
IBM
®

 

DB2

 

Universal

 

Database
™

Administration

 

Guide:

 

Planning

 

Version

 

8.2

 

SC09-4822-01

  

���





IBM
®

 

DB2

 

Universal

 

Database
™

Administration

 

Guide:

 

Planning

 

Version

 

8.2

 

SC09-4822-01

  

���



Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

be

 

sure

 

to

 

read

 

the

 

general

 

information

 

under

 

Notices.

 

This

 

document

 

contains

 

proprietary

 

information

 

of

 

IBM.

 

It

 

is

 

provided

 

under

 

a

 

license

 

agreement

 

and

 

is

 

protected

 

by

 

copyright

 

law.

 

The

 

information

 

contained

 

in

 

this

 

publication

 

does

 

not

 

include

 

any

 

product

 

warranties,

 

and

 

any

 

statements

 

provided

 

in

 

this

 

manual

 

should

 

not

 

be

 

interpreted

 

as

 

such.

 

You

 

can

 

order

 

IBM

 

publications

 

online

 

or

 

through

 

your

 

local

 

IBM

 

representative.

 

v

   

To

 

order

 

publications

 

online,

 

go

 

to

 

the

 

IBM

 

Publications

 

Center

 

at

 

www.ibm.com/shop/publications/order

 

v

   

To

 

find

 

your

 

local

 

IBM

 

representative,

 

go

 

to

 

the

 

IBM

 

Directory

 

of

 

Worldwide

 

Contacts

 

at

 

www.ibm.com/planetwide

To

 

order

 

DB2

 

publications

 

from

 

DB2

 

Marketing

 

and

 

Sales

 

in

 

the

 

United

 

States

 

or

 

Canada,

 

call

 

1-800-IBM-4YOU

 

(426-4968).

 

When

 

you

 

send

 

information

 

to

 

IBM,

 

you

 

grant

 

IBM

 

a

 

nonexclusive

 

right

 

to

 

use

 

or

 

distribute

 

the

 

information

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

1993

 

-

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide


Contents

 

About

 

this

 

book

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. vii

 

Who

 

should

 

use

 

this

 

book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. viii

 

How

 

this

 

book

 

is

 

structured

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. viii

 

A

 

brief

 

overview

 

of

 

the

 

other

 

Administration

 

Guide

 

volumes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. ix

 

Administration

 

Guide:

 

Implementation

  

.

 

.

 

.

 

. ix

 

Administration

 

Guide:

 

Performance

  

.

 

.

 

.

 

.

 

. x

 

Part

 

1.

 

Database

 

concepts

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Database

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Configuration

 

parameters

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Business

 

rules

 

for

 

data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 12

 

Developing

 

a

 

backup

 

and

 

recovery

 

strategy

  

.

 

.

 

. 15

 

Automated

 

backup

 

operations

  

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

Automatic

 

maintenance

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

High

 

availability

 

disaster

 

recovery

 

(HADR)

 

feature

 

overview

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 23

 

Security

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 24

 

Authentication

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Authorization

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Units

 

of

 

work

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 26

 

Chapter

 

2.

 

Parallel

 

database

 

systems

 

29

 

Data

 

partitioning

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 29

 

Parallelism

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 30

 

Input/output

 

parallelism

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 30

 

Query

 

parallelism

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 30

 

Utility

 

parallelism

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 33

 

Partition

 

and

 

processor

 

environments

 

.

 

.

 

.

 

.

 

.

 

. 34

 

Single

 

partition

 

on

 

a

 

single

 

processor

 

.

 

.

 

.

 

.

 

. 34

 

Single

 

partition

 

with

 

multiple

 

processors

  

.

 

.

 

. 35

 

Multiple

 

partition

 

configurations

  

.

 

.

 

.

 

.

 

.

 

. 36

 

Summary

 

of

 

parallelism

 

best

 

suited

 

to

 

each

 

hardware

 

environment

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 40

 

Chapter

 

3.

 

About

 

data

 

warehousing

  

.

 

. 43

 

What

 

solutions

 

does

 

data

 

warehousing

 

provide?

  

.

 

. 43

 

Data

 

warehouse

 

objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 43

 

Subject

 

areas

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Warehouse

 

sources

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Warehouse

 

targets

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Warehouse

 

control

 

databases

  

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Warehouse

 

agents

 

and

 

agent

 

sites

  

.

 

.

 

.

 

.

 

.

 

. 44

 

Processes

 

and

 

steps

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 45

 

Warehouse

 

tasks

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 47

 

Part

 

2.

 

Database

 

design

  

.

 

.

 

.

 

.

 

.

 

. 49

 

Chapter

 

4.

 

Logical

 

database

 

design

  

.

 

. 51

 

What

 

to

 

record

 

in

 

a

 

database

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 51

 

Database

 

relationships

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

 

One-to-many

 

and

 

many-to-one

 

relationships

  

.

 

. 52

 

Many-to-many

 

relationships

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

One-to-one

 

relationships

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

Ensure

 

that

 

equal

 

values

 

represent

 

the

 

same

 

entity

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 54

 

Column

 

definitions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Primary

 

keys

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 56

 

Identifying

 

candidate

 

key

 

columns

  

.

 

.

 

.

 

.

 

. 57

 

Identity

 

columns

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 58

 

Normalization

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 59

 

First

 

normal

 

form

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 60

 

Second

 

normal

 

form

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 60

 

Third

 

normal

 

form

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 61

 

Fourth

 

normal

 

form

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Constraints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Unique

 

constraints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Referential

 

constraints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Table

 

check

 

constraints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 67

 

Informational

 

constraints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 67

 

Triggers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 68

 

Additional

 

database

 

design

 

considerations

  

.

 

.

 

.

 

. 69

 

Chapter

 

5.

 

Physical

 

database

 

design

 

71

 

Database

 

directories

 

and

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 71

 

Space

 

requirements

 

for

 

database

 

objects

  

.

 

.

 

.

 

.

 

. 73

 

Space

 

requirements

 

for

 

system

 

catalog

 

tables

  

.

 

.

 

. 74

 

Space

 

requirements

 

for

 

user

 

table

 

data

  

.

 

.

 

.

 

.

 

. 75

 

Space

 

requirements

 

for

 

long

 

field

 

data

  

.

 

.

 

.

 

.

 

. 76

 

Space

 

requirements

 

for

 

large

 

object

 

data

 

.

 

.

 

.

 

.

 

. 77

 

Space

 

requirements

 

for

 

indexes

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Space

 

requirements

 

for

 

log

 

files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 80

 

Space

 

requirements

 

for

 

temporary

 

tables

  

.

 

.

 

.

 

. 81

 

Database

 

partition

 

groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 81

 

Database

 

partition

 

group

 

design

  

.

 

.

 

.

 

.

 

.

 

.

 

. 83

 

Partitioning

 

maps

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 84

 

Partitioning

 

keys

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 85

 

Table

 

collocation

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 87

 

Partition

 

compatibility

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 87

 

Replicated

 

materialized

 

query

 

tables

  

.

 

.

 

.

 

.

 

.

 

. 88

 

Table

 

space

 

design

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 89

 

System

 

managed

 

space

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 92

 

Database

 

managed

 

space

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 94

 

Table

 

space

 

maps

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 95

 

How

 

containers

 

are

 

added

 

and

 

extended

 

in

 

DMS

 

table

 

spaces

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 98

 

Rebalancing

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 98

 

Without

 

rebalancing

 

(using

 

stripe

 

sets)

  

.

 

.

 

.

 

. 104

 

How

 

containers

 

are

 

dropped

 

and

 

reduced

 

in

 

DMS

 

table

 

spaces

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 106

 

Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces

  

.

 

.

 

. 109

 

Table

 

space

 

disk

 

I/O

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 110

 

Workload

 

considerations

 

in

 

table

 

space

 

design

  

.

 

. 111

 

Extent

 

size

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 113

 

Relationship

 

between

 

table

 

spaces

 

and

 

buffer

 

pools

 

114

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

iii

||
||
|
||

||



Relationship

 

between

 

table

 

spaces

 

and

 

database

 

partition

 

groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 115

 

Storage

 

management

 

view

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 115

 

Stored

 

procedures

 

for

 

the

 

storage

 

management

 

tool

 

116

 

Storage

 

management

 

view

 

tables

  

.

 

.

 

.

 

.

 

.

 

.

 

. 116

 

Temporary

 

table

 

space

 

design

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 126

 

Temporary

 

tables

 

in

 

SMS

 

table

 

spaces

  

.

 

.

 

.

 

.

 

. 127

 

Catalog

 

table

 

space

 

design

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 128

 

Optimizing

 

table

 

space

 

performance

 

when

 

data

 

is

 

on

 

RAID

 

devices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 129

 

Considerations

 

when

 

choosing

 

table

 

spaces

 

for

 

your

 

tables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 131

 

Tables

 

used

 

within

 

DB2

 

UDB

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 132

 

Range-clustered

 

tables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Range-clustered

 

tables

 

and

 

out-of-range

 

record

 

key

 

values

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 136

 

Range-clustered

 

table

 

locks

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 136

 

Multidimensional

 

clustering

 

tables

  

.

 

.

 

.

 

.

 

.

 

. 137

 

Designing

 

multidimensional

 

clustering

 

(MDC)

 

tables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 153

 

Multidimensional

 

clustering

 

(MDC)

 

table

 

creation,

 

placement,

 

and

 

use

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 160

 

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

Updating

 

a

 

single

 

database

 

in

 

a

 

transaction

  

.

 

.

 

. 167

 

Using

 

multiple

 

databases

 

in

 

a

 

single

 

transaction

 

168

 

Updating

 

a

 

single

 

database

 

in

 

a

 

multi-database

 

transaction

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 168

 

Updating

 

multiple

 

databases

 

in

 

a

 

transaction

 

169

 

DB2

 

transaction

 

manager

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 170

 

DB2

 

Universal

 

Database

 

transaction

 

manager

 

configuration

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 171

 

Updating

 

a

 

database

 

from

 

a

 

host

 

or

 

iSeries

 

client

 

173

 

Two-phase

 

commit

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 174

 

Error

 

recovery

 

during

 

two-phase

 

commit

  

.

 

.

 

.

 

. 176

 

Error

 

recovery

 

if

 

autorestart=off

  

.

 

.

 

.

 

.

 

.

 

. 177

 

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

X/Open

 

distributed

 

transaction

 

processing

 

model

 

179

 

Application

 

program

 

(AP)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 180

 

Transaction

 

manager

 

(TM)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 181

 

Resource

 

managers

 

(RM)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 182

 

Resource

 

manager

 

setup

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

Database

 

connection

 

considerations

  

.

 

.

 

.

 

.

 

. 183

 

xa_open

 

string

 

formats

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

xa_open

 

string

 

format

 

for

 

DB2

 

Universal

 

Database

 

(DB2

 

UDB)

 

and

 

DB2

 

Connect

 

Version

 

8

 

FixPak

 

3

 

and

 

later

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

xa_open

 

string

 

format

 

for

 

earlier

 

versions

  

.

 

.

 

. 189

 

Examples

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 189

 

Updating

 

host

 

or

 

iSeries

 

database

 

servers

 

with

 

an

 

XA-compliant

 

transaction

 

manager

  

.

 

.

 

.

 

.

 

.

 

. 191

 

Manually

 

resolving

 

indoubt

 

transactions

  

.

 

.

 

.

 

. 191

 

Security

 

considerations

 

for

 

XA

 

transaction

 

managers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 193

 

Configuration

 

considerations

 

for

 

XA

 

transaction

 

managers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

XA

 

function

 

supported

 

by

 

DB2

 

Universal

 

Database

 

195

 

XA

 

switch

 

usage

 

and

 

location

  

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

Using

 

the

 

DB2

 

Universal

 

Database

 

XA

 

switch

 

196

 

XA

 

interface

 

problem

 

determination

 

.

 

.

 

.

 

.

 

.

 

. 197

 

XA

 

transaction

 

manager

 

configuration

  

.

 

.

 

.

 

.

 

. 198

 

Configuring

 

IBM

 

WebSphere

 

Application

 

Server

 

198

 

Configuring

 

IBM

 

TXSeries

 

CICS

  

.

 

.

 

.

 

.

 

.

 

. 198

 

Configuring

 

IBM

 

TXSeries

 

Encina

  

.

 

.

 

.

 

.

 

. 198

 

Configuring

 

BEA

 

Tuxedo

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 200

 

Part

 

3.

 

Appendixes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 203

 

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 205

 

DB2

 

Universal

 

Database

 

planned

 

incompatibilities

 

205

 

System

 

catalog

 

information

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 206

 

Utilities

 

and

 

tools

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 206

 

Version

 

8

 

incompatibilities

 

with

 

previous

 

releases

 

207

 

System

 

catalog

 

information

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 207

 

Application

 

programming

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 207

 

SQL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 213

 

Database

 

security

 

and

 

tuning

  

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Utilities

 

and

 

tools

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Connectivity

 

and

 

coexistence

  

.

 

.

 

.

 

.

 

.

 

.

 

. 222

 

Messages

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

Configuration

 

parameters

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 226

 

Version

 

7

 

incompatibilities

 

with

 

previous

 

releases

 

227

 

Application

 

Programming

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 227

 

SQL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 229

 

Utilities

 

and

 

Tools

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 230

 

Connectivity

 

and

 

Coexistence

  

.

 

.

 

.

 

.

 

.

 

.

 

. 230

 

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

National

 

language

 

versions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

Supported

 

territory

 

codes

 

and

 

code

 

pages

 

.

 

.

 

.

 

. 231

 

Enabling

 

and

 

disabling

 

euro

 

symbol

 

support

 

.

 

.

 

. 252

 

Conversion

 

table

 

files

 

for

 

euro-enabled

 

code

 

pages

 

253

 

Conversion

 

tables

 

for

 

code

 

pages

 

923

 

and

 

924

  

.

 

. 260

 

Choosing

 

a

 

language

 

for

 

your

 

database

 

.

 

.

 

.

 

.

 

. 261

 

Locale

 

setting

 

for

 

the

 

DB2

 

Administration

 

Server

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 262

 

Enabling

 

bidirectional

 

support

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 262

 

Bidirectional-specific

 

CCSIDs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 263

 

Bidirectional

 

support

 

with

 

DB2

 

Connect

  

.

 

.

 

.

 

. 266

 

Collating

 

sequences

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 268

 

Collating

 

Thai

 

characters

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 269

 

Date

 

and

 

time

 

formats

 

by

 

territory

 

code

  

.

 

.

 

.

 

. 270

 

Unicode

 

character

 

encoding

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 272

 

UCS-2

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 272

 

UTF-8

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 273

 

UTF-16

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 273

 

Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 274

 

Code

 

Page/CCSID

 

Numbers

  

.

 

.

 

.

 

.

 

.

 

.

 

. 275

 

Thai

 

and

 

Unicode

 

collation

 

algorithm

 

differences

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 276

 

Unicode

 

handling

 

of

 

data

 

types

  

.

 

.

 

.

 

.

 

.

 

.

 

. 276

 

Creating

 

a

 

Unicode

 

database

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 278

 

Unicode

 

literals

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 278

 

String

 

comparisons

 

in

 

a

 

Unicode

 

database

 

.

 

.

 

.

 

. 279

   

iv

 

Administration

 

Guide:

 

Planning

||

||

|
||
||



Installing

 

the

 

previous

 

tables

 

for

 

converting

 

between

 

code

 

page

 

1394

 

and

 

Unicode

  

.

 

.

 

.

 

.

 

. 280

 

Alternative

 

Unicode

 

conversion

 

tables

 

for

 

the

 

coded

 

character

 

set

 

identifier

 

(CCSID)

 

943

 

.

 

.

 

.

 

. 280

 

Replacing

 

the

 

Unicode

 

conversion

 

tables

 

for

 

coded

 

character

 

set

 

(CCSID)

 

943

 

with

 

the

 

Microsoft

 

conversion

 

tables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 281

 

Appendix

 

C.

 

Enabling

 

large

 

page

 

support

 

in

 

a

 

64-bit

 

environment

 

(AIX)

  

. 283

 

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 285

 

DB2

 

documentation

 

and

 

help

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 285

 

DB2

 

documentation

 

updates

  

.

 

.

 

.

 

.

 

.

 

.

 

. 285

 

DB2

 

Information

 

Center

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 286

 

DB2

 

Information

 

Center

 

installation

 

scenarios

  

.

 

. 287

 

Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 290

 

Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 292

 

Invoking

 

the

 

DB2

 

Information

 

Center

  

.

 

.

 

.

 

.

 

. 294

 

Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server

 

.

 

.

 

.

 

.

 

.

 

.

 

. 295

 

Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 296

 

DB2

 

PDF

 

and

 

printed

 

documentation

  

.

 

.

 

.

 

.

 

. 297

 

Core

 

DB2

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 297

 

Administration

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

. 297

 

Application

 

development

 

information

  

.

 

.

 

.

 

. 298

 

Business

 

intelligence

 

information

 

.

 

.

 

.

 

.

 

.

 

. 299

 

DB2

 

Connect

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 299

 

Getting

 

started

 

information

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 299

 

Tutorial

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 300

 

Optional

 

component

 

information

 

.

 

.

 

.

 

.

 

.

 

. 300

 

Release

 

notes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 301

 

Printing

 

DB2

 

books

 

from

 

PDF

 

files

  

.

 

.

 

.

 

.

 

.

 

. 302

 

Ordering

 

printed

 

DB2

 

books

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 302

 

Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool

  

.

 

.

 

.

 

. 303

 

Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 304

 

Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 304

 

Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 305

 

DB2

 

tutorials

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 305

 

DB2

 

troubleshooting

 

information

 

.

 

.

 

.

 

.

 

.

 

.

 

. 306

 

Accessibility

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 307

 

Keyboard

 

input

 

and

 

navigation

  

.

 

.

 

.

 

.

 

.

 

. 307

 

Accessible

 

display

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 307

 

Compatibility

 

with

 

assistive

 

technologies

  

.

 

.

 

. 308

 

Accessible

 

documentation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 308

 

Dotted

 

decimal

 

syntax

 

diagrams

  

.

 

.

 

.

 

.

 

.

 

.

 

. 308

 

Common

 

Criteria

 

certification

 

of

 

DB2

 

Universal

 

Database

 

products

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 310

 

Appendix

 

E.

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 311

 

Trademarks

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 313

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 315

 

Contacting

 

IBM

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 321

 

Product

 

information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 321

  

Contents

 

v

|
||
|
|
||

||

||
|
||
|
||

|
||

||

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|



vi

 

Administration

 

Guide:

 

Planning



About

 

this

 

book

 

The

 

Administration

 

Guide

 

in

 

its

 

three

 

volumes

 

provides

 

information

 

necessary

 

to

 

use

 

and

 

administer

 

the

 

DB2

 

relational

 

database

 

management

 

system

 

(RDBMS)

 

products,

 

and

 

includes:

 

v

   

Information

 

about

 

database

 

design

 

(found

 

in

 

Administration

 

Guide:

 

Planning)

 

v

   

Information

 

about

 

implementing

 

and

 

managing

 

databases

 

(found

 

in

 

Administration

 

Guide:

 

Implementation)

 

v

   

Information

 

about

 

configuring

 

and

 

tuning

 

your

 

database

 

environment

 

to

 

improve

 

performance

 

(found

 

in

 

Administration

 

Guide:

 

Performance)

Many

 

of

 

the

 

tasks

 

described

 

in

 

this

 

book

 

can

 

be

 

performed

 

using

 

different

 

interfaces:

 

v

   

The

 

Command

 

Line

 

Processor,

 

which

 

allows

 

you

 

to

 

access

 

and

 

manipulate

 

databases

 

from

 

a

 

graphical

 

interface.

 

From

 

this

 

interface,

 

you

 

can

 

also

 

execute

 

SQL

 

statements

 

and

 

DB2

 

utility

 

functions.

 

Most

 

examples

 

in

 

this

 

book

 

illustrate

 

the

 

use

 

of

 

this

 

interface.

 

For

 

more

 

information

 

about

 

using

 

the

 

command

 

line

 

processor,

 

see

 

the

 

Command

 

Reference.

 

v

   

The

 

application

 

programming

 

interface,

 

which

 

allows

 

you

 

to

 

execute

 

DB2

 

utility

 

functions

 

within

 

an

 

application

 

program.

 

For

 

more

 

information

 

about

 

using

 

the

 

application

 

programming

 

interface,

 

see

 

the

 

Administrative

 

API

 

Reference.

 

v

   

The

 

Control

 

Center,

 

which

 

allows

 

you

 

to

 

use

 

a

 

graphical

 

user

 

interface

 

to

 

perform

 

administrative

 

tasks

 

such

 

as

 

configuring

 

the

 

system,

 

managing

 

directories,

 

backing

 

up

 

and

 

recovering

 

the

 

system,

 

scheduling

 

jobs,

 

and

 

managing

 

media.

 

The

 

Control

 

Center

 

also

 

contains

 

Replication

 

Administration,

 

which

 

allows

 

you

 

set

 

up

 

the

 

replication

 

of

 

data

 

between

 

systems.

 

Further,

 

the

 

Control

 

Center

 

allows

 

you

 

to

 

execute

 

DB2

 

utility

 

functions

 

through

 

a

 

graphical

 

user

 

interface.

 

There

 

are

 

different

 

methods

 

to

 

invoke

 

the

 

Control

 

Center

 

depending

 

on

 

your

 

platform.

 

For

 

example,

 

use

 

the

 

db2cc

 

command

 

on

 

a

 

command

 

line,

 

select

 

the

 

Control

 

Center

 

icon

 

from

 

the

 

DB2

 

folder,

 

or

 

use

 

the

 

Start

 

menu

 

on

 

Windows

 

platforms.

 

For

 

introductory

 

help,

 

select

 

Getting

 

started

 

from

 

the

 

Help

 

pull-down

 

of

 

the

 

Control

 

Center

 

window.

 

The

 

Visual

 

Explain

 

and

 

Performance

 

Monitor

 

tools

 

are

 

invoked

 

from

 

the

 

Control

 

Center.

 

The

 

Control

 

Center

 

is

 

available

 

in

 

three

 

views:

 

–

   

Basic.

 

This

 

view

 

shows

 

the

 

core

 

DB2

 

UDB

 

functions

 

on

 

essential

 

objects

 

such

 

as

 

databases,

 

tables,

 

and

 

stored

 

procedures.

 

–

   

Advanced.

 

This

 

view

 

has

 

all

 

of

 

the

 

objects

 

and

 

actions

 

available.

 

Use

 

this

 

view

 

if

 

you

 

are

 

working

 

in

 

an

 

enterprise

 

environment

 

and

 

you

 

want

 

to

 

connect

 

to

 

DB2

 

for

 

z/OS

 

or

 

IMS.

 

–

   

Custom.

 

This

 

view

 

gives

 

you

 

the

 

ability

 

to

 

tailor

 

the

 

object

 

tree

 

and

 

the

 

object

 

actions.

 

There

 

are

 

other

 

tools

 

that

 

you

 

can

 

use

 

to

 

perform

 

administration

 

tasks.

 

They

 

include:

 

v

   

The

 

Command

 

Editor

 

which

 

replaces

 

the

 

Command

 

Center

 

and

 

is

 

used

 

to

 

generate,

 

edit,

 

run,

 

and

 

manipulate

 

SQL

 

statements;

 

IMS

 

and

 

DB2

 

commands;

 

work

 

with

 

the

 

resulting

 

output;

 

and

 

to

 

view

 

a

 

graphical

 

representation

 

of

 

the

 

access

 

plan

 

for

 

explained

 

SQL

 

statements.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

vii

|

|
|

|
|
|

|
|

|
|
|
|



v

   

The

 

Development

 

Center

 

to

 

provide

 

support

 

for

 

native

 

SQL

 

Persistent

 

Storage

 

Module

 

(PSM)

 

stored

 

procedures;

 

for

 

Java

 

stored

 

procedures

 

for

 

iSeries

 

Version

 

5

 

Release

 

3

 

and

 

later;

 

user-defined

 

functions

 

(UDFs);

 

and

 

structured

 

types.

 

v

   

The

 

Health

 

Center

 

provides

 

a

 

tool

 

to

 

assist

 

DBAs

 

in

 

the

 

resolution

 

of

 

performance

 

and

 

resource

 

allocation

 

problems.

 

v

   

The

 

Tools

 

Settings

 

to

 

change

 

the

 

settings

 

for

 

the

 

Control

 

Center,

 

Health

 

Center,

 

and

 

Replication

 

Center.

 

v

   

The

 

Journal

 

to

 

schedule

 

jobs

 

that

 

are

 

to

 

run

 

unattended.

 

v

   

The

 

Data

 

Warehouse

 

Center

 

to

 

manage

 

warehouse

 

objects.

Who

 

should

 

use

 

this

 

book

 

This

 

book

 

is

 

intended

 

primarily

 

for

 

database

 

administrators,

 

system

 

administrators,

 

security

 

administrators

 

and

 

system

 

operators

 

who

 

need

 

to

 

design,

 

implement

 

and

 

maintain

 

a

 

database

 

to

 

be

 

accessed

 

by

 

local

 

or

 

remote

 

clients.

 

It

 

can

 

also

 

be

 

used

 

by

 

programmers

 

and

 

other

 

users

 

who

 

require

 

an

 

understanding

 

of

 

the

 

administration

 

and

 

operation

 

of

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

relational

 

database

 

management

 

system.

 

How

 

this

 

book

 

is

 

structured

 

This

 

book

 

contains

 

information

 

about

 

the

 

following

 

major

 

topics:

 

Database

 

Concepts

 

v

   

Chapter

 

1,

 

“Basic

 

relational

 

database

 

concepts,”

 

presents

 

an

 

overview

 

of

 

database

 

objects

 

and

 

database

 

concepts.

 

v

   

Chapter

 

2,

 

“Parallel

 

database

 

systems,”

 

provides

 

an

 

introduction

 

to

 

the

 

types

 

of

 

parallelism

 

available

 

with

 

DB2.

 

v

   

Chapter

 

3,

 

“About

 

data

 

warehousing,”

 

provides

 

an

 

overview

 

of

 

data

 

warehousing

 

and

 

data

 

warehousing

 

tasks.

 

Database

 

Design

 

v

   

Chapter

 

4,

 

“Logical

 

database

 

design,”

 

discusses

 

the

 

concepts

 

and

 

guidelines

 

for

 

logical

 

database

 

design.

 

v

   

Chapter

 

5,

 

“Physical

 

database

 

design,”

 

discusses

 

the

 

guidelines

 

for

 

physical

 

database

 

design,

 

including

 

space

 

requirements

 

and

 

table

 

space

 

design.

 

v

   

Chapter

 

6,

 

“Designing

 

distributed

 

databases,”

 

discusses

 

how

 

you

 

can

 

access

 

multiple

 

databases

 

in

 

a

 

single

 

transaction.

