

the

end

of

each

message.

If

a

positive

line

width

is

specified,

new

line

sequences

are

inserted

between

words

so

that

the

lines

do

not

exceed

the

line

width.

If

a

word

is

longer

than

a

line

width,

the

line

is

filled

with

as

many

characters

as

will

fit,

a

new

line

is

inserted,

and

the

remaining

characters

are

placed

on

the

next

line.

In

a

multi-threaded

application,

sqlaintp

must

be

attached

to

a

valid

context;

otherwise,

the

message

text

for

SQLCODE

-1445

cannot

be

obtained

Return

codes:

Code

Message

+i

Positive

integer

indicating

the

number

of

bytes

in

the

formatted

message.

If

this

is

greater

than

the

buffer

size

input

by

the

caller,

the

message

is

truncated.

-1

Insufficient

memory

available

for

message

formatting

services

to

function.

The

requested

message

is

not

returned.

-2

No

error.

The

sqlca

did

not

contain

an

error

code

(SQLCODE

=

0).

-3

Message

file

inaccessible

or

incorrect.

-4

Line

width

is

less

than

zero.

-5

Invalid

sqlca,

bad

buffer

address,

or

bad

buffer

length.

If

the

return

code

is

-1

or

-3,

the

message

buffer

will

contain

additional

information

about

the

problem.

Related

reference:

v

“sqlogstt

-

Get

SQLSTATE

Message”

on

page

377

v

“SQLCA”

on

page

410

Related

samples:

sqlaintp

-

Get

Error

Message

270

Administrative

API

Reference

v

“checkerr.cbl

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(IBM

COBOL)”

v

“dbcfg.sqc

--

Configure

database

and

database

manager

configuration

parameters

(C)”

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

v

“dbcfg.sqC

--

Configure

database

and

database

manager

configuration

parameters

(C++)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqlaprep

-

Precompile

Program

Processes

an

application

program

source

file

containing

embedded

SQL

statements.

A

modified

source

file

is

produced

containing

host

language

calls

for

the

SQL

statements

and,

by

default,

a

package

is

created

in

the

database.

Scope:

This

API

can

be

called

from

any

database

partition

server

in

db2nodes.cfg.

It

updates

the

database

catalogs

on

the

catalog

partition.

Its

effects

are

visible

to

all

database

partition

servers.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

BINDADD

privilege

if

a

package

does

not

exist

and

one

of:

–

IMPLICIT_SCHEMA

authority

on

the

database

if

the

schema

name

of

the

package

does

not

exist

–

CREATEIN

privilege

on

the

schema

if

the

schema

name

of

the

package

exists
v

ALTERIN

privilege

on

the

schema

if

the

package

exists

v

BIND

privilege

on

the

package

if

it

exists.

The

user

also

needs

all

privileges

required

to

compile

any

static

SQL

statements

in

the

application.

Privileges

granted

to

groups

are

not

used

for

authorization

checking

of

static

statements.

If

the

user

has

sysadm

authority,

but

not

explicit

privileges

to

complete

the

bind,

the

database

manager

grants

explicit

dbadm

authority

automatically.

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlaprep

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlaprep

(

_SQLOLDCHAR

*pProgramName,

sqlaintp

-

Get

Error

Message

Chapter

1.

Application

Programming

Interfaces

271

_SQLOLDCHAR

*pMsgFileName,

struct

sqlopt

*pPrepOptions,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgprep

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgprep

(

unsigned

short

MsgFileNameLen,

unsigned

short

ProgramNameLen,

struct

sqlca

*pSqlca,

struct

sqlopt

*pPrepOptions,

_SQLOLDCHAR

*pMsgFileName,

_SQLOLDCHAR

*pProgramName);

/*

...

*/

API

parameters:

MsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

message

file

name

in

bytes.

ProgramNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

program

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPrepOptions

Input.

A

structure

used

to

pass

precompile

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

pMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages.

Can

be

the

path

and

the

name

of

an

operating

system

file,

or

a

standard

device.

If

a

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

pProgramName

Input.

A

string

containing

the

name

of

the

application

to

be

precompiled.

Use

the

following

extensions:

v

.sqb

-

for

COBOL

applications

v

.sqc

-

for

C

applications

v

.sqC

-

for

UNIX

C++

applications

v

.sqf

-

for

FORTRAN

applications

v

.sqx

-

for

C++

applications

When

the

TARGET

option

is

used,

the

input

file

name

extension

does

not

have

to

be

from

this

predefined

list.

The

preferred

extension

for

C++

applications

containing

embedded

SQL

on

UNIX

based

systems

is

sqC;

however,

the

sqx

convention,

which

was

invented

for

systems

that

are

not

case

sensitive,

is

tolerated

by

UNIX

based

systems.

REXX

API

syntax:

sqlaprep

-

Precompile

Program

272

Administrative

API

Reference

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

A

modified

source

file

is

produced,

which

contains

host

language

equivalents

to

the

SQL

statements.

By

default,

a

package

is

created

in

the

database

to

which

a

connection

has

been

established.

The

name

of

the

package

is

the

same

as

the

program

file

name

(minus

the

extension

and

folded

to

uppercase),

up

to

a

maximum

of

8

characters.

Following

connection

to

a

database,

sqlaprep

executes

under

the

transaction

that

was

started.

PRECOMPILE

PROGRAM

then

issues

a

COMMIT

or

a

ROLLBACK

operation

to

terminate

the

current

transaction

and

start

another

one.

Precompiling

stops

if

a

fatal

error

or

more

than

100

errors

occur.

If

a

fatal

error

does

occur,

PRECOMPILE

PROGRAM

stops

precompiling,

attempts

to

close

all

files,

and

discards

the

package.

The

Precompile

option

types

and

values

are

defined

in

sql.h.

Related

reference:

v

“sqlabndx

-

Bind”

on

page

266

v

“SQLCA”

on

page

410

v

“SQLOPT”

on

page

448

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

sqlarbnd

-

Rebind

Allows

the

user

to

recreate

a

package

stored

in

the

database

without

the

need

for

a

bind

file.

Authorization:

One

of

the

following:

v

sysadm

or

dbadm

authority

v

ALTERIN

privilege

on

the

schema

v

BIND

privilege

on

the

package.

The

authorization

ID

logged

in

the

BOUNDBY

column

of

the

SYSCAT.PACKAGES

system

catalog

table,

which

is

the

ID

of

the

most

recent

binder

of

the

package,

is

used

as

the

binder

authorization

ID

for

the

rebind,

and

for

the

default

schema

for

table

references

in

the

package.

Note

that

this

default

qualifier

may

be

different

from

the

authorization

ID

of

the

user

executing

the

rebind

request.

REBIND

will

use

the

same

bind

options

that

were

specified

when

the

package

was

created.

Required

connection:

Database

API

include

file:

sqlaprep

-

Precompile

Program

Chapter

1.

Application

Programming

Interfaces

273

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlarbnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlarbnd

(

char

*pPackageName,

struct

sqlca

*pSqlca,

struct

sqlopt

*pRebindOptions);

/*

...

*/

Generic

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlgrbnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgrbnd

(

unsigned

short

PackageNameLen,

char

*pPackageName,

struct

sqlca

*pSqlca,

struct

sqlopt

*pRebindOptions);

/*

...

*/

API

parameters:

PackageNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

package

name

in

bytes.

pPackageName

Input.

A

string

containing

the

qualified

or

unqualified

name

that

designates

the

package

to

be

rebound.

An

unqualified

package-name

is

implicitly

qualified

by

the

current

authorization

ID.

This

name

does

not

include

the

package

version.

When

specifying

a

package

that

has

a

version

that

is

not

the

empty

string,

then

the

version-id

must

be

specified

using

the

SQL_OPT_VERSION

rebind

option.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pRebindOptions

Input.

A

pointer

to

the

SQLOPT

structure,

used

to

pass

rebind

options

to

the

API.

For

more

information

about

this

structure,

see

SQLOPT.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

REBIND

does

not

automatically

commit

the

transaction

following

a

successful

rebind.

The

user

must

explicitly

commit

the

transaction.

This

enables

″what

if″

analysis,

in

which

the

user

updates

certain

statistics,

and

then

tries

to

rebind

the

package

to

see

what

changes.

It

also

permits

multiple

rebinds

within

a

unit

of

work.

This

API:

sqlarbnd

-

Rebind

274

Administrative

API

Reference

v

Provides

a

quick

way

to

recreate

a

package.

This

enables

the

user

to

take

advantage

of

a

change

in

the

system

without

a

need

for

the

original

bind

file.

For

example,

if

it

is

likely

that

a

particular

SQL

statement

can

take

advantage

of

a

newly

created

index,

REBIND

can

be

used

to

recreate

the

package.

REBIND

can

also

be

used

to

recreate

packages

after

db2Runstats

has

been

executed,

thereby

taking

advantage

of

the

new

statistics.

v

Provides

a

method

to

recreate

inoperative

packages.

Inoperative

packages

must

be

explicitly

rebound

by

invoking

either

the

bind

utility

or

the

rebind

utility.

A

package

will

be

marked

inoperative

(the

VALID

column

of

the

SYSCAT.PACKAGES

system

catalog

will

be

set

to

X)

if

a

function

instance

on

which

the

package

depends

is

dropped.

The

rebind

conservative

option

is

not

supported

for

inoperative

packages.

v

Gives

users

control

over

the

rebinding

of

invalid

packages.

Invalid

packages

will

be

automatically

(or

implicitly)

rebound

by

the

database

manager

when

they

are

executed.

This

may

result

in

a

noticeable

delay

in

the

execution

of

the

first

SQL

request

for

the

invalid

package.

It

may

be

desirable

to

explicitly

rebind

invalid

packages,

rather

than

allow

the

system

to

automatically

rebind

them,

in

order

to

eliminate

the

initial

delay

and

to

prevent

unexpected

SQL

error

messages

which

may

be

returned

in

case

the

implicit

rebind

fails.

For

example,

following

migration,

all

packages

stored

in

the

database

will

be

invalidated

by

the

DB2

Version

5

migration

process.

Given

that

this

may

involve

a

large

number

of

packages,

it

may

be

desirable

to

explicitly

rebind

all

of

the

invalid

packages

at

one

time.

This

explicit

rebinding

can

be

accomplished

using

BIND,

REBIND,

or

the

db2rbind

tool.

The

choice

of

whether

to

use

BIND

or

REBIND

to

explicitly

rebind

a

package

depends

on

the

circumstances.

It

is

recommended

that

REBIND

be

used

whenever

the

situation

does

not

specifically

require

the

use

of

BIND,

since

the

performance

of

REBIND

is

significantly

better

than

that

of

BIND.

BIND

must

be

used,

however:

v

When

there

have

been

modifications

to

the

program

(for

example,

when

SQL

statements

have

been

added

or

deleted,

or

when

the

package

does

not

match

the

executable

for

the

program).

v

When

the

user

wishes

to

modify

any

of

the

bind

options

as

part

of

the

rebind.

REBIND

does

not

support

any

bind

options.

For

example,

if

the

user

wishes

to

have

privileges

on

the

package

granted

as

part

of

the

bind

process,

BIND

must

be

used,

since

it

has

an

SQL_GRANT_OPT

option.

v

When

the

package

does

not

currently

exist

in

the

database.

v

When

detection

of

all

bind

errors

is

desired.

REBIND

only

returns

the

first

error

it

detects,

and

then

ends,

whereas

the

BIND

command

returns

the

first

100

errors

that

occur

during

binding.

REBIND

is

supported

by

DB2

Connect.

If

REBIND

is

executed

on

a

package

that

is

in

use

by

another

user,

the

rebind

will

not

occur

until

the

other

user’s

logical

unit

of

work

ends,

because

an

exclusive

lock

is

held

on

the

package’s

record

in

the

SYSCAT.PACKAGES

system

catalog

table

during

the

rebind.

When

REBIND

is

executed,

the

database

manager

recreates

the

package

from

the

SQL

statements

stored

in

the

SYSCAT.STATEMENTS

system

catalog

table.

If

many

versions

with

the

same

package

number

and

creator

exist,

only

one

version

can

be

bound

at

once.

If

not

specified

using

the

SQL_OPT_VERSION

rebind

option,

the

VERSION

defaults

to

be

″″.

Even

if

there

is

only

one

package

sqlarbnd

-

Rebind

Chapter

1.

Application

Programming

Interfaces

275

with

a

name

and

creator

that

matches

the

name

and

creator

specified

in

the

rebind

request,

it

will

not

rebound

unless

its

VERSION

matches

the

VERSION

specified

explicitly

or

implicitly.

If

REBIND

encounters

an

error,

processing

stops,

and

an

error

message

is

returned.

The

Explain

tables

are

populated

during

REBIND

if

either

SQL_EXPLSNAP_OPT

or

SQL_EXPLAIN_OPT

have

been

set

to

YES

or

ALL

(check

EXPLAIN_SNAPSHOT

and

EXPLAIN_MODE

columns

in

the

catalog).

The

Explain

tables

used

are

those

of

the

REBIND

requester,

not

the

original

binder.

The

Rebind

option

types

and

values

are

defined

in

sql.h.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqlabndx

-

Bind”

on

page

266

v

“SQLCA”

on

page

410

v

“SQLOPT”

on

page

448

v

“REBIND

Command”

in

the

Command

Reference

v

“db2rbind

-

Rebind

all

Packages

Command”

in

the

Command

Reference

v

“db2Runstats

-

Runstats”

on

page

241

Related

samples:

v

“dbpkg.sqc

--

How

to

work

with

packages

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbpkg.sqC

--

How

to

work

with

packages

(C++)”

v

“rebind.sqb

--

How

to

rebind

a

package

(IBM

COBOL)”

sqlbctcq

-

Close

Table

Space

Container

Query

Ends

a

table

space

container

query

request

and

frees

the

associated

resources.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

sqlarbnd

-

Rebind

276

Administrative

API

Reference

/*

File:

sqlutil.h

*/

/*

API:

sqlbctcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbctcq

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgctcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgctcq

(

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“sqlbotcq

-

Open

Table

Space

Container

Query”

on

page

285

v

“sqlbftcq

-

Fetch

Table

Space

Container

Query”

on

page

278

v

“sqlbtcq

-

Table

Space

Container

Query”

on

page

293

v

“sqlbstsc

-

Set

Table

Space

Containers”

on

page

291

v

“SQLCA”

on

page

410

Related

samples:

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbctsq

-

Close

Table

Space

Query

Ends

a

table

space

query

request,

and

frees

up

associated

resources.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlbctcq

-

Close

Table

Space

Container

Query

Chapter

1.

Application

Programming

Interfaces

277

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbctsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbctsq

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgctsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgctsq

(

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

on

page

287

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

280

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbgtss

-

Get

Table

Space

Statistics”

on

page

282

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

289

v

“SQLCA”

on

page

410

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbftcq

-

Fetch

Table

Space

Container

Query

Fetches

a

specified

number

of

rows

of

table

space

container

query

data,

each

row

consisting

of

data

for

a

container.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

sqlbctsq

-

Close

Table

Space

Query

278

Administrative

API

Reference

v

sysmaint

v

dbadm

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbftcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbftcq

(

struct

sqlca

*pSqlca,

sqluint32

MaxContainers,

struct

SQLB_TBSCONTQRY_DATA

*pContainerData,

sqluint32

*pNumContainers);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgftcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgftcq

(

struct

sqlca

*pSqlca,

sqluint32

MaxContainers,

struct

SQLB_TBSCONTQRY_DATA

*pContainerData,

sqluint32

*pNumContainers);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

MaxContainers

Input.

The

maximum

number

of

rows

of

data

that

the

user

allocated

output

area

(pointed

to

by

pContainerData)

can

hold.

pContainerData

Output.

Pointer

to

the

output

area,

a

structure

for

query

data.

For

more

information

about

this

structure,

see

SQLB-TBSCONTQRY-DATA.

The

caller

of

this

API

must

allocate

space

for

MaxContainers

of

these

structures,

and

set

pContainerData

to

point

to

this

space.

The

API

will

use

this

space

to

return

the

table

space

container

data.

pNumContainers

Output.

Number

of

rows

of

output

returned.

Usage

notes:

The

user

is

responsible

for

allocating

and

freeing

the

memory

pointed

to

by

the

pContainerData

parameter.

This

API

can

only

be

used

after

a

successful

sqlbotcq

call.

It

can

be

invoked

repeatedly

to

fetch

the

list

generated

by

sqlbotcq.

sqlbftcq

-

Fetch

Table

Space

Container

Query

Chapter

1.

Application

Programming

Interfaces

279

Related

reference:

v

“sqlbotcq

-

Open

Table

Space

Container

Query”

on

page

285

v

“sqlbctcq

-

Close

Table

Space

Container

Query”

on

page

276

v

“sqlbtcq

-

Table

Space

Container

Query”

on

page

293

v

“sqlbstsc

-

Set

Table

Space

Containers”

on

page

291

v

“SQLCA”

on

page

410

v

“SQLB-TBSCONTQRY-DATA”

on

page

405

Related

samples:

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbftpq

-

Fetch

Table

Space

Query

Fetches

a

specified

number

of

rows

of

table

space

query

data,

each

row

consisting

of

data

for

a

table

space.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbftpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbftpq

(

struct

sqlca

*pSqlca,

sqluint32

MaxTablespaces,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

*pNumTablespaces);

/*

...

*/

sqlbftcq

-

Fetch

Table

Space

Container

Query

280

Administrative

API

Reference

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgftpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgftpq

(

struct

sqlca

*pSqlca,

sqluint32

MaxTablespaces,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

*pNumTablespaces);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

MaxTablespaces

Input.

The

maximum

number

of

rows

of

data

that

the

user

allocated

output

area

(pointed

to

by

pTablespaceData)

can

hold.

pTablespaceData

Input

and

output.

Pointer

to

the

output

area,

a

structure

for

query

data.

For

more

information

about

this

structure,

see

SQLB-TBSPQRY-DATA.

The

caller

of

this

API

must:

v

Allocate

space

for

MaxTablespaces

of

these

structures

v

Initialize

the

structures

v

Set

TBSPQVER

in

the

first

structure

to

SQLB_TBSPQRY_DATA_ID

v

Set

pTablespaceData

to

point

to

this

space.

The

API

will

use

this

space

to

return

the

table

space

data.

pNumTablespaces

Output.

Number

of

rows

of

output

returned.

Usage

notes:

The

user

is

responsible

for

allocating

and

freeing

the

memory

pointed

to

by

the

pTablespaceData

parameter.

This

API

can

only

be

used

after

a

successful

sqlbotsq

call.

It

can

be

invoked

repeatedly

to

fetch

the

list

generated

by

sqlbotsq.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

on

page

287

v

“sqlbctsq

-

Close

Table

Space

Query”

on

page

277

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbgtss

-

Get

Table

Space

Statistics”

on

page

282

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

289

v

“SQLCA”

on

page

410

v

“SQLB-TBSPQRY-DATA”

on

page

407

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbftpq

-

Fetch

Table

Space

Query

Chapter

1.

Application

Programming

Interfaces

281

sqlbgtss

-

Get

Table

Space

Statistics

Provides

information

on

the

space

utilization

of

a

table

space.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbgtss

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbgtss

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

struct

SQLB_TBS_STATS

*pTablespaceStats);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlggtss

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggtss

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

struct

SQLB_TBS_STATS

*pTablespaceStats);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceId

Input.

ID

of

the

single

table

space

to

be

queried.

sqlbgtss

-

Get

Table

Space

Statistics

282

Administrative

API

Reference

pTablespaceStats

Output.

A

pointer

to

a

user-allocated

SQLB_TBS_STATS

structure.

The

information

about

the

table

space

is

returned

in

this

structure.

Usage

notes:

See

SQLB-TBS-STATS

for

information

about

the

fields

returned

and

their

meaning.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

on

page

287

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

280

v

“sqlbctsq

-

Close

Table

Space

Query”

on

page

277

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

289

v

“SQLCA”

on

page

410

v

“SQLB-TBS-STATS”

on

page

404

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbmtsq

-

Table

Space

Query

Provides

a

one-call

interface

to

the

table

space

query

data.

The

query

data

for

all

table

spaces

in

the

database

is

returned

in

an

array.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

sqlbgtss

-

Get

Table

Space

Statistics

Chapter

1.

Application

Programming

Interfaces

283

/*

File:

sqlutil.h

*/

/*

API:

sqlbmtsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbmtsq

(

struct

sqlca

*pSqlca,

sqluint32

*pNumTablespaces,

struct

SQLB_TBSPQRY_DATA

***pppTablespaceData,

sqluint32

reserved1,

sqluint32

reserved2);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgmtsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgmtsq

(

struct

sqlca

*pSqlca,

sqluint32

*pNumTablespaces,

struct

SQLB_TBSPQRY_DATA

***pppTablespaceData,

sqluint32

reserved1,

sqluint32

reserved2);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNumTablespaces

Output.

The

total

number

of

table

spaces

in

the

connected

database.

pppTablespaceData

Output.

The

caller

supplies

the

API

with

the

address

of

a

pointer.

The

space

for

the

table

space

query

data

is

allocated

by

the

API,

and

a

pointer

to

that

space

is

returned

to

the

caller.

On

return

from

the

call,

the

pointer

points

to

an

array

of

SQLB_TBSPQRY_DATA

pointers

to

the

complete

set

of

table

space

query

data.

reserved1

Input.

Always

SQLB_RESERVED1.

reserved2

Input.

Always

SQLB_RESERVED2.

Usage

notes:

This

API

uses

the

lower

level

services,

namely:

v

sqlbotsq

v

sqlbftpq

v

sqlbctsq

to

get

all

of

the

table

space

query

data

at

once.

If

sufficient

memory

is

available,

this

function

returns

the

number

of

table

spaces,

and

a

pointer

to

the

memory

location

of

the

table

space

query

data.

It

is

the

user’s

responsibility

to

free

this

memory

with

a

call

to

sqlefmem.

sqlbmtsq

-

Table

Space

Query

284

Administrative

API

Reference

If

sufficient

memory

is

not

available,

this

function

simply

returns

the

number

of

table

spaces,

and

no

memory

is

allocated.

If

this

should

happen,

use

sqlbotsq,

sqlbftpq,

and

sqlbctsq,

to

fetch

less

than

the

whole

list

at

once.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

on

page

287

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

280

v

“sqlbctsq

-

Close

Table

Space

Query”

on

page

277

v

“sqlbgtss

-

Get

Table

Space

Statistics”

on

page

282

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

289

v

“sqlefmem

-

Free

Memory”

on

page

335

v

“SQLCA”

on

page

410

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

sqlbotcq

-

Open

Table

Space

Container

Query

Prepares

for

a

table

space

container

query

operation,

and

returns

the

number

of

containers

currently

in

the

table

space.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbotcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbotcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers);

/*

...

*/

sqlbmtsq

-

Table

Space

Query

Chapter

1.

Application

Programming

Interfaces

285

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgotcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgotcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceId

Input.

ID

of

the

table

space

for

which

container

data

is

desired.

If

the

special

identifier

SQLB_ALL_TABLESPACES

(in

sqlutil.h)

is

specified,

a

complete

list

of

containers

for

the

entire

database

is

produced.

pNumContainers

Output.

The

number

of

containers

in

the

specified

table

space.

Usage

notes:

This

API

is

normally

followed

by

one

or

more

calls

to

sqlbftcq,

and

then

by

one

call

to

sqlbctcq.

An

application

can

use

the

following

APIs

to

fetch

information

about

containers

in

use

by

table

spaces:

v

sqlbtcq

Fetches

a

complete

list

of

container

information.

The

API

allocates

the

space

required

to

hold

the

information

for

all

the

containers,

and

returns

a

pointer

to

this

information.

Use

this

API

to

scan

the

list

of

containers

for

specific

information.

Using

this

API

is

identical

to

calling

the

three

APIs

below

(sqlbotcq,

sqlbftcq,

sqlbctcq),

except

that

this

API

automatically

allocates

the

memory

for

the

output

information.

A

call

to

this

API

must

be

followed

by

a

call

to

sqlefmem

to

free

the

memory.

v

sqlbotcq

v

sqlbftcq

v

sqlbctcq

These

three

APIs

function

like

an

SQL

cursor,

in

that

they

use

the

OPEN/FETCH/CLOSE

paradigm.

The

caller

must

provide

the

output

area

for

the

fetch.

Unlike

an

SQL

cursor,

only

one

table

space

container

query

can

be

active

at

a

time.

Use

this

set

of

APIs

to

scan

the

list

of

table

space

containers

for

specific

information.

These

APIs

allows

the

user

to

control

the

memory

requirements

of

an

application

(compared

with

sqlbtcq).

When

sqlbotcq

is

called,

a

snapshot

of

the

current

container

information

is

formed

in

the

agent

servicing

the

application.

If

the

application

issues

a

second

table

space

container

query

call

(sqlbtcq

or

sqlbotcq),

this

snapshot

is

replaced

with

refreshed

information.

No

locking

is

performed,

so

the

information

in

the

buffer

may

not

reflect

changes

made

by

another

application

after

the

snapshot

was

generated.

The

information

is

not

part

of

a

transaction.

sqlbotcq

-

Open

Table

Space

Container

Query

286

Administrative

API

Reference

There

is

one

snapshot

buffer

for

table

space

queries

and

another

for

table

space

container

queries.

These

buffers

are

independent

of

one

another.

Related

reference:

v

“sqlbftcq

-

Fetch

Table

Space

Container

Query”

on

page

278

v

“sqlbctcq

-

Close

Table

Space

Container

Query”

on

page

276

v

“sqlbtcq

-

Table

Space

Container

Query”

on

page

293

v

“sqlbstsc

-

Set

Table

Space

Containers”

on

page

291

v

“sqlefmem

-

Free

Memory”

on

page

335

v

“SQLCA”

on

page

410

Related

samples:

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbotsq

-

Open

Table

Space

Query

Prepares

for

a

table

space

query

operation,

and

returns

the

number

of

table

spaces

currently

in

the

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbotsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbotsq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceQueryOptions,

sqluint32

*pNumTablespaces);

/*

...

*/

Generic

API

syntax:

sqlbotcq

-

Open

Table

Space

Container

Query

Chapter

1.

Application

Programming

Interfaces

287

/*

File:

sqlutil.h

*/

/*

API:

sqlgotsq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgotsq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceQueryOptions,

sqluint32

*pNumTablespaces);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceQueryOptions

Input.

Indicates

which

table

spaces

to

process.

Valid

values

(defined

in

sqlutil)

are:

SQLB_OPEN_TBS_ALL

Process

all

the

table

spaces

in

the

database.

SQLB_OPEN_TBS_RESTORE

Process

only

the

table

spaces

that

the

user’s

agent

is

restoring.

pNumTablespaces

Output.

The

number

of

table

spaces

in

the

connected

database.

Usage

notes:

This

API

is

normally

followed

by

one

or

more

calls

to

sqlbftpq,

and

then

by

one

call

to

sqlbctsq.

An

application

can

use

the

following

APIs

to

fetch

information

about

the

currently

defined

table

spaces:

v

sqlbstpq

Fetches

information

about

a

given

table

space.

Only

one

table

space

entry

is

returned

(into

a

space

provided

by

the

caller).

Use

this

API

when

the

table

space

identifier

is

known,

and

information

about

only

that

table

space

is

desired.

v

sqlbmtsq

Fetches

information

about

all

table

spaces.

The

API

allocates

the

space

required

to

hold

the

information

for

all

table

spaces,

and

returns

a

pointer

to

this

information.

Use

this

API

to

scan

the

list

of

table

spaces

when

searching

for

specific

information.

Using

this

API

is

identical

to

calling

the

three

APIs

below,

except

that

this

API

automatically

allocates

the

memory

for

the

output

information.

A

call

to

this

API

must

be

followed

by

a

call

to

sqlefmem

to

free

the

memory.

v

sqlbotsq

v

sqlbftpq

v

sqlbctsq

These

three

APIs

function

like

an

SQL

cursor,

in

that

they

use

the

OPEN/FETCH/CLOSE

paradigm.

The

caller

must

provide

the

output

area

for

the

fetch.

Unlike

an

SQL

cursor,

only

one

table

space

query

may

be

active

at

a

time.

Use

this

set

of

APIs

to

scan

the

list

of

table

spaces

when

searching

for

specific

information.

This

set

of

APIs

allows

the

user

to

control

the

memory

requirements

of

an

application

(compared

with

sqlbmtsq).

sqlbotsq

-

Open

Table

Space

Query

288

Administrative

API

Reference

When

sqlbotsq

is

called,

a

snapshot

of

the

current

table

space

information

is

buffered

in

the

agent

servicing

the

application.

If

the

application

issues

a

second

table

space

query

call

(sqlbmtsq

or

sqlbotsq),

this

snapshot

is

replaced

with

refreshed

information.

No

locking

is

performed,

so

the

information

in

the

buffer

may

not

reflect

more

recent

changes

made

by

another

application.

The

information

is

not

part

of

a

transaction.

There

is

one

snapshot

buffer

for

table

space

queries

and

another

for

table

space

container

queries.

These

buffers

are

independent

of

one

another.

Related

reference:

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

280

v

“sqlbctsq

-

Close

Table

Space

Query”

on

page

277

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbstpq

-

Single

Table

Space

Query”

on

page

289

v

“sqlefmem

-

Free

Memory”

on

page

335

v

“SQLCA”

on

page

410

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbstpq

-

Single

Table

Space

Query

Retrieves

information

about

a

single

currently

defined

table

space.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

sqlbotsq

-

Open

Table

Space

Query

Chapter

1.

Application

Programming

Interfaces

289

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbstpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbstpq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32

reserved);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgstpq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgstpq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

struct

SQLB_TBSPQRY_DATA

*pTablespaceData,

sqluint32reserved);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceId

Input.

Identifier

for

the

table

space

which

is

to

be

queried.

pTablespaceData

Input

and

output.

Pointer

to

a

user-supplied

SQLB_TBSPQRY_DATA

structure

where

the

table

space

information

will

be

placed

upon

return.

The

caller

of

this

API

must

initialize

the

structure

and

set

TBSPQVER

to

SQLB_TBSPQRY_DATA_ID

(in

sqlutil).

reserved

Input.

Always

SQLB_RESERVED1.

Usage

notes:

This

API

retrieves

information

about

a

single

table

space

if

the

table

space

identifier

to

be

queried

is

known.

This

API

provides

an

alternative

to

the

more

expensive

OPEN

TABLESPACE

QUERY,

FETCH,

and

CLOSE

combination

of

APIs,

which

must

be

used

to

scan

for

the

desired

table

space

when

the

table

space

identifier

is

not

known

in

advance.

The

table

space

IDs

can

be

found

in

the

system

catalogs.

No

agent

snapshot

is

taken;

since

there

is

only

one

entry

to

return,

it

is

returned

directly.

For

more

information,

see

sqlbotsq.

Related

reference:

v

“sqlbotsq

-

Open

Table

Space

Query”

on

page

287

v

“sqlbftpq

-

Fetch

Table

Space

Query”

on

page

280

v

“sqlbctsq

-

Close

Table

Space

Query”

on

page

277

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbgtss

-

Get

Table

Space

Statistics”

on

page

282

sqlbstpq

-

Single

Table

Space

Query

290

Administrative

API

Reference

v

“SQLCA”

on

page

410

Related

samples:

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

sqlbstsc

-

Set

Table

Space

Containers

This

API

facilitates

the

provision

of

a

redirected

restore,

in

which

the

user

is

restoring

a

database,

and

a

different

set

of

operating

system

storage

containers

is

desired

or

required.

Use

this

API

when

the

table

space

is

in

a

storage

definition

pending

or

a

storage

definition

allowed

state.

These

states

are

possible

during

a

restore

operation,

immediately

prior

to

the

restoration

of

database

pages.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbstsc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbstsc

(

struct

sqlca

*pSqlca,

sqluint32

SetContainerOptions,

sqluint32

TablespaceId,

sqluint32

NumContainers,

struct

SQLB_TBSCONTQRY_DATA

*pContainerData);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgstsc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgstsc

(

struct

sqlca

*pSqlca,

sqluint32

SetContainerOptions,

sqluint32

TablespaceId,

sqluint32

NumContainers,

struct

SQLB_TBSCONTQRY_DATA

*pContainerData);

/*

...

*/

sqlbstpq

-

Single

Table

Space

Query

Chapter

1.

Application

Programming

Interfaces

291

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

SetContainerOptions

Input.

Use

this

field

to

specify

additional

options.

Valid

values

(defined

in

sqlutil)

are:

SQLB_SET_CONT_INIT_STATE

Redo

alter

table

space

operations

when

performing

a

roll

forward.

SQLB_SET_CONT_FINAL_STATE

Ignore

alter

table

space

operations

in

the

log

when

performing

a

roll

forward.

TablespaceId

Input.

Identifier

for

the

table

space

which

is

to

be

changed.

NumContainers

Input.

The

number

of

rows

the

structure

pointed

to

by

pContainerData

holds.

pContainerData

Input.

Container

specifications.

Although

the

SQLB_TBSCONTQRY_DATA

structure

is

used,

only

the

contType,

totalPages,

name,

and

nameLen

(for

languages

other

than

C)

fields

are

used;

all

other

fields

are

ignored.

Usage

notes:

This

API

is

used

in

conjunction

with

db2Restore.

A

backup

of

a

database,

or

one

or

more

table

spaces,

keeps

a

record

of

all

the

table

space

containers

in

use

by

the

table

spaces

being

backed

up.

During

a

restore,

all

containers

listed

in

the

backup

are

checked

to

see

if

they

currently

exist

and

are

accessible.

If

one

or

more

of

the

containers

is

inaccessible

for

any

reason,

the

restore

will

fail.

In

order

to

allow

a

restore

in

such

a

case,

the

redirecting

of

table

space

containers

is

supported

during

the

restore.

This

support

includes

adding,

changing,

or

removing

of

table

space

containers.

It

is

this

API

that

allows

the

user

to

add,

change

or

remove

those

containers.

Typical

use

of

this

API

would

involve

the

following

sequence

of

actions:

1.

Invoke

db2Restore

with

CallerAction

set

to

SQLUD_RESTORE_STORDEF.

The

restore

utility

returns

an

sqlcode

indicating

that

some

of

the

containers

are

inaccessible.

2.

Invoke

sqlbstsc

to

set

the

table

space

container

definitions

with

the

SetContainerOptions

parameter

set

to

SQLB_SET_CONT_FINAL_STATE.

3.

Invoke

sqlurst

a

second

time

with

CallerAction

set

to

SQLUD_CONTINUE.

The

above

sequence

will

allow

the

restore

to

use

the

new

table

space

container

definitions

and

will

ignore

table

space

add

container

operations

in

the

logs

when

db2Rollforward

is

called

after

the

restore

is

complete.

The

user

of

this

API

should

be

aware

that

when

setting

the

container

list,

there

must

be

sufficient

disk

space

to

allow

for

the

restore

or

rollforward

operation

to

replace

all

of

the

original

data

into

these

new

containers.

If

there

is

not

sufficient

space,

such

table

spaces

will

be

left

in

the

recovery

pending

state

until

sufficient

disk

space

is

made

available.

A

prudent

Database

Administrator

will

keep

records

of

sqlbstsc

-

Set

Table

Space

Containers

292

Administrative

API

Reference

disk

utilization

on

a

regular

basis.

Then,

when

a

restore

or

rollforward

operation

is

needed,

the

required

disk

space

will

be

known.

Related

reference:

v

“db2Rollforward

-

Rollforward

Database”

on

page

232

v

“SQLCA”

on

page

410

v

“db2Backup

-

Backup

database”

on

page

26

v

“db2Restore

-

Restore

database”

on

page

221

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

sqlbtcq

-

Table

Space

Container

Query

Provides

a

one-call

interface

to

the

table

space

container

query

data.

The

query

data

for

all

containers

in

a

table

space,

or

for

all

containers

in

all

table

spaces,

is

returned

in

an

array.

Scope:

In

a

partitioned

database

environment,

only

the

table

spaces

on

the

current

database

partition

are

listed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlbtcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlbtcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers,

struct

SQLB_TBSCONTQRY_DATA

**ppContainerData);

/*

...

*/

sqlbstsc

-

Set

Table

Space

Containers

Chapter

1.

Application

Programming

Interfaces

293

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgtcq

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgtcq

(

struct

sqlca

*pSqlca,

sqluint32

TablespaceId,

sqluint32

*pNumContainers,

struct

SQLB_TBSCONTQRY_DATA

**ppContainerData);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

TablespaceId

Input.

ID

of

the

table

space

for

which

container

data

is

desired,

or

a

special

ID,

SQLB_ALL_TABLESPACES

(defined

in

sqlutil),

which

produces

a

list

of

all

containers

for

the

entire

database.

pNumContainers

Output.

The

number

of

containers

in

the

table

space.

ppContainerData

Output.

The

caller

supplies

the

API

with

the

address

of

a

pointer

to

a

SQLB_TBSCONTQRY_DATA

structure.

The

space

for

the

table

space

container

query

data

is

allocated

by

the

API,

and

a

pointer

to

that

space

is

returned

to

the

caller.

On

return

from

the

call,

the

pointer

to

the

SQLB_TBSCONTQRY_DATA

structure

points

to

the

complete

set

of

table

space

container

query

data.

Usage

notes:

This

API

uses

the

lower

level

services,

namely:

v

sqlbotcq

v

sqlbftcq

v

sqlbctcq

to

get

all

of

the

table

space

container

query

data

at

once.

If

sufficient

memory

is

available,

this

function

returns

the

number

of

containers,

and

a

pointer

to

the

memory

location

of

the

table

space

container

query

data.

It

is

the

user’s

responsibility

to

free

this

memory

with

a

call

to

sqlefmem.

If

sufficient

memory

is

not

available,

this

function

simply

returns

the

number

of

containers,

and

no

memory

is

allocated.

If

this

should

happen,

use

sqlbotcq,

sqlbftcq,

and

sqlbctcq

to

fetch

less

than

the

whole

list

at

once.

Related

reference:

v

“sqlbotcq

-

Open

Table

Space

Container

Query”

on

page

285

v

“sqlbftcq

-

Fetch

Table

Space

Container

Query”

on

page

278

v

“sqlbctcq

-

Close

Table

Space

Container

Query”

on

page

276

v

“sqlbstsc

-

Set

Table

Space

Containers”

on

page

291

v

“sqlefmem

-

Free

Memory”

on

page

335

v

“SQLCA”

on

page

410

sqlbtcq

-

Table

Space

Container

Query

294

Administrative

API

Reference

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

sqlcspqy

-

List

DRDA

Indoubt

Transactions

Provides

a

list

of

transactions

that

are

indoubt

between

partner

LUs

connected

by

LU

6.2

protocols.

Authorization:

sysadm

Required

connection:

Instance

API

include

file:

sqlxa.h

C

API

syntax:

/*

File:

sqlxa.h

*/

/*

API:

sqlcspqy

*/

/*

...

*/

extern

int

SQL_API_FN

sqlcspqy(SQLCSPQY_INDOUBT

**indoubt_data,

sqlint32

*indoubt_count,

struct

sqlca

*sqlca);

/*

...

*/

API

parameters:

indoubt_data

Output.

A

pointer

to

the

returned

array.

indoubt_count

Output.

The

number

of

elements

in

the

returned

array.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

DRDA

indoubt

transactions

occur

when

communication

is

lost

between

coordinators

and

participants

in

distributed

units

of

work.

A

distributed

unit

of

work

lets

a

user

or

application

read

and

update

data

at

multiple

locations

within

a

single

unit

of

work.

Such

work

requires

a

two-phase

commit.

sqlbtcq

-

Table

Space

Container

Query

Chapter

1.

Application

Programming

Interfaces

295

The

first

phase

requests

all

the

participants

to

prepare

for

commit.

The

second

phase

commits

or

rolls

back

the

transactions.

If

a

coordinator

or

participant

becomes

unavailable

after

the

first

phase

then

the

distributed

transactions

are

indoubt.

Before

issuing

LIST

DRDA

INDOUBT

TRANSACTIONS,

the

application

process

must

be

connected

to

the

Sync

Point

Manager

(SPM)

instance.

Use

the

SPM_NAME

as

the

dbalias

on

the

CONNECT

statement.

SPM_NAME

is

a

database

manager

configuration

parameter.

Related

reference:

v

“spm_name

-

Sync

point

manager

name

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“CONNECT

(Type

1)

statement”

in

the

SQL

Reference,

Volume

2

v

“CONNECT

(Type

2)

statement”

in

the

SQL

Reference,

Volume

2

v

“SQLCA”

on

page

410

sqle_activate_db

-

Activate

Database

Activates

the

specified

database

and

starts

up

all

necessary

database

services,

so

that

the

database

is

available

for

connection

and

use

by

any

application.

Scope:

This

API

activates

the

specified

database

on

all

database

partition

servers.

If

one

or

more

of

these

database

partition

servers

encounters

an

error

during

activation

of

the

database,

a

warning

is

returned.

The

database

remains

activated

on

all

database

partition

servers

on

which

the

API

has

succeeded.

Note:

If

it

is

the

coordinator

partition

or

the

catalog

partition

that

encounters

the

error,

the

API

returns

a

negative

sqlcode,

and

the

database

will

not

be

activated

on

any

database

partition

server.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

None.

Applications

invoking

ACTIVATE

DATABASE

cannot

have

any

existing

database

connections.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqle_activate_db

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlcspqy

-

List

DRDA

Indoubt

Transactions

296

Administrative

API

Reference

sqle_activate_db

(

char

*pDbAlias,

char

*pUserName,

char

*pPassword,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlg_activate_db

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlg_activate_db

(

unsigned

short

DbAliasLen,

unsigned

short

UserNameLen,

unsigned

short

PasswordLen,

char

*pDbAlias,

char

*pUserName,

char

*pPassword,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

database

alias

name

in

bytes.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

pDbAlias

Input.

Pointer

to

the

database

alias

name.

pUserName

Input.

Pointer

to

the

user

ID

starting

the

database.

Can

be

NULL.

pPassword

Input.

Pointer

to

the

password

for

the

user

name.

Can

be

NULL,

but

must

be

specified

if

a

user

name

is

specified.

pReserved

Reserved

for

future

use.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

If

a

database

has

not

been

started,

and

a

DB2

CONNECT

TO

(or

an

implicit

connect)

is

encountered

in

an

application,

the

application

must

wait

while

the

database

manager

starts

up

the

required

database.

In

such

cases,

this

first

sqle_activate_db

-

Activate

Database

Chapter

1.

Application

Programming

Interfaces

297

application

spends

time

on

database

initialization

before

it

can

do

any

work.

However,

once

the

first

application

has

started

a

database,

other

applications

can

simply

connect

and

use

it.

Database

administrators

can

use

ACTIVATE

DATABASE

to

start

up

selected

databases.

This

eliminates

any

application

time

spent

on

database

initialization.

Databases

initialized

by

ACTIVATE

DATABASE

can

only

be

shut

down

by

sqle_deactivate_db,

or

by

db2InstanceStop.

To

obtain

a

list

of

activated

databases,

call

db2GetSnapshot.

If

a

database

was

started

by

a

DB2

CONNECT

TO

(or

an

implicit

connect)

and

subsequently

an

ACTIVATE

DATABASE

is

issued

for

that

same

database,

then

DEACTIVATE

DATABASE

must

be

used

to

shut

down

that

database.

ACTIVATE

DATABASE

behaves

in

a

similar

manner

to

a

DB2

CONNECT

TO

(or

an

implicit

connect)

when

working

with

a

database

requiring

a

restart

(for

example,

database

in

an

inconsistent

state).

The

database

will

be

restarted

before

it

can

be

initialized

by

ACTIVATE

DATABASE.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“sqle_deactivate_db

-

Deactivate

Database”

on

page

298

v

“SQLCA”

on

page

410

v

“ACTIVATE

DATABASE

Command”

in

the

Command

Reference

sqle_deactivate_db

-

Deactivate

Database

Stops

the

specified

database.

Scope:

In

a

partitioned

database

environment,

this

API

deactivates

the

specified

database

on

all

database

partition

servers.

If

one

or

more

of

these

database

partition

servers

encounters

an

error,

a

warning

is

returned.

The

database

will

be

successfully

deactivated

on

some

database

partition

servers,

but

may

remain

activated

on

the

database

partition

servers

encountering

the

error.

Note:

If

it

is

the

coordinator

partition

or

the

catalog

partition

that

encounters

the

error,

the

API

returns

a

negative

sqlcode,

and

the

database

will

not

be

reactivated

on

any

database

partition

server

on

which

it

was

deactivated.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

sqle_activate_db

-

Activate

Database

298

Administrative

API

Reference

Required

connection:

None.

Applications

invoking

DEACTIVATE

DATABASE

cannot

have

any

existing

database

connections.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqle_deactivate_db

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqle_deactivate_db

(

char

*pDbAlias,

char

*pUserName,

char

*pPassword,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlg_deactivate_db

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlg_deactivate_db

(

unsigned

short

DbAliasLen,

unsigned

short

UserNameLen,

unsigned

short

PasswordLen,

char

*pDbAlias,

char

*pUserName,

char

*pPassword,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

database

alias

name

in

bytes.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

pDbAlias

Input.

Pointer

to

the

database

alias

name.

pUserName

Input.

Pointer

to

the

user

ID

stopping

the

database.

Can

be

NULL.

pPassword

Input.

Pointer

to

the

password

for

the

user

name.

Can

be

NULL,

but

must

be

specified

if

a

user

name

is

specified.

sqle_deactivate_db

-

Deactivate

Database

Chapter

1.

Application

Programming

Interfaces

299

pReserved

Reserved

for

future

use.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

Databases

initialized

by

ACTIVATE

DATABASE

can

only

be

shut

down

by

DEACTIVATE

DATABASE.

db2InstanceStop

automatically

stops

all

activated

databases

before

stopping

the

database

manager.

If

a

database

was

initialized

by

ACTIVATE

DATABASE,

the

last

DB2

CONNECT

RESET

statement

(counter

equal

0)

will

not

shut

down

the

database;

DEACTIVATE

DATABASE

must

be

used.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqle_activate_db

-

Activate

Database”

on

page

296

v

“SQLCA”

on

page

410

v

“DEACTIVATE

DATABASE

Command”

in

the

Command

Reference

sqleaddn

-

Add

Node

Adds

a

new

database

partition

server

to

the

partitioned

database

environment.

This

API

creates

database

partitions

for

all

databases

currently

defined

in

the

instance

on

the

new

database

partition

server.

The

user

can

specify

the

source

database

partition

server

for

any

system

temporary

table

spaces

to

be

created

with

the

databases,

or

specify

that

no

system

temporary

table

spaces

are

to

be

created.

The

API

must

be

issued

from

the

database

partition

server

that

is

being

added,

and

can

only

be

issued

on

a

database

partition

server.

Scope:

This

API

only

affects

the

database

partition

server

on

which

it

is

executed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

sqle_deactivate_db

-

Deactivate

Database

300

Administrative

API

Reference

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleaddn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleaddn

(

void

*pAddNodeOptions,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgaddn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgaddn

(

unsigned

short

addnOptionsLen,

struct

sqlca

*pSqlca,

void

*pAddNodeOptions);

/*

...

*/

API

parameters:

addnOptionsLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

optional

sqle_addn_options

structure

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pAddNodeOptions

Input.

A

pointer

to

the

optional

sqle_addn_options

structure.

This

structure

is

used

to

specify

the

source

database

partition

server,

if

any,

of

the

system

temporary

table

space

definitions

for

all

database

partitions

created

during

the

add

node

operation.

If

not

specified

(that

is,

a

NULL

pointer

is

specified),

the

system

temporary

table

space

definitions

will

be

the

same

as

those

for

the

catalog

partition.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

Before

adding

a

new

database

partition

server,

ensure

that

there

is

sufficient

storage

for

the

containers

that

must

be

created

for

all

existing

databases

on

the

system.

The

add

node

operation

creates

an

empty

database

partition

on

the

new

database

partition

server

for

every

database

that

exists

in

the

instance.

The

configuration

parameters

for

the

new

database

partitions

are

set

to

the

default

value.

If

an

add

node

operation

fails

while

creating

a

database

partition

locally,

it

enters

a

clean-up

phase,

in

which

it

locally

drops

all

databases

that

have

been

created.

This

means

that

the

database

partitions

are

removed

only

from

the

database

partition

server

being

added

(that

is,

the

local

database

partition

server).

Existing

database

partitions

remain

unaffected

on

all

other

database

partition

servers.

If

this

fails,

no

further

clean

up

is

done,

and

an

error

is

returned.

sqleaddn

-

Add

Node

Chapter

1.

Application

Programming

Interfaces

301

The

database

partitions

on

the

new

database

partition

server

cannot

be

used

to

contain

user

data

until

after

the

ALTER

DATABASE

PARTITION

GROUP

statement

has

been

used

to

add

the

database

partition

server

to

a

database

partition

group.

This

API

will

fail

if

a

create

database

or

a

drop

database

operation

is

in

progress.

The

API

can

be

called

again

once

the

operation

has

completed.

If

system

temporary

table

spaces

are

to

be

created

with

the

database

partitions,

sqleaddn

may

have

to

communicate

with

another

database

partition

server

in

the

partitioned

database

environment

in

order

to

retrieve

the

table

space

definitions.

The

start_stop_time

database

manager

configuration

parameter

is

used

to

specify

the

time,

in

minutes,

by

which

the

other

database

partition

server

must

respond

with

the

table

space

definitions.

If

this

time

is

exceeded,

the

API

fails.

Increase

the

value

of

start_stop_time,

and

call

the

API

again.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“ALTER

DATABASE

PARTITION

GROUP

statement”

in

the

SQL

Reference,

Volume

2

v

“sqlecrea

-

Create

Database”

on

page

314

v

“sqledrpn

-

Drop

Node

Verify”

on

page

332

v

“SQLCA”

on

page

410

v

“SQLE-ADDN-OPTIONS”

on

page

416

sqleatcp

-

Attach

and

Change

Password

Enables

an

application

to

specify

the

node

at

which

instance-level

functions

(CREATE

DATABASE

and

FORCE

APPLICATION,

for

example)

are

to

be

executed.

This

node

may

be

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

another

instance

on

the

same

workstation,

or

an

instance

on

a

remote

workstation.

Establishes

a

logical

instance

attachment

to

the

node

specified,

and

starts

a

physical

communications

connection

to

the

node

if

one

does

not

already

exist.

Note:

This

API

extends

the

function

of

the

sqleatin

API

by

permitting

the

optional

change

of

the

user

password

for

the

instance

being

attached.

Authorization:

None

Required

connection:

This

API

establishes

an

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

sqleaddn

-

Add

Node

302

Administrative

API

Reference

/*

File:

sqlenv.h

*/

/*

API:

sqleatcp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleatcp

(

char

*pNodeName,

char

*pUserName,

char

*pPassword,

char

*pNewPassword,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgatcp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgatcp

(

unsigned

short

NewPasswordLen,

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

NodeNameLen,

struct

sqlca

*pSqlca,

char

*pNewPassword,

char

*pPassword,

char

*pUserName,

char

*pNodeName);

/*

...

*/

API

parameters:

NewPasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

new

password

in

bytes.

Set

to

zero

if

no

new

password

is

supplied.

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

node

name

in

bytes.

Set

to

zero

if

no

node

name

is

supplied.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNewPassword

Input.

A

string

containing

the

new

password

for

the

specified

user

name.

Set

to

NULL

if

a

password

change

is

not

required.

pPassword

Input.

A

string

containing

the

password

for

the

specified

user

name.

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

under

which

the

attachment

is

to

be

authenticated.

May

be

NULL.

pNodeName

Input.

A

string

containing

the

alias

of

the

instance

to

which

the

user

wants

sqleatcp

-

Attach

and

Change

Password

Chapter

1.

Application

Programming

Interfaces

303

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

May

be

NULL.

REXX

API

syntax:

Calling

this

API

directly

from

REXX

is

not

supported.

However,

REXX

programmers

can

utilize

this

function

by

calling

the

DB2

command

line

processor

to

execute

the

ATTACH

command.

Usage

notes:

Note:

A

node

name

in

the

node

directory

can

be

regarded

as

an

alias

for

an

instance.

If

an

attach

request

succeeds,

the

sqlerrmc

field

of

the

sqlca

will

contain

9

tokens

separated

by

hexadecimal

FF

(similar

to

the

tokens

returned

when

a

CONNECT

request

is

successful):

1.

Country/region

code

of

the

application

server

2.

Code

page

of

the

application

server

3.

Authorization

ID

4.

Node

name

(as

specified

on

the

API)

5.

Identity

and

platform

type

of

the

server

6.

Agent

ID

of

the

agent

which

has

been

started

at

the

server

7.

Agent

index

8.

Node

number

of

the

server

9.

Number

of

partitions

if

the

server

is

a

partitioned

database

server.

If

the

node

name

is

a

zero-length

string

or

NULL,

information

about

the

current

state

of

attachment

is

returned.

If

no

attachment

exists,

sqlcode

1427

is

returned.

Otherwise,

information

about

the

attachment

is

returned

in

the

sqlerrmc

field

of

the

sqlca

(as

outlined

above).

If

an

attachment

has

not

been

made,

instance-level

APIs

are

executed

against

the

current

instance,

specified

by

the

DB2INSTANCE

environment

variable.

Certain

functions

(db2start,

db2stop,

and

all

directory

services,

for

example)

are

never

executed

remotely.

That

is,

they

affect

only

the

local

instance

environment,

as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable.

If

an

attachment

exists,

and

the

API

is

issued

with

a

node

name,

the

current

attachment

is

dropped,

and

an

attachment

to

the

new

node

is

attempted.

Where

the

user

name

and

password

are

authenticated,

and

where

the

password

is

changed,

depend

on

the

authentication

type

of

the

target

instance.

The

node

to

which

an

attachment

is

to

be

made

can

also

be

specified

by

a

call

to

the

sqlesetc

API.

Related

reference:

v

“sqlesetc

-

Set

Client”

on

page

367

sqleatcp

-

Attach

and

Change

Password

304

Administrative

API

Reference

v

“sqleatin

-

Attach”

on

page

305

v

“sqledtin

-

Detach”

on

page

334

v

“SQLCA”

on

page

410

v

“SQLE-CONN-SETTING”

on

page

419

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

sqleatin

-

Attach

Enables

an

application

to

specify

the

node

at

which

instance-level

functions

(CREATE

DATABASE

and

FORCE

APPLICATION,

for

example)

are

to

be

executed.

This

node

may

be

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable),

another

instance

on

the

same

workstation,

or

an

instance

on

a

remote

workstation.

Establishes

a

logical

instance

attachment

to

the

node

specified,

and

starts

a

physical

communications

connection

to

the

node

if

one

does

not

already

exist.

Note:

If

a

password

change

is

required,

use

the

sqleatcp

API

instead

of

the

sqleatin

API.

Authorization:

None

Required

connection:

This

API

establishes

an

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleatin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleatin

(

char

*pNodeName,

char

*pUserName,

char

*pPassword,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgatin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgatin

(

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

NodeNameLen,

sqleatcp

-

Attach

and

Change

Password

Chapter

1.

Application

Programming

Interfaces

305

struct

sqlca

*pSqlca,

char

*pPassword,

char

*pUserName,

char

*pNodeName);

/*

...

*/

API

parameters:

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

password

in

bytes.

Set

to

zero

if

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

user

name

in

bytes.

Set

to

zero

if

no

user

name

is

supplied.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

node

name

in

bytes.

Set

to

zero

if

no

node

name

is

supplied.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPassword

Input.

A

string

containing

the

password

for

the

specified

user

name.

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

under

which

the

attachment

is

to

be

authenticated.

May

be

NULL.

pNodeName

Input.

A

string

containing

the

alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

May

be

NULL.

REXX

API

syntax:

ATTACH

[TO

nodename

[USER

username

USING

password]]

REXX

API

parameters:

nodename

Alias

of

the

instance

to

which

the

user

wants

to

attach.

This

instance

must

have

a

matching

entry

in

the

local

node

directory.

The

only

exception

is

the

local

instance

(as

specified

by

the

DB2INSTANCE

environment

variable),

which

can

be

specified

as

the

object

of

an

attachment,

but

cannot

be

used

as

a

node

name

in

the

node

directory.

username

Name

under

which

the

user

attaches

to

the

instance.

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

Note:

A

node

name

in

the

node

directory

can

be

regarded

as

an

alias

for

an

instance.

sqleatin

-

Attach

306

Administrative

API

Reference

If

an

attach

request

succeeds,

the

sqlerrmc

field

of

the

sqlca

will

contain

9

tokens

separated

by

hexadecimal

FF

(similar

to

the

tokens

returned

when

a

CONNECT

request

is

successful):

1.

Country/region

code

of

the

application

server

2.

Code

page

of

the

application

server

3.

Authorization

ID

4.

Node

name

(as

specified

on

the

API)

5.

Identity

and

platform

type

of

the

server

6.

Agent

ID

of

the

agent

which

has

been

started

at

the

server

7.

Agent

index

8.

Node

number

of

the

server

9.

Number

of

partitions

if

the

server

is

a

partitioned

database

server.

If

the

node

name

is

a

zero-length

string

or

NULL,

information

about

the

current

state

of

attachment

is

returned.

If

no

attachment

exists,

sqlcode

1427

is

returned.

Otherwise,

information

about

the

attachment

is

returned

in

the

sqlerrmc

field

of

the

sqlca

(as

outlined

above).

If

an

attachment

has

not

been

made,

instance-level

APIs

are

executed

against

the

current

instance,

specified

by

the

DB2INSTANCE

environment

variable.

Certain

functions

(db2start,

db2stop,

and

all

directory

services,

for

example)

are

never

executed

remotely.

That

is,

they

affect

only

the

local

instance

environment,

as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable.

If

an

attachment

exists,

and

the

API

is

issued

with

a

node

name,

the

current

attachment

is

dropped,

and

an

attachment

to

the

new

node

is

attempted.

Where

the

user

name

and

password

are

authenticated

depends

on

the

authentication

type

of

the

target

instance.

The

node

to

which

an

attachment

is

to

be

made

can

also

be

specified

by

a

call

to

the

sqlesetc

API.

Related

reference:

v

“sqlesetc

-

Set

Client”

on

page

367

v

“sqledtin

-

Detach”

on

page

334

v

“sqleatcp

-

Attach

and

Change

Password”

on

page

302

v

“SQLCA”

on

page

410

v

“SQLE-CONN-SETTING”

on

page

419

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqleatin

-

Attach

Chapter

1.

Application

Programming

Interfaces

307

sqlecadb

-

Catalog

Database

Stores

database

location

information

in

the

system

database

directory.

The

database

can

be

located

either

on

the

local

workstation

or

on

a

remote

node.

Scope:

This

API

affects

the

system

database

directory.

In

a

partitioned

database

environment,

when

cataloging

a

local

database

into

the

system

database

directory,

this

API

must

be

called

from

a

database

partition

server

where

the

database

resides.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlecadb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlecadb

(

_SQLOLDCHAR

*pDbName,

_SQLOLDCHAR

*pDbAlias,

unsigned

char

Type,

_SQLOLDCHAR

*pNodeName,

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pComment,

unsigned

short

Authentication,

_SQLOLDCHAR

*pPrincipal,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgcadb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgcadb

(

unsigned

short

PrinLen,

unsigned

short

CommentLen,

unsigned

short

PathLen,

unsigned

short

NodeNameLen,

unsigned

short

DbAliasLen,

unsigned

short

DbNameLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pPrinName,

unsigned

short

Authentication,

_SQLOLDCHAR

*pComment,

sqlecadb

-

Catalog

Database

308

Administrative

API

Reference

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pNodeName,

unsigned

char

Type,

_SQLOLDCHAR

*pDbAlias,

_SQLOLDCHAR

*pDbName);

/*

...

*/

API

parameters:

PrinLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

principal

name.

Set

to

zero

if

no

principal

is

provided.

This

value

should

be

nonzero

only

when

authentication

is

specified

as

SQL_AUTHENTICATION_KERBEROS.

CommentLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

comment.

Set

to

zero

if

no

comment

is

provided.

PathLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

path

of

the

local

database

directory.

Set

to

zero

if

no

path

is

provided.

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

node

name.

Set

to

zero

if

no

node

name

is

provided.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

DbNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

name.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPrinName

Input.

A

string

containing

the

principal

name

of

the

DB2

server

on

which

the

database

resides.

This

value

should

only

be

specified

when

authentication

is

SQL_AUTHENTICATION_KERBEROS.

Authentication

Input.

Contains

the

authentication

type

specified

for

the

database.

Authentication

is

a

process

that

verifies

that

the

user

is

who

he/she

claims

to

be.

Access

to

database

objects

depends

on

the

user’s

authentication.

Valid

values

(from

sqlenv)

are:

SQL_AUTHENTICATION_SERVER

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database.

SQL_AUTHENTICATION_CLIENT

Specifies

that

authentication

takes

place

on

the

node

where

the

application

is

invoked.

SQL_AUTHENTICATION_KERBEROS

Specifies

that

authentication

takes

place

using

Kerberos

Security

Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED

Authentication

not

specified.

sqlecadb

-

Catalog

Database

Chapter

1.

Application

Programming

Interfaces

309

SQL_AUTHENTICATION_SVR_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

the

authentication

password

is

to

be

encrypted.

SQL_AUTHENTICATION_DATAENC

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

SQL_AUTHENTICATION_GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

This

parameter

can

be

set

to

SQL_AUTHENTICATION_NOT_SPECIFIED,

except

when

cataloging

a

database

that

resides

on

a

DB2

Version

1

server.

Specifying

the

authentication

type

in

the

database

catalog

results

in

a

performance

improvement

during

a

connect.

pComment

Input.

A

string

containing

an

optional

description

of

the

database.

A

null

string

indicates

no

comment.

The

maximum

length

of

a

comment

string

is

30

characters.

pPath

Input.

A

string

which,

on

UNIX

based

systems,

specifies

the

name

of

the

path

on

which

the

database

being

cataloged

resides.

Maximum

length

is

215

characters.

On

the

Windows

operating

system,

this

string

specifies

the

letter

of

the

drive

on

which

the

database

being

cataloged

resides.

If

a

NULL

pointer

is

provided,

the

default

database

path

is

assumed

to

be

that

specified

by

the

database

manager

configuration

parameter

dftdbpath.

pNodeName

Input.

A

string

containing

the

name

of

the

node

where

the

database

is

located.

May

be

NULL.

Note:

If

neither

pPath

nor

pNodeName

is

specified,

the

database

is

assumed

to

be

local,

and

the

location

of

the

database

is

assumed

to

be

that

specified

in

the

database

manager

configuration

parameter

dftdbpath.

Type

Input.

A

single

character

that

designates

whether

the

database

is

indirect,

remote,

or

is

cataloged

via

DCE.

Valid

values

(defined

in

sqlenv)

are:

SQL_INDIRECT

Specifies

that

the

database

resides

at

this

instance.

SQL_REMOTE

Specifies

that

the

database

resides

at

another

instance.

SQL_DCE

Specifies

that

the

database

is

cataloged

via

DCE.

pDbAlias

Input.

A

string

containing

an

alias

for

the

database.

pDbName

Input.

A

string

containing

the

database

name.

REXX

API

syntax:

CATALOG

DATABASE

dbname

[AS

alias]

[ON

path|AT

NODE

nodename]

[AUTHENTICATION

authentication]

[WITH

"comment"]

sqlecadb

-

Catalog

Database

310

Administrative

API

Reference

|
|
|

|
|
|

CATALOG

GLOBAL

DATABASE

db_global_name

AS

alias

USING

DIRECTORY

{DCE}

[WITH

"comment"]

REXX

API

parameters:

dbname

Name

of

the

database

to

be

cataloged.

alias

Alternate

name

for

the

database.

If

an

alias

is

not

specified,

the

database

name

is

used

as

the

alias.

path

Path

on

which

the

database

being

cataloged

resides.

nodename

Name

of

the

remote

workstation

where

the

database

being

cataloged

resides.

Note:

If

neither

path

nor

nodename

is

specified,

the

database

is

assumed

to

be

local,

and

the

location

of

the

database

is

assumed

to

be

that

specified

in

the

database

manager

configuration

parameter

dftdbpath.

authentication

Place

where

authentication

is

to

be

done.

Valid

values

are:

SERVER

Authentication

occurs

at

the

node

containing

the

target

database.

This

is

the

default.

CLIENT

Authentication

occurs

at

the

node

where

the

application

is

invoked.

KERBEROS

Specifies

that

authentication

takes

place

using

Kerberos

Security

Mechanism.

NOT_SPECIFIED

Authentication

not

specified.

SVR_ENCRYPT

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

the

authentication

password

is

to

be

encrypted.

DATAENC

Specifies

that

authentication

takes

place

on

the

node

containing

the

target

database,

and

that

connections

must

use

data

encryption.

GSSPLUGIN

Specifies

that

authentication

takes

place

using

an

external

GSS

API-based

plug-in

security

mechanism.

comment

Describes

the

database

or

the

database

entry

in

the

system

database

directory.

The

maximum

length

of

a

comment

string

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

db_global_name

The

fully

qualified

name

that

uniquely

identifies

the

database

in

the

DCE

name

space.

DCE

The

global

directory

service

being

used.

sqlecadb

-

Catalog

Database

Chapter

1.

Application

Programming

Interfaces

311

REXX

examples:

call

SQLDBS

’CATALOG

GLOBAL

DATABASE

/.../cell1/subsys/database/DB3

AS

dbtest

USING

DIRECTORY

DCE

WITH

"Sample

Database"’

Usage

notes:

Use

CATALOG

DATABASE

to

catalog

databases

located

on

local

or

remote

nodes,

recatalog

databases

that

were

uncataloged

previously,

or

maintain

multiple

aliases

for

one

database

(regardless

of

database

location).

DB2

automatically

catalogs

databases

when

they

are

created.

It

catalogs

an

entry

for

the

database

in

the

local

database

directory,

and

another

entry

in

the

system

database

directory.

If

the

database

is

created

from

a

remote

client

(or

a

client

which

is

executing

from

a

different

instance

on

the

same

machine),

an

entry

is

also

made

in

the

system

database

directory

at

the

client

instance.

Databases

created

at

the

current

instance

(as

defined

by

the

value

of

the

DB2INSTANCE

environment

variable)

are

cataloged

as

indirect.

Databases

created

at

other

instances

are

cataloged

as

remote

(even

if

they

physically

reside

on

the

same

machine).

CATALOG

DATABASE

automatically

creates

a

system

database

directory

if

one

does

not

exist.

The

system

database

directory

is

stored

on

the

path

that

contains

the

database

manager

instance

that

is

being

used.

The

system

database

directory

is

maintained

outside

of

the

database.

Each

entry

in

the

directory

contains:

v

Alias

v

Authentication

type

v

Comment

v

Database

v

Entry

type

v

Local

database

directory

(when

cataloging

a

local

database)

v

Node

name

(when

cataloging

a

remote

database)

v

Release

information.

If

a

database

is

cataloged

with

the

type

parameter

set

to

SQL_INDIRECT,

the

value

of

the

authentication

parameter

provided

will

be

ignored,

and

the

authentication

in

the

directory

will

be

set

to

SQL_AUTHENTICATION_NOT_SPECIFIED.

If

directory

caching

is

enabled,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

on

page

48

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

on

page

49

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

on

page

53

v

“sqleuncd

-

Uncatalog

Database”

on

page

371

v

“SQLCA”

on

page

410

sqlecadb

-

Catalog

Database

312

Administrative

API

Reference

Related

samples:

v

“dbcat.cbl

--

Catalog

to

and

uncatalog

from

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlecran

-

Create

Database

at

Node

Creates

a

database

only

on

the

database

partition

server

that

calls

the

API.

This

API

is

not

intended

for

general

use.

For

example,

it

should

be

used

with

db2Restore

if

the

database

partition

at

a

database

partition

server

was

damaged

and

must

be

recreated.

Improper

use

of

this

API

can

cause

inconsistencies

in

the

system,

so

it

should

only

be

used

with

caution.

Note:

If

this

API

is

used

to

recreate

a

database

partition

that

was

dropped

(because

it

was

damaged),

the

database

at

this

database

partition

server

will

be

in

the

restore-pending

state.

After

recreating

the

database

partition,

the

database

must

immediately

be

restored

on

this

database

partition

server.

Scope:

This

API

only

affects

the

database

partition

server

on

which

it

is

called.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

To

create

a

database

at

another

database

partition

server,

it

is

necessary

to

first

attach

to

that

database

partition

server.

A

database

connection

is

temporarily

established

by

this

API

during

processing.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlecran

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlecran

(

char

*pDbName,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgcran

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgcran

(

unsigned

short

reservedLen,

sqlecadb

-

Catalog

Database

Chapter

1.

Application

Programming

Interfaces

313

unsigned

short

dbNameLen,

struct

sqlca

*pSqlca,

void

*pReserved,

char

*pDbName);

/*

...

*/

API

parameters:

reservedLen

Input.

Reserved

for

the

length

of

pReserved.

dbNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

database

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved

Input.

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved

for

future

use.

pDbName

Input.

A

string

containing

the

name

of

the

database

to

be

created.

Must

not

be

NULL.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

When

the

database

is

successfully

created,

it

is

placed

in

restore-pending

state.

The

database

must

be

restored

on

this

database

partition

server

before

it

can

be

used.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqlecrea

-

Create

Database”

on

page

314

v

“sqledpan

-

Drop

Database

at

Node”

on

page

327

v

“SQLCA”

on

page

410

v

“db2Restore

-

Restore

database”

on

page

221

sqlecrea

-

Create

Database

Initializes

a

new

database

with

an

optional

user-defined

collating

sequence,

creates

the

three

initial

table

spaces,

creates

the

system

tables,

and

allocates

the

recovery

log.