 

v

   

Chapter

 

7,

 

“Designing

 

for

 

XA-compliant

 

transaction

 

managers,”

 

discusses

 

how

 

you

 

can

 

use

 

your

 

databases

 

in

 

a

 

distributed

 

transaction

 

processing

 

environment.

 

Appendixes

 

v

   

Appendix

 

A,

 

“Incompatibilities

 

between

 

releases,”

 

presents

 

the

 

incompatibilities

 

introduced

 

by

 

Version

 

7

 

and

 

Version

 

8,

 

as

 

well

 

as

 

future

 

incompatibilities

 

that

 

you

 

should

 

be

 

aware

 

of.

 

v

   

Appendix

 

B,

 

“National

 

language

 

support

 

(NLS),”

 

introduces

 

DB2

 

National

 

Language

 

Support,

 

including

 

information

 

about

 

territories,

 

languages,

 

and

 

code

 

pages.

 

v

   

Appendix

 

C,

 

“Enabling

 

large

 

page

 

support

 

in

 

a

 

64-bit

 

environment

 

(AIX),”

 

discusses

 

the

 

support

 

for

 

a

 

16

 

MB

 

page

 

size

 

and

 

how

 

to

 

enable

 

this

 

support.

  

viii

 

Administration

 

Guide:

 

Planning

|
|
|



A

 

brief

 

overview

 

of

 

the

 

other

 

Administration

 

Guide

 

volumes

 

Administration

 

Guide:

 

Implementation

 

The

 

Administration

 

Guide:

 

Implementation

 

is

 

concerned

 

with

 

the

 

implementation

 

of

 

your

 

database

 

design.

 

The

 

specific

 

chapters

 

and

 

appendixes

 

in

 

that

 

volume

 

are

 

briefly

 

described

 

here:

 

Implementing

 

Your

 

Design

 

v

   

″Before

 

creating

 

a

 

database″

 

describes

 

the

 

prerequisites

 

before

 

you

 

create

 

a

 

database.

 

v

   

″Creating

 

and

 

using

 

a

 

DB2

 

Administration

 

Server

 

(DAS)″

 

discusses

 

what

 

a

 

DAS

 

is,

 

how

 

to

 

create

 

it,

 

and

 

how

 

to

 

use

 

it.

 

v

   

″Creating

 

a

 

database″

 

describes

 

those

 

tasks

 

associated

 

with

 

the

 

creation

 

of

 

a

 

database

 

and

 

related

 

database

 

objects.

 

v

   

″Creating

 

tables

 

and

 

other

 

related

 

table

 

objects″

 

describes

 

how

 

to

 

create

 

tables

 

with

 

specific

 

characteristics

 

when

 

implementing

 

your

 

database

 

design.

 

v

   

″Altering

 

a

 

Database″

 

discusses

 

what

 

must

 

be

 

done

 

before

 

altering

 

a

 

database

 

and

 

those

 

tasks

 

associated

 

with

 

the

 

modifying

 

or

 

dropping

 

of

 

a

 

database

 

or

 

related

 

database

 

objects.

 

v

   

″Altering

 

tables

 

and

 

other

 

related

 

table

 

objects″

 

describes

 

how

 

to

 

drop

 

tables

 

or

 

how

 

to

 

modify

 

specific

 

characteristics

 

associated

 

with

 

those

 

tables.

 

Dropping

 

and

 

modifying

 

related

 

table

 

objects

 

is

 

also

 

presented

 

here.

 

Database

 

Security

 

v

   

″Controlling

 

Database

 

Access″

 

describes

 

how

 

you

 

can

 

control

 

access

 

to

 

your

 

database’s

 

resources.

 

v

   

″Auditing

 

DB2

 

Activities″

 

describes

 

how

 

you

 

can

 

detect

 

and

 

monitor

 

unwanted

 

or

 

unanticipated

 

access

 

to

 

data.

 

Appendixes

 

v

   

″Naming

 

Rules″

 

presents

 

the

 

rules

 

to

 

follow

 

when

 

naming

 

databases

 

and

 

objects.

 

v

   

″Lightweight

 

Directory

 

Access

 

Protocol

 

(LDAP)

 

Directory

 

Services″

 

provides

 

information

 

about

 

how

 

you

 

can

 

use

 

LDAP

 

Directory

 

Services.

 

v

   

″Issuing

 

Commands

 

to

 

Multiple

 

Database

 

Partition″

 

discusses

 

the

 

use

 

of

 

the

 

db2_all

 

and

 

rah

 

shell

 

scripts

 

to

 

send

 

commands

 

to

 

all

 

partitions

 

in

 

a

 

partitioned

 

database

 

environment.

 

v

   

″Windows

 

Management

 

Instrumentation

 

(WMI)

 

Support″

 

describes

 

how

 

DB2

 

supports

 

this

 

management

 

infrastructure

 

standard

 

to

 

integrate

 

various

 

hardware

 

and

 

software

 

management

 

systems.

 

Also

 

discussed

 

is

 

how

 

DB2

 

integrates

 

with

 

WMI.

 

v

   

″How

 

DB2

 

for

 

Windows

 

NT

 

Works

 

with

 

Windows

 

NT

 

Security″

 

describes

 

how

 

DB2

 

works

 

with

 

Windows

 

NT

 

security.

 

v

   

″Using

 

the

 

Windows

 

Performance

 

Monitor″

 

provides

 

information

 

about

 

registering

 

DB2

 

with

 

the

 

Windows

 

NT

 

Performance

 

Monitor,

 

and

 

using

 

the

 

performance

 

information.

 

v

   

″Working

 

with

 

Windows

 

Database

 

Partition

 

Servers″

 

provides

 

information

 

about

 

the

 

utilities

 

available

 

to

 

work

 

with

 

database

 

partition

 

servers

 

on

 

Windows

 

NT

 

or

 

Windows

 

2000.

 

v

   

″Configuring

 

Multiple

 

Logical

 

Nodes″

 

describes

 

how

 

to

 

configure

 

multiple

 

logical

 

nodes

 

in

 

a

 

partitioned

 

database

 

environment.

   

About

 

this

 

book

 

ix

|
|

|
|

|
|
|



v

   

″Extending

 

the

 

Control

 

Center″

 

provides

 

information

 

about

 

how

 

you

 

can

 

extend

 

the

 

Control

 

Center

 

by

 

adding

 

new

 

tool

 

bar

 

buttons

 

including

 

new

 

actions,

 

adding

 

new

 

object

 

definitions,

 

and

 

adding

 

new

 

action

 

definitions.

Note:

  

Two

 

chapters

 

have

 

been

 

removed

 

from

 

this

 

book.

 

All

 

of

 

the

 

information

 

on

 

the

 

DB2

 

utilities

 

for

 

moving

 

data,

 

and

 

the

 

comparable

 

topics

 

from

 

the

 

Command

 

Reference

 

and

 

the

 

Administrative

 

API

 

Reference,

 

have

 

been

 

consolidated

 

into

 

the

 

Data

 

Movement

 

Utilities

 

Guide

 

and

 

Reference.

 

The

 

Data

 

Movement

 

Utilities

 

Guide

 

and

 

Reference

 

is

 

your

 

primary,

 

single

 

source

 

of

 

information

 

for

 

these

 

topics.

 

To

 

find

 

out

 

more

 

about

 

replication

 

of

 

data,

 

see

 

IBM

 

DB2

 

Information

 

Integrator

 

SQL

 

Replication

 

Guide

 

and

 

Reference.

 

All

 

of

 

the

 

information

 

on

 

the

 

methods

 

and

 

tools

 

for

 

backing

 

up

 

and

 

recovering

 

data,

 

and

 

the

 

comparable

 

topics

 

from

 

the

 

Command

 

Reference

 

and

 

the

 

Administrative

 

API

 

Reference,

 

have

 

been

 

consolidated

 

into

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference.

 

The

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

is

 

your

 

primary,

 

single

 

source

 

of

 

information

 

for

 

these

 

topics.

 

Administration

 

Guide:

 

Performance

 

The

 

Administration

 

Guide:

 

Performance

 

is

 

concerned

 

with

 

performance

 

issues;

 

that

 

is,

 

those

 

topics

 

and

 

issues

 

concerned

 

with

 

establishing,

 

testing,

 

and

 

improving

 

the

 

performance

 

of

 

your

 

application,

 

and

 

that

 

of

 

the

 

DB2

 

Universal

 

Database

 

product

 

itself.

 

The

 

specific

 

chapters

 

and

 

appendixes

 

in

 

that

 

volume

 

are

 

briefly

 

described

 

here:

 

Introduction

 

to

 

Performance

 

v

   

″Introduction

 

to

 

Performance″

 

introduces

 

concepts

 

and

 

considerations

 

for

 

managing

 

and

 

improving

 

DB2

 

UDB

 

performance.

 

v

   

″Architecture

 

and

 

Processes″

 

introduces

 

underlying

 

DB2

 

Universal

 

Database

 

architecture

 

and

 

processes.

 

Tuning

 

Application

 

Performance

 

v

   

″Application

 

Considerations″

 

describes

 

some

 

techniques

 

for

 

improving

 

database

 

performance

 

when

 

designing

 

your

 

applications.

 

v

   

″Environmental

 

Considerations″

 

describes

 

some

 

techniques

 

for

 

improving

 

database

 

performance

 

when

 

setting

 

up

 

your

 

database

 

environment.

 

v

   

″System

 

Catalog

 

Statistics″

 

describes

 

how

 

statistics

 

about

 

your

 

data

 

can

 

be

 

collected

 

and

 

used

 

to

 

ensure

 

optimal

 

performance.

 

v

   

″Understanding

 

the

 

SQL

 

Compiler″

 

describes

 

what

 

happens

 

to

 

an

 

SQL

 

statement

 

when

 

it

 

is

 

compiled

 

using

 

the

 

SQL

 

compiler.

 

v

   

″SQL

 

Explain

 

Facility″

 

describes

 

the

 

Explain

 

facility,

 

which

 

allows

 

you

 

to

 

examine

 

the

 

choices

 

the

 

SQL

 

compiler

 

has

 

made

 

to

 

access

 

your

 

data.

 

Tuning

 

and

 

Configuring

 

Your

 

System

 

v

   

″Operational

 

Performance″

 

describes

 

an

 

overview

 

of

 

how

 

the

 

database

 

manager

 

uses

 

memory

 

and

 

other

 

considerations

 

that

 

affect

 

run-time

 

performance.

   

x

 

Administration

 

Guide:

 

Planning



v

   

″Using

 

the

 

Governor″

 

describes

 

an

 

introduction

 

to

 

the

 

use

 

of

 

a

 

governor

 

to

 

control

 

some

 

aspects

 

of

 

database

 

management.

 

v

   

″Scaling

 

Your

 

Configuration″

 

describes

 

some

 

considerations

 

and

 

tasks

 

associated

 

with

 

increasing

 

the

 

size

 

of

 

your

 

database

 

systems.

 

v

   

″Redistributing

 

Data

 

Across

 

Database

 

Partitions″

 

discusses

 

the

 

tasks

 

required

 

in

 

a

 

partitioned

 

database

 

environment

 

to

 

redistribute

 

data

 

across

 

partitions.

 

v

   

″Benchmark

 

Testing″

 

presents

 

an

 

overview

 

of

 

benchmark

 

testing

 

and

 

how

 

to

 

perform

 

benchmark

 

testing.

 

v

   

″Configuring

 

DB2″

 

discusses

 

the

 

database

 

manager

 

and

 

database

 

configuration

 

files

 

and

 

the

 

values

 

for

 

the

 

database

 

manager,

 

database,

 

and

 

DAS

 

configuration

 

parameters.

 

Appendixes

 

v

   

″DB2

 

Registry

 

and

 

Environment

 

Variables″

 

describes

 

profile

 

registry

 

values

 

and

 

environment

 

variables.

 

v

   

″Explain

 

Tables

 

and

 

Definitions″

 

describes

 

the

 

tables

 

used

 

by

 

the

 

DB2

 

Explain

 

facility

 

and

 

how

 

to

 

create

 

those

 

tables.

 

v

   

″SQL

 

Explain

 

Tools″

 

describes

 

how

 

to

 

use

 

the

 

DB2

 

explain

 

tools:

 

db2expln

 

and

 

dynexpln.

 

v

   

″db2exfmt

 

—

 

Explain

 

Table

 

Format

 

Tool″

 

describes

 

how

 

to

 

use

 

the

 

DB2

 

explain

 

tool

 

to

 

format

 

the

 

explain

 

table

 

data.

  

About

 

this

 

book

 

xi



xii

 

Administration

 

Guide:

 

Planning



Part

 

1.

 

Database

 

concepts

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

1



2

 

Administration

 

Guide:

 

Planning



Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

Database

 

objects

  

Instances:

   

An

 

instance

 

(sometimes

 

called

 

a

 

database

 

manager)

 

is

 

DB2®

 

code

 

that

 

manages

 

data.

 

It

 

controls

 

what

 

can

 

be

 

done

 

to

 

the

 

data,

 

and

 

manages

 

system

 

resources

 

assigned

 

to

 

it.

 

Each

 

instance

 

is

 

a

 

complete

 

environment.

 

It

 

contains

 

all

 

the

 

database

 

partitions

 

defined

 

for

 

a

 

given

 

parallel

 

database

 

system.

 

An

 

instance

 

has

 

its

 

own

 

databases

 

(which

 

other

 

instances

 

cannot

 

access),

 

and

 

all

 

its

 

database

 

partitions

 

share

 

the

 

same

 

system

 

directories.

 

It

 

also

 

has

 

separate

 

security

 

from

 

other

 

instances

 

on

 

the

 

same

 

machine

 

(system).

  

Databases:

   

A

 

relational

 

database

 

presents

 

data

 

as

 

a

 

collection

 

of

 

tables.

 

A

 

table

 

consists

 

of

 

a

 

defined

 

number

 

of

 

columns

 

and

 

any

 

number

 

of

 

rows.

 

Each

 

database

 

includes

 

a

 

set

 

of

 

system

 

catalog

 

tables

 

that

 

describe

 

the

 

logical

 

and

 

physical

 

structure

 

of

 

the

 

data,

 

a

 

configuration

 

file

 

containing

 

the

 

parameter

 

values

 

allocated

 

for

 

the

 

database,

 

and

 

a

 

recovery

 

log

 

with

 

ongoing

 

transactions

 

and

 

transactions

 

to

 

be

 

archived.

  

Database

 

partition

 

groups:

   

A

 

database

 

partition

 

group

 

is

 

a

 

set

 

of

 

one

 

or

 

more

 

database

 

partitions.

 

When

 

you

 

want

 

to

 

create

 

tables

 

for

 

the

 

database,

 

you

 

first

 

create

 

the

 

database

 

partition

 

group

 

where

 

the

 

table

 

spaces

 

will

 

be

 

stored,

 

then

 

you

 

create

 

the

 

table

 

space

 

where

 

the

 

tables

 

will

 

be

 

stored.

 

In

 

earlier

 

versions

 

of

 

DB2

 

UDB,

 

database

 

partition

 

groups

 

were

 

known

 

as

 

nodegroups.

  

Table

 

spaces:

   

A

 

database

 

is

 

organized

 

into

 

parts

 

called

 

table

 

spaces.

 

A

 

table

 

space

 

is

 

a

 

place

 

to

 

store

 

tables.

 

When

 

creating

 

a

 

table,

 

you

 

can

 

decide

 

to

 

have

 

certain

 

objects

 

such

 

as

 

indexes

 

and

 

large

 

object

 

(LOB)

 

data

 

kept

 

separately

 

from

 

the

 

rest

 

of

 

the

 

table

 

data.

 

A

 

table

 

space

 

can

 

also

 

be

 

spread

 

over

 

one

 

or

 

more

 

physical

 

storage

 

devices.

 

The

 

following

 

diagram

 

shows

 

some

 

of

 

the

 

flexibility

 

you

 

have

 

in

 

spreading

 

data

 

over

 

table

 

spaces:

   

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

3

|
|
|
|
|

|



Table

 

spaces

 

reside

 

in

 

database

 

partition

 

groups.

 

Table

 

space

 

definitions

 

and

 

attributes

 

are

 

recorded

 

in

 

the

 

database

 

system

 

catalog.

 

Containers

 

are

 

assigned

 

to

 

table

 

spaces.

 

A

 

container

 

is

 

an

 

allocation

 

of

 

physical

 

storage

 

(such

 

as

 

a

 

file

 

or

 

a

 

device).

 

A

 

table

 

space

 

can

 

be

 

either

 

system

 

managed

 

space

 

(SMS),

 

or

 

database

 

managed

 

space

 

(DMS).

 

For

 

an

 

SMS

 

table

 

space,

 

each

 

container

 

is

 

a

 

directory

 

in

 

the

 

file

 

space

 

of

 

the

 

operating

 

system,

 

and

 

the

 

operating

 

system’s

 

file

 

manager

 

controls

 

the

 

storage

 

space.

 

For

 

a

 

DMS

 

table

 

space,

 

each

 

container

 

is

 

either

 

a

 

fixed

 

size

 

pre-allocated

 

file,

 

or

 

a

 

physical

 

device

 

such

 

as

 

a

 

disk,

 

and

 

the

 

database

 

manager

 

controls

 

the

 

storage

 

space.

 

Figure

 

2

 

on

 

page

 

5

 

illustrates

 

the

 

relationship

 

between

 

tables,

 

table

 

spaces,

 

and

 

the

 

two

 

types

 

of

 

space.

 

It

 

also

 

shows

 

that

 

tables,

 

indexes,

 

and

 

long

 

data

 

are

 

stored

 

in

 

table

 

spaces.

  

Table space 3

Table 3Table 2

Table space 4

Table 3
index

Table space 2

System catalog tables for definitions
of views, packages, functions,
datatypes, triggers, and so on.

Table space 1

Table 1
Table 1
index

Table 2
index

Table space 5

LOB data for Table 2

Table space 6

Space for temporary tables.

LOB

LOB

  

Figure

 

1.

 

Table

 

space

 

flexibility

  

4

 

Administration

 

Guide:

 

Planning



Figure

 

3

 

on

 

page

 

6

 

shows

 

the

 

three

 

table

 

space

 

types:

 

regular,

 

temporary,

 

and

 

large.

 

Tables

 

containing

 

user

 

data

 

exist

 

in

 

regular

 

table

 

spaces.

 

The

 

default

 

user

 

table

 

space

 

is

 

called

 

USERSPACE1.

 

The

 

system

 

catalog

 

tables

 

exist

 

in

 

a

 

regular

 

table

 

space.

 

The

 

default

 

system

 

catalog

 

table

 

space

 

is

 

called

 

SYSCATSPACE.

 

Tables

 

containing

 

long

 

field

 

data

 

or

 

large

 

object

 

data,

 

such

 

as

 

multimedia

 

objects,

 

exist

 

in

 

large

 

table

 

spaces

 

or

 

in

 

regular

 

table

 

spaces.

 

The

 

base

 

column

 

data

 

for

 

these

 

columns

 

is

 

stored

 

in

 

a

 

regular

 

table

 

space,

 

while

 

the

 

long

 

field

 

or

 

large

 

object

 

data

 

can

 

be

 

stored

 

in

 

the

 

same

 

regular

 

table

 

space

 

or

 

in

 

a

 

specified

 

large

 

table

 

space.

 

Indexes

 

can

 

be

 

stored

 

in

 

regular

 

table

 

spaces

 

or

 

large

 

table

 

spaces.

 

Temporary

 

table

 

spaces

 

are

 

classified

 

as

 

either

 

system

 

or

 

user.

 

System

 

temporary

 

table

 

spaces

 

are

 

used

 

to

 

store

 

internal

 

temporary

 

data

 

required

 

during

 

SQL

 

operations

 

such

 

as

 

sorting,

 

reorganizing

 

tables,

 

creating

 

indexes,

 

and

 

joining

 

tables.

 

Although

 

you

 

can

 

create

 

any

 

number

 

of

 

system

 

temporary

 

table

 

spaces,

 

it

 

is

 

recommended

 

that

 

you

 

create

 

only

 

one,

 

using

 

the

 

page

 

size

 

that

 

the

 

majority

 

of

 

your

 

tables

 

use.

 

The

 

default

 

system

 

temporary

 

table

 

space

 

is

 

called

 

TEMPSPACE1.

 

User

 

temporary

 

table

 

spaces

 

are

 

used

 

to

 

store

 

declared

 

global

 

temporary

 

tables

 

that

 

store

 

application

 

temporary

 

data.

 

User

 

temporary

 

table

 

spaces

 

are

 

not

 

created

 

by

 

default

 

at

 

database

 

creation

 

time.

  

Instance

System

System-managed
space (SMS)

Database-managed
space (DMS)

Equivalent
physical object

Containers

Database
object or concept

Database

Table spaces
• Tables
• Indexes
• Long data

  

Figure

 

2.

 

Table

 

spaces

 

and

 

container

 

types

 

that

 

hold

 

data

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

5



Tables:

   

A

 

relational

 

database

 

presents

 

data

 

as

 

a

 

collection

 

of

 

tables.

 

A

 

table

 

consists

 

of

 

data

 

logically

 

arranged

 

in

 

columns

 

and

 

rows.

 

All

 

database

 

and

 

table

 

data

 

is

 

assigned

 

to

 

table

 

spaces.

 

The

 

data

 

in

 

the

 

table

 

is

 

logically

 

related,

 

and

 

relationships

 

can

 

be

 

defined

 

between

 

tables.

 

Data

 

can

 

be

 

viewed

 

and

 

manipulated

 

based

 

on

 

mathematical

 

principles

 

and

 

operations

 

called

 

relations.

 

Table

 

data

 

is

 

accessed

 

through

 

Structured

 

Query

 

Language

 

(SQL),

 

a

 

standardized

 

language

 

for

 

defining

 

and

 

manipulating

 

data

 

in

 

a

 

relational

 

database.

 

A

 

query

 

is

 

used

 

in

 

applications

 

or

 

by

 

users

 

to

 

retrieve

 

data

 

from

 

a

 

database.

 

The

 

query

 

uses

 

SQL

 

to

 

create

 

a

 

statement

 

in

 

the

 

form

 

of

    

SELECT

 

<data_name>

 

FROM

 

<table_name>

  

Views:

   

A

 

view

 

is

 

an

 

efficient

 

way

 

of

 

representing

 

data

 

without

 

needing

 

to

 

maintain

 

it.

 

A

 

view

 

is

 

not

 

an

 

actual

 

table

 

and

 

requires

 

no

 

permanent

 

storage.

 

A

 

″virtual

 

table″

 

is

 

created

 

and

 

used.

 

A

 

view

 

can

 

include

 

all

 

or

 

some

 

of

 

the

 

columns

 

or

 

rows

 

contained

 

in

 

the

 

tables

 

on

 

which

 

it

 

is

 

based.

 

For

 

example,

 

you

 

can

 

join

 

a

 

department

 

table

 

and

 

an

 

employee

 

table

 

in

 

a

 

view,

 

so

 

that

 

you

 

can

 

list

 

all

 

employees

 

in

 

a

 

particular

 

department.

 

Figure

 

4

 

on

 

page

 

7

 

shows

 

the

 

relationship

 

between

 

tables

 

and

 

views.

  

Regular
table spaces

Large
table spaces
(optional)

Temporary
table spaces

• System temporary
table spaces

• User temporary
table spaces

Database

Tables:
• User data is
stored here

Tables:
• Multimedia objects
or other large
object data

  

Figure

 

3.

 

Types

 

of

 

table

 

spaces

  

6

 

Administration

 

Guide:

 

Planning



Indexes:

   

An

 

index

 

is

 

a

 

set

 

of

 

keys,

 

each

 

pointing

 

to

 

rows

 

in

 

a

 

table.

 

For

 

example,

 

table

 

A

 

in

 

Figure

 

5

 

on

 

page

 

8

 

has

 

an

 

index

 

based

 

on

 

the

 

employee

 

numbers

 

in

 

the

 

table.

 

This

 

key

 

value

 

provides

 

a

 

pointer

 

to

 

the

 

rows

 

in

 

the

 

table:

 

employee

 

number

 

19

 

points

 

to

 

employee

 

KMP.

 

An

 

index

 

allows

 

more

 

efficient

 

access

 

to

 

rows

 

in

 

a

 

table

 

by

 

creating

 

a

 

direct

 

path

 

to

 

the

 

data

 

through

 

pointers.

 

The

 

SQL

 

optimizer

 

automatically

 

chooses

 

the

 

most

 

efficient

 

way

 

to

 

access

 

data

 

in

 

tables.

 

The

 

optimizer

 

takes

 

indexes

 

into

 

consideration

 

when

 

determining

 

the

 

fastest

 

access

 

path

 

to

 

data.

 

Unique

 

indexes

 

can

 

be

 

created

 

to

 

ensure

 

uniqueness

 

of

 

the

 

index

 

key.

 

An

 

index

 

key

 

is

 

a

 

column

 

or

 

an

 

ordered

 

collection

 

of

 

columns

 

on

 

which

 

an

 

index

 

is

 

defined.

 

Using

 

a

 

unique

 

index

 

will

 

ensure

 

that

 

the

 

value

 

of

 

each

 

index

 

key

 

in

 

the

 

indexed

 

column

 

or

 

columns

 

is

 

unique.

 

Figure

 

5

 

on

 

page

 

8

 

shows

 

the

 

relationship

 

between

 

an

 

index

 

and

 

a

 

table.

  

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

  

Figure

 

4.

 

Relationship

 

between

 

tables

 

and

 

views

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

7



Figure

 

6

 

illustrates

 

the

 

relationships

 

among

 

some

 

database

 

objects.

 

It

 

also

 

shows

 

that

 

tables,

 

indexes,

 

and

 

long

 

data

 

are

 

stored

 

in

 

table

 

spaces.

   

Schemas:

   

A

 

schema

 

is

 

an

 

identifier,

 

such

 

as

 

a

 

user

 

ID,

 

that

 

helps

 

group

 

tables

 

and

 

other

 

database

 

objects.

 

A

 

schema

 

can

 

be

 

owned

 

by

 

an

 

individual,

 

and

 

the

 

owner

 

can

 

control

 

access

 

to

 

the

 

data

 

and

 

the

 

objects

 

within

 

it.

 

A

 

schema

 

is

 

also

 

an

 

object

 

in

 

the

 

database.

 

It

 

may

 

be

 

created

 

automatically

 

when

 

the

 

first

 

object

 

in

 

a

 

schema

 

is

 

created.

 

Such

 

an

 

object

 

can

 

be

 

anything

 

that

 

can

 

be

 

qualified

 

by

 

a

 

schema

 

name,

 

such

 

as

 

a

 

table,

 

index,

 

view,

 

package,

 

distinct

 

type,

 

function,

 

or

 

trigger.

 

You

 

must

 

have

 

IMPLICIT_SCHEMA

 

authority

 

if

 

the

 

schema

 

is

 

to

 

be

 

created

 

automatically,

 

or

 

you

 

can

 

create

 

the

 

schema

 

explicitly.

 

A

 

schema

 

name

 

is

 

used

 

as

 

the

 

first

 

part

 

of

 

a

 

two-part

 

object

 

name.

 

When

 

an

 

object

 

is

 

created,

 

you

 

can

 

assign

 

it

 

to

 

a

 

specific

 

schema.

 

If

 

you

 

do

 

not

 

specify

 

a

 

schema,

 

it

 

is

 

assigned

 

to

 

the

 

default

 

schema,

 

which

 

is

 

usually

 

the

 

user

 

ID

 

of

 

the

 

person

 

who

 

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

  

Figure

 

5.

 

Relationship

 

between

 

an

 

index

 

and

 

a

 

table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

  

Figure

 

6.

 

Relationships

 

among

 

selected

 

database

 

objects

  

8

 

Administration

 

Guide:

 

Planning



created

 

the

 

object.

 

The

 

second

 

part

 

of

 

the

 

name

 

is

 

the

 

name

 

of

 

the

 

object.

 

For

 

example,

 

a

 

user

 

named

 

Smith

 

might

 

have

 

a

 

table

 

named

 

SMITH.PAYROLL.

  

System

 

catalog

 

tables:

   

Each

 

database

 

includes

 

a

 

set

 

of

 

system

 

catalog

 

tables,

 

which

 

describe

 

the

 

logical

 

and

 

physical

 

structure

 

of

 

the

 

data.

 

DB2

 

UDB

 

creates

 

and

 

maintains

 

an

 

extensive

 

set

 

of

 

system

 

catalog

 

tables

 

for

 

each

 

database.

 

These

 

tables

 

contain

 

information

 

about

 

the

 

definitions

 

of

 

database

 

objects

 

such

 

as

 

user

 

tables,

 

views,

 

and

 

indexes,

 

as

 

well

 

as

 

security

 

information

 

about

 

the

 

authority

 

that

 

users

 

have

 

on

 

these

 

objects.

 

They

 

are

 

created

 

when

 

the

 

database

 

is

 

created,

 

and

 

are

 

updated

 

during

 

the

 

course

 

of

 

normal

 

operation.

 

You

 

cannot

 

explicitly

 

create

 

or

 

drop

 

them,

 

but

 

you

 

can

 

query

 

and

 

view

 

their

 

contents

 

using

 

the

 

catalog

 

views.

  

Containers:

   

A

 

container

 

is

 

a

 

physical

 

storage

 

device.

 

It

 

can

 

be

 

identified

 

by

 

a

 

directory

 

name,

 

a

 

device

 

name,

 

or

 

a

 

file

 

name.

 

A

 

container

 

is

 

assigned

 

to

 

a

 

table

 

space.

 

A

 

single

 

table

 

space

 

can

 

span

 

many

 

containers,

 

but

 

each

 

container

 

can

 

belong

 

to

 

only

 

one

 

table

 

space.

 

Figure

 

7

 

illustrates

 

the

 

relationship

 

between

 

tables

 

and

 

a

 

table

 

space

 

within

 

a

 

database,

 

and

 

the

 

associated

 

containers

 

and

 

disks.

  

EMPLOYEE
table

DEPARTMENT
table

PROJECT
table

HUMANRES
table space

E:\DBASE1
Container 1

F:\DBASE1
Container 2

H:\DBASE1
Container 4

G:\DBASE1
Container 3

D:\DBASE1
Container 0

Database

  

Figure

 

7.

 

Relationship

 

between

 

a

 

table

 

space

 

and

 

its

 

containers

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

9

|
|
|
|
|
|
|
|



The

 

EMPLOYEE,

 

DEPARTMENT,

 

and

 

PROJECT

 

tables

 

are

 

in

 

the

 

HUMANRES

 

table

 

space

 

which

 

spans

 

containers

 

0,

 

1,

 

2,

 

3,

 

and

 

4.

 

This

 

example

 

shows

 

each

 

container

 

existing

 

on

 

a

 

separate

 

disk.

 

Data

 

for

 

any

 

table

 

will

 

be

 

stored

 

on

 

all

 

containers

 

in

 

a

 

table

 

space

 

in

 

a

 

round-robin

 

fashion.

 

This

 

balances

 

the

 

data

 

across

 

the

 

containers

 

that

 

belong

 

to

 

a

 

given

 

table

 

space.

 

The

 

number

 

of

 

pages

 

that

 

the

 

database

 

manager

 

writes

 

to

 

one

 

container

 

before

 

using

 

a

 

different

 

one

 

is

 

called

 

the

 

extent

 

size.

  

Buffer

 

pools:

   

A

 

buffer

 

pool

 

is

 

the

 

amount

 

of

 

main

 

memory

 

allocated

 

to

 

cache

 

table

 

and

 

index

 

data

 

pages

 

as

 

they

 

are

 

being

 

read

 

from

 

disk,

 

or

 

being

 

modified.

 

The

 

purpose

 

of

 

the

 

buffer

 

pool

 

is

 

to

 

improve

 

system

 

performance.

 

Data

 

can

 

be

 

accessed

 

much

 

faster

 

from

 

memory

 

than

 

from

 

disk;

 

therefore,

 

the

 

fewer

 

times

 

the

 

database

 

manager

 

needs

 

to

 

read

 

from

 

or

 

write

 

to

 

a

 

disk

 

(I/O),

 

the

 

better

 

the

 

performance.

 

(You

 

can

 

create

 

more

 

than

 

one

 

buffer

 

pool,

 

although

 

for

 

most

 

situations

 

only

 

one

 

is

 

required.)

 

The

 

configuration

 

of

 

the

 

buffer

 

pool

 

is

 

the

 

single

 

most

 

important

 

tuning

 

area,

 

because

 

you

 

can

 

reduce

 

the

 

delay

 

caused

 

by

 

slow

 

I/O.

 

Figure

 

8

 

illustrates

 

the

 

relationship

 

between

 

a

 

buffer

 

pool

 

and

 

containers.

   

Related

 

concepts:

  

v

   

“Indexes”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Tables”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Relational

 

databases”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Schemas”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Views”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Table

 

spaces

 

and

 

other

 

storage

 

structures”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

Equivalent
physical object

Database

File

System

Instance

Database
object or concept

Directory

Device

Reserved
Containers

Buffer pool

Table
spaces

  

Figure

 

8.

 

Relationship

 

between

 

the

 

buffer

 

pool

 

and

 

containers

  

10

 

Administration

 

Guide:

 

Planning



Configuration

 

parameters

  

When

 

a

 

DB2

 

Universal

 

Database™

 

instance

 

or

 

a

 

database

 

is

 

created,

 

a

 

corresponding

 

configuration

 

file

 

is

 

created

 

with

 

default

 

parameter

 

values.

 

You

 

can

 

modify

 

these

 

parameter

 

values

 

to

 

improve

 

performance

 

and

 

other

 

characteristics

 

of

 

the

 

instance

 

or

 

database.

 

Configuration

 

files

 

contain

 

parameters

 

that

 

define

 

values

 

such

 

as

 

the

 

resources

 

allocated

 

to

 

the

 

DB2

 

UDB

 

products

 

and

 

to

 

individual

 

databases,

 

and

 

the

 

diagnostic

 

level.

 

There

 

are

 

two

 

types

 

of

 

configuration

 

files:

 

v

   

The

 

database

 

manager

 

configuration

 

file

 

for

 

each

 

DB2

 

UDB

 

instance

 

v

   

The

 

database

 

configuration

 

file

 

for

 

each

 

individual

 

database.

The

 

database

 

manager

 

configuration

 

file

 

is

 

created

 

when

 

a

 

DB2

 

UDB

 

instance

 

is

 

created.

 

The

 

parameters

 

it

 

contains

 

affect

 

system

 

resources

 

at

 

the

 

instance

 

level,

 

independent

 

of

 

any

 

one

 

database

 

that

 

is

 

part

 

of

 

that

 

instance.

 

Values

 

for

 

many

 

of

 

these

 

parameters

 

can

 

be

 

changed

 

from

 

the

 

system

 

default

 

values

 

to

 

improve

 

performance

 

or

 

increase

 

capacity,

 

depending

 

on

 

your

 

system’s

 

configuration.

 

There

 

is

 

one

 

database

 

manager

 

configuration

 

file

 

for

 

each

 

client

 

installation

 

as

 

well.

 

This

 

file

 

contains

 

information

 

about

 

the

 

client

 

enabler

 

for

 

a

 

specific

 

workstation.

 

A

 

subset

 

of

 

the

 

parameters

 

available

 

for

 

a

 

server

 

are

 

applicable

 

to

 

the

 

client.

 

Database

 

manager

 

configuration

 

parameters

 

are

 

stored

 

in

 

a

 

file

 

named

 

db2systm.

 

This

 

file

 

is

 

created

 

when

 

the

 

instance

 

of

 

the

 

database

 

manager

 

is

 

created.

 

In

 

UNIX-based

 

environments,

 

this

 

file

 

can

 

be

 

found

 

in

 

the

 

sqllib

 

subdirectory

 

for

 

the

 

instance

 

of

 

the

 

database

 

manager.

 

In

 

Windows,

 

the

 

default

 

location

 

of

 

this

 

file

 

is

 

the

 

instance

 

subdirectory

 

of

 

the

 

sqllib

 

directory.

 

If

 

the

 

DB2INSTPROF

 

variable

 

is

 

set,

 

the

 

file

 

is

 

in

 

the

 

instance

 

subdirectory

 

of

 

the

 

directory

 

specified

 

by

 

the

 

DB2INSTPROF

 

variable.

 

In

 

a

 

partitioned

 

database

 

environment,

 

this

 

file

 

resides

 

on

 

a

 

shared

 

file

 

system

 

so

 

that

 

all

 

database

 

partition

 

servers

 

have

 

access

 

to

 

the

 

same

 

file.

 

The

 

configuration

 

of

 

the

 

database

 

manager

 

is

 

the

 

same

 

on

 

all

 

database

 

partition

 

servers.

 

Most

 

of

 

the

 

parameters

 

either

 

affect

 

the

 

amount

 

of

 

system

 

resources

 

that

 

will

 

be

 

allocated

 

to

 

a

 

single

 

instance

 

of

 

the

 

database

 

manager,

 

or

 

they

 

configure

 

the

 

setup

 

of

 

the

 

database

 

manager

 

and

 

the

 

different

 

communications

 

subsystems

 

based

 

on

 

environmental

 

considerations.

 

In

 

addition,

 

there

 

are

 

other

 

parameters

 

that

 

serve

 

informative

 

purposes

 

only

 

and

 

cannot

 

be

 

changed.

 

All

 

of

 

these

 

parameters

 

have

 

global

 

applicability

 

independent

 

of

 

any

 

single

 

database

 

stored

 

under

 

that

 

instance

 

of

 

the

 

database

 

manager.

 

A

 

database

 

configuration

 

file

 

is

 

created

 

when

 

a

 

database

 

is

 

created,

 

and

 

resides

 

where

 

that

 

database

 

resides.

 

There

 

is

 

one

 

configuration

 

file

 

per

 

database.

 

Its

 

parameters

 

specify,

 

among

 

other

 

things,

 

the

 

amount

 

of

 

resource

 

to

 

be

 

allocated

 

to

 

that

 

database.

 

Values

 

for

 

many

 

of

 

the

 

parameters

 

can

 

be

 

changed

 

to

 

improve

 

performance

 

or

 

increase

 

capacity.

 

Different

 

changes

 

may

 

be

 

required,

 

depending

 

on

 

the

 

type

 

of

 

activity

 

in

 

a

 

specific

 

database.

 

Parameters

 

for

 

an

 

individual

 

database

 

are

 

stored

 

in

 

a

 

configuration

 

file

 

named

 

SQLDBCON.

 

This

 

file

 

is

 

stored

 

along

 

with

 

other

 

control

 

files

 

for

 

the

 

database

 

in

 

the

 

SQLnnnnn

 

directory,

 

where

 

nnnnn

 

is

 

a

 

number

 

assigned

 

when

 

the

 

database

 

was

 

created.

 

Each

 

database

 

has

 

its

 

own

 

configuration

 

file,

 

and

 

most

 

of

 

the

 

parameters

   

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

11

|
|
|
|



in

 

the

 

file

 

specify

 

the

 

amount

 

of

 

resources

 

allocated

 

to

 

that

 

database.

 

The

 

file

 

also

 

contains

 

descriptive

 

information,

 

as

 

well

 

as

 

flags

 

that

 

indicate

 

the

 

status

 

of

 

the

 

database.

 

In

 

a

 

partitioned

 

database

 

environment,

 

a

 

separate

 

SQLDBCON

 

file

 

exists

 

for

 

each

 

database

 

partition.

 

The

 

values

 

in

 

the

 

SQLDBCON

 

file

 

may

 

be

 

the

 

same

 

or

 

different

 

at

 

each

 

database

 

partition,

 

but

 

the

 

recommendation

 

is

 

that

 

the

 

database

 

configuration

 

parameter

 

values

 

be

 

the

 

same

 

on

 

all

 

partitions.

   

Related

 

concepts:

  

v

   

“Configuration

 

parameter

 

tuning”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

Related

 

tasks:

  

v

   

“Configuring

 

DB2

 

with

 

configuration

 

parameters”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Business

 

rules

 

for

 

data

  

Within

 

any

 

business,

 

data

 

must

 

often

 

adhere

 

to

 

certain

 

restrictions

 

or

 

rules.

 

For

 

example,

 

an

 

employee

 

number

 

must

 

be

 

unique.

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

provides

 

constraints

 

as

 

a

 

way

 

to

 

enforce

 

such

 

rules.

 

DB2

 

UDB

 

provides

 

the

 

following

 

types

 

of

 

constraints:

 

v

   

NOT

 

NULL

 

constraint

 

v

   

Unique

 

constraint

 

v

   

Primary

 

key

 

constraint

 

v

   

Foreign

 

key

 

constraint

 

v

   

Check

 

constraint

 

v

   

Informational

 

constraint

NOT

 

NULL

 

constraint

 

NOT

 

NULL

 

constraints

 

prevent

 

null

 

values

 

from

 

being

 

entered

 

into

 

a

 

column.

 

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

  

Figure

 

9.

 

Relationship

 

between

 

database

 

objects

 

and

 

configuration

 

files

  

12

 

Administration

 

Guide:

 

Planning

|



unique

 

constraint

 

Unique

 

constraints

 

ensure

 

that

 

the

 

values

 

in

 

a

 

set

 

of

 

columns

 

are

 

unique

 

and

 

not

 

null

 

for

 

all

 

rows

 

in

 

the

 

table.

 

For

 

example,

 

a

 

typical

 

unique

 

constraint

 

in

 

a

 

DEPARTMENT

 

table

 

might

 

be

 

that

 

the

 

department

 

number

 

is

 

unique

 

and

 

not

 

null.

   

The

 

database

 

manager

 

enforces

 

the

 

constraint

 

during

 

insert

 

and

 

update

 

operations,

 

ensuring

 

data

 

integrity.

 

primary

 

key

 

constraint

 

Each

 

table

 

can

 

have

 

one

 

primary

 

key.

 

A

 

primary

 

key

 

is

 

a

 

column

 

or

 

combination

 

of

 

columns

 

that

 

has

 

the

 

same

 

properties

 

as

 

a

 

unique

 

constraint.

 

You

 

can

 

use

 

a

 

primary

 

key

 

and

 

foreign

 

key

 

constraints

 

to

 

define

 

relationships

 

between

 

tables.

  

Because

 

the

 

primary

 

key

 

is

 

used

 

to

 

identify

 

a

 

row

 

in

 

a

 

table,

 

it

 

should

 

be

 

unique

 

and

 

have

 

very

 

few

 

additions

 

or

 

deletions.

 

A

 

table

 

cannot

 

have

 

more

 

than

 

one

 

primary

 

key,

 

but

 

it

 

can

 

have

 

multiple

 

unique

 

keys.

 

Primary

 

keys

 

are

 

optional,

 

and

 

can

 

be

 

defined

 

when

 

a

 

table

 

is

 

created

 

or

 

altered.

 

They

 

are

 

also

 

beneficial,

 

because

 

they

 

order

 

the

 

data

 

when

 

data

 

is

 

exported

 

or

 

reorganized.

  

In

 

the

 

following

 

tables,

 

DEPTNO

 

and

 

EMPNO

 

are

 

the

 

primary

 

keys

 

for

 

the

 

DEPARTMENT

 

and

 

EMPLOYEE

 

tables.

  

Table

 

1.

 

DEPARTMENT

 

Table

 

DEPTNO

 

(Primary

 

Key)

 

DEPTNAME

 

MGRNO

 

A00

 

Spiffy

 

Computer

 

Service

 

Division

 

000010

 

B01

 

Planning

 

000020

 

C01

 

Information

 

Center

 

000030

 

D11

 

Manufacturing

 

Systems

 

000060

    

Table

 

2.

 

EMPLOYEE

 

Table

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

(Foreign

 

Key)

 

PHONENO

 

000010

 

Christine

 

Haas

 

A00

 

3978

 

000030

 

Sally

 

Kwan

 

C01

 

4738

 

000060

 

Irving

 

Stern

 

D11

 

6423

 

000120

 

Sean

 

O’Connell

 

A00

 

2167

 

Department
number

001

003

002

003

004

005

Invalid record

  

Figure

 

10.

 

Unique

 

constraints

 

prevent

 

duplicate

 

data

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

13



Table

 

2.

 

EMPLOYEE

 

Table

 

(continued)

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

(Foreign

 

Key)

 

PHONENO

 

000140

 

Heather

 

Nicholls

 

C01

 

1793

 

000170

 

Masatoshi

 

Yoshimura

 

D11

 

2890

   

foreign

 

key

 

constraint

 

Foreign

 

key

 

constraints

 

(also

 

known

 

as

 

referential

 

integrity

 

constraints)

 

enable

 

you

 

to

 

define

 

required

 

relationships

 

between

 

and

 

within

 

tables.

  

For

 

example,

 

a

 

typical

 

foreign

 

key

 

constraint

 

might

 

state

 

that

 

every

 

employee

 

in

 

the

 

EMPLOYEE

 

table

 

must

 

be

 

a

 

member

 

of

 

an

 

existing

 

department,

 

as

 

defined

 

in

 

the

 

DEPARTMENT

 

table.

  

To

 

establish

 

this

 

relationship,

 

you

 

would

 

define

 

the

 

department

 

number

 

in

 

the

 

EMPLOYEE

 

table

 

as

 

the

 

foreign

 

key,

 

and

 

the

 

department

 

number

 

in

 

the

 

DEPARTMENT

 

table

 

as

 

the

 

primary

 

key.

  

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

  

Figure

 

11.

 

Foreign

 

and

 

primary

 

key

 

constraints

  

14

 

Administration

 

Guide:

 

Planning



check

 

constraint

 

A

 

check

 

constraint

 

is

 

a

 

database

 

rule

 

that

 

specifies

 

the

 

values

 

allowed

 

in

 

one

 

or

 

more

 

columns

 

of

 

every

 

row

 

of

 

a

 

table.

  

For

 

example,

 

in

 

an

 

EMPLOYEE

 

table,

 

you

 

can

 

define

 

the

 

Type

 

of

 

Job

 

column

 

to

 

be

 

″Sales″,

 

″Manager″,

 

or

 

″Clerk″.

 

With

 

this

 

constraint,

 

any

 

record

 

with

 

a

 

different

 

value

 

in

 

the

 

Type

 

of

 

Job

 

column

 

is

 

not

 

valid,

 

and

 

would

 

be

 

rejected,

 

enforcing

 

rules

 

about

 

the

 

type

 

of

 

data

 

allowed

 

in

 

the

 

table.

 

informational

 

constraint

 

An

 

informational

 

constraint

 

is

 

a

 

rule

 

that

 

can

 

be

 

used

 

by

 

the

 

SQL

 

compiler

 

but

 

is

 

not

 

enforced

 

by

 

the

 

database

 

manager.

 

The

 

purpose

 

of

 

the

 

constraint

 

is

 

not

 

to

 

have

 

additional

 

verification

 

of

 

data

 

by

 

the

 

database

 

manager,

 

rather

 

it

 

is

 

to

 

improve

 

query

 

performance.

  

Informational

 

constraints

 

are

 

defined

 

using

 

the

 

CREATE

 

TABLE

 

or

 

ALTER

 

TABLE

 

statements.

 

You

 

add

 

referential

 

integrity

 

or

 

check

 

constraints

 

but

 

then

 

associate

 

constraint

 

attributes

 

to

 

them

 

specifying

 

whether

 

the

 

database

 

manager

 

is

 

to

 

enforce

 

the

 

constraint

 

or

 

not;

 

and,

 

whether

 

the

 

constraint

 

is

 

to

 

be

 

used

 

for

 

query

 

optimization

 

or

 

not.

 

You

 

can

 

also

 

use

 

triggers

 

in

 

your

 

database.

 

Triggers

 

are

 

more

 

complex

 

and

 

potentially

 

more

 

powerful

 

than

 

constraints.

 

They

 

define

 

a

 

set

 

of

 

actions

 

that

 

are

 

executed

 

in

 

conjunction

 

with,

 

or

 

triggered

 

by,

 

an

 

INSERT,

 

UPDATE,

 

or

 

DELETE

 

clause

 

on

 

a

 

specified

 

base

 

table.

 

You

 

can

 

use

 

triggers

 

to

 

support

 

general

 

forms

 

of

 

integrity

 

or

 

business

 

rules.

 

For

 

example,

 

a

 

trigger

 

can

 

check

 

a

 

customer’s

 

credit

 

limit

 

before

 

an

 

order

 

is

 

accepted,

 

or

 

be

 

used

 

in

 

a

 

banking

 

application

 

to

 

raise

 

an

 

alert

 

if

 

a

 

withdrawal

 

from

 

an

 

account

 

did

 

not

 

fit

 

a

 

customer’s

 

standard

 

withdrawal

 

patterns.

  

Related

 

concepts:

  

v

   

“Constraints”

 

on

 

page

 

63

 

v

   

“Triggers”

 

on

 

page

 

68

Developing

 

a

 

backup

 

and

 

recovery

 

strategy

  

A

 

database

 

can

 

become

 

unusable

 

because

 

of

 

hardware

 

or

 

software

 

failure,

 

or

 

both.

 

You

 

may,

 

at

 

one

 

time

 

or

 

another,

 

encounter

 

storage

 

problems,

 

power

 

interruptions,

 

or

 

application

 

failures,

 

and

 

each

 

failure

 

scenario

 

requires

 

a

 

different

 

recovery

 

action.

 

Protect

 

your

 

data

 

against

 

the

 

possibility

 

of

 

loss

 

by

 

having

 

a

 

well

 

rehearsed

 

recovery

 

strategy

 

in

 

place.

 

Some

 

of

 

the

 

questions

 

that

 

you

 

should

 

answer

 

when

 

developing

 

your

 

recovery

 

strategy

 

are:

 

v

   

Will

 

the

 

database

 

be

 

recoverable?

 

v

   

How

 

much

 

time

 

can

 

be

 

spent

 

recovering

 

the

 

database?

 

v

   

How

 

much

 

time

 

will

 

pass

 

between

 

backup

 

operations?

 

v

   

How

 

much

 

storage

 

space

 

can

 

be

 

allocated

 

for

 

backup

 

copies

 

and

 

archived

 

logs?

 

v

   

Will

 

table

 

space

 

level

 

backups

 

be

 

sufficient,

 

or

 

will

 

full

 

database

 

backups

 

be

 

necessary?

 

v

   

Should

 

I

 

configure

 

a

 

standby

 

system,

 

either

 

manually

 

or

 

through

 

high

 

availability

 

disaster

 

recovery

 

(HADR)?

A

 

database

 

recovery

 

strategy

 

should

 

ensure

 

that

 

all

 

information

 

is

 

available

 

when

 

it

 

is

 

required

 

for

 

database

 

recovery.

 

It

 

should

 

include

 

a

 

regular

 

schedule

 

for

 

taking

 

database

 

backups

 

and,

 

in

 

the

 

case

 

of

 

partitioned

 

database

 

systems,

 

include

 

backups

   

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

15

|
|
|
|
|

|
|
|
|
|

|
|



when

 

the

 

system

 

is

 

scaled

 

(when

 

database

 

partition

 

servers

 

or

 

nodes

 

are

 

added

 

or

 

dropped).

 

Your

 

overall

 

strategy

 

should

 

also

 

include

 

procedures

 

for

 

recovering

 

command

 

scripts,

 

applications,

 

user-defined

 

functions

 

(UDFs),

 

stored

 

procedure

 

code

 

in

 

operating

 

system

 

libraries,

 

and

 

load

 

copies.

 

Different

 

recovery

 

methods

 

are

 

discussed

 

in

 

the

 

sections

 

that

 

follow,

 

and

 

you

 

will

 

discover

 

which

 

recovery

 

method

 

is

 

best

 

suited

 

to

 

your

 

business

 

environment.

 

The

 

concept

 

of

 

a

 

database

 

backup

 

is

 

the

 

same

 

as

 

any

 

other

 

data

 

backup:

 

taking

 

a

 

copy

 

of

 

the

 

data

 

and

 

then

 

storing

 

it

 

on

 

a

 

different

 

medium

 

in

 

case

 

of

 

failure

 

or

 

damage

 

to

 

the

 

original.

 

The

 

simplest

 

case

 

of

 

a

 

backup

 

involves

 

shutting

 

down

 

the

 

database

 

to

 

ensure

 

that

 

no

 

further

 

transactions

 

occur,

 

and

 

then

 

simply

 

backing

 

it

 

up.

 

You

 

can

 

then

 

rebuild

 

the

 

database

 

if

 

it

 

becomes

 

damaged

 

or

 

corrupted

 

in

 

some

 

way.

 

The

 

rebuilding

 

of

 

the

 

database

 

is

 

called

 

recovery.

 

Version

 

recovery

 

is

 

the

 

restoration

 

of

 

a

 

previous

 

version

 

of

 

the

 

database,

 

using

 

an

 

image

 

that

 

was

 

created

 

during

 

a

 

backup

 

operation.

 

Rollforward

 

recovery

 

is

 

the

 

reapplication

 

of

 

transactions

 

recorded

 

in

 

the

 

database

 

log

 

files

 

after

 

a

 

database

 

or

 

a

 

table

 

space

 

backup

 

image

 

has

 

been

 

restored.

 

Crash

 

recovery

 

is

 

the

 

automatic

 

recovery

 

of

 

the

 

database

 

if

 

a

 

failure

 

occurs

 

before

 

all

 

of

 

the

 

changes

 

that

 

are

 

part

 

of

 

one

 

or

 

more

 

units

 

of

 

work

 

(transactions)

 

are

 

completed

 

and

 

committed.