Scope:

In

a

partitioned

database

environment,

this

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

sqlecran

-

Create

Database

at

Node

314

Administrative

API

Reference

The

database

partition

server

from

which

this

API

is

called

becomes

the

catalog

partition

for

the

new

database.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

To

create

a

database

at

another

(remote)

node,

it

is

necessary

to

first

attach

to

that

node.

A

database

connection

is

temporarily

established

by

this

API

during

processing.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlecrea

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlecrea

(

char

*pDbName,

char

*pLocalDbAlias,

char

*pPath,

struct

sqledbdesc

*pDbDescriptor,

struct

sqledbterritoryinfo

*pTerritoryInfo,

char

Reserved2,

void

*pReserved1,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgcrea

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgcrea

(

unsigned

short

PathLen,

unsigned

short

LocalDbAliasLen,

unsigned

short

DbNameLen,

struct

sqlca

*pSqlca,

void

*pReserved1,

unsigned

short

Reserved2,

struct

sqledbterritoryinfo

*pTerritoryInfo,

struct

sqledbdesc

*pDbDescriptor,

char

*pPath,

char

*pLocalDbAlias,

char

*pDbName);

/*

...

*/

API

parameters:

PathLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

path

in

bytes.

Set

to

zero

if

no

path

is

provided.

sqlecrea

-

Create

Database

Chapter

1.

Application

Programming

Interfaces

315

LocalDbALiasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

local

database

alias

in

bytes.

Set

to

zero

if

no

local

alias

is

provided.

DbNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

of

the

database

name

in

bytes.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved1

Input.

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved2

Input.

Reserved

for

future

use.

pTerritoryInfo

Input.

A

pointer

to

the

sqledbterritoryinfo

structure,

containing

the

locale

and

the

code

set

for

the

database.

May

be

NULL.

pDbDescriptor

Input.

A

pointer

to

the

database

description

block

used

when

creating

the

database.

The

database

description

block

may

be

used

to

supply

values

that

are

permanently

stored

in

the

configuration

file

of

the

database,

such

as

collating

sequence.

May

be

NULL.

For

information

about

the

supported

collating

sequences

for

Unicode

databases,

see

the

topic

about

the

database

description

block

(SQLEDBDESC).

pPath

Input.

On

UNIX

based

systems,

specifies

the

path

on

which

to

create

the

database.

If

a

path

is

not

specified,

the

database

is

created

on

the

default

database

path

specified

in

the

database

manager

configuration

file

(dftdbpath

parameter).

On

the

Windows

operating

system,

specifies

the

letter

of

the

drive

on

which

to

create

the

database.

May

be

NULL.

Note:

For

partitioned

database

environments,

a

database

should

not

be

created

in

an

NFS-mounted

directory.

If

a

path

is

not

specified,

ensure

that

the

dftdbpath

database

manager

configuration

parameter

is

not

set

to

an

NFS-mounted

path

(for

example,

on

UNIX

based

systems,

it

should

not

specify

the

$HOME

directory

of

the

instance

owner).

The

path

specified

for

this

API

in

a

partitioned

database

environment

cannot

be

a

relative

path.

pLocalDbAlias

Input.

A

string

containing

the

alias

to

be

placed

in

the

client’s

system

database

directory.

May

be

NULL.

If

no

local

alias

is

specified,

the

database

name

is

the

default.

pDbName

Input.

A

string

containing

the

database

name.

This

is

the

database

name

that

will

be

cataloged

in

the

system

database

directory.

Once

the

database

has

been

successfully

created

in

the

server’s

system

database

directory,

it

is

automatically

cataloged

in

the

system

database

directory

with

a

database

alias

identical

to

the

database

name.

Must

not

be

NULL.

REXX

API

syntax:

CREATE

DATABASE

dbname

[ON

path]

[ALIAS

dbalias]

[USING

CODESET

codeset

TERRITORY

territory]

[COLLATE

USING

{SYSTEM

|

IDENTITY

|

USER

:udcs}]

[NUMSEGS

numsegs]

[DFT_EXTENT_SZ

dft_extentsize]

[CATALOG

TABLESPACE

<tablespace_definition>]

sqlecrea

-

Create

Database

316

Administrative

API

Reference

|

|
|
|
|
|
|

[USER

TABLESPACE

<tablespace_definition>]

[TEMPORARY

TABLESPACE

<tablespace_definition>]

[WITH

comment]

Where

<tablespace_definition>

stands

for:

MANAGED

BY

{

SYSTEM

USING

:SMS_string

|

DATABASE

USING

:DMS_string

}

[

EXTENTSIZE

number_of_pages

]

[

PREFETCHSIZE

number_of_pages

]

[

OVERHEAD

number_of_milliseconds

]

[

TRANSFERRATE

number_of_milliseconds

]

REXX

API

parameters:

dbname

Name

of

the

database.

dbalias

Alias

of

the

database.

path

Path

on

which

to

create

the

database.

If

a

path

is

not

specified,

the

database

is

created

on

the

default

database

path

specified

in

the

database

manager

configuration

file

(dftdbpath

configuration

parameter).

Note:

For

partitioned

database

environments,

a

database

should

not

be

created

in

an

NFS-mounted

directory.

If

a

path

is

not

specified,

ensure

that

the

dftdbpath

database

manager

configuration

parameter

is

not

set

to

an

NFS-mounted

path

(for

example,

on

UNIX

based

systems,

it

should

not

specify

the

$HOME

directory

of

the

instance

owner).

The

path

specified

for

this

API

in

a

partitioned

database

environment

cannot

be

a

relative

path.

codeset

Code

set

to

be

used

for

data

entered

into

the

database.

territory

Territory

code

(locale)

to

be

used

for

data

entered

into

the

database.

SYSTEM

Collating

sequence

based

on

the

database

territory.

IDENTITY

The

collation

sequence

as

determined

by

the

binary

order

of

each

byte

of

the

string,

where

strings

are

compared

byte

for

byte,

starting

with

the

leftmost

byte.

USER

udcs

The

collating

sequence

is

specified

by

the

calling

application

in

a

host

variable

containing

a

256-byte

string

defining

the

collating

sequence.

numsegs

Number

of

segment

directories

that

will

be

created

and

used

to

store

the

DAT,

IDX,

and

LF

files.

dft_extentsize

Specifies

the

default

extent

size

for

table

spaces

in

the

database.

SMS_string

A

compound

REXX

host

variable

identifying

one

or

more

containers

that

will

belong

to

the

table

space,

and

where

the

table

space

data

will

be

sqlecrea

-

Create

Database

Chapter

1.

Application

Programming

Interfaces

317

|

|
|
|

stored.

In

the

following,

XXX

represents

the

host

variable

name.

Note

that

each

of

the

directory

names

cannot

exceed

254

bytes

in

length.

XXX.0

Number

of

directories

specified

XXX.1

First

directory

name

for

SMS

table

space

XXX.2

Second

directory

name

for

SMS

table

space

XXX.3

and

so

on.

DMS_string

A

compound

REXX

host

variable

identifying

one

or

more

containers

that

will

belong

to

the

table

space,

where

the

table

space

data

will

be

stored,

container

sizes

(specified

in

a

number

of

4KB

pages)

and

types

(file

or

device).

The

specified

devices

(not

files)

must

already

exist.

In

the

following,

XXX

represents

the

host

variable

name.

Note

that

each

of

the

container

names

cannot

exceed

254

bytes

in

length.

XXX.0

Number

of

strings

in

the

REXX

host

variable

(number

of

first

level

elements)

XXX.1.1

Type

of

the

first

container

(file

or

device)

XXX.1.2

First

file

name

or

device

name

XXX.1.3

Size

(in

pages)

of

the

first

container

XXX.2.1

Type

of

the

second

container

(file

or

device)

XXX.2.2

Second

file

name

or

device

name

XXX.2.3

Size

(in

pages)

of

the

second

container

XXX.3.1

and

so

on.

EXTENTSIZE

number_of_pages

Number

of

4KB

pages

that

will

be

written

to

a

container

before

skipping

to

the

next

container.

PREFETCHSIZE

number_of_pages

Number

of

4KB

pages

that

will

be

read

from

the

table

space

when

data

prefetching

is

being

performed.

OVERHEAD

number_of_milliseconds

Number

that

specifies

the

I/O

controller

overhead,

disk

seek,

and

latency

time

in

milliseconds.

TRANSFERRATE

number_of_milliseconds

Number

that

specifies

the

time

in

milliseconds

to

read

one

4KB

page

into

memory.

comment

Description

of

the

database

or

the

database

entry

in

the

system

directory.

Do

not

use

a

carriage

return

or

line

feed

character

in

the

comment.

Be

sure

to

enclose

the

comment

text

in

double

quotation

marks.

Maximum

size

is

30

characters.

sqlecrea

-

Create

Database

318

Administrative

API

Reference

Usage

notes:

CREATE

DATABASE:

v

Creates

a

database

in

the

specified

subdirectory.

In

a

partitioned

database

environment,

creates

the

database

on

all

database

partition

servers

listed

in

db2nodes.cfg,

and

creates

a

$DB2INSTANCE/NODExxxx

directory

under

the

specified

subdirectory

at

each

database

partition

server,

where

xxxx

represents

the

local

database

partition

server

number.

In

a

single-partition

environment,

creates

a

$DB2INSTANCE/NODE0000

directory

under

the

specified

subdirectory.

v

Creates

the

system

catalog

tables

and

recovery

log.

v

Catalogs

the

database

in

the

following

database

directories:

–

server’s

local

database

directory

on

the

path

indicated

by

pPath

or,

if

the

path

is

not

specified,

the

default

database

path

defined

in

the

database

manager

system

configuration

file.

A

local

database

directory

resides

on

each

file

system

that

contains

a

database.

–

server’s

system

database

directory

for

the

attached

instance.

The

resulting

directory

entry

will

contain

the

database

name

and

a

database

alias.

If

the

API

was

called

from

a

remote

client,

the

client’s

system

database

directory

is

also

updated

with

the

database

name

and

an

alias.

Creates

a

system

or

a

local

database

directory

if

neither

exists.

If

specified,

the

comment

and

code

set

values

are

placed

in

both

directories.

v

Stores

the

specified

code

set,

territory,

and

collating

sequence.

A

flag

is

set

in

the

database

configuration

file

if

the

collating

sequence

consists

of

unique

weights,

or

if

it

is

the

identity

sequence.

v

Creates

the

schemata

called

SYSCAT,

SYSFUN,

SYSIBM,

and

SYSSTAT

with

SYSIBM

as

the

owner.

The

database

partition

server

on

which

this

API

is

called

becomes

the

catalog

partition

for

the

new

database.

Two

database

partition

groups

are

created

automatically:

IBMDEFAULTGROUP

and

IBMCATGROUP.

v

Binds

the

previously

defined

database

manager

bind

files

to

the

database

(these

are

listed

in

db2ubind.lst).

If

one

or

more

of

these

files

do

not

bind

successfully,

sqlecrea

returns

a

warning

in

the

SQLCA,

and

provides

information

about

the

binds

that

failed.

If

a

bind

fails,

the

user

can

take

corrective

action

and

manually

bind

the

failing

file.

The

database

is

created

in

any

case.

A

schema

called

NULLID

is

implicitly

created

when

performing

the

binds

with

CREATEIN

privilege

granted

to

PUBLIC.

v

Creates

SYSCATSPACE,

TEMPSPACE1,

and

USERSPACE1

table

spaces.

The

SYSCATSPACE

table

space

is

only

created

on

the

catalog

partition.

All

database

partitions

have

the

same

table

space

definitions.

v

Grants

the

following:

–

DBADM

authority,

and

CONNECT,

CREATETAB,

BINDADD,

CREATE_NOT_FENCED,

IMPLICIT_SCHEMA,

and

LOAD

privileges

to

the

database

creator

–

CONNECT,

CREATETAB,

BINDADD,

and

IMPLICIT_SCHEMA

privileges

to

PUBLIC

–

USE

privilege

on

the

USERSPACE1

table

space

to

PUBLIC

–

SELECT

privilege

on

each

system

catalog

to

PUBLIC

–

BIND

and

EXECUTE

privilege

to

PUBLIC

for

each

successfully

bound

utility

–

EXECUTE

WITH

GRANT

privilege

to

PUBLIC

on

all

functions

in

the

SYSFUN

schema.

–

EXECUTE

privilege

to

PUBLIC

on

all

procedures

in

SYSIBM

schema.

sqlecrea

-

Create

Database

Chapter

1.

Application

Programming

Interfaces

319

With

dbadm

authority,

one

can

grant

these

privileges

to

(and

revoke

them

from)

other

users

or

PUBLIC.

If

another

administrator

with

sysadm

or

dbadm

authority

over

the

database

revokes

these

privileges,

the

database

creator

nevertheless

retains

them.

In

a

partitioned

database

environment,

the

database

manager

creates

a

subdirectory,

$DB2INSTANCE/NODExxxx,

under

the

specified

or

default

path

on

all

database

partition

servers.

The

xxxx

is

the

node

number

as

defined

in

the

db2nodes.cfg

file

(that

is,

node

0

becomes

NODE0000).

Subdirectories

SQL00001

through

SQLnnnnn

will

reside

on

this

path.

This

ensures

that

the

database

objects

associated

with

different

database

partition

servers

are

stored

in

different

directories

(even

if

the

subdirectory

$DB2INSTANCE

under

the

specified

or

default

path

is

shared

by

all

database

partition

servers).

On

Windows

and

AIX,

the

length

of

the

code

set

name

is

limited

to

a

maximum

of

9

characters.

For

example,

specify

a

code

set

name

such

as

ISO885915

instead

of

ISO8859-15.

CREATE

DATABASE

will

fail

if

the

application

is

already

connected

to

a

database.

If

the

database

description

block

structure

is

not

set

correctly,

an

error

message

is

returned.

The

″eye-catcher″

of

the

database

description

block

must

be

set

to

the

symbolic

value

SQLE_DBDESC_2

(defined

in

sqlenv).

The

following

sample

user-defined

collating

sequences

are

available

in

the

host

language

include

files:

sqle819a

If

the

code

page

of

the

database

is

819

(ISO

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

500

(EBCDIC

International).

sqle819b

If

the

code

page

of

the

database

is

819

(ISO

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

037

(EBCDIC

US

English).

sqle850a

If

the

code

page

of

the

database

is

850

(ASCII

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

500

(EBCDIC

International).

sqle850b

If

the

code

page

of

the

database

is

850

(ASCII

Latin/1),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

037

(EBCDIC

US

English).

sqle932a

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

5035

(EBCDIC

Japanese).

sqle932b

If

the

code

page

of

the

database

is

932

(ASCII

Japanese),

this

sequence

will

cause

sorting

to

be

performed

according

to

the

host

CCSID

5026

(EBCDIC

Japanese).

The

collating

sequence

specified

during

CREATE

DATABASE

cannot

be

changed

later,

and

all

character

comparisons

in

the

database

use

the

specified

collating

sequence.

This

affects

the

structure

of

indexes

as

well

as

the

results

of

queries.

Use

sqlecadb

to

define

different

alias

names

for

the

new

database.

Related

reference:

v

“sqlabndx

-

Bind”

on

page

266

sqlecrea

-

Create

Database

320

Administrative

API

Reference

|
|
|

v

“sqlecadb

-

Catalog

Database”

on

page

308

v

“sqledrpd

-

Drop

Database”

on

page

330

v

“sqlecran

-

Create

Database

at

Node”

on

page

313

v

“sqledpan

-

Drop

Database

at

Node”

on

page

327

v

“SQLEDBTERRITORYINFO”

on

page

430

v

“SQLCA”

on

page

410

v

“SQLEDBDESC”

on

page

430

v

“CREATE

DATABASE

Command”

in

the

Command

Reference

Related

samples:

v

“db_udcs.cbl

--

How

to

use

user-defined

collating

sequence

(IBM

COBOL)”

v

“dbconf.cbl

--

Update

database

configuration

(IBM

COBOL)”

v

“ebcdicdb.cbl

--

Create

a

database

with

EBCDIC

037

standard

collating

sequence

(IBM

COBOL)”

v

“dbcreate.c

--

Create

and

drop

databases

(C)”

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“dbcreate.C

--

Create

and

drop

databases

(C++)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

sqlectnd

-

Catalog

Node

Stores

information

in

the

node

directory

about

the

location

of

a

DB2

server

instance

based

on

the

communications

protocol

used

to

access

that

instance.

The

information

is

needed

to

establish

a

database

connection

or

attachment

between

an

application

and

a

server

instance.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlectnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlectnd

(

struct

sqle_node_struct

*pNodeInfo,

void

*pProtocolInfo,

struct

sqlca

*pSqlca);

/*

...

*/

sqlecrea

-

Create

Database

Chapter

1.

Application

Programming

Interfaces

321

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgctnd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgctnd

(

struct

sqlca

*pSqlca,

struct

sqle_node_struct

*pNodeInfo,

void

*pProtocolInfo);

/*

...

*/

API

parameters:

pNodeInfo

Input.

A

pointer

to

a

node

directory

structure.

pProtocolInfo

Input.

A

pointer

to

the

protocol

structure:

v

SQLE-NODE-CPIC

v

SQLE-NODE-IPXSPX

v

SQLE-NODE-LOCAL

v

SQLE-NODE-NETB

v

SQLE-NODE-NPIPE

v

SQLE-NODE-TCPIP.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

CATALOG

APPC

NODE

nodename

DESTINATION

symbolic_destination_name

[SECURITY

{NONE|SAME|PROGRAM}]

[WITH

comment]

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

symbolic_destination_name

Symbolic

destination

name

of

the

remote

partner

node.

comment

An

optional

description

associated

with

this

node

directory

entry.

Do

not

include

a

CR/LF

character

in

a

comment.

Maximum

length

is

30

characters.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

REXX

API

syntax:

CATALOG

IPXSPX

NODE

nodename

REMOTE

file_server

SERVER

objectname

[WITH

comment]

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

file_server

Name

of

the

NetWare

file

server

where

the

internetwork

address

of

the

database

manager

instance

is

registered.

The

internetwork

address

is

stored

in

the

bindery

at

the

NetWare

file

server,

and

is

accessed

using

objectname.

sqlectnd

-

Catalog

Node

322

Administrative

API

Reference

objectname

The

database

manager

server

instance

is

represented

as

the

object,

objectname,

on

the

NetWare

file

server.

The

server’s

IPX/SPX

internetwork

address

is

stored

and

retrieved

from

this

object.

comment

An

optional

description

associated

with

this

node

directory

entry.

Do

not

include

a

CR/LF

character

in

a

comment.

Maximum

length

is

30

characters.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

REXX

API

syntax:

CATALOG

LOCAL

NODE

nodename

INSTANCE

instance_name

[WITH

comment]

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

instance_name

Name

of

the

instance

to

be

cataloged.

comment

An

optional

description

associated

with

this

node

directory

entry.

Do

not

include

a

CR/LF

character

in

a

comment.

Maximum

length

is

30

characters.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

REXX

API

syntax:

CATALOG

NETBIOS

NODE

nodename

REMOTE

server_nname

ADAPTER

adapternum

[WITH

comment]

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

server_nname

Name

of

the

remote

workstation.

This

is

the

workstation

name

(nname)

found

in

the

database

manager

configuration

file

of

the

server

instance.

adapternum

Local

LAN

adapter

number.

comment

An

optional

description

associated

with

this

node

directory

entry.

Do

not

include

a

CR/LF

character

in

a

comment.

Maximum

length

is

30

characters.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

REXX

API

syntax:

CATALOG

NPIPE

NODE

nodename

REMOTE

computer_name

INSTANCE

instance_name

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

computer_name

The

computer

name

of

the

node

on

which

the

target

database

resides.

instance_name

Name

of

the

instance

to

be

cataloged.

sqlectnd

-

Catalog

Node

Chapter

1.

Application

Programming

Interfaces

323

REXX

API

syntax:

CATALOG

TCPIP

NODE

nodename

REMOTE

hostname

SERVER

servicename

[WITH

comment]

REXX

API

parameters:

nodename

Alias

for

the

node

to

be

cataloged.

hostname

Host

name

of

the

node

where

the

target

database

resides.

servicename

Either

the

service

name

of

the

database

manager

instance

on

the

remote

node,

or

the

port

number

associated

with

that

service

name.

comment

An

optional

description

associated

with

this

node

directory

entry.

Do

not

include

a

CR/LF

character

in

a

comment.

Maximum

length

is

30

characters.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

Usage

notes:

DB2

creates

the

node

directory

on

the

first

call

to

this

API

if

the

node

directory

does

not

exist.

On

the

Windows

operating

system,

the

node

directory

is

stored

in

the

directory

of

the

instance

being

used.

On

UNIX

based

systems,

it

is

stored

in

the

DB2

install

directory

(sqllib,

for

example).

If

directory

caching

is

enabled,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“sqlencls

-

Close

Node

Directory

Scan”

on

page

354

v

“sqlengne

-

Get

Next

Node

Directory

Entry”

on

page

355

v

“sqlenops

-

Open

Node

Directory

Scan”

on

page

357

v

“sqleuncn

-

Uncatalog

Node”

on

page

373

v

“SQLE-NODE-CPIC”

on

page

424

v

“SQLE-NODE-NETB”

on

page

426

v

“SQLE-NODE-STRUCT”

on

page

427

v

“SQLE-NODE-TCPIP”

on

page

428

v

“SQLCA”

on

page

410

v

“SQLE-NODE-IPXSPX”

on

page

424

v

“SQLE-NODE-LOCAL”

on

page

425

v

“SQLE-NODE-NPIPE”

on

page

426

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“nodecat.cbl

--

Get

node

directory

information

(IBM

COBOL)”

sqlectnd

-

Catalog

Node

324

Administrative

API

Reference

sqledcgd

-

Change

Database

Comment

Changes

a

database

comment

in

the

system

database

directory

or

the

local

database

directory.

New

comment

text

can

be

substituted

for

text

currently

associated

with

a

comment.

Scope:

This

API

only

affects

the

database

partition

server

on

which

it

is

issued.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledcgd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledcgd

(

_SQLOLDCHAR

*pDbAlias,

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pComment,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdcgd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdcgd

(

unsigned

short

CommentLen,

unsigned

short

PathLen,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pComment,

_SQLOLDCHAR

*pPath,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

CommentLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

comment.

Set

to

zero

if

no

comment

is

provided.

sqledcgd

-

Change

Database

Comment

Chapter

1.

Application

Programming

Interfaces

325

PathLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

path

parameter.

Set

to

zero

if

no

path

is

provided.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pComment

Input.

A

string

containing

an

optional

description

of

the

database.

A

null

string

indicates

no

comment.

It

can

also

indicate

no

change

to

an

existing

database

comment.

pPath

Input.

A

string

containing

the

path

on

which

the

local

database

directory

resides.

If

the

specified

path

is

a

null

pointer,

the

system

database

directory

is

used.

The

comment

is

only

changed

in

the

local

database

directory

or

the

system

database

directory

on

the

database

partition

server

on

which

the

API

is

executed.

To

change

the

database

comment

on

all

database

partition

servers,

run

the

API

on

every

database

partition

server.

pDbAlias

Input.

A

string

containing

the

database

alias.

This

is

the

name

that

is

cataloged

in

the

system

database

directory,

or

the

name

cataloged

in

the

local

database

directory

if

the

path

is

specified.

REXX

API

syntax:

CHANGE

DATABASE

database_alias

COMMENT

[ON

path]

WITH

comment

REXX

API

parameters:

database_alias

Alias

of

the

database

whose

comment

is

to

be

changed.

To

change

the

comment

in

the

system

database

directory,

it

is

necessary

to

specify

the

database

alias.

If

the

path

where

the

database

resides

is

specified

(with

the

path

parameter),

enter

the

name

(not

the

alias)

of

the

database.

Use

this

method

to

change

the

comment

in

the

local

database

directory.

path

Path

on

which

the

database

resides.

comment

Describes

the

entry

in

the

system

database

directory

or

the

local

database

directory.

Any

comment

that

helps

to

describe

the

cataloged

database

can

be

entered.

The

maximum

length

of

a

comment

string

is

30

characters.

A

carriage

return

or

a

line

feed

character

is

not

permitted.

The

comment

text

must

be

enclosed

by

double

quotation

marks.

Usage

notes:

New

comment

text

replaces

existing

text.

To

append

information,

enter

the

old

comment

text,

followed

by

the

new

text.

sqledcgd

-

Change

Database

Comment

326

Administrative

API

Reference

Only

the

comment

for

an

entry

associated

with

the

database

alias

is

modified.

Other

entries

with

the

same

database

name,

but

with

different

aliases,

are

not

affected.

If

the

path

is

specified,

the

database

alias

must

be

cataloged

in

the

local

database

directory.

If

the

path

is

not

specified,

the

database

alias

must

be

cataloged

in

the

system

database

directory.

Related

reference:

v

“sqlecadb

-

Catalog

Database”

on

page

308

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

on

page

48

v

“sqlecrea

-

Create

Database”

on

page

314

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

on

page

49

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

on

page

53

Related

samples:

v

“dbcmt.cbl

--

Change

a

database

comment

in

the

database

directory

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqledpan

-

Drop

Database

at

Node

Drops

a

database

at

a

specified

database

partition

server.

Can

only

be

run

in

a

partitioned

database

environment.

Scope:

This

API

only

affects

the

database

partition

server

on

which

it

is

called.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None.

An

instance

attachment

is

established

for

the

duration

of

the

call.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledpan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledpan

(

char

*pDbAlias,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

sqledcgd

-

Change

Database

Comment

Chapter

1.

Application

Programming

Interfaces

327

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdpan

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdpan

(

unsigned

short

Reserved1,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

void

*pReserved2,

char

*pDbAlias);

/*

...

*/

API

parameters:

Reserved1

Reserved

for

future

use.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved2

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved

for

future

use.

pDbAlias

Input.

A

string

containing

the

alias

of

the

database

to

be

dropped.

This

name

is

used

to

reference

the

actual

database

name

in

the

system

database

directory.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

Improper

use

of

this

API

can

cause

inconsistencies

in

the

system,

so

it

should

only

be

used

with

caution.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqledrpd

-

Drop

Database”

on

page

330

v

“sqlecran

-

Create

Database

at

Node”

on

page

313

v

“SQLCA”

on

page

410

sqledpan

-

Drop

Database

at

Node

328

Administrative

API

Reference

sqledreg

-

Deregister

Deregisters

the

DB2

server

from

a

network

file

server.

The

DB2

server’s

network

address

is

removed

from

a

specified

registry

on

the

file

server.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledreg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledreg

(

unsigned

short

Registry,

void

*pRegisterInfo,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdreg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdreg

(

unsigned

short

Registry,

void

*pRegisterInfo,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

Registry

Input.

Indicates

where

on

the

network

file

server

to

deregister

the

DB2

server.

In

this

release,

the

only

supported

registry

is

SQL_NWBINDERY

(NetWare

file

server

bindery,

defined

in

sqlenv).

pRegisterInfo

Input.

A

pointer

to

the

sqle_reg_nwbindery

structure.

In

this

structure,

the

caller

specifies

a

user

name

and

password

that

are

valid

on

the

network

file

server.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

sqledreg

-

Deregister

Chapter

1.

Application

Programming

Interfaces

329

When

Registry

has

a

value

of

SQL_NWBINDERY,

this

API

uses

the

NetWare

user

name

and

password

supplied

in

the

sqle_reg_nwbindery

structure

to

log

onto

the

NetWare

file

server

(FILESERVER)

specified

in

the

database

manager

configuration

file.

The

object

name

(OBJECTNAME)

specified

in

the

database

manager

configuration

file

is

deleted

from

the

NetWare

file

server

bindery.

The

NetWare

user

name

and

password

specified

must

have

supervisory

or

equivalent

authority.

This

API

must

be

issued

locally

from

the

DB2

server.

It

is

not

supported

remotely.

If

the

IPX/SPX

fields

are

reconfigured,

or

the

DB2

server’s

IPX/SPX

internetwork

address

changes,

deregister

the

DB2

server

from

the

network

file

server

before

making

the

changes,

and

then

register

it

again

after

the

changes

have

been

made.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqleregs

-

Register”

on

page

362

v

“SQLCA”

on

page

410

v

“SQLE-REG-NWBINDERY”

on

page

429

v

“DEREGISTER

Command”

in

the

Command

Reference

sqledrpd

-

Drop

Database

Deletes

the

database

contents

and

all

log

files

for

the

database,

uncatalogs

the

database,

and

deletes

the

database

subdirectory.

Scope:

By

default,

this

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

It

is

not

necessary

to

call

ATTACH

before

dropping

a

remote

database.

If

the

database

is

cataloged

as

remote,

an

instance

attachment

to

the

remote

node

is

established

for

the

duration

of

the

call.

API

include

file:

sqlenv.h

C

API

syntax:

sqledreg

-

Deregister

330

Administrative

API

Reference

/*

File:

sqlenv.h

*/

/*

API:

sqledrpd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledrpd

(

_SQLOLDCHAR

*pDbAlias,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdrpd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdrpd

(

unsigned

short

Reserved1,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pReserved2,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

Reserved1

Reserved

for

future

use.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved2

A

spare

pointer

that

is

set

to

null

or

points

to

zero.

Reserved

for

future

use.

pDbAlias

Input.

A

string

containing

the

alias

of

the

database

to

be

dropped.

This

name

is

used

to

reference

the

actual

database

name

in

the

system

database

directory.

REXX

API

syntax:

DROP

DATABASE

dbalias

REXX

API

parameters:

dbalias

The

alias

of

the

database

to

be

dropped.

Usage

notes:

sqledrpd

deletes

all

user

data

and

log

files.

If

the

log

files

are

needed

for

a

roll-forward

recovery

after

a

restore

operation,

the

files

should

be

saved

prior

to

calling

this

API.

The

database

must

not

be

in

use;

all

users

must

be

disconnected

from

the

database

before

the

database

can

be

dropped.

To

be

dropped,

a

database

must

be

cataloged

in

the

system

database

directory.

Only

the

specified

database

alias

is

removed

from

the

system

database

directory.

If

sqledrpd

-

Drop

Database

Chapter

1.

Application

Programming

Interfaces

331

other

aliases

with

the

same

database

name

exist,

their

entries

remain.

If

the

database

being

dropped

is

the

last

entry

in

the

local

database

directory,

the

local

database

directory

is

deleted

automatically.

If

this

API

is

called

from

a

remote

client

(or

from

a

different

instance

on

the

same

machine),

the

specified

alias

is

removed

from

the

client’s

system

database

directory.

The

corresponding

database

name

is

removed

from

the

server’s

system

database

directory.

This

API

unlinks

all

files

that

are

linked

through

any

DATALINK

columns.

Since

the

unlink

operation

is

performed

asynchronously

on

the

DB2

Data

Links

Manager,

its

effects

may

not

be

seen

immediately

on

the

DB2

Data

Links

Manager,

and

the

unlinked

files

may

not

be

immediately

available

for

other

operations.

When

the

API

is

called,

all

the

DB2

Data

Links

Managers

configured

to

that

database

must

be

available;

otherwise,

the

drop

database

operation

will

fail.

Related

reference:

v

“sqlecadb

-

Catalog

Database”

on

page

308

v

“sqlecrea

-

Create

Database”

on

page

314

v

“sqleuncd

-

Uncatalog

Database”

on

page

371

v

“sqlecran

-

Create

Database

at

Node”

on

page

313

v

“sqledpan

-

Drop

Database

at

Node”

on

page

327

v

“SQLCA”

on

page

410

Related

samples:

v

“dbconf.cbl

--

Update

database

configuration

(IBM

COBOL)”

v

“dbcreate.c

--

Create

and

drop

databases

(C)”

v

“dbcreate.C

--

Create

and

drop

databases

(C++)”

sqledrpn

-

Drop

Node

Verify

Verifies

whether

a

database

partition

server

is

being

used

by

a

database.

A

message

is

returned,

indicating

whether

the

database

partition

server

can

be

dropped.

Scope:

This

API

only

affects

the

database

partition

server

on

which

it

is

issued.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledrpn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledrpd

-

Drop

Database

332

Administrative

API

Reference

sqledrpn

(

unsigned

short

Action,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdrpn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdrpn

(

unsigned

short

Reserved1,

struct

sqlca

*pSqlca,

void

*pReserved2,

unsigned

short

Action);

/*

...

*/

API

parameters:

Reserved1

Reserved

for

the

length

of

pReserved2.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pReserved2

A

spare

pointer

that

is

set

to

NULL

or

points

to

0.

Reserved

for

future

use.

Action

The

action

requested.

The

valid

value

is:

SQL_DROPNODE_VERIFY

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

If

a

message

is

returned,

indicating

that

the

database

partition

server

is

not

in

use,

use

the

db2stop

command

with

DROP

NODENUM

to

remove

the

entry

for

the

database

partition

server

from

the

db2nodes.cfg

file,

which

removes

the

database

partition

server

from

the

partitioned

database

environment.

If

a

message

is

returned,

indicating

that

the

database

partition

server

is

in

use,

the

following

actions

should

be

taken:

1.

The

database

partition

server

to

be

dropped

will

have

a

database

partition

on

it

for

each

database

in

the

instance.

If

any

of

these

database

partitions

contain

data,

redistribute

the

database

partition

groups

that

use

these

database

partitions.

Redistribute

the

database

partition

groups

to

move

the

data

to

database

partitions

that

exist

at

database

partition

servers

that

are

not

being

dropped.

After

the

database

partition

groups

are

redistributed,

drop

the

database

partition

from

every

database

partition

group

that

uses

it.

To

remove

a

database

partition

from

a

database

partition

group,

you

can

use

either

the

drop

node

option

of

the

sqludrdt

API

or

the

ALTER

DATABASE

PARTITION

GROUP

statement.

2.

Drop

any

event

monitors

that

are

defined

on

the

database

partition

server.

sqledrpn

-

Drop

Node

Verify

Chapter

1.

Application

Programming

Interfaces

333

3.

Rerun

sqledrpn

to

ensure

that

the

database

partition

at

the

database

partition

server

is

no

longer

in

use.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqleaddn

-

Add

Node”

on

page

300

v

“SQLCA”

on

page

410

sqledtin

-

Detach

Removes

the

logical

instance

attachment,

and

terminates

the

physical

communication

connection

if

there

are

no

other

logical

connections

using

this

layer.

Authorization:

None

Required

connection:

None.

Removes

an

existing

instance

attachment.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqledtin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqledtin

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgdtin

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdtin

(

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

DETACH

Related

reference:

v

“sqleatin

-

Attach”

on

page

305

sqledrpn

-

Drop

Node

Verify

334

Administrative

API

Reference

v

“SQLCA”

on

page

410

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“inattach.c

--

Attach

to

and

detach

from

an

instance

(C)”

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

v

“inattach.C

--

Attach

to

and

detach

from

an

instance

(C++)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqlefmem

-

Free

Memory

Frees

memory

allocated

by

DB2

APIs

on

the

caller’s

behalf.

Intended

for

use

with

the

sqlbtcq

and

sqlbmtsq

APIs.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlefmem

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlefmem

(

struct

sqlca

*pSqlca,

void

*pBuffer);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgfmem

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgfmem

(

struct

sqlca

*pSqlca,

void

*pBuffer);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pBuffer

Input.

Pointer

to

the

memory

to

be

freed.

Related

reference:

v

“sqlbmtsq

-

Table

Space

Query”

on

page

283

v

“sqlbtcq

-

Table

Space

Container

Query”

on

page

293

sqledtin

-

Detach

Chapter

1.

Application

Programming

Interfaces

335

v

“SQLCA”

on

page

410

Related

samples:

v

“dbrecov.sqc

--

How

to

recover

a

database

(C)”

v

“tsinfo.sqc

--

How

to

get

information

at

the

table

space

level

(C)”

v

“dbrecov.sqC

--

How

to

recover

a

database

(C++)”

v

“tsinfo.sqC

--

How

to

get

information

at

the

table

space

level

(C++)”

v

“tabscont.sqb

--

How

to

get

tablespace

container

information

(IBM

COBOL)”

v

“tabspace.sqb

--

How

to

get

tablespace

information

(IBM

COBOL)”

v

“tspace.sqb

--

How

to

copy

and

free

memory

in

a

tablespace

(IBM

COBOL)”

sqlefrce

-

Force

Application

Forces

local

or

remote

users

or

applications

off

the

system

to

allow

for

maintenance

on

a

server.

Attention:

If

an

operation

that

cannot

be

interrupted

(a

database

restore,

for

example)

is

forced,

the

operation

must

be

successfully

re-executed

before

the

database

becomes

available.

Scope:

This

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

In

a

partitioned

database

environment,

this

API

does

not

have

to

be

issued

from

the

coordinator

partition

of

the

application

being

forced.

This

API

can

be

issued

from

any

database

partition

server

in

the

partitioned

database

environment.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

Required

connection:

Instance.

To

force

users

off

a

remote

server,

it

is

necessary

to

first

attach

to

that

server.

If

no

attachment

exists,

this

API

is

executed

locally.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlefrce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlefrce

(

long

NumAgentIds,

sqlefmem

-

Free

Memory

336

Administrative

API

Reference

|

sqluint32

*pAgentIds,

unsigned

short

ForceMode,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgfrce

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgfrce

(

struct

sqlca

*pSqlca,

unsigned

short

ForceMode,

sqluint32

*pAgentIds,

long

NumAgentIds);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

ForceMode

Input.

An

integer

specifying

the

operating

mode

of

the

sqlefrce

API.

Only

the

asynchronous

mode

is

supported.

This

means

that

the

API

does

not

wait

until

all

specified

users

are

terminated

before

returning.

It

returns

as

soon

as

the

API

has

been

issued

successfully,

or

an

error

occurs.

As

a

result,

there

may

be

a

short

interval

between

the

time

the

force

application

call

completes

and

the

specified

users

have

been

terminated.

This

parameter

must

be

set

to

SQL_ASYNCH

(defined

in

sqlenv).

pAgentIds

Input.

Pointer

to

an

array

of

unsigned

long

integers.

Each

entry

describes

the

agent

ID

of

the

corresponding

database

user.

NumAgentIds

Input.

An

integer

representing

the

total

number

of

users

to

be

terminated.

This

number

should

be

the

same

as

the

number

of

elements

in

the

array

of

agent

IDs.

If

this

parameter

is

set

to

SQL_ALL_USERS

(defined

in

sqlenv),

all

applications

with

either

database

connections

or

instance

attachments

are

forced.

If

it

is

set

to

zero,

an

error

is

returned.

REXX

API

syntax:

FORCE

APPLICATION

{ALL

|

:agentidarray}

[MODE

ASYNC]

REXX

API

parameters:

ALL

All

applications

will

be

disconnected.

This

includes

applications

that

have

database

connections

and

applications

that

have

instance

attachments.

agentidarray

A

compound

REXX

host

variable

containing

the

list

of

agent

IDs

to

be

terminated.

In

the

following,

XXX

is

the

name

of

the

host

variable:

XXX.0

Number

of

agents

to

be

terminated

XXX.1

First

agent

ID

XXX.2

Second

agent

ID

XXX.3

and

so

on.

sqlefrce

-

Force

Application

Chapter

1.

Application

Programming

Interfaces

337

ASYNC

The

only

mode

currently

supported

means

that

sqlefrce

does

not

wait

until

all

specified

applications

are

terminated

before

returning.

Usage

notes:

db2stop

cannot

be

executed

during

a

force.

The

database

manager

remains

active

so

that

subsequent

database

manager

operations

can

be

handled

without

the

need

for

db2start.

To

preserve

database

integrity,

only

users

who

are

idling

or

executing

interruptible

database

operations

can

be

terminated.

After

a

FORCE

has

been

issued,

the

database

will

still

accept

requests

to

connect.

Additional

forces

may

be

required

to

completely

force

all

users

off.

The

database

system

monitor

functions

are

used

to

gather

the

agent

IDs

of

the

users

to

be

forced.

When

the

force

mode

is

set

to

SQL_ASYNCH

(the

only

value

permitted),

the

API

immediately

returns

to

the

calling

application.

Minimal

validation

is

performed

on

the

array

of

agent

IDs

to

be

forced.

The

user

must

ensure

that

the

pointer

points

to

an

array

containing

the

total

number

of

elements

specified.

If

NumAgentIds

is

set

to

SQL_ALL_USERS,

the

array

is

ignored.

When

a

user

is

terminated,

a

ROLLBACK

is

performed

to

ensure

database

consistency.

All

users

that

can

be

forced

will

be

forced.

If

one

or

more

specified

agent

IDs

cannot

be

found,

sqlcode

in

the

sqlca

structure

is

set

to

1230.

An

agent

ID

may

not

be

found,

for

instance,

if

the

user

signs

off

between

the

time

an

agent

ID

is

collected

and

sqlefrce

is

called.

The

user

that

calls

this

API

is

never

forced

off.

Agent

IDs

are

recycled,

and

are

used

to

force

applications

some

time

after

being

gathered

by

the

database

system

monitor.

When

a

user

signs

off,

therefore,

another

user

may

sign

on

and

acquire

the

same

agent

ID

through

this

recycling

process,

with

the

result

that

the

wrong

user

may

be

forced.

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“sqleatin

-

Attach”

on

page

305

v

“sqledtin

-

Detach”

on

page

334

v

“SQLCA”

on

page

410

Related

samples:

v

“dbconn.sqc

--

How

to

connect

to

and

disconnect

from

a

database

(C)”

v

“dbsample.sqc

--

Creates

a

sample

database

(C)”

v

“instart.c

--

Stop

and

start

the

current

local

instance

(C)”

v

“dbconn.sqC

--

How

to

connect

to

and

disconnect

from

a

database

(C++)”

v

“instart.C

--

Stop

and

start

the

current

local

instance

(C++)”

v

“dbstop.cbl

--

How

to

stop

a

database

manager

(IBM

COBOL)”

sqlefrce

-

Force

Application

338

Administrative

API

Reference

sqlegdad

-

Catalog

DCS

Database

Stores

information

about

remote

databases

in

the

Database

Connection

Services

(DCS)

directory.

These

databases

are

accessed

through

an

Application

Requester

(AR),

such

as

DB2

Connect.

Having

a

DCS

directory

entry

with

a

database

name

matching

a

database

name

in

the

system

database

directory

invokes

the

specified

AR

to

forward

SQL

requests

to

the

remote

server

where

the

database

resides.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdad

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdad

(

struct

sql_dir_entry

*pDCSDirEntry,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggdad

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdad

(

struct

sqlca

*pSqlca,

struct

sql_dir_entry

*pDCSDirEntry);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pDCSDirEntry

Input.

A

pointer

to

an

sql_dir_entry

(Database

Connection

Services

directory)

structure.

REXX

API

syntax:

CATALOG

DCS

DATABASE

dbname

[AS

target_dbname]

[AR

arname]

[PARMS

parms]

[WITH

comment]

REXX

API

parameters:

sqlegdad

-

Catalog

DCS

Database

Chapter

1.

Application

Programming

Interfaces

339

dbname

The

local

database

name

of

the

directory

entry

to

be

added.

target_dbname

The

target

database

name.

arname

The

application

client

name.

parms

Parameter

string.

If

specified,

the

string

must

be

enclosed

by

double

quotation

marks.

comment

Description

associated

with

the

entry.

Maximum

length

is

30

characters.

Enclose

the

comment

by

double

quotation

marks.

Usage

notes:

The

DB2

Connect

program

provides

connections

to

DRDA

Application

Servers

such

as:

v

DB2

for

OS/390

databases

on

System/370

and

System/390

architecture

host

computers

v

DB2

for

VM

and

VSE

databases

on

System/370

and

System/390

architecture

host

computers

v

OS/400

databases

on

Application

System/400

(AS/400)

host

computers.

The

database

manager

creates

a

Database

Connection

Services

directory

if

one

does

not

exist.

This

directory

is

stored

on

the

path

that

contains

the

database

manager

instance

that

is

being

used.

The

DCS

directory

is

maintained

outside

of

the

database.

The

database

must

also

be

cataloged

as

a

remote

database

in

the

system

database

directory.

Note:

If

directory

caching

is

enabled,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“sqlegdcl

-

Close

DCS

Directory

Scan”

on

page

341

v

“sqlegdge

-

Get

DCS

Directory

Entry

for

Database”

on

page

344

v

“sqlegdgt

-

Get

DCS

Directory

Entries”

on

page

345

v

“sqlegdsc

-

Open

DCS

Directory

Scan”

on

page

347

v

“sqlegdel

-

Uncatalog

DCS

Database”

on

page

342

v

“SQLCA”

on

page

410

v

“SQL-DIR-ENTRY”

on

page

402

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

sqlegdad

-

Catalog

DCS

Database

340

Administrative

API

Reference

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegdcl

-

Close

DCS

Directory

Scan

Frees

the

resources

that

are

allocated

by

″sqlegdsc

-

Open

DCS

Directory

Scan″.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdcl

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdcl

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggdcl

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdcl

(

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

CLOSE

DCS

DIRECTORY

Related

reference:

v

“sqlegdgt

-

Get

DCS

Directory

Entries”

on

page

345

v

“sqlegdsc

-

Open

DCS

Directory

Scan”

on

page

347

v

“SQLCA”

on

page

410

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegdad

-

Catalog

DCS

Database

Chapter

1.

Application

Programming

Interfaces

341

sqlegdel

-

Uncatalog

DCS

Database

Deletes

an

entry

from

the

Database

Connection

Services

(DCS)

directory.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdel

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdel

(

struct

sql_dir_entry

*pDCSDirEntry,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggdel

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdel

(

struct

sqlca

*pSqlca,

struct

sql_dir_entry

*pDCSDirEntry);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pDCSDirEntry

Input/Output.

A

pointer

to

the

Database

Connection

Services

directory

structure.

Fill

in

the

ldb

field

of

this

structure

with

the

local

name

of

the

database

to

be

deleted.

The

DCS

directory

entry

with

a

matching

local

database

name

is

copied

to

this

structure

before

being

deleted.

REXX

API

syntax:

UNCATALOG

DCS

DATABASE

dbname

[USING

:value]

REXX

API

parameters:

dbname

The

local

database

name

of

the

directory

entry

to

be

deleted.

value

A

compound

REXX

host

variable

into

which

the

directory

entry

sqlegdel

-

Uncatalog

DCS

Database

342

Administrative

API

Reference

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

If

no

name

is

given,

the

name

SQLGWINF

is

used.

XXX.0

Number

of

elements

in

the

variable

(always

7)

XXX.1

RELEASE

XXX.2

LDB

XXX.3

TDB

XXX.4

AR

XXX.5

PARMS

XXX.6

COMMENT

XXX.7

RESERVED.

Usage

notes:

DCS

databases

are

also

cataloged

in

the

system

database

directory

as

remote

databases

that

can

be

uncataloged

using

the

sqleuncd

API.

To

recatalog

a

database

in

the

DCS

directory,

use

the

sqlegdad

API.

To

list

the

DCS

databases

that

are

cataloged

on

a

node,

use

the

sqlegdsc,

sqlegdgt,

and

sqlegdcl

APIs.

If

directory

caching

is

enabled

(using

the

dir_cache

configuration

parameter,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“sqlegdad

-

Catalog

DCS

Database”

on

page

339

v

“sqlegdcl

-

Close

DCS

Directory

Scan”

on

page

341

v

“sqlegdge

-

Get

DCS

Directory

Entry

for

Database”

on

page

344

v

“sqlegdgt

-

Get

DCS

Directory

Entries”

on

page

345

v

“sqlegdsc

-

Open

DCS

Directory

Scan”

on

page

347

v

“sqleuncd

-

Uncatalog

Database”

on

page

371

v

“SQLCA”

on

page

410

v

“SQL-DIR-ENTRY”

on

page

402

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegdel

-

Uncatalog

DCS

Database

Chapter

1.

Application

Programming

Interfaces

343

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

Returns

information

for

a

specific

entry

in

the

Database

Connection

Services

(DCS)

directory.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdge

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdge

(

struct

sql_dir_entry

*pDCSDirEntry,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggdge

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdge

(

struct

sqlca

*pSqlca,

struct

sql_dir_entry

*pDCSDirEntry);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pDCSDirEntry

Input/Output.

Pointer

to

the

Database

Connection

Services

directory

structure.

Fill

in

the

ldb

field

of

this

structure

with

the

local

name

of

the

database

whose

DCS

directory

entry

is

to

be

retrieved.

The

remaining

fields

in

the

structure

are

filled

in

upon

return

of

this

API.

REXX

API

syntax:

GET

DCS

DIRECTORY

ENTRY

FOR

DATABASE

dbname

[USING

:value]

REXX

API

parameters:

dbname

Specifies

the

local

database

name

of

the

directory

entry

to

be

obtained.

value

A

compound

REXX

host

variable

into

which

the

directory

entry

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

If

no

name

is

given,

the

name

SQLGWINF

is

used.

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

344

Administrative

API

Reference

XXX.0

Number

of

elements

in

the

variable

(always

7)

XXX.1

RELEASE

XXX.2

LDB

XXX.3

TDB

XXX.4

AR

XXX.5

PARMS

XXX.6

COMMENT

XXX.7

RESERVED.

Related

reference:

v

“sqlegdad

-

Catalog

DCS

Database”

on

page

339

v

“sqlegdcl

-

Close

DCS

Directory

Scan”

on

page

341

v

“sqlegdgt

-

Get

DCS

Directory

Entries”

on

page

345

v

“sqlegdsc

-

Open

DCS

Directory

Scan”

on

page

347

v

“sqlegdel

-

Uncatalog

DCS

Database”

on

page

342

v

“SQL-DIR-ENTRY”

on

page

402

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegdgt

-

Get

DCS

Directory

Entries

Transfers

a

copy

of

Database

Connection

Services

(DCS)

directory

entries

to

a

buffer

supplied

by

the

application.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdgt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdgt

(

short

*pNumEntries,

struct

sql_dir_entry

*pDCSDirEntries,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

sqlegdge

-

Get

DCS

Directory

Entry

for

Database

Chapter

1.

Application

Programming

Interfaces

345

/*

File:

sqlenv.h

*/

/*

API:

sqlggdgt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdgt

(

struct

sqlca

*pSqlca,

short

*pNumEntries,

struct

sql_dir_entry

*pDCSDirEntries);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNumEntries

Input/Output.

Pointer

to

a

short

integer

representing

the

number

of

entries

to

be

copied

to

the

caller’s

buffer.

The

number

of

entries

actually

copied

is

returned.

pDCSDirEntries

Output.

Pointer

to

a

buffer

where

the

collected

DCS

directory

entries

will

be

held

upon

return

of

the

API

call.

The

buffer

must

be

large

enough

to

hold

the

number

of

entries

specified

in

the

pNumEntries

parameter.

REXX

API

syntax:

GET

DCS

DIRECTORY

ENTRY

[USING

:value]

REXX

API

parameters:

value

A

compound

REXX

host

variable

into

which

the

directory

entry

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

If

no

name

is

given,

the

name

SQLGWINF

is

used.

XXX.0

Number

of

elements

in

the

variable

(always

7)

XXX.1

RELEASE

XXX.2

LDB

XXX.3

TDB

XXX.4

AR

XXX.5

PARMS

XXX.6

COMMENT

XXX.7

RESERVED.

Usage

notes:

sqlegdsc

-

Open

DCS

Directory

Scan,

which

returns

the

entry

count,

must

be

called

prior

to

issuing

GET

DCS

DIRECTORY

ENTRIES.

If

all

entries

are

copied

to

the

caller,

the

Database

Connection

Services

directory

scan

is

automatically

closed,

and

all

resources

are

released.

If

entries

remain,

subsequent

calls

to

this

API

should

be

made,

or

CLOSE

DCS

DIRECTORY

SCAN

should

be

called,

to

release

system

resources.

Related

reference:

v

“sqlegdcl

-

Close

DCS

Directory

Scan”

on

page

341

sqlegdgt

-

Get

DCS

Directory

Entries

346

Administrative

API

Reference

v

“sqlegdge

-

Get

DCS

Directory

Entry

for

Database”

on

page

344

v

“sqlegdsc

-

Open

DCS

Directory

Scan”

on

page

347

v

“SQLCA”

on

page

410

v

“SQL-DIR-ENTRY”

on

page

402

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegdsc

-

Open

DCS

Directory

Scan

Stores

a

copy

in

memory

of

the

Database

Connection

Services

directory

entries,

and

returns

the

number

of

entries.

This

is

a

snapshot

of

the

directory

at

the

time

the

directory

is

opened.

The

copy

is

not

updated

if

the

directory

itself

changes

after

a

call

to

this

API.

Use

sqlegdgt

-

Get

DCS

Directory

Entries

to

retrieve

the

entries,

and

sqlegdcl

-

Close

DCS

Directory

Scan

to

release

the

resources

associated

with

calling

this

API.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegdsc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdsc

(

short

*pNumEntries,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggdsc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggdsc

(

struct

sqlca

*pSqlca,

short

*pNumEntries);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqlegdgt

-

Get

DCS

Directory

Entries

Chapter

1.

Application

Programming

Interfaces

347

pNumEntries

Output.

Address

of

a

2-byte

area

to

which

the

number

of

directory

entries

is

returned.

REXX

API

syntax:

OPEN

DCS

DIRECTORY

Usage

notes:

The

caller

of

the

scan

uses

the

returned

value

pNumEntries

to

allocate

enough

memory

to

receive

the

entries.

If

a

scan

call

is

received

while

a

copy

is

already

held,

the

previous

copy

is

released,

and

a

new

copy

is

collected.

Related

reference:

v

“sqlegdcl

-

Close

DCS

Directory

Scan”

on

page

341

v

“sqlegdge

-

Get

DCS

Directory

Entry

for

Database”

on

page

344

v

“sqlegdgt

-

Get

DCS

Directory

Entries”

on

page

345

v

“SQLCA”

on

page

410

Related

samples:

v

“dcscat.cbl

--

Get

information

for

a

DCS

directory

in

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlegins

-

Get

Instance

Returns

the

value

of

the

DB2INSTANCE

environment

variable.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlegins

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegins

(

_SQLOLDCHAR

*pInstance,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlggins

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlegdsc

-

Open

DCS

Directory

Scan

348

Administrative

API

Reference

sqlggins

(

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pInstance);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pInstance

Output.

Pointer

to

a

string

buffer

where

the

database

manager

instance

name

is

placed.

This

buffer

must

be

at

least

9

bytes

in

length,

including

1

byte

for

the

null

terminating

character.

REXX

API

syntax:

GET

INSTANCE

INTO

:instance

REXX

API

parameters:

instance

A

REXX

host

variable

into

which

the

database

manager

instance

name

is

to

be

placed.

Usage

notes:

The

value

in

the

DB2INSTANCE

environment

variable

is

not

necessarily

the

instance

to

which

the

user

is

attached.

To

identify

the

instance

to

which

a

user

is

currently

attached,

call

sqleatin

-

Attach,

with

null

arguments

except

for

the

sqlca

structure.

Related

reference:

v

“sqleatin

-

Attach”

on

page

305

v

“SQLCA”

on

page

410

Related

samples:

v

“dbinst.cbl

--

Attach

to

and

detach

from

an

instance

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqleintr

-

Interrupt

Stops

a

request.

This

API

is

called

from

a

control

break

signal

handler

in

an

application.

The

control

break

signal

handler

can

be

the

default,

installed

by

sqleisig

-

Install

Signal

Handler,

or

a

routine

supplied

by

the

programmer

and

installed

using

an

appropriate

operating

system

call.

Authorization:

None

Required

connection:

None

sqlegins

-

Get

Instance

Chapter

1.

Application

Programming

Interfaces

349

|
|

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleintr

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleintr

(

void);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgintr

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgintr

(

void);

/*

...

*/

API

parameters:

None

REXX

API

syntax:

INTERRUPT

Examples:

call

SQLDBS

’INTERRUPT’

Usage

notes:

No

database

manager

APIs

should

be

called

from

an

interrupt

handler

except

sqleintr.

However,

the

system

will

not

prevent

it.

Any

database

transaction

in

a

state

of

committing

or

rollback

cannot

be

interrupted.

An

interrupted

database

manager

request

returns

a

code

indicating

that

it

was

interrupted.

The

following

table

summarizes

the

effect

of

an

interrupt

operation

on

other

APIs:

Table

21.

INTERRUPT

Actions

Database

Activity

Action

BACKUP

Utility

cancelled.

Data

on

media

may

be

incomplete.

BIND

Binding

cancelled.

Package

creation

rolled

back.

COMMIT

None.

COMMIT

completes.

CREATE

DATABASE/CREATE

DATABASE

AT

NODE/ADD

NODE/DROP

NODE

VERIFY

After

a

certain

point,

these

APIs

are

not

interruptible.

If

the

interrupt

call

is

received

before

this

point,

the

database

is

not

created.

If

the

interrupt

call

is

received

after

this

point,

it

is

ignored.

DROP

DATABASE/DROP

DATABASE

AT

NODE

None.

The

APIs

complete.

sqleintr

-

Interrupt

350

Administrative

API

Reference

Table

21.

INTERRUPT

Actions

(continued)

Database

Activity

Action

EXPORT/IMPORT/RUNSTATS

Utility

cancelled.

Database

updates

rolled

back.

FORCE

APPLICATION

None.

FORCE

APPLICATION

completes.

LOAD

Utility

cancelled.

Data

in

table

may

be

incomplete.

PREP

Precompile

cancelled.

Package

creation

rolled

back.

REORGANIZE

TABLE

The

interrupt

will

be

delayed

until

the

copy

is

complete.

The

recreation

of

the

indexes

will

be

resume

on

the

next

attempt

to

access

the

table.

RESTORE

Utility

cancelled.

DROP

DATABASE

performed.

Not

applicable

to

table

space

level

restore.

ROLLBACK

None.

ROLLBACK

completes.

Directory

Services

Directory

left

in

consistent

state.

Utility

function

may

or

may

not

be

performed.

SQL

Data

Definition

statements

Database

transactions

are

set

to

the

state

existing

prior

to

invocation

of

the

SQL

statement.

Other

SQL

statements

Database

transactions

are

set

to

the

state

existing

prior

to

invocation

of

the

SQL

statement.

sqleisig

-

Install

Signal

Handler

Installs

the

default

interrupt

(usually

Control-C

and/or

Control-Break)

signal

handler.

When

this

default

handler

detects

an

interrupt

signal,

it

resets

the

signal

and

calls

sqleintr.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleisig

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleisig

(

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgisig

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgisig

(

struct

sqlca

*pSqlca);

/*

...

*/

sqleintr

-

Interrupt

Chapter

1.

Application

Programming

Interfaces

351

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

INSTALL

SIGNAL

HANDLER

Usage

notes:

If

an

application

has

no

signal

handler,

and

an

interrupt

is

received,

the

application

is

terminated.

This

API

provides

simple

signal

handling,

and

can

be

used

if

an

application

does

not

have

extensive

interrupt

handling

requirements.

The

API

must

be

called

for

the

interrupt

signal

handler

to

function

properly.

If

an

application

requires

a

more

elaborate

interrupt

handling

scheme,

a

signal

handling

routine

that

can

also

call

the

sqleintr

API

can

be

developed.

Use

either

the

operating

system

call

or

the

language-specific

library

signal

function.

The

sqleintr

API

should

be

the

only

database

manager

operation

performed

by

a

customized

signal

handler.

Follow

all

operating

system

programming

techniques

and

practices

to

ensure

that

the

previously

installed

signal

handlers

work

properly.

Related

reference:

v

“sqleintr

-

Interrupt”

on

page

349

v

“SQLCA”

on

page

410

Related

samples:

v

“dbcmt.cbl

--

Change

a

database

comment

in

the

database

directory

(IBM

COBOL)”

sqlemgdb

-

Migrate

Database

Converts

previous

(Version

2.x

or

higher)

versions

of

DB2

databases

to

current

formats.

Authorization:

sysadm

Required

connection:

This

API

establishes

a

database

connection.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlemgdb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlemgdb

(

_SQLOLDCHAR

*pDbAlias,

sqleisig

-

Install

Signal

Handler

352

Administrative

API

Reference

_SQLOLDCHAR

*pUserName,

_SQLOLDCHAR

*pPassword,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgmgdb

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgmgdb

(

unsigned

short

PasswordLen,

unsigned

short

UserNameLen,

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pPassword,

_SQLOLDCHAR

*pUserName,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

PasswordLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

password.

Set

to

zero

when

no

password

is

supplied.

UserNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

user

name.

Set

to

zero

when

no

user

name

is

supplied.

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pPassword

Input.

A

string

containing

the

password

of

the

supplied

user

name

(if

any).

May

be

NULL.

pUserName

Input.

A

string

containing

the

user

name

of

the

application.

May

be

NULL.

pDbAlias

Input.

A

string

containing

the

alias

of

the

database

that

is

cataloged

in

the

system

database

directory.

REXX

API

syntax:

MIGRATE

DATABASE

dbalias

[USER

username

USING

password]

REXX

API

parameters:

dbalias

Alias

of

the

database

to

be

migrated.

username

User

name

under

which

the

database

is

to

be

restarted.

password

Password

used

to

authenticate

the

user

name.

Usage

notes:

sqlemgdb

-

Migrate

Database

Chapter

1.

Application

Programming

Interfaces

353

This

API

will

only

migrate

a

database

to

a

newer

version,

and

cannot

be

used

to

convert

a

migrated

database

to

its

previous

version.

The

database

must

be

cataloged

before

migration.

Related

reference:

v

“SQLCA”

on

page

410

Related

samples:

v

“dbmigrat.c

--

Migrate

a

database

(C)”

v

“dbmigrat.C

--

Migrate

a

database

(C++)”

v

“migrate.cbl

--

Demonstrates

how

to

migrate

to

a

database

(IBM

COBOL)”

sqlencls

-

Close

Node

Directory

Scan

Frees

the

resources

that

are

allocated

by

″sqlenops

-

Open

Node

Directory″.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlencls

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlencls

(

unsigned

short

Handle,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgncls

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgncls

(

unsigned

short

Handle,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

Handle

Input.

Identifier

returned

from

the

associated

OPEN

NODE

DIRECTORY

SCAN

API.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqlemgdb

-

Migrate

Database

354

Administrative

API

Reference

REXX

API

syntax:

CLOSE

NODE

DIRECTORY

:scanid

REXX

API

parameters:

scanid

A

host

variable

containing

the

scanid

returned

from

the

OPEN

NODE

DIRECTORY

SCAN

API.

Related

reference:

v

“sqlengne

-

Get

Next

Node

Directory

Entry”

on

page

355

v

“sqlenops

-

Open

Node

Directory

Scan”

on

page

357

v

“SQLCA”

on

page

410

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“nodecat.cbl

--

Get

node

directory

information

(IBM

COBOL)”

sqlengne

-

Get

Next

Node

Directory

Entry

Returns

the

next

entry

in

the

node

directory

after

sqlenops

-

Open

Node

Directory

Scan″

is

called.

Subsequent

calls

to

this

API

return

additional

entries.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlengne

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlengne

(

unsigned

short

Handle,

struct

sqleninfo

**ppNodeDirEntry,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgngne

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgngne

(

unsigned

short

Handle,

struct

sqleninfo

**ppNodeDirEntry,

struct

sqlca

*pSqlca);

/*

...

*/

sqlencls

-

Close

Node

Directory

Scan

Chapter

1.

Application

Programming

Interfaces

355

API

parameters:

Handle

Input.

Identifier

returned

from

sqlenops

-

Open

Node

Directory

Scan.

ppNodeDirEntry

Output.

Address

of

a

pointer

to

an

sqleninfo

structure.

The

caller

of

this

API

does

not

have

to

provide

memory

for

the

structure,

just

the

pointer.

Upon

return

from

the

API,

the

pointer

points

to

the

next

node

directory

entry

in

the

copy

of

the

node

directory

allocated

by

sqlenops

-

Open

Node

Directory

Scan.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

GET

NODE

DIRECTORY

ENTRY

:scanid

[USING

:value]

REXX

API

parameters:

scanid

A

REXX

host

variable

containing

the

identifier

returned

from

the

OPEN

NODE

DIRECTORY

SCAN

API.

value

A

compound

REXX

host

variable

to

which

the

node

entry

information

is

returned.

If

no

name

is

given,

the

name

SQLNINFO

is

used.

In

the

following,

XXX

represents

the

host

variable

name

(the

corresponding

field

names

are

taken

from

the

structure

returned

by

the

API):

XXX.0

Number

of

elements

in

the

variable

(always

16)

XXX.1

NODENAME

XXX.2

LOCALLU

XXX.3

PARTNERLU

XXX.4

MODE

XXX.5

COMMENT

XXX.6

RESERVED

XXX.7

PROTOCOL

(protocol

type)

XXX.8

ADAPTER

(NetBIOS

adapter

#)

XXX.9

RESERVED

XXX.10

SYMDESTNAME

(symbolic

destination

name)

XXX.11

SECURITY

(security

type)

XXX.12

HOSTNAME

XXX.13

SERVICENAME

XXX.14

FILESERVER

XXX.15

OBJECTNAME

XXX.16

INSTANCE

(local

instance

name).

Usage

notes:

All

fields

in

the

node

directory

entry

information

buffer

are

padded

to

the

right

with

blanks.

sqlengne

-

Get

Next

Node

Directory

Entry

356

Administrative

API

Reference

The

sqlcode

value

of

sqlca

is

set

to

1014

if

there

are

no

more

entries

to

scan

when

this

API

is

called.

The

entire

directory

can

be

scanned

by

calling

this

API

pNumEntries

times.

Related

reference:

v

“sqlencls

-

Close

Node

Directory

Scan”

on

page

354

v

“sqlenops

-

Open

Node

Directory

Scan”

on

page

357

v

“SQLCA”

on

page

410

v

“SQLENINFO”

on

page

435

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“nodecat.cbl

--

Get

node

directory

information

(IBM

COBOL)”

sqlenops

-

Open

Node

Directory

Scan

Stores

a

copy

in

memory

of

the

node

directory,

and

returns

the

number

of

entries.

This

is

a

snapshot

of

the

directory

at

the

time

the

directory

is

opened.

This

copy

is

not

updated,

even

if

the

directory

itself

is

changed

later.

Use

sqlengne

-

Get

Next

Node

Directory

Entry

to

advance

through

the

node

directory

and

examine

information

about

the

node

entries.

Close

the

scan

using

sqlencls

-

Close

Node

Directory

Scan.

This

removes

the

copy

of

the

directory

from

memory.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlenops

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlenops

(

unsigned

short

*pHandle,

unsigned

short

*pNumEntries,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgnops

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlengne

-

Get

Next

Node

Directory

Entry

Chapter

1.

Application

Programming

Interfaces

357

sqlgnops

(

unsigned

short

*pHandle,

unsigned

short

*pNumEntries,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pHandle

Output.

Identifier

returned

from

this

API.

This

identifier

must

be

passed

to

sqlengne

-

Get

Next

Node

Directory

Entry,

and

sqlencls

-

Close

Node

Directory

Scan.

pNumEntries

Output.

Address

of

a

2-byte

area

to

which

the

number

of

directory

entries

is

returned.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

OPEN

NODE

DIRECTORY

USING

:value

REXX

API

parameters:

value

A

compound

REXX

variable

to

which

node

directory

information

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

XXX.0

Number

of

elements

in

the

variable

(always

2)

XXX.1

Specifies

a

REXX

host

variable

containing

a

number

for

scanid

XXX.2

The

number

of

entries

contained

within

the

directory.

Usage

notes:

Storage

allocated

by

this

API

is

freed

by

calling

sqlencls

-

Close

Node

Directory

Scan.

Multiple

node

directory

scans

can

be

issued

against

the

node

directory.

However,

the

results

may

not

be

the

same.

The

directory

may

change

between

openings.

There

can

be

a

maximum

of

eight

node

directory

scans

per

process.

Related

reference:

v

“sqlencls

-

Close

Node

Directory

Scan”

on

page

354

v

“sqlengne

-

Get

Next

Node

Directory

Entry”

on

page

355

v

“SQLCA”

on

page

410

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“nodecat.cbl

--

Get

node

directory

information

(IBM

COBOL)”

sqlenops

-

Open

Node

Directory

Scan

358

Administrative

API

Reference

sqleqryc

-

Query

Client

Returns

current

connection

settings

for

an

application

process.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleqryc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleqryc

(

struct

sqle_conn_setting

*pConnectionSettings,

unsigned

short

NumSettings,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgqryc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgqryc

(

struct

sqle_conn_setting

*pConnectionSettings,

unsigned

short

NumSettings,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pConnectionSettings

Input/Output.

A

pointer

to

an

sqle_conn_setting

structure,

which

specifies

connection

setting

types

and

values.

The

user

defines

an

array

of

NumSettings

connection

settings

structures,

and

sets

the

type

field

of

each

element

in

this

array

to

indicate

one

of

the

five

possible

connection

settings

options.

Upon

return,

the

value

field

of

each

element

contains

the

current

setting

of

the

option

specified.

NumSettings

Input.

Any

integer

(from

0

to

7)

representing

the

number

of

connection

option

values

to

be

returned.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

QUERY

CLIENT

INTO

:output

REXX

API

parameters:

sqleqryc

-

Query

Client

Chapter

1.

Application

Programming

Interfaces

359

output

A

compound

REXX

host

variable

containing

information

about

the

current

connection

settings

of

the

application

process.

In

the

following,

XXX

represents

the

host

variable

name.

XXX.1

Current

connection

setting

for

the

CONNECTION

type

XXX.2

Current

connection

setting

for

the

SQLRULES

XXX.3

Current

connection

setting

indicating

which

connections

will

be

released

when

a

COMMIT

is

issued.

XXX.4

Current

connection

setting

of

the

SYNCPOINT

option.