 

This

 

is

 

done

 

by

 

rolling

 

back

 

incomplete

 

transactions

 

and

 

completing

 

committed

 

transactions

 

that

 

were

 

still

 

in

 

memory

 

when

 

the

 

crash

 

occurred.

 

Recovery

 

log

 

files

 

and

 

the

 

recovery

 

history

 

file

 

are

 

created

 

automatically

 

when

 

a

 

database

 

is

 

created

 

(Figure

 

12

 

on

 

page

 

17).

 

These

 

log

 

files

 

are

 

important

 

if

 

you

 

need

 

to

 

recover

 

data

 

that

 

is

 

lost

 

or

 

damaged.

 

Each

 

database

 

includes

 

recovery

 

logs,

 

which

 

are

 

used

 

to

 

recover

 

from

 

application

 

or

 

system

 

errors.

 

In

 

combination

 

with

 

the

 

database

 

backups,

 

they

 

are

 

used

 

to

 

recover

 

the

 

consistency

 

of

 

the

 

database

 

right

 

up

 

to

 

the

 

point

 

in

 

time

 

when

 

the

 

error

 

occurred.

 

The

 

recovery

 

history

 

file

 

contains

 

a

 

summary

 

of

 

the

 

backup

 

information

 

that

 

can

 

be

 

used

 

to

 

determine

 

recovery

 

options,

 

if

 

all

 

or

 

part

 

of

 

the

 

database

 

must

 

be

 

recovered

 

to

 

a

 

given

 

point

 

in

 

time.

 

It

 

is

 

used

 

to

 

track

 

recovery-related

 

events

 

such

 

as

 

backup

 

and

 

restore

 

operations,

 

among

 

others.

 

This

 

file

 

is

 

located

 

in

 

the

 

database

 

directory.

 

The

 

table

 

space

 

change

 

history

 

file,

 

which

 

is

 

also

 

located

 

in

 

the

 

database

 

directory,

 

contains

 

information

 

that

 

can

 

be

 

used

 

to

 

determine

 

which

 

log

 

files

 

are

 

required

 

for

 

the

 

recovery

 

of

 

a

 

particular

 

table

 

space.

 

You

 

cannot

 

directly

 

modify

 

the

 

recovery

 

history

 

file

 

or

 

the

 

table

 

space

 

change

 

history

 

file;

 

however,

 

you

 

can

 

delete

 

entries

 

from

 

the

 

files

 

using

 

the

 

the

 

PRUNE

 

HISTORY

 

command.

 

You

 

can

 

also

 

use

 

the

 

rec_his_retentn

 

database

 

configuration

 

parameter

 

to

 

specify

 

the

 

number

 

of

 

days

 

that

 

these

 

history

 

files

 

will

 

be

 

retained.

    

16

 

Administration

 

Guide:

 

Planning

|
|
|
|



Data

 

that

 

is

 

easily

 

recreated

 

can

 

be

 

stored

 

in

 

a

 

non-recoverable

 

database.

 

This

 

includes

 

data

 

from

 

an

 

outside

 

source

 

that

 

is

 

used

 

for

 

read-only

 

applications,

 

and

 

tables

 

that

 

are

 

not

 

often

 

updated,

 

for

 

which

 

the

 

small

 

amount

 

of

 

logging

 

does

 

not

 

justify

 

the

 

added

 

complexity

 

of

 

managing

 

log

 

files

 

and

 

rolling

 

forward

 

after

 

a

 

restore

 

operation.

 

Non-recoverable

 

databases

 

have

 

the

 

logarchmeth1

 

and

 

logarchmeth2database

 

configuration

 

parameters

 

set

 

to

 

“OFF”.

 

This

 

means

 

that

 

the

 

only

 

logs

 

that

 

are

 

kept

 

are

 

those

 

required

 

for

 

crash

 

recovery.

 

These

 

logs

 

are

 

known

 

as

 

active

 

logs,

 

and

 

they

 

contain

 

current

 

transaction

 

data.

 

Version

 

recovery

 

using

 

offline

 

backups

 

is

 

the

 

primary

 

means

 

of

 

recovery

 

for

 

a

 

non-recoverable

 

database.

 

(An

 

offline

 

backup

 

means

 

that

 

no

 

other

 

application

 

can

 

use

 

the

 

database

 

when

 

the

 

backup

 

operation

 

is

 

in

 

progress.)

 

Such

 

a

 

database

 

can

 

only

 

be

 

restored

 

offline.

 

It

 

is

 

restored

 

to

 

the

 

state

 

it

 

was

 

in

 

when

 

the

 

backup

 

image

 

was

 

taken

 

and

 

rollforward

 

recovery

 

is

 

not

 

supported.

 

Data

 

that

 

cannot

 

be

 

easily

 

recreated

 

should

 

be

 

stored

 

in

 

a

 

recoverable

 

database.

 

This

 

includes

 

data

 

whose

 

source

 

is

 

destroyed

 

after

 

the

 

data

 

is

 

loaded,

 

data

 

that

 

is

 

manually

 

entered

 

into

 

tables,

 

and

 

data

 

that

 

is

 

modified

 

by

 

application

 

programs

 

or

 

users

 

after

 

it

 

is

 

loaded

 

into

 

the

 

database.

 

Recoverable

 

databases

 

have

 

the

 

logarchmeth1

 

or

 

logarchmeth2

 

database

 

configuration

 

parameters

 

set

 

to

 

a

 

value

 

other

 

than

 

“OFF”.

 

Active

 

logs

 

are

 

still

 

available

 

for

 

crash

 

recovery,

 

but

 

you

 

also

 

have

 

the

 

archived

 

logs,

 

which

 

contain

 

committed

 

transaction

 

data.

 

Such

 

a

 

database

 

can

 

only

 

be

 

restored

 

offline.

 

It

 

is

 

restored

 

to

 

the

 

state

 

it

 

was

 

in

 

when

 

the

 

backup

 

image

 

was

 

taken.

 

However,

 

with

 

rollforward

 

recovery,

 

you

 

can

 

roll

 

the

 

database

 

forward

 

(that

 

is,

 

past

 

the

 

time

 

when

 

the

 

backup

 

image

 

was

 

taken)

 

by

 

using

 

the

 

active

 

and

 

archived

 

logs

 

to

 

either

 

a

 

specific

 

point

 

in

 

time,

 

or

 

to

 

the

 

end

 

of

 

the

 

active

 

logs.

 

Recoverable

 

database

 

backup

 

operations

 

can

 

be

 

performed

 

either

 

offline

 

or

 

online

 

(online

 

meaning

 

that

 

other

 

applications

 

can

 

connect

 

to

 

the

 

database

 

during

 

the

 

backup

 

operation).

 

Online

 

table

 

space

 

restore

 

and

 

rollforward

 

operations

 

are

 

supported

 

only

 

if

 

the

 

database

 

is

 

recoverable.

 

If

 

the

 

database

 

is

 

non-recoverable,

 

database

 

restore

 

and

 

rollforward

 

operations

 

must

 

be

 

performed

 

offline.

 

During

 

an

 

online

 

backup

 

operation,

 

rollforward

 

recovery

 

ensures

 

that

 

all

 

table

 

changes

 

are

 

captured

 

and

 

reapplied

 

if

 

that

 

backup

 

is

 

restored.

 

If

 

you

 

have

 

a

 

recoverable

 

database,

 

you

 

can

 

back

 

up,

 

restore,

 

and

 

roll

 

individual

 

table

 

spaces

 

forward,

 

rather

 

than

 

the

 

entire

 

database.

 

When

 

you

 

back

 

up

 

a

 

table

 

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

  

Figure

 

12.

 

Database

 

recovery

 

files

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

17

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|



space

 

online,

 

it

 

is

 

still

 

available

 

for

 

use,

 

and

 

simultaneous

 

updates

 

are

 

recorded

 

in

 

the

 

logs.

 

When

 

you

 

perform

 

an

 

online

 

restore

 

or

 

rollforward

 

operation

 

on

 

a

 

table

 

space,

 

the

 

table

 

space

 

itself

 

is

 

not

 

available

 

for

 

use

 

until

 

the

 

operation

 

completes,

 

but

 

users

 

are

 

not

 

prevented

 

from

 

accessing

 

tables

 

in

 

other

 

table

 

spaces.

 

Automated

 

backup

 

operations

 

Since

 

it

 

can

 

be

 

time-consuming

 

to

 

determine

 

whether

 

and

 

when

 

to

 

run

 

maintenance

 

activities

 

such

 

as

 

backup

 

operations,

 

you

 

can

 

use

 

the

 

Configure

 

Automatic

 

Maintenance

 

wizard

 

to

 

do

 

this

 

for

 

you.

 

With

 

automatic

 

maintenance,

 

you

 

specify

 

your

 

maintenance

 

objectives,

 

including

 

when

 

automatic

 

maintenance

 

can

 

run.

 

DB2

 

then

 

uses

 

these

 

objectives

 

to

 

determine

 

if

 

the

 

maintenance

 

activities

 

need

 

to

 

be

 

done

 

and

 

then

 

runs

 

only

 

the

 

required

 

maintenance

 

activities

 

during

 

the

 

next

 

available

 

maintenance

 

window

 

(a

 

user-defined

 

time

 

period

 

for

 

the

 

running

 

of

 

automatic

 

maintenance

 

activities).

 

Note:

  

You

 

can

 

still

 

perform

 

manual

 

backup

 

operations

 

when

 

automatic

 

maintence

 

is

 

configured.

 

DB2

 

will

 

only

 

perform

 

automatic

 

backup

 

operations

 

if

 

they

 

are

 

required.

  

Related

 

concepts:

  

v

   

“Crash

 

recovery”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

v

   

“Version

 

recovery”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

v

   

“Rollforward

 

recovery”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

v

   

“High

 

availability

 

disaster

 

recovery

 

overview”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

v

   

“Data

 

Links

 

server

 

file

 

backups”

 

in

 

the

 

DB2

 

Data

 

Links

 

Manager

 

Administration

 

Guide

 

and

 

Reference

 

v

   

“Failure

 

and

 

recovery

 

overview”

 

in

 

the

 

DB2

 

Data

 

Links

 

Manager

 

Administration

 

Guide

 

and

 

Reference

 

Related

 

reference:

  

v

   

“rec_his_retentn

 

-

 

Recovery

 

history

 

retention

 

period

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“logarchmeth1

 

-

 

Primary

 

log

 

archive

 

method

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“DB2

 

Data

 

Links

 

Manager

 

system

 

setup

 

and

 

backup

 

recommendations”

 

in

 

the

 

DB2

 

Data

 

Links

 

Manager

 

Administration

 

Guide

 

and

 

Reference

Automatic

 

maintenance

  

DB2®

 

Universal

 

Database

 

(UDB)

 

provides

 

automatic

 

maintenance

 

capabilities

 

for

 

performing

 

database

 

backups,

 

keeping

 

statistics

 

current

 

and

 

reorganizing

 

tables

 

and

 

indexes

 

as

 

necessary.

 

Automatic

 

database

 

backup

 

provides

 

users

 

with

 

a

 

solution

 

to

 

help

 

ensure

 

their

 

database

 

is

 

being

 

backed

 

up

 

both

 

properly

 

and

 

regularly,

 

without

 

either

 

having

 

to

 

worry

 

about

 

when

 

to

 

back

 

up,

 

or

 

having

 

any

 

knowledge

 

of

 

the

 

backup

 

command.

 

Automatic

 

statistics

 

collection

 

attempts

 

to

 

improve

 

the

 

performance

 

of

 

the

 

database

 

by

 

maintaining

 

up-to-date

 

table

 

statistics.

 

The

 

goal

 

is

 

to

 

allow

 

the

 

optimizer

 

to

 

choose

 

an

 

access

 

plan

 

based

 

on

 

accurate

 

statistics.

   

18

 

Administration

 

Guide:

 

Planning

|

|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|
|



Automatic

 

statistics

 

profiling

 

advises

 

when

 

and

 

how

 

to

 

collect

 

table

 

statistics

 

by

 

detecting

 

outdated,

 

missing,

 

and

 

incorrectly

 

specified

 

statistics

 

and

 

by

 

generating

 

statistical

 

profiles

 

based

 

on

 

query

 

feedback.

 

Automatic

 

reorganization

 

manages

 

offline

 

table

 

and

 

index

 

reorganization

 

without

 

users

 

having

 

to

 

worry

 

about

 

when

 

and

 

how

 

to

 

reorganize

 

their

 

data.

 

Enablement

 

of

 

the

 

automatic

 

maintenance

 

features

 

is

 

controlled

 

using

 

the

 

automatic

 

maintenance

 

database

 

configuration

 

parameters.

 

These

 

are

 

a

 

hierarchical

 

set

 

of

 

switches

 

to

 

allow

 

for

 

simplicity

 

and

 

flexibility

 

in

 

managing

 

the

 

enablement

 

of

 

these

 

features.

  

Automatic

 

database

 

backup:

   

A

 

database

 

may

 

become

 

unusable

 

due

 

to

 

a

 

wide

 

variety

 

of

 

hardware

 

or

 

software

 

failures.

 

Automatic

 

database

 

backup

 

simplifies

 

database

 

backup

 

management

 

tasks

 

for

 

the

 

DBA

 

by

 

always

 

ensuring

 

that

 

a

 

recent

 

full

 

backup

 

of

 

the

 

database

 

is

 

performed

 

as

 

needed.

 

It

 

determines

 

the

 

need

 

to

 

perform

 

a

 

backup

 

operation

 

based

 

on

 

one

 

or

 

more

 

of

 

the

 

following

 

measures:

 

v

   

You

 

have

 

never

 

completed

 

a

 

full

 

database

 

backup

 

v

   

The

 

time

 

elapsed

 

since

 

the

 

last

 

full

 

backup

 

is

 

more

 

than

 

a

 

specified

 

number

 

of

 

hours

 

v

   

The

 

transaction

 

log

 

space

 

consumed

 

since

 

the

 

last

 

backup

 

is

 

more

 

than

 

a

 

specified

 

number

 

of

 

4

 

KB

 

pages

 

(in

 

archive

 

logging

 

mode

 

only).

 

Protect

 

your

 

data

 

by

 

planning

 

and

 

implementing

 

a

 

disaster

 

recovery

 

strategy

 

for

 

your

 

system.

 

If

 

suitable

 

to

 

your

 

needs,

 

you

 

may

 

incorporate

 

the

 

automatic

 

database

 

backup

 

feature

 

as

 

part

 

of

 

your

 

backup

 

and

 

recovery

 

strategy.

 

If

 

the

 

database

 

is

 

enabled

 

for

 

roll-forward

 

recovery

 

(archive

 

logging),

 

then

 

automatic

 

database

 

backup

 

can

 

be

 

enabled

 

for

 

either

 

online

 

or

 

offline

 

backup.

 

Otherwise,

 

only

 

offline

 

backup

 

is

 

available.

 

Automatic

 

database

 

backup

 

supports

 

disk,

 

tape,

 

Tivoli®

 

Storage

 

Manager

 

(TSM),

 

and

 

vendor

 

DLL

 

media

 

types.

 

Through

 

the

 

Configure

 

Automatic

 

Maintenance

 

wizard

 

in

 

the

 

Control

 

Center

 

or

 

Health

 

Center,

 

you

 

can

 

configure:

 

v

   

The

 

requested

 

time

 

or

 

number

 

of

 

log

 

pages

 

between

 

backups

 

v

   

The

 

backup

 

media

 

v

   

Whether

 

it

 

will

 

be

 

an

 

online

 

or

 

offline

 

backup.

 

If

 

backup

 

to

 

disk

 

is

 

selected,

 

the

 

automatic

 

backup

 

feature

 

will

 

regularly

 

delete

 

backup

 

images

 

from

 

the

 

directory

 

specified

 

in

 

the

 

Configure

 

Automatic

 

Maintenance

 

wizard.

 

Only

 

the

 

most

 

recent

 

backup

 

image

 

is

 

guaranteed

 

to

 

be

 

available

 

at

 

any

 

given

 

time.

 

It

 

is

 

recommended

 

that

 

this

 

directory

 

be

 

kept

 

exclusively

 

for

 

the

 

automatic

 

backup

 

feature

 

and

 

not

 

be

 

used

 

to

 

store

 

other

 

backup

 

images.

 

The

 

automatic

 

database

 

backup

 

feature

 

can

 

be

 

enabled

 

or

 

disabled

 

by

 

using

 

the

 

auto_db_backup

 

and

 

auto_maint

 

database

 

configuration

 

parameters.

 

In

 

a

 

multiple

 

database

 

partitioned

 

environment,

 

the

 

automatic

 

database

 

backup

 

runs

 

on

 

each

 

partition

 

if

 

the

 

database

 

configuration

 

parameters

 

are

 

enabled

 

on

 

that

 

partition.

  

Automatic

 

statistics

 

collection:

    

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

19

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|



When

 

the

 

SQL

 

compiler

 

optimizes

 

SQL

 

query

 

plans,

 

its

 

decisions

 

are

 

heavily

 

influenced

 

by

 

statistical

 

information

 

about

 

the

 

size

 

of

 

the

 

database

 

tables

 

and

 

indexes.

 

The

 

optimizer

 

also

 

uses

 

information

 

about

 

the

 

distribution

 

of

 

data

 

in

 

specific

 

columns

 

of

 

tables

 

and

 

indexes

 

if

 

these

 

columns

 

are

 

used

 

to

 

select

 

rows

 

or

 

join

 

tables.

 

The

 

optimizer

 

uses

 

this

 

information

 

to

 

estimate

 

the

 

costs

 

of

 

alternative

 

access

 

plans

 

for

 

each

 

query.

 

When

 

significant

 

numbers

 

of

 

table

 

rows

 

are

 

added

 

or

 

removed,

 

or

 

if

 

data

 

in

 

columns

 

for

 

which

 

you

 

collect

 

statistics

 

is

 

updated,

 

the

 

RUNSTATS

 

utility

 

needs

 

to

 

be

 

run

 

again

 

to

 

update

 

the

 

statistics.

 

Automatic

 

statistics

 

collection

 

works

 

by

 

determining

 

the

 

minimum

 

set

 

of

 

statistics

 

that

 

give

 

optimal

 

performance

 

improvement.

 

The

 

decision

 

to

 

collect

 

or

 

update

 

statistics

 

is

 

taken

 

by

 

observing

 

and

 

learning

 

how

 

often

 

tables

 

are

 

modified

 

and

 

how

 

much

 

the

 

table

 

statistics

 

have

 

changed.

 

The

 

automatic

 

statistics

 

collection

 

algorithm

 

learns

 

over

 

time

 

how

 

fast

 

the

 

statistics

 

change

 

on

 

a

 

per

 

table

 

basis

 

and

 

internally

 

schedules

 

RUNSTATS

 

execution

 

accordingly.

 

Normal

 

database

 

maintenance

 

activities

 

such

 

as

 

when

 

a

 

user

 

performs

 

RUNSTATS,

 

REORG

 

or

 

altering

 

or

 

dropping

 

the

 

table,

 

are

 

not

 

affected

 

by

 

the

 

enablement

 

of

 

this

 

feature.

 

If

 

you

 

are

 

unsure

 

about

 

how

 

often

 

to

 

collect

 

statistics

 

for

 

the

 

tables

 

in

 

your

 

database,

 

you

 

may

 

incorporate

 

the

 

automatic

 

statistics

 

collection

 

feature

 

as

 

part

 

of

 

your

 

overall

 

database

 

maintenance

 

plan.

 

The

 

automatic

 

statistics

 

collection

 

feature

 

can

 

be

 

enabled

 

or

 

disabled

 

by

 

using

 

the

 

auto_runstats,

 

auto_tbl_maint,

 

and

 

auto_maintdatabase

 

configuration

 

parameters.

 

In

 

a

 

multiple

 

database

 

partitioned

 

environment,

 

the

 

determination

 

to

 

carry

 

out

 

automatic

 

statistics

 

collection

 

and

 

the

 

inititation

 

of

 

automatic

 

statistics

 

collection,

 

is

 

done

 

on

 

the

 

catalog

 

partition.

 

The

 

auto_runstats

 

configuration

 

parameter

 

needs

 

to

 

be

 

enabled

 

on

 

the

 

catalog

 

partition

 

only.

 

The

 

actual

 

statistics

 

collection

 

is

 

done

 

by

 

RUNSTATS

 

and

 

is

 

collected

 

as

 

follows:

 

1.

   

If

 

the

 

catalog

 

partition

 

has

 

table

 

data,

 

then

 

collect

 

statistics

 

on

 

the

 

catalog

 

partition.

 

RUNSTATS

 

always

 

collects

 

statistics

 

on

 

the

 

partition

 

where

 

it

 

is

 

initiated

 

if

 

that

 

partition

 

contains

 

table

 

data.

 

2.

   

Otherwise,

 

collection

 

of

 

statistics

 

is

 

done

 

on

 

the

 

first

 

partition

 

in

 

the

 

table

 

partition

 

list.

 

Tables

 

considered

 

for

 

automatic

 

statistics

 

collection

 

are

 

configurable

 

by

 

you

 

using

 

the

 

Automatic

 

Maintenance

 

wizard

 

from

 

the

 

Control

 

Center

 

or

 

Health

 

Center.

  

Automatic

 

statistics

 

profiling:

   

Missing

 

or

 

outdated

 

statistics

 

can

 

make

 

the

 

optimizer

 

pick

 

a

 

slower

 

query

 

plan.

 

It

 

is

 

important

 

to

 

note

 

that

 

not

 

all

 

statistics

 

are

 

important

 

for

 

a

 

given

 

workload.

 

For

 

example,

 

statistics

 

on

 

columns

 

not

 

appearing

 

in

 

any

 

query

 

predicate

 

are

 

unlikely

 

to

 

have

 

any

 

impact.

 

Sometimes

 

statistics

 

on

 

several

 

columns

 

(column

 

group

 

statistics)

 

are

 

needed

 

in

 

order

 

to

 

adjust

 

for

 

correlations

 

between

 

these

 

columns.

 

Automatic

 

statistics

 

profiling

 

analyzes

 

optimizer

 

behavior

 

by

 

only

 

considering

 

columns

 

that

 

were

 

used

 

in

 

previous

 

queries

 

and

 

also

 

knowing

 

columns

 

or

 

column

 

combinations

 

where

 

estimation

 

errors

 

occurred.

 

In

 

order

 

to

 

detect

 

errors

 

and

 

recommend

 

or

 

change

 

a

 

statistical

 

profile,

 

the

 

statistical

 

profile

 

generator

 

mines

 

information

 

collected

 

when

 

the

 

query

 

is

 

compiled

 

as

 

well

 

as

 

information

   

20

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|



accumulated

 

when

 

the

 

query

 

ran.

 

This

 

approach

 

is

 

reactive

 

as

 

the

 

action

 

is

 

taken

 

after

 

the

 

query

 

has

 

been

 

seen

 

and

 

eventually

 

after

 

a

 

plan

 

has

 

been

 

chosen

 

and

 

run.

 

Automatic

 

statistics

 

profiling

 

advises

 

on

 

how

 

to

 

collect

 

statistics

 

using

 

the

 

RUNSTATS

 

utility

 

by

 

detecting

 

outdated,

 

missing,

 

and

 

incorrectly

 

specified

 

statistics

 

and

 

generating

 

statistical

 

profiles

 

based

 

on

 

query

 

feedback.

 

If

 

suitable

 

to

 

your

 

needs,

 

you

 

may

 

incorporate

 

the

 

automatic

 

statistics

 

profiling

 

feature

 

as

 

part

 

of

 

your

 

overall

 

database

 

maintenance

 

plan.

 

Automatic

 

statistics

 

profiling

 

interacts

 

with

 

automatic

 

statistics

 

collection

 

and

 

advises

 

on

 

when

 

to

 

collect

 

statistics.

 

The

 

automatic

 

statistics

 

profiling

 

feature

 

can

 

be

 

enabled

 

or

 

disabled

 

by

 

using

 

the

 

auto_stats_prof,

 

auto_tbl_maint

 

and

 

auto_maintdatabase

 

configuration

 

parameters.

 

If

 

the

 

auto_prof_upd

 

database

 

configuration

 

parameter

 

is

 

also

 

enabled,

 

then

 

the

 

statistical

 

profiles

 

generated

 

are

 

used

 

to

 

update

 

the

 

RUNSTATS

 

user

 

profiles.

 

Automatic

 

statistics

 

profiling

 

is

 

not

 

available

 

for

 

multiple

 

database

 

partitioned

 

environments

 

or

 

when

 

symmetric

 

multi-processor

 

(SMP)

 

parallelism,

 

also

 

called

 

intrapartition

 

parallelism,

 

is

 

enabled.

  

Automatic

 

reorganization:

   

After

 

many

 

changes

 

to

 

table

 

data,

 

logically

 

sequential

 

data

 

may

 

be

 

on

 

non-sequential

 

physical

 

pages

 

so

 

the

 

database

 

manager

 

has

 

to

 

perform

 

additional

 

read

 

operations

 

to

 

access

 

data.

 

Among

 

other

 

information,

 

the

 

statistical

 

information

 

collected

 

by

 

RUNSTATS

 

show

 

the

 

data

 

distribution

 

within

 

a

 

table.

 

In

 

particular,

 

analysis

 

of

 

these

 

statistics

 

can

 

indicate

 

when

 

and

 

what

 

kind

 

of

 

reorganization

 

is

 

necessary.

 

Automatic

 

reorganization

 

determines

 

the

 

need

 

for

 

reorganization

 

on

 

tables

 

by

 

using

 

the

 

REORGCHK

 

formulas.

 

It

 

periodically

 

evaluates

 

tables

 

that

 

have

 

had

 

their

 

statistics

 

updated

 

to

 

see

 

if

 

reorganization

 

is

 

required.

 

If

 

so,

 

it

 

internally

 

schedules

 

a

 

classic

 

reorganization

 

for

 

the

 

table.

 

This

 

requires

 

that

 

your

 

applications

 

function

 

without

 

write

 

access

 

to

 

the

 

tables

 

being

 

reorganized.

 

The

 

automatic

 

reorganization

 

feature

 

can

 

be

 

enabled

 

or

 

disabled

 

by

 

using

 

the

 

auto_reorg,

 

auto_tbl_maint,

 

and

 

auto_maint

 

database

 

configuration

 

parameters.

 

In

 

a

 

multiple

 

database

 

partitioned

 

environment,

 

the

 

determination

 

to

 

carry

 

out

 

automatic

 

reorganization

 

and

 

the

 

inititation

 

of

 

automatic

 

reorganization,

 

is

 

done

 

on

 

the

 

catalog

 

partition.

 

The

 

database

 

configuration

 

parameters

 

need

 

to

 

be

 

enabled

 

on

 

the

 

catalog

 

partition

 

only.

 

The

 

reorganization

 

runs

 

on

 

all

 

of

 

the

 

partitions

 

on

 

which

 

the

 

target

 

tables

 

reside.