Indicates

whether

a

transaction

manager

should

be

used

to

enforce

two-phase

commit

semantics,

whether

the

database

manager

should

ensure

that

there

is

only

one

database

being

updated

when

multiple

databases

are

accessed

within

a

single

transaction,

or

whether

neither

of

these

options

is

to

be

used.

XXX.5

Current

connection

setting

for

the

maximum

number

of

concurrent

connections

for

a

NETBIOS

adapter.

XXX.6

Current

connection

setting

for

deferred

PREPARE.

Usage

notes:

The

connection

settings

for

an

application

process

can

be

queried

at

any

time

during

execution.

If

QUERY

CLIENT

is

successful,

the

fields

in

the

sqle_conn_setting

structure

will

contain

the

current

connection

settings

of

the

application

process.

If

SET

CLIENT

has

never

been

called,

the

settings

will

contain

the

values

of

the

precompile

options

only

if

an

SQL

statement

has

already

been

processed;

otherwise,

they

will

contain

the

default

values

for

the

precompile

options.

Related

reference:

v

“sqlesetc

-

Set

Client”

on

page

367

v

“sqleqryi

-

Query

Client

Information”

on

page

360

v

“SQLCA”

on

page

410

v

“SQLE-CONN-SETTING”

on

page

419

Related

samples:

v

“cli_info.c

--

Set

and

get

information

at

the

client

level

(C)”

v

“cli_info.C

--

Set

and

get

information

at

the

client

level

(C++)”

v

“client.cbl

--

How

to

set

and

query

a

client

(IBM

COBOL)”

sqleqryi

-

Query

Client

Information

Returns

existing

client

information.

Since

this

API

permits

specification

of

a

database

alias,

an

application

can

query

client

information

associated

with

a

specific

connection.

Returns

null

if

the

sqleseti

API

has

not

previously

established

a

value.

sqleqryc

-

Query

Client

360

Administrative

API

Reference

If

a

specific

connection

is

requested,

this

API

returns

the

latest

values

for

that

connection.

If

all

connections

are

specified,

the

API

returns

the

values

that

are

to

be

associated

with

all

connections;

that

is,

the

values

passed

in

the

last

call

to

sqleseti

(specifying

all

connections).

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleqryi

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleqryi

(

unsigned

short

DbAliasLen,

char

*pDbAlias,

unsigned

short

NumItems,

struct

sqle_client_info*pClient_Info,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleqryi

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleqryi

(

unsigned

short

DbAliasLen,

char

*pDbAlias,

unsigned

short

NumItems,

struct

sqle_client_info*pClient_Info,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

If

a

value

greater

than

zero

is

provided,

pDbAlias

must

point

to

the

alias

name.

Returns

the

settings

associated

with

the

last

call

to

sqleseti

for

this

alias

(or

a

call

to

sqleseti

specifying

a

zero

length

alias).

If

zero

is

specified,

returns

the

settings

associated

with

the

last

call

to

sqleseti

which

specified

a

zero

length

alias.

pDbAlias

Input.

A

pointer

to

a

string

containing

the

database

alias.

NumItems

Input.

Number

of

entries

being

modified.

The

minimum

value

is

1.

pClient_Info

Input.

A

pointer

to

an

array

of

NumItems

sqle_client_info

structures,

each

sqleqryi

-

Query

Client

Information

Chapter

1.

Application

Programming

Interfaces

361

containing

a

type

field

indicating

which

value

to

return,

and

a

pointer

to

the

returned

value.

The

area

pointed

to

must

be

large

enough

to

accommodate

the

value

being

requested.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

The

settings

can

be

queried

at

any

time

during

execution.

If

the

API

call

is

successful,

the

current

settings

are

returned

to

the

specified

areas.

Returns

a

length

of

zero

and

a

null-terminated

string

(\0)

for

any

fields

that

have

not

been

set

through

a

call

to

the

sqleseti

API.

Related

reference:

v

“sqleseti

-

Set

Client

Information”

on

page

369

v

“SQLCA”

on

page

410

v

“SQLE-CLIENT-INFO”

on

page

417

Related

samples:

v

“cli_info.c

--

Set

and

get

information

at

the

client

level

(C)”

v

“cli_info.C

--

Set

and

get

information

at

the

client

level

(C++)”

sqleregs

-

Register

Registers

the

DB2

server

on

the

network

server.

The

DB2

server’s

network

address

is

stored

in

a

specified

registry

on

the

file

server,

where

it

can

be

retrieved

by

a

client

application

that

uses

the

IPX/SPX

communication

protocol.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleregs

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleregs

(

unsigned

short

Registry,

void

*pRegisterInfo,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgregs

*/

/*

...

*/

sqleqryi

-

Query

Client

Information

362

Administrative

API

Reference

SQL_API_RC

SQL_API_FN

sqlgregs

(

unsigned

short

Registry,

void

*pRegisterInfo,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

Registry

Input.

Indicates

where

on

the

network

file

server

to

register

the

DB2

server.

In

this

release,

the

only

supported

value

is

SQL_NWBINDERY

(NetWare

file

server

bindery,

defined

in

sqlenv).

pRegisterInfo

Input.

A

pointer

to

the

sqle_reg_nwbindery

structure.

In

the

structure,

the

caller

specifies

a

user

name

and

password

that

are

valid

on

the

network

file

server.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

This

API

determines

the

IPX/SPX

address

of

the

DB2

server

machine

(the

machine

from

which

it

was

called),

and

then

creates

an

object

in

the

NetWare

file

server

bindery

using

the

value

for

objectname

specified

in

the

database

manager

configuration

file.

The

IPX/SPX

address

of

the

DB2

server

is

stored

as

a

property

in

that

object.

In

order

for

a

client

to

connect

or

attach

to

a

DB2

database

using

IPX/SPX

file

server

addressing,

it

must

catalog

an

IPX/SPX

node

(using

the

same

FILESERVER

and

OBJECTNAME

specified

on

the

server)

in

the

node

directory.

The

specified

NetWare

user

name

and

password

must

have

supervisory

or

equivalent

authority.

This

API

must

be

issued

locally

from

a

DB2

server.

It

is

not

supported

remotely.

After

installation

and

configuration

of

DB2,

the

DB2

server

should

be

registered

once

on

the

network

file

server

(unless

only

direct

addressing

will

be

used

by

IPX/SPX

clients

to

connect

to

this

DB2

server).

After

that,

if

the

IPX/SPX

fields

are

reconfigured,

or

the

DB2

server’s

IPX/SPX

internetwork

address

changes,

deregister

the

DB2

server

on

the

network

file

server

before

making

the

changes,

and

then

register

it

again

after

the

changes

have

been

made.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“sqledreg

-

Deregister”

on

page

329

v

“SQLCA”

on

page

410

v

“SQLE-REG-NWBINDERY”

on

page

429

v

“REGISTER

Command”

in

the

Command

Reference

sqleregs

-

Register

Chapter

1.

Application

Programming

Interfaces

363

sqlesact

-

Set

Accounting

String

Provides

accounting

information

that

will

be

sent

to

a

DRDA

server

with

the

application’s

next

connect

request.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlesact

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlesact

(

char

*pAccountingString,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgsact

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgsact

(

unsigned

short

AccountingStringLen,

char

*pAccountingString,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

AccountingStringLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

accounting

string.

pAccountingString

Input.

A

string

containing

the

accounting

data.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

To

send

accounting

data

with

a

connect

request,

an

application

should

call

this

API

before

connecting

to

a

database.

The

accounting

string

can

be

changed

before

connecting

to

another

database

by

calling

the

API

again;

otherwise,

the

value

remains

in

effect

until

the

end

of

the

application.

The

accounting

string

can

be

at

most

SQL_ACCOUNT_STR_SZ

(defined

in

sqlenv)

bytes

long;

longer

strings

will

be

sqlesact

-

Set

Accounting

String

364

Administrative

API

Reference

truncated.

To

ensure

that

the

accounting

string

is

converted

correctly

when

transmitted

to

the

DRDA

server,

use

only

the

characters

A

to

Z,

0

to

9,

and

the

underscore

(_).

Related

reference:

v

“sqleseti

-

Set

Client

Information”

on

page

369

v

“SQLCA”

on

page

410

Related

samples:

v

“setact.cbl

--

How

to

set

accounting

string

(IBM

COBOL)”

sqlesdeg

-

Set

Runtime

Degree

Sets

the

maximum

run

time

degree

of

intra-partition

parallelism

for

SQL

statements

for

specified

active

applications.

It

has

no

effect

on

CREATE

INDEX

parallelism.

Scope:

This

API

affects

all

database

partition

servers

that

are

listed

in

the

db2nodes.cfg

file.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

Instance.

To

change

the

maximum

run

time

degree

of

parallelism

on

a

remote

server,

it

is

first

necessary

to

attach

to

that

server.

If

no

attachment

exists,

the

SET

RUNTIME

DEGREE

statement

fails.

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlesdeg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlesdeg

(

sqlint32

NumAgentIds,

sqluint32

*pAgentIds,

sqlint32

Degree,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgsdeg

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgsdeg

(

sqlesact

-

Set

Accounting

String

Chapter

1.

Application

Programming

Interfaces

365

struct

sqlca

*pSqlca,

sqlint32

Degree,

sqluint32

*pAgentIds,

sqlint32

NumAgentIds);

/*

...

*/

API

parameters:

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Degree

Input.

The

new

value

for

the

maximum

run

time

degree

of

parallelism.

The

value

must

be

in

the

range

1

to

32767.

pAgentIds

Input.

Pointer

to

an

array

of

unsigned

long

integers.

Each

entry

describes

the

agent

ID

of

the

corresponding

application.

To

list

the

agent

IDs

of

the

active

applications,

use

the

db2GetSnapshot

API.

NumAgentIds

Input.

An

integer

representing

the

total

number

of

active

applications

to

which

the

new

degree

value

will

apply.

This

number

should

be

the

same

as

the

number

of

elements

in

the

array

of

agent

IDs.

If

this

parameter

is

set

to

SQL_ALL_USERS

(defined

in

sqlenv),

the

new

degree

will

apply

to

all

active

applications.

If

it

is

set

to

zero,

an

error

is

returned.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

Usage

notes:

The

database

system

monitor

functions

are

used

to

gather

the

agent

IDs

and

degrees

of

active

applications.

Minimal

validation

is

performed

on

the

array

of

agent

IDs.

The

user

must

ensure

that

the

pointer

points

to

an

array

containing

the

total

number

of

elements

specified.

If

NumAgentIds

is

set

to

SQL_ALL_USERS,

the

array

is

ignored.

If

one

or

more

specified

agent

IDs

cannot

be

found,

the

unknown

agent

IDs

are

ignored,

and

the

function

continues.

No

error

is

returned.

An

agent

ID

may

not

be

found,

for

instance,

if

the

user

signs

off

between

the

time

an

agent

ID

is

collected

and

the

API

is

called.

Agent

IDs

are

recycled,

and

are

used

to

change

the

degree

of

parallelism

for

applications

some

time

after

being

gathered

by

the

database

system

monitor.

When

a

user

signs

off,

therefore,

another

user

may

sign

on

and

acquire

the

same

agent

ID

through

this

recycling

process,

with

the

result

that

the

new

degree

of

parallelism

will

be

modified

for

the

wrong

user.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

sqlesdeg

-

Set

Runtime

Degree

366

Administrative

API

Reference

v

“SQLCA”

on

page

410

v

“SET

RUNTIME

DEGREE

Command”

in

the

Command

Reference

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqlesetc

-

Set

Client

Specifies

connection

settings

for

the

application.

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlesetc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlesetc

(

struct

sqle_conn_setting

*pConnectionSettings,

unsigned

short

NumSettings,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlgsetc

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgsetc

(

struct

sqle_conn_setting

*pConnectionSettings,

unsigned

short

NumSettings,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pConnectionSettings

Input.

A

pointer

to

the

sqle_conn_setting

structure,

which

specifies

connection

setting

types

and

values.

Allocate

an

array

of

NumSettings

sqle_conn_setting

structures.

Set

the

type

field

of

each

element

in

this

array

to

indicate

the

connection

option

to

set.

Set

the

value

field

to

the

desired

value

for

the

option.

NumSettings

Input.

Any

integer

(from

0

to

7)

representing

the

number

of

connection

option

values

to

set.

sqlesdeg

-

Set

Runtime

Degree

Chapter

1.

Application

Programming

Interfaces

367

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

SET

CLIENT

USING

:values

REXX

API

parameters:

values

A

compound

REXX

host

variable

containing

the

connection

settings

for

the

application

process.

In

the

following,

XXX

represents

the

host

variable

name.

XXX.0

Number

of

connection

settings

to

be

established

XXX.1

Specifies

how

to

set

up

the

CONNECTION

type.

The

valid

values

are:

1

Type

1

CONNECT

2

Type

2

CONNECT

XXX.2

Specifies

how

to

set

up

the

SQLRULES.

The

valid

values

are:

DB2

Process

type

2

CONNECT

according

to

the

DB2

rules

STD

Process

type

2

CONNECT

according

to

the

Standard

rules

XXX.3

Specifies

how

to

set

up

the

scope

of

disconnection

to

databases

at

commit.

The

valid

values

are:

EXPLICIT

Disconnect

only

those

marked

by

the

SQL

RELEASE

statement

CONDITIONAL

Disconnect

only

those

that

have

no

open

WITH

HOLD

cursors

AUTOMATIC

Disconnect

all

connections

XXX.4

Specifies

how

to

set

up

the

coordination

among

multiple

database

connections

during

commits

or

rollbacks.

The

valid

values

are:

TWOPHASE

Use

Transaction

Manager

(TM)

to

coordinate

two-phase

commits

XXX.5

Specifies

the

maximum

number

of

concurrent

connections

for

a

NETBIOS

adapter.

XXX.6

Specifies

when

to

execute

the

PREPARE

statement.

The

valid

values

are:

NO

The

PREPARE

statement

will

be

executed

at

the

time

it

is

issued

YES

The

PREPARE

statement

will

not

be

executed

until

the

corresponding

OPEN,

DESCRIBE,

or

EXECUTE

statement

is

issued.

However,

the

PREPARE

INTO

statement

is

not

deferred

ALL

Same

as

YES,

except

that

the

PREPARE

INTO

statement

is

also

deferred

Usage

notes:

sqlesetc

-

Set

Client

368

Administrative

API

Reference

If

this

API

is

successful,

the

connections

in

the

subsequent

units

of

work

will

use

the

connection

settings

specified.

If

this

API

is

unsuccessful,

the

connection

settings

are

unchanged.

The

connection

settings

for

the

application

can

only

be

changed

when

there

are

no

existing

connections

(for

example,

before

any

connection

is

established,

or

after

RELEASE

ALL

and

COMMIT).

Once

the

SET

CLIENT

API

has

executed

successfully,

the

connection

settings

are

fixed

and

can

only

be

changed

by

again

executing

the

SET

CLIENT

API.

All

corresponding

precompiled

options

of

the

application

modules

will

be

overridden.

Related

reference:

v

“sqleqryc

-

Query

Client”

on

page

359

v

“sqleseti

-

Set

Client

Information”

on

page

369

v

“SQLCA”

on

page

410

v

“SQLE-CONN-SETTING”

on

page

419

Related

samples:

v

“cli_info.c

--

Set

and

get

information

at

the

client

level

(C)”

v

“dbcfg.sqc

--

Configure

database

and

database

manager

configuration

parameters

(C)”

v

“dbmcon.sqc

--

How

to

use

multiple

databases

(C)”

v

“cli_info.C

--

Set

and

get

information

at

the

client

level

(C++)”

v

“dbcfg.sqC

--

Configure

database

and

database

manager

configuration

parameters

(C++)”

v

“dbmcon.sqC

--

How

to

use

multiple

databases

(C++)”

v

“client.cbl

--

How

to

set

and

query

a

client

(IBM

COBOL)”

sqleseti

-

Set

Client

Information

Permits

an

application

to

set

client

information

associated

with

a

specific

connection,

provided

a

connection

already

exists.

In

a

TP

monitor

or

3-tier

client/server

application

environment,

there

is

a

need

to

obtain

information

about

the

client,

and

not

just

the

application

server

that

is

working

on

behalf

of

the

client.

By

using

this

API,

the

application

server

can

pass

the

client’s

user

ID,

workstation

information,

program

information,

and

other

accounting

information

to

the

DB2

server;

otherwise,

only

the

application

server’s

information

is

passed,

and

that

information

is

likely

to

be

the

same

for

the

many

client

invocations

that

go

through

the

same

application

server.

The

application

can

elect

to

not

specify

an

alias,

in

which

case

the

client

information

will

be

set

for

all

existing,

as

well

as

future,

connections.

This

API

will

only

permit

information

to

be

changed

outside

of

a

unit

of

work,

either

before

any

SQL

is

executed,

or

after

a

commit

or

a

rollback.

If

the

call

is

successful,

the

values

for

the

connection

will

be

sent

at

the

next

opportunity,

grouped

with

the

next

SQL

request

sent

on

that

connection;

a

successful

call

means

that

the

values

have

been

accepted,

and

that

they

will

be

propagated

to

subsequent

connections.

This

API

can

be

used

to

establish

values

prior

to

connecting

to

a

database,

or

it

can

be

used

to

set

or

modify

the

values

once

a

connection

has

been

established.

sqlesetc

-

Set

Client

Chapter

1.

Application

Programming

Interfaces

369

Authorization:

None

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleseti

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleseti

(

unsigned

short

DbAliasLen,

char

*pDbAlias,

unsigned

short

NumItems,

struct

sqle_client_info*pClient_Info,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleseti

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleseti

(

unsigned

short

DbAliasLen,

char

*pDbAlias,

unsigned

short

NumItems,

struct

sqle_client_info*pClient_Info,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

If

a

value

greater

than

zero

is

provided,

pDbAlias

must

point

to

the

alias

name,

and

the

settings

will

affect

only

the

specified

connection.

If

zero

is

specified,

the

settings

will

affect

all

existing

and

future

connections.

pDbAlias

Input.

A

pointer

to

a

string

containing

the

database

alias.

NumItems

Input.

Number

of

entries

being

modified.

The

minimum

value

is

1.

pClient_Info

Input.

A

pointer

to

an

array

of

NumItems

sqle_client_info

structures,

each

containing

a

type

field

indicating

which

value

to

set,

the

length

of

that

value,

and

a

pointer

to

the

new

value.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqleseti

-

Set

Client

Information

370

Administrative

API

Reference

Usage

notes:

If

an

alias

name

was

provided,

a

connection

to

the

alias

must

already

exist,

and

all

connections

to

that

alias

will

inherit

the

changes.

The

information

will

be

retained

until

the

connection

for

that

alias

is

broken.

If

an

alias

name

was

not

provided,

settings

for

all

existing

connections

will

be

changed,

and

any

future

connections

will

inherit

the

changes.

The

information

will

be

retained

until

the

program

terminates.

The

field

names

represent

guidelines

for

the

type

of

information

that

can

be

provided.

For

example,

a

TP

monitor

application

could

choose

to

provide

the

TP

monitor

transaction

ID

along

with

the

application

name

in

the

SQL_CLIENT_INFO_APPLNAM

field.

This

would

provide

better

monitoring

and

accounting

on

the

DB2

server,

where

the

DB2

transaction

ID

can

be

associated

with

the

TP

monitor

transaction

ID.

Currently

this

API

will

pass

information

to

DB2

OS/390

Version

5

and

higher

and

DB2

UDB

Version

7

and

higher.

All

information

(except

the

accounting

string)

is

displayed

on

the

DISPLAY

THREAD

command,

and

will

all

be

logged

into

the

accounting

records.

The

data

values

provided

with

the

API

can

also

be

accessed

by

SQL

special

register.

The

values

in

these

registers

are

stored

in

the

database

code

page.

Data

values

provided

with

this

API

are

converted

to

the

database

code

page

before

being

stored

in

the

special

registers.

Any

data

value

that

exceeds

the

maximum

supported

size

after

conversion

to

the

database

code

page

will

be

truncated

before

being

stored

at

the

server.

These

truncated

values

will

be

returned

by

the

special

registers.

The

original

data

values

will

also

be

stored

at

the

server

and

are

not

converted

to

the

database

code

page.

The

unconverted

values

can

be

returned

by

calling

the

sqleqryi

API.

Related

reference:

v

“db2GetSnapshot

-

Get

Snapshot”

on

page

81

v

“sqlesetc

-

Set

Client”

on

page

367

v

“sqlesact

-

Set

Accounting

String”

on

page

364

v

“sqleqryi

-

Query

Client

Information”

on

page

360

v

“SQLCA”

on

page

410

v

“SQLE-CLIENT-INFO”

on

page

417

Related

samples:

v

“cli_info.c

--

Set

and

get

information

at

the

client

level

(C)”

v

“cli_info.C

--

Set

and

get

information

at

the

client

level

(C++)”

sqleuncd

-

Uncatalog

Database

Deletes

an

entry

from

the

system

database

directory.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

sqleseti

-

Set

Client

Information

Chapter

1.

Application

Programming

Interfaces

371

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleuncd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleuncd

(

_SQLOLDCHAR

*pDbAlias,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlguncd

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlguncd

(

unsigned

short

DbAliasLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pDbAlias);

/*

...

*/

API

parameters:

DbAliasLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

database

alias.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pDbAlias

Input.

A

string

containing

the

database

alias

that

is

to

be

uncataloged.

REXX

API

syntax:

UNCATALOG

DATABASE

dbname

REXX

API

parameters:

dbname

Alias

of

the

database

to

be

uncataloged.

Usage

notes:

Only

entries

in

the

system

database

directory

can

be

uncataloged.

Entries

in

the

local

database

directory

can

be

deleted

using

the

sqledrpd

API.

To

recatalog

the

database,

use

the

sqlecadb

API.

To

list

the

databases

that

are

cataloged

on

a

node,

use

the

db2DbDirOpenScan,

db2DbDirGetNextEntry,

and

db2DbDirCloseScan

APIs.

sqleuncd

-

Uncatalog

Database

372

Administrative

API

Reference

The

authentication

type

of

a

database,

used

when

communicating

with

a

down-level

server,

can

be

changed

by

first

uncataloging

the

database,

and

then

cataloging

it

again

with

a

different

type.

If

directory

caching

is

enabled

using

the

dir_cache

configuration

parameter,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“sqlecadb

-

Catalog

Database”

on

page

308

v

“db2DbDirCloseScan

-

Close

Database

Directory

Scan”

on

page

48

v

“sqledrpd

-

Drop

Database”

on

page

330

v

“db2DbDirGetNextEntry

-

Get

Next

Database

Directory

Entry”

on

page

49

v

“db2DbDirOpenScan

-

Open

Database

Directory

Scan”

on

page

53

v

“SQLCA”

on

page

410

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

Related

samples:

v

“dbcat.cbl

--

Catalog

to

and

uncatalog

from

a

database

(IBM

COBOL)”

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

sqleuncn

-

Uncatalog

Node

Deletes

an

entry

from

the

node

directory.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

Required

connection:

None

API

include

file:

sqlenv.h

C

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqleuncn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqleuncd

-

Uncatalog

Database

Chapter

1.

Application

Programming

Interfaces

373

sqleuncn

(

_SQLOLDCHAR

*pNodeName,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlenv.h

*/

/*

API:

sqlguncn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlguncn

(

unsigned

short

NodeNameLen,

struct

sqlca

*pSqlca,

_SQLOLDCHAR

*pNodeName);

/*

...

*/

API

parameters:

NodeNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

node

name.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

pNodeName

Input.

A

string

containing

the

name

of

the

node

to

be

uncataloged.

REXX

API

syntax:

UNCATALOG

NODE

nodename

REXX

API

parameters:

nodename

Name

of

the

node

to

be

uncataloged.

Usage

notes:

To

recatalog

the

node,

use

the

sqlectnd

API.

To

list

the

nodes

that

are

cataloged,

use

the

db2DbDirOpenScan,

db2DbDirGetNextEntry,

and

db2DbDirCloseScan

APIs.

If

directory

caching

is

enabled

using

the

dir_cache

configuration

parameter,

database,

node,

and

DCS

directory

files

are

cached

in

memory.

An

application’s

directory

cache

is

created

during

its

first

directory

lookup.

Since

the

cache

is

only

refreshed

when

the

application

modifies

any

of

the

directory

files,

directory

changes

made

by

other

applications

may

not

be

effective

until

the

application

has

restarted.

To

refresh

DB2’s

shared

cache

(server

only),

stop

(db2stop)

and

then

restart

(db2start)

the

database

manager.

To

refresh

the

directory

cache

for

another

application,

stop

and

then

restart

that

application.

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

v

“sqlencls

-

Close

Node

Directory

Scan”

on

page

354

v

“sqlengne

-

Get

Next

Node

Directory

Entry”

on

page

355

v

“sqlenops

-

Open

Node

Directory

Scan”

on

page

357

v

“SQLCA”

on

page

410

sqleuncn

-

Uncatalog

Node

374

Administrative

API

Reference

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

Related

samples:

v

“ininfo.c

--

Set

and

get

information

at

the

instance

level

(C)”

v

“ininfo.C

--

Set

and

get

information

at

the

instance

level

(C++)”

v

“nodecat.cbl

--

Get

node

directory

information

(IBM

COBOL)”

sqlgaddr

-

Get

Address

Places

the

address

of

a

variable

into

another

variable.

It

is

used

in

host

languages,

such

as

FORTRAN

and

COBOL,

that

do

not

provide

pointer

manipulation.

Authorization:

None

Required

connection:

None

API

include

file:

sqlutil.h

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgaddr

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgaddr

(

char

*pVariable,

char

**ppOutputAddress);

/*

...

*/

API

parameters:

pVariable

Input.

Variable

whose

address

is

to

be

returned.

ppOutputAddress

Output.

A

4-byte

area

into

which

the

variable

address

is

returned.

Usage

notes:

This

API

is

used

in

the

COBOL

and

FORTRAN

languages

only.

Related

reference:

v

“sqlgdref

-

Dereference

Address”

on

page

375

sqlgdref

-

Dereference

Address

Copies

data

from

a

buffer

that

is

defined

by

a

pointer,

into

a

variable

that

is

directly

accessible

by

the

application.

It

is

used

in

host

languages,

such

as

FORTRAN

and

COBOL,

that

do

not

provide

pointer

manipulation.

This

API

can

be

used

to

obtain

results

from

APIs

that

return

a

pointer

to

the

desired

data.

sqleuncn

-

Uncatalog

Node

Chapter

1.

Application

Programming

Interfaces

375

Authorization:

None

Required

connection:

None

API

include

file:

sqlutil.h

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgdref

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdref

(

unsigned

int

NumBytes,

char

*pTargetBuffer,

char

**ppSourceBuffer);

/*

...

*/

API

parameters:

NumBytes

Input.

An

integer

representing

the

number

of

bytes

to

be

transferred.

pTargetBuffer

Output.

Area

into

which

the

data

are

moved.

ppSourceBuffer

Input.

A

pointer

to

the

area

containing

the

desired

data.

Usage

notes:

This

API

is

used

in

the

COBOL

and

FORTRAN

languages

only.

Related

reference:

v

“sqlgaddr

-

Get

Address”

on

page

375

sqlgmcpy

-

Copy

Memory

Copies

data

from

one

memory

area

to

another.

It

is

used

in

host

languages,

such

as

FORTRAN

and

COBOL,

that

do

not

provide

memory

block

copy

functions.

Authorization:

None

Required

connection:

None

API

include

file:

sqlutil.h

sqlgdref

-

Dereference

Address

376

Administrative

API

Reference

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgmcpy

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgmcpy

(

void

*pTargetBuffer,

const

void

*pSource,

sqluint32

NumBytes);

/*

...

*/

API

parameters:

pTargetBuffer

Output.

Area

into

which

to

move

the

data.

pSource

Input.

Area

from

which

to

move

the

data.

NumBytes

Input.

A

4-byte

unsigned

integer

representing

the

number

of

bytes

to

be

transferred.

Usage

notes:

This

API

is

used

in

the

COBOL

and

FORTRAN

languages

only.

Related

reference:

v

“sqlgaddr

-

Get

Address”

on

page

375

sqlogstt

-

Get

SQLSTATE

Message

Retrieves

the

message

text

associated

with

an

SQLSTATE.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

C

API

syntax:

/*

File:

sql.h

*/

/*

API:

sqlogstt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlogstt

(

char

*pBuffer,

short

BufferSize,

short

LineWidth,

char

*pSqlstate);

/*

...

*/

Generic

API

syntax:

sqlgmcpy

-

Copy

Memory

Chapter

1.

Application

Programming

Interfaces

377

/*

File:

sql.h

*/

/*

API:

sqlggstt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggstt

(

short

BufferSize,

short

LineWidth,

char

*pSqlstate,

char

*pBuffer);

/*

...

*/

API

parameters:

BufferSize

Input.

Size,

in

bytes,

of

a

string

buffer

to

hold

the

retrieved

message

text.

LineWidth

Input.

The

maximum

line

width

for

each

line

of

message

text.

Lines

are

broken

on

word

boundaries.

A

value

of

zero

indicates

that

the

message

text

is

returned

without

line

breaks.

pSqlstate

Input.

A

string

containing

the

SQLSTATE

for

which

the

message

text

is

to

be

retrieved.

This

field

is

alphanumeric

and

must

be

either

five-digit

(specific

SQLSTATE)

or

two-digit

(SQLSTATE

class,

first

two

digits

of

an

SQLSTATE).

This

field

does

not

need

to

be

NULL-terminated

if

5

digits

are

being

passed

in,

but

must

be

NULL-terminated

if

2

digits

are

being

passed.

pBuffer

Output.

A

pointer

to

a

string

buffer

where

the

message

text

is

to

be

placed.

If

the

message

must

be

truncated

to

fit

in

the

buffer,

the

truncation

allows

for

the

null

string

terminator

character.

REXX

API

syntax:

GET

MESSAGE

FOR

SQLSTATE

sqlstate

INTO

:msg

[LINEWIDTH

width]

REXX

API

parameters:

sqlstate

The

SQLSTATE

for

which

the

message

text

is

to

be

retrieved.

msg

REXX

variable

into

which

the

message

is

placed.

width

Maximum

line

width

for

each

line

of

the

message

text.

The

line

is

broken

on

word

boundaries.

If

a

value

is

not

specified,

or

this

parameter

is

set

to

0,

the

message

text

returns

without

line

breaks.

Usage

notes:

One

message

is

returned

per

call.

A

LF/NULL

sequence

is

placed

at

the

end

of

each

message.

If

a

positive

line

width

is

specified,

LF/NULL

sequences

are

inserted

between

words

so

that

the

lines

do

not

exceed

the

line

width.

If

a

word

is

longer

than

a

line

width,

the

line

is

filled

with

as

many

characters

as

will

fit,

a

LF/NULL

is

inserted,

and

the

remaining

characters

are

placed

on

the

next

line.

Return

codes:

sqlogstt

-

Get

SQLSTATE

Message

378

Administrative

API

Reference

Code

Message

+i

Positive

integer

indicating

the

number

of

bytes

in

the

formatted

message.

If

this

is

greater

than

the

buffer

size

input

by

the

caller,

the

message

is

truncated.

-1

Insufficient

memory

available

for

message

formatting

services

to

function.

The

requested

message

is

not

returned.

-2

The

SQLSTATE

is

in

the

wrong

format.

It

must

be

alphanumeric

and

be

either

2

or

5

digits

in

length.

-3

Message

file

inaccessible

or

incorrect.

-4

Line

width

is

less

than

zero.

-5

Invalid

sqlca,

bad

buffer

address,

or

bad

buffer

length.

If

the

return

code

is

-1

or

-3,

the

message

buffer

will

contain

further

information

about

the

problem.

Related

reference:

v

“sqlaintp

-

Get

Error

Message”

on

page

269

Related

samples:

v

“checkerr.cbl

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(IBM

COBOL)”

v

“utilapi.c

--

Error-checking

utility

for

non-embedded

SQL

samples

in

C

(C)”

v

“utilapi.C

--

Checks

for

and

prints

to

the

screen

SQL

warnings

and

errors

(C++)”

sqluadau

-

Get

Authorizations

Reports

the

authorities

of

the

current

user

from

values

found

in

the

database

manager

configuration

file

and

the

authorization

system

catalog

view

(SYSCAT.DBAUTH).

Authorization:

None

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqluadau

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqluadau

(

struct

sql_authorizations

*pAuthorizations,

struct

sqlca

*pSqlca);

/*

...

*/

sqlogstt

-

Get

SQLSTATE

Message

Chapter

1.

Application

Programming

Interfaces

379

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgadau

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgadau

(

struct

sql_authorizations

*pAuthorizations,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

pAuthorizations

Input/Output.

Pointer

to

the

sql_authorizations

structure.

This

array

of

short

integers

indicates

which

authorizations

the

current

user

holds.

The

first

element

in

the

structure,

sql_authorizations_len,

must

be

initialized

to

the

size

of

the

buffer

being

passed,

prior

to

calling

this

API.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

GET

AUTHORIZATIONS

:value

REXX

API

parameters:

value

A

compound

REXX

host

variable

to

which

the

authorization

level

is

returned.

In

the

following,

XXX

represents

the

host

variable

name.

Values

are

0

for

no,

and

1

for

yes.

XXX.0

Number

of

elements

in

the

variable

(always

18)

XXX.1

Direct

SYSADM

authority

XXX.2

Direct

DBADM

authority

XXX.3

Direct

CREATETAB

authority

XXX.4

Direct

BINDADD

authority

XXX.5

Direct

CONNECT

authority

XXX.6

Indirect

SYSADM

authority

XXX.7

Indirect

DBADM

authority

XXX.8

Indirect

CREATETAB

authority

XXX.9

Indirect

BINDADD

authority

XXX.10

Indirect

CONNECT

authority

XXX.11

Direct

SYSCTRL

authority

XXX.12

Indirect

SYSCTRL

authority

XXX.13

Direct

SYSMAINT

authority

XXX.14

Indirect

SYSMAINT

authority

XXX.15

Direct

CREATE_NOT_FENC

authority

XXX.16

Indirect

CREATE_NOT_FENC

authority

XXX.17

Direct

IMPLICIT_SCHEMA

authority

XXX.18

Indirect

IMPLICIT_SCHEMA

authority.

sqluadau

-

Get

Authorizations

380

Administrative

API

Reference

XXX.19

Direct

LOAD

authority.

XXX.20

Indirect

LOAD

authority.

Usage

notes:

Direct

authorities

are

acquired

by

explicit

commands

that

grant

the

authorities

to

a

user

ID.

Indirect

authorities

are

based

on

authorities

acquired

by

the

groups

to

which

a

user

belongs.

Note:

PUBLIC

is

a

special

group

to

which

all

users

belong.

If

there

are

no

errors,

each

element

of

the

sql_authorizations

structure

contains

a

0

or

a

1.

A

value

of

1

indicates

that

the

user

holds

that

authorization;

0

indicates

that

the

user

does

not.

Related

reference:

v

“SQL-AUTHORIZATIONS”

on

page

401

v

“SQLCA”

on

page

410

Related

samples:

v

“dbauth.sqb

--

How

to

grant

and

display

authorities

on

a

database

(IBM

COBOL)”

v

“dbauth.sqc

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C)”

v

“inauth.sqc

--

How

to

display

authorities

at

instance

level

(C)”

v

“dbauth.sqC

--

How

to

grant,

display,

and

revoke

authorities

at

database

level

(C++)”

v

“inauth.sqC

--

How

to

display

authorities

at

instance

level

(C++)”

sqludrdt

-

Redistribute

Database

Partition

Group

Redistributes

data

across

the

database

partitions

in

a

database

partition

group.

The

current

data

distribution,

whether

it

is

uniform

or

skewed,

can

be

specified.

The

redistribution

algorithm

selects

the

partitions

to

be

moved

based

on

the

current

data

distribution.

This

API

can

only

be

called

from

the

catalog

partition.

Use

the

LIST

DATABASE

DIRECTORY

command

to

determine

which

database

partition

server

is

the

catalog

partition

for

each

database.

Scope:

This

API

affects

all

database

partitions

in

the

database

partition

group.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

dbadm

API

include

file:

sqluadau

-

Get

Authorizations

Chapter

1.

Application

Programming

Interfaces

381

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqludrdt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqludrdt

(

char

*pNodeGroupName,

char

*pTargetPMapFileName,

char

*pDataDistFileName,

SQL_PDB_NODE_TYPE

*pAddList,

unsigned

short

AddCount,

SQL_PDB_NODE_TYPE

*pDropList,

unsigned

short

DropCount,

unsigned

char

DataRedistOption,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgdrdt

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgdrdt

(

unsigned

short

NodeGroupNameLen,

unsigned

short

TargetPMapFileNameLen,

unsigned

short

DataDistFileNameLen,

char

*pNodeGroupName,

char

*pTargetPMapFileName,

char

*pDataDistFileName,

SQL_PDB_NODE_TYPE

*pAddList,

unsigned

short

AddCount,

SQL_PDB_NODE_TYPE

*pDropList,

unsigned

short

DropCount,

unsigned

char

DataRedistOption,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

NodeGroupNameLen

The

length

of

the

name

of

the

database

partition

group.

TargetPMapFileNameLen

The

length

of

the

name

of

the

target

partitioning

map

file.

DataDistFileNameLen

The

length

of

the

name

of

the

data

distribution

file.

pNodeGroupName

The

name

of

the

database

partition

group

to

be

redistributed.

pTargetPMapFileName

The

name

of

the

file

that

contains

the

target

partitioning

map.

If

a

directory

path

is

not

specified

as

part

of

the

file

name,

the

current

directory

is

used.

This

parameter

is

used

when

the

DataRedistOption

value

is

T.

The

file

should

be

in

character

format

and

contain

either

4

096

entries

(for

a

multiple-partition

database

partition

group)

or

1

entry

(for

a

single-partition

database

partition

group).

Entries

in

the

file

indicate

node

numbers.

Entries

can

be

in

free

format.

pDataDistFileName

The

name

of

the

file

that

contains

input

distribution

information.

If

a

sqludrdt

-

Redistribute

Database

Partition

Group

382

Administrative

API

Reference

directory

path

is

not

specified

as

part

of

the

file

name,

the

current

directory

is

used.

This

parameter

is

used

when

the

DataRedistOption

value

is

U.

The

file

should

be

in

character

format

and

contain

4

096

positive

integer

entries.

Each

entry

in

the

file

should

indicate

the

weight

of

the

corresponding

partition.

The

sum

of

the

4

096

values

should

be

less

than

or

equal

to

4

294

967

295.

pAddList

The

list

of

database

partitions

to

add

to

the

database

partition

group

during

the

data

redistribution.

Entries

in

the

list

must

be

in

the

form:

SQL_PDB_NODE_TYPE.

AddCount

The

number

of

database

partitions

to

add

to

the

database

partition

group.

pDropList

The

list

of

database

partitions

to

drop

from

the

database

partition

group

during

the

data

redistribution.

Entries

in

the

list

must

be

in

the

form:

SQL_PDB_NODE_TYPE.

DropCount

The

number

of

database

partitions

to

drop

from

the

database

partition

group.

DataRedistOption

A

single

character

that

indicates

the

type

of

data

redistribution

to

be

done.

Possible

values

are:

U

Specifies

to

redistribute

the

database

partition

group

to

achieve

a

balanced

distribution.

If

pDataDistFileName

is

null,

the

current

data

distribution

is

assumed

to

be

uniform

(that

is,

each

hash

partition

represents

the

same

amount

of

data).

If

pDataDistFileName

is

not

null,

the

values

in

this

file

are

assumed

to

represent

the

current

data

distribution.

When

the

DataRedistOption

is

U,

the

pTargetPMapFileName

should

be

null.

Database

partitions

specified

in

the

add

list

are

added,

and

database

partitions

specified

in

the

drop

list

are

dropped

from

the

database

partition

group.

T

Specifies

to

redistribute

the

database

partition

group

using

pTargetPMapFileName.

For

this

option,

pDataDistFileName,

pAddList,

and

pDropList

should

be

null,

and

both

AddCount

and

DropCount

must

be

zero.

C

Specifies

to

continue

a

redistribution

operation

that

failed.

For

this

option,

pTargetPMapFileName,

pDataDistFileName,

pAddList,

and

pDropList

should

be

null,

and

both

AddCount

and

DropCount

must

be

zero.

R

Specifies

to

roll

back

a

redistribution

operation

that

failed.

For

this

option,

pTargetPMapFileName,

pDataDistFileName,

pAddList,

and

pDropList

should

be

null,

and

both

AddCount

and

DropCount

must

be

zero.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

This

API

can

be

called

from

REXX

through

the

SQLDB2

interface.

sqludrdt

-

Redistribute

Database

Partition

Group

Chapter

1.

Application

Programming

Interfaces

383

Usage

notes:

When

a

redistribution

operation

is

done,

a

message

file

is

written

to:

v

The

$HOME/sqllib/redist

directory

on

UNIX

based

systems,

using

the

following

format

for

subdirectories

and

file

name:

database-name.nodegroup-name.timestamp.

v

The

$HOME\sqllib\redist\

directory

on

the

Windows

operating

system,

using

the

following

format

for

subdirectories

and

file

name:

database-name\first-eight-
characters-of-the-nodegroup-name\date\time.

The

time

stamp

value

is

the

time

at

which

the

API

was

called.

This

utility

performs

intermittent

COMMITs

during

processing.

Use

the

ALTER

DATABASE

PARTITION

GROUP

statement

to

add

database

partitions

to

a

database

partition

group.

This

statement

permits

one

to

define

the

containers

for

the

table

spaces

associated

with

the

database

partition

group.

All

packages

having

a

dependency

on

a

table

that

has

undergone

redistribution

are

invalidated.

It

is

recommended

to

explicitly

rebind

such

packages

after

the

redistribute

database

partition

group

operation

has

completed.

Explicit

rebinding

eliminates

the

initial

delay

in

the

execution

of

the

first

SQL

request

for

the

invalid

package.

The

redistribute

message

file

contains

a

list

of

all

the

tables

that

have

undergone

redistribution.

It

is

also

recommended

to

update

statistics

by

issuing

the

db2Runstats

API

after

the

redistribute

database

partition

group

operation

has

completed.

Database

partition

groups

containing

replicated

summary

tables

or

tables

defined

with

DATA

CAPTURE

CHANGES

cannot

be

redistributed.

Redistribution

is

not

allowed

if

there

are

user

temporary

table

spaces

with

existing

declared

temporary

tables

in

the

database

partition

group.

Related

tasks:

v

“Registering

SQLEXEC,

SQLDBS

and

SQLDB2

in

REXX”

in

the

Application

Development

Guide:

Programming

Client

Applications

Related

reference:

v

“ALTER

DATABASE

PARTITION

GROUP

statement”

in

the

SQL

Reference,

Volume

2

v

“sqlarbnd

-

Rebind”

on

page

273

v

“SQLCA”

on

page

410

v

“LIST

DATABASE

DIRECTORY

Command”

in

the

Command

Reference

v

“REDISTRIBUTE

DATABASE

PARTITION

GROUP

Command”

in

the

Command

Reference

v

“db2Runstats

-

Runstats”

on

page

241

sqlugrpn

-

Get

Row

Partitioning

Number

Returns

the

partition

number

and

the

database

partition

server

number

based

on

the

partitioning

key

values.

An

application

can

use

this

information

to

determine

at

which

database

partition

server

a

specific

row

of

a

table

is

stored.

sqludrdt

-

Redistribute

Database

Partition

Group

384

Administrative

API

Reference

The

partitioning

data

structure,

sqlupi,

is

the

input

for

this

API.

The

structure

can

be

returned

by

the

sqlugtpi

API.

Another

input

is

the

character

representations

of

the

corresponding

partitioning

key

values.

The

output

is

a

partition

number

generated

by

the

partitioning

strategy

and

the

corresponding

database

partition

server

number

from

the

partitioning

map.

If

the

partitioning

map

information

is

not

provided,

only

the

partition

number

is

returned.

This

can

be

useful

when

analyzing

data

distribution.

The

database

manager

does

not

need

to

be

running

when

this

API

is

called.

Scope:

This

API

can

be

invoked

from

any

database

partition

server

in

the

db2nodes.cfg

file.

Authorization:

None

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlugrpn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlugrpn

(

unsigned

short

num_ptrs,

unsigned

char

**ptr_array,

unsigned

short

*ptr_lens,

unsigned

short

ctrycode,

unsigned

short

codepage,

struct

sqlupi

*part_info,

short

*part_num,

SQL_PDB_NODE_TYPE

*node_num,

unsigned

short

chklvl,

struct

sqlca

*sqlca,

short

dataformat,

void

*pReserved1,

void

*pReserved2);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlggrpn

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggrpn

(

unsigned

short

num_ptrs,

unsigned

char

**ptr_array,

unsigned

short

*ptr_lens,

unsigned

short

ctrycode,

unsigned

short

codepage,

struct

sqlupi

*part_info,

short

*part_num,

SQL_PDB_NODE_TYPE

*node_num,

unsigned

short

chklvl,

struct

sqlca

*sqlca,

sqlugrpn

-

Get

Row

Partitioning

Number

Chapter

1.

Application

Programming

Interfaces

385

short

dataformat,

void

*pReserved1,

void

*pReserved2);

/*

...

*/

API

parameters:

num_ptrs

The

number

of

pointers

in

ptr_array.

The

value

must

be

the

same

as

the

one

specified

for

part_info;

that

is,

part_info->sqld.

ptr_array

An

array

of

pointers

that

points

to

the

character

representations

of

the

corresponding

values

of

each

part

of

the

partitioning

key

specified

in

part_info.

If

a

null

value

is

required,

the

corresponding

pointer

is

set

to

null.

For

generated

columns,

this

function

does

not

generate

values

for

the

row.

The

user

is

responsible

for

providing

a

value

that

will

lead

to

the

correct

partitioning

of

the

row.

ptr_lens

An

array

of

unsigned

integers

that

contains

the

lengths

of

the

character

representations

of

the

corresponding

values

of

each

part

of

the

partitioning

key

specified

in

part_info.

ctrycode

The

country/region

code

of

the

target

database.

This

value

can

also

be

obtained

from

the

database

configuration

file

using

the

GET

DATABASE

CONFIGURATION

command.

codepage

The

code

page

of

the

target

database.

This

value

can

also

be

obtained

from

the

database

configuration

file

using

the

GET

DATABASE

CONFIGURATION

command.

part_info

A

pointer

to

the

sqlupi

structure.

part_num

A

pointer

to

a

2-byte

signed

integer

that

is

used

to

store

the

partition

number.

node_num

A

pointer

to

an

SQL_PDB_NODE_TYPE

field

used

to

store

the

node

number.

If

the

pointer

is

null,

no

node

number

is

returned.

chklvl

An

unsigned

integer

that

specifies

the

level

of

checking

that

is

done

on

input

parameters.

If

the

value

specified

is

zero,

no

checking

is

done.

If

any

non-zero

value

is

specified,

all

input

parameters

are

checked.

sqlca

Output.

A

pointer

to

the

sqlca

structure.

dataformat

Specifies

the

representation

of

partitioning

key

values.

Valid

values

are:

SQL_CHARSTRING_FORMAT

All

partitioning

key

values

are

represented

by

character

strings.

This

is

the

default

value.

SQL_IMPLIEDDECIMAL_FORMAT

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition.

For

example,

if

the

column

definition

is

DECIMAL(8,2),

the

value

12345

is

processed

as

123.45.

sqlugrpn

-

Get

Row

Partitioning

Number

386

Administrative

API

Reference

SQL_PACKEDDECIMAL_FORMAT

All

decimal

column

partitioning

key

values

are

in

packed

decimal

format.

SQL_BINARYNUMERICS_FORMAT

All

numeric

partitioning

key

values

are

in

big-endian

binary

format.

pReserved1

Reserved

for

future

use.

pReserved2

Reserved

for

future

use.

Usage

notes:

Data

types

supported

on

the

operating

system

are

the

same

as

those

that

can

be

defined

as

a

partitioning

key.

CHAR,

VARCHAR,

GRAPHIC,

and

VARGRAPHIC

must

be

converted

to

the

target

code

page

before

this

API

is

called.

For

numeric

and

datetime

data

types,

the

character

representations

must

be

at

the

code

page

of

the

respective

system

where

the

API

is

invoked.

If

node_num

is

not

NULL,

the

partitioning

map

must

be

supplied;

that

is,

part_info->pmaplen

is

either

2

or

8

192.

Otherwise,

SQLCODE

-6038

is

returned.

The

partitioning

key

must

be

defined;

that

is,

part_info->sqld

must

be

greater

than

zero.

Otherwise,

SQLCODE

-2032

is

returned.

If

a

null

value

is

assigned

to

a

non-nullable

partitioning

column,

SQLCODE

-6039

is

returned.

All

the

leading

blanks

and

trailing

blanks

of

the

input

character

string

are

stripped,

except

for

the

CHAR,

VARCHAR,

GRAPHIC,

and

VARGRAPHIC

data

types,

where

only

trailing

blanks

are

stripped.

Related

reference:

v

“sqlugtpi

-

Get

Table

Partitioning

Information”

on

page

387

v

“sqludrdt

-

Redistribute

Database

Partition

Group”

on

page

381

v

“SQLCA”

on

page

410

v

“SQLUPI”

on

page

454

v

“GET

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

v

“Supported

DB2

interface

languages”

in

the

Quick

Beginnings

for

DB2

Servers

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

sqlugtpi

-

Get

Table

Partitioning

Information

Allows

an

application

to

obtain

the

partitioning

information

for

a

table.

The

partitioning

information

includes

the

partitioning

map

and

the

column

definitions

of

the

partitioning

key.

Information

returned

by

this

API

can

be

passed

to

the

sqlugrpn

API

to

determine

the

partition

number

and

the

database

partition

server

number

for

any

row

in

the

table.

sqlugrpn

-

Get

Row

Partitioning

Number

Chapter

1.

Application

Programming

Interfaces

387

To

use

this

API,

the

application

must

be

connected

to

the

database

that

contains

the

table

for

which

partitioning

information

is

being

requested.

Scope:

This

API

can

be

executed

on

any

database

partition

server

defined

in

the

db2nodes.cfg

file.

Authorization:

For

the

table

being

referenced,

a

user

must

have

at

least

one

of

the

following:

v

sysadm

authority

v

dbadm

authority

v

CONTROL

privilege

v

SELECT

privilege

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlugtpi

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlugtpi

(

unsigned

char

*tablename,

struct

sqlupi

*part_info,

struct

sqlca

*sqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlggtpi

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlggtpi

(

unsigned

short

tn_length,

unsigned

char

*tablename,

struct

sqlupi

*part_info,

struct

sqlca

*sqlca);

/*

...

*/

API

parameters:

tn_length

A

2-byte

unsigned

integer

with

the

length

of

the

table

name.

tablename

The

fully

qualified

name

of

the

table.

part_info

A

pointer

to

the

sqlupi

structure.

sqlugtpi

-

Get

Table

Partitioning

Information

388

Administrative

API

Reference

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“sqlugrpn

-

Get

Row

Partitioning

Number”

on

page

384

v

“sqludrdt

-

Redistribute

Database

Partition

Group”

on

page

381

v

“SQLCA”

on

page

410

v

“SQLUPI”

on

page

454

sqlurcon

-

Reconcile

Validates

the

references

to

files

for

the

DATALINK

data

of

a

table.

The

rows

for

which

the

references

to

files

cannot

be

established

are

copied

to

the

exception

table

(if

specified),

and

modified

in

the

input

table.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

CONTROL

privilege

on

the

table.

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlurcon

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlurcon

(

char

*pTableName,

char

*pExTableName,

char

*pReportFileName,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgrcon

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgrcon

(

unsigned

short

TableNameLen,

char

*pTableName,

unsigned

short

ExTableNameLen,

char

*pExTableName,

unsigned

short

ReportFleNameLen,

sqlugtpi

-

Get

Table

Partitioning

Information

Chapter

1.

Application

Programming

Interfaces

389

char

*pReportFileName,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

TableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

table

name.

pTableName

Input.

Specifies

the

table

on

which

reconciliation

is

to

be

performed.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

current

authorization

ID.

ExTableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

exception

table

name.

pExTableName

Input.

Specifies

the

exception

table

into

which

rows

that

encounter

link

failures

for

DATALINK

values

are

to

be

copied.

ReportFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

report

file

name.

pReportFileName

Input.

Specifies

the

file

that

will

contain

information

about

the

files

that

are

unlinked

during

reconciliation.

The

name

must

be

fully

qualified

(for

example,

/u/johnh/report).

The

reconcile

utility

appends

a

.ulk

extension

to

the

specified

file

name

(for

example,

report.ulk).

pReserved

Reserved

for

future

use.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

During

reconciliation,

attempts

are

made

to

link

files

which

exist

according

to

table

data,

but

which

do

not

exist

according

to

Data

Links

File

Manager

metadata,

if

no

other

conflict

exists.

Reconciliation

is

performed

with

respect

to

all

DATALINK

data

in

the

table.

If

file

references

cannot

be

re-established,

the

violating

rows

are

inserted

into

the

exception

table

(if

specified).

These

rows

are

not

deleted

from

the

input

table.

To

ensure

file

reference

integrity,

the

offending

DATALINK

values

are

nulled.

If

the

column

is

defined

as

not

nullable,

the

DATALINK

values

are

replaced

by

a

zero

length

URL.

If

an

exception

table

is

not

specified,

the

DATALINK

column

values

for

which

file

references

cannot

be

re-established

are

copied

to

an

exception

report

file

(<pReportFileName>.exp),

along

with

the

column

ID

and

a

comment.

At

the

end

of

the

reconciliation

process,

the

table

is

taken

out

of

datalink

reconcile

pending

(DRP)

state.

sqlurcon

-

Reconcile

390

Administrative

API

Reference

Related

reference:

v

“SQLCA”

on

page

410

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

Quiesces

table

spaces

for

a

table.

There

are

three

valid

quiesce

modes:

share,

intent

to

update,

and

exclusive.

There

are

three

possible

table

space

states

resulting

from

the

quiesce

function:

QUIESCED

SHARE,

QUIESCED

UPDATE,

and

QUIESCED

EXCLUSIVE.

Scope:

In

a

single-partition

database

environment,

this

API

quiesces

all

table

spaces

involved

in

a

load

operation

in

exclusive

mode

for

the

duration

of

the

load.

In

a

partitioned

database

environment,

this

API

acts

locally

on

a

database

partition.

It

quiesces

only

that

portion

of

table

spaces

belonging

to

the

database

partition

on

which

the

load

is

performed.

Authorization:

One

of

the

following:

v

sysadm

v

sysctrl

v

sysmaint

v

dbadm

v

load

Required

connection:

Database

API

include

file:

sqlutil.h

C

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqluvqdp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqluvqdp

(

char

*pTableName,

sqlint32

QuiesceMode,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

Generic

API

syntax:

/*

File:

sqlutil.h

*/

/*

API:

sqlgvqdp

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

sqlgvqdp

(

unsigned

short

TableNameLen,

char

*pTableName,

sqlurcon

-

Reconcile

Chapter

1.

Application

Programming

Interfaces

391

sqlint32

QuiesceMode,

void

*pReserved,

struct

sqlca

*pSqlca);

/*

...

*/

API

parameters:

TableNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

table

name.

pTableName

Input.

A

string

containing

the

table

name

as

used

in

the

system

catalog.

This

may

be

a

two-part

name

with

the

schema

and

the

table

name

separated

by

a

period

(.).

If

the

schema

is

not

provided,

the

CURRENT

SCHEMA

will

be

used.

The

table

cannot

be

a

system

catalog

table.

This

field

is

mandatory.

QuiesceMode

Input.

Specifies

the

quiesce

mode.

Valid

values

(defined

in

sqlutil)

are:

SQLU_QUIESCEMODE_SHARE

For

share

mode

SQLU_QUIESCEMODE_INTENT_UPDATE

For

intent

to

update

mode

SQLU_QUIESCEMODE_EXCLUSIVE

For

exclusive

mode

SQLU_QUIESCEMODE_RESET

To

reset

the

state

of

the

table

spaces

to

normal

if

either

of

the

following

is

true:

v

The

caller

owns

the

quiesce

v

The

caller

who

sets

the

quiesce

disconnects,

creating

a

″phantom

quiesce″

SQLU_QUIESCEMODE_RESET_OWNED

To

reset

the

state

of

the

table

spaces

to

normal

if

the

caller

owns

the

quiesce.

This

field

is

mandatory.

pReserved

Reserved

for

future

use.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

REXX

API

syntax:

QUIESCE

TABLESPACES

FOR

TABLE

table_name

{SHARE

|

INTENT

TO

UPDATE

|

EXCLUSIVE

|

RESET}

REXX

API

parameters:

table_name

Name

of

the

table

as

used

in

the

system

catalog.

This

may

be

a

two-part

name

with

the

schema

and

the

table

name

separated

by

a

period

(.).

If

the

schema

is

not

provided,

the

CURRENT

SCHEMA

will

be

used.

Usage

notes:

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

392

Administrative

API

Reference

This

API

is

not

supported

for

declared

temporary

tables.

When

the

quiesce

share

request

is

received,

the

transaction

requests

intent

share

locks

for

the

table

spaces

and

a

share

lock

for

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

is

changed

to

QUIESCED

SHARE.

The

state

is

granted

to

the

quiescer

only

if

there

is

no

conflicting

state

held

by

other

users.

The

state

of

the

table

spaces

is

recorded

in

the

table

space

table,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

so

that

the

state

is

persistent.

The

table

cannot

be

changed

while

the

table

spaces

for

the

table

are

in

QUIESCED

SHARE

state.

Other

share

mode

requests

to

the

table

and

table

spaces

will

be

allowed.

When

the

transaction

commits

or

rolls

back,

the

locks

are

released,

but

the

table

spaces

for

the

table

remain

in

QUIESCED

SHARE

state

until

the

state

is

explicitly

reset.

When

the

quiesce

exclusive

request

is

made,

the

transaction

requests

super

exclusive

locks

on

the

table

spaces,

and

a

super

exclusive

lock

on

the

table.

When

the

transaction

obtains

the

locks,

the

state

of

the

table

spaces

changes

to

QUIESCED

EXCLUSIVE.

The

state

of

the

table

spaces,

along

with

the

authorization

ID

and

the

database

agent

ID

of

the

quiescer,

are

recorded

in

the

table

space

table.

Since

the

table

spaces

are

held

in

super

exclusive

mode,

no

other

access

to

the

table

spaces

is

allowed.

The

user

who

invokes

the

quiesce

function

(the

quiescer),

however,

has

exclusive

access

to

the

table

and

the

table

spaces.

When

a

quiesce

update

request

is

made,

the

table

spaces

are

locked

in

intent

exclusive

(IX)

mode,

and

the

table

is

locked

in

update

(U)

mode.

The

state

of

the

table

spaces

with

the

quiescer

is

recorded

in

the

table

space

table.

There

is

a

limit

of

five

quiescers

on

a

table

space

at

any

given

time.

Since

QUIESCED

EXCLUSIVE

is

incompatible

with

any

other

state,

and

QUIESCED

UPDATE

is

incompatible

with

another

QUIESCED

UPDATE,

the

five

quiescer

limit,

if

reached,

must

have

at

least

four

QUIESCED

SHARE

and

at

most

one

QUIESCED

UPDATE.

A

quiescer

can

upgrade

the

state

of

a

table

space

from

a

less

restrictive

state

to

a

more

restrictive

one

(for

example,

S

to

U,

or

U

to

X).

If

a

user

requests

a

state

lower

than

one

that

is

already

held,

the

original

state

is

returned.

States

are

not

downgraded.

The

quiesced

state

of

a

table

space

must

be

reset

explicitly

by

using

SQLU_QUIESCEMODE_RESET.

Related

reference:

v

“SQLCA”

on

page

410

v

“db2DatabaseQuiesce

-

Database

Quiesce”

on

page

43

v

“db2InstanceQuiesce

-

Instance

Quiesce”

on

page

129

Related

samples:

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

v

“tload.sqb

--

How

to

export

and

load

table

data

(IBM

COBOL)”

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

Chapter

1.

Application

Programming

Interfaces

393

sqluvqdp

-

Quiesce

Table

Spaces

for

Table

394

Administrative

API

Reference

Chapter

2.

Additional

REXX

APIs

This

section

describes

DB2

application

programming

interfaces

that

are

only

supported

in

the

REXX

programming

language.

Change

Isolation

Level

(REXX)

Changes

the

way

that

DB2

isolates

data

from

other

processes

while

a

database

is

being

accessed.

Authorization:

None

Required

connection:

None

REXX

API

syntax:

CHANGE

SQLISL

TO

{RR|CS|UR|RS|NC}

REXX

API

parameters:

RR

Repeatable

read.

CS

Cursor

stability.

This

is

the

default.

UR

Uncommitted

read.

RS

Read

stability.

NC

No

commit.

Related

reference:

v

“REXX

samples”

in

the

Application

Development

Guide:

Building

and

Running

Applications

©

Copyright

IBM

Corp.

1993

-

2004

395

Change

Isolation

Level

(REXX)

396

Administrative

API

Reference

Chapter

3.

Data

Structures

This

section

describes

the

data

structures

used

to

access

the

database

manager.

db2HistData

This

structure

is

used

to

return

information

after

a

call

to

db2HistoryGetEntry.

Table

22.

Fields

in

the

db2HistData

Structure

Field

Name

Data

Type

Description

ioHistDataID

char(8)

An

8-byte

structure

identifier

and

“eye-catcher”

for

storage

dumps.

The

only

valid

value

is

“SQLUHINF”.

No

symbolic

definition

for

this

string

exists.

oObjectPart

db2Char

The

first

14

characters

are

a

time

stamp

with

format

yyyymmddhhnnss,

indicating

when

the

operation

was

begun.

The

next

3

characters

are

a

sequence

number.

Each

backup

operation

can

result

in

multiple

entries

in

this

file

when

the

backup

image

is

saved

in

multiple

files

or

on

multiple

tapes.

The

sequence

number

allows

multiple

locations

to

be

specified.

Restore

and

load

operations

have

only

a

single

entry

in

this

file,

which

corresponds

to

sequence

number

’001’

of

the

corresponding

backup.

The

time

stamp,

combined

with

the

sequence

number,

must

be

unique.

oEndTime

db2Char

A

time

stamp

with

format

yyyymmddhhnnss,

indicating

when

the

operation

was

completed.

oFirstLog

db2Char

The

earliest

log

file

ID

(ranging

from

S0000000

to

S9999999):

v

Required

to

apply

rollforward

recovery

for

an

online

backup

v

Required

to

apply

rollforward

recovery

for

an

offline

backup

v

Applied

after

restoring

a

full

database

or

table

space

level

backup

that

was

current

when

the

load

started.

oLastLog

db2Char

The

latest

log

file

ID

(ranging

from

S0000000

to

S9999999):

v

Required

to

apply

rollforward

recovery

for

an

online

backup

v

Required

to

apply

rollforward

recovery

to

the

current

point

in

time

for

an

offline

backup

v

Applied

after

restoring

a

full

database

or

table

space

level

backup

that

was

current

when

the

load

operation

finished

(will

be

the

same

as

oFirstLog

if

roll

forward

recovery

is

not

applied).

oID

db2Char

Unique

backup

or

table

identifier.

oTableQualifier

db2Char

Table

qualifier.

oTableName

db2Char

Table

name.

©

Copyright

IBM

Corp.

1993

-

2004

397

Table

22.

Fields

in

the

db2HistData

Structure

(continued)

Field

Name

Data

Type

Description

oLocation

db2Char

For

backups

and

load

copies,

this

field

indicates

where

the

data

has

been

saved.

For

operations

that

require

multiple

entries

in

the

file,

the

sequence

number

defined

by

oObjectPart

identifies

which

part

of

the

backup

is

found

in

the

specified

location.

For

restore

and

load

operations,

the

location

always

identifies

where

the

first

part

of

the

data

restored

or

loaded

(corresponding

to

sequence

’001’

for

multi-part

backups)

has

been

saved.

The

data

in

oLocation

is

interpreted

differently,

depending

on

oDeviceType:

v

For

disk

or

diskette

(D

or

K),

a

fully

qualified

file

name

v

For

tape

(T),

a

volume

label

v

For

TSM

(A),

the

server

name

v

For

user

exit

or

other

(U

or

O),

free

form

text.

oComment

db2Char

Free

form

text

comment.

oCommandText

db2Char

Command

text,

or

DDL.

oLastLSN

SQLU_LSN

Last

log

sequence

number.

oEID

Structure

Unique

entry

identifier.

poEventSQLCA

Structure

Result

sqlca

of

the

recorded

event.

poTablespace

db2Char

A

list

of

table

space

names.

ioNumTablespaces

db2Uint32

Number

of

entries

in

the

poTablespace

list.

Each

table

space

backup

contains

one

or

more

table

spaces.

Each

table

space

restore

operation

replaces

one

or

more

table

spaces.

If

this

field

is

not

zero

(indicating

a

table

space

level

backup

or

restore),

the

next

lines

in

this

file

contain

the

name

of

the

table

space

backed

up

or

restored,

represented

by

an

18-character

string.

One

table

space

name

appears

on

each

line.

oOperation

char

See

Table

23.

oObject

char

Granularity

of

the

operation:

D

for

full

database,

P

for

table

space,

and

T

for

table.

oOptype

char

See

Table

24

on

page

399.

oStatus

char

Entry

status:

A

for

action,

D

for

deleted

(future

use),

E

for

expired,

I

for

inactive,

N

for

not

yet

committed,

Y

for

committed

or

active,

a

for

active

backup,

but

some

datalink

servers

have

not

yet

completed

the

backup,

and

i

for

inactive

backup,

but

some

datalink

servers

have

not

yet

completed

the

backup.

oDeviceType

char

Device

type.

This

field

determines

how

the

oLocation

field

is

interpreted:

A

for

TSM,

C

for

client,

D

for

disk,

K

for

diskette,

L

for

local,

O

for

other

(for

other

vendor

device

support),

P

for

pipe,

Q

for

cursor,

S

for

server,

T

for

tape,

and

U

for

user

exit.

Table

23.

Valid

oOperation

Values

in

the

db2HistData

Structure

Value

Description

C

Definition

COBOL/FORTRAN

Definition

A

add

table

space

DB2HISTORY_OP_ADD_

TABLESPACE

DB2HIST_OP_ADD_

TABLESPACE

B

backup

DB2HISTORY_OP_BACKUP

DB2HIST_OP_BACKUP

C

load

copy

DB2HISTORY_OP_LOAD_COPY

DB2HIST_OP_LOAD_COPY

db2HistData

398

Administrative

API

Reference

Table

23.

Valid

oOperation

Values

in

the

db2HistData

Structure

(continued)

Value

Description

C

Definition

COBOL/FORTRAN

Definition

D

dropped

table

DB2HISTORY_OP_DROPPED_

TABLE

DB2HIST_OP_DROPPED_TABLE

F

rollforward

DB2HISTORY_OP_ROLLFWD

DB2HIST_OP_ROLLFWD

G

reorganize

table

DB2HISTORY_OP_REORG

DB2HIST_OP_REORG

L

load

DB2HISTORY_OP_LOAD

DB2HIST_OP_LOAD

N

rename

table

space

DB2HISTORY_OP_REN_

TABLESPACE

DB2HIST_OP_REN_

TABLESPACE

O

drop

table

space

DB2HISTORY_OP_DROP_

TABLESPACE

DB2HIST_OP_DROP_

TABLESPACE

Q

quiesce

DB2HISTORY_OP_QUIESCE

DB2HIST_OP_QUIESCE

R

restore

DB2HISTORY_OP_RESTORE

DB2HIST_OP_RESTORE

T

alter

table

space

DB2HISTORY_OP_ALT_

TABLESPACE

DB2HIST_OP_ALT_TBS

U

unload

DB2HISTORY_OP_UNLOAD

DB2HIST_OP_UNLOAD

Table

24.

Valid

oOptype

Values

in

the

db2HistData

Structure

oOperation

oOptype

Description

C/COBOL/FORTRAN

Definition

B

F

offline

DB2HISTORY_OPTYPE_OFFLINE

N

online

DB2HISTORY_OPTYPE_ONLINE

I

incremental

offline

DB2HISTORY_OPTYPE_INCR_

OFFLINE

O

incremental

online

DB2HISTORY_OPTYPE_INCR_

ONLINE

D

delta

offline

DB2HISTORY_OPTYPE_DELTA_

OFFLINE

E

delta

online

DB2HISTORY_OPTYPE_DELTA_

ONLINE

F

E

end

of

logs

DB2HISTORY_OPTYPE_EOL

P

point

in

time

DB2HISTORY_OPTYPE_PIT

G

F

offline

DB2HISTORY_OPTYPE_OFFLINE

N

online

DB2HISTORY_OPTYPE_ONLINE

L

I

insert

DB2HISTORY_OPTYPE_INSERT

R

replace

DB2HISTORY_OPTYPE_REPLACE

Q

S

quiesce

share

DB2HISTORY_OPTYPE_SHARE

U

quiesce

update

DB2HISTORY_OPTYPE_UPDATE

X

quiesce

exclusive

DB2HISTORY_OPTYPE_EXCL

Z

quiesce

reset

DB2HISTORY_OPTYPE_RESET

R

F

offline

DB2HISTORY_OPTYPE_OFFLINE

N

online

DB2HISTORY_OPTYPE_ONLINE

I

incremental

offline

DB2HISTORY_OPTYPE_INCR_

OFFLINE

O

incremental

online

DB2HISTORY_OPTYPE_INCR_

ONLINE

T

C

add

containers

DB2HISTORY_OPTYPE_ADD_CONT

R

rebalance

DB2HISTORY_OPTYPE_REB

db2HistData

Chapter

3.

Data

Structures

399

Table

25.

Fields

in

the

db2Char

Structure

Field

Name

Data

Type

Description

pioData

char

A

pointer

to

a

character

data

buffer.

If

NULL,

no

data

will

be

returned.

iLength

db2Uint32

Input.

The

size

of

the

pioData

buffer.

oLength

db2Uint32

Output.

The

number

of

valid

characters

of

data

in

the

pioData

buffer.

Table

26.

Fields

in

the

db2HistoryEID

Structure

Field

Name

Data

Type

Description

ioNode

SQL_PDB_NODE_TYPE

Node

number.

ioHID

db2Uint32

Local

history

file

entry

ID.

Language

syntax:

C

Structure

/*

File:

db2ApiDf.h

*/

/*

...

*/

typedef

SQL_STRUCTURE

db2HistoryData

{

char

ioHistDataID[8];

db2Char

oObjectPart;

db2Char

oEndTime;

db2Char

oFirstLog;

db2Char

oLastLog;

db2Char

oID;

db2Char

oTableQualifier;

db2Char

oTableName;

db2Char

oLocation;

db2Char

oComment;

db2Char

oCommandText;

SQLU_LSN

oLastLSN;

db2HistoryEID

oEID;

struct

sqlca

*

poEventSQLCA;

db2Char

*

poTablespace;

db2Uint32

ioNumTablespaces;

char

oOperation;

char

oObject;

char

oOptype;

char

oStatus;

char

oDeviceType

}

db2HistoryData;

typedef

SQL_STRUCTURE

db2Char

{

char

*

pioData;

db2Uint32

ioLength

}

db2Char;

typedef

SQL_STRUCTURE

db2HistoryEID

{

SQL_PDB_NODE_TYPE

ioNode;

db2Uint32

ioHID

}

db2HistoryEID;

/*

...

*/

Related

reference:

v

“db2HistoryGetEntry

-

Get

Next

History

File

Entry”

on

page

94

v

“SQLCA”

on

page

410

db2HistData

400

Administrative

API

Reference

SQL-AUTHORIZATIONS

This

structure

is

used

to

return

information

after

a

call

to

the

sqluadau

API.

The

data

type

of

all

fields

is

SMALLINT.

The

first

half

of

the

following

table

contains

authorities

granted

directly

to

a

user.

The

second

half

of

the

table

contains

authorities

granted

to

the

groups

to

which

a

user

belongs.

Table

27.

Fields

in

the

SQL-AUTHORIZATIONS

Structure

Field

Name

Description

SQL_AUTHORIZATIONS_LEN

Size

of

structure.

SQL_SYSADM_AUTH

SYSADM

authority.

SQL_SYSCTRL_AUTH

SYSCTRL

authority.

SQL_SYSMAINT_AUTH

SYSMAINT

authority.

SQL_DBADM_AUTH

DBADM

authority.

SQL_CREATETAB_AUTH

CREATETAB

authority.

SQL_CREATET_NOT_FENC_AUTH

CREATE_NOT_FENCED

authority.

SQL_BINDADD_AUTH

BINDADD

authority.

SQL_CONNECT_AUTH

CONNECT

authority.

SQL_IMPLICIT_SCHEMA_AUTH

IMPLICIT_SCHEMA

authority.

SQL_LOAD_AUTH

LOAD

authority.

SQL_SYSADM_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSADM

authority.

SQL_SYSCTRL_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSCTRL

authority.

SQL_SYSMAINT_GRP_AUTH

User

belongs

to

a

group

which

holds

SYSMAINT

authority.

SQL_DBADM_GRP_AUTH

User

belongs

to

a

group

which

holds

DBADM

authority.

SQL_CREATETAB_GRP_AUTH

User

belongs

to

a

group

which

holds

CREATETAB

authority.

SQL_CREATE_NON_FENC_GRP_AUTH

User

belongs

to

a

group

which

holds

CREATE_NOT_FENCED

authority.

SQL_BINDADD_GRP_AUTH

User

belongs

to

a

group

which

holds

BINDADD

authority.

SQL_CONNECT_GRP_AUTH

User

belongs

to

a

group

which

holds

CONNECT

authority.

SQL_IMPLICIT_SCHEMA_GRP_AUTH

User

belongs

to

a

group

which

holds

IMPLICIT_SCHEMA

authority.

SQL_LOAD_GRP_AUTH

User

belongs

to

a

group

which

holds

LOAD

authority.

Note:

SYSADM,

SYSMAINT,

and

SYSCTRL

are

only

indirect

authorities

and

cannot

be

granted

directly

to

the

user.

They

are

available

only

through

the

groups

to

which

the

user

belongs.

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQL-AUTHORIZATIONS

*/

/*

...

*/

SQL_STRUCTURE

sql_authorizations

{

short

sql_authorizations_len;

short

sql_sysadm_auth;

short

sql_dbadm_auth;

SQL-AUTHORIZATIONS

Chapter

3.

Data

Structures

401

short

sql_createtab_auth;

short

sql_bindadd_auth;

short

sql_connect_auth;

short

sql_sysadm_grp_auth;

short

sql_dbadm_grp_auth;

short

sql_createtab_grp_auth;

short

sql_bindadd_grp_auth;

short

sql_connect_grp_auth;

short

sql_sysctrl_auth;

short

sql_sysctrl_grp_auth;

short

sql_sysmaint_auth;

short

sql_sysmaint_grp_auth;

short

sql_create_not_fenc_auth;

short

sql_create_not_fenc_grp_auth;

short

sql_implicit_schema_auth;

short

sql_implicit_schema_grp_auth;

short

sql_load_auth;

short

sql_load_grp_auth;

};

/*

...

*/

COBOL

Structure

*

File:

sqlutil.cbl

01

SQL-AUTHORIZATIONS.

05

SQL-AUTHORIZATIONS-LEN

PIC

S9(4)

COMP-5.

05

SQL-SYSADM-AUTH

PIC

S9(4)

COMP-5.

05

SQL-DBADM-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATETAB-AUTH

PIC

S9(4)

COMP-5.

05

SQL-BINDADD-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CONNECT-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSADM-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-DBADM-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATETAB-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-BINDADD-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CONNECT-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSCTRL-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSCTRL-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSMAINT-AUTH

PIC

S9(4)

COMP-5.

05

SQL-SYSMAINT-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATE-NOT-FENC-AUTH

PIC

S9(4)

COMP-5.

05

SQL-CREATE-NOT-FENC-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-IMPLICIT-SCHEMA-AUTH

PIC

S9(4)

COMP-5.

05

SQL-IMPLICIT-SCHEMA-GRP-AUTH

PIC

S9(4)

COMP-5.

05

SQL-LOAD-AUTH

PIC

S9(4)

COMP-5.

05

SQL-LOAD-GRP-AUTH

PIC

S9(4)

COMP-5.

*

Related

reference:

v

“sqluadau

-

Get

Authorizations”

on

page

379

SQL-DIR-ENTRY

This

structure

is

used

by

the

DCS

directory

APIs.

Table

28.

Fields

in

the

SQL-DIR-ENTRY

Structure

Field

Name

Data

Type

Description

STRUCT_ID

SMALLINT

Structure

identifier.

Set

to

SQL_DCS_STR_ID

(defined

in

sqlenv).

RELEASE

SMALLINT

Release

version

(assigned

by

the

API).

CODEPAGE

SMALLINT

Code

page

for

comment.

COMMENT

CHAR(30)

Optional

description

of

the

database.

SQL-AUTHORIZATIONS

402

Administrative

API

Reference

Table

28.

Fields

in

the

SQL-DIR-ENTRY

Structure

(continued)

Field

Name

Data

Type

Description

LDB

CHAR(8)

Local

name

of

the

database;

must

match

database

alias

in

system

database

directory.

TDB

CHAR(18)

Actual

name

of

the

database.

AR

CHAR(32)

Name

of

the

application

client.

PARM

CHAR(512)

Contains

transaction

program

prefix,

transaction

program

name,

SQLCODE

mapping

file

name,

and

disconnect

and

security

option.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQL-DIR-ENTRY

*/

/*

...

*/

SQL_STRUCTURE

sql_dir_entry

{

unsigned

short

struct_id;

unsigned

short

release;

unsigned

short

codepage;

_SQLOLDCHAR

comment[SQL_CMT_SZ

+

1];

_SQLOLDCHAR

ldb[SQL_DBNAME_SZ

+

1];

_SQLOLDCHAR

tdb[SQL_LONG_NAME_SZ

+

1];

_SQLOLDCHAR

ar[SQL_AR_SZ

+

1];

_SQLOLDCHAR

parm[SQL_PARAMETER_SZ

+

1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-DIR-ENTRY.

05

STRUCT-ID

PIC

9(4)

COMP-5.

05

RELEASE-LVL

PIC

9(4)

COMP-5.

05

CODEPAGE

PIC

9(4)

COMP-5.

05

COMMENT

PIC

X(30).

05

FILLER

PIC

X.

05

LDB

PIC

X(8).

05

FILLER

PIC

X.

05

TDB

PIC

X(18).

05

FILLER

PIC

X.

05

AR

PIC

X(32).

05

FILLER

PIC

X.

05

PARM

PIC

X(512).

05

FILLER

PIC

X.

05

FILLER

PIC

X(1).

*

SQLA-FLAGINFO

This

structure

is

used

to

hold

flagger

information.

Table

29.

Fields

in

the

SQLA-FLAGINFO

Structure

Field

Name

Data

Type

Description

VERSION

SMALLINT

Input

field

that

must

be

set

to

SQLA_FLAG_VERSION

(defined

in

sqlaprep).

MSGS

Structure

An

imbedded

sqla_flagmsgs

structure.

SQL-DIR-ENTRY

Chapter

3.

Data

Structures

403

Table

30.

Fields

in

the

SQLA-FLAGMSGS

Structure

Field

Name

Data

Type

Description

COUNT

SMALLINT

Output

field

set

to

the

number

of

messages

returned

by

the

flagger.

SQLCA

Array

Array

of

SQLCA

structures

returning

information

from

the

flagger.

Language

syntax:

C

Structure

/*

File:

sqlaprep.h

*/

/*

Structure:

SQLA-FLAGINFO

*/

/*

...

*/

SQL_STRUCTURE

sqla_flaginfo

{

short

version;

short

padding;

struct

sqla_flagmsgs

msgs;

};

/*

...

*/

/*

File:

sqlaprep.h

*/

/*

Structure:

SQLA-FLAGMSGS

*/

/*

...

*/

SQL_STRUCTURE

sqla_flagmsgs

{

short

count;

short

padding;

SQL_STRUCTURE

sqlca

sqlca[SQLA_FLAG_MAXMSGS];

};

/*

...

*/

COBOL

Structure

*

File:

sqlaprep.cbl

01

SQLA-FLAGINFO.

05

SQLFLAG-VERSION

PIC

9(4)

COMP-5.

05

FILLER

PIC

X(2).

05

SQLFLAG-MSGS.

10

SQLFLAG-MSGS-COUNT

PIC

9(4)

COMP-5.

10

FILLER

PIC

X(2).

10

SQLFLAG-MSGS-SQLCA

OCCURS

10

TIMES.

*

SQLB-TBS-STATS

This

structure

is

used

to

return

additional

table

space

statistics

to

an

application

program.

Table

31.

Fields

in

the

SQLB-TBS-STATS

Structure

Field

Name

Data

Type

Description

TOTALPAGES

INTEGER

Total

operating

system

space

occupied

by

the

table

space

(in

4KB

pages).

For

DMS,

this

is

the

sum

of

the

container

sizes

(including

overhead).

For

SMS,

this

is

the

sum

of

all

file

space

used

for

the

tables

stored

in

this

table

space.

This

is

the

only

piece

of

information

returned

for

SMS

table

spaces;

the

other

fields

are

set

to

this

value

or

zero.

SQLA-FLAGINFO

404

Administrative

API

Reference

Table

31.

Fields

in

the

SQLB-TBS-STATS

Structure

(continued)

Field

Name

Data

Type

Description

USEABLEPAGES

INTEGER

For

DMS,

equal

to

TOTALPAGES

minus

(overhead

plus

partial

extents).

For

SMS,

equal

to

TOTALPAGES.

USEDPAGES

INTEGER

For

DMS,

the

total

number

of

pages

in

use.

For

SMS,

equal

to

TOTALPAGES.

FREEPAGES

INTEGER

For

DMS,

equal

to

USEABLEPAGES

minus

USEDPAGES.

For

SMS,

not

applicable.

HIGHWATERMARK

INTEGER

For

DMS,

the

high

water

mark

is

the

current

″end″

of

the

table

space

address

space.

In

other

words,

the

page

number

of

the

first

free

extent

following

the

last

allocated

extent

of

a

table

space.

Note

that

this

is

not

really

a

″high

water

mark″,

but

rather

a

″current

water

mark″,

since

the

value

can

decrease.

For

SMS,

this

is

not

applicable.

During

a

table

space

rebalance,

the

number

of

useable

pages

will

include

pages

for

the

newly

added

container,

but

these

new

pages

will

not

be

reflected

in

the

number

of

free

pages

until

the

rebalance

is

complete.

When

a

table

space

rebalance

is

not

taking

place,

the

number

of

used

pages

plus

the

number

of

free

pages

will

equal

the

number

of

useable

pages.

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLB-TBS-STATS

*/

/*

...

*/

SQL_STRUCTURE

SQLB_TBS_STATS

{

sqluint32

totalPages;

sqluint32

useablePages;

sqluint32

usedPages;

sqluint32

freePages;

sqluint32

highWaterMark;

};

/*

...

*/

COBOL

Structure

*

File:

sqlutil.cbl

01

SQLB-TBS-STATS.

05

SQL-TOTAL-PAGES

PIC

9(9)

COMP-5.

05

SQL-USEABLE-PAGES

PIC

9(9)

COMP-5.

05

SQL-USED-PAGES

PIC

9(9)

COMP-5.

05

SQL-FREE-PAGES

PIC

9(9)

COMP-5.

05

SQL-HIGH-WATER-MARK

PIC

9(9)

COMP-5.

*

SQLB-TBSCONTQRY-DATA

This

structure

is

used

to

return

container

data

to

an

application

program.

Table

32.

Fields

in

the

SQLB-TBSCONTQRY-DATA

Structure

Field

Name

Data

Type

Description

ID

INTEGER

Container

identifier.

SQLB-TBS-STATS

Chapter

3.

Data

Structures

405

Table

32.

Fields

in

the

SQLB-TBSCONTQRY-DATA

Structure

(continued)

Field

Name

Data

Type

Description

NTBS

INTEGER

Always

1.

TBSID

INTEGER

Table

space

identifier.

NAMELEN

INTEGER

Length

of

the

container

name

(for

languages

other

than

C).

NAME

CHAR(256)

Container

name.

UNDERDBDIR

INTEGER

Either

1

(container

is

under

the

DB

directory)

or

0

(container

is

not

under

the

DB

directory).

CONTTYPE

INTEGER

Container

type.

TOTALPAGES

INTEGER

Total

number

of

pages

occupied

by

the

table

space

container.

USEABLEPAGES

INTEGER

For

DMS,

TOTALPAGES

minus

overhead.

For

SMS,

equal

to

TOTALPAGES.

OK

INTEGER

Either

1

(container

is

accessible)

or

0

(container

is

inaccessible).

Zero

indicates

an

abnormal

situation

that

usually

requires

the

attention

of

the

database

administrator.

Possible

values

for

CONTTYPE

(defined

in

sqlutil)

are:

SQLB_CONT_PATH

Specifies

a

directory

path

(SMS

only).

SQLB_CONT_DISK

Specifies

a

raw

device

(DMS

only).

SQLB_CONT_FILE

Specifies

a

file

(DMS

only).

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLB-TBSCONTQRY-DATA

*/

/*

...

*/

SQL_STRUCTURE

SQLB_TBSCONTQRY_DATA

{

sqluint32

id;

sqluint32

nTbs;

sqluint32

tbsID;

sqluint32

nameLen;

char

name[SQLB_MAX_CONTAIN_NAME_SZ];

sqluint32

underDBDir;

sqluint32

contType;

sqluint32

totalPages;

sqluint32

useablePages;

sqluint32

ok;

};

/*

...

*/

COBOL

Structure

*

File:

sqlutbcq.cbl

01

SQLB-TBSCONTQRY-DATA.

05

SQL-ID

PIC

9(9)

COMP-5.

05

SQL-N-TBS

PIC

9(9)

COMP-5.

05

SQL-TBS-ID

PIC

9(9)

COMP-5.

05

SQL-NAME-LEN

PIC

9(9)

COMP-5.

05

SQL-NAME

PIC

X(256).

SQLB-TBSCONTQRY-DATA

406

Administrative

API

Reference

05

SQL-UNDER-DBDIR

PIC

9(9)

COMP-5.

05

SQL-CONT-TYPE

PIC

9(9)

COMP-5.

05

SQL-TOTAL-PAGES

PIC

9(9)

COMP-5.

05

SQL-USEABLE-PAGES

PIC

9(9)

COMP-5.

05

SQL-OK

PIC

9(9)

COMP-5.

*

SQLB-TBSPQRY-DATA

This

structure

is

used

to

return

table

space

data

to

an

application

program.

Table

33.

Fields

in

the

SQLB-TBSPQRY-DATA

Structure

Field

Name

Data

Type

Description

TBSPQVER

CHAR(8)

Structure

version

identifier.

ID

INTEGER

Internal

identifier

for

the

table

space.

NAMELEN

INTEGER

Length

of

the

table

space

name.

NAME

CHAR(128)

Null-terminated

name

of

the

table

space.

TOTALPAGES

INTEGER

Number

of

pages

specified

by

CREATE

TABLESPACE

(DMS

only).

USEABLEPAGES

INTEGER

TOTALPAGES

minus

overhead

(DMS

only).

This

value

is

rounded

down

to

the

next

multiple

of

4KB.

FLAGS

INTEGER

Bit

attributes

for

the

table

space.

PAGESIZE

INTEGER

Page

size

(in

bytes)

of

the

table

space.

Currently

fixed

at

4KB.

EXTSIZE

INTEGER

Extent

size

(in

pages)

of

the

table

space.

PREFETCHSIZE

INTEGER

Prefetch

size.

NCONTAINERS

INTEGER

Number

of

containers

in

the

table

space.

TBSSTATE

INTEGER

Table

space

states.

LIFELSN

CHAR(6)

Time

stamp

identifying

the

origin

of

the

table

space.

FLAGS2

INTEGER

Bit

attributes

for

the

table

space.

MINIMUMRECTIME

CHAR(27)

Earliest

point

in

time

that

may

be

specified

by

point-in-time

table

space

rollforward.

STATECHNGOBJ

INTEGER

If

TBSSTATE

is

SQLB_LOAD_PENDING

or

SQLB_DELETE_PENDING,

the

object

ID

in

table

space

STATECHANGEID

that

caused

the

table

space

state

to

be

set.

Otherwise

zero.

STATECHNGID

INTEGER

If

TBSSTATE

is

SQLB_LOAD_PENDING

or

SQLB_DELETE_PENDING,

the

table

space

ID

of

the

object

STATECHANGEOBJ

that

caused

the

table

space

state

to

be

set.

Otherwise

zero.

NQUIESCERS

INTEGER

If

TBSSTATE

is

SQLB_QUIESCED_SHARE,

UPDATE,

or

EXCLUSIVE,

the

number

of

quiescers

of

the

table

space

and

the

number

of

entries

in

QUIESCERS.

QUIESCEID

INTEGER

The

table

space

ID

of

the

object

QUIESCEOBJ

that

caused

the

table

space

to

be

quiesced.

QUIESCEOBJ

INTEGER

The

object

ID

in

table

space

QUIESCEID

that

caused

the

table

space

to

be

quiesced.

RESERVED

CHAR(32)

Reserved

for

future

use.

Possible

values

for

FLAGS

(defined

in

sqlutil)

are:

SQLB-TBSCONTQRY-DATA

Chapter

3.

Data

Structures

407

SQLB_TBS_SMS

System

Managed

Space

SQLB_TBS_DMS

Database

Managed

Space

SQLB_TBS_ANY

Regular

contents

SQLB_TBS_LONG

Long

field

data

SQLB_TBS_SYSTMP

System

temporary

data.

SQLB_TBS_USRTMP

User

temporary

data.

Possible

values

for

TBSSTATE

(defined

in

sqlutil)

are:

SQLB_NORMAL

Normal

SQLB_QUIESCED_SHARE

Quiesced:

SHARE

SQLB_QUIESCED_UPDATE

Quiesced:

UPDATE

SQLB_QUIESCED_EXCLUSIVE

Quiesced:

EXCLUSIVE

SQLB_LOAD_PENDING

Load

pending

SQLB_DELETE_PENDING

Delete

pending

SQLB_BACKUP_PENDING

Backup

pending

SQLB_ROLLFORWARD_IN_PROGRESS

Roll

forward

in

progress

SQLB_ROLLFORWARD_PENDING

Roll

forward

pending

SQLB_RESTORE_PENDING

Restore

pending

SQLB_DISABLE_PENDING

Disable

pending

SQLB_REORG_IN_PROGRESS

Reorganization

in

progress

SQLB_BACKUP_IN_PROGRESS

Backup

in

progress

SQLB_STORDEF_PENDING

Storage

must

be

defined

SQLB_RESTORE_IN_PROGRESS

Restore

in

progress

SQLB-TBSPQRY-DATA

408

Administrative

API

Reference

SQLB_STORDEF_ALLOWED

Storage

may

be

defined

SQLB_STORDEF_FINAL_VERSION

Storage

definition

is

in

’final’

state

SQLB_STORDEF_CHANGED

Storage

definition

was

changed

prior

to

roll

forward

SQLB_REBAL_IN_PROGRESS

DMS

rebalancer

is

active

SQLB_PSTAT_DELETION

Table

space

deletion

in

progress

SQLB_PSTAT_CREATION

Table

space

creation

in

progress.

Possible

values

for

FLAGS2

(defined

in

sqlutil)

are:

SQLB_STATE_SET

For

service

use

only.

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

...

*/

SQL_STRUCTURE

SQLB_TBSPQRY_DATA

{

char

tbspqver[SQLB_SVERSION_SIZE];

sqluint32

id;

sqluint32

nameLen;

char

name[SQLB_MAX_TBS_NAME_SZ];

sqluint32

totalPages;

sqluint32

useablePages;

sqluint32

flags;

sqluint32

pageSize;

sqluint32

extSize;

sqluint32

prefetchSize;

sqluint32

nContainers;

sqluint32

tbsState;

char

lifeLSN[6];

char

pad[2];

sqluint32

flags2;

char

minimumRecTime[SQL_STAMP_STRLEN+1];

char

pad1[1];

sqluint32

StateChngObj;

sqluint32

StateChngID;

sqluint32

nQuiescers;

struct

SQLB_QUIESCER_DATA

quiescer[SQLB_MAX_QUIESCERS];

char

reserved[32];

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

...

*/

SQL_STRUCTURE

SQLB_QUIESCER_DATA

{

sqluint32

quiesceId;

sqluint32

quiesceObject;

};

/*

...

*/

COBOL

Structure

SQLB-TBSPQRY-DATA

Chapter

3.

Data

Structures

409

*

File:

sqlutbsp.cbl

01

SQLB-TBSPQRY-DATA.

05

SQL-TBSPQVER

PIC

X(8).

05

SQL-ID

PIC

9(9)

COMP-5.

05

SQL-NAME-LEN

PIC

9(9)

COMP-5.

05

SQL-NAME

PIC

X(128).

05

SQL-TOTAL-PAGES

PIC

9(9)

COMP-5.

05

SQL-USEABLE-PAGES

PIC

9(9)

COMP-5.

05

SQL-FLAGS

PIC

9(9)

COMP-5.

05

SQL-PAGE-SIZE

PIC

9(9)

COMP-5.

05

SQL-EXT-SIZE

PIC

9(9)

COMP-5.

05

SQL-PREFETCH-SIZE

PIC

9(9)

COMP-5.

05

SQL-N-CONTAINERS

PIC

9(9)

COMP-5.

05

SQL-TBS-STATE

PIC

9(9)

COMP-5.

05

SQL-LIFE-LSN

PIC

X(6).

05

SQL-PAD

PIC

X(2).

05

SQL-FLAGS2

PIC

9(9)

COMP-5.

05

SQL-MINIMUM-REC-TIME

PIC

X(26).

05

FILLER

PIC

X.

05

SQL-PAD1

PIC

X(1).

05

SQL-STATE-CHNG-OBJ

PIC

9(9)

COMP-5.

05

SQL-STATE-CHNG-ID

PIC

9(9)

COMP-5.

05

SQL-N-QUIESCERS

PIC

9(9)

COMP-5.

05

SQL-QUIESCER

OCCURS

5

TIMES.

10

SQL-QUIESCE-ID

PIC

9(9)

COMP-5.

10

SQL-QUIESCE-OBJECT

PIC

9(9)

COMP-5.

05

SQL-RESERVED

PIC

X(32).

*

SQLCA

The

SQL

communications

area

(SQLCA)

structure

is

used

by

the

database

manager

to

return

error

information

to

an

application

program.

This

structure

is

updated

after

every

API

call

and

SQL

statement

issued.

Language

syntax:

C

Structure

/*

File:

sqlca.h

*/

/*

Structure:

SQLCA

*/

/*

...

*/

SQL_STRUCTURE

sqlca

{

_SQLOLDCHAR

sqlcaid[8];

sqlint32

sqlcabc;

#ifdef

DB2_SQL92E

sqlint32

sqlcade;

#else

sqlint32

sqlcode;

#endif

short

sqlerrml;

_SQLOLDCHAR

sqlerrmc[70];

_SQLOLDCHAR

sqlerrp[8];

sqlint32

sqlerrd[6];

_SQLOLDCHAR

sqlwarn[11];

#ifdef

DB2_SQL92E

_SQLOLDCHAR

sqlstat[5];

#else

_SQLOLDCHAR

sqlstate[5];

#endif

};

/*

...

*/

COBOL

Structure

SQLB-TBSPQRY-DATA

410

Administrative

API

Reference

*

File:

sqlca.cbl

01

SQLCA

SYNC.

05

SQLCAID

PIC

X(8)

VALUE

"SQLCA

".

05

SQLCABC

PIC

S9(9)

COMP-5

VALUE

136.

05

SQLCODE

PIC

S9(9)

COMP-5.

05

SQLERRM.

05

SQLERRP

PIC

X(8).

05

SQLERRD

OCCURS

6

TIMES

PIC

S9(9)

COMP-5.

05

SQLWARN.

10

SQLWARN0

PIC

X.

10

SQLWARN1

PIC

X.

10

SQLWARN2

PIC

X.

10

SQLWARN3

PIC

X.

10

SQLWARN4

PIC

X.

10

SQLWARN5

PIC

X.

10

SQLWARN6

PIC

X.

10

SQLWARN7

PIC

X.

10

SQLWARN8

PIC

X.

10

SQLWARN9

PIC

X.

10

SQLWARNA

PIC

X.

05

SQLSTATE

PIC

X(5).

*

Related

reference:

v

“SQLCA

(SQL

communications

area)”

in

the

SQL

Reference,

Volume

1

SQLCHAR

This

structure

is

used

to

pass

variable

length

data

to

the

database

manager.

Table

34.

Fields

in

the

SQLCHAR

Structure

Field

Name

Data

Type

Description

LENGTH

SMALLINT

Length

of

the

character

string

pointed

to

by

DATA.

DATA

CHAR(n)

An

array

of

characters

of

length

LENGTH.

Language

syntax:

C

Structure

/*

File:

sql.h

*/

/*

Structure:

SQLCHAR

*/

/*

...

*/

SQL_STRUCTURE

sqlchar

{

short

length;

_SQLOLDCHAR

data[1];

};

/*

...

*/

COBOL

Structure

This

is

not

defined

in

any

header

file.

The

following

is

an

example

showing

how

it

can

be

done:

*

Replace

maxlen

with

the

appropriate

value:

01

SQLCHAR.

49

SQLCHAR-LEN

PIC

S9(4)

COMP-5.

49

SQLCHAR-DATA

PIC

X(maxlen).

SQLCA

Chapter

3.

Data

Structures

411

SQLDA

The

SQL

descriptor

area

(SQLDA)

structure

is

a

collection

of

variables

that

is

required

for

execution

of

the

SQL

DESCRIBE

statement.

The

SQLDA

variables

are

options

that

can

be

used

with

the

PREPARE,

OPEN,

FETCH,

EXECUTE,

and

CALL

statements.

An

SQLDA

communicates

with

dynamic

SQL;

it

can

be

used

in

a

DESCRIBE

statement,

modified

with

the

addresses

of

host

variables,

and

then

reused

in

a

FETCH

statement.

SQLDAs

are

supported

for

all

languages,

but

predefined

declarations

are

provided

only

for

C,

REXX,

FORTRAN,

and

COBOL.

The

meaning

of

the

information

in

an

SQLDA

depends

on

its

use.

In

PREPARE

and

DESCRIBE,

an

SQLDA

provides

information

to

an

application

program

about

a

prepared

statement.

In

OPEN,

EXECUTE,

FETCH,

and

CALL,

an

SQLDA

describes

host

variables.

Language

syntax:

C

Structure

/*

File:

sqlda.h

*/

/*

Structure:

SQLDA

*/

/*

...

*/

SQL_STRUCTURE

sqlda

{

_SQLOLDCHAR

sqldaid[8];

long

sqldabc;

short

sqln;

short

sqld;

struct

sqlvar

sqlvar[1];

};

/*

...

*/

/*

File:

sqlda.h

*/

/*

Structure:

SQLVAR

*/

/*

...

*/

SQL_STRUCTURE

sqlvar

{

short

sqltype;

short

sqllen;

_SQLOLDCHAR

*SQL_POINTER

sqldata;

short

*SQL_POINTER

sqlind;

struct

sqlname

sqlname;

};

/*

...

*/

/*

File:

sqlda.h

*/

/*

Structure:

SQLNAME

*/

/*

...

*/

SQL_STRUCTURE

sqlname

{

short

length;

_SQLOLDCHAR

data[30];

};

/*

...

*/

/*

File:

sqlda.h

*/

/*

Structure:

SQLVAR2

*/

/*

...

*/

SQL_STRUCTURE

sqlvar2

{

SQLDA

412

Administrative

API

Reference

union

sql8bytelen

len;

char

*SQL_POINTER

sqldatalen;

struct

sqldistinct_type

sqldatatype_name;

};

/*

...

*/

/*

File:

sqlda.h

*/

/*

Structure:

SQL8BYTELEN

*/

/*

...

*/

union

sql8bytelen

{

long

reserve1[2];

long

sqllonglen;

};

/*

...

*/

/*

File:

sqlda.h

*/

/*

Structure:

SQLDISTINCT-TYPE

*/

/*

...

*/

SQL_STRUCTURE

sqldistinct_type

{

short

length;

char

data[27];

char

reserved1[3];

};

/*

...

*/

COBOL

Structure

*

File:

sqlda.cbl

01

SQLDA

SYNC.

05

SQLDAID

PIC

X(8)

VALUE

"SQLDA

".

05

SQLDABC

PIC

S9(9)

COMP-5.

05

SQLN

PIC

S9(4)

COMP-5.

05

SQLD

PIC

S9(4)

COMP-5.

05

SQLVAR-ENTRIES

OCCURS

0

TO

1489

TIMES

10

SQLVAR.

10

SQLVAR2

REDEFINES

SQLVAR.

*

Related

reference:

v

“SQLDA

(SQL

descriptor

area)”

in

the

SQL

Reference,

Volume

1

SQLDCOL

This

structure

is

used

to

pass

variable

column

information

to

the

db2Export,

db2Import,

and

db2Load

APIs.

Table

35.

Fields

in

the

SQLDCOL

Structure

Field

Name

Data

Type

Description

DCOLMETH

SMALLINT

A

character

indicating

the

method

to

be

used

to

select

columns

within

the

data

file.

DCOLNUM

SMALLINT

The

number

of

columns

specified

in

the

array

DCOLNAME.

DCOLNAME

Array

An

array

of

DCOLNUM

sqldcoln

structures.

SQLDA

Chapter

3.

Data

Structures

413

Table

36.

Fields

in

the

SQLDCOLN

Structure

Field

Name

Data

Type

Description

DCOLNLEN

SMALLINT

Length

of

the

data

pointed

to

by

DCOLNPTR.

DCOLNPTR

Pointer

Pointer

to

a

data

element

determined

by

DCOLMETH.

Note:

The

DCOLNLEN

and

DCOLNPTR

fields

are

repeated

for

each

column

specified.

Table

37.

Fields

in

the

SQLLOCTAB

Structure

Field

Name

Data

Type

Description

LOCPAIR

Array

An

array

of

sqllocpair

structures.

Table

38.

Fields

in

the

SQLLOCPAIR

Structure

Field

Name

Data

Type

Description

BEGIN_LOC

SMALLINT

Starting

position

of

the

column

data

in

the

external

file.

END_LOC

SMALLINT

Ending

position

of

the

column

data

in

the

external

file.

The

valid

values

for

DCOLMETH

(defined

in

sqlutil)

are:

SQL_METH_N

Names.

When

importing

or

loading,

use

the

column

names

provided

via

this

structure

to

identify

the

data

to

import

or

load

from

the

external

file.

The

case

of

these

column

names

must

match

the

case

of

the

corresponding

names

in

the

system

catalogs.

When

exporting,

use

the

column

names

provided

via

this

structure

as

the

column

names

in

the

output

file.

The

dcolnptr

pointer

of

each

element

of

the

dcolname

array

points

to

an

array

of

characters,

of

length

dcolnlen

bytes,

that

make

up

the

name

of

a

column

to

be

imported

or

loaded.

The

dcolnum

field,

which

must

be

positive,

indicates

the

number

of

elements

in

the

dcolname

array.

This

method

is

invalid

if

the

external

file

does

not

contain

column

names

(DEL

or

ASC

format

files,

for

example).

SQL_METH_P

Positions.

When

importing

or

loading,

use

starting

column

positions

provided

via

this

structure

to

identify

the

data

to

import

or

load

from

the

external

file.

This

method

is

not

valid

when

exporting

data.

The

dcolnptr

pointer

of

each

element

of

the

dcolname

array

is

ignored,

while

the

dcolnlen

field

contains

a

column

position

in

the

external

file.

The

dcolnum

field,

which

must

be

positive,

indicates

the

number

of

elements

in

the

dcolname

array.

The

lowest

valid

column

position

value

is

1

(indicating

the

first

column),

and

the

highest

valid

value

depends

on

the

external

file

type.

Positional

selection

is

not

valid

for

import

of

ASC

files.

SQL_METH_L

Locations.

When

importing

or

loading,

use

starting

and

ending

column

positions

provided

via

this

structure

to

identify

the

data

to

import

or

load

from

the

external

file.

This

method

is

not

valid

when

exporting

data.

The

dcolnptr

field

of

the

first

element

of

the

dcolname

array

points

to

an

sqlloctab

structure,

which

consists

of

an

array

of

sqllocpair

structures.

The

SQLDCOL

414

Administrative

API

Reference

number

of

elements

in

this

array

is

determined

by

the

dcolnum

field

of

the

sqldcol

structure,

which

must

be

positive.

Each

element

in

the

array

is

a

pair

of

2-byte

integers

that

indicate

where

the

column

begins

and

ends.

The

first

element

of

each

location

pair

is

the

byte

within

the

file

where

the

column

begins,

and

the

second

element

is

the

byte

where

the

column

ends.

The

first

byte

position

within

a

row

in

the

file

is

considered

byte

position

1.

The

columns

can

overlap.

SQL_METH_D

Default.

When

importing

or

loading

DEL

and

IXF

files,

the

first

column

of

the

file

is

loaded

or

imported

into

the

first

column

of

the

table,

and

so

on.

When

importing

or

loading

ASC

files,

the

selection

of

columns

is

in

a

file

where

the

name

of

which

is

included

in

the

file

type

modifier

POSITIONSFILE.

When

exporting,

the

default

names

are

used

for

the

columns

in

the

external

file.

The

dcolnum

and

dcolname

fields

of

the

sqldcol

structure

are

both

ignored,

and

the

columns

from

the

external

file

are

taken

in

their

natural

order.

A

column

from

the

external

file

can

be

used

in

the

array

more

than

once.

It

is

not

necessary

to

use

every

column

from

the

external

file.

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLDCOL

*/

/*

...

*/

SQL_STRUCTURE

sqldcol

{

short

dcolmeth;

short

dcolnum;

struct

sqldcoln

dcolname[1];

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLDCOLN

*/

/*

...

*/

SQL_STRUCTURE

sqldcoln

{

short

dcolnlen;

char

*dcolnptr;

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLLOCTAB

*/

/*

...

*/

SQL_STRUCTURE

sqlloctab

{

struct

sqllocpair

locpair[1];

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLLOCPAIR

*/

/*

...

*/

SQL_STRUCTURE

sqllocpair

{

short

begin_loc;

short

end_loc;

};

/*

...

*/

SQLDCOL

Chapter

3.

Data

Structures

415

COBOL

Structure

*

File:

sqlutil.cbl

01

SQL-DCOLDATA.

05

SQL-DCOLMETH

PIC

S9(4)

COMP-5.

05

SQL-DCOLNUM

PIC

S9(4)

COMP-5.

05

SQLDCOLN

OCCURS

0

TO

255

TIMES

DEPENDING

ON

SQL-DCOLNUM.

10

SQL-DCOLNLEN

PIC

S9(4)

COMP-5.

10

FILLER

PIC

X(2).

10

SQL-DCOLN-PTR

USAGE

IS

POINTER.

*

*

File:

sqlutil.cbl

01

SQL-LOCTAB.

05

SQL-LOC-PAIR

OCCURS

1

TIMES.

10

SQL-BEGIN-LOC

PIC

S9(4)

COMP-5.

10

SQL-END-LOC

PIC

S9(4)

COMP-5.

*

Related

reference:

v

“db2Export

-

Export”

on

page

57

v

“db2Import

-

Import”

on

page

104

v

“db2Load

-

Load”

on

page

153

SQLE-ADDN-OPTIONS

This

structure

is

used

to

pass

information

to

the

sqleaddn

API.

Table

39.

Fields

in

the

SQLE-NODE-APPN

Structure

Field

Name

Data

Type

Description

SQLADDID

CHAR

An

″eyecatcher″

value

which

must

be

set

to

SQLE_ADDOPTID_V51.

TBLSPACE_TYPE

sqluint32

Specifies

the

type

of

system

temporary

table

space

definitions

to

be

used

for

the

node

being

added.

See

below

for

values.

TBLSPACE_NODE

SQL_PDB_NODE_TYPE

Specifies

the

node

number

from

which

the

system

temporary

table

space

definitions

should

be

obtained.

The

node

number

must

exist

in

the

db2nodes.cfg

file,

and

is

only

used

if

the

tblspace_type

field

is

set

to

SQLE_TABLESPACES_LIKE_NODE.

Valid

values

for

TBLSPACE_TYPE

(defined

in

sqlenv)

are:

SQLE_TABLESPACES_NONE

Do

not

create

any

system

temporary

table

spaces.

SQLE_TABLESPACES_LIKE_NODE

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

specified

node.

SQLE_TABLESPACES_LIKE_CATALOG

The

containers

for

the

system

temporary

table

spaces

should

be

the

same

as

those

for

the

catalog

node

of

each

database.

Language

syntax:

C

Structure

SQLDCOL

416

Administrative

API

Reference

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-ADDN-OPTIONS

*/

/*

...

*/

SQL_STRUCTURE

sqle_addn_options

{

char

sqladdid[8];

sqluint32

tblspace_type;

SQL_PDB_NODE_TYPE

tblspace_node;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLE-ADDN-OPTIONS.

05

SQLADDID

PIC

X(8).

05

SQL-TBLSPACE-TYPE

PIC

9(9)

COMP-5.

05

SQL-TBLSPACE-NODE

PIC

S9(4)

COMP-5.

05

FILLER

PIC

X(2).

*

Related

reference:

v

“sqleaddn

-

Add

Node”

on

page

300

SQLE-CLIENT-INFO

This

structure

is

used

to

pass

information

to

the

sqleseti

and

sqleqryi

APIs.

This

structure

specifies:

v

The

type

of

information

being

set

or

queried

v

The

length

of

the

data

being

set

or

queried

v

A

pointer

to

either:

–

An

area

that

will

contain

the

data

being

set

–

An

area

of

sufficient

length

to

contain

the

data

being

queried

Applications

can

specify

the

following

types

of

information:

v

Client

user

ID

being

set

or

queried.

A

maximum

of

255

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

Note:

This

user

ID

is

for

identification

purposes

only,

and

is

not

used

for

any

authorization.

v

Client

workstation

name

being

set

or

queried.

A

maximum

of

255

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

v

Client

application

name

being

set

or

queried.

A

maximum

of

255

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

v

Client

current

package

path

being

set

or

queried.

A

maximum

of

255

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

v

Client

program

ID

being

set

or

queried.

A

maximum

of

80

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

v

Client

accounting

string

being

set

or

queried.

A

maximum

of

200

characters

can

be

set,

although

servers

can

truncate

this

to

some

platform-specific

value.

Note:

The

information

can

be

set

using

the

sqlesact

API.

However,

sqlesact

does

not

permit

the

accounting

string

to

be

changed

once

a

connection

exists,

whereas

sqleseti

allows

the

accounting

information

to

be

changed

for

future,

as

well

as

already

established,

connections.

SQLE-ADDN-OPTIONS

Chapter

3.

Data

Structures

417

|
|

|
|

Table

40.

Fields

in

the

SQLE-CLIENT-INFO

Structure

Field

Name

Data

Type

Description

TYPE

sqlint32

Setting

type.

LENGTH

sqlint32

Length

of

the

value.

On

sqleseti

calls,

the

length

can

be

between

zero

and

the

maximum

length

defined

for

the

type.

A

length

of

zero

indicates

a

null

value.

On

sqleqryi

calls,

the

length

is

returned,

but

the

area

pointed

to

by

pValue

must

be

large

enough

to

contain

the

maximum

length

for

the

type.

A

length

of

zero

indicates

a

null

value.

PVALUE

Pointer

Pointer

to

an

application-allocated

buffer

that

contains

the

specified

value.

The

data

type

of

this

value

is

dependent

on

the

type

field.

The

valid

entries

for

the

SQLE-CLIENT-INFO

TYPE

element

and

the

associated

descriptions

for

each

entry

are

listed

below:

Table

41.

Connection

Settings

Type

Data

Type

Description

SQLE_CLIENT_INFO_USERID

CHAR(255)

The

user

ID

for

the

client.

Some

servers

may

truncate

the

value.

For

example,

DB2

for

z/OS

servers

support

up

to

length

16.

This

user

ID

is

for

identification

purposes

only,

and

is

not

used

for

any

authorization.

SQLE_CLIENT_INFO_

WRKSTNNAME

CHAR(255)

The

workstation

name

for

the

client.

Some

servers

may

truncate

the

value.

For

example,

DB2

for

z/OS

servers

support

up

to

length

18.

SQLE_CLIENT_INFO_

APPLNAME

CHAR(255)

The

application

name

for

the

client.

Some

servers

may

truncate

the

value.

For

example,

DB2

for

z/OS

servers

support

up

to

length

32.

SQLE_CLIENT_INFO_PACKAGEPATH

CHAR(255)

The

current

package

path

for

the

client.

Some

servers

may

truncate

the

value.

For

example,

DB2

for

z/OS

V8

servers

support

up

to

length

80.

SQLE_CLIENT_INFO_PROGRAMID

CHAR(80)

The

program

identifier

for

the

client.

Once

this

element

is

set,

DB2

UDB

for

z/OS

Version

8

associates

this

identifier

with

any

statements

inserted

into

the

dynamic

SQL

statement

cache.

This

element

is

only

supported

for

applications

accessing

DB2

UDB

for

z/OS

Version

8.

SQLE_CLIENT_INFO_

ACCTSTR

CHAR(200)

The

accounting

string

for

the

client.

Some

servers

may

truncate

the

value.

For

example,

DB2

for

z/OS

servers

support

up

to

length

200.

SQLE_CLIENT_INFO_AUTOCOMMIT

CHAR(1)

The

autocommit

setting

of

the

client.

It

can

be

set

to

SQLE_CLIENT_AUTOCOMMIT_ON

or

SQLE_CLIENT_AUTOCOMMIT_OFF.

SQLE-CLIENT-INFO

418

Administrative

API

Reference

|||
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|

Table

41.

Connection

Settings

(continued)

Type

Data

Type

Description

Note:

These

field

names

are

defined

for

the

C

programming

language.

There

are

similar

names

for

FORTRAN

and

COBOL,

which

have

the

same

semantics.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-CLIENT-INFO

*/

/*

...

*/

SQL_STRUCTURE

sqle_client_info

{

unsigned

short

type;

unsigned

short

length;

char

*pValue;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLE-CLIENT-INFO.

05

SQLE-CLIENT-INFO-ITEM

OCCURS

4

TIMES.

10

SQLE-CLIENT-INFO-TYPE

PIC

S9(4)

COMP-5.

10

SQLE-CLIENT-INFO-LENGTH

PIC

S9(4)

COMP-5.

10

SQLE-CLIENT-INFO-VALUE

USAGE

IS

POINTER.

*

Related

reference:

v

“sqlesact

-

Set

Accounting

String”

on

page

364

v

“sqleseti

-

Set

Client

Information”

on

page

369

v

“sqleqryi

-

Query

Client

Information”

on

page

360

SQLE-CONN-SETTING

This

structure

is

used

to

specify

connection

setting

types

and

values

for

the

sqleqryc

and

sqlesetc

APIs.

Table

42.

Fields

in

the

SQLE-CONN-SETTING

Structure

Field

Name

Data

Type

Description

TYPE

SMALLINT

Setting

type.

VALUE

SMALLINT

Setting

value.

The

valid

entries

for

the

SQLE-CONN-SETTING

TYPE

element

and

the

associated

descriptions

for

each

entry

are

listed

below

(defined

in

sqlenv

and

sql):

Table

43.

Connection

Settings

Type

Value

Description

SQL_CONNECT_TYPE

SQL_CONNECT_1

Type

1

CONNECTs

enforce

the

single

database

per

unit

of

work

semantics

of

older

releases,

also

known

as

the

rules

for

remote

unit

of

work

(RUOW).

SQLE-CLIENT-INFO

Chapter

3.

Data

Structures

419

Table

43.

Connection

Settings

(continued)

Type

Value

Description

SQL_CONNECT_2

Type

2

CONNECTs

support

the

multiple

databases

per

unit

of

work

semantics

of

DUOW.

SQL_RULES

SQL_RULES_DB2

Enable

the

SQL

CONNECT

statement

to

switch

the

current

connection

to

an

established

(dormant)

connection.

SQL_RULES_STD

Permit

only

the

establishment

of

a

new

connection

through

the

SQL

CONNECT

statement.

The

SQL

SET

CONNECTION

statement

must

be

used

to

switch

the

current

connection

to

a

dormant

connection.

SQL_DISCONNECT

SQL_DISCONNECT_EXPL

Removes

those

connections

that

have

been

explicitly

marked

for

release

by

the

SQL

RELEASE

statement

at

commit.

SQL_DISCONNECT_COND

Breaks

those

connections

that

have

no

open

WITH

HOLD

cursors

at

commit,

and

those

that

have

been

marked

for

release

by

the

SQL

RELEASE

statement.

SQL_DISCONNECT_AUTO

Breaks

all

connections

at

commit.

SQL_SYNCPOINT

SQL_SYNC_TWOPHASE

Requires

a

Transaction

Manager

(TM)

to

coordinate

two-phase

commits

among

databases

that

support

this

protocol.

SQL_SYNC_ONEPHASE

Uses

one-phase

commits

to

commit

the

work

done

by

each

database

in

multiple

database

transactions.

Enforces

single

updater,

multiple

read

behavior.

SQL_SYNC_NONE

Uses

one-phase

commits

to

commit

work

done,

but

does

not

enforce

single

updater,

multiple

read

behavior.

SQL_MAX_NETBIOS_

CONNECTIONS

Between

1

and

254

This

specifies

the

maximum

number

of

concurrent

connections

that

can

be

made

using

a

NETBIOS

adapter

in

an

application.

SQL_DEFERRED_PREPARE

SQL_DEFERRED_PREPARE_

NO

The

PREPARE

statement

will

be

executed

at

the

time

it

is

issued.

SQLE-CONN-SETTING

420

Administrative

API

Reference

Table

43.

Connection

Settings

(continued)

Type

Value

Description

SQL_DEFERRED_PREPARE_

YES

Execution

of

the

PREPARE

statement

will

be

deferred

until

the

corresponding

OPEN,

DESCRIBE,

or

EXECUTE

statement

is

issued.

The

PREPARE

statement

will

not

be

deferred

if

it

uses

the

INTO

clause,

which

requires

an

SQLDA

to

be

returned

immediately.

However,

if

the

PREPARE

INTO

statement

is

issued

for

a

cursor

that

does

not

use

any

parameter

markers,

the

processing

will

be

optimized

by

pre-OPENing

the

cursor

when

the

PREPARE

is

executed.

SQL_DEFERRED_PREPARE_

ALL

Same

as

YES,

except

that

a

PREPARE

INTO

statement

which

contains

parameter

markers

is

deferred.

If

a

PREPARE

INTO

statement

does

not

contain

parameter

markers,

pre-OPENing

of

the

cursor

will

still

be

performed.

If

the

PREPARE

statement

uses

the

INTO

clause

to

return

an

SQLDA,

the

application

must

not

reference

the

content

of

this

SQLDA

until

the

OPEN,

DESCRIBE,

or

EXECUTE

statement

is

issued

and

returned.

SQL_CONNECT_NODE

Between

0

and

999,

or

the

keyword

SQL_CONN_CATALOG_

NODE.

Specifies

the

node

to

which

a

connect

is

to

be

made.

Overrides

the

value

of

the

environment

variable

DB2NODE.

For

example,

if

nodes

1,

2,

and

3

are

defined,

the

client

only

needs

to

be

able

to

access

one

of

these

nodes.

If

only

node

1

containing

databases

has

been

cataloged,

and

this

parameter

is

set

to

3,

the

next

connect

attempt

will

result

in

a

connection

at

node

3,

after

an

initial

connection

at

node

1.

SQL_ATTACH_NODE

Between

0

and

999.

Specifies

the

node

to

which

an

attach

is

to

be

made.

Overrides

the

value

of

the

environment

variable

DB2NODE.

For

example,

if

nodes

1,

2,

and

3

are

defined,

the

client

only

needs

to

be

able

to

access

one

of

these

nodes.

If

only

node

1

containing

databases

has

been

cataloged,

and

this

parameter

is

set

to

3,

then

the

next

attach

attempt

will

result

in

an

attachment

at

node

3,

after

an

initial

attachment

at

node

1.

Note:

These

field

names

are

defined

for

the

C

programming

language.

There

are

similar

names

for

FORTRAN

and

COBOL,

which

have

the

same

semantics.

SQLE-CONN-SETTING

Chapter

3.

Data

Structures

421

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-CONN-SETTING

*/

/*

...

*/

SQL_STRUCTURE

sqle_conn_setting

{

unsigned

short

type;

unsigned

short

value;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLE-CONN-SETTING.

05

SQLE-CONN-SETTING-ITEM

OCCURS

7

TIMES.

10

SQLE-CONN-TYPE

PIC

S9(4)

COMP-5.

10

SQLE-CONN-VALUE

PIC

S9(4)

COMP-5.

*

Related

reference:

v

“sqlesetc

-

Set

Client”

on

page

367

v

“sqleqryc

-

Query

Client”

on

page

359

SQLE-NODE-APPC

This

structure

is

used

to

catalog

APPC

nodes

for

the

sqlectnd

API.

Table

44.

Fields

in

the

SQLE-NODE-APPC

Structure

Field

Name

Data

Type

Description

LOCAL_LU

CHAR(8)

Local_lu

name.

PARTNER_LU

CHAR(8)

Alias

Partner_lu

name.

MODE

CHAR(8)

Mode.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-APPC

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_appc

{

_SQLOLDCHAR

local_lu[SQL_LOCLU_SZ

+

1];

_SQLOLDCHAR

partner_lu[SQL_RMTLU_SZ

+

1];

_SQLOLDCHAR

mode[SQL_MODE_SZ

+

1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-APPC.

05

LOCAL-LU

PIC

X(8).

05

FILLER

PIC

X.

05

PARTNER-LU

PIC

X(8).

SQLE-CONN-SETTING

422

Administrative

API

Reference

05

FILLER

PIC

X.

05

TRANS-MODE

PIC

X(8).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-APPN

This

structure

is

used

to

catalog

APPN

nodes

for

the

sqlectnd

API.

Table

45.

Fields

in

the

SQLE-NODE-APPN

Structure

Field

Name

Data

Type

Description

NETWORKID

CHAR(8)

Network

ID.

REMOTE_LU

CHAR(8)

Alias

Remote_lu

name.

LOCAL_LU

CHAR(8)

Alias

Local_lu

name.

MODE

CHAR(8)

Mode.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-APPN

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_appn

{

_SQLOLDCHAR

networkid[SQL_NETID_SZ

+

1];

_SQLOLDCHAR

remote_lu[SQL_RMTLU_SZ

+

1];

_SQLOLDCHAR

local_lu[SQL_LOCLU_SZ

+

1];

_SQLOLDCHAR

mode[SQL_MODE_SZ

+

1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-APPN.

05

NETWORKID

PIC

X(8).

05

FILLER

PIC

X.

05

REMOTE-LU

PIC

X(8).

05

FILLER

PIC

X.

05

LOCAL-LU

PIC

X(8).

05

FILLER

PIC

X.

05

TRANS-MODE

PIC

X(8).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-APPC

Chapter

3.

Data

Structures

423

SQLE-NODE-CPIC

This

structure

is

used

to

catalog

CPIC

nodes

for

the

sqlectnd

API.

Table

46.

Fields

in

the

SQLE-NODE-CPIC

Structure

Field

Name

Data

Type

Description

SYM_DEST_NAME

CHAR(8)

Symbolic

destination

name

of

remote

partner.

SECURITY_TYPE

SMALLINT

Security

type.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Valid

values

for

SECURITY_TYPE

(defined

in

sqlenv)

are:

SQL_CPIC_SECURITY_NONE

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-CPIC

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_cpic

{

_SQLOLDCHAR

sym_dest_name[SQL_SYM_DEST_NAME_SZ+1];

unsigned

short

security_type;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-CPIC.

05

SYM-DEST-NAME

PIC

X(8).

05

FILLER

PIC

X.

05

FILLER

PIC

X(1).

05

SECURITY-TYPE

PIC

9(4)

COMP-5.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-IPXSPX

This

structure

is

used

to

catalog

IPX/SPX

nodes

for

the

sqlectnd

API.

Table

47.

Fields

in

the

SQLE-NODE-IPXSPX

Structure

Field

Name

Data

Type

Description

FILESERVER

CHAR(48)

Name

of

the

NetWare

file

server

where

the

DB2

server

instance

is

registered.

OBJECTNAME

CHAR(48)

The

database

manager

server

instance

is

represented

as

the

object,

objectname,

on

the

NetWare

file

server.

The

server’s

IPX/SPX

internetwork

address

is

stored

and

retrieved

from

this

object.

SQLE-NODE-CPIC

424

Administrative

API

Reference

Table

47.

Fields

in

the

SQLE-NODE-IPXSPX

Structure

(continued)

Field

Name

Data

Type

Description

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-IPXSPX

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_ipxspx

{

char

fileserver[SQL_FILESERVER_SZ+1];

char

objectname[SQL_OBJECTNAME_SZ+1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-IPXSPX.

05

SQL-FILESERVER

PIC

X(48).

05

FILLER

PIC

X.

05

SQL-OBJECTNAME

PIC

X(48).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-LOCAL

This

structure

is

used

to

catalog

local

nodes

for

the

sqlectnd

API.

Table

48.

Fields

in

the

SQLE-NODE-LOCAL

Structure

Field

Name

Data

Type

Description

INSTANCE_NAME

CHAR(8)

Name

of

an

instance.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-LOCAL

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_local

{

char

instance_name[SQL_INSTNAME_SZ+1];

};

/*

...

*/

COBOL

Structure

SQLE-NODE-IPXSPX

Chapter

3.

Data

Structures

425

*

File:

sqlenv.cbl

01

SQL-NODE-LOCAL.

05

SQL-INSTANCE-NAME

PIC

X(8).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-NETB

This

structure

is

used

to

catalog

NetBIOS

nodes

for

the

sqlectnd

API.

Table

49.

Fields

in

the

SQLE-NODE-NETB

Structure

Field

Name

Data

Type

Description

ADAPTER

SMALLINT

Local

LAN

adapter.

REMOTE_NNAME

CHAR(8)

Nname

of

the

remote

workstation

that

is

stored

in

the

database

manager

configuration

file

on

the

server

instance.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-NETB

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_netb

{

unsigned

short

adapter;

_SQLOLDCHAR

remote_nname[SQL_RMTLU_SZ

+

1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-NETB.

05

ADAPTER

PIC

9(4)

COMP-5.

05

REMOTE-NNAME

PIC

X(8).

05

FILLER

PIC

X.

05

FILLER

PIC

X(1).

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-NPIPE

This

structure

is

used

to

catalog

named

pipe

nodes

for

the

sqlectnd

API.

Table

50.

Fields

in

the

SQLE-NODE-NPIPE

Structure

Field

Name

Data

Type

Description

COMPUTERNAME

CHAR(15)

Computer

name.

INSTANCE_NAME

CHAR(8)

Name

of

an

instance.

SQLE-NODE-LOCAL

426

Administrative

API

Reference

Table

50.

Fields

in

the

SQLE-NODE-NPIPE

Structure

(continued)

Field

Name

Data

Type

Description

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-NPIPE

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_npipe

{

char

computername[SQL_COMPUTERNAME_SZ+1];

char

instance_name[SQL_INSTNAME_SZ+1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-NPIPE.

05

COMPUTERNAME

PIC

X(15).

05

FILLER

PIC

X.

05

INSTANCE-NAME

PIC

X(8).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-STRUCT

This

structure

is

used

to

catalog

nodes

for

the

sqlectnd

API.

Table

51.

Fields

in

the

SQLE-NODE-STRUCT

Structure

Field

Name

Data

Type

Description

STRUCT_ID

SMALLINT

Structure

identifier.

CODEPAGE

SMALLINT

Code

page

for

comment.

COMMENT

CHAR(30)

Optional

description

of

the

node.

NODENAME

CHAR(8)

Local

name

for

the

node

where

the

database

is

located.

PROTOCOL

CHAR(1)

Communications

protocol

type.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Valid

values

for

PROTOCOL

(defined

in

sqlenv)

are:

SQL_PROTOCOL_APPC

SQL_PROTOCOL_APPN

SQL_PROTOCOL_CPIC

SQL_PROTOCOL_IPXSPX

SQL_PROTOCOL_LOCAL

SQL_PROTOCOL_NETB

SQLE-NODE-NPIPE

Chapter

3.

Data

Structures

427

SQL_PROTOCOL_NPIPE

SQL_PROTOCOL_SOCKS

SQL_PROTOCOL_TCPIP

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-STRUCT

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_struct

{

unsigned

short

struct_id;

unsigned

short

codepage;

_SQLOLDCHAR

comment[SQL_CMT_SZ

+

1];

_SQLOLDCHAR

nodename[SQL_NNAME_SZ

+

1];

unsigned

char

protocol;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-STRUCT.

05

STRUCT-ID

PIC

9(4)

COMP-5.

05

CODEPAGE

PIC

9(4)

COMP-5.

05

COMMENT

PIC

X(30).

05

FILLER

PIC

X.

05

NODENAME

PIC

X(8).

05

FILLER

PIC

X.

05

PROTOCOL

PIC

X.

05

FILLER

PIC

X(1).

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

SQLE-NODE-TCPIP

This

structure

is

used

to

catalog

TCP/IP

nodes

for

the

sqlectnd

API.

Note:

To

catalog

a

TCP/IP

SOCKS

node,

set

the

PROTOCOL

type

in

the

node

directory

structure

to

SQL_PROTOCOL_SOCKS

in

the

SQLE-NODE-STRUCT

structure

before

calling

the

sqlectnd

API.

Table

52.

Fields

in

the

SQLE-NODE-TCPIP

Structure

Field

Name

Data

Type

Description

HOSTNAME

CHAR(255)

The

name

of

the

TCP/IP

host

on

which

the

DB2

server

instance

resides.

SERVICE_NAME

CHAR(14)

TCP/IP

service

name

or

associated

port

number

of

the

DB2

server

instance.

Note:

The

character

fields

passed

in

this

structure

must

be

null

terminated

or

blank

filled

up

to

the

length

of

the

field.

Language

syntax:

C

Structure

SQLE-NODE-STRUCT

428

Administrative

API

Reference

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-NODE-TCPIP

*/

/*

...

*/

SQL_STRUCTURE

sqle_node_tcpip

{

_SQLOLDCHAR

hostname[SQL_HOSTNAME_SZ+1];

_SQLOLDCHAR

service_name[SQL_SERVICE_NAME_SZ+1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQL-NODE-TCPIP.

05

HOSTNAME

PIC

X(255).

05

FILLER

PIC

X.

05

SERVICE-NAME

PIC

X(14).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlectnd

-

Catalog

Node”

on

page

321

v

“SQLE-NODE-STRUCT”

on

page

427

SQLE-REG-NWBINDERY

This

structure

is

used

to

register

(using

the

sqleregs

API)

or

deregister

(using

the

sqledreg

API)

the

DB2

server

on

the

bindery

on

the

NetWare

file

server.

Table

53.

Fields

in

the

SQLE-REG-NWBINDERY

Structure

Field

Name

Data

Type

Description

UID

CHAR(48)

User

ID

used

to

log

into

the

NetWare

file

server.

PSWD

CHAR(128)

Password

used

to

validate

the

user

ID.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLE-REG-NWBINDERY

*/

/*

...

*/

SQL_STRUCTURE

sqle_reg_nwbindery

{

char

uid[SQL_NW_UID_SZ+1];

unsigned

short

reserved_len_1;

char

pswd[SQL_NW_PSWD_SZ+1];

unsigned

short

reserved_len_2;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLE-REG-NWBINDERY.

05

SQL-UID

PIC

X(48).

05

FILLER

PIC

X.

05

FILLER

PIC

X(1).

05

SQL-UID-LEN

PIC

9(4)

COMP-5.

05

SQL-PSWD

PIC

X(128).

SQLE-NODE-TCPIP

Chapter

3.

Data

Structures

429

05

FILLER

PIC

X.

05

FILLER

PIC

X(1).

05

SQL-PSWD-LEN

PIC

9(4)

COMP-5.

*

Related

reference:

v

“sqleregs

-

Register”

on

page

362

v

“sqledreg

-

Deregister”

on

page

329

SQLEDBTERRITORYINFO

This

structure

is

used

to

provide

code

set

and

territory

options

to

the

sqlecrea

API.

Table

54.

Fields

in

the

SQLEDBTERRITORYINFO

Structure

Field

Name

Data

Type

Description

SQLDBCODESET

CHAR(9)

Database

code

set.

SQLDBLOCALE

CHAR(5)

Database

territory.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLEDBTERRITORYINFO

*/

/*

...

*/

SQL_STRUCTURE

sqledbterritoryinfo

{

char

sqldbcodeset[SQL_CODESET_LEN

+

1];

char

sqldblocale[SQL_LOCALE_LEN

+

1];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLEDBTERRITORYINFO.

05

SQLDBCODESET

PIC

X(9).

05

FILLER

PIC

X.

05

SQLDBLOCALE

PIC

X(5).

05

FILLER

PIC

X.

*

Related

reference:

v

“sqlecrea

-

Create

Database”

on

page

314

SQLEDBDESC

The

Database

Description

Block

(SQLEDBDESC)

structure

can

be

used

during

a

call

to

the

sqlecrea

API

to

specify

permanent

values

for

database

attributes.

These

attributes

include

database

comment,

collating

sequences,

and

table

space

definitions.

Table

55.

Fields

in

the

SQLEDBDESC

Structure

Field

Name

Data

Type

Description

SQLDBDID

CHAR(8)

A

structure

identifier

and

″eye-catcher″

for

storage

dumps.

It

is

a

string

of

eight

bytes

that

must

be

initialized

with

the

value

of

SQLE_DBDESC_2

(defined

in

sqlenv).

The

contents

of

this

field

are

validated

for

version

control.

SQLE-REG-NWBINDERY

430

Administrative

API

Reference

Table

55.

Fields

in

the

SQLEDBDESC

Structure

(continued)

Field

Name

Data

Type

Description

SQLDBCCP

INTEGER

The

code

page

of

the

database

comment.

This

value

is

no

longer

used

by

the

database

manager.

SQLDBCSS

INTEGER

A

value

indicating

the

source

of

the

database

collating

sequence.

See

below

for

values.

Note:

Specify

SQL_CS_NONE

to

specify

that

the

collating

sequence

for

the

database

is

IDENTITY

(which

implements

a

binary

collating

sequence).

SQL_CS_NONE

is

the

default.

SQLDBUDC

CHAR(256)

The

nth

byte

of

this

field

contains

the

sort

weight

of

the

code

point

whose

underlying

decimal

representation

is

n

in

the

code

page

of

the

database.

If

SQLDBCSS

is

not

equal

to

SQL_CS_USER,

this

field

is

ignored.

SQLDBCMT

CHAR(30)

The

comment

for

the

database.

SQLDBSGP

INTEGER

Reserved

field.

No

longer

used.

SQLDBNSG

SHORT

A

value

which

indicates

the

number

of

file

segments

to

be

created

in

the

database.

The

minimum

value

for

this

field

is

1

and

the

maximum

value

for

this

field

is

256.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

1.

Note:

SQLDBNSG

set

to

zero

produces

a

default

for

Version

1

compatibility.

SQLTSEXT

INTEGER

A

value,

in

4KB

pages,

which

indicates

the

default

extent

size

for

each

table

space

in

the

database.

The

minimum

value

for

this

field

is

2

and

the

maximum

value

for

this

field

is

256.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

32.

SQLCATTS

Pointer

A

pointer

to

a

table

space

description

control

block,

SQLETSDESC,

which

defines

the

catalog

table

space.

If

null,

a

default

catalog

table

space

based

on

the

values

of

SQLTSEXT

and

SQLDBNSG

will

be

created.

SQLUSRTS

Pointer

A

pointer

to

a

table

space

description

control

block,

SQLETSDESC,

which

defines

the

user

table

space.

If

null,

a

default

user

table

space

based

on

the

values

of

SQLTSEXT

and

SQLDBNSG

will

be

created.

SQLTMPTS

Pointer

A

pointer

to

a

table

space

description

control

block,

SQLETSDESC,

which

defines

the

system

temporary

table

space.

If

null,

a

default

system

temporary

table

space

based

on

the

values

of

SQLTSEXT

and

SQLDBNSG

will

be

created.

The

Tablespace

Description

Block

structure

(SQLETSDESC)

is

used

to

specify

the

attributes

of

any

of

the

three

initial

table

spaces.

Table

56.

Fields

in

the

SQLETSDESC

Structure

Field

Name

Data

Type

Description

SQLTSDID

CHAR(8)

A

structure

identifier

and

″eye-catcher″

for

storage

dumps.

It

is

a

string

of

eight

bytes

that

must

be

initialized

with

the

value

of

SQLE_DBTSDESC_1

(defined

in

sqlenv).

The

contents

of

this

field

are

validated

for

version

control.

SQLEXTNT

INTEGER

Table

space

extent

size,

in

4

KB

pages.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

the

current

value

of

the

dft_extent_sz

configuration

parameter.

SQLPRFTC

INTEGER

Table

space

prefetch

size,

in

4

KB

pages.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

the

current

value

of

the

dft_prefetch_sz

configuration

parameter.

SQLPOVHD

DOUBLE

Table

space

I/O

overhead,

in

milliseconds.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

an

internal

database

manager

value

(currently

24.1

ms)

that

could

change

with

future

releases.

SQLEDBDESC

Chapter

3.

Data

Structures

431

|
|
|

Table

56.

Fields

in

the

SQLETSDESC

Structure

(continued)

Field

Name

Data

Type

Description

SQLTRFRT

DOUBLE

Table

space

I/O

transfer

rate,

in

milliseconds.

If

a

value

of

-1

is

supplied,

this

field

will

default

to

an

internal

database

manager

value

(currently

0.9

ms)

that

could

change

with

future

releases.

SQLTSTYP

CHAR(1)

Indicates

whether

the

table

space

is

system-managed

or

database-managed.

See

below

for

values.

SQLCCNT

SMALLINT

Number

of

containers

being

assigned

to

the

table

space.

Indicates

how

many

SQLCTYPE/SQLCSIZE/SQLCLEN/SQLCONTR

values

follow.

CONTAINR

Array

An

array

of

sqlccnt

SQLETSCDESC

structures.

Table

57.

Fields

in

the

SQLETSCDESC

Structure

Field

Name

Data

Type

Description

SQLCTYPE

CHAR(1)

Identifies

the

type

of

this

container.

See

below

for

values.

SQLCSIZE

INTEGER

Size

of

the

container

identified

in

SQLCONTR,

specified

in

4KB

pages.

Valid

only

when

SQLTSTYP

is

set

to

SQL_TBS_TYP_DMS.

SQLCLEN

SMALLINT

Length

of

following

SQLCONTR

value.

SQLCONTR

CHAR(256)

Container

string.

Valid

values

for

SQLDBCSS

(defined

in

sqlenv)

are:

SQL_CS_SYSTEM

Collating

sequence

based

on

the

database

territory.