 

If

 

you

 

are

 

unsure

 

about

 

when

 

and

 

how

 

to

 

reorganize

 

your

 

tables

 

and

 

indexes,

 

you

 

can

 

incorporate

 

automatic

 

reorganization

 

as

 

part

 

of

 

your

 

overall

 

database

 

maintenance

 

plan.

 

Tables

 

considered

 

for

 

automatic

 

reorganization

 

are

 

configurable

 

by

 

you

 

using

 

the

 

Automatic

 

Maintenance

 

wizard

 

from

 

the

 

Control

 

Center

 

or

 

Health

 

Center.

  

Maintenance

 

windows

 

for

 

automation:

   

The

 

automatic

 

maintenance

 

features

 

described

 

above

 

consume

 

resources

 

on

 

your

 

system

 

and

 

may

 

affect

 

the

 

performance

 

of

 

your

 

database

 

when

 

they

 

are

 

run.

   

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

21

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|

|
|



Automatic

 

reorganization

 

and

 

offline

 

database

 

backup

 

also

 

restrict

 

access

 

to

 

the

 

tables

 

and

 

database

 

when

 

these

 

utilities

 

are

 

run.

 

It

 

is

 

therefore

 

necessary

 

to

 

provide

 

appropriate

 

periods

 

of

 

time

 

when

 

these

 

maintenance

 

activities

 

can

 

be

 

internally

 

scheduled

 

for

 

execution

 

by

 

DB2

 

UDB.

 

These

 

can

 

be

 

specified

 

as

 

offline

 

and

 

online

 

maintenance

 

time

 

periods

 

using

 

the

 

automatic

 

maintenance

 

wizard

 

from

 

the

 

Control

 

Center

 

or

 

Health

 

Center.

 

Offline

 

database

 

backups

 

and

 

table

 

and

 

index

 

reorganization

 

are

 

run

 

in

 

the

 

offline

 

maintenance

 

time

 

period.

 

These

 

features

 

run

 

to

 

completion

 

even

 

if

 

they

 

go

 

beyond

 

the

 

time

 

period

 

specified.

 

The

 

internal

 

scheduling

 

mechanism

 

learns

 

over

 

time

 

and

 

estimates

 

job

 

completion

 

times.

 

If

 

the

 

offline

 

time

 

period

 

is

 

too

 

small

 

for

 

a

 

particular

 

database

 

backup

 

or

 

reorganization

 

activity,

 

the

 

scheduler

 

will

 

not

 

start

 

the

 

job

 

the

 

next

 

time

 

around

 

and

 

relies

 

on

 

the

 

health

 

monitor

 

to

 

provide

 

notification

 

of

 

the

 

need

 

to

 

increase

 

the

 

offline

 

maintenance

 

time

 

period.

 

Automatic

 

statistics

 

collection

 

and

 

profiling

 

as

 

well

 

as

 

online

 

database

 

backups

 

are

 

run

 

in

 

the

 

online

 

maintenance

 

time

 

period.

 

To

 

minimize

 

the

 

impact

 

on

 

the

 

system,

 

they

 

are

 

throttled

 

by

 

the

 

adaptive

 

utility

 

throttling

 

mechanism.

 

The

 

internal

 

scheduling

 

mechanism

 

uses

 

the

 

online

 

maintenance

 

time

 

period

 

to

 

start

 

the

 

online

 

jobs.

 

These

 

features

 

run

 

to

 

completion

 

even

 

if

 

they

 

go

 

beyond

 

the

 

time

 

period

 

specified.

  

Storage:

   

The

 

automatic

 

statistics

 

collection

 

and

 

reorganization

 

features

 

store

 

working

 

data

 

in

 

tables

 

in

 

your

 

database.

 

These

 

tables

 

are

 

created

 

in

 

the

 

SYSTOOLSPACE

 

table

 

space.

 

The

 

SYSTOOLSPACE

 

table

 

space

 

is

 

created

 

automatically

 

with

 

default

 

options

 

when

 

the

 

database

 

is

 

activated.

 

Storage

 

requirements

 

for

 

these

 

tables

 

are

 

proportional

 

to

 

the

 

number

 

of

 

tables

 

in

 

the

 

database

 

and

 

should

 

be

 

calculated

 

as

 

approximately

 

1

 

KB

 

per

 

table.

 

If

 

this

 

is

 

a

 

significant

 

size

 

for

 

your

 

database,

 

you

 

may

 

want

 

to

 

drop

 

and

 

re-create

 

the

 

table

 

space

 

yourself

 

and

 

allocate

 

storage

 

appropriately.

 

The

 

automatic

 

maintenance

 

and

 

health

 

monitor

 

tables

 

in

 

the

 

table

 

space

 

are

 

automatically

 

re-created.

 

Any

 

history

 

captured

 

in

 

those

 

tables

 

is

 

lost

 

when

 

the

 

table

 

space

 

is

 

dropped.

  

Monitoring

 

and

 

notification:

   

The

 

health

 

monitor

 

provides

 

monitoring

 

and

 

notification

 

functionality

 

for

 

the

 

automatic

 

database

 

backup,

 

statistics

 

collection

 

and

 

reorganization

 

features.

  

Related

 

concepts:

  

v

   

“Catalog

 

statistics”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Table

 

reorganization”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Table

 

and

 

index

 

management

 

for

 

standard

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Developing

 

a

 

backup

 

and

 

recovery

 

strategy”

 

on

 

page

 

15

 

v

   

“Table

 

and

 

index

 

management

 

for

 

MDC

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Health

 

monitor”

 

in

 

the

 

System

 

Monitor

 

Guide

 

and

 

Reference

 

v

   

“Automatic

 

statistics

 

collection”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

Related

 

reference:

  

v

   

“autonomic_switches

 

-

 

Automatic

 

maintenance

 

switches

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

  

22

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|
|



High

 

availability

 

disaster

 

recovery

 

(HADR)

 

feature

 

overview

  

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

high

 

availability

 

disaster

 

recovery

 

(HADR)

 

is

 

a

 

database

 

replication

 

feature

 

that

 

provides

 

a

 

high

 

availability

 

solution

 

for

 

both

 

partial

 

and

 

complete

 

site

 

failures.

 

HADR

 

protects

 

against

 

data

 

loss

 

by

 

replicating

 

data

 

changes

 

from

 

a

 

source

 

database,

 

called

 

the

 

primary,

 

to

 

a

 

target

 

database,

 

called

 

the

 

standby.

 

A

 

partial

 

site

 

failure

 

can

 

be

 

caused

 

by

 

a

 

hardware,

 

network,

 

or

 

software

 

(DB2

 

UDB

 

or

 

operating

 

system)

 

failure.

 

Without

 

HADR,

 

the

 

database

 

management

 

system

 

(DBMS)

 

server

 

or

 

the

 

machine

 

where

 

the

 

database

 

resides

 

has

 

to

 

be

 

rebooted

 

or

 

restarted.

 

This

 

process

 

could

 

take

 

several

 

minutes

 

to

 

complete.

 

With

 

HADR,

 

the

 

standby

 

database

 

can

 

take

 

over

 

the

 

primary

 

database

 

role

 

in

 

a

 

matter

 

of

 

seconds.

 

A

 

complete

 

site

 

failure

 

can

 

occur

 

when

 

a

 

disaster,

 

such

 

as

 

a

 

fire,

 

causes

 

the

 

entire

 

site

 

to

 

be

 

destroyed.

 

Since

 

HADR

 

uses

 

TCP/IP

 

for

 

communication

 

between

 

the

 

primary

 

and

 

standby

 

databases,

 

the

 

two

 

databases

 

can

 

be

 

situated

 

in

 

different

 

locations.

 

For

 

example,

 

your

 

primary

 

database

 

might

 

be

 

located

 

at

 

your

 

head

 

office

 

in

 

one

 

city,

 

while

 

your

 

standby

 

database

 

is

 

located

 

at

 

your

 

sales

 

office

 

in

 

another

 

city.

 

If

 

a

 

disaster

 

occurs

 

at

 

the

 

primary

 

site,

 

data

 

availability

 

is

 

maintained

 

by

 

having

 

the

 

remote

 

standby

 

database

 

take

 

over

 

as

 

the

 

primary

 

database

 

with

 

full

 

DB2

 

UDB

 

functionality.

 

After

 

a

 

takeover

 

operation

 

occurs,

 

you

 

can

 

bring

 

the

 

original

 

primary

 

database

 

back

 

up

 

and

 

return

 

it

 

to

 

its

 

status

 

of

 

primary

 

database;

 

this

 

is

 

known

 

as

 

failback.

 

With

 

HADR,

 

you

 

can

 

choose

 

the

 

level

 

of

 

protection

 

you

 

want

 

from

 

potential

 

loss

 

of

 

data

 

by

 

specifying

 

one

 

of

 

three

 

synchronization

 

modes:

 

synchronous

 

(SYNC),

 

near

 

synchronous

 

(NEARSYNC),

 

and

 

asynchronous

 

(ASYNC).

 

These

 

modes

 

indicate

 

how

 

data

 

changes

 

are

 

propagated

 

between

 

the

 

two

 

systems.

 

The

 

synchronization

 

mode

 

selected

 

will

 

determine

 

how

 

close

 

to

 

being

 

a

 

replica

 

the

 

standby

 

database

 

will

 

be

 

when

 

compared

 

to

 

the

 

primary

 

database.

 

For

 

example,

 

using

 

synchronous

 

mode,

 

HADR

 

can

 

guarantee

 

that

 

any

 

transaction

 

committed

 

on

 

the

 

primary

 

is

 

also

 

committed

 

on

 

the

 

standby.

 

Synchronization

 

allows

 

you

 

to

 

have

 

failover

 

and

 

failback

 

between

 

the

 

two

 

systems.

 

Data

 

changes

 

are

 

recorded

 

in

 

database

 

log

 

records

 

which

 

are

 

shipped

 

from

 

the

 

primary

 

system

 

to

 

the

 

standby

 

system.

 

HADR

 

is

 

tightly-coupled

 

with

 

DB2

 

UDB

 

logging

 

and

 

recovery.

 

HADR

 

requires

 

that

 

both

 

systems

 

have

 

the

 

same

 

hardware,

 

operating

 

system,

 

and

 

DB2

 

UDB

 

software.

 

(There

 

may

 

be

 

some

 

minor

 

differences

 

during

 

times

 

when

 

the

 

systems

 

are

 

being

 

upgraded.)

 

The

 

HADR

 

standby

 

database

 

is

 

established

 

either

 

by

 

restoring

 

it

 

from

 

a

 

backup

 

of

 

the

 

primary

 

database,

 

or

 

by

 

initializing

 

it

 

from

 

a

 

split-mirror

 

copy

 

of

 

the

 

primary

 

database.

 

Once

 

HADR

 

is

 

started,

 

the

 

standby

 

database

 

will

 

retrieve

 

log

 

records

 

from

 

the

 

primary

 

database

 

and

 

replay

 

them

 

against

 

its

 

own

 

copy

 

of

 

the

 

database.

 

The

 

log

 

records

 

are

 

applied

 

to

 

the

 

standby

 

database

 

until

 

the

 

standby

 

database

 

“catches

 

up”

 

to

 

the

 

in-memory

 

log

 

set

 

of

 

the

 

primary

 

database.

 

At

 

this

 

point,

 

the

 

HADR

 

pairing

 

transitions

 

to

 

PEER

 

state

 

where

 

the

 

primary

 

database

 

sends

 

new

 

log

 

pages

 

to

 

the

 

standby

 

database

 

as

 

well

 

as

 

writing

 

the

 

pages

 

to

 

its

 

local

 

disk.

 

The

 

log

 

pages

 

are

 

replayed

 

on

 

the

 

standby

 

database

 

as

 

they

 

arrive.

 

Through

 

continuous

 

log

 

replay,

 

the

 

standby

 

database

 

is

 

maintained

 

as

 

a

 

time-delayed

 

replica

 

of

 

the

 

primary

 

database.

   

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

23

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|



When

 

a

 

failure

 

occurs

 

on

 

the

 

primary

 

database,

 

you

 

can

 

then

 

easily

 

fail

 

over

 

to

 

the

 

standby

 

database.

 

Once

 

you

 

have

 

failed

 

over

 

to

 

the

 

standby

 

database,

 

it

 

becomes

 

the

 

new

 

primary

 

database.

 

Because

 

the

 

standby

 

database

 

server

 

is

 

already

 

online,

 

failover

 

can

 

be

 

completed

 

very

 

quickly.

 

This

 

keeps

 

your

 

time

 

without

 

database

 

activity

 

to

 

a

 

minimum.

 

HADR

 

can

 

also

 

be

 

used

 

to

 

maintain

 

database

 

availability

 

across

 

certain

 

hardware

 

or

 

software

 

release

 

upgrades.

 

You

 

can

 

upgrade

 

your

 

hardware,

 

operating

 

system,

 

or

 

DB2

 

UDB

 

FixPak

 

level

 

on

 

the

 

standby

 

while

 

the

 

primary

 

is

 

available

 

to

 

applications.

 

You

 

can

 

then

 

transfer

 

the

 

applications

 

to

 

the

 

upgraded

 

system

 

while

 

the

 

original

 

primary

 

is

 

upgraded.

 

The

 

performance

 

of

 

the

 

new

 

primary

 

database

 

immediately

 

after

 

failover

 

may

 

not

 

be

 

exactly

 

the

 

same

 

as

 

on

 

the

 

old

 

primary

 

database

 

before

 

the

 

failure.

 

The

 

new

 

primary

 

database

 

needs

 

some

 

time

 

to

 

populate

 

the

 

statement

 

cache,

 

the

 

buffer

 

pool,

 

and

 

other

 

memory

 

locations

 

used

 

by

 

the

 

database

 

manager.

 

Although

 

the

 

replaying

 

of

 

the

 

log

 

data

 

from

 

the

 

old

 

primary

 

partly

 

places

 

data

 

in

 

the

 

buffer

 

pool

 

and

 

system

 

catalog

 

caches,

 

it

 

is

 

not

 

complete

 

because

 

it

 

is

 

only

 

based

 

on

 

write

 

activity.

 

Frequently

 

accessed

 

index

 

pages,

 

catalog

 

information

 

for

 

tables

 

that

 

is

 

queried

 

but

 

not

 

updated,

 

statement

 

caches,

 

and

 

access

 

plans

 

will

 

all

 

be

 

missing

 

from

 

the

 

caches.

 

However,

 

the

 

whole

 

process

 

is

 

faster

 

than

 

if

 

you

 

were

 

starting

 

up

 

a

 

new

 

DB2

 

UDB

 

database.

 

Once

 

the

 

failed

 

former

 

primary

 

server

 

is

 

repaired,

 

it

 

can

 

be

 

reintegrated

 

as

 

a

 

standby

 

database

 

if

 

the

 

two

 

copies

 

of

 

the

 

database

 

can

 

be

 

made

 

consistent.

 

After

 

reintegration,

 

a

 

failback

 

operation

 

can

 

be

 

performed

 

so

 

that

 

the

 

original

 

primary

 

database

 

is

 

once

 

again

 

the

 

primary

 

database.

 

The

 

HADR

 

feature

 

is

 

available

 

only

 

on

 

DB2

 

UDB

 

Enterprise

 

Server

 

Edition

 

(ESE).

 

It

 

is

 

disabled

 

in

 

other

 

editions

 

such

 

as

 

Personal

 

Edition,

 

and

 

ESE

 

with

 

the

 

database

 

partitioning

 

feature

 

(DPF).

 

HADR

 

takes

 

place

 

at

 

the

 

database

 

level,

 

not

 

at

 

the

 

instance

 

level.

 

This

 

means

 

that

 

a

 

single

 

instance

 

could

 

include

 

the

 

primary

 

database

 

(A),

 

the

 

standby

 

database

 

(B),

 

and

 

a

 

standard

 

(non-HADR)

 

database

 

(C).

 

However,

 

an

 

instance

 

cannot

 

contain

 

both

 

the

 

primary

 

and

 

standby

 

for

 

a

 

single

 

database

 

because

 

HADR

 

requires

 

that

 

each

 

copy

 

of

 

the

 

database

 

has

 

the

 

same

 

database

 

name.

  

Related

 

concepts:

  

v

   

“High

 

availability”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

Security

  

To

 

protect

 

data

 

and

 

resources

 

associated

 

with

 

a

 

database

 

server,

 

DB2®

 

Universal

 

Database

 

uses

 

a

 

combination

 

of

 

external

 

security

 

services

 

and

 

internal

 

access

 

control

 

information.

 

To

 

access

 

a

 

database

 

server,

 

you

 

must

 

pass

 

some

 

security

 

checks

 

before

 

you

 

are

 

given

 

access

 

to

 

database

 

data

 

or

 

resources.

 

The

 

first

 

step

 

in

 

database

 

security

 

is

 

called

 

authentication,

 

where

 

you

 

must

 

prove

 

that

 

you

 

are

 

who

 

you

 

say

 

you

 

are.

 

The

 

second

 

step

 

is

 

called

 

authorization,

 

where

 

the

 

database

 

manager

 

decides

 

if

 

the

 

validated

 

user

 

is

 

allowed

 

to

 

perform

 

the

 

requested

 

action,

 

or

 

access

 

the

 

requested

 

data.

  

Related

 

concepts:

  

v

   

“Authentication”

 

on

 

page

 

25

 

v

   

“Authorization”

 

on

 

page

 

25

  

24

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|



Authentication

  

Authentication

 

of

 

a

 

user

 

is

 

completed

 

using

 

a

 

security

 

facility

 

outside

 

of

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB).

 

The

 

security

 

facility

 

can

 

be

 

part

 

of

 

the

 

operating

 

system,

 

a

 

separate

 

product

 

or,

 

in

 

certain

 

cases,

 

may

 

not

 

exist

 

at

 

all.

 

On

 

UNIX®

 

based

 

systems,

 

the

 

security

 

facility

 

is

 

in

 

the

 

operating

 

system

 

itself.

 

The

 

security

 

facility

 

requires

 

two

 

items

 

to

 

authenticate

 

a

 

user:

 

a

 

user

 

ID

 

and

 

a

 

password.

 

The

 

user

 

ID

 

identifies

 

the

 

user

 

to

 

the

 

security

 

facility.

 

By

 

supplying

 

the

 

correct

 

password

 

(information

 

known

 

only

 

to

 

the

 

user

 

and

 

the

 

security

 

facility)

 

the

 

user’s

 

identity

 

(corresponding

 

to

 

the

 

user

 

ID)

 

is

 

verified.

 

Once

 

authenticated:

 

v

   

The

 

user

 

must

 

be

 

identified

 

to

 

DB2

 

UDB

 

using

 

an

 

SQL

 

authorization

 

name

 

or

 

authid.

 

This

 

name

 

can

 

be

 

the

 

same

 

as

 

the

 

user

 

ID,

 

or

 

a

 

mapped

 

value.

 

For

 

example,

 

on

 

UNIX

 

based

 

systems,

 

a

 

DB2

 

UDB

 

authid

 

is

 

derived

 

by

 

transforming

 

to

 

uppercase

 

letters

 

a

 

UNIX

 

user

 

ID

 

that

 

follows

 

DB2

 

UDB

 

naming

 

conventions.

 

v

   

A

 

list

 

of

 

groups

 

to

 

which

 

the

 

user

 

belongs

 

is

 

obtained.

 

Group

 

membership

 

may

 

be

 

used

 

when

 

authorizing

 

the

 

user.

 

Groups

 

are

 

security

 

facility

 

entities

 

that

 

must

 

also

 

map

 

to

 

DB2

 

UDB

 

authorization

 

names.

 

This

 

mapping

 

is

 

done

 

in

 

a

 

method

 

similar

 

to

 

that

 

used

 

for

 

user

 

IDs.

 

DB2

 

UDB

 

uses

 

the

 

security

 

facility

 

to

 

authenticate

 

users

 

in

 

one

 

of

 

two

 

ways:

 

v

   

DB2

 

UDB

 

uses

 

a

 

successful

 

security

 

system

 

login

 

as

 

evidence

 

of

 

identity,

 

and

 

allows:

 

–

   

Use

 

of

 

local

 

commands

 

to

 

access

 

local

 

data

 

–

   

Use

 

of

 

remote

 

connections

 

where

 

the

 

server

 

trusts

 

the

 

client

 

authentication.
v

   

DB2

 

UDB

 

accepts

 

a

 

user

 

ID

 

and

 

password

 

combination.

 

It

 

uses

 

successful

 

validation

 

of

 

this

 

pair

 

by

 

the

 

security

 

facility

 

as

 

evidence

 

of

 

identity

 

and

 

allows:

 

–

   

Use

 

of

 

remote

 

connections

 

where

 

the

 

server

 

requires

 

proof

 

of

 

authentication

 

–

   

Use

 

of

 

operations

 

where

 

the

 

user

 

wants

 

to

 

run

 

a

 

command

 

under

 

an

 

identity

 

other

 

than

 

the

 

identity

 

used

 

for

 

login.

 

DB2

 

UDB

 

on

 

AIX®

 

can

 

log

 

failed

 

password

 

attempts

 

with

 

the

 

operating

 

system,

 

and

 

detect

 

when

 

a

 

client

 

has

 

exceeded

 

the

 

number

 

of

 

allowable

 

login

 

tries,

 

as

 

specified

 

by

 

the

 

LOGINRETRIES

 

parameter.

  

Related

 

concepts:

  

v

   

“Authentication

 

methods

 

for

 

your

 

server”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Privileges,

 

authority

 

levels,

 

and

 

database

 

authorities”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Security”

 

on

 

page

 

24

 

v

   

“Authorization”

 

on

 

page

 

25

Authorization

  

Authorization

 

is

 

the

 

process

 

whereby

 

DB2®

 

obtains

 

information

 

about

 

an

 

authenticated

 

DB2

 

user,

 

indicating

 

the

 

database

 

operations

 

that

 

user

 

may

 

perform,

 

and

 

what

 

data

 

objects

 

may

 

be

 

accessed.

 

With

 

each

 

user

 

request,

 

there

 

may

 

be

 

more

 

than

 

one

 

authorization

 

check,

 

depending

 

on

 

the

 

objects

 

and

 

operations

 

involved.

   

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

25

|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

|

|
|



Authorization

 

is

 

performed

 

using

 

DB2

 

facilities.

 

DB2

 

tables

 

and

 

configuration

 

files

 

are

 

used

 

to

 

record

 

the

 

permissions

 

associated

 

with

 

each

 

authorization

 

name.

 

The

 

authorization

 

name

 

of

 

an

 

authenticated

 

user,

 

and

 

those

 

of

 

groups

 

to

 

which

 

the

 

user

 

belongs,

 

are

 

compared

 

with

 

the

 

recorded

 

permissions.

 

Based

 

on

 

this

 

comparison,

 

DB2

 

decides

 

whether

 

to

 

allow

 

the

 

requested

 

access.

 

There

 

are

 

two

 

types

 

of

 

permissions

 

recorded

 

by

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB):

 

privileges

 

and

 

authority

 

levels.

 

A

 

privilege

 

defines

 

a

 

single

 

permission

 

for

 

an

 

authorization

 

name,

 

enabling

 

a

 

user

 

to

 

create

 

or

 

access

 

database

 

resources.

 

Privileges

 

are

 

stored

 

in

 

the

 

database

 

catalogs.

 

Authority

 

levels

 

provide

 

a

 

method

 

of

 

grouping

 

privileges

 

and

 

control

 

over

 

higher-level

 

database

 

manager

 

maintenance

 

and

 

utility

 

operations.

 

Database-specific

 

authorities

 

are

 

stored

 

in

 

the

 

database

 

catalogs;

 

system

 

authorities

 

are

 

associated

 

with

 

group

 

membership,

 

and

 

the

 

group

 

names

 

that

 

are

 

associated

 

with

 

the

 

authority

 

levels

 

are

 

stored

 

in

 

the

 

database

 

manager

 

configuration

 

file

 

for

 

a

 

given

 

instance.

 

Groups

 

provide

 

a

 

convenient

 

means

 

of

 

performing

 

authorization

 

for

 

a

 

collection

 

of

 

users

 

without

 

having

 

to

 

grant

 

or

 

revoke

 

privileges

 

for

 

each

 

user

 

individually.

 

Unless

 

otherwise

 

specified,

 

group

 

authorization

 

names

 

can

 

be

 

used

 

anywhere

 

that

 

authorization

 

names

 

are

 

used

 

for

 

authorization

 

purposes.

 

In

 

general,

 

group

 

membership

 

is

 

considered

 

for

 

dynamic

 

SQL

 

and

 

non-database

 

object

 

authorizations

 

(such

 

as

 

instance

 

level

 

commands

 

and

 

utilities),

 

but

 

is

 

not

 

considered

 

for

 

static

 

SQL.

 

The

 

exception

 

to

 

this

 

general

 

case

 

occurs

 

when

 

privileges

 

are

 

granted

 

to

 

PUBLIC:

 

these

 

are

 

considered

 

when

 

static

 

SQL

 

is

 

processed.

 

Specific

 

cases

 

where

 

group

 

membership

 

does

 

not

 

apply

 

are

 

noted

 

throughout

 

the

 

DB2

 

UDB

 

documentation,

 

where

 

applicable.

  

Related

 

concepts:

  

v

   

“Authorization

 

and

 

privileges”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Privileges,

 

authority

 

levels,

 

and

 

database

 

authorities”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Security”

 

on

 

page

 

24

Units

 

of

 

work

  

A

 

transaction

 

is

 

commonly

 

referred

 

to

 

in

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

as

 

a

 

unit

 

of

 

work.

 

A

 

unit

 

of

 

work

 

is

 

a

 

recoverable

 

sequence

 

of

 

operations

 

within

 

an

 

application

 

process.

 

It

 

is

 

used

 

by

 

the

 

database

 

manager

 

to

 

ensure

 

that

 

a

 

database

 

is

 

in

 

a

 

consistent

 

state.

 

Any

 

reading

 

from

 

or

 

writing

 

to

 

the

 

database

 

is

 

done

 

within

 

a

 

unit

 

of

 

work.

 

For

 

example,

 

a

 

bank

 

transaction

 

might

 

involve

 

the

 

transfer

 

of

 

funds

 

from

 

a

 

savings

 

account

 

to

 

a

 

checking

 

account.

 

After

 

the

 

application

 

subtracts

 

an

 

amount

 

from

 

the

 

savings

 

account,

 

the

 

two

 

accounts

 

are

 

inconsistent,

 

and

 

remain

 

so

 

until

 

the

 

amount

 

is

 

added

 

to

 

the

 

checking

 

account.

 

When

 

both

 

steps

 

are

 

completed,

 

a

 

point

 

of

 

consistency

 

is

 

reached.

 

The

 

changes

 

can

 

be

 

committed

 

and

 

made

 

available

 

to

 

other

 

applications.