SQL_CS_USER

Collation

sequence

is

specified

by

the

256-byte

weight

table

supplied

by

the

user.

Each

weight

in

the

table

is

one

byte

in

length.

SQL_CS_NONE

Collation

sequence

is

IDENTITY,

that

is,

binary

code

point

order.

SQLE_CS_COMPATABILITY

Use

pre-Version

5

collating

sequence.

SQL_CS_SYSTEM_NLSCHAR

Collating

sequence

from

system

using

the

NLS

version

of

compare

routines

for

character

types.

This

value

can

only

be

specified

when

creating

a

Thai

TIS620-1

database.

SQL_CS_USER_NLSCHAR

Collation

sequence

is

specified

by

the

256-byte

weight

table

supplied

by

the

user.

Each

weight

in

the

table

is

one

byte

in

length.

This

value

can

only

be

specified

when

creating

a

Thai

TIS620-1

database.

SQL_CS_IDENTITY_16BIT

CESU-8

(Compatibility

Encoding

Scheme

for

UTF-16:

8-Bit)

collation

sequence

as

specified

by

the

Unicode

Technical

Report

#26,

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

This

value

can

only

be

specified

when

creating

a

Unicode

database.

SQL_CS_UCA400_NO

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00

with

normalization

implicitly

set

to

on.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10

SQLEDBDESC

432

Administrative

API

Reference

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

http://www.unicode.org

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

This

value

can

only

be

specified

when

creating

a

Unicode

database.

SQL_CS_UCA400_LTH

UCA

(Unicode

Collation

Algorithm)

collation

sequence

based

on

the

Unicode

Standard

version

4.00,

with

sorting

of

all

Thai

characters

according

to

the

Royal

Thai

Dictionary

order.

Details

of

the

UCA

can

be

found

in

the

Unicode

Technical

Standard

#10

available

at

the

Unicode

Consortium

web

site

(www.unicode.org).

This

value

can

only

be

specified

when

creating

a

Unicode

database.

Valid

values

for

SQLTSTYP

(defined

in

sqlenv)

are:

SQL_TBS_TYP_SMS

System

managed

SQL_TBS_TYP_DMS

Database

managed

Valid

values

for

SQLCTYPE

(defined

in

sqlenv)

are:

SQL_TBSC_TYP_DEV

Device.

Valid

only

when

SQLTSTYP

=

SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_FILE

File.

Valid

only

when

SQLTSTYP

=

SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_PATH

Path

(directory).

Valid

only

when

SQLTSTYP

=

SQL_TBS_TYP_SMS.

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLEDBDESC

*/

/*

...

*/

SQL_STRUCTURE

sqledbdesc

{

_SQLOLDCHAR

sqldbdid[8];

sqlint32

sqldbccp;

sqlint32

sqldbcss;

unsigned

char

sqldbudc[SQL_CS_SZ];

_SQLOLDCHAR

sqldbcmt[SQL_CMT_SZ+1];

_SQLOLDCHAR

pad[1];

sqluint32

sqldbsgp;

short

sqldbnsg;

char

pad2[2];

sqlint32

sqltsext;

struct

SQLETSDESC

*sqlcatts;

struct

SQLETSDESC

*sqlusrts;

struct

SQLETSDESC

*sqltmpts;

};

/*

...

*/

/*

File:

sqlenv.h

*/

/*

Structure:

SQLETSDESC

*/

/*

...

*/

SQL_STRUCTURE

SQLETSDESC

{

char

sqltsdid[8];

sqlint32

sqlextnt;

sqlint32

sqlprftc;

double

sqlpovhd;

double

sqltrfrt;

SQLEDBDESC

Chapter

3.

Data

Structures

433

|
|

|
|
|
|
|
|
|

http://www.unicode.org
http://www.unicode.org

char

sqltstyp;

char

pad1;

short

sqlccnt;

struct

SQLETSCDESC

containr[1];

};

/*

...

*/

/*

File:

sqlenv.h

*/

/*

Structure:

SQLETSCDESC

*/

/*

...

*/

SQL_STRUCTURE

SQLETSCDESC

{

char

sqlctype;

char

pad1[3];

sqlint32

sqlcsize;

short

sqlclen;

char

sqlcontr[SQLB_MAX_CONTAIN_NAME_SZ];

char

pad2[2];

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLEDBDESC.

05

SQLDBDID

PIC

X(8).

05

SQLDBCCP

PIC

S9(9)

COMP-5.

05

SQLDBCSS

PIC

S9(9)

COMP-5.

05

SQLDBUDC

PIC

X(256).

05

SQLDBCMT

PIC

X(30).

05

FILLER

PIC

X.

05

SQL-PAD

PIC

X(1).

05

SQLDBSGP

PIC

9(9)

COMP-5.

05

SQLDBNSG

PIC

S9(4)

COMP-5.

05

SQL-PAD2

PIC

X(2).

05

SQLTSEXT

PIC

S9(9)

COMP-5.

05

SQLCATTS

USAGE

IS

POINTER.

05

SQLUSRTS

USAGE

IS

POINTER.

05

SQLTMPTS

USAGE

IS

POINTER.

*

*

File:

sqletsd.cbl

01

SQLETSDESC.

05

SQLTSDID

PIC

X(8).

05

SQLEXTNT

PIC

S9(9)

COMP-5.

05

SQLPRFTC

PIC

S9(9)

COMP-5.

05

SQLPOVHD

USAGE

COMP-2.

05

SQLTRFRT

USAGE

COMP-2.

05

SQLTSTYP

PIC

X.

05

SQL-PAD1

PIC

X.

05

SQLCCNT

PIC

S9(4)

COMP-5.

05

SQL-CONTAINR

OCCURS

001

TIMES.

10

SQLCTYPE

PIC

X.

10

SQL-PAD1

PIC

X(3).

10

SQLCSIZE

PIC

S9(9)

COMP-5.

10

SQLCLEN

PIC

S9(4)

COMP-5.

10

SQLCONTR

PIC

X(256).

10

SQL-PAD2

PIC

X(2).

*

*

File:

sqlenv.cbl

01

SQLETSCDESC.

05

SQLCTYPE

PIC

X.

05

SQL-PAD1

PIC

X(3).

05

SQLCSIZE

PIC

S9(9)

COMP-5.

05

SQLCLEN

PIC

S9(4)

COMP-5.

05

SQLCONTR

PIC

X(256).

05

SQL-PAD2

PIC

X(2).

*

SQLEDBDESC

434

Administrative

API

Reference

Related

concepts:

v

“Unicode

implementation

in

DB2

Universal

Database”

in

the

Administration

Guide:

Planning

Related

reference:

v

“sqlecrea

-

Create

Database”

on

page

314

SQLENINFO

This

structure

returns

information

after

a

call

to

the

sqlengne

API.

Table

58.

Fields

in

the

SQLENINFO

Structure

Field

Name

Data

Type

Description

NODENAME

CHAR(8)

Used

for

the

NetBIOS

protocol;

the

nname

of

the

node

where

the

database

is

located

(valid

in

system

directory

only).

LOCAL_LU

CHAR(8)

Used

for

the

APPN

protocol;

local

logical

unit.

PARTNER_LU

CHAR(8)

Used

for

the

APPN

protocol;

partner

logical

unit.

MODE

CHAR(8)

Used

for

the

APPN

protocol;

transmission

service

mode.

COMMENT

CHAR(30)

The

comment

associated

with

the

node.

COM_CODEPAGE

SMALLINT

The

code

page

of

the

comment.

This

field

is

no

longer

used

by

the

database

manager.

ADAPTER

SMALLINT

Used

for

the

NetBIOS

protocol;

the

local

network

adapter.

NETWORKID

CHAR(8)

Used

for

the

APPN

protocol;

network

ID.

PROTOCOL

CHAR(1)

Communications

protocol.

SYM_DEST_NAME

CHAR(8)

Used

for

the

APPC

protocol;

the

symbolic

destination

name.

SECURITY_TYPE

SMALLINT

Used

for

the

APPC

protocol;

the

security

type.

See

below

for

values.

HOSTNAME

CHAR(255)

Used

for

the

TCP/IP

protocol;

the

name

of

the

TCP/IP

host

on

which

the

DB2

server

instance

resides.

SERVICE_NAME

CHAR(14)

Used

for

the

TCP/IP

protocol;

the

TCP/IP

service

name

or

associated

port

number

of

the

DB2

server

instance.

FILESERVER

CHAR(48)

Used

for

the

IPX/SPX

protocol;

the

name

of

the

NetWare

file

server

where

the

DB2

server

instance

is

registered.

OBJECTNAME

CHAR(48)

The

database

manager

server

instance

is

represented

as

the

object,

objectname,

on

the

NetWare

file

server.

The

server’s

IPX/SPX

internetwork

address

is

stored

and

retrieved

from

this

object.

INSTANCE_NAME

CHAR(8)

Used

for

the

local

and

NPIPE

protocols;

the

name

of

the

server

instance.

COMPUTERNAME

CHAR(15)

Used

by

the

NPIPE

protocol;

the

server

node’s

computer

name.

SYSTEM_NAME

CHAR(21)

The

DB2

system

name

of

the

remote

server.

REMOTE_INSTNAME

CHAR(8)

The

name

of

the

DB2

server

instance.

CATALOG_NODE_TYPE

CHAR

Catalog

node

type.

OS_TYPE

UNSIGNED

SHORT

Identifies

the

operating

system

of

the

server.

SQLEDBDESC

Chapter

3.

Data

Structures

435

Table

58.

Fields

in

the

SQLENINFO

Structure

(continued)

Field

Name

Data

Type

Description

Note:

Each

character

field

returned

is

blank

filled

up

to

the

length

of

the

field.

Valid

values

for

SECURITY_TYPE

(defined

in

sqlenv)

are:

SQL_CPIC_SECURITY_NONE

SQL_CPIC_SECURITY_SAME

SQL_CPIC_SECURITY_PROGRAM

Language

syntax:

C

Structure

/*

File:

sqlenv.h

*/

/*

Structure:

SQLENINFO

*/

/*

...

*/

SQL_STRUCTURE

sqleninfo

{

_SQLOLDCHAR

nodename[SQL_NNAME_SZ];

_SQLOLDCHAR

local_lu[SQL_LOCLU_SZ];

_SQLOLDCHAR

partner_lu[SQL_RMTLU_SZ];

_SQLOLDCHAR

mode[SQL_MODE_SZ];

_SQLOLDCHAR

comment[SQL_CMT_SZ];

unsigned

short

com_codepage;

unsigned

short

adapter;

_SQLOLDCHAR

networkid[SQL_NETID_SZ];

_SQLOLDCHAR

protocol;

_SQLOLDCHAR

sym_dest_name[SQL_SYM_DEST_NAME_SZ];

unsigned

short

security_type;

_SQLOLDCHAR

hostname[SQL_HOSTNAME_SZ];

_SQLOLDCHAR

service_name[SQL_SERVICE_NAME_SZ];

char

fileserver[SQL_FILESERVER_SZ];

char

objectname[SQL_OBJECTNAME_SZ];

char

instance_name[SQL_INSTNAME_SZ];

char

computername[SQL_COMPUTERNAME_SZ];

char

system_name[SQL_SYSTEM_NAME_SZ];

char

remote_instname[SQL_REMOTE_INSTNAME_SZ];

_SQLOLDCHAR

catalog_node_type;

unsigned

short

os_type;

};

/*

...

*/

COBOL

Structure

*

File:

sqlenv.cbl

01

SQLENINFO.

05

SQL-NODE-NAME

PIC

X(8).

05

SQL-LOCAL-LU

PIC

X(8).

05

SQL-PARTNER-LU

PIC

X(8).

05

SQL-MODE

PIC

X(8).

05

SQL-COMMENT

PIC

X(30).

05

SQL-COM-CODEPAGE

PIC

9(4)

COMP-5.

05

SQL-ADAPTER

PIC

9(4)

COMP-5.

05

SQL-NETWORKID

PIC

X(8).

05

SQL-PROTOCOL

PIC

X.

05

SQL-SYM-DEST-NAME

PIC

X(8).

05

FILLER

PIC

X(1).

05

SQL-SECURITY-TYPE

PIC

9(4)

COMP-5.

05

SQL-HOSTNAME

PIC

X(255).

05

SQL-SERVICE-NAME

PIC

X(14).

05

SQL-FILESERVER

PIC

X(48).

05

SQL-OBJECTNAME

PIC

X(48).

SQLENINFO

436

Administrative

API

Reference

05

SQL-INSTANCE-NAME

PIC

X(8).

05

SQL-COMPUTERNAME

PIC

X(15).

05

SQL-SYSTEM-NAME

PIC

X(21).

05

SQL-REMOTE-INSTNAME

PIC

X(8).

05

SQL-CATALOG-NODE-TYPE

PIC

X.

05

SQL-OS-TYPE

PIC

9(4)

COMP-5.

*

Related

reference:

v

“sqlengne

-

Get

Next

Node

Directory

Entry”

on

page

355

SQLFUPD

This

structure

passes

information

about

database

configuration

files

and

the

database

manager

configuration

file.

Table

59.

Fields

in

the

SQLFUPD

Structure

Field

Name

Data

Type

Description

TOKEN

UINT16

Specifies

the

configuration

value

to

return

or

update.

PTRVALUE

Pointer

A

pointer

to

an

application

allocated

buffer

that

holds

the

data

specified

by

TOKEN.

Valid

data

types

for

the

token

element

are:

Uint16

Unsigned

2-byte

integer

Sint16

Signed

2-byte

integer

Uint32

Unsigned

4-byte

integer

Sint32

Signed

4-byte

integer

Uint64

Unsigned

8-byte

integer

float

4-byte

floating-point

decimal

char(n)

String

of

length

n

(not

including

null

termination).

Valid

entries

for

the

SQLFUPD

token

element

are

listed

below:

Table

60.

Updatable

Database

Configuration

Parameters

Parameter

Name

Token

Token

Value

Data

Type

app_ctl_heap_sz

SQLF_DBTN_APP_CTL_HEAP_SZ

500

Uint16

applheapsz

SQLF_DBTN_APPLHEAPSZ

51

Uint16

appgroup_mem_sz

SQLF_DBTN_APPGROUP_MEM_SZ

800

Uint32

audit_buf_sz

SQLF_KTN_AUDIT_BUF_SZ

312

Sint32

autorestart

SQLF_DBTN_AUTO_RESTART

25

Uint16

avg_appls

SQLF_DBTN_AVG_APPLS

47

Uint16

blk_log_dsk_ful

SQLF_DBTN_BLK_LOG_DSK_FUL

804

Uint16

catalogcache_sz

SQLF_DBTN_CATALOGCACHE_SZ

56

Sint32

chngpgs_thresh

SQLF_DBTN_CHNGPGS_THRESH

38

Uint16

database_memory

SQLF_DBTN_DATABASE_MEMORY

803

Uint64

dbheap

SQLF_DBTN_DB_HEAP

58

Uint64

dft_degree

SQLF_DBTN_DFT_DEGREE

301

Sint32

dft_extent_sz

SQLF_DBTN_DFT_EXTENT_SZ

54

Uint32

SQLENINFO

Chapter

3.

Data

Structures

437

Table

60.

Updatable

Database

Configuration

Parameters

(continued)

Parameter

Name

Token

Token

Value

Data

Type

dft_loadrec_ses

SQLF_DBTN_DFT_LOADREC_SES

42

Sint16

dft_prefetch_sz

SQLF_DBTN_DFT_PREFETCH_SZ

40

Sint16

dft_queryopt

SQLF_DBTN_DFT_QUERYOPT

57

Sint32

dft_refresh_age

SQLF_DBTN_DFT_REFRESH_AGE

702

char(22)

dft_sqlmathwarn

SQLF_DBTN_DFT_SQLMATHWARN

309

Sint16

dir_obj_name

SQLF_DBTN_DIR_OBJ_NAME

46

char(255)

discover

SQLF_DBTN_DISCOVER

308

Uint16

dl_expint

SQLF_DBTN_DL_EXPINT

350

Sint32

dl_num_copies

SQLF_DBTN_DL_NUM_COPIES

351

Uint16

dl_time_drop

SQLF_DBTN_DL_TIME_DROP

353

Uint16

dl_token

SQLF_DBTN_DL_TOKEN

602

char(10)

dl_upper

SQLF_DBTN_DL_UPPER

603

Sint16

dl_w__expint

SQLF_DBTN_DL_WT_IEXPINT

354

Sint32

dlchktime

SQLF_DBTN_DLCHKTIME

9

Uint32

dyn_query_mgmt

SQLF_DBTN_DYN_QUERY_MGMT

604

Uint16

estore_seg_sz

SQLF_DBTN_ESTORE_SEG_SZ

303

Sint32

groupheap_ratio

SQLF_DBTN_GROUPHEAP_RATIO

801

Uint16

indexreca

SQLF_DBTN_INDEXREC

30

Uint16

indexsort

SQLF_DBTN_INDEXSORT

35

Uint16

locklist

SQLF_DBTN_LOCK_LIST

704

Uint64

locktimeout

SQLF_DBTN_LOCKTIMEOUT

34

Sint16

logbufsz

SQLF_DBTN_LOGBUFSZ

33

Uint16

logfilsiz

SQLF_DBTN_LOGFIL_SIZ

92

Uint32

logprimary

SQLF_DBTN_LOGPRIMARY

16

Uint16

logretainb

SQLF_DBTN_LOG_RETAIN

23

Uint16

logsecond

SQLF_DBTN_LOGSECOND

17

Uint16

maxappls

SQLF_DBTN_MAXAPPLS

6

Uint16

maxfilop

SQLF_DBTN_MAXFILOP

3

Uint16

maxlocks

SQLF_DBTN_MAXLOCKS

15

Uint16

maxlog

SQLF_DBTN_MAX_LOG

807

Uint16

mincommit

SQLF_DBTN_MINCOMMIT

32

Uint16

mirrorlogpath

SQLF_DBTN_MIRRORLOGPATH

806

char(242)

newlogpath

SQLF_DBTN_NEWLOGPATH

20

char(242)

num_db_backups

SQLF_DBTN_NUM_DB_BACKUPS

601

Uint16

num_estore_segs

SQLF_DBTN_NUM_ESTORE_SEGS

304

Sint32

num_freqvalues

SQLF_DBTN_NUM_FREQVALUES

36

Uint16

num_iocleaners

SQLF_DBTN_NUM_IOCLEANERS

37

Uint16

num_ioservers

SQLF_DBTN_NUM_IOSERVERS

39

Uint16

numlogspan

SQLF_DBTN_NUM_LOG_SPAN

808

Uint16

num_quantiles

SQLF_DBTN_NUM_QUANTILES

48

Uint16

overflowlogpath

SQLF_DBTN_OVERFLOWLOGPATH

805

char(242)

pckcachesz

SQLF_DBTN_PCKCACHE_SZ

505

Uint32

rec_his_retentn

SQLF_DBTN_REC_HIS_RETENTN

43

Sint16

seqdetect

SQLF_DBTN_SEQDETECT

41

Uint16

sheapthres_shr

SQLF_DBTN_SHEAPTHRES_SHR

802

Uint32

SQLFUPD

438

Administrative

API

Reference

Table

60.

Updatable

Database

Configuration

Parameters

(continued)

Parameter

Name

Token

Token

Value

Data

Type

softmax

SQLF_DBTN_SOFTMAX

5

Uint16

sortheap

SQLF_DBTN_SORT_HEAP

52

Uint32

stat_heap_sz

SQLF_DBTN_STAT_HEAP_SZ

45

Uint32

stmtheap

SQLF_DBTN_STMTHEAP

53

Uint16

trackmod

SQLF_DBTN_TRACKMOD

703

Uint16

tsm_mgmtclass

SQLF_DBTN_TSM_MGMTCLASS

307

char(30)

tsm_nodename

SQLF_DBTN_TSM_NODENAME

306

char(64)

tsm_owner

SQLF_DBTN_TSM_OWNER

305

char(64)

tsm_password

SQLF_DBTN_TSM_PASSWORD

501

char(64)

userexit

SQLF_DBTN_USER_EXIT

24

Uint16

util_heap_sz

SQLF_DBTN_UTIL_HEAP_SZ

55

Uint32

a

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

SQLF_INX_REC_RESTART

(2)

b

Valid

values

(defined

in

sqlutil.h):

SQLF_LOGRETAIN_NO

(0)

SQLF_LOGRETAIN_RECOVERY

(1)

SQLF_LOGRETAIN_CAPTURE

(2)

Table

61.

Non-updatable

Database

Configuration

Parameters

Parameter

Name

Token

Token

Value

Data

Type

backup_pending

SQLF_DBTN_BACKUP_PENDING

112

Uint16

codepage

SQLF_DBTN_CODEPAGE

101

Uint16

codeset

SQLF_DBTN_CODESET

120

char(9)a

collate_info

SQLF_DBTN_COLLATE_INFO

44

char(260)

country

SQLF_DBTN_COUNTRY

100

Uint16

database_consistent

SQLF_DBTN_CONSISTENT

111

Uint16

database_level

SQLF_DBTN_DATABASE_LEVEL

124

Uint16

log_retain_status

SQLF_DBTN_LOG_RETAIN_STATUS

114

Uint16

loghead

SQLF_DBTN_LOGHEAD

105

char(12)

logpath

SQLF_DBTN_LOGPATH

103

char(242)

multipage_alloc

SQLF_DBTN_MULTIPAGE_ALLOC

506

Uint16

numsegs

SQLF_DBTN_NUMSEGS

122

Uint16

release

SQLF_DBTN_RELEASE

102

Uint16

restore_pending

SQLF_DBTN_RESTORE_PENDING

503

Uint16

rollfwd_pending

SQLF_DBTN_ROLLFWD_PENDING

113

Uint16

territory

SQLF_DBTN_TERRITORY

121

char(5)b

user_exit_status

SQLF_DBTN_USER_EXIT_STATUS

115

Uint16

a

char(17)

on

HP-UX

and

Solaris

Operating

Environment.

b

char(33)

on

HP-UX

and

Solaris

Operating

Environment.

SQLFUPD

Chapter

3.

Data

Structures

439

Valid

entries

for

the

SQLFUPD

token

element

are

listed

below:

Table

62.

Updatable

Database

Manager

Configuration

Parameters

Parameter

Name

Token

Token

Value

Data

Type

agent_stack_sz

SQLF_KTN_AGENT_STACK_SZ

61

Uint16

agentpri

SQLF_KTN_AGENTPRI

26

Sint16

aslheapsz

SQLF_KTN_ASLHEAPSZ

15

Uint32

audit_buf_sz

SQLF_KTN_AUDIT_BUF_SZ

312

Sint32

authenticationa

SQLF_KTN_AUTHENTICATION

78

Uint16

backbufsz

SQLF_KTN_BACKBUFSZ

18

Uint32

catalog_noauth

SQLF_KTN_CATALOG_NOAUTH

314

Uint16

comm_bandwidth

SQLF_KTN_COMM_BANDWIDTH

307

float

conn_elapse

SQLF_KTN_CONN_ELAPSE

508

Uint16

cpuspeed

SQLF_KTN_CPUSPEED

42

float

datalinks

SQLF_KTN_DATALINKS

603

Sint16

dft_account_str

SQLF_KTN_DFT_ACCOUNT_STR

28

char(25)

dft_client_adpt

SQLF_KTN_DFT_CLIENT_ADPT

82

Uint16

dft_client_comm

SQLF_KTN_DFT_CLIENT_COMM

77

char(31)

dft_monswitches

SQLF_KTN_DFT_MONSWITCHESb

29

Uint16

dft_mon_bufpool

SQLF_KTN_DFT_MON_BUFPOOL

33

Uint16

dft_mon_lock

SQLF_KTN_DFT_MON_LOCK

34

Uint16

dft_mon_sort

SQLF_KTN_DFT_MON_SORT

35

Uint16

dft_mon_stmt

SQLF_KTN_DFT_MON_STMT

31

Uint16

dft_mon_table

SQLF_KTN_DFT_MON_TABLE

32

Uint16

dft_mon_uow

SQLF_KTN_DFT_MON_UOW

30

Uint16

dftdbpath

SQLF_KTN_DFTDBPATH

27

char(215)

diaglevel

SQLF_KTN_DIAGLEVEL

64

Uint16

diagpath

SQLF_KTN_DIAGPATH

65

char(215)

dir_cache

SQLF_KTN_DIR_CACHE

40

Uint16

discoverc

SQLF_KTN_DISCOVER

304

Uint16

discover_comm

SQLF_KTN_DISCOVER_COMM

305

char(35)

discover_inst

SQLF_KTN_DISCOVER_INST

308

Uint16

dos_rqrioblk

SQLF_KTN_DOS_RQRIOBLK

72

Uint16

fcm_num_buffers

SQLF_KTN_FCM_NUM_BUFFERS

503

Uint32

fed_noauth

SQLF_KTN_FED_NOAUTH

806

Uint16

federated

SQLF_KTN_FEDERATED

604

Sint16

fileserver

SQLF_KTN_FILESERVER

47

char(48)

health_mon

SQLF_KTN_HEALTH_MON

804

Uint16

indexrecd

SQLF_KTN_INDEXREC

20

Uint16

initdari_jvm

SQLF_KTN_INITDARI_JVM

602

Sint16

instance_memory

SQLF_KTN_INSTANCE_MEMORY

803

Uint64

intra_parallel

SQLF_KTN_INTRA_PARALLEL

306

Sint16

ipx_socket

SQLF_KTN_IPX_SOCKET

71

char(4)

java_heap_sz

SQLF_KTN_JAVA_HEAP_SZ

310

Sint32

jdk11_path

SQLF_KTN_JDK11_PATH

311

char(255)

keepfenced

SQLF_KTN_KEEPFENCED

81

Uint16

max_connections

SQLF_DBTN_MAX_CONNECTIONS

802

Sint32

max_connretries

SQLF_KTN_MAX_CONNRETRIES

509

Uint16

SQLFUPD

440

Administrative

API

Reference

||||

Table

62.

Updatable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Name

Token

Token

Value

Data

Type

max_coordagents

SQLF_KTN_MAX_COORDAGENTS

501

Sint32

max_querydegree

SQLF_KTN_MAX_QUERYDEGREE

303

Sint32

max_time_diff

SQLF_KTN_MAX_TIME_DIFF

510

Uint16

maxagents

SQLF_KTN_MAXAGENTS

12

Uint32

maxcagents

SQLF_KTN_MAXCAGENTS

13

Sint32

maxdari

SQLF_KTN_MAXDARI

80

Sint32

maxtotfilop

SQLF_KTN_MAXTOTFILOP

45

Uint16

min_priv_mem

SQLF_KTN_MIN_PRIV_MEM

43

Uint32

mon_heap_sz

SQLF_KTN_MON_HEAP_SZ

79

Uint16

nname

SQLF_KTN_NNAME

7

char(8)

notifylevel

SQLF_KTN_NOTIFYLEVEL

605

Sint16

num_initagents

SQLF_KTN_NUM_INITAGENTS

500

Uint32

num_initdaris

SQLF_KTN_NUM_INITDARIS

601

Sint32

num_poolagents

SQLF_KTN_NUM_POOLAGENTS

502

Sint32

numdb

SQLF_KTN_NUMDB

6

Uint16

objectname

SQLF_KTN_OBJECTNAME

48

char(48)

priv_mem_thresh

SQLF_KTN_PRIV_MEM_THRESH

44

Sint32

query_heap_sz

SQLF_KTN_QUERY_HEAP_SZ

49

Sint32

restbufsz

SQLF_KTN_RESTBUFSZ

19

Uint32

resync_interval

SQLF_KTN_RESYNC_INTERVAL

68

Uint16

rqrioblk

SQLF_KTN_RQRIOBLK

1

Uint16

sheapthres

SQLF_KTN_SHEAPTHRES

21

Uint32

spm_log_file_sz

SQLF_KTN_SPM_LOG_FILE_SZ

90

Sint32

spm_max_resync

SQLF_KTN_SPM_MAX_RESYNC

91

Sint32

spm_name

SQLF_KTN_SPM_NAME

92

char(8)

start_stop_time

SQLF_KTN_START_STOP_TIME

511

Uint16

svcename

SQLF_KTN_SVCENAME

24

char(14)

sysadm_group

SQLF_KTN_SYSADM_GROUP

39

char(16)

sysctrl_group

SQLF_KTN_SYSCTRL_GROUP

63

char(16)

sysmaint_group

SQLF_KTN_SYSMAINT_GROUP

62

char(16)

tm_database

SQLF_KTN_TM_DATABASE

67

char(8)

tp_mon_name

SQLF_KTN_TP_MON_NAME

66

char(19)

tpname

SQLF_KTN_TPNAME

25

char(64)

trust_allclntse

SQLF_KTN_TRUST_ALLCLNTS

301

Uint16

trust_clntauth

SQLF_KTN_TRUST_CLNTAUTH

302

Uint16

udf_mem_sz

SQLF_KTN_UDF_MEM_SZ

69

Uint16

use_sna_auth

SQLF_KTN_USE_SNA_AUTH

805

Uint16

SQLFUPD

Chapter

3.

Data

Structures

441

Table

62.

Updatable

Database

Manager

Configuration

Parameters

(continued)

Parameter

Name

Token

Token

Value

Data

Type

a

Valid

values

(defined

in

sqlenv.h):

SQL_AUTHENTICATION_SERVER

(0)

SQL_AUTHENTICATION_CLIENT

(1)

SQL_AUTHENTICATION_DCS

(2)

SQL_AUTHENTICATION_DCE

(3)

SQL_AUTHENTICATION_SVR_ENCRYPT

(4)

SQL_AUTHENTICATION_DCS_ENCRYPT

(5)

SQL_AUTHENTICATION_DCE_SVR_ENC

(6)

SQL_AUTHENTICATION_KERBEROS

(7)

SQL_AUTHENTICATION_KRB_SVR_ENC

(8)

SQL_AUTHENTICATION_NOT_SPEC

(255)

b

SQLF_KTN_DFT_MONSWITCHES

is

a

Uint16

parameter,

the

bits

of

which

indicate

the

default

monitor

switch

settings.

This

allows

for

the

specification

of

a

number

of

parameters

at

once.

The

individual

bits

making

up

this

composite

parameter

are:

Bit

1

(xxxx

xxx1):

dft_mon_uow

Bit

2

(xxxx

xx1x):

dft_mon_stmt

Bit

3

(xxxx

x1xx):

dft_mon_table

Bit

4

(xxxx

1xxx):

dft_mon_buffpool

Bit

5

(xxx1

xxxx):

dft_mon_lock

Bit

6

(xx1x

xxxx):

dft_mon_sort

c

Valid

values

(defined

in

sqlutil.h):

SQLF_DSCVR_KNOWN

(1)

SQLF_DSCVR_SEARCH

(2)

d

Valid

values

(defined

in

sqlutil.h):

SQLF_INX_REC_SYSTEM

(0)

SQLF_INX_REC_REFERENCE

(1)

e

Valid

values

(defined

in

sqlutil.h):

SQLF_TRUST_ALLCLNTS_NO

(0)

SQLF_TRUST_ALLCLNTS_YES

(1)

SQLF_TRUST_ALLCLNTS_DRDAONLY

(2)

Table

63.

Non-updatable

Database

Manager

Configuration

Parameters

Parameter

Name

Token

Token

Value

Data

Type

nodetypea

SQLF_KTN_NODETYPE

100

Uint16

release

SQLF_KTN_RELEASE

101

Uint16

a

Valid

values

(defined

in

sqlutil.h):

SQLF_NT_STANDALONE

(0)

SQLF_NT_SERVER

(1)

SQLF_NT_REQUESTOR

(2)

SQLF_NT_STAND_REQ

(3)

SQLF_NT_MPP

(4)

SQLF_NT_SATELLITE

(5)

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLFUPD

*/

/*

...

*/

SQL_STRUCTURE

sqlfupd

{

unsigned

short

token;

char

*ptrvalue;

};

/*

...

*/

COBOL

Structure

SQLFUPD

442

Administrative

API

Reference

*

File:

sqlutil.cbl

01

SQL-FUPD.

05

SQL-TOKEN

PIC

9(4)

COMP-5.

05

FILLER

PIC

X(2).

05

SQL-VALUE-PTR

USAGE

IS

POINTER.

*

SQLM-COLLECTED

This

structure

is

used

to

return

information

after

a

call

to

the

Database

System

Monitor

APIs.

It

will

only

be

filled

in

for

snapshot

requests

made

at

the

SQLM_DBMON_VERSION5_2

level

and

lower.

Table

64.

Fields

in

the

SQLM-COLLECTED

Structure

Field

Name

Data

Type

Description

SIZE

sqluint32

The

size

of

the

structure.

DB2

sqluint32

Obsolete.

DATABASES

sqluint32

Obsolete.

TABLE_DATABASES

sqluint32

Obsolete.

LOCK_DATABASES

sqluint32

Obsolete.

APPLICATIONS

sqluint32

Obsolete.

APPLINFOS

sqluint32

Obsolete.

DCS_APPLINFOS

sqluint32

Obsolete.

SERVER_DB2_TYPE

sqluint32

The

database

manager

server

type

(defined

in

sqlutil.h).

TIME_STAMP

TIMESTAMP

Time

that

the

snapshot

was

taken.

GROUP_STATES

OBJECT

SQLM_

RECORDING_

GROUP

Current

state

of

the

monitor

switch.

SERVER_PRDID

CHAR(20)

Product

name

and

version

number

of

the

database

manager

on

the

server.

SERVER_NNAME

CHAR(20)

Configuration

node

name

of

the

server.

SERVER_

INSTANCE_NAME

CHAR(20)

Instance

name

of

the

database

manager.

RESERVED

CHAR(22)

Reserved

for

future

use.

NODE_NUMBER

UNSIGNED

SHORT

Number

of

the

node

sending

data.

TIME_ZONE_DISP

sqlint32

The

difference

(in

seconds)

between

GMT

and

local

time.

NUM_TOP_LEVEL_

STRUCTS

sqluint32

The

total

number

of

high-level

structures

returned

in

the

snapshot

output

buffer.

A

high-level

structure

can

be

composed

of

several

lower-level

data

structures.

This

counter

replaces

the

individual

counters

(such

as

table_databases)

for

each

high-level

structure,

which

are

now

obsolete.

TABLESPACE_

DATABASES

sqluint32

Obsolete.

SERVER_VERSION

sqluint32

The

version

of

the

server

returning

the

data.

Language

syntax:

C

Structure

/*

File:

sqlmon.h

*/

/*

Structure:

SQLM-COLLECTED

*/

/*

...

*/

typedef

struct

sqlm_collected

SQLFUPD

Chapter

3.

Data

Structures

443

{

sqluint32

size;

sqluint32

db2;

sqluint32

databases;

sqluint32

table_databases;

sqluint32

lock_databases;

sqluint32

applications;

sqluint32

applinfos;

sqluint32

dcs_applinfos;

sqluint32

server_db2_type;

sqlm_timestamp

time_stamp;

sqlm_recording_group

group_states[SQLM_NUM_GROUPS];

_SQLOLDCHAR

server_prdid[SQLM_IDENT_SZ];

_SQLOLDCHAR

server_nname[SQLM_IDENT_SZ];

_SQLOLDCHAR

server_instance_name[SQLM_IDENT_SZ];

_SQLOLDCHAR

reserved[22];

unsigned

short

node_number;

long

time_zone_disp;

sqluint32

num_top_level_structs;

sqluint32

tablespace_databases;

sqluint32

server_version;

}sqlm_collected;

/*

...

*/

COBOL

Structure

*

File:

sqlmonct.cbl

01

SQLM-COLLECTED.

05

SQLM-SIZE

PIC

9(9)

COMP-5.

05

DB2

PIC

9(9)

COMP-5.

05

DATABASES

PIC

9(9)

COMP-5.

05

TABLE-DATABASES

PIC

9(9)

COMP-5.

05

LOCK-DATABASES

PIC

9(9)

COMP-5.

05

APPLICATIONS

PIC

9(9)

COMP-5.

05

APPLINFOS

PIC

9(9)

COMP-5.

05

DCS-APPLINFOS

PIC

9(9)

COMP-5.

05

SERVER-DB2-TYPE

PIC

9(9)

COMP-5.

05

TIME-STAMP.

10

SECONDS

PIC

9(9)

COMP-5.

10

MICROSEC

PIC

9(9)

COMP-5.

05

GROUP-STATES

OCCURS

6.

10

INPUT-STATE

PIC

9(9)

COMP-5.

10

OUTPUT-STATE

PIC

9(9)

COMP-5.

10

START-TIME.

05

SERVER-PRDID

PIC

X(20).

05

SERVER-NNAME

PIC

X(20).

05

SERVER-INSTANCE-NAME

PIC

X(20).

05

RESERVED

PIC

X(32).

05

TABLESPACE-DATABASES

PIC

9(9)

COMP-5.

05

SERVER-VERSION

PIC

9(9)

COMP-5.

*

SQLM-RECORDING-GROUP

This

structure

is

used

to

return

information

after

a

call

to

the

Database

System

Monitor

APIs.

Table

65.

Fields

in

the

SQLM-RECORDING-GROUP

Structure

Field

Name

Data

Type

Description

INPUT_STATE

INTEGER

Required

state

for

the

specific

monitor

group.

OUTPUT_STATE

INTEGER

Returned

information

on

the

state

of

the

specific

monitor

switch.

SQLM-COLLECTED

444

Administrative

API

Reference

Table

65.

Fields

in

the

SQLM-RECORDING-GROUP

Structure

(continued)

Field

Name

Data

Type

Description

START_TIME

Structure

Time

stamp

when

the

monitoring

group

switch

was

turned

on.

Table

66.

Fields

in

the

SQLM-TIMESTAMP

Structure

Field

Name

Data

Type

Description

SECONDS

INTEGER

The

date

and

time,

expressed

as

the

number

of

seconds

since

January

1,

1970

(GMT).

MICROSEC

INTEGER

The

number

of

elapsed

microseconds

in

the

current

second.

For

both

input_state

and

output_state,

a

particular

monitor

switch

is

identified

by

its

index

in

the

array

passed

to

the

db2MonitorSwitches

API.

The

constants

that

map

the

indexes

to

the

switches

are

called

SQLM_XXXX_SW,

where

XXXX

is

the

name

of

the

monitor

group.

The

constants

are

defined

in

sqlmon.h.

Language

syntax:

C

Structure

/*

File:

sqlmon.h

*/

/*

Structure:

SQLM-RECORDING-GROUP

*/

/*

...

*/

typedef

struct

sqlm_recording_group

{

sqluint32

input_state;

sqluint32

output_state;

sqlm_timestamp

start_time;

}sqlm_recording_group;

/*

...

*/

/*

File:

sqlmon.h

*/

/*

Structure:

SQLM-TIMESTAMP

*/

/*

...

*/

typedef

struct

sqlm_timestamp

{

sqluint32

seconds;

sqluint32

microsec;

}sqlm_timestamp;

/*

...

*/

COBOL

Structure

*

File:

sqlmonct.cbl

01

SQLM-RECORDING-GROUP

OCCURS

6

TIMES.

05

INPUT-STATE

PIC

9(9)

COMP-5.

05

OUTPUT-STATE

PIC

9(9)

COMP-5.

05

START-TIME.

10

SECONDS

PIC

9(9)

COMP-5.

10

MICROSEC

PIC

9(9)

COMP-5.

*

*

File:

sqlmonct.cbl

01

SQLM-TIMESTAMP.

05

SECONDS

PIC

9(9)

COMP-5.

05

MICROSEC

PIC

9(9)

COMP-5.

*

Related

reference:

v

“db2MonitorSwitches

-

Get/Update

Monitor

Switches”

on

page

191

SQLM-RECORDING-GROUP

Chapter

3.

Data

Structures

445

SQLMA

The

SQL

monitor

area

(SQLMA)

structure

is

used

to

send

database

monitor

snapshot

requests

to

the

database

manager.

It

is

also

used

to

estimate

the

size

(in

bytes)

of

the

snapshot

output.

Table

67.

Fields

in

the

SQLMA

Structure

Field

Name

Data

Type

Description

OBJ_NUM

INTEGER

Number

of

objects

to

be

monitored.

OBJ_VAR

Array

An

array

of

sqlm_obj_struct

structures

containing

descriptions

of

objects

to

be

monitored.

The

length

of

the

array

is

determined

by

OBJ_NUM.

Table

68.

Fields

in

the

SQLM-OBJ-STRUCT

Structure

Field

Name

Data

Type

Description

AGENT_ID

INTEGER

The

application

handle

of

the

application

to

be

monitored.

Specified

only

if

OBJ_TYPE

requires

an

agent_id

(application

handle).

To

retrieve

a

health

snapshot

with

full

collection

information,

specify

SQLM_HMON_OPT_COLL_FULL

in

this

field.

OBJ_TYPE

INTEGER

The

type

of

object

to

be

monitored.

OBJECT

CHAR(36)

The

name

of

the

object

to

be

monitored.

Specified

only

if

OBJ_TYPE

requires

a

name,

such

as

appl_id,

or

a

database

alias.

Valid

values

for

OBJ_TYPE

(defined

in

sqlmon)

are:

SQLMA_DB2

DB2

related

information

SQLMA_DBASE

Database

related

information

SQLMA_APPL

Application

information

organized

by

the

application

ID

SQLMA_AGENT_ID

Application

information

organized

by

the

agent

ID

SQLMA_DBASE_TABLES

Table

information

for

a

database

SQLMA_DBASE_APPLS

Application

information

for

a

database

SQLMA_DBASE_APPLINFO

Summary

application

information

for

a

database

SQLMA_DBASE_LOCKS

Locking

information

for

a

database

SQLMA_DBASE_ALL

Database

information

for

all

active

databases

in

the

database

manager

SQLMA_APPL_ALL

Application

information

for

all

active

applications

in

the

database

manager

SQLMA

446

Administrative

API

Reference

|||
|
|
|
|
|

SQLMA_APPLINFO_ALL

Summary

application

information

for

all

active

applications

in

the

database

manager

SQLMA_DCS_APPLINFO_ALL

Database

Connection

Services

application

information

summary

for

all

active

applications

in

the

database

manager.

SQLMA_DYNAMIC_SQL

Get

snapshot

for

dynamic

SQL.

SQLMA_DCS_DBASE

Database

Connection

Services

database

level

information.

SQLMA_DCS_DBASE_ALL

Database

Connection

Services

database

information

for

all

active

databases.

SQLMA_DCS_APPL_ALL

Database

Connection

Services

application

information

for

all

connections.

SQLMA_DCS_APPL

Database

Connection

Services

application

information

identified

by

application

ID.

SQLMA_DCS_APPL_HANDLE

Database

Connection

Services

application

information

identified

by

application

handle.

SQLMA_DCS_DBASE_APPLS

Database

Connection

Services

application

information

for

all

active

connections

to

the

database.

SQLMA_DBASE_TABLESPACES

Table

space

information

for

a

database.

SQLMA_DBASE_REMOTE

Information

for

a

DataJoiner

database.

SQLMA_DBASE_REMOTE_ALL

Information

for

all

DataJoiner

databases.

SQLMA_DBASE_APPLS_REMOTE

Application

information

for

a

particular

DataJoiner

database.

SQLMA_APPLS_REMOTE_ALL

Application

information

for

all

DataJoiner

databases.

Language

syntax:

C

Structure

/*

File:

sqlmon.h

*/

/*

Structure:

SQLMA

*/

/*

...

*/

typedef

struct

sqlma

{

sqluint32

obj_num;

sqlm_obj_struct

obj_var[1];

}sqlma;

/*

...

*/

/*

File:

sqlmon.h

*/

/*

Structure:

SQLM-OBJ-STRUCT

*/

/*

...

*/

typedef

struct

sqlm_obj_struct

{

SQLMA

Chapter

3.

Data

Structures

447

sqluint32

agent_id;

sqluint32

obj_type;

_SQLOLDCHAR

object[SQLM_OBJECT_SZ];

}sqlm_obj_struct;

/*

...

*/

COBOL

Structure

*

File:

sqlmonct.cbl

01

SQLMA.

05

OBJ-NUM

PIC

9(9)

COMP-5.

05

OBJ-VAR

OCCURS

0

TO

100

TIMES

DEPENDING

ON

OBJ-NUM.

10

AGENT-ID

PIC

9(9)

COMP-5.

10

OBJ-TYPE

PIC

9(9)

COMP-5.

10

OBJECT

PIC

X(36).

*

SQLOPT

This

structure

is

used

to

pass

bind

options

to

the

sqlabndx

API,

precompile

options

to

the

sqlaprep

API,

and

rebind

options

to

the

sqlarbnd

API.

Table

69.

Fields

in

the

SQLOPT

Structure

Field

Name

Data

Type

Description

HEADER

Structure

An

sqloptheader

structure.

OPTION

Array

An

array

of

sqloptions

structures.

The

number

of

elements

in

this

array

is

determined

by

the

value

of

the

allocated

field

of

the

header.

Table

70.

Fields

in

the

SQLOPTHEADER

Structure

Field

Name

Data

Type

Description

ALLOCATED

INTEGER

Number

of

elements

in

the

option

array

of

the

sqlopt

structure.

USED

INTEGER

Number

of

elements

in

the

option

array

of

the

sqlopt

structure

actually

used.

This

is

the

number

of

option

pairs

(TYPE

and

VAL)

supplied.

Table

71.

Fields

in

the

SQLOPTIONS

Structure

Field

Name

Data

Type

Description

TYPE

INTEGER

Bind/precompile/rebind

option

type.

VAL

INTEGER

Bind/precompile/rebind

option

value.

Note:

The

TYPE

and

VAL

fields

are

repeated

for

each

bind/precompile/rebind

option

specified.

Language

syntax:

C

Structure

/*

File:

sql.h

*/

/*

Structure:

SQLOPT

*/

/*

...

*/

SQL_STRUCTURE

sqlopt

{

SQL_STRUCTURE

sqloptheader

header;

SQL_STRUCTURE

sqloptions

option[1];

};

/*

...

*/

/*

File:

sql.h

*/

/*

Structure:

SQLOPTHEADER

*/

/*

...

*/

SQLMA

448

Administrative

API

Reference

SQL_STRUCTURE

sqloptheader

{

sqluint32

allocated;

sqluint32

used;

};

/*

...

*/

/*

File:

sql.h

*/

/*

Structure:

SQLOPTIONS

*/

/*

...

*/

SQL_STRUCTURE

sqloptions

{

sqluint32

type;

sqluint32

val;

};

/*

...

*/

COBOL

Structure

*

File:

sql.cbl

01

SQLOPT.

05

SQLOPTHEADER.

10

ALLOCATED

PIC

9(9)

COMP-5.

10

USED

PIC

9(9)

COMP-5.

05

SQLOPTIONS

OCCURS

1

TO

50

DEPENDING

ON

ALLOCATED.

10

SQLOPT-TYPE

PIC

9(9)

COMP-5.

10

SQLOPT-VAL

PIC

9(9)

COMP-5.

10

SQLOPT-VAL-PTR

REDEFINES

SQLOPT-VAL

*

Related

reference:

v

“sqlabndx

-

Bind”

on

page

266

v

“sqlaprep

-

Precompile

Program”

on

page

271

v

“sqlarbnd

-

Rebind”

on

page

273

SQLU-LSN

This

union,

used

by

the

db2ReadLog

API,

contains

the

definition

of

the

log

sequence

number.

A

log

sequence

number

(LSN)

represents

a

relative

byte

address

within

the

database

log.

All

log

records

are

identified

by

this

number.

It

represents

the

log

record’s

byte

offset

from

the

beginning

of

the

database

log.

Table

72.

Fields

in

the

SQLU-LSN

Union

Field

Name

Data

Type

Description

lsnChar

Array

of

UNSIGNED

CHAR

Specifies

the

6-member

character

array

log

sequence

number.

lsnWord

Array

of

UNSIGNED

SHORT

Specifies

the

3-member

short

array

log

sequence

number.

Language

syntax:

C

Structure

typedef

union

SQLU_LSN

{

unsigned

char

lsnChar

[6]

;

unsigned

short

lsnWord

[3]

;

}

SQLU_LSN;

Related

reference:

v

“db2ReadLog

-

Asynchronous

Read

Log”

on

page

198

SQLOPT

Chapter

3.

Data

Structures

449

SQLU-MEDIA-LIST

This

structure

is

used

to

pass

information

to

the

db2Load

API.

Table

73.

Fields

in

the

SQLU-MEDIA-LIST

Structure

Field

Name

Data

Type

Description

MEDIA_TYPE

CHAR(1)

A

character

indicating

media

type.

SESSIONS

INTEGER

Indicates

the

number

of

elements

in

the

array

pointed

to

by

the

target

field

of

this

structure.

TARGET

Union

This

field

is

a

pointer

to

one

of

four

types

of

structures.

The

type

of

structure

pointed

to

is

determined

by

the

value

of

the

media_type

field.

For

more

information

on

what

to

provide

in

this

field,

see

the

appropriate

API.

Table

74.

Fields

in

the

SQLU-MEDIA-LIST-TARGETS

Structure

Field

Name

Data

Type

Description

MEDIA

Pointer

A

pointer

to

an

sqlu_media_entry

structure.

VENDOR

Pointer

A

pointer

to

an

sqlu_vendor

structure.

LOCATION

Pointer

A

pointer

to

an

sqlu_location_entry

structure.

PSTATEMENT

Pointer

A

pointer

to

an

sqlu_statement_entry

structure.

Table

75.

Fields

in

the

SQLU-MEDIA-ENTRY

Structure

Field

Name

Data

Type

Description

RESERVE_LEN

INTEGER

Length

of

the

media_entry

field.

For

languages

other

than

C.

MEDIA_ENTRY

CHAR(215)

Path

for

a

backup

image

used

by

the

backup

and

restore

utilities.

Table

76.

Fields

in

the

SQLU-VENDOR

Structure

Field

Name

Data

Type

Description

RESERVE_LEN1

INTEGER

Length

of

the

shr_lib

field.

For

languages

other

than

C.

SHR_LIB

CHAR(255)

Name

of

a

shared

library

supplied

by

vendors

for

storing

or

retrieving

data.

RESERVE_LEN2

INTEGER

Length

of

the

filename

field.

For

languages

other

than

C.

FILENAME

CHAR(255)

File

name

to

identify

the

load

input

source

when

using

a

shared

library.

Table

77.

Fields

in

the

SQLU-LOCATION-ENTRY

Structure

Field

Name

Data

Type

Description

RESERVE_LEN

INTEGER

Length

of

the

location_entry

field.

For

languages

other

than

C.

LOCATION_ENTRY

CHAR(256)

Name

of

input

data

files

for

the

load

utility.

Table

78.

Fields

in

the

SQLU-STATEMENT-ENTRY

Structure

Field

Name

Data

Type

Description

LENGTH

INTEGER

Length

of

the

data

field.

PDATA

Pointer

Pointer

to

the

SQL

query.

SQLU-MEDIA-LIST

450

Administrative

API

Reference

Valid

values

for

MEDIA_TYPE

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

Local

devices

(tapes,

disks,

or

diskettes)

SQLU_SERVER_LOCATION

Server

devices

(tapes,

disks,

or

diskettes;

load

only).

Can

be

specified

only

for

the

piSourceList

parameter.

SQLU_CLIENT_LOCATION

Client

devices

(files

or

named

pipes;

load

only).

Can

be

specified

only

for

the

piSourceList

parameter.

SQLU_SQL_STMT

SQL

query

(load

only).

Can

be

specified

only

for

the

piSourceList

parameter.

SQLU_TSM_MEDIA

TSM

SQLU_OTHER_MEDIA

Vendor

library

SQLU_USER_EXIT

User

exit

(OS/2

only)

SQLU_PIPE_MEDIA

Named

pipe

(for

vendor

APIs

only)

SQLU_DISK_MEDIA

Disk

(for

vendor

APIs

only)

SQLU_DISKETTE_MEDIA

Diskette

(for

vendor

APIs

only)

SQLU_TAPE_MEDIA

Tape

(for

vendor

APIs

only).

Language

syntax:

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-MEDIA-LIST

*/

/*

...

*/

typedef

SQL_STRUCTURE

sqlu_media_list

{

char

media_type;

char

filler[3];

sqlint32

sessions;

union

sqlu_media_list_targets

target;

}

sqlu_media_list;

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-MEDIA-LIST-TARGETS

*/

/*

...

*/

union

sqlu_media_list_targets

{

struct

sqlu_media_entry

*media;

struct

sqlu_vendor

*vendor;

struct

sqlu_location_entry

*location;

struct

sqlu_statement_entry

*pStatement;

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-MEDIA-ENTRY

*/

/*

...

*/

SQLU-MEDIA-LIST

Chapter

3.

Data

Structures

451

typedef

SQL_STRUCTURE

sqlu_media_entry

{

sqluint32

reserve_len;

char

media_entry[SQLU_DB_DIR_LEN+1];

}

sqlu_media_entry;

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-VENDOR

*/

/*

...

*/

typedef

SQL_STRUCTURE

sqlu_vendor

{

sqluint32

reserve_len1;

char

shr_lib[SQLU_SHR_LIB_LEN+1];

sqluint32

reserve_len2;

char

filename[SQLU_SHR_LIB_LEN+1];

}

sqlu_vendor;

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-LOCATION-ENTRY

*/

/*

...

*/

typedef

SQL_STRUCTURE

sqlu_location_entry

{

sqluint32

reserve_len;

char

location_entry[SQLU_MEDIA_LOCATION_LEN+1];

}

sqlu_location_entry;

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLU-STATEMENT-ENTRY

*/

/*

...

*/

SQL_STRUCTURE

sqlu_statement_entry

{

sqluint32

length;

char

*pEntry;

};

/*

...

*/

COBOL

Structure

*

File:

sqlutil.cbl

01

SQLU-MEDIA-LIST.

05

SQL-MEDIA-TYPE

PIC

X.

05

SQL-FILLER

PIC

X(3).

05

SQL-SESSIONS

PIC

S9(9)

COMP-5.

05

SQL-TARGET.

10

SQL-MEDIA

USAGE

IS

POINTER.

10

SQL-VENDOR

REDEFINES

SQL-MEDIA

10

SQL-LOCATION

REDEFINES

SQL-MEDIA

10

SQL-STATEMENT

REDEFINES

SQL-MEDIA

10

FILLER

REDEFINES

SQL-MEDIA

*

*

File:

sqlutil.cbl

01

SQLU-MEDIA-ENTRY.

05

SQL-MEDENT-LEN

PIC

9(9)

COMP-5.

05

SQL-MEDIA-ENTRY

PIC

X(215).

05

FILLER

PIC

X.

*

*

File:

sqlutil.cbl

01

SQLU-VENDOR.

05

SQL-SHRLIB-LEN

PIC

9(9)

COMP-5.

05

SQL-SHR-LIB

PIC

X(255).

05

FILLER

PIC

X.

05

SQL-FILENAME-LEN

PIC

9(9)

COMP-5.

05

SQL-FILENAME

PIC

X(255).

05

FILLER

PIC

X.

*

SQLU-MEDIA-LIST

452

Administrative

API

Reference

*

File:

sqlutil.cbl

01

SQLU-LOCATION-ENTRY.

05

SQL-LOCATION-LEN

PIC

9(9)

COMP-5.

05

SQL-LOCATION-ENTRY

PIC

X(255).

05

FILLER

PIC

X.

*

*

File:

sqlutil.cbl

01

SQLU-STATEMENT-ENTRY.

05

SQL-STATEMENT-LEN

PIC

9(9)

COMP-5.

05

SQL-STATEMENT-ENTRY

USAGE

IS

POINTER.

*

SQLU-RLOG-INFO

This

structure

contains

information

about

the

status

of

calls

to

the

db2ReadLog,

and

the

database

log.

Table

79.

Fields

in

the

SQLU-RLOG-INFO

Structure

Field

Name

Data

Type

Description

initialLSN

SQLU_LSN

Specifies

the

LSN

value

of

the

first

log

record

that

is

written

after

the

first

database

CONNECT

statement

is

issued.

For

more

information,

see

SQLU-LSN.

firstReadLSN

SQLU_LSN

Specifies

the

LSN

value

of

the

first

log

record

read.

lastReadLSN

SQLU_LSN

Specifies

the

LSN

value

of

the

last

log

record

read.

curActiveLSN

SQLU_LSN

Specifies

the

LSN

value

of

the

current

(active)

log.

logRecsWritten

sqluint32

Specifies

the

number

of

log

records

written

to

the

buffer.

logBytesWritten

sqluint32

Specifies

the

number

of

bytes

written

to

the

buffer.

Language

syntax:

C

Structure

typedef

SQL_STRUCTURE

SQLU_RLOG_INFO

{

SQLU_LSN

initialLSN

;

SQLU_LSN

firstReadLSN

;

SQLU_LSN

lastReadLSN

;

SQLU_LSN

curActiveLSN

;

sqluint32

logRecsWritten

;

sqluint32

logBytesWritten

;

}

SQLU_RLOG_INFO;

Related

reference:

v

“db2ReadLog

-

Asynchronous

Read

Log”

on

page

198

v

“SQLU-LSN”

on

page

449

SQLU-MEDIA-LIST

Chapter

3.

Data

Structures

453

SQLUPI

This

structure

is

used

to

store

partitioning

information,

such

as

the

partitioning

map

and

the

partitioning

key

of

a

table.

Table

80.

Fields

in

the

SQLUPI

Structure

Field

Name

Data

Type

Description

PMAPLEN

INTEGER

The

length

of

the

partitioning

map

in

bytes.

For

a

single-node

table,

the

value

is

sizeof(SQL_PDB_NODE_TYPE).

For

a

mult-inode

table,

the

value

is

SQL_PDB_MAP_SIZE

*

sizeof(SQL_PDB_NODE_TYPE).

PMAP

SQL_PDB_NODE_TYPE

The

partitioning

map.

SQLD

INTEGER

The

number

of

used

SQLPARTKEY

elements;

that

is,

the

number

of

key

parts

in

a

partitioning

key.

SQLPARTKEY

Structure

The

description

of

a

partitioning

column

in

a

partitioning

key.

The

maximum

number

of

partitioning

columns

is

SQL_MAX_NUM_PART_KEYS.

Table

81

shows

the

SQL

data

types

and

lengths

for

the

SQLUPI

data

structure.

The

SQLTYPE

column

specifies

the

numeric

value

that

represents

the

data

type

of

an

item.

Table

81.

SQL

Data

Types

and

Lengths

for

the

SQLUPI

Structure

Data

type

SQLTYPE

(Nulls

Not

Allowed)

SQLTYPE

(Nulls

Allowed)

SQLLEN

AIX

Date

384

385

Ignored

Yes

Time

388

389

Ignored

Yes

Timestamp

392

393

Ignored

Yes

Variable-length

character

string

448

449

Length

of

the

string

Yes

Fixed-length

character

string

452

453

Length

of

the

string

Yes

Long

character

string

456

457

Ignored

No

Null-terminated

character

string

460

461

Length

of

the

string

Yes

Floating

point

480

481

Ignored

Yes

Decimal

484

485

Byte

1

=

precision

Byte

2

=

scale

Yes

Large

integer

496

497

Ignored

Yes

Small

integer

500

501

Ignored

Yes

Variable-length

graphic

string

464

465

Length

in

double-byte

characters

Yes

Fixed-length

graphic

string

468

469

Length

in

double-byte

characters

Yes

Long

graphic

string

472

473

Ignored

No

Language

syntax:

SQLUPI

454

Administrative

API

Reference

C

Structure

/*

File:

sqlutil.h

*/

/*

Structure:

SQLUPI

*/

/*

...

*/

SQL_STRUCTURE

sqlupi

{

unsigned

short

pmaplen;

SQL_PDB_NODE_TYPE

pmap[SQL_PDB_MAP_SIZE];

unsigned

short

sqld;

struct

sqlpartkey

sqlpartkey[SQL_MAX_NUM_PART_KEYS];

};

/*

...

*/

/*

File:

sqlutil.h

*/

/*

Structure:

SQLPARTKEY

*/

/*

...

*/

SQL_STRUCTURE

sqlpartkey

{

unsigned

short

sqltype;

unsigned

short

sqllen;

};

/*

...

*/

SQLXA-XID

Used

by

the

transaction

APIs

to

identify

XA

transactions.

Table

82.

Fields

in

the

SQLXA-XID

Structure

Field

Name

Data

Type

Description

FORMATID

INTEGER

XA

format

ID.

GTRID_LENGTH

INTEGER

Length

of

the

global

transaction

ID.

BQUAL_LENGTH

INTEGER

Length

of

the

branch

identifier.

DATA

CHAR[128]

GTRID,

followed

by

BQUAL

and

trailing

blanks,

for

a

total

of

128

bytes.

Note:

The

maximum

size

for

GTRID

and

BQUAL

is

64

bytes

each.

Language

syntax:

C

Structure

/*

File:

sqlxa.h

*/

/*

Structure:

SQLXA-XID

*/

/*

...

*/

typedef

struct

sqlxa_xid_t

SQLXA_XID;

/*

...

*/

/*

File:

sqlxa.h

*/

/*

Structure:

SQLXA-XID-T

*/

/*

...

*/

struct

sqlxa_xid_t

{

sqlint32

formatID;

sqlint32

gtrid_length;

sqlint32

bqual_length;

char

data[SQLXA_XIDDATASIZE];

};

/*

...

*/

SQLUPI

Chapter

3.

Data

Structures

455

SQLXA-XID

456

Administrative

API

Reference

Appendix

A.

Naming

Conventions

This

section

provides

information

about

the

conventions

that

apply

when

naming

database

manager

objects,

such

as

databases

and

tables,

and

authentication

IDs.

v

Character

strings

that

represent

names

of

database

manager

objects

can

contain

any

of

the

following:

a-z,

A-Z,

0-9,

@,

#,

and

$.

v

’User

IDs

and

groups

may

also

contain

any

of

the

following

additional

characters

when

supported

by

the

security

plug-in:

_,

!,

%,

(,

),

{,

},

–,

.,

^.

v

’User

IDs

and

groups

containing

any

of

the

following

characters

must

be

delimited

with

quotations

when

entered

through

the

command

line

processor:

!,

%,

(,

),

{,

},

–,

.,

^,

v

The

first

character

in

the

string

must

be

an

alphabetic

character,

@,

#,

or

$;

it

cannot

be

a

number

or

the

letter

sequences

SYS,

DBM,

or

IBM.

v

Unless

otherwise

noted,

names

can

be

entered

in

lowercase

letters;

however,

the

database

manager

processes

them

as

if

they

were

uppercase.

The

exception

to

this

is

character

strings

that

represent

names

under

the

systems

network

architecture

(SNA).

Many

values,

such

as

logical

unit

names

(partner_lu

and

local_lu),

are

case

sensitive.

The

name

must

be

entered

exactly

as

it

appears

in

the

SNA

definitions

that

correspond

to

those

terms.

v

A

database

name

or

database

alias

is

a

unique

character

string

containing

from

one

to

eight

letters,

numbers,

or

keyboard

characters

from

the

set

described

above.

Databases

are

cataloged

in

the

system

and

local

database

directories

by

their

aliases

in

one

field,

and

their

original

name

in

another.

For

most

functions,

the

database

manager

uses

the

name

entered

in

the

alias

field

of

the

database

directories.

(The

exceptions

are

CHANGE

DATABASE

COMMENT

and

CREATE

DATABASE,

where

a

directory

path

must

be

specified.)

v

The

name

or

the

alias

name

of

a

table

or

a

view

is

an

SQL

identifier

that

is

a

unique

character

string

1

to

128

characters

in

length.

Column

names

can

be

1

to

30

characters

in

length.

A

fully

qualified

table

name

consists

of

the

schema.tablename.

The

schema

is

the

unique

user

ID

under

which

the

table

was

created.

The

schema

name

for

a

declared

temporary

table

must

be

SESSION.

v

Authentication

IDs

cannot

exceed

30

characters

on

Windows

32-bit

operating

systems

and

8

characters

on

all

other

operating

systems.

v

Group

IDs

cannot

exceed

30

characters

in

length.

v

Local

aliases

for

remote

nodes

that

are

to

be

cataloged

in

the

node

directory

cannot

exceed

eight

characters

in

length.

©

Copyright

IBM

Corp.

1993

-

2004

457

|
|

|
|
|

|

458

Administrative

API

Reference

Appendix

B.

Heuristic

APIs

Heuristic

APIs

Databases

can

be

used

in

a

distributed

transaction

processing

(DTP)

environment.

A

set

of

APIs

is

provided

for

tool

writers

to

perform

heuristic

functions

on

indoubt

transactions

when

the

resource

owner

(such

as

the

database

administrator)

cannot

wait

for

the

Transaction

Manager

(TM)

to

perform

the

re-sync

action.

This

condition

may

occur

if,

for

example,

the

communication

line

is

broken,

and

an

indoubt

transaction

is

tying

up

needed

resources.

For

the

database

manager,

these

resources

include

locks

on

tables

and

indexes,

log

space,

and

storage

used

by

the

transaction.

Each

indoubt

transaction

also

decreases,

by

one,

the

maximum

number

of

concurrent

transactions

that

could

be

processed

by

the

database

manager.

The

heuristic

APIs

have

the

capability

to

query,

commit,

and

roll

back

indoubt

transactions,

and

to

cancel

transactions

that

have

been

heuristically

committed

or

rolled

back,

by

removing

the

log

records

and

releasing

log

pages.

Attention:

The

heuristic

APIs

should

be

used

with

caution

and

only

as

a

last

resort.

The

TM

should

drive

the

re-sync

events.

If

the

TM

has

an

operator

command

to

start

the

re-sync

action,

it

should

be

used.

If

the

user

cannot

wait

for

a

TM-initiated

re-sync,

heuristic

actions

are

necessary.

Although

there

is

no

set

way

to

perform

these

actions,

the

following

guidelines

may

be

helpful:

v

Use

the

db2XaListIndTrans

function

to

display

the

indoubt

transactions.

They

have

a

status

=

’P’

(prepared),

and

are

not

connected.

The

gtrid

portion

of

an

xid

is

the

global

transaction

ID

that

is

identical

to

that

in

other

resource

managers

(RM)

that

participate

in

the

global

transaction.

v

Use

knowledge

of

the

application

and

the

operating

environment

to

identify

the

other

participating

RMs.

v

If

the

transaction

manager

is

CICS®,

and

the

only

RM

is

a

CICS

resource,

perform

a

heuristic

rollback.

v

If

the

transaction

manager

is

not

CICS,

use

it

to

determine

the

status

of

the

transaction

that

has

the

same

gtrid

as

does

the

indoubt

transaction.

v

If

at

least

one

RM

has

committed

or

rolled

back,

perform

a

heuristic

commit

or

a

rollback.

v

If

they

are

all

in

the

prepared

state,

perform

a

heuristic

rollback.

v

If

at

least

one

RM

is

not

available,

perform

a

heuristic

rollback.

If

the

transaction

manager

is

available,

and

the

indoubt

transaction

is

due

to

the

RM

not

being

available

in

the

second

phase,

or

in

an

earlier

re-sync,

the

DBA

should

determine

from

the

TM’s

log

what

action

has

been

taken

against

the

other

RMs,

and

then

do

the

same.

The

gtrid

is

the

matching

key

between

the

TM

and

the

RMs.

Do

not

execute

sqlxhfrg

unless

a

heuristically

committed

or

rolled

back

transaction

happens

to

cause

a

log

full

condition.

The

forget

function

releases

the

log

space

occupied

by

this

indoubt

transaction.

If

a

transaction

manager

eventually

performs

a

re-sync

action

for

this

indoubt

transaction,

the

TM

could

make

the

wrong

©

Copyright

IBM

Corp.

1993

-

2004

459

decision

to

commit

or

to

roll

back

other

RMs,

because

no

record

was

found

in

this

RM.

In

general,

a

missing

record

implies

that

the

RM

has

rolled

back.

db2XaGetInfo

-

Get

Information

for

Resource

Manager

Extracts

information

for

a

particular

resource

manager

once

an

xa_open

call

has

been

made.

Authorization:

None

Required

Connection:

Database

API

Include

File:

sqlxa.h

C

API

Syntax:

/*

File:

sqlxa.h

*/

/*

API:

Get

Information

for

Resource

Manager

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2XaGetInfo

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*pSqlca);

typedef

SQL_STRUCTURE

db2XaGetInfoStruct

{

db2int32

iRmid;

struct

sqlca

oLastSqlca;

}

db2XaGetInfoStruct;

/*

...

*/

API

Parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2XaGetInfoStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iRmid

Input.

Specifies

the

resource

manager

for

which

information

is

required.

oLastSqlca

Output.

Contains

the

sqlca

for

the

last

XA

API

call.

Note:

Only

the

sqlca

that

resulted

from

the

last

failing

XA

API

can

be

retrieved.

Related

reference:

v

“SQLCA”

on

page

410

460

Administrative

API

Reference

db2XaListIndTrans

-

List

Indoubt

Transactions

Provides

a

list

of

all

indoubt

transactions

for

the

currently

connected

database.

Scope:

This

API

only

affects

the

database

partition

on

which

it

is

issued.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

List

Indoubt

Transactions

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2XaListIndTrans

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2XaListIndTransStruct

{

db2XaRecoverStruct

*

piIndoubtData;

db2Uint32

iIndoubtDataLen;

db2Uint32

oNumIndoubtsReturned;

db2Uint32

oNumIndoubtsTotal;

db2Uint32

oReqBufferLen;

}

db2XaListIndTransStruct;

typedef

SQL_STRUCTURE

db2XaRecoverStruct

{

sqluint32

timestamp;

SQLXA_XID

xid;

char

dbalias[SQLXA_DBNAME_SZ];

char

applid[SQLXA_APPLID_SZ];

char

sequence_no[SQLXA_SEQ_SZ];

char

auth_id[SQL_USERID_SZ];

char

log_full;

char

indoubt_status;

char

originator;

char

reserved[8];

}

db2XaRecoverStruct;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

db2XaListIndTrans

-

List

Indoubt

Transactions

Appendix

B.

Heuristic

APIs

461

pParmStruct

Input.

A

pointer

to

the

db2XaListIndTransStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

piIndoubtData

Input.

A

pointer

to

the

application

supplied

buffer

where

indoubt

data

will

be

returned.

The

indoubt

data

is

in

db2XaRecoverStruct

format.

The

application

can

traverse

the

list

of

indoubt

transactions

by

using

the

size

of

the

db2XaRecoverStruct

structure,

starting

at

the

address

provided

by

this

parameter.

If

the

value

is

NULL,

DB2

will

calculate

the

size

of

the

buffer

required

and

return

this

value

in

oReqBufferLen.

oNumIndoubtsTotal

will

contain

the

total

number

of

indoubt

transactions.

The

application

may

allocate

the

required

buffer

size

and

issue

the

API

again.

oNumIndoubtsReturned

Output.

The

number

of

indoubt

transaction

records

returned

in

the

buffer

specified

by

pIndoubtData.

oNumIndoubtsTotal

Output.

The

Total

number

of

indoubt

transaction

records

available

at

the

time

of

API

invocation.

If

the

piIndoubtData

buffer

is

too

small

to

contain

all

the

records,

oNumIndoubtsTotal

will

be

greater

than

the

total

for

oNumIndoubtsReturned.

The

application

may

reissue

the

API

in

order

to

obtain

all

records.

Note:

This

number

may

change

between

API

invocations

as

a

result

of

automatic

or

heuristic

indoubt

transaction

resynchronization,

or

as

a

result

of

other

transactions

entering

the

indoubt

state.

oReqBufferLen

Output.

Required

buffer

length

to

hold

all

indoubt

transaction

records

at

the

time

of

API

invocation.

The

application

can

use

this

value

to

determine

the

required

buffer

size

by

calling

the

API

with

pIndoubtData

set

to

NULL.

This

value

can

then

be

used

to

allocate

the

required

buffer,

and

the

API

can

be

issued

with

pIndoubtData

set

to

the

address

of

the

allocated

buffer.

Note:

The

required

buffer

size

may

change

between

API

invocations

as

a

result

of

automatic

or

heuristic

indoubt

transaction

resynchronization,

or

as

a

result

of

other

transactions

entering

the

indoubt

state.

The

application

may

allocate

a

larger

buffer

to

account

for

this.

timestamp

Output.

Specifies

the

time

when

the

transaction

entered

the

indoubt

state.

xid

Output.

Specifies

the

XA

identifier

assigned

by

the

transaction

manager

to

uniquely

identify

a

global

transaction.

dbalias

Output.

Specifies

the

alias

of

the

database

where

the

indoubt

transaction

is

found.

applid

Output.

Specifies

the

application

identifier

assigned

by

the

database

manager

for

this

transaction.

db2XaListIndTrans

-

List

Indoubt

Transactions

462

Administrative

API

Reference

sequence_no

Output.

Specifies

the

sequence

number

assigned

by

the

database

manager

as

an

extension

to

the

applid.

auth_id

Output.

Specifies

the

authorization

ID

of

the

user

who

ran

the

transaction.

log_full

Output.

Indicates

whether

or

not

this

transaction

caused

a

log

full

condition.

Valid

values

are:

SQLXA_TRUE

This

indoubt

transaction

caused

a

log

full

condition.

SQLXA_FALSE

This

indoubt

transaction

did

not

cause

a

log

full

condition.

indoubt_status

Output.

Indicates

the

status

of

this

indoubt

transaction.

Valid

values

are:

SQLXA_TS_PREP

The

transaction

is

prepared.

The

connected

parameter

can

be

used

to

determine

whether

the

transaction

is

waiting

for

the

second

phase

of

normal

commit

processing

or

whether

an

error

occurred

and

resynchronization

with

the

transaction

manager

is

required.

SQLXA_TS_HCOM

The

transaction

has

been

heuristically

committed.

SQLXA_TS_HROL

The

transaction

has

been

heuristically

rolled

back.

SQLXA_TS_MACK

The

transaction

is

missing

commit

acknowledgement

from

a

node

in

a

partitioned

database.

SQLXA_TS_END

The

transaction

has

ended

at

this

database.

This

transaction

may

be

re-activated,

committed,

or

rolled

back

at

a

later

time.

It

is

also

possible

that

the

transaction

manager

encountered

an

error

and

the

transaction

will

not

be

completed.

If

this

is

the

case,

this

transaction

requires

heuristic

actions,

because

it

may

be

holding

locks

and

preventing

other

applications

from

accessing

data.

Usage

notes:

A

typical

application

will

perform

the

following

steps

after

setting

the

current

connection

to

the

database

or

to

the

partitioned

database

coordinator

node:

1.

Call

db2XaListIndTrans

with

piIndoubtData

set

to

NULL.

This

will

return

values

in

oReqBufferLen

and

oNumIndoubtsTotal.

2.

Use

the

returned

value

in

oReqBufferLen

to

allocate

a

buffer.

This

buffer

may

not

be

large

enough

if

there

are

additional

indoubt

transactions

because

the

initial

invocation

of

this

API

to

obtain

oReqBufferLen.

The

application

may

provide

a

buffer

larger

than

oReqBufferLen.

3.

Determine

if

all

indoubt

transaction

records

have

been

obtained.

This

can

be

done

by

comparing

oNumIndoubtsReturned

to

oNumIndoubtTotal.

If

oNumIndoubtsTotal

is

greater

than

oNumIndoubtsReturned,

the

application

can

repeat

the

above

steps.

Related

reference:

db2XaListIndTrans

-

List

Indoubt

Transactions

Appendix

B.

Heuristic

APIs

463

v

“SQLCA”

on

page

410

v

“sqlxphcm

-

Commit

an

Indoubt

Transaction”

on

page

465

v

“sqlxphrl

-

Roll

Back

an

Indoubt

Transaction”

on

page

466

sqlxhfrg

-

Forget

Transaction

Status

Permits

the

RM

to

erase

knowledge

of

a

heuristically

completed

transaction

(that

is,

one

that

has

been

committed

or

rolled

back

heuristically).

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqlxa.h

C

API

syntax:

/*

File:

sqlxa.h

*/

/*

API:

Forget

Transaction

Status

*/

/*

...

*/

extern

int

SQL_API_FN

sqlxhfrg(

SQLXA_XID

*pTransId,

struct

sqlca

*pSqlca

);

/*

...

*/

API

parameters:

pTransId

Input.

XA

identifier

of

the

transaction

to

be

heuristically

forgotten,

or

removed

from

the

database

log.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

Only

transactions

with

a

status

of

heuristically

committed

or

rolled

back

can

have

the

FORGET

operation

applied

to

them.

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLXA-XID”

on

page

455

db2XaListIndTrans

-

List

Indoubt

Transactions

464

Administrative

API

Reference

sqlxphcm

-

Commit

an

Indoubt

Transaction

Commits

an

indoubt

transaction

(that

is,

a

transaction

that

is

prepared

to

be

committed).

If

the

operation

succeeds,

the

transaction’s

state

becomes

heuristically

committed.

Scope:

This

API

only

affects

the

node

on

which

it

is

issued.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqlxa.h

C

API

syntax:

/*

File:

sqlxa.h

*/

/*

API:

Commit

an

Indoubt

Transaction

*/

/*

...

*/

extern

int

SQL_API_FN

sqlxphcm(

int

exe_type,

SQLXA_XID

*pTransId,

struct

sqlca

*pSqlca

);

/*

...

*/

API

parameters:

exe_type

Input.

If

EXE_THIS_NODE

is

specified,

the

operation

is

executed

only

at

this

node.

pTransId

Input.

XA

identifier

of

the

transaction

to

be

heuristically

committed.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

Only

transactions

with

a

status

of

prepared

can

be

committed.

Once

heuristically

committed,

the

database

manager

remembers

the

state

of

the

transaction

until

sqlxhfrg

is

issued.

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLXA-XID”

on

page

455

v

“sqlxhfrg

-

Forget

Transaction

Status”

on

page

464

sqlxphcm

-

Commit

Indoubt

Transaction

Appendix

B.

Heuristic

APIs

465

sqlxphrl

-

Roll

Back

an

Indoubt

Transaction

Rolls

back

an

indoubt

transaction

(that

is,

a

transaction

that

has

been

prepared).

If

the

operation

succeeds,

the

transaction’s

state

becomes

heuristically

rolled

back.

Scope:

This

API

only

affects

the

node

on

which

it

is

issued.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqlxa.h

C

API

syntax:

/*

File:

sqlxa.h

*/

/*

API:

Roll

Back

an

Indoubt

Transaction

*/

/*

...

*/

extern

int

SQL_API_FN

sqlxphrl(

int

exe_type,

SQLXA_XID

*pTransId,

struct

sqlca

*pSqlca

);

/*

...

*/

API

parameters:

exe_type

Input.

If

EXE_THIS_NODE

is

specified,

the

operation

is

executed

only

at

this

node.

pTransId

Input.

XA

identifier

of

the

transaction

to

be

heuristically

rolled

back.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

Only

transactions

with

a

status

of

prepared

or

idle

can

be

rolled

back.

Once

heuristically

rolled

back,

the

database

manager

remembers

the

state

of

the

transaction

until

sqlxhfrg

is

issued.

Related

reference:

v

“SQLCA”

on

page

410

v

“SQLXA-XID”

on

page

455

v

“sqlxhfrg

-

Forget

Transaction

Status”

on

page

464

sqlxphrl

-

Roll

Back

Indoubt

Transaction

466

Administrative

API

Reference

Appendix

C.

Precompiler

Customization

APIs

A

set

of

documented

APIs

to

enable

other

application

development

tools

to

implement

precompiler

support

for

DB2

directly

within

their

products.

For

example,

IBM

COBOL

on

AIX

uses

this

interface.

Information

on

the

set

of

Precompiler

Services

APIs

is

available

from

the

PDF

file,

prepapi.pdf,

at

the

DB2

application

development

Web

site:

http://www.ibm.com/software/data/db2/udb/ad

Related

reference:

v

Appendix

J,

“Contacting

IBM,”

on

page

571

©

Copyright

IBM

Corp.

1993

-

2004

467

|
|
|
|
|

|

http://www.ibm.com/software/data/db2/udb/ad

468

Administrative

API

Reference

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

APIs

for

backup

and

restore

to

storage

managers

DB2

provides

interfaces

that

can

be

used

by

third-party

media

management

products

to

store

and

retrieve

data

for

backup

and

restore

operations

and

log

files.

This

function

is

designed

to

augment

the

backup,

restore,

and

log

archiving

data

targets

of

diskette,

disk,

tape,

and

Tivoli

Storage

Manager,

that

are

supported

as

a

standard

part

of

DB2.

These

third-party

media

management

products

will

be

referred

to

as

vendor

products

in

the

remainder

of

this

appendix.

DB2

defines

a

set

of

function

prototypes

that

provide

a

general

purpose

data

interface

to

backup,

restore,

and

log

archiving

that

can

be

used

by

many

vendors.

These

functions

are

to

be

provided

by

the

vendor

in

a

shared

library

on

UNIX

based

systems,

or

DLL

on

the

Windows

operating

system.

When

the

functions

are

invoked

by

DB2,

the

shared

library

or

DLL

specified

by

the

calling

backup,

restore,

or

log

archiving

routine

is

loaded

and

the

functions

provided

by

the

vendor

are

called

to

perform

the

required

tasks.

Sample

files

demonstrating

the

DB2

vendor

functionality

are

located

on

UNIX

platforms

in

the

sqllib/samples/BARVendor

directory,

and

on

Windows

in

the

sqllib\samples\BARVendor

directory.

Operational

overview

Seven

functions

are

defined

to

interface

DB2

and

the

vendor

product:

v

sqluvint

-

Initialize

and

Link

to

Device

v

sqluvget

-

Reading

Data

from

Device

v

sqluvput

-

Writing

Data

to

Device

v

sqluvend

-

Unlink

the

Device

v

sqluvdel

-

Delete

Committed

Session

v

db2VendorQueryApiVersion

-

Query

Device

Supported

API

Level

v

db2VendorGetNextObj

-

Get

Next

Object

on

Device

DB2

will

call

these

functions,

and

they

should

be

provided

by

the

vendor

product

in

a

shared

library

on

UNIX

based

systems,

or

in

a

DLL

on

the

Windows

operating

system.

Note:

The

shared

library

or

DLL

code

will

be

run

as

part

of

the

database

engine

code.

Therefore,

it

must

be

reentrant

and

thoroughly

debugged.

An

errant

function

may

compromise

data

integrity

of

the

database.

The

sequence

of

functions

that

DB2

will

call

during

a

specific

backup

or

restore

operation

depends

on:

v

The

number

of

sessions

that

will

be

utilized.

v

Whether

it

is

a

backup,

a

restore,

a

log

archive,

or

a

log

retrieve

operation.

v

The

PROMPTING

mode

that

is

specified

on

the

backup

or

restore

operation.

v

The

characteristics

of

the

device

on

which

the

data

is

stored.

©

Copyright

IBM

Corp.

1993

-

2004

469

|

|

v

The

errors

that

may

be

encountered

during

the

operation.

Number

of

sessions

DB2

supports

the

backup

and

restore

of

database

objects

using

one

or

more

data

streams

or

sessions.

A

backup

or

restore

using

three

sessions

would

require

three

physical

or

logical

devices

to

be

available.

When

vendor

device

support

is

being

used,

it

is

the

vendor’s

functions

that

are

responsible

for

managing

the

interface

to

each

physical

or

logical

device.

DB2

simply

sends

or

receives

data

buffers

to

or

from

the

vendor

provided

functions.

The

number

of

sessions

to

be

used

is

specified

as

a

parameter

by

the

application

that

calls

the

backup

or

restore

database

function.

This

value

is

provided

in

the

INIT-INPUT

structure

used

by

sqluvint.

DB2

will

continue

to

initialize

sessions

until

the

specified

number

is

reached,

or

it

receives

an

SQLUV_MAX_LINK_GRANT

warning

return

code

from

an

sqluvint

call.

In

order

to

warn

DB2

that

it

has

reached

the

maximum

number

of

sessions

that

it

can

support,

the

vendor

product

will

require

code

to

track

the

number

of

active

sessions.

Failure

to

warn

DB2

could

lead

to

a

DB2

initialize

session

request

that

fails,

resulting

in

a

termination

of

all

sessions

and

the

failure

of

the

entire

backup

or

restore

operation.

When

the

operation

is

backup,

DB2

writes

a

media

header

record

at

the

beginning

of

each

session.

The

record

contains

information

that

DB2

uses

to

identify

the

session

during

a

restore

operation.

DB2

uniquely

identifies

each

session

by

appending

a

sequence

number

to

the

name

of

the

backup

image.

The

number

starts

at

one

for

the

first

session,

and

is

incremented

by

one

each

time

another

session

is

initiated

with

an

sqluvint

call

for

a

backup

or

a

restore

operation.

When

the

backup

operation

completes

successfully,

DB2

writes

a

media

trailer

to

the

last

session

it

closes.

This

trailer

includes

information

that

tells

DB2

how

many

sessions

were

used

to

perform

the

backup

operation.

During

a

restore

operation,

this

information

is

used

to

ensure

all

the

sessions,

or

data

streams,

have

been

restored.

Operation

with

no

errors,

warnings,

or

prompting

For

backup,

the

following

sequence

of

calls

is

issued

by

DB2

for

each

session.

sqluvint,

action

=

SQLUV_WRITE

followed

by

1

to

n

sqluvput

followed

by

1

sqluvend,

action

=

SQLUV_COMMIT

When

DB2

issues

an

sqluvend

call

(action

SQLUV_COMMIT),

it

expects

the

vendor

product

to

appropriately

save

the

output

data.

A

return

code

of

SQLUV_OK

to

DB2

indicates

success.

The

DB2-INFO

structure,

used

on

the

sqluvint

call,

contains

the

information

required

to

identify

the

backup.

A

sequence

number

is

supplied.

The

vendor

product

may

choose

to

save

this

information.

DB2

will

use

it

during

restore

to

identify

the

backup

that

will

be

restored.

For

restore,

the

sequence

of

calls

for

each

session

is:

APIs

for

backup

and

restore

to

storage

managers

470

Administrative

API

Reference

sqluvint,

action

=

SQLUV_READ

followed

by

1

to

n

sqluvget

followed

by

1

sqluvend,

action

=

SQLUV_COMMIT

The

information

in

the

DB2-INFO

structure

used

on

the

sqluvint

call

will

contain

the

information

required

to

identify

the

backup.

A

sequence

number

is

not

supplied.

DB2

expects

that

all

backup

objects

(session

outputs

committed

during

a

backup)

will

be

returned.

The

first

backup

object

returned

is

the

object

generated

with

sequence

number

1,

and

all

other

objects

are

restored

in

no

specific

order.

DB2

checks

the

media

tail

to

ensure

that

all

objects

have

been

processed.

Note:

Not

all

vendor

products

will

keep

a

record

of

the

names

of

the

backup

objects.

This

is

most

likely

when

the

backups

are

being

done

to

tapes,

or

other

media

of

limited

capacity.

During

the

initialization

of

restore

sessions,

the

identification

information

can

be

utilized

to

stage

the

necessary

backup

objects

so

that

they

are

available

when

required;

this

may

be

most

useful

when

juke

boxes

or

robotic

systems

are

used

to

store

the

backups.

DB2

will

always

check

the

media

header

(first

record

in

each

session’s

output)

to

ensure

that

the

correct

data

is

being

restored.

Prompting

mode

When

a

backup

or

a

restore

operation

is

initiated,

two

prompting

modes

are

possible:

v

WITHOUT

PROMPTING

or

NOINTERRUPT,

where

there

is

no

opportunity

for

the

vendor

product

to

write

messages

to

the

user,

or

for

the

user

to

respond

to

them.

v

PROMPTING

or

INTERRUPT,

where

the

user

can

receive

and

respond

to

messages

from

the

vendor

product.

For

PROMPTING

mode,

backup

and

restore

define

three

possible

user

responses:

v

Continue

The

operation

of

reading

or

writing

data

to

the

device

will

resume.

v

Device

terminate

The

device

will

receive

no

additional

data,

and

the

session

is

terminated.

v

Terminate

The

entire

backup

or

restore

operation

is

terminated.

The

use

of

the

PROMPTING

and

WITHOUT

PROMPTING

modes

is

discussed

in

the

sections

that

follow.

Device

characteristics

For

purposes

of

the

vendor

device

support

APIs,

two

general

types

of

devices

are

defined:

v

Limited

capacity

devices

requiring

user

action

to

change

the

media;

for

example,

a

tape

drive,

diskette,

or

CDROM

drive.

v

Very

large

capacity

devices,

where

normal

operations

do

not

require

the

user

to

handle

media;

for

example,

a

juke

box,

or

an

intelligent

robotic

media

handling

device.

APIs

for

backup

and

restore

to

storage

managers

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

471

A

limited

capacity

device

may

require

that

the

user

be

prompted

to

load

additional

media

during

the

backup

or

restore

operation.

Generally

DB2

is

not

sensitive

to

the

order

in

which

the

media

is

loaded

for

either

backup

or

restore

operations.

It

also

provides

facilities

to

pass

vendor

media

handling

messages

to

the

user.

This

prompting

requires

that

the

backup

or

restore

operation

be

initiated

with

PROMPTING

on.

The

media

handling

message

text

is

specified

in

the

description

field

of

the

return

code

structure.

If

PROMPTING

is

on,

and

DB2

receives

an

SQLUV_ENDOFMEDIA

or

an

SQLUV_ENDOFMEDIA_NO_DATA

return

code

from

a

sqluvput

(write)

or

a

sqluvget

(read)

call,

DB2:

v

Marks

the

last

buffer

sent

to

the

session

to

be

resent,

if

the

call

was

sqluvput.

It

will

be

put

to

a

session

later.

v

Calls

the

session

with

sqluvend

(action

=

SQLUV_COMMIT).

If

successful

(SQLUV_OK

return

code),

DB2:

–

Sends

a

vendor

media

handling

message

to

the

user

from

the

return

code

structure

that

signaled

the

end-of-media

condition.

–

Prompts

the

user

for

a

continue,

device

terminate,

or

terminate

response.
v

If

the

response

is

continue,

DB2

initializes

another

session

using

the

sqluvint

call,

and

if

successful,

begins

writing

data

to

or

reading

data

from

the

session.

To

uniquely

identify

the

session

when

writing,

DB2

increments

the

sequence

number.

The

sequence

number

is

available

in

the

DB2-INFO

structure

used

with

sqluvint,

and

is

in

the

media

header

record,

which

is

the

first

data

record

sent

to

the

session.

DB2

will

not

start

more

sessions

than

requested

when

a

backup

or

a

restore

operation

is

started,

or

indicated

by

the

vendor

product

with

a

SQLUV_MAX_LINK_GRANT

warning

on

an

sqluvint

call.

v

If

the

response

is

device

terminate,

DB2

does

not

attempt

to

initialize

another

session,

and

the

number

of

active

sessions

is

reduced

by

one.

DB2

does

not

allow

all

sessions

to

be

terminated

by

device

terminate

responses;

at

least

one

session

must

be

kept

active

until

the

backup

or

the

restore

operation

completes.

v

If

the

response

is

terminate,

DB2

terminates

the

backup

or

the

restore

operation.

For

more

information

on

exactly

what

DB2

does

to

terminate

the

sessions,

see

“If

error

conditions

are

returned

to

DB2”

on

page

473.

Because

backup

or

restore

performance

is

often

dependent

on

the

number

of

devices

being

used,

it

is

important

that

parallelism

be

maintained.

For

backup

operations,

users

are

encouraged

to

respond

with

a

continue,

unless

they

know

that

the

remaining

active

sessions

will

hold

the

data

that

is

still

to

be

written

out.

For

restore

operations,

users

are

also

encouraged

to

respond

with

a

continue

until

all

media

have

been

processed.

If

the

backup

or

the

restore

mode

is

WITHOUT

PROMPTING,

and

DB2

receives

an

SQLUV_ENDOFMEDIA

or

an

SQLUV_ENDOFMEDIA_NO_DATA

return

code

from

a

session,

it

will

terminate

the

session

and

not

attempt

to

open

another

session.

If

all

sessions

return

end-of-media

to

DB2

before

the

backup

or

the

restore

operation

is

complete,

the

operation

will

fail.

Because

of

this,

WITHOUT

PROMPTING

should

be

used

carefully

with

limited

capacity

devices;

it

does,

however,

make

sense

to

operate

in

this

mode

with

very

large

capacity

devices.

It

is

possible

for

the

vendor

product

to

hide

media

mounting

and

switching

actions

from

DB2,

so

that

the

device

appears

to

have

infinite

capacity.

Some

very

large

capacity

devices

operate

in

this

mode.

In

these

cases,

it

is

critical

that

all

the

data

that

was

backed

up

be

returned

to

DB2

in

the

same

order

when

a

restore

operation

APIs

for

backup

and

restore

to

storage

managers

472

Administrative

API

Reference

is

in

progress.

Failure

to

do

so

could

result

in

missing

data,

but

DB2

assumes

a

successful

restore

operation,

because

it

has

no

way

of

detecting

the

missing

data.

DB2

writes

data

to

the

vendor

product

with

the

assumption

that

each

buffer

will

be

contained

on

one

and

only

one

media

(for

example,

a

tape).

It

is

possible

for

the

vendor

product

to

split

these

buffers

across

multiple

media

without

DB2’s

knowledge.

In

this

case,

the

order

in

which

the

media

is

processed

during

a

restore

operation

is

critical,

because

the

vendor

product

will

be

responsible

for

returning

reconstructed

buffers

from

the

multiple

media

to

DB2.

Failure

to

do

so

will

result

in

a

failed

restore

operation.

If

error

conditions

are

returned

to

DB2

When

performing

a

backup

or

a

restore

operation,

DB2

expects

that

all

sessions

will

complete

successfully;

otherwise,

the

entire

backup

or

restore

operation

fails.

A

session

signals

successful

completion

to

DB2

with

an

SQLUV_OK

return

code

on

the

sqluvend

call,

action

=

SQLUV_COMMIT.

If

unrecoverable

errors

are

encountered,

the

session

is

terminated

by

DB2.

These

can

be

DB2

errors,

or

errors

returned

to

DB2

from

the

vendor

product.

Because

all

sessions

must

commit

successfully

to

have

a

complete

backup

or

restore

operation,

the

failure

of

one

causes

DB2

to

terminate

the

other

sessions

associated

with

the

operation.

If

the

vendor

product

responds

to

a

call

from

DB2

with

an

unrecoverable

return

code,

the

vendor

product

can

optionally

provide

additional

information,

using

message

text

placed

in

the

description

field

of

the

RETURN-CODE

structure.

This

message

text

is

presented

to

the

user,

along

with

the

DB2

information,

so

that

corrective

action

can

be

taken.

There

will

be

backup

scenarios

in

which

a

session

has

committed

successfully,

and

another

session

associated

with

the

backup

operation

experiences

an

unrecoverable

error.

Because

all

sessions

must

complete

successfully

before

a

backup

operation

is

considered

successful,

DB2

must

delete

the

output

data

in

the

committed

sessions:

DB2

issues

a

sqluvdel

call

to

request

deletion

of

the

object.

This

call

is

not

considered

an

I/O

session,

and

is

responsible

for

initializing

and

terminating

any

connection

that

may

be

necessary

to

delete

the

backup

object.

The

DB2-INFO

structure

will

not

contain

a

sequence

number;

sqluvdel

will

delete

all

backup

objects

that

match

the

remaining

parameters

in

the

DB2-INFO

structure.

Warning

conditions

It

is

possible

for

DB2

to

receive

warning

return

codes

from

the

vendor

product;

for

example,

if

a

device

is

not

ready,

or

some

other

correctable

condition

has

occurred.

This

is

true

for

both

read

and

write

operations.

On

sqluvput

and

sqluvget

calls,

the

vendor

can

set

the

return

code

to

SQLUV_WARNING,

and

optionally

provide

additional

information,

using

message

text

placed

in

the

description

field

of

the

RETURN-CODE

structure.

This

message

text

is

presented

to

the

user

so

that

corrective

action

can

be

taken.

The

user

can

respond

in

one

of

three

ways:

continue,

device

terminate,

or

terminate:

v

If

the

response

is

continue,

DB2

attempts

to

rewrite

the

buffer

using

sqluvput

during

a

backup

operation.

During

a

restore

operation,

DB2

issues

an

sqluvget

call

to

read

the

next

buffer.

APIs

for

backup

and

restore

to

storage

managers

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

473

v

If

the

response

is

device

terminate

or

terminate,

DB2

terminates

the

entire

backup

or

restore

operation

in

the

same

way

that

it

would

respond

after

an

unrecoverable

error

(for

example,

it

will

terminate

active

sessions

and

delete

committed

sessions).

Operational

hints

and

tips

This

section

provides

some

hints

and

tips

for

building

vendor

products.

History

file

The

history

file

can

be

used

as

an

aid

in

database

recovery

operations.

It

is

associated

with

each

database,

and

is

automatically

updated

with

each

backup

or

restore

operation.

Information

in

the

file

can

be

viewed,

updated,

or

pruned

through

the

following

facilities:

v

Control

Center

v

Command

line

processor

(CLP)

–

LIST

HISTORY

command

–

UPDATE

HISTORY

FILE

command

–

PRUNE

HISTORY

command
v

APIs

–

db2HistoryOpenScan

–

db2HistoryGetEntry

–

db2HistoryCloseScan

–

db2HistoryUpdate

–

db2Prune

For

information

about

the

layout

of

the

file,

see

db2HistData.

When

a

backup

operation

completes,

one

or

more

records

is

written

to

the

file.

If

the

output

of

the

backup

operation

was

directed

to

vendor

devices

and

the

LOAD

keyword

was

used,

the

DEVICE

field

in

the

history

record

contains

an

O.

If

the

backup

operation

was

directed

to

TSM,

the

DEVICE

field

contains

an

A.

The

LOCATION

field

contains

either:

v

The

vendor

file

name

specified

when

the

backup

operation

was

invoked.

v

The

name

of

the

shared

library,

if

no

vendor

file

name

was

specified.

For

more

information

about

specifying

this

option,

see

“Invoking

a

backup

or

a

restore

operation

using

vendor

products.”

The

LOCATION

field

can

be

updated

using

the

Control

Center,

the

CLP,

or

an

API.

The

location

of

backup

information

can

be

updated

if

limited

capacity

devices

(for

example,

removable

media)

have

been

used

to

hold

the

backup

image,

and

the

media

is

physically

moved

to

a

different

(perhaps

off-site)

storage

location.

If

this

is

the

case,

the

history

file

can

be

used

to

help

locate

a

backup

image

if

a

recovery

operation

becomes

necessary.

Invoking

a

backup

or

a

restore

operation

using

vendor

products

Vendor

products

can

be

specified

when

invoking

the

DB2

backup

or

the

DB2

restore

utility

from:

v

The

Control

Center

v

The

command

line

processor

(CLP)

v

An

application

programming

interface

(API).

APIs

for

backup

and

restore

to

storage

managers

474

Administrative

API

Reference

The

Control

Center

The

Control

Center

is

the

graphical

user

interface

for

database

administration

that

is

shipped

with

DB2.

To

specify

The

Control

Center

input

variable

for

backup

or

restore

operations

Use

of

vendor

device

and

library

name

Is

Use

Library.

Specify

the

library

name

(on

UNIX

based

systems)

or

the

DLL

name

(on

the

Windows

operating

system).

Number

of

sessions

Is

Sessions.

Vendor

options

Is

not

supported.

Vendor

file

name

Is

not

supported.

Transfer

buffer

size

Is

(for

backup)

Size

of

each

Buffer,

and

(for

restore)

not

applicable.

The

command

line

processor

(CLP)

The

command

line

processor

(CLP)

can

be

used

to

invoke

the

DB2

BACKUP

DATABASE

or

the

RESTORE

DATABASE

command.

To

specify

The

command

line

processor

parameter

for

backup

is

for

restore

is

Use

of

vendor

device

and

library

name

library-name

shared-library

Number

of

sessions

num-sessions

num-sessions

Vendor

options

not

supported

not

supported

Vendor

file

name

not

supported

not

supported

Transfer

buffer

size

buffer-size

buffer-size

Backup

and

restore

API

function

calls

Two

API

function

calls

support

backup

and

restore

operations:

db2Backup

for

backup

and

db2Restore

for

restore.

To

specify

The

API

parameter

(for

both

db2Backup

and

db2Restore)

is

Use

of

vendor

device

and

library

name

as

follows:

In

structure

sqlu_media_list,

specify

a

media

type

of

SQLU_OTHER_MEDIA,

and

then

in

structure

sqlu_vendor,

specify

a

shared

library

or

DLL

in

shr_lib.

Number

of

sessions

as

follows:

In

structure

sqlu_media_list,

specify

sessions.

Vendor

options

PVendorOptions

Vendor

file

name

as

follows:

In

structure

sqlu_media_list,

specify

a

media

type

of

SQLU_OTHER_MEDIA,

and

then

in

structure

sqlu_vendor,

specify

a

file

name

in

filename.

Transfer

buffer

size

BufferSize

Related

reference:

APIs

for

backup

and

restore

to

storage

managers

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

475

v

“sqluvint

-

Initialize

and

Link

to

Device”

on

page

476

v

“sqluvget

-

Reading

Data

from

Device”

on

page

479

v

“sqluvput

-

Writing

Data

to

Device”

on

page

480

v

“sqluvend

-

Unlink

the

Device

and

Release

its

Resources”

on

page

482

v

“sqluvdel

-

Delete

Committed

Session”

on

page

484

v

“DB2-INFO”

on

page

487

v

“VENDOR-INFO”

on

page

489

v

“INIT-INPUT”

on

page

490

v

“INIT-OUTPUT”

on

page

490

v

“DATA”

on

page

491

v

“RETURN-CODE”

on

page

491

v

“db2VendorQueryApiVersion

-

Query

Device

Supported

API

Level”

on

page

485

v

“db2VendorGetNextObj

-

Get

Next

Object

on

Device”

on

page

485

sqluvint

-

Initialize

and

Link

to

Device

This

function

is

called

to

provide

information

for

initialization

and

establishment

of

a

logical

link

between

DB2

and

the

vendor

device.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sqluvend.h

*/

/*

API:

Initialize

and

Link

to

Device

*/

/*

...

*/

int

sqluvint

(

struct

Init_input

*,

struct

Init_output

*,

struct

Return_code

*);

/*

...

*/

API

parameters:

Init_input

Input.

Structure

that

contains

information

provided

by

DB2

to

establish

a

logical

link

with

the

vendor

device.

Init_output

Output.

Structure

that

contains

the

output

returned

by

the

vendor

device.

APIs

for

backup

and

restore

to

storage

managers

476

Administrative

API

Reference

Return_code

Output.

Structure

that

contains

the

return

code

to

be

passed

to

DB2,

and

a

brief

text

explanation.

Usage

notes:

For

each

media

I/O

session,

DB2

will

call

this

function

to

obtain

a

device

handle.

If

for

any

reason,

the

vendor

function

encounters

an

error

during

initialization,

it

will

indicate

it

via

a

return

code.

If

the

return

code

indicates

an

error,

DB2

may

choose

to

terminate

the

operation

by

calling

the

sqluvend

function.

Details

on

possible

return

codes,

and

the

DB2

reaction

to

each

of

these,

is

contained

in

the

return

codes

table

(see

Table

83).

The

INIT-INPUT

structure

contains

elements

that

can

be

used

by

the

vendor

product

to

determine

if

the

backup

or

restore

can

proceed:

v

size_HI_order

and

size_LOW_order

This

is

the

estimated

size

of

the

backup.

They

can

be

used

to

determine

if

the

vendor

devices

can

handle

the

size

of

the

backup

image.

They

can

be

used

to

estimate

the

quantity

of

removable

media

that

will

be

required

to

hold

the

backup.

It

might

be

beneficial

to

fail

at

the

first

sqluvint

call

if

problems

are

anticipated.

v

req_sessions

The

number

of

user

requested

sessions

can

be

used

in

conjunction

with

the

estimated

size

and

the

prompting

level

to

determine

if

the

backup

or

restore

operation

is

possible.

v

prompt_lvl

The

prompting

level

indicates

to

the

vendor

if

it

is

possible

to

prompt

for

actions

such

as

changing

removable

media

(for

example,

put

another

tape

in

the

tape

drive).

This

might

suggest

that

the

operation

cannot

proceed

since

there

will

be

no

way

to

prompt

the

user.

If

the

prompting

level

is

WITHOUT

PROMPTING

and

the

quantity

of

removable

media

is

greater

than

the

number

of

sessions

requested,

DB2

will

not

be

able

to

complete

the

operation

successfully.

DB2

names

the

backup

being

written

or

the

restore

to

be

read

via

fields

in

the

DB2-INFO

structure.

In

the

case

of

an

action

=

SQLUV_READ,

the

vendor

product

must

check

for

the

existence

of

the

named

object.

If

it

cannot

be

found,

the

return

code

should

be

set

to

SQLUV_OBJ_NOT_FOUND

so

that

DB2

will

take

the

appropriate

action.

After

initialization

is

completed

successfully,

DB2

will

continue

by

issuing

other

data

transfer

functions,

but

may

terminate

the

session

at

any

time

with

an

sqluvend

call.

Return

codes:

Table

83.

Valid

Return

Codes

for

sqluvint

and

Resulting

DB2

Action

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_OK

Operation

successful.

sqluvput,

sqluvget

(see

comments)

If

action

=

SQLUV_WRITE,

the

next

call

will

be

sqluvput

(to

BACKUP

data).

If

action

=

SQLUV_READ,

verify

the

existence

of

the

named

object

prior

to

returning

SQLUV_OK;

the

next

call

will

be

sqluvget

to

RESTORE

data.

SQLUV_LINK_EXIST

Session

activated

previously.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

sqluvint

-

Initialize

and

Link

to

Device

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

477

Table

83.

Valid

Return

Codes

for

sqluvint

and

Resulting

DB2

Action

(continued)

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_COMM_

ERROR

Communication

error

with

device.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INV_VERSION

The

DB2

and

vendor

products

are

incompatible.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INV_ACTION

Invalid

action

is

requested.

This

could

also

be

used

to

indicate

that

the

combination

of

parameters

results

in

an

operation

which

is

not

possible.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_NO_DEV_

AVAIL

No

device

is

available

for

use

at

the

moment.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_OBJ_NOT_

FOUND

Object

specified

cannot

be

found.

This

should

be

used

when

the

action

on

the

sqluvint

call

is

’R’

(read)

and

the

requested

object

cannot

be

found

based

on

the

criteria

specified

in

the

DB2-INFO

structure.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_OBJS_FOUND

More

than

1

object

matches

the

specified

criteria.

This

will

result

when

the

action

on

the

sqluvint

call

is

’R’

(read)

and

more

than

one

object

matches

the

criteria

in

the

DB2-INFO

structure.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INV_USERID

Invalid

userid

specified.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INV_

PASSWORD

Invalid

password

provided.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INV_OPTIONS

Invalid

options

encountered

in

the

vendor

options

field.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_INIT_FAILED

Initialization

failed

and

the

session

is

to

be

terminated.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_DEV_ERROR

Device

error.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_MAX_LINK_

GRANT

Max

number

of

links

established.

sqluvput,

sqluvget

(see

comments)

This

is

treated

as

a

warning

by

DB2.

The

warning

tells

DB2

not

to

open

additional

sessions

with

the

vendor

product,

because

the

maximum

number

of

sessions

it

can

support

has

been

reached

(note:

this

could

be

due

to

device

availability).

If

action

=

SQLUV_WRITE

(BACKUP),

the

next

call

will

be

sqluvput.

If

action

=

SQLUV_READ,

verify

the

existence

of

the

named

object

prior

to

returning

SQLUV_MAX_LINK_GRANT;

the

next

call

will

be

sqluvget

to

RESTORE

data.

SQLUV_IO_ERROR

I/O

error.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

SQLUV_NOT_

ENOUGH_SPACE

There

is

not

enough

space

to

store

the

entire

backup

image;

the

size

estimate

is

provided

as

a

64-bit

value

in

bytes.

no

further

calls

Session

initialization

fails.

Free

up

memory

allocated

for

this

session

and

terminate.

A

sqluvend

call

will

not

be

received,

since

the

session

was

never

established.

sqluvint

-

Initialize

and

Link

to

Device

478

Administrative

API

Reference

sqluvget

-

Reading

Data

from

Device

After

initialization,

this

function

can

be

called

to

read

data

from

the

device.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqluvend.h

C

API

syntax:

/*

File:

sqluvend.h

*/

/*

API:

Reading

Data

from

Device

*/

/*

...

*/

int

sqluvget

(

void

*

pVendorCB,

struct

Data

*,

struct

Return_code

*);

/*

...

*/

typedef

struct

Data

}

sqlint32

obj_num;

sqlint32

buff_size;

sqlint32

actual_buff_size;

void

*dataptr;

void

*reserve;

{

Data;

API

parameters:

pVendorCB

Input.

Pointer

to

space

allocated

for

the

DATA

structure

(including

the

data

buffer)

and

Return_code.

Data

Input/output.

A

pointer

to

the

data

structure.

Return_code

Output.

The

return

code

from

the

API

call.

obj_num

Specifies

which

backup

object

should

be

retrieved.

buff_size

Specifies

the

buffer

size

to

be

used.

actual_buff_size

Specifies

the

actual

bytes

read

or

written.

This

value

should

be

set

to

output

to

indicate

how

many

bytes

of

data

were

actually

read.

dataptr

A

pointer

to

the

data

buffer.

sqluvget

-

Reading

Data

from

Device

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

479

reserve

Reserved

for

future

use.

Usage

notes:

This

function

is

used

by

the

restore

utility.

Return

codes:

Table

84.

Valid

Return

Codes

for

sqluvget

and

Resulting

DB2

Action

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_OK

Operation

successful.

sqluvget

DB2

processes

the

data

SQLUV_COMM_ERROR

Communication

error

with

device.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_ACTION

Invalid

action

is

requested.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_DEV_HANDLE

Invalid

device

handle.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_BUFF_SIZE

Invalid

buffer

size

specified.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_DEV_ERROR

Device

error.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_WARNING

Warning.

This

should

not

be

used

to

indicate

end-of-media

to

DB2;

use

SQLUV_ENDOFMEDIA

or

SQLUV_ENDOFMEDIA_NO_

DATA

for

this

purpose.

However,

device

not

ready

conditions

can

be

indicated

using

this

return

code.

sqluvget,

or

sqluvend,

action

=

SQLU_ABORT

SQLUV_LINK_NOT_EXIST

No

link

currently

exists.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_MORE_DATA

Operation

successful;

more

data

available.

sqluvget

SQLUV_ENDOFMEDIA_NO_

DATA

End

of

media

and

0

bytes

read

(for

example,

end

of

tape).

sqluvend

SQLUV_ENDOFMEDIA

End

of

media

and

>

0

bytes

read,

(for

example,

end

of

tape).

sqluvend

DB2

processes

the

data,

and

then

handles

the

end-of-media

condition.

SQLUV_IO_ERROR

I/O

error.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

Next

call:

a

If

the

next

call

is

an

sqluvend,

action

=

SQLU_ABORT,

this

session

and

all

other

active

sessions

will

be

terminated.

sqluvput

-

Writing

Data

to

Device

After

initialization,

this

function

can

be

used

to

write

data

to

the

device.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqluvend.h

C

API

syntax:

sqluvget

-

Reading

Data

from

Device

480

Administrative

API

Reference

/*

File:

sqluvend.h

*/

/*

API:

Writing

Data

to

Device

*/

/*

...

*/

int

sqluvput

(

void

*

pVendorCB,

struct

Data

*,

struct

Return_code

*);

/*

...

*/

typedef

struct

Data

}

sqlint32

obj_num;

sqlint32

buff_size;

sqlint32

actual_buff_size;

void

*dataptr;

void

*reserve;

{

Data;

API

parameters:

pVendorCB

Input.

Pointer

to

space

allocated

for

the

DATA

structure

(including

the

data

buffer)

and

Return_code.

Data

Output.

Data

buffer

filled

with

data

to

be

written

out.

Return_code

Output.

The

return

code

from

the

API

call.

obj_num

Specifies

which

backup

object

should

be

retrieved.

buff_size

Specifies

the

buffer

size

to

be

used.

actual_buff_size

Specifies

the

actual

bytes

read

or

written.

This

value

should

be

set

to

indicate

how

many

bytes

of

data

were

actually

read.

dataptr

A

pointer

to

the

data

buffer.

reserve

Reserved

for

future

use.

Usage

notes:

This

function

is

used

by

the

backup

utility.

Return

codes:

Table

85.

Valid

Return

Codes

for

sqluvput

and

Resulting

DB2

Action

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_OK

Operation

successful.

sqluvput

or

sqluvend,

if

complete

(for

example,

DB2

has

no

more

data)

Inform

other

processes

of

successful

operation.

SQLUV_COMM_ERROR

Communication

error

with

device.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_ACTION

Invalid

action

is

requested.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_DEV_HANDLE

Invalid

device

handle.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_INV_BUFF_SIZE

Invalid

buffer

size

specified.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_ENDOFMEDIA

End

of

media

reached,

for

example,

end

of

tape.

sqluvend

sqluvput

-

Writing

Data

to

Device

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

481

Table

85.

Valid

Return

Codes

for

sqluvput

and

Resulting

DB2

Action

(continued)

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_DATA_RESEND

Device

requested

to

have

buffer

sent

again.

sqluvput

DB2

will

retransmit

the

last

buffer.

This

will

only

be

done

once.

SQLUV_DEV_ERROR

Device

error.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_WARNING

Warning.

This

should

not

be

used

to

indicate

end-of-media

to

DB2;

use

SQLUV_ENDOFMEDIA

for

this

purpose.

However,

device

not

ready

conditions

can

be

indicated

using

this

return

code.

sqluvput

SQLUV_LINK_NOT_EXIST

No

link

currently

exists.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

SQLUV_IO_ERROR

I/O

error.

sqluvend,

action

=

SQLU_ABORTa

The

session

will

be

terminated.

Next

call:

a

If

the

next

call

is

an

sqluvend,

action

=

SQLU_ABORT,

this

session

and

all

other

active

sessions

will

be

terminated.

Committed

sessions

are

deleted

with

an

sqluvint,

sqluvdel,

and

sqluvend

sequence

of

calls.

sqluvend

-

Unlink

the

Device

and

Release

its

Resources

Ends

or

unlinks

the

device,

and

frees

all

of

its

related

resources.

The

vendor

must

free

or

release

unused

resources

(for

example,

allocated

space

and

file

handles)

before

returning

to

DB2.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

/*

File:

sqluvend.h

*/

/*

API:

Unlink

the

Device

and

Release

its

Resources

*/

/*

...

*/

int

sqluvend

(

sqlint32

action,

void

*

pVendorCB,

struct

Init_output

*,

struct

Return_code

*);

/*

...

*/

API

parameters:

action

Input.

Used

to

commit

or

abort

the

session:

v

SQLUV_COMMIT

(

0

=

to

commit

)

v

SQLUV_ABORT

(

1

=

to

abort

)

pVendorCB

Input.

Pointer

to

the

Init_output

structure.

sqluvput

-

Writing

Data

to

Device

482

Administrative

API

Reference

Init_output

Output.

Space

for

Init_output

de-allocated.

The

data

has

been

committed

to

stable

storage

for

a

backup

if

action

is

to

commit.

The

data

is

purged

for

a

backup

if

the

action

is

to

abort.

Return

code

Output.

The

return

code

from

the

API

call.

Usage

notes:

This

function

is

called

for

each

session

that

has

been

opened.

There

are

two

possible

action

codes:

v

Commit

Output

of

data

to

this

session,

or

the

reading

of

data

from

the

session,

is

complete.

For

a

write

(backup)

session,

if

the

vendor

returns

to

DB2

with

a

return

code

of

SQLUV_OK,

DB2

assumes

that

the

output

data

has

been

appropriately

saved

by

the

vendor

product,

and

can

be

accessed

if

referenced

in

a

later

sqluvint

call.

For

a

read

(restore)

session,

if

the

vendor

returns

to

DB2

with

a

return

code

of

SQLUV_OK,

the

data

should

not

be

deleted,

because

it

may

be

needed

again.

If

the

vendor

returns

SQLUV_COMMIT_FAILED,

DB2

assumes

that

there

are

problems

with

the

entire

backup

or

restore

operation.

All

active

sessions

are

terminated

by

sqluvend

calls

with

action

=

SQLUV_ABORT.

For

a

backup

operation,

committed

sessions

receive

a

sqluvint,

sqluvdel,

and

sqluvend

sequence

of

calls.

v

Abort

A

problem

has

been

encountered

by

DB2,

and

there

will

be

no

more

reading

or

writing

of

data

to

the

session.

For

a

write

(backup)

session,

the

vendor

should

delete

the

partial

output

dataset,

and

use

a

SQLUV_OK

return

code

if

the

partial

output

is

deleted.

DB2

assumes

that

there

are

problems

with

the

entire

backup.

All

active

sessions

are

terminated

by

sqluvend

calls

with

action

=

SQLUV_ABORT,

and

committed

sessions

receive

a

sqluvint,

sqluvdel,

and

sqluvend

sequence

of

calls.

For

a

read

(restore)

session,

the

vendor

should

not

delete

the

data

(because

it

may

be

needed

again),

but

should

clean

up

and

return

to

DB2

with

a

SQLUV_OK

return

code.

DB2

terminates

all

the

restore

sessions

by

sqluvend

calls

with

action

=

SQLUV_ABORT.

If

the

vendor

returns

SQLUV_ABORT_FAILED

to

DB2,

the

caller

is

not

notified

of

this

error,

because

DB2

returns

the

first

fatal

failure

and

ignores

subsequent

failures.

In

this

case,

for

DB2

to

have

called

sqluvend

with

action

=

SQLUV_ABORT,

an

initial

fatal

error

must

have

occurred.

Return

codes:

Table

86.

Valid

Return

Codes

for

sqluvend

and

Resulting

DB2

Action

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_OK

Operation

successful.

no

further

calls

Free

all

memory

allocated

for

this

session

and

terminate.

SQLUV_COMMIT_FAILED

Commit

request

failed.

no

further

calls

Free

all

memory

allocated

for

this

session

and

terminate.

SQLUV_ABORT_FAILED

Abort

request

failed.

no

further

calls

sqluvend

-

Unlink

Device

and

Release

Resources

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

483

sqluvdel

-

Delete

Committed

Session

Deletes

committed

sessions.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database

API

include

file:

sqluvend.h

C

API

syntax:

/*

File:

sqluvend.h

*/

/*

API:

Delete

Committed

Session

*/

/*

...

*/

int

sqluvdel

(

struct

Init_input

*,

struct

Init_output

*,

struct

Return_code

*);

/*

...

*/

API

parameters:

Init_input

Input.

Space

allocated

for

Init_input

and

Return_code.

Return_code

Output.

Return

code

from

the

API

call.

The

object

pointed

to

by

the

Init_input

structure

is

deleted.

Usage

notes:

If

multiple

sessions

are

opened,

and

some

sessions

are

committed,

but

one

of

them

fails,

this

function

is

called

to

delete

the

committed

sessions.

No

sequence

number

is

specified;

sqluvdel

is

responsible

for

finding

all

of

the

objects

that

were

created

during

a

particular

backup

operation,

and

deleting

them.

Information

in

the

INIT-INPUT

structure

is

used

to

identify

the

output

data

to

be

deleted.

The

call

to

sqluvdel

is

responsible

for

establishing

any

connection

or

session

that

is

required

to

delete

a

backup

object

from

the

vendor

device.

If

the

return

code

from

this

call

is

SQLUV_DELETE_FAILED,

DB2

does

not

notify

the

caller,

because

DB2

returns

the

first

fatal

failure

and

ignores

subsequent

failures.

In

this

case,

for

DB2

to

have

called

sqluvdel,

an

initial

fatal

error

must

have

occurred.

Return

codes:

Table

87.

Valid

Return

Codes

for

sqluvdel

and

Resulting

DB2

Action

Literal

in

Header

File

Description

Probable

Next

Call

Other

Comments

SQLUV_OK

Operation

successful.

no

further

calls

SQLUV_DELETE_FAILED

Delete

request

failed.

no

further

calls

sqluvdel

-

Delete

Committed

Session

484

Administrative

API

Reference

db2VendorQueryApiVersion

-

Query

Device

Supported

API

Level

This

function

is

called

to

determine

which

level

of

the

vendor

API

is

supported

by

the

vendor

library.

If

the

vendor

library

is

not

compatible

with

DB2,

then

that

vendor

library

will

not

be

used.

If

a

vendor

library

does

not

have

this

API

implemented

for

logs,

the

vendor

library

cannot

be

used

and

DB2

will

report

an

error.

This

will

not

affect

images

that

currently

work

with

existing

vendor

libraries.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database.

API

include

file:

db2VendorApi.h

C

API

syntax:

void

db2VendorQueryApiVersion(db2Uint32

*supportedVersion);

API

parameters:

supportedVersion

Output.

Returns

the

version

of

the

vendor

API

the

vendor

library

supports.

Usage

notes:

This

function

will

be

called

before

any

other

vendor

APIs

are

invoked.

db2VendorGetNextObj

-

Get

Next

Object

on

Device

This

function

is

called

after

a

query

has

been

set

up

(using

sqluvint)

to

get

the

next

object

that

matches

the

search

criteria.

Only

one

search

for

either

images

or

log

files

can

be

set

up

at

one

time.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

Required

connection:

Database.

API

include

file:

db2VendorQueryApiVersion

-

Query

Device

Supported

API

Level

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

485

|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

|

db2VendorApi.h

C

API

syntax:

int

db2VendorGetNextObj(void

*vendorCB,

struct

db2VendorQueryInfo

*queryInfo,

struct

Return_code

*returnCode);

typedef

struct

db2VendorQueryInfo

{

char

db2Instance[SQL_INSTNAME_SZ

+

1];

char

dbname[SQL_DBNAME_SZ

+

1];

char

dbalias[SQL_ALIAS_SZ

+

1];

char

timestamp[SQLU_TIME_STAMP_LEN

+

1];

char

filename[DB2VENDOR_MAX_FILENAME_SZ

+

1];

char

owner[DB2VENDOR_MAX_OWNER_SZ

+

1];

char

mgmtClass[DB2VENDOR_MAX_MGMTCLASS_SZ

+

1];

char

oldestLogfile[DB2_LOGFILE_NAME_LEN

+

1];

db2Uint16

sequenceNum

SQL_PDB_NODE_TYPE

dbPartitionNum;

db2Uint32

type;

db2Uint64

sizeEstimate;

}

db2VendorQueryInfo;

API

parameters:

vendorCB

Input.

Pointer

to

space

allocated

by

the

vendor

library.

queryInfo

Output.

Pointer

to

a

db2VendorQueryInfo

structure

to

be

filled

in

by

the

vendor

library.

returnCode

Output.

The

return

code

from

the

API

call.

db2Instance

Specifies

the

name

of

the

instance

that

the

object

belongs

to.

dbname

Specifes

the

name

of

the

database

that

the

object

belongs

to.

dbalias

Specifies

the

alias

of

the

database

that

the

object

belongs

to.

timestamp

Specifies

the

time

stamp

used

to

identify

the

backup

image.

Valid

only

if

the

object

is

a

backup

image.

filename

Specifies

the

name

of

the

object

if

the

object

is

a

load

copy

image

or

an

archived

log

file.

owner

Specifies

the

owner

of

the

object.

mgmtClass

Specifies

the

management

class

the

object

was

stored

under

(used

by

TSM).

oldestLogfile

Specifies

the

oldest

log

file

stored

with

a

backup

image.

sequenceNum

Specifies

the

file

extension

for

the

backup

image.

Valid

only

if

the

object

is

a

backup.

db2VendorGetNextObj

-

Get

Next

Object

on

Device

486

Administrative

API

Reference

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

||

|
|

|
|

|
|
|

dbPartitionNum

Specifies

the

number

of

the

database

partition

that

the

object

belongs

to.

type

Specifies

the

image

type

if

the

object

is

a

backup

image.

sizeEstimate

Specifies

the

estimated

size

of

the

object.

Usage

notes:

Not

all

fields

will

pertain

to

each

object

or

each

vendor.

The

mandatory

fields

that

need

to

be

filled

out

are

db2Instance,

dbname,

dbalias,

timestamp

(for

images),

filename

(for

logs

and

load

copy

images),

owner,

sequenceNum

(for

images)

and

dbPartitionNum.

The

remaining

fields

will

be

left

for

the

specific

vendors

to

define.

If

a

field

does

not

pertain,

then

it

should

be

initialized

to

″″

for

strings

and

0

for

numeric

types.

DB2-INFO

This

structure

contains

information

identifying

DB2

to

the

vendor

device.

Table

88.

Fields

in

the

DB2-INFO

Structure.

All

fields

are

NULL-terminated

strings.

Field

Name

Data

Type

Description

DB2_id

char

An

identifier

for

the

DB2

product.

Maximum

length

of

the

string

it

points

to

is

8

characters.

version

char

The

current

version

of

the

DB2

product.

Maximum

length

of

the

string

it

points

to

is

8

characters.

release

char

The

current

release

of

the

DB2

product.

Set

to

NULL

if

it

is

insignificant.

Maximum

length

of

the

string

it

points

to

is

8

characters.

level

char

The

current

level

of

the

DB2

product.

Set

to

NULL

if

it

is

insignificant.

Maximum

length

of

the

string

it

points

to

is

8

characters.

action

char

Specifies

the

action

to

be

taken.

Maximum

length

of

the

string

it

points

to

is

1

character.

filename

char

The

file

name

used

to

identify

the

backup

image.

If

it

is

NULL,

the

server_id,

db2instance,

dbname,

and

timestamp

will

uniquely

identify

the

backup

image.

Maximum

length

of

the

string

it

points

to

is

255

characters.

server_id

char

A

unique

name

identifying

the

server

where

the

database

resides.

Maximum

length

of

the

string

it

points

to

is

8

characters.

db2instance

char

The

db2instance

ID.

This

is

the

user

ID

invoking

the

command.

Maximum

length

of

the

string

it

points

to

is

8

characters.

type

char

Specifies

the

type

of

backup

being

taken

or

the

type

of

restore

being

performed.

The

following

are

possible

values:

When

action

is

SQLUV_WRITE:

0

-

full

database

backup

3

-

table

space

level

backup

When

action

is

SQLUV_READ:

0

-

full

restore

3

-

online

table

space

restore

4

-

table

space

restore

5

-

history

file

restore

db2VendorGetNextObj

-

Get

Next

Object

on

Device

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

487

|
|

||

|
|

|

|
|
|
|
|
|

Table

88.

Fields

in

the

DB2-INFO

Structure

(continued).

All

fields

are

NULL-terminated

strings.

Field

Name

Data

Type

Description

dbname

char

The

name

of

the

database

to

be

backed

up

or

restored.

Maximum

length

of

the

string

it

points

to

is

8

characters.

alias

char

The

alias

of

the

database

to

be

backed

up

or

restored.

Maximum

length

of

the

string

it

points

to

is

8

characters.

timestamp

char

The

time

stamp

used

to

identify

the

backup

image.

Maximum

length

of

the

string

it

points

to

is

26

characters.

sequence

char

Specifies

the

file

extension

for

the

backup

image.

For

write

operations,

the

value

for

the

first

session

is

1

and

each

time

another

session

is

initiated

with

an

sqluvint

call,

the

value

is

incremented

by

1.

For

read

operations,

the

value

is

always

zero.

Maximum

length

of

the

string

it

points

to

is

3

characters.

obj_list

struct

sqlu_gen_list

Reserved

for

future

use.

max_bytes_per_txn

sqlint32

Specifies

to

the

vendor

in

bytes,

the

transfer

buffer

size

specified

by

the

user.

image_filename

char

Reserved

for

future

use.

reserve

void

Reserved

for

future

use.

nodename

char

Name

of

the

node

at

which

the

backup

was

generated.

password

char

Password

for

the

node

at

which

the

backup

was

generated.

owner

char

ID

of

the

backup

originator.

mcNameP

char

Management

class.

nodeNum

SQL_PDB_NODE_TYPE

Node

number.

Numbers

greater

than

255

are

supported

by

the

vendor

interface.

The

filename,

or

server_id,

db2instance,

type,

dbname

and

timestamp

uniquely

identifies

the

backup

image.

The

sequence

number,

specified

by

sequence,

identifies

the

file

extension.

When

a

backup

image

is

to

be

restored,

the

same

values

must

be

specified

to

retrieve

the

backup

image.

Depending

on

the

vendor

product,

if

filename

is

used,

the

other

parameters

may

be

set

to

NULL,

and

vice

versa.

Language

syntax:

C

Structure

/*

File:

sqluvend.h

*/

/*

...

*/

typedef

struct

DB2_info

{

char

*DB2_id;

char

*version;

char

*release;

char

*level;

char

*action;

char

*filename;

char

*server_id;

char

*db2instance;

char

*type;

char

*dbname;

char

*alias;

char

*timestamp;

DB2-INFO

488

Administrative

API

Reference

char

*sequence;

struct

sqlu_gen_list

*obj_list;

long

max_bytes_per_txn;

char

*image_filename;

void

*reserve;

char

*nodename;

char

*password;

char

*owner;

char

*mcNameP;

SQL_PDB_NODE_TYPE

nodeNum;

}

DB2_info;

/*

...

*/

VENDOR-INFO

This

structure

contains

information

identifying

the

vendor

and

version

of

the

device.

Table

89.

Fields

in

the

VENDOR-INFO

Structure.

All

fields

are

NULL-terminated

strings.

Field

Name

Data

Type

Description

vendor_id

char

An

identifier

for

the

vendor.

Maximum

length

of

the

string

it

points

to

is

64

characters.

version

char

The

current

version

of

the

vendor

product.

Maximum

length

of

the

string

it

points

to

is

8

characters.

release

char

The

current

release

of

the

vendor

product.

Set

to

NULL

if

it

is

insignificant.

Maximum

length

of

the

string

it

points

to

is

8

characters.

level

char

The

current

level

of

the

vendor

product.

Set

to

NULL

if

it

is

insignificant.

Maximum

length

of

the

string

it

points

to

is

8

characters.

server_id

char

A

unique

name

identifying

the

server

where

the

database

resides.

Maximum

length

of

the

string

it

points

to

is

8

characters.

max_bytes_per_txn

sqlint32

The

maximum

supported

transfer

buffer

size.

Specified

by

the

vendor,

in

bytes.

This

is

used

only

if

the

return

code

from

the

vendor

initialize

function

is

SQLUV_BUFF_SIZE,

indicating

that

an

invalid

buffer

size

was

specified.

num_objects_in_backup

sqlint32

The

number

of

sessions

that

were

used

to

make

a

complete

backup.

This

is

used

to

determine

when

all

backup

images

have

been

processed

during

a

restore

operation.

reserve

void

Reserved

for

future

use.

Language

syntax:

C

Structure

typedef

struct

Vendor_info

{

char

*vendor_id;

char

*version;

char

*release;

char

*level;

char

*server_id;

sqlint32

max_bytes_per_txn;

sqlint32

num_objects_in_backup;

void

*reserve;

}

Vendor_info;

DB2-INFO

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

489

INIT-INPUT

This

structure

contains

information

provided

by

DB2

to

set

up

and

to

establish

a

logical

link

with

the

vendor

device.

Table

90.

Fields

in

the

INIT-INPUT

Structure.

All

fields

are

NULL-terminated

strings.

Field

Name

Data

Type

Description

DB2_session

struct

DB2_info

A

description

of

the

session

from

the

perspective

of

DB2.

size_options

unsigned

short

The

length

of

the

options

field.

When

using

the

DB2

backup

or

restore

function,

the

data

in

this

field

is

passed

directly

from

the

VendorOptionsSize

parameter.

size_HI_order

sqluint32

High

order

32

bits

of

DB

size

estimate

in

bytes;

total

size

is

64

bits.

size_LOW_order

sqluint32

Low

order

32

bits

of

DB

size

estimate

in

bytes;

total

size

is

64

bits.

options

void

This

information

is

passed

from

the

application

when

the

backup

or

the

restore

function

is

invoked.

This

data

structure

must

be

flat;

in

other

words,

no

level

of

indirection

is

supported.

Byte-reversal

is

not

done,

and

the

code

page

for

this

data

is

not

checked.

When

using

the

DB2

backup

or

restore

function,

the

data

in

this

field

is

passed

directly

from

the

pVendorOptions

parameter.

reserve

void

Reserved

for

future

use.

prompt_lvl

char

Prompting

level

requested

by

the

user

when

a

backup

or

a

restore

operation

was

invoked.

Maximum

length

of

the

string

it

points

to

is

1

character.

num_sessions

unsigned

short

Number

of

sessions

requested

by

the

user

when

a

backup

or

a

restore

operation

was

invoked.

Language

syntax:

C

Structure

typedef

struct

Init_input

{

struct

DB2_info

*DB2_session;

unsigned

short

size_options;

sqluint32

size_HI_order;

sqluint32

size_LOW_order;

void

*options;

void

*reserve;

char

*prompt_lvl;

unsigned

short

num_sessions;

}

Init_input;

INIT-OUTPUT

This

structure

contains

the

output

returned

by

the

vendor

device.

Table

91.

Fields

in

the

INIT-OUTPUT

Structure

Field

Name

Data

Type

Description

vendor_session

struct

Vendor_info

Contains

information

to

identify

the

vendor

to

DB2.

INIT-INPUT

490

Administrative

API

Reference

Table

91.

Fields

in

the

INIT-OUTPUT

Structure

(continued)

Field

Name

Data

Type

Description

pVendorCB

void

Vendor

control

block.

reserve

void

Reserved

for

future

use.

Language

syntax:

C

Structure

typedef

struct

Init_output

{

struct

Vendor_info

*vendor_session;

void

*pVendorCB;

void

*reserve;

}

Init_output;

DATA

This

structure

contains

data

transferred

between

DB2

and

the

vendor

device.

Table

92.

Fields

in

the

DATA

Structure

Field

Name

Data

Type

Description

obj_num

sqlint32

The

sequence

number

assigned

by

DB2

during

a

backup

operation.

buff_size

sqlint32

The

size

of

the

buffer.

actual_buf_size

sqlint32

The

actual

number

of

bytes

sent

or

received.

This

must

not

exceed

buff_size.

dataptr

void

Pointer

to

the

data

buffer.

DB2

allocates

space

for

the

buffer.

reserve

void

Reserved

for

future

use.

Language

syntax:

C

Structure

typedef

struct

Data

{

sqlint32

obj_num;

sqlint32

buff_size;

sqlint32

actual_buff_size;

void

*dataptr;

void

*reserve;

}

Data;

RETURN-CODE

This

structure

contains

the

return

code

and

a

short

explanation

of

the

error

being

returned

to

DB2.

Table

93.

Fields

in

the

RETURN-CODE

Structure

Field

Name

Data

Type

Description

return_codea

sqlint32

Return

code

from

the

vendor

function.

description

char

A

short

description

of

the

return

code.

reserve

void

Reserved

for

future

use.

a

This

is

a

vendor-specific

return

code

that

is

not

the

same

as

the

value

returned

by

various

DB2

APIs.

See

the

individual

API

descriptions

for

the

return

codes

that

are

accepted

from

vendor

products.

INIT-OUTPUT

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

491

Language

syntax:

C

Structure

typedef

struct

Return_code

{

sqlint32

return_code,

char

description[30],

void

*reserve,

}

Return_code;

APIs

for

compressed

backups

Compression

plug-in

interface

DB2

will

provide

the

definition

for

the

COMPR_DB2INFO

structure;

the

vendor

will

provide

definitions

for

each

of

the

others

of

the

following

structures

and

APIs.

The

following

structures,

prototypes,

and

constants

are

defined

in

the

file

sqlucompr.h,

which

is

shipped

with

DB2.

Description

of

the

DB2

environment

-

COMPR_DB2INFO:

struct

COMPR_DB2INFO

{

char

tag[16];

db2Uint32

version;

db2Uint32

size;

char

dbalias[SQLU_ALIAS_SZ+1];

char

instance[SQL_INSTNAME_SZ+1];

SQL_PDB_NODE_TYPE

node;

SQL_PDB_NODE_TYPE

catnode;

char

timestamp[SQLU_TIME_STAMP_LEN+1];

db2Uint32

bufferSize;

db2Uint32

options;

db2Uint32

bkOptions;

db2Uint32

db2Version;

db2Uint32

platform;

db2int32

comprOptionsByteOrder;

db2Uint32

comprOptionsSize;

void

*comprOptions;

db2Uint32

savedBlockSize;

void

*savedBlock;

};

COMPR_DB2INFO

DB2

will

allocate

and

define

this

structure

and

will

pass

it

in

as

a

parameter

on

the

InitCompression

and

InitDecompression

APIs.

This

structure

describes

the

database

being

backed

up

or

restored

and

gives

details

about

DB2

environment

where

the

operation

is

occurring.

The

fields

in

the

structure

are:

tag[16]

Used

as

an

eye

catcher

for

the

structure.

This

is

always

set

to

the

string

″COMPR_DB2INFO

\0″.

version

Indicates

which

version

of

the

structure

is

being

used

so

APIs

can

indicate

the

presence

of

additional

fields.

Currently,

the

version

is

1.

In

the

future

there

may

be

more

fields

added

to

this

structure.

size

Specifies

the

size

of

the

COMPR_DB2INFO

structure

in

bytes.

RETURN-CODE

492

Administrative

API

Reference

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

||

dbalias[SQLU_ALIAS_SZ+1]

instance[SQL_INSTNAME_SZ+1]

node

catnode

timestamp[SQLU_TIME_STAMP_LEN+1]

Describes

the

database

being

backed

up

or

restored.

These

are

the

fields

that

are

used

to

name

the

backup

image.

For

restore

operations,

dbalias

refers

to

the

alias

of

the

source

database.

bufferSize

Specifies

the

size

of

a

transfer

buffer

(in

4

K

pages).

options

The

iOptions

field

specified

on

the

db2Backup

API

or

the

db2Restore

API.

bkOptions

For

restore

operations,

specifies

the

iOptions

field

that

was

used

on

the

db2Backup

API

when

the

backup

was

created.

For

backup

operations,

it

is

set

to

zero.

db2Version

Specifies

the

version

of

the

DB2

engine.

platform

Specifies

the

platform

on

which

the

DB2

engine

is

running.

The

value

will

be

one

of

the

ones

listed

in

<sqlmon.h>.

comprOptionsByteOrder

Specifies

the

byte-order

used

on

the

client

where

the

API

is

being

run.

DB2

will

do

no

interpretation

or

conversion

of

the

data

passed

through

as

comprOptions,

so

this

field

should

be

used

to

determine

whether

the

data

needs

to

be

byte

reversed

before

being

used.

Any

conversion

must

be

done

by

the

plug-in

library

itself.

comprOptionsSize

Specifies

the

value

of

the

piComprOptionsSize

parameter

on

the

db2Backup

and

db2Restore

APIs.

*comprOptions

Specifies

the

value

of

the

piComprOptions

field

on

the

db2Backup

and

db2Restore

APIs.

savedBlockSize

*savedBlock

DB2

allows

the

plug-in

library

to

save

an

arbitrary

block

of

data

in

the

backup

image.