 

A

 

unit

 

of

 

work

 

starts

 

when

 

the

 

first

 

SQL

 

statement

 

is

 

issued

 

against

 

the

 

database.

 

The

 

application

 

must

 

end

 

the

 

unit

 

of

 

work

 

by

 

issuing

 

either

 

a

 

COMMIT

 

or

 

a

 

ROLLBACK

 

statement.

 

The

 

COMMIT

 

statement

 

makes

 

permanent

 

all

 

changes

 

made

 

within

 

a

 

unit

 

of

 

work.

 

The

 

ROLLBACK

 

statement

 

removes

 

these

 

changes

 

from

 

the

 

database.

 

If

 

the

 

application

 

ends

 

normally

 

without

 

either

 

of

 

these

 

statements

 

being

 

explicitly

 

issued,

 

the

 

unit

 

of

 

work

 

is

 

automatically

 

committed.

 

If

 

it

 

ends

 

abnormally

 

in

 

the

 

middle

 

of

 

a

 

unit

 

of

 

work,

 

the

 

unit

 

of

 

work

 

is

   

26

 

Administration

 

Guide:

 

Planning

|
|
|
|
|



automatically

 

rolled

 

back.

 

Once

 

issued,

 

a

 

COMMIT

 

or

 

a

 

ROLLBACK

 

cannot

 

be

 

stopped.

 

With

 

some

 

multi-threaded

 

applications,

 

or

 

some

 

operating

 

systems

 

(such

 

as

 

Windows®),

 

if

 

the

 

application

 

ends

 

normally

 

without

 

either

 

of

 

these

 

statements

 

being

 

explicitly

 

issued,

 

the

 

unit

 

of

 

work

 

is

 

automatically

 

rolled

 

back.

 

It

 

is

 

recommended

 

that

 

your

 

applications

 

always

 

explicitly

 

commit

 

or

 

roll

 

back

 

complete

 

units

 

of

 

work.

 

If

 

part

 

of

 

a

 

unit

 

of

 

work

 

does

 

not

 

complete

 

successfully,

 

the

 

updates

 

are

 

rolled

 

back,

 

leaving

 

the

 

participating

 

tables

 

as

 

they

 

were

 

before

 

the

 

transaction

 

began.

 

This

 

ensures

 

that

 

requests

 

are

 

neither

 

lost

 

nor

 

duplicated.

  

Related

 

reference:

  

v

   

“COMMIT

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“ROLLBACK

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

  

Chapter

 

1.

 

Basic

 

relational

 

database

 

concepts

 

27



28

 

Administration

 

Guide:

 

Planning



Chapter

 

2.

 

Parallel

 

database

 

systems

 

Data

 

partitioning

  

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

extends

 

the

 

database

 

manager

 

to

 

the

 

parallel,

 

multi-node

 

environment.

 

A

 

database

 

partition

 

is

 

a

 

part

 

of

 

a

 

database

 

that

 

consists

 

of

 

its

 

own

 

data,

 

indexes,

 

configuration

 

files,

 

and

 

transaction

 

logs.

 

A

 

database

 

partition

 

is

 

sometimes

 

called

 

a

 

node

 

or

 

a

 

database

 

node.

 

A

 

single-partition

 

database

 

is

 

a

 

database

 

having

 

only

 

one

 

database

 

partition.

 

All

 

data

 

in

 

the

 

database

 

is

 

stored

 

in

 

that

 

partition.

 

In

 

this

 

case

 

database

 

partition

 

groups,

 

while

 

present,

 

provide

 

no

 

additional

 

capability.

 

A

 

partitioned

 

database

 

is

 

a

 

database

 

with

 

two

 

or

 

more

 

database

 

partitions.

 

Tables

 

can

 

be

 

located

 

in

 

one

 

or

 

more

 

database

 

partitions.

 

When

 

a

 

table

 

is

 

in

 

a

 

database

 

partition

 

group

 

consisting

 

of

 

multiple

 

partitions,

 

some

 

of

 

its

 

rows

 

are

 

stored

 

in

 

one

 

partition,

 

and

 

other

 

rows

 

are

 

stored

 

in

 

other

 

partitions.

 

Usually,

 

a

 

single

 

database

 

partition

 

exists

 

on

 

each

 

physical

 

node,

 

and

 

the

 

processors

 

on

 

each

 

system

 

are

 

used

 

by

 

the

 

database

 

manager

 

at

 

each

 

database

 

partition

 

to

 

manage

 

its

 

part

 

of

 

the

 

total

 

data

 

in

 

the

 

database.

 

Because

 

data

 

is

 

divided

 

across

 

database

 

partitions,

 

you

 

can

 

use

 

the

 

power

 

of

 

multiple

 

processors

 

on

 

multiple

 

physical

 

nodes

 

to

 

satisfy

 

requests

 

for

 

information.

 

Data

 

retrieval

 

and

 

update

 

requests

 

are

 

decomposed

 

automatically

 

into

 

sub-requests,

 

and

 

executed

 

in

 

parallel

 

among

 

the

 

applicable

 

database

 

partitions.

 

The

 

fact

 

that

 

databases

 

are

 

split

 

across

 

database

 

partitions

 

is

 

transparent

 

to

 

users

 

issuing

 

SQL

 

statements.

 

User

 

interaction

 

occurs

 

through

 

one

 

database

 

partition,

 

known

 

as

 

the

 

coordinator

 

node

 

for

 

that

 

user.

 

The

 

coordinator

 

node

 

runs

 

on

 

the

 

same

 

database

 

partition

 

as

 

the

 

application,

 

or

 

in

 

the

 

case

 

of

 

a

 

remote

 

application,

 

the

 

database

 

partition

 

to

 

which

 

that

 

application

 

is

 

connected.

 

Any

 

database

 

partition

 

can

 

be

 

used

 

as

 

a

 

coordinator

 

node.

 

DB2

 

UDB

 

supports

 

a

 

partitioned

 

storage

 

model

 

that

 

allows

 

you

 

to

 

store

 

data

 

across

 

several

 

database

 

partitions

 

in

 

the

 

database.

 

This

 

means

 

that

 

the

 

data

 

is

 

physically

 

stored

 

across

 

more

 

than

 

one

 

database

 

partition,

 

and

 

yet

 

can

 

be

 

accessed

 

as

 

though

 

it

 

were

 

located

 

in

 

the

 

same

 

place.

 

Applications

 

and

 

users

 

accessing

 

data

 

in

 

a

 

partitioned

 

database

 

do

 

not

 

need

 

to

 

be

 

aware

 

of

 

the

 

physical

 

location

 

of

 

the

 

data.

 

The

 

data,

 

while

 

physically

 

split,

 

is

 

used

 

and

 

managed

 

as

 

a

 

logical

 

whole.

 

Users

 

can

 

choose

 

how

 

to

 

partition

 

their

 

data

 

by

 

declaring

 

partitioning

 

keys.

 

Users

 

can

 

also

 

determine

 

across

 

which

 

and

 

how

 

many

 

database

 

partitions

 

their

 

table

 

data

 

can

 

be

 

spread,

 

by

 

selecting

 

the

 

table

 

space

 

and

 

the

 

associated

 

database

 

partition

 

group

 

in

 

which

 

the

 

data

 

should

 

be

 

stored.

 

Suggestions

 

for

 

partitioning

 

and

 

replication

 

can

 

be

 

done

 

using

 

the

 

DB2

 

Design

 

Advisor.

 

In

 

addition,

 

an

 

updatable

 

partitioning

 

map

 

is

 

used

 

with

 

a

 

hashing

 

algorithm

 

to

 

specify

 

the

 

mapping

 

of

 

partitioning

 

key

 

values

 

to

 

database

 

partitions,

 

which

 

determines

 

the

 

placement

 

and

 

retrieval

 

of

 

each

 

row

 

of

 

data.

 

As

 

a

 

result,

 

you

 

can

 

spread

 

the

 

workload

 

across

 

a

 

partitioned

 

database

 

for

 

large

 

tables,

 

while

 

allowing

 

smaller

 

tables

 

to

 

be

 

stored

 

on

 

one

 

or

 

more

 

database

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

29

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|



partitions.

 

Each

 

database

 

partition

 

has

 

local

 

indexes

 

on

 

the

 

data

 

it

 

stores,

 

resulting

 

in

 

increased

 

performance

 

for

 

local

 

data

 

access.

 

You

 

are

 

not

 

restricted

 

to

 

having

 

all

 

tables

 

divided

 

across

 

all

 

database

 

partitions

 

in

 

the

 

database.

 

DB2

 

UDB

 

supports

 

partial

 

declustering,

 

which

 

means

 

that

 

you

 

can

 

divide

 

tables

 

and

 

their

 

table

 

spaces

 

across

 

a

 

subset

 

of

 

database

 

partitions

 

in

 

the

 

system.

 

An

 

alternative

 

to

 

consider

 

when

 

you

 

want

 

tables

 

to

 

be

 

positioned

 

on

 

each

 

database

 

partition,

 

is

 

to

 

use

 

materialized

 

query

 

tables

 

and

 

then

 

replicate

 

those

 

tables.

 

You

 

can

 

create

 

a

 

materialized

 

query

 

table

 

containing

 

the

 

information

 

that

 

you

 

need,

 

and

 

then

 

replicate

 

it

 

to

 

each

 

node.

 

Parallelism

  

Components

 

of

 

a

 

task,

 

such

 

as

 

a

 

database

 

query,

 

can

 

be

 

run

 

in

 

parallel

 

to

 

dramatically

 

enhance

 

performance.

 

The

 

nature

 

of

 

the

 

task,

 

the

 

database

 

configuration,

 

and

 

the

 

hardware

 

environment,

 

all

 

determine

 

how

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

will

 

perform

 

a

 

task

 

in

 

parallel.

 

These

 

considerations

 

are

 

interrelated,

 

and

 

should

 

be

 

considered

 

together

 

when

 

you

 

work

 

on

 

the

 

physical

 

and

 

logical

 

design

 

of

 

a

 

database.

 

The

 

following

 

types

 

of

 

parallelism

 

are

 

supported

 

by

 

DB2

 

UDB:

 

v

   

I/O

 

v

   

Query

 

v

   

Utility

Input/output

 

parallelism

 

When

 

there

 

are

 

multiple

 

containers

 

for

 

a

 

table

 

space,

 

the

 

database

 

manager

 

can

 

exploit

 

parallel

 

I/O.

 

Parallel

 

I/O

 

refers

 

to

 

the

 

process

 

of

 

writing

 

to,

 

or

 

reading

 

from,

 

two

 

or

 

more

 

I/O

 

devices

 

simultaneously;

 

it

 

can

 

result

 

in

 

significant

 

improvements

 

in

 

throughput.

 

Query

 

parallelism

 

There

 

are

 

two

 

types

 

of

 

query

 

parallelism:

 

interquery

 

parallelism

 

and

 

intraquery

 

parallelism.

 

Interquery

 

parallelism

 

refers

 

to

 

the

 

ability

 

of

 

the

 

database

 

to

 

accept

 

queries

 

from

 

multiple

 

applications

 

at

 

the

 

same

 

time.

 

Each

 

query

 

runs

 

independently

 

of

 

the

 

others,

 

but

 

DB2

 

UDB

 

runs

 

all

 

of

 

them

 

at

 

the

 

same

 

time.

 

DB2

 

UDB

 

has

 

always

 

supported

 

this

 

type

 

of

 

parallelism.

 

Intraquery

 

parallelism

 

refers

 

to

 

the

 

simultaneous

 

processing

 

of

 

parts

 

of

 

a

 

single

 

query,

 

using

 

either

 

intrapartition

 

parallelism,

 

interpartition

 

parallelism,

 

or

 

both.

 

Intrapartition

 

parallelism

 

Intrapartition

 

parallelism

 

refers

 

to

 

the

 

ability

 

to

 

break

 

up

 

a

 

query

 

into

 

multiple

 

parts.

 

Some

 

DB2

 

UDB

 

utilities

 

also

 

perform

 

this

 

type

 

of

 

parallelism.

 

Intrapartition

 

parallelism

 

subdivides

 

what

 

is

 

usually

 

considered

 

a

 

single

 

database

 

operation

 

such

 

as

 

index

 

creation,

 

database

 

loading,

 

or

 

SQL

 

queries

 

into

 

multiple

 

parts,

 

many

 

or

 

all

 

of

 

which

 

can

 

be

 

run

 

in

 

parallel

 

within

 

a

 

single

 

database

 

partition.

 

Figure

 

13

 

on

 

page

 

31

 

shows

 

a

 

query

 

that

 

is

 

broken

 

into

 

four

 

pieces

 

that

 

can

 

be

 

run

 

in

 

parallel,

 

with

 

the

 

results

 

returned

 

more

 

quickly

 

than

 

if

 

the

 

query

 

were

 

run

 

in

   

30

 

Administration

 

Guide:

 

Planning

|
|

|
|
|
|



serial

 

fashion.

 

The

 

pieces

 

are

 

copies

 

of

 

each

 

other.

 

To

 

utilize

 

intrapartition

 

parallelism,

 

you

 

must

 

configure

 

the

 

database

 

appropriately.

 

You

 

can

 

choose

 

the

 

degree

 

of

 

parallelism

 

or

 

let

 

the

 

system

 

do

 

it

 

for

 

you.

 

The

 

degree

 

of

 

parallelism

 

represents

 

the

 

number

 

of

 

pieces

 

of

 

a

 

query

 

running

 

in

 

parallel.

    

Interpartition

 

parallelism

 

Interpartition

 

parallelism

 

refers

 

to

 

the

 

ability

 

to

 

break

 

up

 

a

 

query

 

into

 

multiple

 

parts

 

across

 

multiple

 

partitions

 

of

 

a

 

partitioned

 

database,

 

on

 

one

 

machine

 

or

 

multiple

 

machines.

 

The

 

query

 

is

 

run

 

in

 

parallel.

 

Some

 

DB2

 

UDB

 

utilities

 

also

 

perform

 

this

 

type

 

of

 

parallelism.

 

Interpartition

 

parallelism

 

subdivides

 

what

 

is

 

usually

 

considered

 

a

 

single

 

database

 

operation

 

such

 

as

 

index

 

creation,

 

database

 

loading,

 

or

 

SQL

 

queries

 

into

 

multiple

 

parts,

 

many

 

or

 

all

 

of

 

which

 

can

 

be

 

run

 

in

 

parallel

 

across

 

multiple

 

partitions

 

of

 

a

 

partitioned

 

database

 

on

 

one

 

machine

 

or

 

on

 

multiple

 

machines.

 

Figure

 

14

 

on

 

page

 

32

 

shows

 

a

 

query

 

that

 

is

 

broken

 

into

 

four

 

pieces

 

that

 

can

 

be

 

run

 

in

 

parallel,

 

with

 

the

 

results

 

returned

 

more

 

quickly

 

than

 

if

 

the

 

query

 

were

 

run

 

in

 

serial

 

fashion

 

on

 

a

 

single

 

partition.

 

The

 

degree

 

of

 

parallelism

 

is

 

largely

 

determined

 

by

 

the

 

number

 

of

 

partitions

 

you

 

create

 

and

 

how

 

you

 

define

 

your

 

database

 

partition

 

groups.

  

SELECT... FROM...

Database partition

Data

Query

  

Figure

 

13.

 

Intrapartition

 

parallelism

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

31



Simultaneous

 

intrapartition

 

and

 

interpartition

 

parallelism

 

You

 

can

 

use

 

intrapartition

 

parallelism

 

and

 

interpartition

 

parallelism

 

at

 

the

 

same

 

time.

 

This

 

combination

 

provides

 

two

 

dimensions

 

of

 

parallelism,

 

resulting

 

in

 

an

 

even

 

more

 

dramatic

 

increase

 

in

 

the

 

speed

 

at

 

which

 

queries

 

are

 

processed.

  

Database
partition

Database
partition

Database
partition

Data DataData

SELECT... FROM...

Query

  

Figure

 

14.

 

Interpartition

 

parallelism

  

32

 

Administration

 

Guide:

 

Planning



Utility

 

parallelism

 

DB2

 

UDB

 

utilities

 

can

 

take

 

advantage

 

of

 

intrapartition

 

parallelism.

 

They

 

can

 

also

 

take

 

advantage

 

of

 

interpartition

 

parallelism;

 

where

 

multiple

 

database

 

partitions

 

exist,

 

the

 

utilities

 

execute

 

in

 

each

 

of

 

the

 

partitions

 

in

 

parallel.

 

The

 

load

 

utility

 

can

 

take

 

advantage

 

of

 

intrapartition

 

parallelism

 

and

 

I/O

 

parallelism.

 

Loading

 

data

 

is

 

a

 

CPU-intensive

 

task.

 

The

 

load

 

utility

 

takes

 

advantage

 

of

 

multiple

 

processors

 

for

 

tasks

 

such

 

as

 

parsing

 

and

 

formatting

 

data.

 

It

 

can

 

also

 

use

 

parallel

 

I/O

 

servers

 

to

 

write

 

the

 

data

 

to

 

containers

 

in

 

parallel.

 

In

 

a

 

partitioned

 

database

 

environment,

 

the

 

LOAD

 

command

 

takes

 

advantage

 

of

 

intrapartition,

 

interpartition,

 

and

 

I/O

 

parallelism

 

by

 

parallel

 

invocations

 

at

 

each

 

database

 

partition

 

where

 

the

 

table

 

resides.

 

During

 

index

 

creation,

 

the

 

scanning

 

and

 

subsequent

 

sorting

 

of

 

the

 

data

 

occurs

 

in

 

parallel.

 

DB2

 

UDB

 

exploits

 

both

 

I/O

 

parallelism

 

and

 

intrapartition

 

parallelism

 

when

 

creating

 

an

 

index.

 

This

 

helps

 

to

 

speed

 

up

 

index

 

creation

 

when

 

a

 

CREATE

 

INDEX

 

statement

 

is

 

issued,

 

during

 

restart

 

(if

 

an

 

index

 

is

 

marked

 

invalid),

 

and

 

during

 

the

 

reorganization

 

of

 

data.

 

Backing

 

up

 

and

 

restoring

 

data

 

are

 

heavily

 

I/O-bound

 

tasks.

 

DB2

 

UDB

 

exploits

 

both

 

I/O

 

parallelism

 

and

 

intrapartition

 

parallelism

 

when

 

performing

 

backup

 

and

 

Database
partition

Database
partition

DataData

SELECT... FROM...SELECT... FROM...

SELECT... FROM...SELECT... FROM...

Query

  

Figure

 

15.

 

Simultaneous

 

interpartition

 

and

 

intrapartition

 

parallelism

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

33



restore

 

operations.

 

Backup

 

exploits

 

I/O

 

parallelism

 

by

 

reading

 

from

 

multiple

 

table

 

space

 

containers

 

in

 

parallel,

 

and

 

asynchronously

 

writing

 

to

 

multiple

 

backup

 

media

 

in

 

parallel.

  

Related

 

concepts:

  

v

   

“Partition

 

and

 

processor

 

environments”

 

on

 

page

 

34

Partition

 

and

 

processor

 

environments

  

This

 

section

 

provides

 

an

 

overview

 

of

 

the

 

following

 

hardware

 

environments:

 

v

   

Single

 

partition

 

on

 

a

 

single

 

processor

 

(uniprocessor)

 

v

   

Single

 

partition

 

with

 

multiple

 

processors

 

(SMP)

 

v

   

Multiple

 

partition

 

configurations

 

–

   

Partitions

 

with

 

one

 

processor

 

(MPP)

 

–

   

Partitions

 

with

 

multiple

 

processors

 

(cluster

 

of

 

SMPs)

 

–

   

Logical

 

database

 

partitions

 

(also

 

known

 

as

 

Multiple

 

Logical

 

Nodes,

 

or

 

MLN,

 

in

 

DB2®

 

Parallel

 

Edition

 

for

 

AIX®

 

Version

 

1)

Capacity

 

and

 

scalability

 

are

 

discussed

 

for

 

each

 

environment.

 

Capacity

 

refers

 

to

 

the

 

number

 

of

 

users

 

and

 

applications

 

able

 

to

 

access

 

the

 

database.

 

This

 

is

 

in

 

large

 

part

 

determined

 

by

 

memory,

 

agents,

 

locks,

 

I/O,

 

and

 

storage

 

management.

 

Scalability

 

refers

 

to

 

the

 

ability

 

of

 

a

 

database

 

to

 

grow

 

and

 

continue

 

to

 

exhibit

 

the

 

same

 

operating

 

characteristics

 

and

 

response

 

times.

 

Single

 

partition

 

on

 

a

 

single

 

processor

 

This

 

environment

 

is

 

made

 

up

 

of

 

memory

 

and

 

disk,

 

but

 

contains

 

only

 

a

 

single

 

CPU

 

(see

 

Figure

 

16

 

on

 

page

 

35).

 

It

 

is

 

referred

 

to

 

by

 

many

 

different

 

names,

 

including

 

stand-alone

 

database,

 

client/server

 

database,

 

serial

 

database,

 

uniprocessor

 

system,

 

and

 

single

 

node

 

or

 

non-parallel

 

environment.

 

The

 

database

 

in

 

this

 

environment

 

serves

 

the

 

needs

 

of

 

a

 

department

 

or

 

small

 

office,

 

where

 

the

 

data

 

and

 

system

 

resources

 

(including

 

a

 

single

 

processor

 

or

 

CPU)

 

are

 

managed

 

by

 

a

 

single

 

database

 

manager.

    

34

 

Administration

 

Guide:

 

Planning



Capacity

 

and

 

scalability

 

In

 

this

 

environment

 

you

 

can

 

add

 

more

 

disks.

 

Having

 

one

 

or

 

more

 

I/O

 

servers

 

for

 

each

 

disk

 

allows

 

for

 

more

 

than

 

one

 

I/O

 

operation

 

to

 

take

 

place

 

at

 

the

 

same

 

time.

 

A

 

single-processor

 

system

 

is

 

restricted

 

by

 

the

 

amount

 

of

 

disk

 

space

 

the

 

processor

 

can

 

handle.

 

As

 

workload

 

increases,

 

a

 

single

 

CPU

 

may

 

not

 

be

 

able

 

to

 

process

 

user

 

requests

 

any

 

faster,

 

regardless

 

of

 

other

 

components,

 

such

 

as

 

memory

 

or

 

disk,

 

that

 

you

 

may

 

add.

 

If

 

you

 

have

 

reached

 

maximum

 

capacity

 

or

 

scalability,

 

you

 

can

 

consider

 

moving

 

to

 

a

 

single

 

partition

 

system

 

with

 

multiple

 

processors.

 

Single

 

partition

 

with

 

multiple

 

processors

 

This

 

environment

 

is

 

typically

 

made

 

up

 

of

 

several

 

equally

 

powerful

 

processors

 

within

 

the

 

same

 

machine

 

(see

 

Figure

 

17

 

on

 

page

 

36),

 

and

 

is

 

called

 

a

 

symmetric

 

multiprocessor

 

(SMP)

 

system.

 

Resources,

 

such

 

as

 

disk

 

space

 

and

 

memory,

 

are

 

shared.

 

With

 

multiple

 

processors

 

available,

 

different

 

database

 

operations

 

can

 

be

 

completed

 

more

 

quickly.

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

can

 

also

 

divide

 

the

 

work

 

of

 

a

 

single

 

query

 

among

 

available

 

processors

 

to

 

improve

 

processing

 

speed.

 

Other

 

database

 

operations,

 

such

 

as

 

loading

 

data,

 

backing

 

up

 

and

 

restoring

 

table

 

spaces,

 

and

 

creating

 

indexes

 

on

 

existing

 

data,

 

can

 

take

 

advantage

 

of

 

multiple

 

processors.

  

Database partition

Memory

CPU

Uniprocessor
environment

Disks

  

Figure

 

16.

 

Single

 

partition

 

on

 

a

 

single

 

processor

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

35

|
|
|
|
|



Capacity

 

and

 

scalability

 

In

 

this

 

environment

 

you

 

can

 

add

 

more

 

processors.

 

However,

 

since

 

the

 

different

 

processors

 

may

 

attempt

 

to

 

access

 

the

 

same

 

data,

 

limitations

 

with

 

this

 

environment

 

can

 

appear

 

as

 

your

 

business

 

operations

 

grow.

 

With

 

shared

 

memory

 

and

 

shared

 

disks,

 

you

 

are

 

effectively

 

sharing

 

all

 

of

 

the

 

database

 

data.

 

You

 

can

 

increase

 

the

 

I/O

 

capacity

 

of

 

the

 

database

 

partition

 

associated

 

with

 

your

 

processor

 

by

 

increasing

 

the

 

number

 

of

 

disks.

 

You

 

can

 

establish

 

I/O

 

servers

 

to

 

specifically

 

deal

 

with

 

I/O

 

requests.

 

Having

 

one

 

or

 

more

 

I/O

 

servers

 

for

 

each

 

disk

 

allows

 

for

 

more

 

than

 

one

 

I/O

 

operation

 

to

 

take

 

place

 

at

 

the

 

same

 

time.

 

If

 

you

 

have

 

reached

 

maximum

 

capacity

 

or

 

scalability,

 

you

 

can

 

consider

 

moving

 

to

 

a

 

system

 

with

 

multiple

 

partitions.

 

Multiple

 

partition

 

configurations

 

You

 

can

 

divide

 

a

 

database

 

into

 

multiple

 

partitions,

 

each

 

on

 

its

 

own

 

machine.

 

Multiple

 

machines

 

with

 

multiple

 

database

 

partitions

 

can

 

be

 

grouped

 

together.

 

This

 

section

 

describes

 

the

 

following

 

partition

 

configurations:

 

v

   

Partitions

 

on

 

systems

 

with

 

one

 

processor

 

v

   

Partitions

 

on

 

systems

 

with

 

multiple

 

processors

 

v

   

Logical

 

database

 

partitions

Partitions

 

with

 

one

 

processor

 

In

 

this

 

environment,

 

there

 

are

 

many

 

database

 

partitions.

 

Each

 

partition

 

resides

 

on

 

its

 

own

 

machine,

 

and

 

has

 

its

 

own

 

processor,

 

memory,

 

and

 

disks

 

(Figure

 

18

 

on

 

page

 

37).

 

All

 

the

 

machines

 

are

 

connected

 

by

 

a

 

communications

 

facility.

 

This

 

environment

 

is

 

referred

 

to

 

by

 

many

 

different

 

names,

 

including:

 

cluster,

 

cluster

 

of

 

uniprocessors,

 

massively

 

parallel

 

processing

 

(MPP)

 

environment,

 

and

 

shared-nothing

 

configuration.

 

The

 

latter

 

name

 

accurately

 

reflects

 

the

 

arrangement

 

of

 

resources

 

in

 

this

 

environment.