If

such

a

block

of

data

was

saved

with

a

particular

backup,

it

will

be

returned

on

these

fields

on

the

restore

operation.

For

backup

operations,

these

fields

are

set

to

zero.

Description

of

the

plug-in

-

COMPR_PIINFO:

struct

COMPR_PIINFO

{

char

tag[16];

db2Uint32

version;

db2Uint32

size;

db2Uint32

useCRC;

Compression

plug-in

interface

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

493

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

db2Uint32

useGran;

db2Uint32

useAllBlocks;

db2Uint32

savedBlockSize;

};

COMPR_PIINFO

This

structure

is

used

by

the

plug-in

library

to

describe

itself

to

DB2.

This

structure

is

allocated

and

initialized

by

DB2,

and

the

key

fields

are

filled

in

by

the

plug-in

library

on

the

InitCompression

call.

tag[16]

Used

as

an

eye

catcher

for

the

structure.

(It

is

set

by

DB2.)

This

is

always

set

to

the

string

″COMPR_PIINFO

\0″.

version

Indicates

which

version

of

the

structure

is

being

used

so

APIs

can

indicate

the

presence

of

additional

fields.

Currently,

the

version

is

1.

(It

is

set

by

DB2.)

In

the

future

there

may

be

more

fields

added

to

this

structure.

size

Indicates

the

size

of

the

COMPR_PIINFO

structure

(in

bytes).

(It

is

set

by

DB2.)

useCRC

DB2

allows

compression

plug-ins

to

use

a

32-bit

CRC

or

checksum

value

to

validate

the

integrity

of

the

data

being

compressed

and

decompressed.

If

the

library

uses

such

a

check,

it

will

set

this

field

to

1.

Otherwise,

it

will

set

the

field

to

0.

useGran

If

the

compression

routine

is

able

to

compress

data

in

arbitrarily-sized

increments,

the

library

will

set

this

field

to

1.

If

the

compression

routine

compresses

data

only

in

byte-sized

increments,

the

library

will

set

this

field

to

0.

See

the

description

of

the

useGran

parameter

of

Compress

for

details

of

the

implications

of

setting

this

indicator.

For

restore

operations,

this

field

is

ignored.

useAllBlocks

Specifies

whether

DB2

should

back

up

a

compressed

block

of

data

that

is

larger

than

the

original

uncompressed

block.

By

default,

DB2

will

store

data

uncompressed

if

the

compressed

version

is

larger,

but

under

some

circumstances

the

plug-in

library

will

wish

to

have

the

compressed

data

backed

up

anyway.

If

DB2

is

to

save

the

compressed

version

of

the

data

for

all

blocks,

the

library

will

set

this

value

to

1.

If

DB2

is

to

save

the

compressed

version

of

the

data

only

when

it

is

smaller

than

the

original

data,

the

library

will

set

this

value

to

0.

For

restore

operations,

this

field

is

ignored.

savedBlockSize

DB2

allows

the

plug-in

library

to

save

an

arbitrary

block

of

data

in

the

backup

image.

If

such

a

block

of

data

is

to

be

saved

with

a

particular

backup,

the

library

will

set

this

field

to

the

size

of

the

block

to

be

allocated

for

this

data.

(The

actual

data

will

be

passed

to

DB2

on

a

subsequent

API

call.)

If

no

data

is

to

be

saved,

the

plug-in

library

will

set

this

field

to

zero.

For

restore

operations,

this

field

is

ignored.

Description

of

the

control

block

-

COMPR_CB:

struct

COMPR_CB;

extern

"C"

{

Compression

plug-in

interface

494

Administrative

API

Reference

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

||
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

int

InitCompression(

const

COMPR_DB2INFO

*db2Info,

COMPR_PIINFO

*piInfo,

COMPR_CB

**pCB);

int

GetSavedBlock(

COMPR_CB

*pCB,

db2Uint32

blockSize,

void

*data);

int

Compress(

COMPR_CB

*pCB,

const

char

*src,

db2int32

srcLen,

db2Uint32

srcGran,

char

*tgt,

db2int32

tgtSize,

db2int32

*srcAct,

db2int32

*tgtAct,

db2Uint32

*tgtCRC);

int

GetMaxCompressedSize(

COMPR_CB

*pCB,

db2Uint32

srcLen);

int

TermCompression(

COMPR_CB

*pCB);

int

InitDecompression(

const

COMPR_DB2INFO

*db2Info,

COMPR_CB

**pCB);

int

Decompress(

COMPR_CB

*pCB,

const

char

*src,

db2int32

srcLen,

char

*tgt,

db2int32

tgtSize,

db2int32

*tgtAct,

db2Uint32

*tgtCRC);

int

TermDecompression(

COMPR_CB

*pCB);

}

COMPR_CB

This

is

a

structure

that

will

be

used

internally

by

the

plug-in

library.

It

contains

data

used

internally

by

compression

and

decompression

routines.

DB2

passes

the

structure

to

each

call

it

makes

to

the

plug-in

library,

but

all

aspects

of

the

structure

are

left

up

to

the

library,

including

the

definition

of

the

structure’s

fields

and

memory

management

of

the

structure.

int

InitCompression(

const

COMPR_DB2INFO

*db2Info,

COMPR_PIINFO

*piInfo,

COMPR_CB

**pCB);

Initializes

the

compression

library.

DB2

will

pass

the

db2Info

and

piInfo

structures.

The

library

will

fill

in

the

appropriate

fields

of

piInfo,

and

will

allocate

pCB

and

return

a

pointer

to

the

allocated

memory.

int

GetSavedBlock(

COMPR_CB

*pCB,

db2Uint32

blockSize,

void

*data);

Compression

plug-in

interface

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

495

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Gets

the

vendor-specific

block

of

data

to

be

saved

with

the

backup

image.

If

the

library

returned

a

non-zero

value

for

piInfo-
>savedBlockSize,

DB2

will

call

GetSavedBlock

using

that

value

as

blockSize.

The

plug-in

library

writes

data

of

the

given

size

to

the

memory

referenced

by

data.

This

function

will

be

called

during

initial

data

processing

in

BM1

for

backup

only.

Even

if

parallelism

>

1

is

specified

on

the

db2Backup

API,

this

function

will

be

called

only

once

per

backup.

int

Compress(

COMPR_CB

*pCB,

const

char

*src,

db2int32

srcLen,

db2int32

srcGran,

char

*tgt,

db2int32

tgtSize,

db2int32

*srcAct,

db2int32

*tgtAct,

db2Uint32

*tgtCRC);

Compress

a

block

of

data.

src

points

to

a

block

of

data

that

is

srcLen

bytes

in

size.

tgt

points

to

a

buffer

that

is

tgtSize

bytes

in

size.

The

plug-in

library

compresses

the

data

at

address

src

and

writes

the

compressed

data

to

the

buffer

at

address

tgt.

The

actual

amount

of

uncompressed

data

that

was

compressed

is

stored

in

srcAct.

The

actual

size

of

the

compressed

data

is

returned

as

tgtAct.

If

the

library

returned

a

value

of

1

for

piInfo->useCRC,

the

CRC

value

of

the

uncompressed

block

is

returned

as

tgtCRC.

If

the

library

returned

a

value

of

0

for

piInfo->useCRC,

tgtCRC

will

be

a

null

pointer.

If

the

library

returned

a

value

of

1

for

piInfo->useGran,

srcGran

specifies

the

log2

of

the

page

size

of

the

data.

(For

example,

if

the

page

size

of

the

data

is

4096

bytes,

srcGran

is

12.)

The

library

ensures

that

the

amount

of

data

actually

compressed

(srcAct)

is

an

exact

multiple

of

this

page

size.

If

the

library

sets

the

useGran

flag,

DB2

is

able

to

use

a

more

efficient

algorithm

for

fitting

the

compressed

data

into

the

backup

image.

This

means

that

both

the

performance

of

the

plug-in

will

be

better

and

that

the

compressed

backup

image

will

be

smaller.

If

the

library

returned

a

value

of

0

for

piInfo->srcGran,

the

granularity

is

1

byte.

int

GetMaxCompressedSize(

COMPR_CB

*pCB,

db2Uint32

srcLen,

db2Uint32

*tgtLen);

Estimates

the

size

of

the

largest

possible

buffer

required

to

compress

a

block

of

data.

srcLen

indicates

the

size

of

a

block

of

data

about

to

be

compressed.

The

library

returns

the

theoretical

maximum

size

of

the

buffer

after

compression

as

tgtLen.

DB2

will

use

the

value

returned

as

tgtLen

to

optimize

its

use

of

memory

internally.

The

penalty

for

not

calculating

a

value

or

for

calculating

an

incorrect

value

is

that

DB2

will

have

to

call

the

Compress

API

more

than

once

for

a

single

block

of

data,

or

that

it

may

waste

memory

from

the

utility

heap.

The

backup

will

still

be

created

correctly,

regardless

of

the

values

returned.

int

TermCompression(

COMPR_CB

*pCB);

Terminates

the

compression

library.

The

library

will

free

the

memory

used

for

pCB.

Compression

plug-in

interface

496

Administrative

API

Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

int

InitDecompression(

const

COMPR_DB2INFO

*db2Info,

COMPR_CB

**pCB);

Initializes

the

decompression

library.

DB2

will

pass

the

db2Info

structure.

The

library

will

allocate

pCB

and

return

a

pointer

to

the

allocated

memory.

int

Decompress(

COMPR_CB

*pCB,

const

char

*src,

db2int32

srcLen,

char

*tgt,

db2int32

tgtSize,

db2int32

*tgtLen,

db2Uint32

*tgtCRC);

Decompresses

a

block

of

data.

src

points

to

a

block

of

data

that

is

srcLen

bytes

in

size.

tgt

points

to

a

buffer

that

is

tgtSize

bytes

in

size.

The

plug-in

library

decompresses

the

data

at

address

src

and

writes

the

uncompressed

data

to

the

buffer

at

address

tgt.

The

actual

size

of

the

uncompressed

data

is

returned

as

tgtLen.

If

the

library

returned

a

value

of

1

for

piInfo->useCRC,

the

CRC

of

the

uncompressed

block

is

returned

as

tgtCRC.

If

the

library

returned

a

value

of

0

for

piInfo->useCRC,

tgtLen

will

be

a

null

pointer.

int

TermDecompression(

COMPR_CB

*pCB);

Terminates

the

decompression

library.

The

library

will

free

the

memory

used

for

pCB.

All

the

memory

used

internally

by

these

APIs

will

be

managed

by

the

vendor.

The

plug-in

library

will

manage

memory

used

by

the

COMPR_CB

structure.

DB2

will

manage

the

memory

used

for

the

data

buffers

(the

src

and

tgt

parameters

on

the

APIs).

Plug-in

interface

return

codes:

These

are

the

return

codes

that

the

APIs

may

return.

Except

where

specified,

DB2

will

terminate

the

backup

or

restore

when

any

non-zero

return

code

is

returned.

SQLUV_OK

0

Operation

succeeded

SQLUV_BUFFER_TOO_SMALL

100

Target

buffer

is

too

small.

When

indicated

on

backup,

the

tgtAct

field

shall

indicate

the

estimated

size

required

to

compress

the

object.

DB2

will

retry

the

operation

with

a

buffer

at

least

as

large

as

specified.

When

indicated

on

restore,

the

operation

will

fail.

SQLUV_PARTIAL_BUFFER

101

A

buffer

was

partially

compressed.

When

indicated

on

backup,

the

srcAct

field

shall

indicate

the

actual

amount

of

data

actually

compressed

and

the

tgtAct

field

shall

indicate

the

actual

size

of

the

compressed

data.

When

indicated

on

restore,

the

operation

will

fail.

SQLUV_NO_MEMORY

102

Out

of

memory

SQLUV_EXCEPTION

103

A

signal

or

exception

was

raised

in

the

code.

SQLUV_INTERNAL_ERROR

104

An

internal

error

was

detected.

Compression

plug-in

interface

Appendix

D.

Backup

and

restore

APIs

for

vendor

products

497

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

||||

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||

|||
|

|||
|

The

difference

between

SQLUV_BUFFER_TOO_SMALL

and

SQLUV_PARTIAL_BUFFER

is

that

when

SQLUV_PARTIAL_BUFFER

is

returned,

DB2

will

consider

the

data

in

the

output

buffer

to

be

valid.

Related

reference:

v

“db2Backup

-

Backup

database”

on

page

26

v

“db2Restore

-

Restore

database”

on

page

221

Compression

plug-in

interface

498

Administrative

API

Reference

|
|
|

|

|

|

Appendix

E.

Threaded

applications

with

concurrent

access

Threaded

Applications

with

Concurrent

Access

In

the

default

implementation

of

threaded

applications

against

a

DB2

database,

serialization

of

access

to

the

database

is

enforced

by

the

database

APIs.

If

one

thread

performs

a

database

call,

calls

made

by

other

threads

will

be

blocked

until

the

first

call

completes,

even

if

the

subsequent

calls

access

database

objects

that

are

unrelated

to

the

first

call.

In

addition,

all

threads

within

a

process

share

a

commit

scope.

True

concurrent

access

to

a

database

can

only

be

achieved

through

separate

processes,

or

by

using

the

APIs

that

are

described

in

this

section.

This

section

describes

APIs

that

can

be

used

to

allocate

and

manipulate

separate

environments

(contexts)

for

the

use

of

database

APIs

and

embedded

SQL.

Each

context

is

a

separate

entity,

and

any

connection

or

attachment

using

one

context

is

independent

of

all

other

contexts

(and

thus

all

other

connections

or

attachments

within

a

process).

In

order

for

work

to

be

done

on

a

context,

it

must

first

be

associated

with

a

thread.

A

thread

must

always

have

a

context

when

making

database

API

calls

or

when

using

embedded

SQL.

For

DB2

Version

8,

all

Version

8

applications

are

multithreaded

by

default,

and

are

capable

of

using

multiple

contexts.

(The

behavior

of

pre-Version

8

applications

remains

unchanged.)

If

you

want,

you

can

use

the

following

DB2

APIs

to

use

multiple

contexts.

Specifically,

your

application

can

create

a

context

for

a

thread,

attach

to

or

detach

from

a

separate

context

for

each

thread,

and

pass

contexts

between

threads.

If

your

application

does

not

call

any

of

these

APIs,

DB2

will

automatically

manage

the

multiple

contexts

for

your

application:

v

sqleAttachToCtx

-

Attach

to

Context

v

sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context

v

sqleDetachFromCtx

-

Detach

From

Context

v

sqleEndCtx

-

Detach

and

Destroy

Application

Context

v

sqleGetCurrentCtx

-

Get

Current

Context

v

sqleInterruptCtx

-

Interrupt

Context

Contexts

need

not

be

associated

with

a

given

thread

for

the

duration

of

a

connection

or

attachment.

One

thread

can

attach

to

a

context,

connect

to

a

database,

detach

from

the

context,

and

then

a

second

thread

can

attach

to

the

context

and

continue

doing

work

using

the

already

existing

database

connection.

Contexts

can

be

passed

around

among

threads

in

a

process,

but

not

among

processes.

Even

if

the

new

APIs

are

used,

the

following

APIs

continue

to

be

serialized:

v

sqlabndx

-

Bind

v

sqlaprep

-

Precompile

Program

v

sqluexpr

-

Export

v

db2Import

and

sqluimpr

-

Import

These

APIs

have

no

effect

(that

is,

they

are

no-ops)

on

platforms

that

do

not

support

application

threading.

©

Copyright

IBM

Corp.

1993

-

2004

499

|
|
|
|
|
|
|

|

|

|

|

|

|

|

Notes:

1.

The

DB2

CLI

automatically

uses

multiple

contexts

to

achieve

thread-safe,

concurrent

database

access

on

platforms

that

support

multi-threading.

While

not

recommended

by

DB2,

users

can

explicitly

disable

this

feature

if

required.

2.

By

default,

AIX

does

not

permit

32-bit

applications

to

attach

to

more

than

11

shared

memory

segments

per

process,

of

which

a

maximum

of

10

can

be

used

for

DB2

connections.

However,

for

Java

applications,

the

number

of

applications

is

limited

to

1

shared

memory

segment

per

process.

When

this

limit

is

reached,

DB2

returns

SQLCODE

-1224

on

an

SQL

CONNECT.

DB2

Connect

also

has

the

10-connection

limitation

if

local

users

are

running

two-phase

commit

over

SNA,

or

two-phase

commit

with

a

TP

Monitor

(SNA

or

TCP/IP).

The

AIX

environment

variable

EXTSHM

can

be

used

to

increase

the

maximum

number

of

shared

memory

segments

to

which

a

process

can

attach.

To

use

EXTSHM

with

DB2,

do

the

following:

In

client

sessions:

export

EXTSHM=ON

When

starting

the

DB2

server:

export

EXTSHM=ON

db2set

DB2ENVLIST=EXTSHM

db2start

On

ESE,

also

add

the

following

lines

to

your

userprofile

or

usercshrc

files:

EXTSHM=ON

export

EXTSHM

An

alternative

is

to

move

the

local

database

or

DB2

Connect

into

another

machine

and

to

access

it

remotely,

or

to

access

the

local

database

or

the

DB2

Connect

database

with

TCP/IP

loop-back

by

cataloging

it

as

a

remote

node

that

has

the

TCP/IP

address

of

the

local

machine.

Related

reference:

v

“Administrative

APIs

and

application

migration”

on

page

537

v

“Changed

APIs

and

Data

Structures”

on

page

537

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

sqleAttachToCtx

-

Attach

to

Context

Makes

the

current

thread

use

a

specified

context.

All

subsequent

database

calls

made

on

this

thread

will

use

this

context.

If

more

than

one

thread

is

attached

to

a

given

context,

access

is

serialized

for

these

threads,

and

they

share

a

commit

scope.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

500

Administrative

API

Reference

|

None

API

include

file:

sql.h

C

API

syntax:

int

sqleAttachToCtx

(

void

*pCtx,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

pCtx

Input.

A

valid

context

previously

allocated

by

sqleBeginCtx.

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

on

page

501

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context

Creates

an

application

context,

or

creates

and

then

attaches

to

an

application

context.

More

than

one

application

context

can

be

created.

Each

context

has

its

own

commit

scope.

Different

threads

can

attach

to

different

contexts

(see

sqleAttachToCtx).

Any

database

API

calls

made

by

such

threads

will

not

be

serialized

with

one

another.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

C

API

syntax:

sqleAttachToCtx

-

Attach

to

Context

Appendix

E.

Threaded

applications

with

concurrent

access

501

int

sqleBeginCtx

(

void

**ppCtx,

sqlint32

lOptions,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

ppCtx

Output.

A

data

area

allocated

out

of

private

memory

for

the

storage

of

context

information.

lOptions

Input.

Valid

values

are:

SQL_CTX_CREATE_ONLY

The

context

memory

will

be

allocated,

but

there

will

be

no

attachment.

SQL_CTX_BEGIN_ALL

The

context

memory

will

be

allocated,

and

then

a

call

to

sqleAttachToCtx

will

be

made

for

the

current

thread.

If

this

option

is

used,

the

ppCtx

parameter

can

be

NULL.

If

the

thread

is

already

attached

to

a

context,

the

call

will

fail.

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

v

“sqleAttachToCtx

-

Attach

to

Context”

on

page

500

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

sqleDetachFromCtx

-

Detach

From

Context

Detaches

the

context

being

used

by

the

current

thread.

The

context

will

be

detached

only

if

an

attach

to

that

context

has

previously

been

made.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

sqleBeginCtx

-

Create

and

Attach

to

Application

Context

502

Administrative

API

Reference

C

API

syntax:

int

sqleDetachFromCtx

(

void

*pCtx,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

pCtx

Input.

A

valid

context

previously

allocated

by

sqleBeginCtx.

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

on

page

501

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

sqleEndCtx

-

Detach

and

Destroy

Application

Context

Frees

all

memory

associated

with

a

given

context.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

C

API

syntax:

int

sqleEndCtx

(

void

**ppCtx,

sqlint32

lOptions,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

ppCtx

Output.

A

data

area

in

private

memory

(used

for

the

storage

of

context

information)

that

is

freed.

lOptions

Input.

Valid

values

are:

sqleDetachFromCtx

-

Detach

From

Context

Appendix

E.

Threaded

applications

with

concurrent

access

503

SQL_CTX_FREE_ONLY

The

context

memory

will

be

freed

only

if

a

prior

detach

has

been

done.

Note:

pCtx

must

be

a

valid

context

previously

allocated

by

sqleBeginCtx.

SQL_CTX_END_ALL

If

necessary,

a

call

to

sqleDetachFromCtx

will

be

made

before

the

memory

is

freed.

Note:

A

detach

will

be

done

even

if

the

context

is

still

in

use.

If

this

option

is

used,

the

ppCtx

parameter

can

be

NULL,

but

if

passed,

it

must

be

a

valid

context

previously

allocated

by

sqleBeginCtx.

A

call

to

sqleGetCurrentCtx

will

be

made,

and

the

current

context

freed

from

there.

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

Usage

notes:

If

a

database

connection

exists,

or

the

context

has

been

attached

by

another

thread,

this

call

will

fail.

Note:

If

a

context

calls

an

API

that

establishes

an

instance

attachment

(for

example,

db2CfgGet,

it

is

necessary

to

detach

from

the

instance

using

sqledtin

before

calling

sqleEndCtx.

Related

reference:

v

“sqledtin

-

Detach”

on

page

334

v

“SQLCA”

on

page

410

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

on

page

501

v

“sqleDetachFromCtx

-

Detach

From

Context”

on

page

502

v

“sqleGetCurrentCtx

-

Get

Current

Context”

on

page

504

v

“db2CfgGet

-

Get

Configuration

Parameters”

on

page

33

sqleGetCurrentCtx

-

Get

Current

Context

Returns

the

current

context

associated

with

a

thread.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

None

sqleEndCtx

-

Detach

and

Destroy

Application

Context

504

Administrative

API

Reference

API

include

file:

sql.h

C

API

syntax:

int

sqleGetCurrentCtx

(

void

**ppCtx,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

ppCtx

Output.

A

data

area

allocated

out

of

private

memory

for

the

storage

of

context

information.

h

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

Related

reference:

v

“SQLCA”

on

page

410

sqleInterruptCtx

-

Interrupt

Context

Interrupts

the

specified

context.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

Database

API

include

file:

sql.h

C

API

syntax:

int

sqleInterruptCtx

(

void

*pCtx,

void

*reserved,

struct

sqlca

*pstSqlca);

API

parameters:

pCtx

Input.

A

valid

context

previously

allocated

by

sqleBeginCtx.

reserved

Reserved

for

future

use.

Must

be

set

to

NULL.

pstSqlca

Output.

A

pointer

to

the

sqlca

structure.

sqleGetCurrentCtx

-

Get

Current

Context

Appendix

E.

Threaded

applications

with

concurrent

access

505

Usage

notes:

During

processing,

this

API:

v

Switches

to

the

context

that

has

been

passed

in

v

Sends

an

interrupt

v

Switches

to

the

original

context

v

Exits.

Related

reference:

v

“SQLCA”

on

page

410

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

on

page

501

sqleSetTypeCtx

-

Set

Application

Context

Type

Sets

the

application

context

type.

This

API

should

be

the

first

database

API

called

inside

an

application.

Scope:

The

scope

of

this

API

is

limited

to

the

immediate

process.

Authorization:

None

Required

connection:

None

API

include

file:

sql.h

C

API

syntax:

int

sqleSetTypeCtx

(

sqlint32

lOptions);

API

parameters:

lOptions

Input.

Valid

values

are:

SQL_CTX_ORIGINAL

All

threads

will

use

the

same

context,

and

concurrent

access

will

be

blocked.

This

is

the

default

if

none

of

these

APIs

is

called.

SQL_CTX_MULTI_MANUAL

All

threads

will

use

separate

contexts,

and

it

is

up

to

the

application

to

manage

the

context

for

each

thread.

See

v

sqleBeginCtx

v

sqleAttachToCtx

v

sqleDetachFromCtx

v

sqleEndCtx

The

following

restrictions/changes

apply

when

this

option

is

used:

sqleInterruptCtx

-

Interrupt

Context

506

Administrative

API

Reference

v

When

termination

is

normal,

automatic

COMMIT

at

process

termination

is

disabled.

All

outstanding

transactions

are

rolled

back,

and

all

COMMITs

must

be

done

explicitly.

v

sqleintr

interrupts

all

contexts.

To

interrupt

a

specific

context,

use

sqleInterruptCtx.

Usage

notes:

This

API

must

be

called

before

any

other

database

call,

and

only

the

first

call

is

effective.

Related

reference:

v

“sqleintr

-

Interrupt”

on

page

349

v

“sqleAttachToCtx

-

Attach

to

Context”

on

page

500

v

“sqleBeginCtx

-

Create

and

Attach

to

an

Application

Context”

on

page

501

v

“sqleDetachFromCtx

-

Detach

From

Context”

on

page

502

v

“sqleEndCtx

-

Detach

and

Destroy

Application

Context”

on

page

503

v

“sqleInterruptCtx

-

Interrupt

Context”

on

page

505

Related

samples:

v

“dbthrds.sqc

--

How

to

use

multiple

context

APIs

on

UNIX

(C)”

v

“dbthrds.sqC

--

How

to

use

multiple

context

APIs

on

UNIX

(C++)”

sqleSetTypeCtx

-

Set

Application

Context

Type

Appendix

E.

Threaded

applications

with

concurrent

access

507

sqleSetTypeCtx

-

Set

Application

Context

Type

508

Administrative

API

Reference

Appendix

F.

DB2

UDB

Log

Records

This

section

describes

the

structure

of

the

DB2

UDB

log

records

returned

by

the

db2ReadLog

API.

All

DB2

UDB

log

records

begin

with

a

log

manager

header.

This

header

includes

the

total

log

record

size,

the

log

record

type,

and

transaction-specific

information.

It

does

not

include

information

about

accounting,

statistics,

traces,

or

performance

evaluation.

For

more

information,

see

“Log

Manager

Header”

on

page

511.

Log

records

are

uniquely

identified

by

a

log

sequence

number

(LSN).

The

LSN

represents

a

relative

byte

address,

within

the

database

log,

for

the

first

byte

of

the

log

record.

It

marks

the

offset

of

the

log

record

from

the

beginning

of

the

database

log.

The

log

records

written

by

a

single

transaction

are

uniquely

identifiable

by

a

field

in

the

log

record

header.

The

unique

transaction

identifier

is

a

six-byte

field

that

increments

by

one

whenever

a

new

transaction

is

started.

All

log

records

written

by

a

single

transaction

contain

the

same

identifier.

When

a

transaction

performs

writable

work

against

a

table

with

DATA

CAPTURE

CHANGES

on,

or

invokes

a

log

writing

utility,

the

transaction

is

marked

as

propagatable.

Only

propagatable

transactions

have

their

transaction

manager

log

records

marked

as

propagatable.

Table

94.

DB2

UDB

Log

Records

Data

Manager

“Initialize

Table”

on

page

515

New

permanent

table

creation.

“Import

Replace

(Truncate)”

on

page

516

Import

replace

activity.

“Rollback

Insert”

on

page

516

Rollback

row

insert.

“Reorg

Table”

on

page

517

REORG

committed.

“Create

Index,

Drop

Index”

on

page

517

Index

activity.

“Create

Table,

Drop

Table,

Rollback

Create

Table,

Rollback

Drop

Table”

on

page

518

Table

activity.

“Alter

Table

Attribute”

on

page

518

Propagation,

check

pending,

and

append

mode

activity.

“Alter

Table

Add

Columns,

Rollback

Add

Columns”

on

page

518

Adding

columns

to

existing

tables.

“Insert

Record,

Delete

Record,

Rollback

Delete

Record,

Rollback

Update

Record”

on

page

519

Table

record

activity.

“Update

Record”

on

page

524

Row

updates

where

storage

location

not

changed.

Long

Field

Manager

“Add/Delete/Non-update

Long

Field

Record”

on

page

526

Long

field

record

activity.

Transaction

Manager

“Normal

Commit”

on

page

526

Transaction

commits.

©

Copyright

IBM

Corp.

1993

-

2004

509

Table

94.

DB2

UDB

Log

Records

(continued)

“Heuristic

Commit”

on

page

527

Indoubt

transaction

commits.

“MPP

Coordinator

Commit”

on

page

527

Transaction

commits.

This

is

written

on

a

coordinator

node

for

an

application

that

performs

updates

on

at

least

one

subordinator

node.

“MPP

Subordinator

Commit”

on

page

527

Transaction

commits.

This

is

written

on

a

subordinator

node.

“Normal

Abort”

on

page

527

Transaction

aborts.

“Heuristic

Abort”

on

page

528

Indoubt

transaction

aborts.

“Local

Pending

List”

on

page

528

Transaction

commits

with

a

pending

list

existing.

“Global

Pending

List”

on

page

528

Transaction

commits

(two-phase)

with

a

pending

list

existing.

“XA

Prepare”

on

page

529

XA

transaction

preparation

in

two-phase

commit

environments.

“MPP

Subordinator

Prepare”

on

page

529

MPP

transaction

preparation

in

two-phase

commit

environments.

This

log

record

only

exists

on

subordinator

nodes.

“Backout

Free”

on

page

530

Marks

the

end

of

a

backout

free

interval.

The

backout

free

interval

is

a

set

of

log

records

that

is

not

to

be

compensated

if

the

transaction

aborts.

Utility

Manager

“Migration

Begin”

on

page

530

Catalog

migration

starts.

“Migration

End”

on

page

531

Catalog

migration

completes.

“Load

Start”

on

page

531

Table

load

starts.

“Table

Load

Delete

Start”

on

page

531

Load

delete

phase

starts.

“Load

Delete

Start

Compensation”

on

page

531

Load

delete

phase

ends.

“Load

Pending

List”

on

page

531

Table

load

completes.

“Backup

End”

on

page

532

Backup

activity

completes.

“Table

Space

Rolled

Forward”

on

page

532

Table

space

rollforward

completes.

“Table

Space

Roll

Forward

to

PIT

Begins”

on

page

532

Marks

the

beginning

of

a

table

space

rollforward

to

a

point

in

time.

“Table

Space

Roll

Forward

to

PIT

Ends”

on

page

532

Marks

the

end

of

a

table

space

rollforward

to

a

point

in

time.

Datalink

Manager

“Link

File”

on

page

533

Written

when

an

insert

or

an

update

on

a

table

with

a

DATALINK

column

creates

a

link

to

a

file.

“Unlink

File”

on

page

534

Written

when

a

delete

or

an

update

on

a

table

with

a

DATALINK

column

drops

a

link

to

a

file.

“Delete

Group”

on

page

535

Written

when

a

table

with

DATALINK

columns

(having

the

file

link

control

attribute)

is

dropped.

“Delete

PGroup”

on

page

535

Written

when

a

table

space

is

dropped.

510

Administrative

API

Reference

Table

94.

DB2

UDB

Log

Records

(continued)

“DLFM

Prepare”

on

page

536

Written

during

the

prepare

phase,

when

a

two-phase

commit

is

used

for

transactions

involving

DB2

Data

Links

Manager.

Log

Manager

Header

All

DB2

UDB

log

records

begin

with

a

log

manager

header.

This

header

contains

information

detailing

the

log

record

and

transaction

information

of

the

log

record

writer.

Note:

A

log

record

of

type

’i’

is

an

informational

log

record

only.

It

will

be

ignored

by

DB2

during

rollforward,

rollback,

and

crash

recovery.

Table

95.

Log

Manager

Log

Record

Header

(LogManagerLogRecordHeader)

Description

Type

Offset

(Bytes)

Length

of

the

entire

log

record

int

0(4)

Type

of

log

record

(See

Table

96

on

page

512.)

short

4(2)

Log

record

general

flag1

short

6(2)

Log

Sequence

Number

of

the

previous

log

record

written

by

this

transaction.

It

is

used

to

chain

log

records

by

transaction.

If

the

value

is

0000

0000

0000,

this

is

the

first

log

record

written

by

the

transaction.

SQLU_LSN2

8(6)

Unique

transaction

identifier

SQLU_TID3

14(6)

Log

Sequence

Number

of

the

log

record

for

this

transaction

prior

to

the

log

record

being

compensated.

(Note:

For

compensation

and

backout

free

log

records

only.)

SQLU_LSN

20(6)

Log

Sequence

Number

of

the

log

record

for

this

transaction

being

compensated.

(Note:

For

propagatable

compensation

log

records

only.)

SQLU_LSN

26(6)

Total

Length

for

Log

Manager

Log

Record

Header:

v

Non

Compensation:

20

bytes

v

Compensation:

26

bytes

v

Propagatable

Compensation:

32

bytes

Notes:

1.

Log

record

general

flag

constants

Redo

Always

0x0001

Propagatable

0x0002

Single

record

UOW

0x0010

Conditionally

Recoverable

0x0080

A

log

record

with

the

0x0010

flag

is

to

be

considered

as

a

unit

of

work

with

a

single

log

record.

There

will

be

no

commit

or

abort

log

record

for

this

transaction.

2.

Log

Sequence

Number

(LSN)

Appendix

F.

DB2

UDB

Log

Records

511

|

|
|
|
|

|
|
|

A

unique

log

record

identifier

representing

the

relative

byte

address

of

the

log

record

within

the

database

log.

SQLU_LSN:

union

{

char

[6]

;

short

[3]

;

}

3.

Transaction

Identifier

(TID)

A

unique

log

record

identifier

representing

the

transaction.

SQLU_TID:

union

{

char

[6]

;

short

[3]

;

}

Table

96.

Log

Manager

Log

Record

Header

Log

Type

Values

and

Definitions

Value

Definition

0x0061

Datalink

manager

log

record

0x006F

Backup

start

0x0041

Normal

abort

0x004F

Backup

end

0x0042

Backout

free

0x0089

Table

space

roll

forward

to

PIT

starts

0x0063

MPP

coordinator

commit

0x0050

Table

quiesce

0x0043

Compensation

0x0071

Table

space

roll

forward

to

PIT

ends

0x0044

Table

space

rolled

forward

0x0051

Global

pending

list

0x0045

Local

pending

list

0x0052

Redo

0x0088

Forget

transaction

0x0085

MPP

subordinate

commit

0x0080

MPP

log

synchronization

0x0053

Compensation

required

G

Load

pending

list

0x0054

Partial

abort

0x0048

Table

load

delete

start

0x0055

Undo

0x0069

Propagate

only

V

Migration

begin

0x0049

Heuristic

abort

0x0056

Migration

end

0x004A

Load

start

0x0083

TM

prepare

0x004B

Load

delete

start

compensation

0x0087

Heuristic

commit

L

Lock

description

Log

Manager

Header

512

Administrative

API

Reference

Table

96.

Log

Manager

Log

Record

Header

Log

Type

Values

and

Definitions

(continued)

Value

Definition

0x0081

MPP

prepare

0x0084

Normal

commit

0x0082

XA

prepare

0x004E

Normal

Data

Manager

Log

Records

Data

manager

log

records

are

the

result

of

DDL,

DML,

or

Utility

activities.

There

are

two

types

of

data

manager

log

records:

v

Data

Management

System

(DMS)

logs

have

a

component

identifier

of

1

in

their

header.

v

Data

Object

Manager

(DOM)

logs

have

a

component

identifier

of

4

in

their

header.

Table

97.

DMS

Log

Record

Header

Structure

(DMSLogRecordHeader)

Description

Type

Offset

(Bytes)

Component

identifier

(=1)

unsigned

char

0(1)

Function

identifier

(See

Table

98.)

unsigned

char

1(1)

Table

identifiers

Table

space

identifier

Table

identifier

unsigned

short

unsigned

short

2(2)

4(2)

Total

Length:

6

bytes

Table

98.

DMS

Log

Record

Header

Structure

Function

Identifier

Values

and

Definitions

Value

Definition

102

Add

columns

to

table

104

Undo

add

columns

106

Delete

record

110

Undo

insert

record

111

Undo

delete

record

112

Undo

update

record

113

Add

columns

to

table

104

Alter

column

length

115

Undo

alter

column

length

118

Insert

record

120

Update

record

124

Alter

table

attribute

128

Initialize

table

129

Delete

record

to

empty

page

130

Insert

record

to

empty

page

Log

Manager

Header

Appendix

F.

DB2

UDB

Log

Records

513

Table

98.

DMS

Log

Record

Header

Structure

Function

Identifier

Values

and

Definitions

(continued)

Value

Definition

131

Undo

insert

record

to

empty

page

132

Undo

delete

record

to

empty

page

Table

99.

DOM

Log

Record

Header

Structure

(DOMLogRecordHeader)

Description

Type

Offset

(Bytes)

Component

identifier

(=4)

unsigned

char

0(1)

Function

identifier

(See

Table

100.)

unsigned

char

1(1)

Object

identifiers

Table

space

identifier

Object

identifier

unsigned

short

unsigned

short

2(2)

4(2)

Table

identifiers

Table

space

identifier

Table

identifier

unsigned

short

unsigned

short

6(2)

8(2)

Object

type

unsigned

char

10(1)

Flags

unsigned

char

11(1)

Total

Length:

12

bytes

Table

100.

DOM

Log

Record

Header

Structure

Function

Identifier

Values

and

Definitions

Value

Definition

2

Create

index

3

Drop

index

4

Drop

table

11

Truncate

table

(import

replace)

35

Reorg

table

101

Create

table

130

Undo

create

table

Note:

All

data

manager

log

record

offsets

are

from

the

end

of

the

log

manager

record

header.

All

log

records

whose

function

identifier

short

name

begins

with

UNDO

are

log

records

written

during

the

UNDO

or

ROLLBACK

of

the

action

in

question.

The

ROLLBACK

can

be

a

result

of:

v

The

user

issuing

the

ROLLBACK

transaction

statement

v

A

deadlock

causing

the

ROLLBACK

of

a

selected

transaction

v

The

ROLLBACK

of

uncommitted

transactions

following

a

crash

recovery

v

The

ROLLBACK

of

uncommitted

transactions

following

a

RESTORE

and

ROLLFORWARD

of

the

logs.

Data

Manager

Log

Records

514

Administrative

API

Reference

Initialize

Table

The

initialize

table

log

record

is

written

when

a

new

permanent

table

is

being

created;

it

signifies

table

initialization.

This

record

appears

after

any

log

records

that

create

the

DATA

storage

object,

and

before

any

log

records

that

create

the

LF

and

LOB

storage

objects.

This

is

a

Redo

log

record.

Table

101.

Initialize

Table

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

File

create

LSN

SQLU_LSN

6(6)

Table

directory

record

variable

12(72)

record

type

unsigned

char

12(1)

reserved

char

13(1)

index

flag

unsigned

short

14(2)

index

root

page

sqluint32

16(4)

TDESC

recid

sqluint32

20(4)

reserved

char

24(56)

flags1

sqluint32

80(4)

Table

description

length

sqluint32

84(4)

Table

description

record

variable

88(variable)

record

type

unsigned

char

88(1)

reserved

char

89(1)

number

of

columns

unsigned

short

90(2)

array

variable

long

92(variable)

Total

Length:

88

bytes

plus

table

description

record

length

Notes:

1.

Bit

0x00000010

indicates

that

the

table

was

created

with

the

VALUE

COMPRESSION

option.

Bit

0x00000020

indicates

that

the

table

was

created

with

the

NOT

LOGGED

INITIALLY

option,

and

that

no

DML

activity

on

this

table

is

logged

until

the

transaction

that

created

the

table

has

been

committed.

Bit

0x00000800

indicates

that

the

table

was

a

mulitdimensional

clustered

(MDC)

table

created

with

the

ORGANIZE

BY

clause.

Table

Description

Record:

column

descriptor

array:

(number

of

columns)

*

8,

where

each

element

of

the

array

contains:

v

field

type

(unsigned

short,

2

bytes)

SMALLINT

0x0000

INTEGER

0x0001

DECIMAL

0x0002

DOUBLE

0x0003

REAL

0x0004

BIGINT

0x0005

CHAR

0x0100

VARCHAR

0x0101

LONG

VARCHAR

0x0104

DATE

0x0105

TIME

0x0106

TIMESTAMP

0x0107

BLOB

0x0108

Data

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

515

CLOB

0x0109

DATALINK

0x010E

GRAPHIC

0x0200

VARGRAPH

0x0201

LONG

VARG

0x0202

DBCLOB

0x0203

v

length

(2

bytes)

–

If

BLOB,

CLOB,

or

DBCLOB,

this

field

is

not

used.

For

the

maximum

length

of

this

field,

see

the

array

that

follows

the

column

descriptor

array.

–

If

not

DECIMAL,

length

is

the

maximum

length

of

the

field

(short).

–

If

PACKED

DECIMAL:

Byte

1,

unsigned

char,

precision

(total

length)

Byte

2,

unsigned

char,

scale

(fraction

digits).
v

null

flag

(unsigned

short,

2

bytes)

–

mutually

exclusive:

allows

nulls,

or

does

not

allow

nulls

–

valid

options:

no

default,

type

default,

user

default,

or

compress

type

default

ISNULL

0x01

NONULLS

0x02

TYPE_DEFAULT

0x04

USER_DEFAULT

0x08

COMPRESS_SYSTEM_DEFAULT

0x80

v

field

offset

(unsigned

short,

2

bytes)

This

is

the

offset

from

the

start

of

the

formatted

record

to

where

the

field’s

fixed

value

can

be

found.

Table

Description

Record:

LOB

descriptor

array:

(number

of

LOB,

CLOB,

and

DBCLOB

fields)

*

12,

where

each

element

of

the

array

contains:

v

length

(MAX

LENGTH

OF

FIELD,

sqluint32,

4

bytes)

v

reserved

(internal,

sqluint32,

4

bytes)

v

log

flag

(IS

COLUMN

LOGGED,

sqluint32.

4

bytes)

The

first

LOB,

CLOB,

or

DBCLOB

encountered

in

the

column

descriptor

array

uses

the

first

element

in

the

LOB

descriptor

array.

The

second

LOB,

CLOB,

or

DBCLOB

encountered

in

the

column

descriptor

array

uses

the

second

element

in

the

LOB

descriptor

array,

and

so

on.

Import

Replace

(Truncate)

The

import

replace

(truncate)

log

record

is

written

when

an

IMPORT

REPLACE

action

is

being

executed.

This

record

indicates

the

re-initialization

of

the

table

(no

user

records,

new

life

LSN).

The

second

set

of

table

space

and

object

IDs

in

the

log

header

identify

the

table

being

truncated

(IMPORT

REPLACE).

This

is

a

Redo

log

record.

Table

102.

Import

Replace

(Truncate)

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DOMLogRecordHeader

0(12)

internal

variable

12(variable)

Total

Length:

12

bytes

plus

variable

length

Rollback

Insert

The

rollback

insert

log

record

is

written

when

an

insert

row

action

(INSERT

RECORD)

is

rolled

back.

This

is

a

Compensation

log

record.

Data

Manager

Log

Records

516

Administrative

API

Reference

Table

103.

Rollback

Insert

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[

]

6(2)

RID

sqluint32

8(4)

Record

length

unsigned

short

12(2)

Free

space

unsigned

short

14(2)

Total

Length:

16

bytes

Reorg

Table

The

reorg

table

log

record

is

written

when

the

REORG

utility

has

committed

to

completing

the

reorganization

of

a

table.

This

is

a

Normal

log

record.

Table

104.

Reorg

Table

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DOMLogRecordHeader

0(12)

Internal

variable

12(392)

Index

token1

unsigned

short

2(404)

Temporary

table

space

ID2

unsigned

short

2(406)

Total

Length:

408

bytes

Notes:

1.

If

not

0,

it

is

the

index

by

which

the

reorg

is

clustered

(clustering

index).

2.

If

not

0,

it

is

the

system

temporary

table

space

that

was

used

to

build

the

reorg.

Create

Index,

Drop

Index

These

log

records

are

written

when

indexes

are

created

or

dropped.

The

two

elements

of

the

log

record

are:

v

The

index

root

page,

which

is

an

internal

identifier

v

The

index

token,

which

is

equivalent

to

the

IID

column

in

SYSIBM.SYSINDEXES.

If

the

value

for

this

element

is

0,

the

log

record

represents

an

action

on

an

internal

index,

and

is

not

related

to

any

user

index.

This

is

a

normal

log

record.

Table

105.

Create

Index,

Drop

Index

Log

Records

Structure

Description

Type

Offset

(Bytes)

Log

header

DOMLogRecordHeader

0(12)

Padding

char[

]

12(2)

Index

token

unsigned

short

14(2)

Index

root

page

sqluint32

16(4)

Total

Length:

20

bytes

Data

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

517

Create

Table,

Drop

Table,

Rollback

Create

Table,

Rollback

Drop

Table

These

log

records

are

written

when

the

DATA

object

for

a

permanent

table

is

created

or

dropped.

The

DATA

object

is

created

during

a

CREATE

TABLE,

and

prior

to

table

initialization

(Initialize

Table).

Create

table

and

drop

table

are

Normal

log

records.

Rollback

create

table

and

rollback

drop

table

are

Compensation

log

records.

Table

106.

Create

Table,

Drop

Table,

Rollback

Create

Table,

Rollback

Drop

Table

Log

Records

Structure

Description

Type

Offset

(Bytes)

Log

header

DOMLogRecordHeader

0(12)

Internal

variable

12(72)

Total

Length:

84

bytes

Alter

Table

Attribute

The

alter

table

attribute

log

record

is

written

when

the

state

of

a

table

is

changed

VIA

the

ALTER

TABLE

statement

or

as

a

result

of

adding

or

validating

constraints.

Table

107.

Alter

Table

Attribute,

Undo

Alter

Table

Attribute

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[

]

6(2)

Alter

bit

(attribute)

mask

sqluint32

8(4)

Alter

bit

(attribute)

values

sqluint32

12(4)

Total

Length:

16

bytes

Attribute

Bits:

0x00000001

Propagation

0x00000002

Check

Pending

0x00000010

Value

Compression

0x00010000

Append

Mode

0x00200000

LF

Propagation

If

one

of

the

bits

above

is

present

in

the

alter

bit

mask,

then

this

attribute

of

the

table

is

being

altered.

To

determine

the

new

value

of

the

table

attribute

(0

=

OFF

and

1

=

ON),

check

the

corresponding

bit

in

the

alter

bit

value.

Alter

Table

Add

Columns,

Rollback

Add

Columns

The

alter

table

add

columns

log

record

is

written

when

the

user

is

adding

columns

to

an

existing

table

using

an

ALTER

TABLE

statement.

Complete

information

on

the

old

columns

and

new

columns

is

logged.

v

Column

count

elements

represent

the

old

number

of

columns

and

the

new

total

number

of

columns.

v

The

parallel

arrays

contain

information

about

the

columns

defined

in

the

table.

The

old

parallel

array

defines

the

table

prior

to

the

ALTER

TABLE

statement,

while

the

new

parallel

array

defines

the

table

resulting

from

ALTER

TABLE

statement.

v

Each

parallel

array

consists

of:

Data

Manager

Log

Records

518

Administrative

API

Reference

–

An

array

equivalent

to

the

column

descriptor

array

in

the

table

description

record

(see

“Initialize

Table”

on

page

515).

–

A

second

array

equivalent

to

the

LOB

descriptor

array

in

the

table

description

record.

However,

since

this

array

is

parallel

to

the

first,

the

only

elements

used

are

those

whose

corresponding

element

in

the

first

array

are

of

type

BLOB,

CLOB,

or

DBCLOB.

Alter

table

add

columns

is

a

Normal

log

record.

Rollback

add

columns

is

a

Compensation

log

record.

Table

108.

Alter

Table

Add

Columns,

Rollback

Add

Columns

Log

Records

Structure

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordheader

0(6)

Padding

char[

]

6(2)

Old

column

count

sqluint32

8(4)

New

column

count

sqluint32

12(4)

Old

parallel

arrays1

variable

16(variable)

New

parallel

arrays2

variable

variable

Total

Length:

40

bytes

plus

2

sets

of

parallel

arrays;

array

size

is

(old/new

column

count)

*

20.

Array

Elements:

1.

Each

element

in

this

array

is

8

bytes

long.

2.

Each

element

in

this

array

is

12

bytes

long.

For

information

about

the

column

descriptor

array

or

the

LOB

descriptor

array,

see

Table

101

on

page

515).

Insert

Record,

Delete

Record,

Rollback

Delete

Record,

Rollback

Update

Record

These

log

records

are

written

when

rows

are

inserted

into

or

deleted

from

a

table.

Insert

record

and

delete

record

log

records

are

generated

during

an

update

if

the

location

of

the

record

being

updated

must

be

changed

to

accommodate

the

modified

record

data.

Insert

record

and

delete

record

are

Normal

log

records.

Rollback

delete

record

and

rollback

update

record

are

Compensation

log

records.

Table

109.

Insert

Record,

Delete

Record,

Rollback

Delete

Record,

Rollback

Update

Record

Log

Records

Structure

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[

]

6(2)

RID

sqluint32

8(4)

Record

length

unsigned

short

12(2)

Free

space

unsigned

short

14(2)

Record

offset

unsigned

short

16(2)

Record

header

and

data

variable

18(variable)

Total

Length:

18

bytes

plus

record

length

Record

Header

and

Data

Details:

Data

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

519

Record

header

v

4

bytes

v

Record

typea

(unsigned

char,

1

byte).

–

Bit

values

represent

different

classes

and

possible

types

within

the

classes.

Records

are

one

of

two

classes:

-

Updatable

-

Special

control
–

Each

class

can

contain

the

three

types:

-

Normal

-

Pointer

-

Overflow
–

The

record

contains

user

data

if

-

the

record

type

is

0x00

or

0x10

-

the

bit

0x04

is

set.
v

Reserved

(char,

1

byte)

v

Record

length

(unsigned

short,

2

bytes)

Record

v

variable

length

v

Record

type

(unsigned

char,

1

byte).

Updatable

records

are

one

of

three

types:

–

0

-

Internal

control

–

1

-

Formatted

user

data

without

VALUE

COMPRESSION

option

–

2

-

Formatted

user

data

with

VALUE

COMPRESSION

option
v

Reserved

(char,

1

byte)

v

The

rest

of

the

record

is

dependent

upon

the

record

type

and

the

table

descriptor

record

defined

for

the

table.

If

the

record

type

is

an

internal

control,

the

data

cannot

be

viewed.

v

The

following

fields

apply

to

user

data

records

with

record

type

value

1

–

Fixed

length

(unsigned

short,

2

bytes).

This

is

the

length

of

the

fixed

length

section

of

the

data

row.

–

Formatted

record

(fixed

and

variable

length).
v

The

following

fields

apply

to

user

data

records

with

record

type

value

2

–

Number

of

columns

(unsigned

short,

2

bytes).

This

is

the

number

of

columns

in

the

data

portion

of

the

data

row.

–

Formatted

record

(offset

array

and

data

portion).

a

Record

data

can

only

be

viewed

if

the

record

type

(specified

in

the

record

header)

is

updatable

(that

is,

not

special

control).

Insert

Multiple

Records,

Rollback

Insert

Multiple

Records

These

log

records

are

written

when

multiple

rows

are

inserted

into

the

same

page

of

a

table.

Rollback

insert

multiple

record

is

a

Compensation

log

record.

Table

110.

Insert

Multiple

Records

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[

]

6(2)

Data

Manager

Log

Records

520

Administrative

API

Reference

|

|
|

||

|||

|||

|||

Table

110.

Insert

Multiple

Records

(continued)

Description

Type

Offset

(Bytes)

Number

of

records

unsigned

short

8(2)

Free

space

unsigned

short

10(2)

Sum

of

record

lengths

unsigned

short

12(2)

Variable

part

length

unsigned

short

14(2)

Pool

page

number

sqluint32

16(4)

Record

descriptions

or

rollback

descriptions

See

Table

111

and

Table

112.

variable

20(variable)

Total

Length:

20

bytes

plus

record

length

Table

111.

Record

Descriptions

(one

for

each

record)

Description

Type

Offset

(Bytes)

RID

sqluint32

0(4)

Record

offset

unsigned

short

4(2)

Record

header

and

data

variable

6(variable)

Total

Length:

6

bytes

plus

Record

length

Table

112.

Rollback

Descriptions

(one

for

each

record)

Description

Type

Offset

(Bytes)

RID

sqluint32

0(4)

Record

offset

unsigned

short

4(2)

Total

Length:

6

bytes

For

Record

Header

and

Data

Details,

see

“Record

Header

and

Data

Details”

on

page

519.

Formatted

User

Data

Record

for

table

without

VALUE

COMPRESSION

The

formatted

record

of

a

table

created/altered

without

the

VALUE

COMPRESSION

can

be

a

combination

of

fixed

and

variable

length

data.

All

fields

contain

a

fixed

length

portion.

In

addition,

there

are

eight

field

types

that

have

variable

length

parts:

v

VARCHAR

v

LONG

VARCHAR

v

DATALINK

v

BLOB

v

CLOB

v

VARGRAPHIC

v

LONG

VARG

v

DBCLOB

The

length

of

the

fixed

portion

of

the

different

field

types

can

be

determined

as

follows:

Data

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

521

|

|||

|||

|||

|||

|||

|||

|
|

|

||

|
|

||

|||

|||

|||

|||

|
|

||

|||

|||

|||

|
|

|
|

v

DECIMAL

This

field

is

a

standard

packed

decimal

in

the

form:

nnnnnn...s.

The

length

of

the

field

is:

(precision

+

2)/2.

The

sign

nibble

(s)

is

xC

for

positive

(+),

and

xD

or

xB

for

negative

(−).

v

SMALLINT

INTEGER

BIGINT

DOUBLE

REAL

CHAR

GRAPHIC

The

length

field

in

the

element

for

this

column

in

the

table

descriptor

record

contains

the

fixed

length

size

of

the

field.

v

DATE

This

field

is

a

4-byte

packed

decimal

in

the

form:

yyyymmdd.

For

example,

April

3,

1996

is

represented

as

x‘19960403’.

v

TIME

This

field

is

a

3-byte

packed

decimal

in

the

form:

hhmmss.

For

example,

1:32PM

is

represented

as

x‘133200’.

v

TIMESTAMP

This

field

is

a

10-byte

packed

decimal

in

the

form:

yyyymmddhhmmssuuuuuu

(DATE|TIME|microseconds).

v

VARCHAR

LONG

VARCHAR

DATALINK

BLOB

CLOB

VARGRAPHIC

LONG

VARG

DBCLOB

The

length

of

the

fixed

portion

of

all

the

variable

length

fields

is

4.

Note:

For

element

addresses,

see

Table

101

on

page

515.

The

following

sections

describe

the

location

of

the

fixed

portion

of

each

field

within

the

formatted

record.

The

table

descriptor

record

describes

the

column

format

of

the

table.

It

contains

an

array

of

column

structures,

whose

elements

represent

field

type,

field

length,

null

flag,

and

field

offset.

The

latter

is

the

offset

from

the

beginning

of

the

formatted

record,

where

the

fixed

length

portion

of

the

field

is

located.

Table

113.

Table

Descriptor

Record

Structure

record

type

number

of

columns

column

structure

v

field

type

v

length

v

null

flag

v

field

offset

LOB

information

Note:

For

more

information,

see

Table

101

on

page

515.

For

columns

that

are

nullable

(as

specified

by

the

null

flag),

there

is

an

additional

byte

following

the

fixed

length

portion

of

the

field.

This

byte

contains

one

of

two

values:

v

NOT

NULL

(0x00)

v

NULL

(0x01)

If

the

null

flag

within

the

formatted

record

for

a

column

that

is

nullable

is

set

to

0x00,

there

is

a

valid

value

in

the

fixed

length

data

portion

of

the

record.

If

the

null

flag

value

is

0x01,

the

data

field

value

is

NULL.

The

formatted

user

data

record

contains

the

table

data

that

is

visible

to

the

user.

It

is

formatted

as

a

fixed

length

record,

followed

by

a

variable

length

section.

Data

Manager

Log

Records

522

Administrative

API

Reference

Table

114.

Formatted

User

Data

Record

Structure

for

table

without

VALUE

COMPRESSION

record

type

length

of

fixed

section

fixed

length

section

variable

data

section

Note:

For

more

information,

see

Table

109

on

page

519.

All

variable

field

types

have

a

4-byte

fixed

data

portion

in

the

fixed

length

section

(plus

a

null

flag,

if

the

column

is

nullable).

The

first

2

bytes

(short)

represent

the

offset

from

the

beginning

of

the

fixed

length

section,

where

the

variable

data

is

located.

The

next

2

bytes

(short)

specify

the

length

of

the

variable

data

referenced

by

the

offset

value.

Formatted

User

Data

Record

for

table

with

VALUE

COMPRESSION

The

formatted

record

for

a

table

created

or

altered

with

VALUE

COMPRESSION

consists

of

the

offset

array

and

the

data

portion.

Each

entry

in

the

array

is

a

2-byte

offset

to

the

corresponding

column

data

in

the

data

portion.

The

number

of

column

data

in

the

data

portion

can

be

found

in

the

record

header

and

the

number

of

entries

in

the

offset

array

is

one

plus

the

number

of

column

data

that

exists

in

the

data

portion.

1.

Compressed

column

values

consumes

only

one

byte

of

disk

space

which

is

used

for

attribute

byte.

The

attribute

byte

will

indicate

the

column

data

is

compressed,

for

example,

the

data

value

is

known

but

is

not

stored

on

disk.

The

high

bit

(0x80)

in

the

offset

will

be

used

to

indicate

the

accessed

data

is

an

attribute

byte.

(So

only

15

bits

are

used

to

represent

the

offset

of

the

corresponding

column

data.)

2.

For

regular

column

data,

the

column

data

follows.

There

will

not

be

any

attribute

byte

nor

any

length

indicator

present.

3.

Accessed

data

can

take

on

two

different

values

if

it

is

an

attribute

byte:

v

NULL

0x01

(Value

is

NULL)

v

COMPRESSED

SYSTEM

DEFAULT

0x80

(Value

is

equal

to

the

system

default)

4.

The

length

of

column

data

is

the

difference

between

the

current

offset

and

the

offset

of

the

next

column.

Table

115.

Formatted

User

Data

Record

Structure

for

table

with

VALUE

COMPRESSION

record

type

number

of

column

in

data

portion

offset

array

data

portion

Note:

For

more

information,

see

Table

109

on

page

519.

Insert

Record

to

Empty

Page,

Delete

Record

to

Empty

Page,

Rollback

Delete

Record

to

Empty

Page,

Rollback

Insert

Record

to

Empty

Page

These

log

records

are

written

when

the

table

is

a

multidimensional

clustered

(MDC)

table.

The

Insert

To

Empty

Page

log

record

is

written

when

a

record

is

inserted

and

it

is

the

first

record

on

a

page,

where

that

page

is

not

the

first

page

of

a

block.

This

log

record

logs

the

insert

to

the

page,

as

well

as

the

update

of

a

bit

on

the

first

page

of

the

block,

indicating

that

that

page

is

no

longer

empty.

The

Delete

To

Empty

Page

log

record

is

written

when

the

last

record

is

deleted

from

a

page,

where

that

page

is

not

the

first

page

of

a

block.

This

log

record

logs

the

delete

from

the

page,

as

well

as

the

update

of

a

bit

on

the

first

page

of

the

block,

Data

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

523

indicating

that

the

page

is

empty.

Insert

record

and

Delete

record

to

Empty

Page

are

Normal

log

records.

Rollback

delete

record

and

rollback

insert

record

are

Compensation

log

records.

Table

116.

Insert

Record

to

Empty

Page,

Delete

Record

to

Empty

Page,

Rollback

Delete

Record

to

Empty

Page,

Rollback

Insert

Record

to

Empty

Page

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[]

6(2)

RID

sqluint32

8(4)

Record

length

unsigned

short

12(2)

Free

space

unsigned

short

14(2)

First

page

of

the

block

sqluint32

16(4)

Record

offset

unsigned

short

20(2)

Record

header

and

data

variable

22(variable)

Total

Length:

22

bytes

plus

Record

length

Note:

For

Record

Header

and

Data

Details,

see

Table

109

on

page

519.

Update

Record

The

update

record

log

record

is

written

when

a

row

is

updated,

and

if

its

storage

location

does

not

change.

There

are

two

available

log

record

formats;

they

are

identical

to

the

insert

record

and

the

delete

record

log

records

(see

“Insert

Record,

Delete

Record,

Rollback

Delete

Record,

Rollback

Update

Record”

on

page

519).

One

contains

the

pre-update

image

of

the

row

being

updated;

the

other

contains

the

post-update

image

of

the

row

being

updated.

This

is

a

Normal

log

record.

Table

117.

Update

Record

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DMSLogRecordHeader

0(6)

Padding

char[

]

6(2)

RID

sqluint32

8(4)

New

Record

length

unsigned

short

12(2)

Free

space

unsigned

short

14(2)

Record

offset

unsigned

short

16(2)

Old

record

header

and

data

variable

18(variable)

Log

header

DMSLogRecordHeader

variable(6)

Padding

char[

]

variable(2)

RID

sqluint32

variable(4)

Old

record

length

unsigned

short

variable(2)

Free

space

unsigned

short

variable(2)

Record

offset

unsigned

short

variable(2)

New

record

header

and

data

variable

variable(variable)

Total

Length:

36

bytes

plus

2

Record

lengths

Data

Manager

Log

Records

524

Administrative

API

Reference

Long

Field

Manager

Log

Records

Long

field

manager

log

records

are

written

only

if

a

database

is

configured

with

LOG

RETAIN

on

or

USEREXITS

enabled.

They

are

written

whenever

long

field

data

is

inserted,

deleted,

or

updated.

To

conserve

log

space,

long

field

data

inserted

into

tables

is

not

logged

if

the

database

is

configured

for

circular

logging.

In

addition,

when

a

long

field

value

is

updated,

the

before

image

is

shadowed

and

not

logged.

All

long

field

manager

log

records

begin

with

a

header.

All

long

field

manager

log

record

offsets

are

from

the

end

of

the

log

manager

log

record

header.

When

a

table

has

been

altered

to

capture

LONG

VARCHAR

OR

LONG

VARGRAPHIC

columns

(by

specifying

INCLUDE

LONGVAR

COLUMNS

on

the

ALTER

TABLE

statement):

v

The

long

field

manager

will

write

the

appropriate

long

field

log

record.

v

When

long

field

data

is

updated,

the

update

is

treated

as

a

delete

of

the

old

long

field

value,

followed

by

an

insert

of

the

new

value.

To

determine

whether

or

not

a

Delete/Add

Long

Field

Record

is

associated

with

an

update

operation

on

the

table

the

original

operation

value

would

be

logged

to

the

Long

Field

Manager

Log

Record.

v

When

tables

with

long

field

columns

are

updated,

but

the

long

field

columns

themselves

are

not

updated,

a

Non-update

Long

Field

Record

is

written.

v

The

Delete

Long

Field

Record

and

the

Non-update

Long

Field

Record

are

information

only

log

records.

Table

118.

Long

Field

Manager

Log

Record

Header

(LongFieldLogRecordHeader)

Description

Type

Offset

(Bytes)

Originator

code

(component

identifier

=

3)

unsigned

char

0(1)

Operation

type

(See

Table

119.)

unsigned

char

1(1)

Table

space

identifier

unsigned

short

2(2)

Object

identifier

unsigned

short

4(2)

Parent

table

space

identifier1

unsigned

short

6(2)

Parent

object

identifier2

unsigned

short

8(2)

Total

Length:

10

bytes

Notes:

1.

Table

space

ID

of

the

data

object

2.

Object

ID

of

the

data

object

Table

119.

Long

Field

Manager

Log

Record

Header

Operation

Type

Values

and

Definitions

Value

Definition

113

Add

Long

Field

Record

114

Delete

Long

Field

Record

115

Non-Update

Long

Field

Record

Long

Field

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

525

Add/Delete/Non-update

Long

Field

Record

These

log

records

are

written

whenever

long

field

data

is

inserted,

deleted,

or

updated.

The

length

of

the

data

is

rounded

up

to

the

next

512-byte

boundary.

Table

120.

Add/Delete/Non-update

Long

Field

Record

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LongFieldLogRecordHeader

0(10)

Reserved

char

10(1)

Original

operation

type1

char

11(1)

Column

identifier2

char

12(2)

Long

field

length3

unsigned

short

14(2)

File

offset4

sqluint32

16(4)

Long

field

data

char[

]

20(variable)

Notes:

1.

Original

operation

type

1

Insert

2

Delete

4

Update

2.

The

column

number

that

the

log

record

is

applied

to.

Column

number

starts

from

0.

3.

Long

field

data

length

in

512-byte

sectors

(actual

data

length

is

not

logged).

The

value

of

this

field

is

always

positive.

The

long

field

manager

never

writes

log

records

for

zero

length

long

field

data

that

is

being

inserted,

deleted,

or

updated.

4.

512-byte

sector

offset

into

long

field

object

where

data

is

to

be

located.

Transaction

Manager

Log

Records

The

transaction

manager

produces

log

records

signifying

the

completion

of

transaction

events

(for

example,

commit

or

rollback).

The

time

stamps

in

the

log

records

are

in

Coordinated

Universal

Time

(CUT),

and

mark

the

time

(in

seconds)

since

January

01,

1970.

Normal

Commit

This

log

record

is

written

when

a

transaction

commits.

It

is

used

for

transactions

in

a

single-partition

database

environment,

or

for

transactions

in

a

partitioned

database

environment

that

changed

data

only

on

the

coordinating

database

partition.

Table

121.

Normal

Commit

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char

[

]

28(variable)

Total

Length:

28

bytes

plus

variable

propagatable

(28

bytes

non-propagatable)

Long

Field

Manager

Log

Records

526

Administrative

API

Reference

Heuristic

Commit

This

log

record

is

written

when

an

indoubt

transaction

is

committed.

Table

122.

Heuristic

Commit

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char

[

]

28(variable)

Total

Length:

28

bytes

plus

variable

propagatable

(28

bytes

non-propagatable)

MPP

Coordinator

Commit

This

log

record

is

written

on

a

coordinator

node

for

an

application

that

performs

updates

on

at

least

one

subordinator

node.

Table

123.

MPP

Coordinator

Commit

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

MPP

identifier

of

the

transaction

SQLP_GXID

28(20)

Maximum

node

number

unsigned

short

48(2)

TNL

unsigned

char

[

]

50(max

node

number/8

+

1)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char

[

]

variable(variable)

Total

Length:

variable

MPP

Subordinator

Commit

This

log

record

is

written

on

a

subordinator

node

in

MPP.

Table

124.

MPP

Subordinator

Commit

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

MPP

identifier

of

the

transaction

SQLP_GXID

28(20)

Reserved

unsigned

short

48(variable

+

2)

Authorization

identifier

(if

the

log

record

is

marked

as

propagatable)

char

[

]

variable(variable)

Total

Length:

48

bytes

plus

variable

propagatable

(48

bytes

non-propagatable)

Normal

Abort

This

log

record

is

written

when

a

transaction

aborts

after

one

of

the

following

events:

v

A

user

has

issued

a

ROLLBACK

v

A

deadlock

occurs

v

An

implicit

rollback

occurs

during

crash

recovery

v

An

implicit

rollback

occurs

during

ROLLFORWARD

recovery.

Transaction

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

527

Table

125.

Normal

Abort

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char

[

]

20(variable)

Total

Length:

20

bytes

plus

variable

(20

bytes

non-propagatable)

Heuristic

Abort

This

log

record

is

written

when

an

indoubt

transaction

is

aborted.

Table

126.

Heuristic

Abort

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char

[

]

20(variable)

Total

Length:

20

bytes

plus

variable

(20

bytes

non-propagatable)

Local

Pending

List

This

log

record

is

written

if

a

transaction

commits

and

a

pending

list

exists.

The

pending

list

is

a

linked

list

of

non-recoverable

operations

(such

as

deletion

of

a

file)

that

can

only

be

performed

when

the

user/application

issues

a

COMMIT.

The

variable

length

structure

contains

the

pending

list

entries.

Table

127.

Local

Pending

List

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

Authorization

identifier

length1

unsigned

short

28(2)

Authorization

identifier

of

the

application1

char

[

]

30(variable)2

Pending

list

entries

variable

variable(variable)

Total

Length:

30

bytes

plus

variables

propagatable

(28

bytes

plus

pending

list

entries

non-propagatable)

Notes:

1.

If

the

log

record

is

marked

as

propagatable

2.

Variable

based

on

Authorization

identifier

length

Global

Pending

List

This

log

record

is

written

if

a

transaction

involved

in

a

two-phase

commit

commits,

and

a

pending

list

exists.

The

pending

list

contains

non-recoverable

operations

(such

as

deletion

of

a

file)

that

can

only

be

performed

when

the

user/application

issues

a

COMMIT.

The

variable

length

structure

contains

the

pending

list

entries.

Table

128.

Global

Pending

List

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Authorization

identifier

length1

unsigned

short

20(2)

Transaction

Manager

Log

Records

528

Administrative

API

Reference

Table

128.

Global

Pending

List

Log

Record

Structure

(continued)

Description

Type

Offset

(Bytes)

Authorization

identifier

of

the

application1

char

[

]

22(variable)2

Global

pending

list

entries

variable

variable(variable)

Total

Length:

22

bytes

plus

variables

propagatable

(20

bytes

plus

pending

list

entries

non-propagatable)

Notes:

1.

If

the

log

record

is

marked

as

propagatable

2.

Variable

based

on

Authorization

identifier

length

XA

Prepare

This

log

record

is

written

for

XA

transactions

in

a

single-node

environment,

or

on

the

coordinator

node

in

MPP.

It

is

only

used

for

XA

applications.

The

log

record

is

written

to

mark

the

preparation

of

the

transaction

as

part

of

a

two-phase

commit.