 

Unlike

 

an

 

SMP

 

environment,

 

an

 

MPP

 

environment

 

has

 

no

 

shared

 

Symmetric multiprocessor
(SMP) environment

Disks

Database partition

Memory

CPU

CPU

CPU

CPU

  

Figure

 

17.

 

Single

 

partition

 

database

 

symmetric

 

multiprocessor

 

environment

  

36

 

Administration

 

Guide:

 

Planning



memory

 

or

 

disks.

 

The

 

MPP

 

environment

 

removes

 

the

 

limitations

 

introduced

 

through

 

the

 

sharing

 

of

 

memory

 

and

 

disks.

 

A

 

partitioned

 

database

 

environment

 

allows

 

a

 

database

 

to

 

remain

 

a

 

logical

 

whole,

 

despite

 

being

 

physically

 

divided

 

across

 

more

 

than

 

one

 

partition.

 

The

 

fact

 

that

 

data

 

is

 

partitioned

 

remains

 

transparent

 

to

 

most

 

users.

 

Work

 

can

 

be

 

divided

 

among

 

the

 

database

 

managers;

 

each

 

database

 

manager

 

in

 

each

 

partition

 

works

 

against

 

its

 

own

 

part

 

of

 

the

 

database.

  

Capacity

 

and

 

scalability:

   

In

 

this

 

environment

 

you

 

can

 

add

 

more

 

database

 

partitions

 

(nodes)

 

to

 

your

 

configuration.

 

On

 

some

 

platforms,

 

for

 

example

 

the

 

RS/6000®

 

SP™,

 

the

 

maximum

 

number

 

is

 

512

 

nodes.

 

However,

 

there

 

may

 

be

 

practical

 

limits

 

on

 

managing

 

a

 

high

 

number

 

of

 

machines

 

and

 

instances.

 

If

 

you

 

have

 

reached

 

maximum

 

capacity

 

or

 

scalability,

 

you

 

can

 

consider

 

moving

 

to

 

a

 

system

 

where

 

each

 

partition

 

has

 

multiple

 

processors.

 

Partitions

 

with

 

multiple

 

processors

 

An

 

alternative

 

to

 

a

 

configuration

 

in

 

which

 

each

 

partition

 

has

 

a

 

single

 

processor,

 

is

 

a

 

configuration

 

in

 

which

 

a

 

partition

 

has

 

multiple

 

processors.

 

This

 

is

 

known

 

as

 

an

 

SMP

 

cluster

 

(Figure

 

19

 

on

 

page

 

38).

 

This

 

configuration

 

combines

 

the

 

advantages

 

of

 

SMP

 

and

 

MPP

 

parallelism.

 

This

 

means

 

that

 

a

 

query

 

can

 

be

 

performed

 

in

 

a

 

single

 

partition

 

across

 

multiple

 

processors.

 

It

 

also

 

means

 

that

 

a

 

query

 

can

 

be

 

performed

 

in

 

parallel

 

across

 

multiple

 

partitions.

  

Disks DisksDisks

Uniprocessor
environment

Uniprocessor
environment

Uniprocessor
environment

. . .

Communications
facility

Memory MemoryMemory

CPU CPUCPU

Database partition Database partitionDatabase partition

  

Figure

 

18.

 

Massively

 

parallel

 

processing

 

(MPP)

 

environment

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

37



Capacity

 

and

 

scalability:

   

In

 

this

 

environment

 

you

 

can

 

add

 

more

 

database

 

partitions,

 

and

 

you

 

can

 

add

 

more

 

processors

 

to

 

existing

 

database

 

partitions.

 

Logical

 

database

 

partitions

 

A

 

logical

 

database

 

partition

 

differs

 

from

 

a

 

physical

 

partition

 

in

 

that

 

it

 

is

 

not

 

given

 

control

 

of

 

an

 

entire

 

machine.

 

Although

 

the

 

machine

 

has

 

shared

 

resources,

 

database

 

partitions

 

do

 

not

 

share

 

the

 

resources.

 

Processors

 

are

 

shared

 

but

 

disks

 

and

 

memory

 

are

 

not.

 

Logical

 

database

 

partitions

 

provide

 

scalability.

 

Multiple

 

database

 

managers

 

running

 

on

 

multiple

 

logical

 

partitions

 

may

 

make

 

fuller

 

use

 

of

 

available

 

resources

 

than

 

a

 

single

 

database

 

manager

 

could.

 

Figure

 

20

 

on

 

page

 

39

 

illustrates

 

the

 

fact

 

that

 

you

 

may

 

gain

 

more

 

scalability

 

on

 

an

 

SMP

 

machine

 

by

 

adding

 

more

 

partitions;

 

this

 

is

 

particularly

 

true

 

for

 

machines

 

with

 

many

 

processors.

 

By

 

partitioning

 

the

 

database,

 

you

 

can

 

administer

 

and

 

recover

 

each

 

partition

 

separately.

  

CPU

CPU

CPU

CPU

Memory

CPU

CPU

CPU

CPU

Memory

Communications
facility

SMP environment SMP environment

Disks Disks

Database partition Database partition

  

Figure

 

19.

 

Several

 

symmetric

 

multiprocessor

 

(SMP)

 

environments

 

in

 

a

 

cluster

  

38

 

Administration

 

Guide:

 

Planning



Figure

 

21

 

on

 

page

 

40

 

illustrates

 

the

 

fact

 

that

 

you

 

can

 

multiply

 

the

 

configuration

 

shown

 

in

 

Figure

 

20

 

to

 

increase

 

processing

 

power.

  

Disks Disks

Big SMP environment

Database
partition 1

Database
partition 2

Memory Memory

CPU CPU

CPU CPU

Communications
facility

  

Figure

 

20.

 

Partitioned

 

database

 

with

 

symmetric

 

multiprocessor

 

environment

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

39



Note:

  

The

 

ability

 

to

 

have

 

two

 

or

 

more

 

partitions

 

coexist

 

on

 

the

 

same

 

machine

 

(regardless

 

of

 

the

 

number

 

of

 

processors)

 

allows

 

greater

 

flexibility

 

in

 

designing

 

high

 

availability

 

configurations

 

and

 

failover

 

strategies.

 

Upon

 

machine

 

failure,

 

a

 

database

 

partition

 

can

 

be

 

automatically

 

moved

 

and

 

restarted

 

on

 

a

 

second

 

machine

 

that

 

already

 

contains

 

another

 

partition

 

of

 

the

 

same

 

database.

 

Summary

 

of

 

parallelism

 

best

 

suited

 

to

 

each

 

hardware

 

environment

 

The

 

following

 

table

 

summarizes

 

the

 

types

 

of

 

parallelism

 

best

 

suited

 

to

 

take

 

advantage

 

of

 

the

 

various

 

hardware

 

environments.

  

Table

 

3.

 

Types

 

of

 

Parallelism

 

Possible

 

in

 

Each

 

Hardware

 

Environment

 

Hardware

 

Environment

 

I/O

 

Parallelism

 

Intra-Query

 

Parallelism

 

Intra-

 

Partition

 

Parallelism

 

Inter-

 

Partition

 

Parallelism

 

Single

 

Partition,

 

Single

 

Processor

 

Yes

 

No(1)

 

No

 

Single

 

Partition,

 

Multiple

 

Processors

 

(SMP)

 

Yes

 

Yes

 

No

 

Multiple

 

Partitions,

 

One

 

Processor

 

(MPP)

 

Yes

 

No(1)

 

Yes

 

Communications
facility

Disks DisksDisks Disks

Big SMP
environment

Big SMP
environment

Database
partition 1

Database
partition 1

Database
partition 2

Database
partition 2

Memory MemoryMemory Memory

CPU CPUCPU CPU

CPU CPUCPU CPU

Communications
facility

Communications
facility

  

Figure

 

21.

 

Partitioned

 

database

 

with

 

symmetric

 

multiprocessor

 

environments

 

clustered

 

together

  

40

 

Administration

 

Guide:

 

Planning



Table

 

3.

 

Types

 

of

 

Parallelism

 

Possible

 

in

 

Each

 

Hardware

 

Environment

 

(continued)

 

Hardware

 

Environment

 

I/O

 

Parallelism

 

Intra-Query

 

Parallelism

 

Intra-

 

Partition

 

Parallelism

 

Inter-

 

Partition

 

Parallelism

 

Multiple

 

Partitions,

 

Multiple

 

Processors

 

(cluster

 

of

 

SMPs)

 

Yes

 

Yes

 

Yes

 

Logical

 

Database

 

Partitions

 

Yes

 

Yes

 

Yes

 

Note:

 

(1)

 

There

 

may

 

be

 

an

 

advantage

 

to

 

setting

 

the

 

degree

 

of

 

parallelism

 

(using

 

one

 

of

 

the

 

configuration

 

parameters)

 

to

 

some

 

value

 

greater

 

than

 

one,

 

even

 

on

 

a

 

single

 

processor

 

system,

 

especially

 

if

 

the

 

queries

 

you

 

execute

 

are

 

not

 

fully

 

utilizing

 

the

 

CPU

 

(for

 

example,

 

if

 

they

 

are

 

I/O

 

bound).

    

Related

 

concepts:

  

v

   

“Parallelism”

 

on

 

page

 

30

  

Chapter

 

2.

 

Parallel

 

database

 

systems

 

41



42

 

Administration

 

Guide:

 

Planning



Chapter

 

3.

 

About

 

data

 

warehousing

 

What

 

solutions

 

does

 

data

 

warehousing

 

provide?

  

The

 

systems

 

that

 

contain

 

operational

 

data

 

(the

 

data

 

that

 

runs

 

the

 

daily

 

transactions

 

of

 

your

 

business)

 

contain

 

information

 

that

 

is

 

useful

 

to

 

business

 

analysts.

 

For

 

example,

 

analysts

 

can

 

use

 

information

 

about

 

which

 

products

 

were

 

sold

 

in

 

which

 

regions

 

at

 

which

 

time

 

of

 

year

 

to

 

look

 

for

 

anomalies

 

or

 

to

 

project

 

future

 

sales.

 

However,

 

several

 

problems

 

can

 

arise

 

when

 

analysts

 

access

 

the

 

operational

 

data

 

directly:

 

v

   

Analysts

 

might

 

not

 

have

 

the

 

expertise

 

to

 

query

 

the

 

operational

 

database.

 

For

 

example,

 

querying

 

IMS™

 

databases

 

requires

 

an

 

application

 

program

 

that

 

uses

 

a

 

specialized

 

type

 

of

 

data

 

manipulation

 

language.

 

In

 

general,

 

the

 

programmers

 

who

 

have

 

the

 

expertise

 

to

 

query

 

the

 

operational

 

database

 

have

 

a

 

full-time

 

job

 

in

 

maintaining

 

the

 

database

 

and

 

its

 

applications.

 

v

   

Performance

 

is

 

critical

 

for

 

many

 

operational

 

databases,

 

such

 

as

 

databases

 

for

 

a

 

bank.

 

The

 

system

 

cannot

 

handle

 

users

 

making

 

ad

 

hoc

 

queries.

 

v

   

The

 

operational

 

data

 

generally

 

is

 

not

 

in

 

the

 

best

 

format

 

for

 

use

 

by

 

business

 

analysts.

 

For

 

example,

 

sales

 

data

 

that

 

is

 

summarized

 

by

 

product,

 

region,

 

and

 

season

 

is

 

much

 

more

 

useful

 

to

 

analysts

 

than

 

the

 

raw

 

data.

Data

 

warehousing

 

solves

 

these

 

problems.

 

In

 

data

 

warehousing,

 

you

 

create

 

stores

 

of

 

informational

 

data.

 

Informational

 

data

 

is

 

data

 

that

 

is

 

extracted

 

from

 

the

 

operational

 

data

 

and

 

then

 

transformed

 

for

 

decision

 

making.

 

For

 

example,

 

a

 

data

 

warehousing

 

tool

 

might

 

copy

 

all

 

the

 

sales

 

data

 

from

 

the

 

operational

 

database,

 

clean

 

the

 

data,

 

perform

 

calculations

 

to

 

summarize

 

the

 

data,

 

and

 

write

 

the

 

summarized

 

data

 

to

 

a

 

target

 

in

 

a

 

separate

 

database

 

from

 

the

 

operational

 

data.

 

Users

 

can

 

query

 

the

 

separate

 

database

 

(the

 

warehouse)

 

without

 

impacting

 

the

 

operational

 

databases.

   

Related

 

concepts:

  

v

   

“Data

 

warehouse

 

objects”

 

on

 

page

 

43

Data

 

warehouse

 

objects

  

The

 

following

 

sections

 

describe

 

the

 

objects

 

that

 

you

 

will

 

use

 

to

 

create

 

and

 

maintain

 

your

 

data

 

warehouse.

 

Operational
data

Extract
Cleanse
Transform

Informational
data

Data
analysis

  

Figure

 

22.

 

The

 

path

 

from

 

operational

 

data

 

to

 

data

 

analysis

 

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

43



Subject

 

areas

 

A

 

subject

 

area

 

identifies

 

and

 

groups

 

the

 

processes

 

that

 

relate

 

to

 

a

 

logical

 

area

 

of

 

the

 

business.

 

For

 

example,

 

if

 

you

 

are

 

building

 

a

 

warehouse

 

of

 

marketing

 

and

 

sales

 

data,

 

you

 

define

 

a

 

Sales

 

subject

 

area

 

and

 

a

 

Marketing

 

subject

 

area.

 

You

 

then

 

add

 

the

 

processes

 

that

 

relate

 

to

 

sales

 

under

 

the

 

Sales

 

subject

 

area.

 

Similarly,

 

you

 

add

 

the

 

definitions

 

that

 

relate

 

to

 

the

 

marketing

 

data

 

under

 

the

 

Marketing

 

subject

 

area.

    

Warehouse

 

sources

 

Warehouse

 

sources

 

identify

 

the

 

tables

 

and

 

files

 

that

 

will

 

provide

 

data

 

to

 

your

 

warehouse.

 

The

 

Data

 

Warehouse

 

Center

 

uses

 

the

 

specifications

 

in

 

the

 

warehouse

 

sources

 

to

 

access

 

the

 

data.

 

The

 

sources

 

can

 

be

 

almost

 

any

 

relational

 

or

 

nonrelational

 

source

 

(table,

 

view,

 

or

 

file),

 

or

 

WebSphere®

 

Site

 

Analyzer

 

source

 

that

 

has

 

connectivity

 

to

 

your

 

network.

 

Warehouse

 

targets

 

Warehouse

 

targets

 

are

 

database

 

tables

 

or

 

files

 

that

 

contain

 

data

 

that

 

has

 

been

 

transformed.

 

You

 

can

 

use

 

warehouse

 

targets

 

to

 

provide

 

data

 

to

 

other

 

warehouse

 

targets.

 

For

 

example,

 

a

 

central

 

warehouse

 

can

 

provide

 

data

 

to

 

departmental

 

servers,

 

or

 

a

 

main

 

fact

 

table

 

in

 

the

 

warehouse

 

can

 

provide

 

data

 

to

 

summary

 

tables.

 

Warehouse

 

control

 

databases

 

The

 

warehouse

 

control

 

database

 

contains

 

the

 

control

 

tables

 

that

 

are

 

required

 

to

 

store

 

the

 

Data

 

Warehouse

 

Center

 

metadata.

 

Starting

 

in

 

the

 

Data

 

Warehouse

 

Center

 

Version

 

8.2,

 

the

 

warehouse

 

control

 

database

 

must

 

be

 

a

 

UTF-8

 

(Unicode

 

Transformation

 

Format,

 

or

 

Unicode)

 

database.

 

This

 

requirement

 

provides

 

expanded

 

language

 

support

 

for

 

the

 

Data

 

Warehouse

 

Center.

 

If

 

you

 

try

 

to

 

log

 

on

 

to

 

the

 

Data

 

Warehouse

 

Center

 

using

 

a

 

database

 

that

 

is

 

not

 

in

 

Unicode

 

format,

 

you

 

will

 

receive

 

an

 

error

 

message

 

that

 

you

 

cannot

 

log

 

on.

 

You

 

can

 

use

 

the

 

Warehouse

 

Control

 

Database

 

Management

 

tool

 

to

 

migrate

 

the

 

metadata

 

from

 

a

 

specified

 

database

 

into

 

a

 

new

 

Unicode

 

database.

 

Warehouse

 

agents

 

and

 

agent

 

sites

 

Warehouse

 

agents

 

manage

 

the

 

flow

 

of

 

data

 

between

 

the

 

data

 

sources

 

and

 

the

 

target

 

warehouses.

 

Warehouse

 

agents

 

are

 

available

 

on

 

the

 

AIX®,

 

Linux,

 

iSeries™,

 

z/OS™,

 

Windows®

 

NT,

 

Windows

 

2000,

 

and

 

Windows

 

XP

 

operating

 

systems,

 

and

 

for

 

the

 

Solaris™

 

Operating

 

Environment.

 

The

 

agents

 

use

 

Open

 

Database

 

Connectivity

 

(ODBC)

 

drivers

 

or

 

DB2®

 

CLI

 

to

 

communicate

 

with

 

different

 

databases.

 

Informational
data

Warehouse
target

Warehouse
source

Steps

Process

Subject area

Operational
data

  

Figure

 

23.

 

The

 

hierarchy

 

of

 

subject

 

areas

  

44

 

Administration

 

Guide:

 

Planning

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|



Several

 

agents

 

can

 

handle

 

the

 

transfer

 

of

 

data

 

between

 

sources

 

and

 

target

 

warehouses.

 

The

 

number

 

of

 

agents

 

that

 

you

 

use

 

depends

 

on

 

your

 

existing

 

connectivity

 

configuration

 

and

 

the

 

volume

 

of

 

data

 

that

 

you

 

plan

 

to

 

move

 

to

 

your

 

warehouse.

 

Additional

 

instances

 

of

 

an

 

agent

 

can

 

be

 

generated

 

if

 

multiple

 

processes

 

that

 

require

 

the

 

same

 

agent

 

are

 

running

 

simultaneously.

 

Agents

 

can

 

be

 

local

 

or

 

remote.

 

A

 

local

 

warehouse

 

agent

 

is

 

an

 

agent

 

that

 

is

 

installed

 

on

 

the

 

same

 

workstation

 

as

 

the

 

warehouse

 

server.

 

A

 

remote

 

warehouse

 

agent

 

is

 

an

 

agent

 

that

 

is

 

installed

 

on

 

another

 

workstation

 

that

 

has

 

connectivity

 

to

 

the

 

warehouse

 

server.

   

An

 

agent

 

site

 

is

 

a

 

logical

 

name

 

for

 

a

 

workstation

 

where

 

agent

 

software

 

is

 

installed.

 

The

 

agent

 

site

 

name

 

is

 

not

 

the

 

same

 

as

 

the

 

TCP/IP

 

host

 

name.

 

A

 

single

 

workstation

 

can

 

have

 

only

 

one

 

TCP/IP

 

host

 

name.

 

However,

 

you

 

can

 

define

 

multiple

 

agent

 

sites

 

on

 

a

 

single

 

workstation.

 

A

 

logical

 

name

 

identifies

 

each

 

agent

 

site.

 

The

 

default

 

agent

 

site,

 

named

 

the

 

Default

 

DWC

 

Agent

 

Site,

 

is

 

a

 

local

 

agent

 

that

 

the

 

Data

 

Warehouse

 

Center

 

defines

 

during

 

initialization

 

of

 

the

 

warehouse

 

control

 

database.

 

Processes

 

and

 

steps

 

A

 

process

 

contains

 

a

 

series

 

of

 

steps

 

that

 

performs

 

a

 

transformation

 

and

 

movement

 

of

 

data

 

for

 

a

 

specific

 

warehouse

 

use.

 

In

 

general,

 

a

 

process

 

moves

 

source

 

data

 

into

 

the

 

warehouse.

 

Then,

 

the

 

data

 

is

 

aggregated

 

and

 

summarized

 

for

 

warehouse

 

use.

 

A

 

process

 

can

 

produce

 

a

 

single

 

flat

 

table

 

or

 

a

 

set

 

of

 

summary

 

tables.

 

A

 

process

 

might

 

also

 

perform

 

some

 

specific

 

type

 

of

 

data

 

transformation.

 

A

 

step

 

is

 

the

 

definition

 

of

 

a

 

single

 

operation

 

within

 

the

 

warehouse.

 

By

 

using

 

SQL

 

statements

 

or

 

calling

 

programs,

 

steps

 

define

 

how

 

you

 

move

 

data

 

and

 

transform

 

data.

 

When

 

you

 

run

 

a

 

step,

 

a

 

transfer

 

of

 

data

 

between

 

the

 

warehouse

 

source

 

and

 

the

 

warehouse

 

target,

 

or

 

any

 

transformation

 

of

 

that

 

data,

 

can

 

take

 

place.

 

A

 

step

 

is

 

a

 

logical

 

entity

 

in

 

the

 

Data

 

Warehouse

 

Center

 

that

 

defines:

 

v

   

A

 

link

 

to

 

its

 

source

 

data.

 

v

   

The

 

definition

 

of

 

and

 

a

 

link

 

to

 

the

 

output

 

table

 

or

 

file.

 

v

   

The

 

mechanism

 

(either

 

an

 

SQL

 

statement

 

or

 

a

 

program)

 

and

 

definition

 

for

 

populating

 

the

 

output

 

table

 

or

 

file.

 

Data Warehouse
Center GUI

Data
sources

Agents
local or remote

Target
warehouse

Warehouse
server

  

Figure

 

24.

 

The

 

relationship

 

between

 

agents,

 

data

 

sources,

 

target

 

warehouses,

 

and

 

the

 

warehouse

 

server

  

Chapter

 

3.

 

About

 

data

 

warehousing

 

45

|
|
|
|
|

|
|
|
|



v

   

The

 

processing

 

options

 

and

 

schedule

 

by

 

which

 

the

 

output

 

table

 

or

 

file

 

is

 

populated.

Suppose

 

that

 

you

 

want

 

Data

 

Warehouse

 

Center

 

to

 

perform

 

the

 

following

 

tasks:

 

1.

   

Extract

 

data

 

from

 

different

 

databases.

 

2.

   

Convert

 

the

 

data

 

to

 

a

 

single

 

format.

 

3.

   

Write

 

the

 

data

 

to

 

a

 

table

 

in

 

a

 

data

 

warehouse.

You

 

would

 

create

 

a

 

process

 

that

 

contains

 

several

 

steps.

 

Each

 

step

 

performs

 

a

 

separate

 

task,

 

such

 

as

 

extracting

 

the

 

data

 

from

 

a

 

database

 

or

 

converting

 

it

 

to

 

the

 

correct

 

format.

 

You

 

might

 

need

 

to

 

create

 

several

 

steps

 

to

 

completely

 

transform

 

and

 

format

 

the

 

data

 

and

 

put

 

it

 

into

 

its

 

final

 

table.

 

When

 

a

 

step

 

or

 

a

 

process

 

runs,

 

it

 

can

 

affect

 

the

 

target

 

in

 

the

 

following

 

ways:

 

v

   

Replace

 

all

 

the

 

data

 

in

 

the

 

warehouse

 

target

 

with

 

new

 

data

 

v

   

Append

 

the

 

new

 

data

 

to

 

the

 

existing

 

data

 

v

   

Append

 

a

 

separate

 

edition

 

of

 

data

 

v

   

Update

 

existing

 

data

You

 

can

 

run

 

a

 

step

 

on

 

demand,

 

or

 

you

 

can

 

schedule

 

a

 

step

 

to

 

run:

 

v

   

At

 

a

 

set

 

time

 

v

   

Only

 

one

 

time

 

v

   

Repeatedly,

 

such

 

as

 

every

 

Friday

 

v

   

In

 

Sequence,

 

so

 

that

 

when

 

one

 

step

 

finishes

 

running,

 

the

 

next

 

step

 

begins

 

running

 

v

   

Upon

 

completion,

 

either

 

successful

 

or

 

not

 

successful,

 

of

 

another

 

step

If

 

you

 

schedule

 

a

 

process,

 

the

 

first

 

step

 

in

 

the

 

process

 

runs

 

at

 

the

 

scheduled

 

time.

 

The

 

following

 

sections

 

describe

 

the

 

various

 

types

 

of

 

steps

 

that

 

you

 

will

 

find

 

in

 

the

 

Data

 

Warehouse

 

Center.

 

SQL

 

steps

 

The

 

Data

 

Warehouse

 

Center

 

provides

 

two

 

types

 

of

 

SQL

 

steps.

 

The

 

SQL

 

Select

 

and

 

Insert

 

step

 

uses

 

an

 

SQL

 

SELECT

 

statement

 

to

 

extract

 

data

 

from

 

a

 

warehouse

 

source

 

and

 

generates

 

an

 

INSERT

 

statement

 

to

 

insert

 

the

 

data

 

into

 

the

 

warehouse

 

target

 

table.

 

The

 

SQL

 

Select

 

and

 

Update

 

step

 

uses

 

an

 

SQL

 

SELECT

 

statement

 

to

 

extract

 

data

 

from

 

a

 

warehouse

 

source

 

and

 

update

 

existing

 

data

 

in

 

the

 

warehouse

 

target

 

table.

 

Program

 

steps

 

The

 

Data

 

Warehouse

 

Center

 

provides

 

several

 

types

 

of

 

program

 

steps:

 

DB2

 

for

 

iSeries

 

programs,

 

DB2

 

for

 

z/OS

 

programs,

 

DB2

 

Universal

 

Database™

 

programs,

 

Visual

 

Warehouse™

 

5.2

 

DB2

 

programs,

 

OLAP

 

Server

 

programs,

 

File

 

programs,

 

and

 

Replication

 

programs.

 

These

 

steps

 

run

 

predefined

 

programs

 

and

 

utilities.

 

The

 

warehouse

 

programs

 

for

 

a

 

particular

 

operating

 

system

 

are

 

packaged

 

with

 

the

 

agent

 

for

 

that

 

operating

 

system.

 

You

 

install

 

the

 

warehouse

 

programs

 

when

 

you

 

install

 

the

 

agent

 

code.

   

46

 

Administration

 

Guide:

 

Planning

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|



Transformer

 

steps

 

Transformer

 

steps

 

are

 

stored

 

procedures

 

and

 

user-defined

 

functions

 

that

 

specify

 

statistical

 

or

 

warehouse

 

transformers

 

that

 

you

 

can

 

use

 

to

 

transform

 

data.

 

You

 

can

 

use

 

transformers

 

to

 

clean,

 

invert,

 

and

 

pivot

 

data;

 

generate

 

primary

 

keys

 

and

 

period

 

tables;

 

and

 

calculate

 

various

 

statistics.

 

In

 

a

 

transformer

 

step,

 

you

 

specify

 

one

 

of

 

the

 

statistical

 

or

 

warehouse

 

transformers.

 

When

 

you

 

run

 

the

 

process,

 

the

 

transformer

 

step

 

writes

 

data

 

to

 

one

 

or

 

more

 

warehouse

 

targets.