The

XA

prepare

log

record

describes

the

application

that

started

the

transaction,

and

is

used

to

recreate

an

indoubt

transaction.

Table

129.

XA

Prepare

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

prepared

sqluint64

20(8)

Log

space

used

by

transaction

sqluint64

28(8)

Transaction

Node

List

Size

sqluint32

36(4)

Transaction

Node

List

unsigned

char

[

]

40(variable)

XA

identifier

of

the

transaction

SQLXA_XID

variable(140)

Application

Information

Length

sqluint32

variable(4)

Code

Page

Identifier

sqluint32

variable(4)

Transaction

Start

Time

sqluint32

variable(4)

Application

name

char

[

]

variable(20)

Application

identifier

char

[

]

variable(32)

Sequence

number

char

[

]

variable(4)

Database

alias

used

by

client

char

[

]

240(20)

Authorization

identifier

char

[

]

variable(variable)

Synclog

information

variable

variable(variable)

Total

Length:

268

bytes

plus

variables

MPP

Subordinator

Prepare

This

log

record

is

written

for

MPP

transactions

on

subordinator

nodes.

The

log

record

is

written

to

mark

the

preparation

of

the

transaction

as

part

of

a

two-phase

commit.

The

MPP

subordinator

prepare

log

record

describes

the

application

that

started

the

transaction,

and

is

used

to

recreate

an

indoubt

transaction.

Table

130.

MPP

Subordinator

Prepare

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

Transaction

Prepared

sqluint64

20(8)

Log

space

used

by

transaction

sqluint64

28(8)

Coordinator

LSN

SQLP_LSN

36(6)

Transaction

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

529

Table

130.

MPP

Subordinator

Prepare

Log

Record

Structure

(continued)

Description

Type

Offset

(Bytes)

Padding

char

[

]

42(2)

MPP

identifier

of

the

transaction

SQLP_GXID

44(20)

Application

Information

Length

sqluint32

64(4)

Code

page

sqluint32

68(4)

Transaction

Start

Time

sqluint32

72(4)

Application

name

char

[

]

76(20)

Application

identifier

char

[

]

96(32)

Sequence

number

char

[

]

128(4)

Database

alias

used

by

client

char

[

]

132(20)

Authorization

identifier

char

[

]

152(variable)

Total

Length:

152

bytes

plus

variable

Backout

Free

This

log

record

is

used

to

mark

the

end

of

a

backout

free

interval.

The

backout

free

interval

is

a

set

of

log

records

that

is

not

to

be

compensated

if

the

transaction

aborts.

This

log

record

contains

only

a

6-byte

log

sequence

number

(complsn,

stored

in

the

log

record

header

starting

at

offset

20).

When

this

log

record

is

read

during

rollback

(following

an

aborted

transaction),

complsn

marks

the

next

log

record

to

be

compensated.

Table

131.

Migration

Begin

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Complsn

SQLP_LSN

20(6)

Total

Length:

26

bytes

Utility

Manager

Log

Records

The

utility

manager

produces

log

records

associated

with

the

following

DB2

UDB

utilities:

v

Migration

v

Load

v

Backup

v

Table

space

rollforward.

The

log

records

signify

the

beginning

or

the

end

of

the

requested

activity.

All

utility

manager

log

records

are

marked

as

propagatable

regardless

of

the

tables

that

they

affect.

Migration

Begin

This

log

record

is

associated

with

the

beginning

of

catalog

migration.

Table

132.

Migration

Begin

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Migration

start

time

char[

]

20(10)

Migrate

from

release

unsigned

short

30(2)

Migrate

to

release

unsigned

short

32(2)

Transaction

Manager

Log

Records

530

Administrative

API

Reference

Table

132.

Migration

Begin

Log

Record

Structure

(continued)

Description

Type

Offset

(Bytes)

Total

Length:

34

bytes

Migration

End

This

log

record

is

associated

with

the

successful

completion

of

catalog

migration.

Table

133.

Migration

End

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Migration

end

time

char[

]

20(10)

Migrate

to

release

unsigned

short

30(2)

Total

Length:

32

bytes

Load

Start

This

log

record

is

associated

with

the

beginning

of

a

load.

Table

134.

Load

Start

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Log

record

identifier

sqluint32

20(4)

Pool

identifier

unsigned

short

24(2)

Object

identifier

unsigned

short

26(2)

Flag

unsigned

char

28(1)

Object

pool

list

variable

29(variable)

Total

Length:

29

bytes

plus

variable

Table

Load

Delete

Start

This

log

record

is

associated

with

the

beginning

of

the

delete

phase

in

a

load

operation.

The

delete

phase

is

started

only

if

there

are

duplicate

primary

key

values.

Table

135.

Table

Load

Delete

Start

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Total

Length:

20

bytes

Load

Delete

Start

Compensation

This

log

record

is

associated

with

the

end

of

the

delete

phase

in

a

load

operation.

Table

136.

Load

Delete

Start

Compensation

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Total

Length:

20

bytes

Load

Pending

List

This

log

record

is

written

when

a

load

transaction

commits.

The

pending

list

is

a

linked

list

of

non-recoverable

operations

which

are

deferred

until

the

transaction

commits.

No

commit

log

record

follows

this

transaction.

Utility

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

531

Table

137.

Load

Pending

List

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Time

transaction

committed

sqluint64

20(8)

Authorization

identifier

of

the

application

(if

the

log

record

is

marked

as

propagatable)

char[

]

28(9)

Pending

list

entries

variable

37(variable)

Total

Length:

37

bytes

plus

pending

list

entries

propagatable

(28

bytes

plus

pending

list

entries

non-propagatable)

Backup

End

This

log

record

is

associated

with

the

end

of

a

successful

backup.

Table

138.

Backup

End

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Backup

end

time

sqluint64

20(8)

Total

Length:

28

bytes

Table

Space

Rolled

Forward

This

log

record

is

associated

with

table

space

ROLLFORWARD

recovery.

It

is

written

for

each

table

space

that

is

successfully

rolled

forward.

Table

139.

Table

Space

Rolled

Forward

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

LogManagerLogRecordHeader

0(20)

Table

space

identifier

unsigned

short

20(2)

Total

Length:

22

bytes

Table

Space

Roll

Forward

to

PIT

Begins

This

log

record

is

associated

with

table

space

ROLLFORWARD

recovery.

It

marks

the

beginning

of

a

table

space

roll

forward

to

a

point

in

time.

Table

140.

Table

Space

Roll

Forward

to

PIT

Begins

Log

Record

Structure

Description

Type

Offset

(Bytes)

Time

stamp

for

this

log

record.

sqluint64

0(8)

Time

stamp

to

which

table

spaces

are

being

rolled

forward.

sqluint64

8(8)

Number

of

pools

being

rolled

forward.

unsigned

short

16(2)

Integer

list

of

pool

IDs

that

are

being

rolled

forward.

int*numpools

18(variable)

Total

Length:

10

bytes

plus

variable

Table

Space

Roll

Forward

to

PIT

Ends

This

log

record

is

associated

with

table

space

ROLLFORWARD

recovery.

It

marks

the

end

of

a

table

space

roll

forward

to

a

point

in

time.

Utility

Manager

Log

Records

532

Administrative

API

Reference

Table

141.

Table

Space

Roll

Forward

to

PIT

Ends

Log

Record

Structure

Description

Type

Offset

(Bytes)

Time

stamp

for

this

log

record.

sqluint64

0(8)

Time

stamp

to

which

table

spaces

were

rolled

forward.

sqluint32

8(8)

A

flag

whose

value

is

TRUE

if

the

roll

forward

was

successful,

or

FALSE

if

the

roll

forward

was

canceled.

int

16(4)

Total

Length:

24

bytes

Datalink

Manager

Log

Records

Datalink

manager

log

records

are

the

result

of

DDL,

DML,

or

completion

of

transaction

events

involving

DATALINK

columns.

These

log

records

are

written

only

when

the

DDL

or

the

DML

involves

DATALINK

columns

with

the

file

link

control

attribute.

Table

142.

Datalink

Manager

Log

Record

Header

Structure

(DLMLogRecordHeader)

Description

Type

Offset

(Bytes)

Component

identifier

(=8)

unsigned

char

0(1)

Function

identifier

(See

Table

143.)

unsigned

char

1(1)

padding

char

[]

2(2)

Total

Length:

6

bytes

Table

143.

Datalink

Manager

Log

Record

Header

Function

Identifiers

and

Values

Identifier

Value

LINK_FILE

33

UNLINK_FILE

34

DELETE_GROUP

35

DELETE_PGROUP

36

DLFM_PREPARE

37

Link

File

The

link

file

log

record

is

written

when

an

insert

or

an

update

on

a

table

with

a

DATALINK

column

creates

a

link

to

a

file.

One

log

record

is

written

for

each

new

link

that

is

created.

This

log

record

is

only

used

for

undo.

Table

144.

Link

File

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DLMLogRecordHeader

0(4)

ServerId

sqlint32

4(4)

ReadOnly

int

8(4)

AuthId

char

[]

12(8)

GroupId

char

[]

20(17)

Utility

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

533

Table

144.

Link

File

Log

Record

Structure

(continued)

Description

Type

Offset

(Bytes)

Operation

Type

(See

Table

145.)

char

[]

37(1)

AccessControl

unsigned

short

38(2)

PrefixId

char

[]

40(9)

padding

char

[]

49(3)

RecoveryId

char

[]

52(7)

padding

char

[]

59(1)

Time

stamp

sqluint32

60(4)

StemNameLen

sqluint32

64(4)

StemName

variable

68(variable)

ServerNameLen1

sqluint32

variable(4)

PrefixNameLen1

sqluint32

variable(4)

ServeNamePrefixName1

variable

variable(variable)

Total

Length:

68

plus

StemNameLen

if

non-progagatable

(76

plus

StemNameLen

plus

ServerNameLen

plus

PrefixNameLen

if

propagatable)

Notes:

1.

If

the

log

record

is

propagatable.

Table

145.

Link

File

Log

Record

Structure

Operation

Types

and

Values

Identifier

Value

LINK_FILE_ONLY

(value

constructed

by

DLVALUE)

0

LINK_NEW_VERSION

(value

constructed

by

DLNEWCOPY)

10

LINK_PREVIOUS_VERSION

(value

constructed

by

DLPREVIOUSCOPY)

20

LINK_REPLACE_CONTENT

(value

constructed

by

DLREPLACECONTENT)

30

Unlink

File

The

unlink

file

log

record

is

written

when

a

delete

or

an

update

on

a

table

with

a

DATALINK

column

drops

a

link

to

a

file.

One

log

record

is

written

for

each

link

that

is

dropped.

This

log

record

is

only

used

for

undo.

Table

146.

Unlink

File

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DLMLogRecordHeader

0(4)

ServerId

sqlint32

4(4)

PrefixId

char

[]

8(9)

Operation

type

(See

Table

147

on

page

535.)

char

[]

17(1)

padding

char

[]

18(2)

RecoveryId

char

[]

20(7)

Datalink

Manager

Log

Records

534

Administrative

API

Reference

Table

146.

Unlink

File

Log

Record

Structure

(continued)

Description

Type

Offset

(Bytes)

padding

char

[]

27(1)

Time

stamp

sqluint32

28(4)

StemNameLen

sqluint32

32(4)

StemName

variable

36(variable)

poolID1

unsigned

short

variable(2)

objectID1

unsigned

short

variable(2)

colNum1

unsigned

short

variable(2)

padding1

char

[]

variable(2)

ServerNameLen1

sqluint32

variable(4)

PrefixNameLen1

sqluint32

variable(4)

ServerNamePrefixName1

variable

variable(variable)

Total

Length:

36

plus

StemNameLen

if

non-propagatable

(52

plus

StemNameLen

plus

ServerNameLen

plus

PrefixNameLen

if

propagatable)

Notes:

1.

If

the

log

record

is

propagatable.

Table

147.

Link

File

Log

Record

Structure

Operation

Types

and

Values

Identifier

Value

UNLINK_REGULAR_FILE

0

UNLINK_UPDATE_IN_PLACE_FILE

10

Delete

Group

The

delete

group

log

record

is

written

when

a

table

with

DATALINK

columns

(having

the

file

link

control

attribute)

is

dropped.

One

log

record

is

written

for

each

such

DATALINK

column

for

each

DB2

Data

Links

Manager

configured

to

the

database.

For

a

given

DB2

Data

Links

Manager,

the

log

record

is

written

only

if

that

DB2

Data

Links

Manager

has

the

group

defined

on

it

when

the

table

is

dropped.

This

log

record

is

only

used

for

undo.

Table

148.

Delete

Group

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DLMLogRecordHeader

0(4)

ServerId

sqlint32

4(4)

RecoveryId

char

[]

8(7)

padding

char

[]

15(1)

GroupId

char

[]

16(17)

padding

char

[]

33(3)

Total

Length:

36

bytes

Delete

PGroup

The

delete

pgroup

log

record

is

written

when

a

table

space

is

dropped.

One

log

record

is

written

for

each

DB2

Data

Links

Manager

configured

to

the

database.

For

a

given

DB2

Data

Links

Manager,

the

log

record

is

written

only

if

that

DB2

Data

Links

Manager

has

the

pgroup

defined

on

it

when

the

table

space

is

dropped.

This

Datalink

Manager

Log

Records

Appendix

F.

DB2

UDB

Log

Records

535

log

record

is

only

used

for

undo.

Table

149.

Delete

PGroup

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DLMLogRecordHeader

0(4)

ServerId

sqlint32

4(4)

poolLifeLSN

SQLU_LSN

8(6)

poolId

unsigned

short

14(2)

RecoveryId

char

[]

16(7)

padding

char

[]

23(1)

Total

Length:

24

bytes

DLFM

Prepare

The

DLFM

prepare

log

record

is

written

during

the

prepare

phase,

when

a

two-phase

commit

is

used

for

transactions

involving

DB2

Data

Links

Manager.

It

is

used

to

recreate

a

transaction

for

DB2

Data

Links

Managers

that

are

in-doubt.

Table

150.

DLFM

Prepare

Log

Record

Structure

Description

Type

Offset

(Bytes)

Log

header

DLMLogRecordHeader

0(4)

NumDLFMs

unsigned

short

4(4)

ServerIds

variable

8(variable)

Total

Length:

8

bytes

plus

(NumDLFMs

*

4)

Related

reference:

v

“db2ReadLog

-

Asynchronous

Read

Log”

on

page

198

Datalink

Manager

Log

Records

536

Administrative

API

Reference

Appendix

G.

Application

migration

Administrative

APIs

and

application

migration

This

section

describes

issues

that

should

be

considered

before

migrating

an

application

to

Version

8.

There

are

four

possible

operating

scenarios:

1.

Running

pre-Version

8

applications

against

databases

that

have

not

been

migrated

2.

Running

pre-Version

8

applications

against

migrated

databases

3.

Updating

applications

with

Version

8

APIs

4.

Running

Version

8

applications

against

migrated

databases.

The

first

and

the

fourth

are

consistent

operating

environments

that

do

not

require

qualification.

The

second,

in

which

only

the

databases

have

been

migrated,

should

work

without

changes

to

any

application,

because

back-level

applications

are

supported.

However,

as

with

any

new

version,

a

small

number

of

incompatibilities

can

occur.

For

the

third

scenario,

in

which

applications

are

to

be

updated

with

Version

8

APIs,

the

following

points

should

be

considered:

v

All

pre-Version

8

APIs

that

have

been

discontinued

in

Version

8

are

still

defined

in

the

Version

8

header

files,

so

that

older

applications

will

compile

and

link

with

Version

8

headers.

v

Discontinued

APIs

should

be

removed

from

applications

as

soon

as

possible

to

enable

these

applications

to

take

full

advantage

of

the

new

functions

available

in

Version

8,

and

to

position

the

applications

for

future

enhancements.

v

The

names

of

the

APIs

listed

below

have

changed

because

of

new

function

in

Version

8.

Users

should

scan

for

these

names

in

their

application

source

code

to

identify

the

changes

required

following

Version

8

migration

of

the

application.

APIs

that

are

not

listed

do

not

require

changes

following

migration

of

an

application.

Note

that

an

application

may

contain

the

generic

version

of

an

API

call,

depending

on

the

application

programming

language

being

used.

In

all

cases,

the

generic

version

of

the

API

name

is

identical

to

the

C

version

of

the

name,

with

the

exception

that

the

fourth

character

is

always

g.

Related

reference:

v

“Changed

APIs

and

Data

Structures”

on

page

537

Changed

APIs

and

Data

Structures

Table

151.

Back-level

Supported

APIs

and

Data

Structures

API

or

Data

Structure

(Version)

Descriptive

Name

New

API

or

Data

Structure

(Version)

sqlbftsq

(V2)

Fetch

Table

Space

Query

sqlbftpq

(V5)

sqlbstsq

(V2)

Single

Table

Space

Query

sqlbstpq

(V5)

©

Copyright

IBM

Corp.

1993

-

2004

537

Table

151.

Back-level

Supported

APIs

and

Data

Structures

(continued)

API

or

Data

Structure

(Version)

Descriptive

Name

New

API

or

Data

Structure

(Version)

sqlbtsq

(V2)

Table

Space

Query

sqlbmtsq

(V5)

sqlectdd

(V2)

Catalog

Database

sqlecadb

(V5)

sqledosd

(V8.1)

Open

Database

Directory

Scan

db2DbDirOpenScan

(V8.2)

sqledgne

(V8.1)

Get

Next

Database

Directory

Entry

db2DbDirGetNextEntry

(V8.2)

sqledcls

(V8.1)

Close

Database

Directory

Scan

db2DbDirCloseScan

(V8.2)

sqlepstart

(V5)

Start

Database

Manager

db2InstanceStart

(V8)

sqlepstp

(V5)

Stop

Database

Manager

db2InstanceStop

(V8)

sqlepstr

(V2)

Start

Database

Manager

(DB2

Parallel

Edition

Version

1.2)

db2InstanceStart

(V8)

sqlestar

(V2)

Start

Database

Manager

(DB2

Version

2)

db2InstanceStart

(V8)

sqlestop

(V2)

Stop

Database

Manager

db2InstanceStop

(V8)

sqlerstd

(V5)

Restart

Database

db2DatabaseRestart

(V6)

sqlfddb

(V7)

Get

Database

Configuration

Defaults

db2CfgGet

(V8)

sqlfdsys

(V7)

Get

Database

Manager

Configuration

Defaults

db2CfgGet

(V8)

sqlfrdb

(V7)

Reset

Database

Configuration

db2CfgSet

(V8)

sqlfrsys

(V7)

Reset

Database

Manager

Configuration

db2CfgSet

(V8)

sqlfudb

(V7)

Update

Database

Configuration

db2CfgSet

(V8)

sqlfusys

(V7)

Update

Database

Manager

Configuration

db2CfgSet

(V8)

sqlfxdb

(V7)

Get

Database

Configuration

db2CfgGet

(V8)

sqlfxsys

(V7)

Get

Database

Configuration

db2CfgGet

(V8)

sqlmon

(V6)

Get/Update

Monitor

Switches

db2MonitorSwitches

(V7)

sqlmonss

(V5)

Get

Snapshot

db2GetSnapshot

(V6)

sqlmonsz

(V6)

Estimate

Size

Required

for

sqlmonss()

Output

Buffer

db2GetSnapshotSize

(V7)

sqlmrset

(V6)

Reset

Monitor

db2ResetMonitor

(V7)

sqlubkp

(V5)

Backup

Database

db2Backup

(V8)

sqlubkup

(V2)

Backup

Database

db2Backup

(V8)

sqluexpr

Export

db2Export

(V8)

sqlugrpi

(V2)

Get

Row

Partitioning

Information

(DB2

Parallel

Edition

Version

1.x)

sqlugrpn

(V5)

sqluhcls

(V5)

Close

Recovery

History

File

Scan

db2HistoryCloseScan

(V6)

sqluhget

(V5)

Retrieve

DDL

Information

From

the

History

File

db2HistoryGetEntry

(V6)

sqluhgne

(V5)

Get

Next

Recovery

History

File

Entry

db2HistoryGetEntry

(V6)

sqluhops

(V5)

Open

Recovery

History

File

Scan

db2HistoryOpenScan

(V6)

sqluhprn

(V5)

Prune

Recovery

History

File

db2Prune

(V6)

sqluhupd

(V5)

Update

Recovery

History

File

db2HistoryUpdate

(V6)

sqluimpr

Import

db2Import

(V8)

sqluload

(V7)

Load

db2Load

(V8)

sqluqry

(V5)

Load

Query

db2LoadQuery

(V6)

sqlureot

(V7)

Reorganize

Table

db2Reorg

(V8)

sqlurestore

(V7)

Restore

Database

db2Restore

(V8)

sqlurlog

(V7)

Asynchronous

Read

Log

db2ReadLog

(V8)

sqluroll

(V7)

Rollforward

Database

db2Rollforward

(V8)

538

Administrative

API

Reference

|||

|||
|

|||

|||

|||

Table

151.

Back-level

Supported

APIs

and

Data

Structures

(continued)

API

or

Data

Structure

(Version)

Descriptive

Name

New

API

or

Data

Structure

(Version)

sqlursto

(V2)

Restore

Database

sqlurst

(V5)

sqlustat

(V7)

Runstats

db2Runstats

(V8)

sqlxhcom

(V2)

Commit

an

Indoubt

Transaction

sqlxphcm

(V5)

sqlxhqry

(V2)

List

Indoubt

Transactions

sqlxphqr

(V5)

sqlxhrol

(V2)

Roll

Back

an

Indoubt

Transaction

sqlxphrl

(V5)

sqlxphqr

(V7)

List

an

Indoubt

Transaction

db2XaListIndTrans

(V8)

SQLB-TBSQRY-DATA

(V2)

Table

space

data

structure.

SQLB-TBSPQRY-DATA

(V5)

SQLE-START-OPTIONS

(V7)

Start

Database

Manager

data

structure

db2StartOptionsStruct

(V8)

SQLEDBSTOPOPT

(V7)

Start

Database

Manager

data

structure

db2StopOptionsStruct

(V8)

SQLEDBSTRTOPT

(V2)

Start

Database

Manager

data

structure

(DB2

Parallel

Edition

Version

1.2)

db2StartOptionsStruct

(V8)

SQLEDINFO

(v8.1)

Get

Next

Database

Directory

Entry

data

structure

db2DbDirInfo

(V8.2)

SQLUEXPT-OUT

Export

output

structure

db2ExportOut

(V8.2)

SQLUHINFO

and

SQLUHADM

(V5)

History

file

data

structures

db2HistData

(V6)

SQLUIMPT-IN

Import

input

structure

db2ImportIn

(V8.2)

SQLUIMPT-OUT

Import

output

structure

db2ImportOut

(V8.2)

SQLULOAD-IN

(V7)

Load

input

structure

db2LoadIn

(V8)

SQLULOAD-OUT

(V7)

Load

output

structure

db2LoadOut

(V8)

SQLXA-RECOVER

(V7)

Transaction

API

structure

db2XaRecoverStruct

Table

152.

Back-level

Unsupported

APIs

Name

Descriptive

Name

APIs

Supported

in

V8

sqlufrol/sqlgfrol

Roll

Forward

Database

(DB2

Version

1.1)

db2Rollforward

sqluprfw

Rollforward

Database

(DB2

Parallel

Edition

Version

1.x)

db2Rollforward

sqlurfwd/sqlgrfwd

Roll

Forward

Database

(DB2

Version

1.2)

db2Rollforward

sqlurllf/sqlgrfwd

Rollforward

Database

(DB2

Version

2)

db2Rollforward

Related

reference:

v

“Administrative

APIs

and

application

migration”

on

page

537

Appendix

G.

Application

migration

539

||
|
|

|||

|||

|||

540

Administrative

API

Reference

Appendix

H.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

concepts:

v

“CLI

sample

programs”

in

the

CLI

Guide

and

Reference,

Volume

1

v

“Java

sample

programs”

in

the

Application

Development

Guide:

Building

and

Running

Applications

v

“DB2

Information

Center”

on

page

542

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

559

©

Copyright

IBM

Corp.

1993

-

2004

541

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Invoking

message

help

from

the

command

line

processor”

on

page

560

v

“Invoking

command

help

from

the

command

line

processor”

on

page

560

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

561

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

553

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

542

Administrative

API

Reference

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

543

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

552

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

546

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

548

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

Appendix

H.

DB2

Universal

Database

technical

information

543

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

544

Administrative

API

Reference

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

542

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

546

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

548

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Appendix

H.

DB2

Universal

Database

technical

information

545

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

546

Administrative

API

Reference

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center”

on

page

542

v

“DB2

Information

Center

installation

scenarios”

on

page

543

Appendix

H.

DB2

Universal

Database

technical

information

547

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

Related

tasks:

v

“Installing

DB2

using

a

response

file

(UNIX)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

552

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

548

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

548

Administrative

API

Reference

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Appendix

H.

DB2

Universal

Database

technical

information

549

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

Related

concepts:

v

“DB2

Information

Center”

on

page

542

v

“DB2

Information

Center

installation

scenarios”

on

page

543

Related

tasks:

v

“Installing

a

DB2

product

using

a

response

file

(Windows)”

in

the

Installation

and

Configuration

Supplement

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

552

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

546

Related

reference:

v

“db2rspgn

-

Response

File

Generator

Command

(Windows)”

in

the

Command

Reference

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

550

Administrative

API

Reference

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

542

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

552

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

559

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

551

v

“Invoking

message

help

from

the

command

line

processor”

on

page

560

v

“Invoking

command

help

from

the

command

line

processor”

on

page

560

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

561

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Appendix

H.

DB2

Universal

Database

technical

information

551

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

543

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

546

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

548

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

Related

concepts:

v

“DB2

Information

Center”

on

page

542

552

Administrative

API

Reference

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

products.

Table

153.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Table

154.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

Appendix

H.

DB2

Universal

Database

technical

information

553

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order

Table

154.

Administration

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

155.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

554

Administrative

API

Reference

Table

155.

Application

development

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

156.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

157.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Appendix

H.

DB2

Universal

Database

technical

information

555

Table

158.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

159.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

160.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

556

Administrative

API

Reference

Table

160.

Optional

component

information

(continued)

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

161.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

541

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

558

v

“Ordering

printed

DB2

books”

on

page

558

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

559

Appendix

H.

DB2

Universal

Database

technical

information

557

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

542

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

558

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

553

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

558

Administrative

API

Reference

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

558

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

553

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Appendix

H.

DB2

Universal

Database

technical

information

559

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Invoking

message

help

from

the

command

line

processor”

on

page

560

v

“Invoking

command

help

from

the

command

line

processor”

on

page

560

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

561

v

“How

to

use

the

DB2

UDB

help:

Common

GUI

help”

v

“Setting

up

access

to

DB2

contextual

help

and

documentation:

Common

GUI

help”

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

560

Administrative

API

Reference

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

559

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Invoking

message

help

from

the

command

line

processor”

on

page

560

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

561

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

550

v

“Invoking

message

help

from

the

command

line

processor”

on

page

560

v

“Invoking

command

help

from

the

command

line

processor”

on

page

560

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Appendix

H.

DB2

Universal

Database

technical

information

561

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

542

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

562

Administrative

API

Reference

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

564.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

564.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Appendix

H.

DB2

Universal

Database

technical

information

563

|
|
|
|

|
|

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

564

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

564

Administrative

API

Reference

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

Appendix

H.

DB2

Universal

Database

technical

information

565

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

concepts:

v

“Accessibility”

on

page

563

Related

tasks:

v

“Contents

:

Common

help”

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

566

Administrative

API

Reference

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

Appendix

I.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1993

-

2004

567

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

568

Administrative

API

Reference

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Appendix

I.

Notices

569

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

570

Administrative

API

Reference

Appendix

J.

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1993

-

2004

571

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

572

Administrative

API

Reference

Index

A
abnormal

termination
restart

API

46

accessibility
dotted

decimal

syntax

diagrams

564

features

563

Activate

Database

API

296

Add

Contact

API

15

Add

Contact

Group

API

16

add

long

field

record

log

record

509

Add

Node

API

300

Administration

Message

Write

API

18

alter

table

add

columns

log

record

509

alter

table

attribute

log

record

509

anyorder

file

type

modifier

153

APIs
back

level

537

Change

Isolation

Level

(REXX)

395

db2AddContact

15

db2AddContactGroup

16

db2AdminMsgWrite

18

db2ArchiveLog

19

db2AutoConfig

21

db2AutoConfigFreeMemory

25

db2Backup

26

db2CfgGet

33

db2CfgSet

36

db2ConvMonStream

38

db2DatabasePing

41

db2DatabaseQuiesce

43

db2DatabaseRestart

46

db2DatabaseUnquiesce

45

db2DropContact

55

db2DropContactGroup

56

db2GetAlertCfg

68

db2GetAlertCfgFree

71

db2GetContactGroup

72

db2GetContactGroups

74

db2GetContacts

75

db2GetHealthNotificationList

77

db2GetRecommendations

78

db2GetRecommendationsFree

80

db2GetSnapshot

81

db2GetSnapshotSize

84

db2GetSyncSession

87

db2HADRStart

88

db2HADRStop

90

db2HADRTakeover

91

db2HistoryCloseScan

93

db2HistoryGetEntry

94

db2HistoryOpenScan

97

db2HistoryUpdate

101

db2Inspect

123

db2InstanceQuiesce

129

db2InstanceStart

131

db2InstanceStop

135

db2InstanceUnquiesce

139

db2LdapCatalogDatabase

140

db2LdapCatalogNode

142

db2LdapDeregister

143

db2LdapRegister

144

APIs

(continued)
db2LdapUncatalogDatabase

147

db2LdapUncatalogNode

148

db2LdapUpdate

149

db2LdapUpdateAlternateServerForDB

152

db2Load

153

db2LoadQuery

187

db2MonitorSwitches

191

db2Prune

194

db2QuerySatelliteProgress

196

db2ReadLog

198

db2ReadLogNoConn

200

db2ReadLogNoConnInit

203

db2ReadLogNoConnTerm

205

db2Recover

206

db2Reorg

211

db2ResetAlertCfg

217

db2ResetMonitor

218

db2Restore

221

db2Rollforward

232

db2Runstats

241

db2SetSyncSession

249

db2SetWriteForDB

250

db2SyncSatellite

251

db2SyncSatelliteStop

252

db2SyncSatelliteTest

253

db2UpdateAlertCfg

254

db2UpdateAlternateServerForDB

258

db2UpdateContact

260

db2UpdateContactGroup

261

db2UpdateHealthNotificationList

263

db2UtilityControl

265

db2VendorGetNextObj

485

db2VendorQueryApiVersion

485

db2XaGetInfo

460

db2XaListIndTrans

461

heuristic

459

precompiler

customization

467

sqlabndx

266

sqlaintp

269

sqlaprep

271

sqlarbnd

273

sqlbctcq

276

sqlbctsq

277

sqlbftcq

278

sqlbftpq

280

sqlbgtss

282

sqlbmtsq

283

sqlbotcq

285

sqlbotsq

287

sqlbstpq

289

sqlbstsc

291

sqlbtcq

293

sqlcspqy

295

sqle_activate_db

296

sqle_deactivate_db

298

sqleaddn

300

sqleatcp

302

sqleatin

305

sqleAttachToCtx

500

sqleBeginCtx

501

APIs

(continued)
sqlecadb

308

sqlecran

313

sqlecrea

314

sqlectnd

321

sqledcgd

325

sqledcls

48

sqleDetachFromCtx

502

sqledgne

49

sqledosd

53

sqledpan

327

sqledreg

329

sqledrpd

330

sqledrpn

332

sqledtin

334

sqleEndCtx

503

sqlefmem

335

sqlefrce

336

sqlegdad

339

sqlegdcl

341

sqlegdel

342

sqlegdge

344

sqlegdgt

345

sqlegdsc

347

sqleGetCurrentCtx

504

sqlegins

348

sqleInterruptCtx

505

sqleintr

349

sqleisig

351

sqlemgdb

352

sqlencls

354

sqlengne

355

sqlenops

357

sqleqryc

359

sqleqryi

360

sqleregs

362

sqlesact

364

sqlesdeg

365

sqlesetc

367

sqleseti

369

sqleSetTypeCtx

506

sqleuncd

371

sqleuncn

373

sqlgaddr

375

sqlgdref

375

sqlgmcpy

376

sqlogstt

377

sqluadau

379

sqludrdt

381

sqluexpr

57

sqlugrpn

384

sqlugtpi

387

sqluimpr

104

sqlurcon

389

sqluvdel

484

sqluvend

482

sqluvget

479

sqluvint

476

sqluvput

480

sqluvqdp

391

sqlxhfrg

464

©

Copyright

IBM

Corp.

1993

-

2004

573

APIs

(continued)
sqlxphcm

465

sqlxphrl

466

summary

1

application

design
installing

signal

handler

routine

351

pointer

manipulation

375

providing

pointer

manipulation

375,

376

setting

collating

sequence

314

application

migration

537

applications
access

through

database

manager

266

Archive

Active

Log

API

19

Asynchronous

Read

Log

API

198

Attach

and

Change

Password

API

302

Attach

API

305

Attach

to

Context

API

500

authority

levels
retrieving

for

user

379

Autoconfigure

API

21

B
backout

free

log

record

509

backup

and

restore

vendor

products

469

Backup

database

API

26

backup

end

log

record

509

binarynumerics

file

type

modifier

153

Bind

API
sqlabndx

266

binding
application

programs

to

databases

266

defaults

266

errors

314

C
case

sensitivity
in

naming

conventions

457

catalog

database

API

308

catalog

database

LDAP

entry

API

140

catalog

DCS

database

API

339

catalog

node

API

321

catalog

node

LDAP

entry

API

142

change

database

comment

API

325

change

isolation

level

REXX

API

395

chardel

file

type

modifier
export

57

import

104

load

153

close

database

directory

scan

API

48

close

DCS

directory

scan

API

341

close

history

file

scan

API

93

close

node

directory

scan

API

354

close

table

space

container

query

API

276

close

table

space

query

API

277

COBOL

language
pointer

manipulation

375,

376

code

page

file

type

modifier

153

code

pages
Export

API

57

Import

API

104

coldel

file

type

modifier
export

57

import

104

load

153

collating

sequences
user-defined

314

columns
specifying

for

import

104

command

help
invoking

560

comments
database,

changing

325

commit

an

indoubt

transaction

API

465

compound

file

type

modifier

104

Compression

plug-in

interface

492

concurrency

control

395

convert

monitor

stream

API

38

copy

memory

API

376

create

and

attach

to

an

application

context

API

501

create

database

API
description

314

create

database

at

node

API

313

create

index

log

record

509

create

table

log

record

509

D
Data

Links

Manager
log

records

509

DATA

structure

491

data

structures
DB2-INFO

487

db2HistData

397

INIT-OUTPUT

490

RETURN-CODE

491

SQL-AUTHORIZATIONS

401

SQL-DIR-ENTRY

402

SQLA-FLAGINFO

403

SQLB-TBS-STATS

404

SQLB-TBSCONTQRY-DATA

405

SQLB-TBSPQRY-DATA

407

SQLCA

410

SQLCHAR

411

SQLDA

412

SQLDCOL

413

SQLE-ADDN-OPTIONS

416

SQLE-CLIENT-INFO

417

SQLE-CONN-SETTING

419

SQLE-NODE-APPC

422

SQLE-NODE-APPN

423

SQLE-NODE-CPIC

424

SQLE-NODE-IPXSPX

424

SQLE-NODE-LOCAL

425

SQLE-NODE-NETB

426

SQLE-NODE-NPIPE

426

SQLE-NODE-STRUCT

427

SQLE-NODE-TCPIP

428

SQLE-REG-NWBINDERY

429

SQLEDBTERRITORYINFO

430

SQLENINFO

435

SQLETSDESC

430

SQLFUPD

437

SQLM-COLLECTED

443

SQLM-RECORDING-GROUP

444

SQLMA

446

SQLOPT

448

data

structures

(continued)
SQLU-LSN

449

SQLU-MEDIA-LIST

450

SQLU-RLOG-INFO

453

SQLUPI

454

SQLXA-XID

455

used

by

vendor

APIs

469

VENDOR-INFO

489

database

configuration

file
valid

entries

437

Database

Connection

Services

(DCS)

directory
cataloging

entries

339

copy

entries

from

345

removing

entries

342

retrieving

entries

from

344

database

directories
retrieving

next

entry

49

database

manager
log

records

509

Database

Quiesce

API

43

Database

Unquiesce

API

45

databases
binding

application

programs

266

concurrent

request

processing

395

creating

314

deleting

330

deleting,

ensuring

recovery

with

log

files

330

dropping

330

exporting

table

to

a

file

57

importing

file

to

table

104

isolating

data

395

dateformat

file

type

modifier

104,

153

datesiso

file

type

modifier

57,

104,

153

DB2

books
printing

PDF

files

558

DB2

Connect
supported

connections

339

DB2

Data

Links

Manager
log

records
delete

group

509

delete

pgroup

509

description

509

DLFM

prepare

509

link

file

509

DB2

Information

Center

542

invoking

550

DB2

tutorials

561

DB2-INFO

structure

487

db2AddContact

API

15

db2AddContactGroup

API

16

db2AdminMsgWrite

API

18

db2ArchiveLog

API

19

db2AutoConfig

API

21

db2AutoConfigFreeMemory

API

25

db2Backup

API

26

db2CfgGet

API

33

db2CfgSet

API

36

db2ConvMonStream

API

38

db2DatabasePing

API

41

db2DatabaseQuiesce

API

43

db2DatabaseRestart

API

46

db2DatabaseUnquiesce

API

45

db2DropContact

API

55

db2DropContactGroup

API

56

db2GetAlertCfg

API

68

574

Administrative

API

Reference

db2GetAlertCfgFree

API

71

db2GetContactGroup

API

72

db2GetContactGroups

API

74

db2GetContacts

API

75

db2GetHealthNotificationList

API

77

db2GetRecommendations

API

78

db2GetRecommendationsFree

API

80

db2GetSnapshot

API

81

db2GetSnapshotSize

API

84

db2GetSyncSession

API

87

db2HADRStart

API

88

db2HADRStop

API

90

db2HADRTakeover

API

91

db2HistData

structure

397

db2HistoryCloseScan

API

93

db2HistoryGetEntry

API

94

db2HistoryOpenScan

API

97

db2HistoryUpdate

API

101

db2Inspect

API

123

db2InstanceQuiesce

API

129

db2InstanceStart

API

131

db2InstanceStop

API

135

db2InstanceUnquiesce

API

139

db2LdapCatalogDatabase

API

140

db2LdapCatalogNode

API

142

db2LdapDeregister

API

143

db2LdapRegister

API

144

db2LdapUncatalogDatabase

API

147

db2LdapUncatalogNode

API

148

db2LdapUpdate

API

149

db2LdapUpdateAlternateServerForDB

152

db2Load

API

153

db2LoadQuery

API

187

db2MonitorSwitches

API

191

db2Prune

API

194

db2QuerySatelliteProgress

API

196

db2ReadLog

API

198

db2ReadLogNoConn

API

200

db2ReadLogNoConnInit

API

203

db2ReadLogNoConnTerm

API

205

db2Recover

API

206

db2Reorg

API

211

db2ResetAlertCfg

API

217

db2ResetMonitor

API

218

db2Restore

API

221

db2Rollforward

API

232

db2Runstats

API

241

db2SetSyncSession

API

249

db2SetWriteForDB

API

250

db2SyncSatellite

API

251

db2SyncSatelliteStop

API

252

db2SyncSatelliteTest

API

253

db2UpdateAlertCfg

API

254

db2UpdateAlternateServerForDB

API

258

db2UpdateContact

API

260

db2UpdateContactGroup

API

261

db2UpdateHealthNotificationList

API

263

db2UtilityControl

API

265

db2VendorGetNextObj

API

485

db2VendorQueryApiVersion

API

485

db2XaGetInfo

API

460

db2XaListIndTrans

API

461

Deactivate

Database

API

298

decplusblank

file

type

modifier

57,

104,

153

decpt

file

type

modifier

57,

104,

153

Delete

Committed

Session

API

484

delete

group

log

record

509

delete

long

field

record

log

record

509

delete

pgroup

log

record

509

delete

record

log

record

509

delprioritychar

file

type

modifier

104,

153

Dereference

Address

API

375

Deregister

API

329

Detach

and

Destroy

Application

Context

API

503

Detach

API

334

Detach

From

Context

API

502

directories
cataloging

321

Database

Connection

Services
retrieving

entries

from

344

Database

Connection

Services

(DCS),

cataloging

entries

339

Database

Connection

Services

(DCS),

uncataloging

entries

342

Database

Connection

Services,

copy

entries

from

345

deleting

entries

373

local

database

53

Open

DCS

Directory

Scan

API

347

retrieving

entries

from

355

retrieving

next

entry

from

49

system

database

53

system

database,

cataloging

308

uncataloging

371

disability

563

discontinued

APIs

and

data

structures

537

dldel

file

type

modifier

57,

104,

153

DLFM

(Data

Links

File

Manager)
prepare

log

record

509

documentation
displaying

550

dotted

decimal

syntax

diagrams

564

Drop

Contact

API

55

Drop

Contact

Group

API

56

Drop

Database

API

330

Drop

Database

at

Node

API

327

drop

index

log

record

509

Drop

Node

Verify

API

332

DROP

statement
tables

log

record

509

dumpfile

file

type

modifier

153

E
error

messages
database

description

block

structure

314

dropping

remote

database

330

during

binding

266

during

rollforward

232

retrieving

from

SQLCODE

field

269

return

codes

269,

377

Estimate

Size

Required

for

db2GetSnapshot

Output

Buffer

API

84

Export

API

57

exporting
database

tables

files

57

exporting

(continued)
file

type

modifiers

for

57

specifying

column

names

57

F
fastparse

file

type

modifier

153

Fetch

Table

Space

Container

Query

API

278

Fetch

Table

Space

Query

API

280

file

type

modifiers
Export

API

57

Import

API

104

Load

API

153

Force

Application

API

336

forcein

file

type

modifier

104,

153

Forget

Transaction

Status

API

464

formatted

user

data

record

log

record

509

FORTRAN

language
pointer

manipulation

375,

376

Free

Autoconfigure

Memory

API

25

Free

db2GetRecommendations

Memory

API

80

Free

Get

Alert

Configuration

API

71

Free

Memory

API

335

G
generatedignore

file

type

modifier

104,

153

generatedmissing

file

type

modifier

104,

153

generatedoverride

file

type

modifier

153

Get

Address

API

375

Get

Alert

Configuration

API

68

Get

Authorizations

API

379

Get

Configuration

Parameters

API

33

Get

Contact

Group

API

72

Get

Contact

Groups

API

74

Get

Contacts

API

75

Get

Current

Context

API

504

Get

DCS

Directory

Entries

API

345

Get

DCS

Directory

Entry

for

Database

API

344

Get

Error

Message

API

269

Get

Health

Notification

List

API

77

Get

Information

for

Resource

Manager

API

460

Get

Instance

API

348

Get

Next

Database

Directory

Entry

API

49

Get

Next

History

File

Entry

API

94

Get

Next

Node

Directory

Entry

API

355

Get

Recommendations

for

a

Health

Indicator

in

Alert

State

API

78

Get

Row

Partitioning

Number

API

384

Get

Satellite

Sync

Session

API

87

Get

Snapshot

API

81

Get

SQLSTATE

Message

API

377

Get

Table

Space

Statistics

API

282

Get/Update

Monitor

Switches

API

191

global

pending

list

log

record

509

Index

575

H
help

displaying

550,

552

for

commands
invoking

560

for

messages
invoking

560

for

SQL

statements
invoking

561

heuristic

abort

log

record

509

heuristic

commit

log

record

509

host

systems
connections

supported

by

DB2

Connect

339

HTML

documentation
updating

551

I
identityignore

file

type

modifier

104,

153

identitymissing

file

type

modifier

104,

153

identityoverride

file

type

modifier

153

implieddecimal

file

type

modifier

104,

153

Import

API

104

import

replace

(truncate)

log

record

509

importing
code

page

considerations

104

database

access

through

DB2

Connect

104

DB2

Data

Links

Manager

considerations

104

file

to

database

table

104

file

type

modifiers

for

104

PC/IXF,

multiple-part

files

104

restrictions

104

to

a

remote

database

104

to

a

table

or

hierarchy

that

does

not

exist

104

to

typed

tables

104

indexfreespace

file

type

modifier

153

indexixf

file

type

modifier

104

indexschema

file

type

modifier

104

Information

Center
installing

543,

546,

548

INIT-INPUT

structure

490

INIT-OUTPUT

structure

490

Initialize

and

Link

to

Device

API

476

Initialize

Read

Log

Without

a

Database

Connection

API

203

initialize

table

log

record

509

insert

record

log

record

509

Inspect

database

API

123

Install

Signal

Handler

API

351

installing
Information

Center

543,

546,

548

Instance

Quiesce

API

129

Instance

Start

API

131

Instance

Stop

API

135

Instance

Unquiesce

API

139

Interrupt

API

349

Interrupt

Context

API

505

invoking
command

help

560

invoking

(continued)
message

help

560

SQL

statement

help

561

isolation

levels
changing

395

K
keepblanks

file

type

modifier

104,

153

keyboard

shortcuts
support

for

563

L
LDAP

Deregister

Server

API

143

LDAP

Register

Server

API

144

LDAP

Update

Alternate

Server

For

Database

API

152

LDAP

Update

Server

API

149

link

file

log

record

509

List

DRDA

Indoubt

Transactions

API

295

List

Indoubt

Transactions

API

461

Load

API

153

load

delete

start

compensation

log

record

509

load

pending

list

log

record

509

Load

Query

API

187

load

start

log

record

509

load

utility
file

type

modifiers

for

153

lobsinfile
Export

API

57

lobsinfile

file

type

modifier

104,

153

local
database

directory
open

scan

53

local

pending

list

log

record

509

locks
changing

395

log

records
adding

long

field

records

509

backout

free

509

backup

end

509

changing
table

add

columns

509

table

attributes

509

creating
index

509

table

509

data

manager

509

datalink

manager

509

DB2

logs

509

deleting
groups

509

long

field

records

509

pgroups

509

records

509

DLFM

prepare

509

dropping
index

509

tables

509

global

pending

list

509

headers

509

heuristic

abort

509

heuristic

commit

509

log

records

(continued)
import

replace

(truncate)

509

initialize

tables

509

insert

records

509

link

files

509

load

delete

start

compensation

509

load

pending

list

509

load

start

509

local

pending

list

509

long

field

manager

509

migration

end

509

migration

start

509

MPP

coordinator

commit

509

MPP

subordinator

commit

509

MPP

subordinator

prepare

509

non-update

long

field

record

509

normal

abort

509

normal

commit

509

reorg

table

509

rollback

add

columns

509

rollback

create

table

509

rollback

delete

record

509

rollback

drop

table

509

rollback

insert

509

rollback

update

record

509

table

load

delete

start

509

table

space

roll-forward

to

PIT

begins

509

table

space

roll-forward

to

PIT

ends

509

table

space

rolled

forward

509

transaction

manager

509

unlink

file

509

update

records

509

utility

509

XA

prepare

509

log

sequence

number

(LSN)

509

logs
recovery,

allocating

314

long

field

manager

log

records
add

long

field

record

509

delete

long

field

record

509

description

509

non-update

long

field

record

509

LSN

(log

sequence

number)

509

M
message

help
invoking

560

Migrate

Database

API

352

migration
applications

537

migration

begin

log

record

509

migration

end

log

record

509

modifiers

file

type
export

utility

57

for

import

utility

104

Load

API

153

moving

data
between

databases

104

MPP

coordinator

commit

log

record

509

MPP

subordinator

commit

log

record

509

MPP

subordinator

prepare

log

record

509

576

Administrative

API

Reference

multiple

concurrent

requests
changing

isolation

levels

395

N
naming

conventions
database

manager

objects

457

nochecklengths

file

type

modifier

104,

153

nodefaults

file

type

modifier

104

nodes
directory

321

directory

entries,

retrieving

355

Open

DCS

Directory

Scan

API

347

SOCKS

427,

428

nodoubledel

file

type

modifier

57,

104,

153

noeofchar

file

type

modifier

104,

153

noheader

file

type

modifier

153

non-propagatable

transactions

509

non-update

long

field

record

log

record

509

normal

abort

log

record

509

normal

commit

log

record

509

norowwarnings

file

type

modifier

153

notypeid

file

type

modifier

104

nullindchar

file

type

modifier

104,

153

O
online

help,

accessing

559

Open

Database

Directory

Scan

API

53

Open

DCS

Directory

Scan

API

347

Open

History

File

Scan

API

97

Open

Node

Directory

Scan

API

357

Open

Table

Space

Container

Query

API

285

Open

Table

Space

Query

API

287

ordering

DB2

books

558

P
packages

creating

266

recreating

273

packeddecimal

file

type

modifier

153

pagefreespace

file

type

modifier

153

partitions
obtaining

table

information

387

passwords
changing

with

ATTACH

302

performance
tuning

by

reorganizing

tables

211

Ping

Database

API

41

pointer

manipulation

375,

376

Precompile

Program

API

271

printed

books,

ordering

558

printing
PDF

files

558

privileges
database

granted

when

creating

314

direct

379

indirect

379

privileges

(continued)
retrieving

for

a

user

379

problem

determination
online

information

562

tutorials

562

propagatable

transactions

509

Prune

History

File

API

194

Q
Query

Client

API

359

Query

Client

Information

API

360

Query

Satellite

Sync

API

196

Quiesce

Table

Spaces

for

Table

API

391

R
Read

Log

Without

a

Database

Connection

API

200

Reading

Data

from

Device

API

479

Rebind

API

273

reclen

file

type

modifier
importing

104

Load

API

153

Reconcile

API

389

Recover

Database

API

206

Redistribute

Database

Partition

Group

API

381

redistributing

data
in

database

partition

group

381

Register

API

362

reorg

table

log

record

509

Reorganize

API

211

Reset

Alert

Configuration

API

217

Reset

Monitor

API

218

Restart

Database

API

46

Restore

database

API

221

return

codes
description

12

RETURN-CODE

structure

491

Roll

Back

an

Indoubt

Transaction

API

466

rollback

add

columns

log

record

509

rollback

create

table

log

record

509

rollback

delete

record

log

record

509

rollback

drop

table

log

record

509

rollback

insert

log

record

509

rollback

update

record

log

record

509

Rollforward

Database

API

232

Runstats

API

241

S
schemas

in

new

databases

314

Set

Accounting

String

API

364

Set

Application

Context

Type

API

506

Set

Client

API

367

Set

Client

Information

API

369

Set

Configuration

Parameters

API

36

Set

Runtime

Degree

API

365

Set

Satellite

Sync

Session

API

249

Set

Table

Space

Containers

API

291

signal

handlers
Install

Signal

Handler

API

351

Interrupt

API

349

Single

Table

Space

Query

API

289

SOCKS

node
using

427,

428

SQL

statement

help
invoking

561

SQL-AUTHORIZATIONS

structure

401

SQL-DIR-ENTRY

structure

402

SQLA-FLAGINFO

structure

403

sqlabndx

API

266

sqlaintp

API

269

sqlaprep

API

271

sqlarbnd

API

273

SQLB-TBS-STATS

structure

404

SQLB-TBSCONTQRY-DATA

structure

405

SQLB-TBSPQRY-DATA

structure

407

sqlbctcq

API

276

sqlbctsq

API

277

sqlbftcq

API

278

sqlbftpq

API

280

sqlbgtss

API

282

sqlbmtsq

API

283

sqlbotcq

API

285

sqlbotsq

API

287

sqlbstpq

API

289

sqlbstsc

API

291

sqlbtcq

API

293

SQLCA

structure

410

retrieving

error

messages

12,

269,

377

SQLCHAR

structure

411

SQLCODE

values

12

sqlcspqy

API

295

SQLDA

structure

412

SQLDCOL

structure

413

sqle_activate_db

API

296

sqle_deactivate_db

API

298

SQLE-ADDN-OPTIONS

structure

416

SQLE-CLIENT-INFO

structure

417

SQLE-CONN-SETTING

structure

419

SQLE-NODE-APPC

structure

422

SQLE-NODE-APPN

structure

423

SQLE-NODE-CPIC

structure

424

SQLE-NODE-IPXSPX

structure

424

SQLE-NODE-LOCAL

structure

425

SQLE-NODE-NETB

structure

426

SQLE-NODE-NPIPE

structure

426

SQLE-NODE-STRUCT

structure

427

SQLE-NODE-TCPIP

structure

428

SQLE-REG-NWBINDERY

structure

429

sqleaddn

API

300

sqleatcp

API

302

sqleatin

API

305

sqleAttachToCtx

API

500

sqleBeginCtx

API

501

sqlecadb

API

308

sqlecran

API

313

sqlecrea

API

314

sqlectnd

API

321

SQLEDBTERRITORYINFO

structure

430

sqledcgd

API

325

sqledcls

API

48

sqleDetachFromCtx

API

502

sqledgne

API

49

sqledosd

API

53

sqledpan

API

327

sqledreg

API

329

Index

577

sqledrpd

API

330

sqledrpn

API

332

sqledtin

API

334

sqleEndCtx

API

503

sqlefmem

API

335

sqlefrce

API

336

sqlegdad

API

339

sqlegdcl

API

341

sqlegdel

API

342

sqlegdge

API

344

sqlegdgt

API

345

sqlegdsc

API

347

sqleGetCurrentCtx

API

504

sqlegins

API

348

sqleInterruptCtx

API

505

sqleintr

API

349

sqleisig

API

351

sqlemgdb

API

352

sqlencls

API

354

sqlengne

API

355

SQLENINFO

structure

435

sqlenops

API

357

sqleqryc

API

359

sqleqryi

API

360

sqleregs

API

362

sqlesact

API

364

sqlesdeg

API

365

sqlesetc

API

367

sqleseti

API

369

sqleSetTypeCtx

API

506

SQLETSDESC

structure

430

sqleuncd

API

371

sqleuncn

API

373

SQLFUPD

structure

437

sqlgaddr

API

375

sqlgdref

API

375

sqlgmcpy

API

376

SQLM-COLLECTED

structure

443

SQLM-RECORDING-GROUP

structure

444

SQLMA

structure

446

sqlogstt

API

377

SQLOPT

structure

448

SQLSTATE
messages

12

messages,

retrieving

from

SQLSTATE

field

377

SQLU-LSN

structure

449

SQLU-MEDIA-LIST

structure

450

SQLU-RLOG-INFO

structure

453

sqluadau

API

379

sqludrdt

API

381

sqluexpr

API

57

sqlugrpn

API

384

sqlugtpi

API

387

sqluimpr

API

104

SQLUPI

structure

454

sqlurcon

API

389

sqluvdel

API

484

sqluvend

API

482

sqluvget

API

479

sqluvint

API

476

sqluvput

API

480

sqluvqdp

API

391

SQLWARN

messages

12

SQLXA-XID

structure

455

sqlxhfrg

API

464

sqlxphcm

API

465

sqlxphrl

API

466

Start

HADR

API

88

Stop

HADR

API

90

Stop

Satellite

Sync

API

252

striptblanks

file

type

modifier

104,

153

striptnulls

file

type

modifier

104,

153

Sync

Satellite

API

251

system

database

directory
cataloging

308

open

scan

53

uncataloging

371

T
Table

Space

Container

Query

API

293

Table

Space

Query

API

283

table

spaces
roll-forward

to

PIT

begins

log

record

509

roll-forward

to

PIT

ends

log

record

509

rolled

forward

log

records

509

tables
exporting

to

files

57

importing

files

104

load

delete

start

log

record

509

Take

Over

as

Primary

Database

API

91

TCP/IP
using

SOCKS

427,

428

Terminate

Read

Log

Without

a

Database

Connection

API

205

termination
abnormal

46

Test

Satellite

Sync

API

253

threads
threaded

applications

499

timeformat

file

type

modifier

104,

153

timestampformat

file

type

modifier

104,

153

totalfreespace

file

type

modifier

153

transaction

identifier

log

records

509

transaction

managers
log

records
backout

free

509

description

509

global

pending

list

509

heuristic

abort

509

heuristic

commit

509

local

pending

list

509

MPP

coordinator

commit

509

MPP

subordinator

commit

509

MPP

subordinator

prepare

509

normal

abort

509

normal

commit

509

XA

prepare

509

troubleshooting
online

information

562

tutorials

562

tutorials

561

troubleshooting

and

problem

determination

562

U
Uncatalog

Database

API

371

Uncatalog

Database

LDAP

Entry

API

147

Uncatalog

DCS

Database

API

342

Uncatalog

Node

API

373

Uncatalog

Node

LDAP

Entry

API

148

uncataloging
system

database

directory

371

unlink

file

log

record

509

Unlink

the

Device

and

Release

its

Resources

API

482

unsupported

APIs

and

data

structures

537

Update

Alert

Configuration

API

254

update

alternate

server

for

database

API

258

Update

Contact

API

260

Update

Contact

Group

API

261

Update

Health

Notification

List

API

263

Update

History

File

API

101

update

record

log

record

509

Updating
HMTL

documentation

551

usedefaults

file

type

modifier

104,

153

utility

control

API

265

utility

log

records
backup

end

509

description

509

load

delete

start

compensation

509

load

pending

list

509

load

start

509

migration

begin

509

migration

end

509

table

load

delete

start

509

table

space

roll-forward

to

PIT

begins

509

table

space

roll-forward

to

PIT

ends

509

table

space

rolled

forward

509

V
vendor

products
backup

and

restore

469

DATA

structure

491

description

469

INIT-INPUT

structure

490

operation

469

VENDOR-INFO

structure

489

W
Writing

Data

to

Device

API

480

X
XA

prepare

log

record

509

Z
zoned

decimal

file

type

modifier

153

578

Administrative

API

Reference

����

Printed

in

USA

SC09-4824-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

Ad
m

in
is

tr
at

iv
e

A
PI

R
ef

er
en

ce

Ve
rs

io
n

8.
2

	Contents
	About This Book
	Who Should Use this Book

	Chapter 1. Application Programming Interfaces
	DB2 APIs
	How the API descriptions are organized
	db2AddContact - Add Contact
	db2AddContactGroup - Add Contact Group
	db2AdminMsgWrite - Administration Message Write
	db2ArchiveLog - Archive Active Log
	db2AutoConfig - Autoconfigure
	db2AutoConfigFreeMemory - Free Autoconfigure Memory
	db2Backup - Backup database
	db2CfgGet - Get Configuration Parameters
	db2CfgSet - Set Configuration Parameters
	db2ConvMonStream - Convert Monitor Stream
	db2DatabasePing - Ping Database
	db2DatabaseQuiesce - Database Quiesce
	db2DatabaseUnquiesce - Database Unquiesce
	db2DatabaseRestart - Restart Database
	db2DbDirCloseScan - Close Database Directory Scan
	db2DbDirGetNextEntry - Get Next Database Directory Entry
	db2DbDirOpenScan - Open Database Directory Scan
	db2DropContact - Drop Contact
	db2DropContactGroup - Drop Contact Group
	db2Export - Export
	File type modifiers for export
	db2GetAlertCfg - Get Alert Configuration
	db2GetAlertCfgFree - Free Get Alert Configuration Memory
	db2GetContactGroup - Get Contact Group
	db2GetContactGroups - Get Contact Groups
	db2GetContacts - Get Contacts
	db2GetHealthNotificationList - Get Health Notification List
	db2GetRecommendations - Get Recommendations for a Health Indicator in Alert State
	db2GetRecommendationsFree - Free db2GetRecommendations Memory
	db2GetSnapshot - Get Snapshot
	db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot Output Buffer
	db2GetSyncSession - Get Satellite Sync Session
	db2HADRStart - Start HADR
	db2HADRStop - Stop HADR
	db2HADRTakeover - Take Over as Primary Database
	db2HistoryCloseScan - Close History File Scan
	db2HistoryGetEntry - Get Next History File Entry
	db2HistoryOpenScan - Open History File Scan
	db2HistoryUpdate - Update History File
	db2Import - Import
	File type modifiers for import
	db2Inspect - Inspect database
	db2InstanceQuiesce - Instance Quiesce
	db2InstanceStart - Instance Start
	db2InstanceStop - Instance Stop
	db2InstanceUnquiesce - Instance Unquiesce
	db2LdapCatalogDatabase - Catalog Database LDAP Entry
	db2LdapCatalogNode - Catalog Node LDAP Entry
	db2LdapDeregister - LDAP Deregister Server
	db2LdapRegister - LDAP Register Server
	db2LdapUncatalogDatabase - Uncatalog Database LDAP Entry
	db2LdapUncatalogNode - Uncatalog Node LDAP Entry
	db2LdapUpdate - LDAP Update Server
	db2LdapUpdateAlternateServerForDB - LDAP Update Alternate Server For Database
	db2Load - Load
	File type modifiers for load
	Delimiter restrictions for moving data
	db2LoadQuery - Load Query
	db2MonitorSwitches - Get/Update Monitor Switches
	db2Prune - Prune History File
	db2QuerySatelliteProgress - Query Satellite Sync
	db2ReadLog - Asynchronous Read Log
	db2ReadLogNoConn - Read Log Without a Database Connection
	db2ReadLogNoConnInit - Initialize Read Log Without a Database Connection
	db2ReadLogNoConnTerm - Terminate Read Log Without a Database Connection
	db2Recover - Recover database
	db2Reorg - Reorganize
	db2ResetAlertCfg - Reset Alert Configuration
	db2ResetMonitor - Reset Monitor
	db2Restore - Restore database
	db2Rollforward - Rollforward Database
	db2Runstats - Runstats
	db2SetSyncSession - Set Satellite Sync Session
	db2SetWriteForDB - Set or Resume I/O
	db2SyncSatellite - Sync Satellite
	db2SyncSatelliteStop - Stop Satellite Sync
	db2SyncSatelliteTest - Test Satellite Sync
	db2UpdateAlertCfg - Update Alert Configuration
	db2UpdateAlternateServerForDB - Update Alternate Server for Database
	db2UpdateContact - Update Contact
	db2UpdateContactGroup - Update Contact Group
	db2UpdateHealthNotificationList - Update Health Notification List
	db2UtilityControl - Utility Control
	sqlabndx - Bind
	sqlaintp - Get Error Message
	sqlaprep - Precompile Program
	sqlarbnd - Rebind
	sqlbctcq - Close Table Space Container Query
	sqlbctsq - Close Table Space Query
	sqlbftcq - Fetch Table Space Container Query
	sqlbftpq - Fetch Table Space Query
	sqlbgtss - Get Table Space Statistics
	sqlbmtsq - Table Space Query
	sqlbotcq - Open Table Space Container Query
	sqlbotsq - Open Table Space Query
	sqlbstpq - Single Table Space Query
	sqlbstsc - Set Table Space Containers
	sqlbtcq - Table Space Container Query
	sqlcspqy - List DRDA Indoubt Transactions
	sqle_activate_db - Activate Database
	sqle_deactivate_db - Deactivate Database
	sqleaddn - Add Node
	sqleatcp - Attach and Change Password
	sqleatin - Attach
	sqlecadb - Catalog Database
	sqlecran - Create Database at Node
	sqlecrea - Create Database
	sqlectnd - Catalog Node
	sqledcgd - Change Database Comment
	sqledpan - Drop Database at Node
	sqledreg - Deregister
	sqledrpd - Drop Database
	sqledrpn - Drop Node Verify
	sqledtin - Detach
	sqlefmem - Free Memory
	sqlefrce - Force Application
	sqlegdad - Catalog DCS Database
	sqlegdcl - Close DCS Directory Scan
	sqlegdel - Uncatalog DCS Database
	sqlegdge - Get DCS Directory Entry for Database
	sqlegdgt - Get DCS Directory Entries
	sqlegdsc - Open DCS Directory Scan
	sqlegins - Get Instance
	sqleintr - Interrupt
	sqleisig - Install Signal Handler
	sqlemgdb - Migrate Database
	sqlencls - Close Node Directory Scan
	sqlengne - Get Next Node Directory Entry
	sqlenops - Open Node Directory Scan
	sqleqryc - Query Client
	sqleqryi - Query Client Information
	sqleregs - Register
	sqlesact - Set Accounting String
	sqlesdeg - Set Runtime Degree
	sqlesetc - Set Client
	sqleseti - Set Client Information
	sqleuncd - Uncatalog Database
	sqleuncn - Uncatalog Node
	sqlgaddr - Get Address
	sqlgdref - Dereference Address
	sqlgmcpy - Copy Memory
	sqlogstt - Get SQLSTATE Message
	sqluadau - Get Authorizations
	sqludrdt - Redistribute Database Partition Group
	sqlugrpn - Get Row Partitioning Number
	sqlugtpi - Get Table Partitioning Information
	sqlurcon - Reconcile
	sqluvqdp - Quiesce Table Spaces for Table

	Chapter 2. Additional REXX APIs
	Change Isolation Level (REXX)

	Chapter 3. Data Structures
	db2HistData
	SQL-AUTHORIZATIONS
	SQL-DIR-ENTRY
	SQLA-FLAGINFO
	SQLB-TBS-STATS
	SQLB-TBSCONTQRY-DATA
	SQLB-TBSPQRY-DATA
	SQLCA
	SQLCHAR
	SQLDA
	SQLDCOL
	SQLE-ADDN-OPTIONS
	SQLE-CLIENT-INFO
	SQLE-CONN-SETTING
	SQLE-NODE-APPC
	SQLE-NODE-APPN
	SQLE-NODE-CPIC
	SQLE-NODE-IPXSPX
	SQLE-NODE-LOCAL
	SQLE-NODE-NETB
	SQLE-NODE-NPIPE
	SQLE-NODE-STRUCT
	SQLE-NODE-TCPIP
	SQLE-REG-NWBINDERY
	SQLEDBTERRITORYINFO
	SQLEDBDESC
	SQLENINFO
	SQLFUPD
	SQLM-COLLECTED
	SQLM-RECORDING-GROUP
	SQLMA
	SQLOPT
	SQLU-LSN
	SQLU-MEDIA-LIST
	SQLU-RLOG-INFO
	SQLUPI
	SQLXA-XID

	Appendix A. Naming Conventions
	Appendix B. Heuristic APIs
	Heuristic APIs
	db2XaGetInfo - Get Information for Resource Manager
	db2XaListIndTrans - List Indoubt Transactions
	sqlxhfrg - Forget Transaction Status
	sqlxphcm - Commit an Indoubt Transaction
	sqlxphrl - Roll Back an Indoubt Transaction

	Appendix C. Precompiler Customization APIs
	Appendix D. Backup and restore APIs for vendor products
	APIs for backup and restore to storage managers
	Operational overview
	Number of sessions
	Operation with no errors, warnings, or prompting
	Prompting mode
	Device characteristics
	If error conditions are returned to DB2
	Warning conditions

	Operational hints and tips
	History file

	Invoking a backup or a restore operation using vendor products
	The Control Center
	The command line processor (CLP)
	Backup and restore API function calls

	sqluvint - Initialize and Link to Device
	sqluvget - Reading Data from Device
	sqluvput - Writing Data to Device
	sqluvend - Unlink the Device and Release its Resources
	sqluvdel - Delete Committed Session
	db2VendorQueryApiVersion - Query Device Supported API Level
	db2VendorGetNextObj - Get Next Object on Device
	DB2-INFO
	VENDOR-INFO
	INIT-INPUT
	INIT-OUTPUT
	DATA
	RETURN-CODE
	APIs for compressed backups
	Compression plug-in interface

	Appendix E. Threaded applications with concurrent access
	Threaded Applications with Concurrent Access
	sqleAttachToCtx - Attach to Context
	sqleBeginCtx - Create and Attach to an Application Context
	sqleDetachFromCtx - Detach From Context
	sqleEndCtx - Detach and Destroy Application Context
	sqleGetCurrentCtx - Get Current Context
	sqleInterruptCtx - Interrupt Context
	sqleSetTypeCtx - Set Application Context Type

	Appendix F. DB2 UDB Log Records
	Log Manager Header
	Data Manager Log Records
	Initialize Table
	Import Replace (Truncate)
	Rollback Insert
	Reorg Table
	Create Index, Drop Index
	Create Table, Drop Table, Rollback Create Table, Rollback Drop Table
	Alter Table Attribute
	Alter Table Add Columns, Rollback Add Columns
	Insert Record, Delete Record, Rollback Delete Record, Rollback Update Record
	Insert Multiple Records, Rollback Insert Multiple Records
	Formatted User Data Record for table without VALUE COMPRESSION
	Formatted User Data Record for table with VALUE COMPRESSION
	Insert Record to Empty Page, Delete Record to Empty Page, Rollback Delete Record to Empty Page, Rollback Insert Record to Empty Page
	Update Record

	Long Field Manager Log Records
	Add/Delete/Non-update Long Field Record

	Transaction Manager Log Records
	Normal Commit
	Heuristic Commit
	MPP Coordinator Commit
	MPP Subordinator Commit
	Normal Abort
	Heuristic Abort
	Local Pending List
	Global Pending List
	XA Prepare
	MPP Subordinator Prepare
	Backout Free
	Utility Manager Log Records
	Migration Begin
	Migration End
	Load Start
	Table Load Delete Start
	Load Delete Start Compensation
	Load Pending List
	Backup End
	Table Space Rolled Forward
	Table Space Roll Forward to PIT Begins
	Table Space Roll Forward to PIT Ends

	Datalink Manager Log Records
	Link File
	Unlink File
	Delete Group
	Delete PGroup
	DLFM Prepare

	Appendix G. Application migration
	Administrative APIs and application migration
	Changed APIs and Data Structures

	Appendix H. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix I. Notices
	Trademarks

	Appendix J. Contacting IBM
	Product information

	Index