 

User-defined

 

program

 

steps

 

A

 

user-defined

 

program

 

step

 

is

 

a

 

logical

 

entity

 

within

 

the

 

Data

 

Warehouse

 

Center

 

that

 

represents

 

a

 

business-specific

 

transformation

 

that

 

you

 

want

 

the

 

Data

 

Warehouse

 

Center

 

to

 

start.

 

Because

 

every

 

business

 

has

 

unique

 

data

 

transformation

 

requirements,

 

businesses

 

can

 

choose

 

to

 

write

 

their

 

own

 

program

 

steps

 

or

 

to

 

use

 

tools

 

such

 

as

 

those

 

provided

 

by

 

other

 

companies,

 

such

 

as

 

ETI

 

or

 

Vality.

 

For

 

example,

 

you

 

can

 

write

 

a

 

user-defined

 

program

 

that

 

will

 

perform

 

the

 

following

 

functions:

 

1.

   

Export

 

data

 

from

 

a

 

table.

 

2.

   

Manipulate

 

that

 

data.

 

3.

   

Write

 

the

 

data

 

to

 

a

 

temporary

 

output

 

resource

 

or

 

a

 

warehouse

 

target.

 

Related

 

concepts:

  

v

   

“What

 

solutions

 

does

 

data

 

warehousing

 

provide?”

 

on

 

page

 

43

 

v

   

“Warehouse

 

tasks”

 

on

 

page

 

47

 

v

   

“What

 

is

 

a

 

user-defined

 

program?”

 

in

 

the

 

Data

 

Warehouse

 

Center

 

Administration

 

Guide

 

v

   

“What

 

is

 

a

 

program

 

group?”

 

in

 

the

 

Data

 

Warehouse

 

Center

 

Administration

 

Guide

Warehouse

 

tasks

  

Creating

 

a

 

data

 

warehouse

 

involves

 

the

 

following

 

tasks:

 

v

   

Identifying

 

the

 

source

 

data

 

(or

 

operational

 

data)

 

and

 

defining

 

it

 

for

 

use

 

as

 

warehouse

 

sources.

 

v

   

Creating

 

a

 

database

 

to

 

use

 

as

 

the

 

warehouse

 

and

 

defining

 

warehouse

 

targets.

 

v

   

Defining

 

a

 

subject

 

area

 

for

 

groups

 

of

 

processes

 

that

 

you

 

will

 

define

 

in

 

your

 

warehouse.

 

v

   

Specifying

 

how

 

to

 

move

 

and

 

transform

 

the

 

source

 

data

 

into

 

its

 

format

 

for

 

the

 

warehouse

 

database

 

by

 

defining

 

steps

 

in

 

the

 

processes.

 

v

   

Testing

 

the

 

steps

 

that

 

you

 

define

 

and

 

scheduling

 

them

 

to

 

run

 

automatically.

 

v

   

Administering

 

the

 

warehouse

 

by

 

defining

 

security

 

and

 

monitoring

 

database

 

usage

 

using

 

the

 

Work

 

in

 

Progress

 

notebook.

If

 

you

 

have

 

DB2®

 

Warehouse

 

Manager,

 

you

 

can

 

create

 

an

 

information

 

catalog

 

of

 

the

 

data

 

in

 

the

 

warehouse.

 

An

 

information

 

catalog

 

is

 

a

 

database

 

that

 

contains

 

business

 

metadata.

 

Business

 

metadata

 

helps

 

users

 

identify

 

and

 

locate

 

data

 

and

 

information

 

available

 

to

 

them

 

in

 

the

 

organization.

 

Data

 

Warehouse

 

Metadata

 

can

 

be

 

published

 

to

 

the

 

information

 

catalog.

 

The

 

information

 

catalog

 

can

 

be

 

searched

 

to

 

determine

 

what

 

data

 

is

 

available

 

in

 

the

 

warehouse.

   

Chapter

 

3.

 

About

 

data

 

warehousing

 

47

|
|
|
|
|
|



You

 

can

 

also

 

define

 

a

 

star

 

schema

 

model

 

for

 

the

 

data

 

in

 

the

 

warehouse.

 

A

 

star

 

schema

 

is

 

a

 

specialized

 

design

 

that

 

consists

 

of

 

multiple

 

dimension

 

tables,

 

which

 

describe

 

aspects

 

of

 

a

 

business,

 

and

 

one

 

fact

 

table,

 

which

 

contains

 

the

 

facts

 

or

 

measurements

 

about

 

the

 

business.

 

For

 

example,

 

for

 

a

 

manufacturing

 

company,

 

some

 

dimension

 

tables

 

are

 

products,

 

markets,

 

and

 

time.

 

The

 

fact

 

table

 

contains

 

transaction

 

information

 

about

 

the

 

products

 

that

 

are

 

ordered

 

in

 

each

 

region

 

by

 

season.

  

Related

 

concepts:

  

v

   

“Warehouse

 

steps”

 

in

 

the

 

Data

 

Warehouse

 

Center

 

Administration

 

Guide

 

Related

 

tasks:

  

v

   

“Steps

 

and

 

tasks:

 

Data

 

Warehouse

 

Center

 

help”

  

48

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|



Part

 

2.

 

Database

 

design

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

49



50

 

Administration

 

Guide:

 

Planning



Chapter

 

4.

 

Logical

 

database

 

design

 

Your

 

goal

 

in

 

designing

 

a

 

database

 

is

 

to

 

produce

 

a

 

representation

 

of

 

your

 

environment

 

that

 

is

 

easy

 

to

 

understand

 

and

 

that

 

will

 

serve

 

as

 

a

 

basis

 

for

 

expansion.

 

In

 

addition,

 

you

 

want

 

a

 

database

 

design

 

that

 

will

 

help

 

you

 

maintain

 

consistency

 

and

 

integrity

 

of

 

your

 

data.

 

You

 

can

 

do

 

this

 

by

 

producing

 

a

 

design

 

that

 

will

 

reduce

 

redundancy

 

and

 

eliminate

 

anomalies

 

that

 

can

 

occur

 

during

 

the

 

updating

 

of

 

your

 

database.

 

Database

 

design

 

is

 

not

 

a

 

linear

 

process;

 

you

 

will

 

probably

 

have

 

to

 

redo

 

steps

 

as

 

you

 

work

 

out

 

the

 

design.

 

What

 

to

 

record

 

in

 

a

 

database

  

The

 

first

 

step

 

in

 

developing

 

a

 

database

 

design

 

is

 

to

 

identify

 

the

 

types

 

of

 

data

 

to

 

be

 

stored

 

in

 

database

 

tables.

 

A

 

database

 

includes

 

information

 

about

 

the

 

entities

 

in

 

an

 

organization

 

or

 

business,

 

and

 

their

 

relationships

 

to

 

each

 

other.

 

In

 

a

 

relational

 

database,

 

entities

 

are

 

represented

 

as

 

tables.

 

An

 

entity

 

is

 

a

 

person,

 

object,

 

or

 

concept

 

about

 

which

 

you

 

want

 

to

 

store

 

information.

 

Some

 

of

 

the

 

entities

 

described

 

in

 

the

 

sample

 

tables

 

are

 

employees,

 

departments,

 

and

 

projects.

 

In

 

the

 

sample

 

employee

 

table,

 

the

 

entity

 

″employee″

 

has

 

attributes,

 

or

 

properties,

 

such

 

as

 

employee

 

number,

 

name,

 

work

 

department,

 

and

 

salary

 

amount.

 

Those

 

properties

 

appear

 

as

 

the

 

columns

 

EMPNO,

 

FIRSTNME,

 

LASTNAME,

 

WORKDEPT,

 

and

 

SALARY.

 

An

 

occurrence

 

of

 

the

 

entity

 

″employee″

 

consists

 

of

 

the

 

values

 

in

 

all

 

of

 

the

 

columns

 

for

 

one

 

employee.

 

Each

 

employee

 

has

 

a

 

unique

 

employee

 

number

 

(EMPNO)

 

that

 

can

 

be

 

used

 

to

 

identify

 

an

 

occurrence

 

of

 

the

 

entity

 

″employee″.

 

Each

 

row

 

in

 

a

 

table

 

represents

 

an

 

occurrence

 

of

 

an

 

entity

 

or

 

relationship.

 

For

 

example,

 

in

 

the

 

following

 

table

 

the

 

values

 

in

 

the

 

first

 

row

 

describe

 

an

 

employee

 

named

 

Haas.

  

Table

 

4.

 

Occurrences

 

of

 

Employee

 

Entities

 

and

 

their

 

Attributes

 

EMPNO

 

FIRSTNME

 

LASTNAME

 

WORKDEPT

 

JOB

 

000010

 

Christine

 

Haas

 

A00

 

President

 

000020

 

Michael

 

Thompson

 

B01

 

Manager

 

000120

 

Sean

 

O’Connell

 

A00

 

Clerk

 

000130

 

Dolores

 

Quintana

 

C01

 

Analyst

 

000030

 

Sally

 

Kwan

 

C01

 

Manager

 

000140

 

Heather

 

Nicholls

 

C01

 

Analyst

 

000170

 

Masatoshi

 

Yoshimura

 

D11

 

Designer

   

There

 

is

 

a

 

growing

 

need

 

to

 

support

 

non-traditional

 

database

 

applications

 

such

 

as

 

multimedia.

 

You

 

may

 

want

 

to

 

consider

 

attributes

 

to

 

support

 

multimedia

 

objects

 

such

 

as

 

documents,

 

video

 

or

 

mixed

 

media,

 

image,

 

and

 

voice.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

51



Within

 

a

 

table,

 

each

 

column

 

of

 

a

 

row

 

is

 

related

 

in

 

some

 

way

 

to

 

all

 

the

 

other

 

columns

 

of

 

that

 

row.

 

Some

 

of

 

the

 

relationships

 

expressed

 

in

 

the

 

sample

 

tables

 

are:

 

v

   

Employees

 

are

 

assigned

 

to

 

departments

 

–

   

Dolores

 

Quintana

 

is

 

assigned

 

to

 

Department

 

C01
v

   

Employees

 

perform

 

a

 

job

 

–

   

Dolores

 

works

 

as

 

an

 

Analyst
v

   

Employees

 

manage

 

departments

 

–

   

Sally

 

manages

 

department

 

C01.

″Employee″

 

and

 

″department″

 

are

 

entities;

 

Sally

 

Kwan

 

is

 

part

 

of

 

an

 

occurrence

 

of

 

″employee,″

 

and

 

C01

 

is

 

part

 

of

 

an

 

occurrence

 

of

 

″department″.

 

The

 

same

 

relationship

 

applies

 

to

 

the

 

same

 

columns

 

in

 

every

 

row

 

of

 

a

 

table.

 

For

 

example,

 

one

 

row

 

of

 

a

 

table

 

expresses

 

the

 

relationship

 

that

 

Sally

 

Kwan

 

manages

 

Department

 

C01;

 

another,

 

the

 

relationship

 

that

 

Sean

 

O’Connell

 

is

 

a

 

clerk

 

in

 

Department

 

A00.

 

The

 

information

 

contained

 

within

 

a

 

table

 

depends

 

on

 

the

 

relationships

 

to

 

be

 

expressed,

 

the

 

amount

 

of

 

flexibility

 

needed,

 

and

 

the

 

data

 

retrieval

 

speed

 

desired.

 

In

 

addition

 

to

 

identifying

 

the

 

entity

 

relationships

 

within

 

your

 

enterprise,

 

you

 

also

 

need

 

to

 

identify

 

other

 

types

 

of

 

information,

 

such

 

as

 

the

 

business

 

rules

 

that

 

apply

 

to

 

that

 

data.

  

Related

 

concepts:

  

v

   

“Database

 

relationships”

 

on

 

page

 

52

 

v

   

“Column

 

definitions”

 

on

 

page

 

55

Database

 

relationships

  

Several

 

types

 

of

 

relationships

 

can

 

be

 

defined

 

in

 

a

 

database.

 

Consider

 

the

 

possible

 

relationships

 

between

 

employees

 

and

 

departments.

 

One-to-many

 

and

 

many-to-one

 

relationships

 

An

 

employee

 

can

 

work

 

in

 

only

 

one

 

department;

 

this

 

relationship

 

is

 

single-valued

 

for

 

employees.

 

On

 

the

 

other

 

hand,

 

one

 

department

 

can

 

have

 

many

 

employees;

 

this

 

relationship

 

is

 

multi-valued

 

for

 

departments.

 

The

 

relationship

 

between

 

employees

 

(single-valued)

 

and

 

departments

 

(multi-valued)

 

is

 

a

 

one-to-many

 

relationship.

 

To

 

define

 

tables

 

for

 

each

 

one-to-many

 

and

 

each

 

many-to-one

 

relationship:

 

1.

   

Group

 

all

 

the

 

relationships

 

for

 

which

 

the

 

″many″

 

side

 

of

 

the

 

relationship

 

is

 

the

 

same

 

entity.

 

2.

   

Define

 

a

 

single

 

table

 

for

 

all

 

the

 

relationships

 

in

 

the

 

group.

In

 

the

 

following

 

example,

 

the

 

″many″

 

side

 

of

 

the

 

first

 

and

 

second

 

relationships

 

is

 

″employees″

 

so

 

an

 

employee

 

table,

 

EMPLOYEE,

 

is

 

defined.

  

Table

 

5.

 

Many-to-One

 

Relationships

 

Entity

 

Relationship

 

Entity

 

Employees

 

are

 

assigned

 

to

 

departments

 

Employees

 

work

 

at

 

jobs

 

Departments

 

report

 

to

 

(administrative)

 

departments

    

52

 

Administration

 

Guide:

 

Planning

|
|



In

 

the

 

third

 

relationship,

 

″departments″

 

is

 

on

 

the

 

″many″

 

side,

 

so

 

a

 

department

 

table,

 

DEPARTMENT,

 

is

 

defined.

 

The

 

following

 

tables

 

show

 

these

 

different

 

relationships.

 

The

 

EMPLOYEE

 

table:

  

EMPNO

 

WORKDEPT

 

JOB

 

000010

 

A00

 

President

 

000020

 

B01

 

Manager

 

000120

 

A00

 

Clerk

 

000130

 

C01

 

Analyst

 

000030

 

C01

 

Manager

 

000140

 

C01

 

Analyst

 

000170

 

D11

 

Designer

   

The

 

DEPARTMENT

 

table:

  

DEPTNO

 

ADMRDEPT

 

C01

 

A00

 

D01

 

A00

 

D11

 

D01

   

Many-to-many

 

relationships

 

A

 

relationship

 

that

 

is

 

multi-valued

 

in

 

both

 

directions

 

is

 

a

 

many-to-many

 

relationship.

 

An

 

employee

 

can

 

work

 

on

 

more

 

than

 

one

 

project,

 

and

 

a

 

project

 

can

 

have

 

more

 

than

 

one

 

employee.

 

The

 

questions

 

″What

 

does

 

Dolores

 

Quintana

 

work

 

on?″,

 

and

 

″Who

 

works

 

on

 

project

 

IF1000?″

 

both

 

yield

 

multiple

 

answers.

 

A

 

many-to-many

 

relationship

 

can

 

be

 

expressed

 

in

 

a

 

table

 

with

 

a

 

column

 

for

 

each

 

entity

 

(″employees″

 

and

 

″projects″),

 

as

 

shown

 

in

 

the

 

following

 

example.

 

The

 

following

 

table

 

shows

 

how

 

a

 

many-to-many

 

relationship

 

(an

 

employee

 

can

 

work

 

on

 

many

 

projects,

 

and

 

a

 

project

 

can

 

have

 

many

 

employees

 

working

 

on

 

it)

 

is

 

represented.

 

The

 

employee

 

activity

 

(EMP_ACT)

 

table:

  

EMPNO

 

PROJNO

 

000030

 

IF1000

 

000030

 

IF2000

 

000130

 

IF1000

 

000140

 

IF2000

 

000250

 

AD3112

   

One-to-one

 

relationships

 

One-to-one

 

relationships

 

are

 

single-valued

 

in

 

both

 

directions.

 

A

 

manager

 

manages

 

one

 

department;

 

a

 

department

 

has

 

only

 

one

 

manager.

 

The

 

questions,

 

″Who

 

is

 

the

 

manager

 

of

 

Department

 

C01?″,

 

and

 

″What

 

department

 

does

 

Sally

 

Kwan

 

manage?″

   

Chapter

 

4.

 

Logical

 

database

 

design

 

53

|
|

|

|
|
|



both

 

have

 

single

 

answers.

 

The

 

relationship

 

can

 

be

 

assigned

 

to

 

either

 

the

 

DEPARTMENT

 

table

 

or

 

the

 

EMPLOYEE

 

table.

 

Because

 

all

 

departments

 

have

 

managers,

 

but

 

not

 

all

 

employees

 

are

 

managers,

 

it

 

is

 

most

 

logical

 

to

 

add

 

the

 

manager

 

to

 

the

 

DEPARTMENT

 

table,

 

as

 

shown

 

in

 

the

 

following

 

example.

 

The

 

following

 

table

 

shows

 

the

 

representation

 

of

 

a

 

one-to-one

 

relationship.

 

The

 

DEPARTMENT

 

table:

  

DEPTNO

 

MGRNO

 

A00

 

000010

 

B01

 

000020

 

D11

 

000060

   

Ensure

 

that

 

equal

 

values

 

represent

 

the

 

same

 

entity

 

You

 

can

 

have

 

more

 

than

 

one

 

table

 

describing

 

the

 

attributes

 

of

 

the

 

same

 

set

 

of

 

entities.

 

For

 

example,

 

the

 

EMPLOYEE

 

table

 

shows

 

the

 

number

 

of

 

the

 

department

 

to

 

which

 

an

 

employee

 

is

 

assigned,

 

and

 

the

 

DEPARTMENT

 

table

 

shows

 

which

 

manager

 

is

 

assigned

 

to

 

each

 

department

 

number.

 

To

 

retrieve

 

both

 

sets

 

of

 

attributes

 

simultaneously,

 

you

 

can

 

join

 

the

 

two

 

tables

 

on

 

the

 

matching

 

columns,

 

as

 

shown

 

in

 

the

 

following

 

example.

 

The

 

values

 

in

 

WORKDEPT

 

and

 

DEPTNO

 

represent

 

the

 

same

 

entity,

 

and

 

represent

 

a

 

join

 

path

 

between

 

the

 

DEPARTMENT

 

and

 

EMPLOYEE

 

tables.

 

The

 

DEPARTMENT

 

table:

  

DEPTNO

 

DEPTNAME

 

MGRNO

 

ADMRDEPT

 

D21

 

Administration

 

Support

 

000070

 

D01

   

The

 

EMPLOYEE

 

table:

  

EMPNO

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

JOB

 

000250

 

Daniel

 

Smith

 

D21

 

Clerk

   

When

 

you

 

retrieve

 

information

 

about

 

an

 

entity

 

from

 

more

 

than

 

one

 

table,

 

ensure

 

that

 

equal

 

values

 

represent

 

the

 

same

 

entity.

 

The

 

connecting

 

columns

 

can

 

have

 

different

 

names

 

(like

 

WORKDEPT

 

and

 

DEPTNO

 

in

 

the

 

previous

 

example),

 

or

 

they

 

can

 

have

 

the

 

same

 

name

 

(like

 

the

 

columns

 

called

 

DEPTNO

 

in

 

the

 

department

 

and

 

project

 

tables).

  

Related

 

concepts:

  

v

   

“What

 

to

 

record

 

in

 

a

 

database”

 

on

 

page

 

51

 

v

   

“Column

 

definitions”

 

on

 

page

 

55

  

54

 

Administration

 

Guide:

 

Planning

|



Column

 

definitions

  

To

 

define

 

a

 

column

 

in

 

a

 

relational

 

table:

 

1.

   

Choose

 

a

 

name

 

for

 

the

 

column.

 

Each

 

column

 

in

 

a

 

table

 

must

 

have

 

a

 

name

 

that

 

is

 

unique

 

for

 

that

 

table.

 

2.

   

State

 

what

 

kind

 

of

 

data

 

is

 

valid

 

for

 

the

 

column.

 

The

 

data

 

type

 

and

 

length

 

specify

 

the

 

type

 

of

 

data

 

and

 

the

 

maximum

 

length

 

that

 

are

 

valid

 

for

 

the

 

column.

 

Data

 

types

 

may

 

be

 

chosen

 

from

 

those

 

provided

 

by

 

the

 

database

 

manager

 

or

 

you

 

may

 

choose

 

to

 

create

 

your

 

own

 

user-defined

 

types.

 

Examples

 

of

 

data

 

type

 

categories

 

are:

 

numeric,

 

character

 

string,

 

double-byte

 

(or

 

graphic)

 

character

 

string,

 

date-time,

 

and

 

binary

 

string.

 

Large

 

object

 

(LOB)

 

data

 

types

 

support

 

multi-media

 

objects

 

such

 

as

 

documents,

 

video,

 

image

 

and

 

voice.

 

These

 

objects

 

are

 

implemented

 

using

 

the

 

following

 

data

 

types:

 

v

   

A

 

binary

 

large

 

object

 

(BLOB)

 

string.

 

Examples

 

of

 

BLOBs

 

are

 

photographs

 

of

 

employees,

 

voice,

 

and

 

video.

 

v

   

A

 

character

 

large

 

object

 

(CLOB)

 

string,

 

where

 

the

 

sequence

 

of

 

characters

 

can

 

be

 

either

 

single-

 

or

 

multi-byte

 

characters,

 

or

 

a

 

combination

 

of

 

both.

 

An

 

example

 

of

 

a

 

CLOB

 

is

 

an

 

employee’s

 

resume.

 

v

   

A

 

double-byte

 

character

 

large

 

object

 

(DBCLOB)

 

string,

 

where

 

the

 

sequence

 

of

 

characters

 

is

 

double-byte

 

characters.

 

An

 

example

 

of

 

a

 

DBCLOB

 

is

 

a

 

Japanese

 

resume.

 

A

 

user-defined

 

type

 

(UDT),

 

is

 

a

 

type

 

that

 

is

 

derived

 

from

 

an

 

existing

 

type.

 

You

 

may

 

need

 

to

 

define

 

types

 

that

 

are

 

derived

 

from

 

and

 

share

 

characteristics

 

with

 

existing

 

types,

 

but

 

that

 

are

 

nevertheless

 

considered

 

to

 

be

 

separate

 

and

 

incompatible.

 

A

 

structured

 

type

 

is

 

a

 

user-defined

 

type

 

whose

 

structure

 

is

 

defined

 

in

 

the

 

database.

 

It

 

contains

 

a

 

sequence

 

of

 

named

 

attributes,

 

each

 

of

 

which

 

has

 

a

 

data

 

type.

 

A

 

structured

 

type

 

may

 

be

 

defined

 

as

 

a

 

subtype

 

of

 

another

 

structured

 

type,

 

called

 

its

 

supertype.

 

A

 

subtype

 

inherits

 

all

 

the

 

attributes

 

of

 

its

 

supertype

 

and

 

may

 

have

 

additional

 

attributes

 

defined.

 

The

 

set

 

of

 

structured

 

types

 

that

 

are

 

related

 

to

 

a

 

common

 

supertype

 

is

 

called

 

a

 

type

 

hierarchy,

 

and

 

the

 

supertype

 

that

 

does

 

not

 

have

 

any

 

supertype

 

is

 

called

 

the

 

root

 

type

 

of

 

the

 

type

 

hierarchy.

 

A

 

structured

 

type

 

may

 

be

 

used

 

as

 

the

 

type

 

of

 

a

 

table

 

or

 

a

 

view.

 

The

 

names

 

and

 

data

 

types

 

of

 

the

 

attributes

 

of

 

the

 

structured

 

types,

 

together

 

with

 

the

 

object

 

identifier,

 

become

 

the

 

names

 

and

 

data

 

types

 

of

 

the

 

columns

 

of

 

this

 

typed

 

table

 

or

 

typed

 

view.

 

Rows

 

of

 

the

 

typed

 

table

 

or

 

typed

 

view

 

can

 

be

 

thought

 

of

 

as

 

a

 

representation

 

of

 

instances

 

of

 

the

 

structured

 

type.

 

A

 

structured

 

type

 

cannot

 

be

 

used

 

as

 

the

 

data

 

type

 

of

 

a

 

column

 

of

 

a

 

table

 

or

 

a

 

view.

 

There

 

is

 

also

 

no

 

support

 

for

 

retrieving

 

a

 

whole

 

structured

 

type

 

instance

 

into

 

a

 

host

 

variable

 

in

 

an

 

application

 

program.

 

A

 

reference

 

type

 

is

 

a

 

companion

 

type

 

to

 

the

 

structured

 

type.

 

Similar

 

to

 

a

 

distinct

 

type,

 

a

 

reference

 

type

 

is

 

a

 

scalar

 

type

 

that

 

shares

 

a

 

common

 

representation

 

with

 

one

 

of

 

the

 

built-in

 

data

 

types.

 

This

 

same

 

representation

 

is

 

shared

 

for

 

all

 

types

 

in

 

the

 

type

 

hierarchy.

 

The

 

reference

 

type

 

representation

 

is

 

defined

 

when

 

the

 

root

 

type

 

of

 

a

 

type

 

hierarchy

 

is

 

created.

 

When

 

using

 

a

 

reference

 

type,

 

a

 

structured

 

type

 

is

 

specified

 

as

 

a

 

parameter

 

of

 

the

 

type.

 

This

 

parameter

 

is

 

called

 

the

 

target

 

type

 

of

 

the

 

reference.

 

The

 

target

 

of

 

a

 

reference

 

is

 

always

 

a

 

row

 

in

 

a

 

typed

 

table

 

or

 

view.

 

When

 

a

 

reference

 

type

 

is

 

used,

 

it

 

may

 

have

 

a

 

scope

 

defined.

 

The

 

scope

 

identifies

 

a

 

table

 

(called

 

the

 

target

 

table)

 

or

 

view

 

(called

 

the

 

target

 

view)

 

that

 

contains

 

the

 

target

 

row

 

of

 

a

 

reference

 

value.

 

The

 

target

 

table

 

or

 

view

 

must

 

have

 

the

 

same

 

type

 

as

   

Chapter

 

4.

 

Logical

 

database

 

design

 

55



the

 

target

 

type

 

of

 

the

 

reference

 

type.

 

An

 

instance

 

of

 

a

 

scoped

 

reference

 

type

 

uniquely

 

identifies

 

a

 

row

 

in

 

a

 

typed

 

table

 

or

 

typed

 

view,

 

called

 

its

 

target

 

row.

 

A

 

user-defined

 

function

 

(UDF)

 

can

 

be

 

used

 

for

 

a

 

number

 

of

 

reasons,

 

including

 

invoking

 

routines

 

that

 

allow

 

comparison

 

or

 

conversion

 

between

 

user-defined

 

types.

 

UDFs

 

extend

 

and

 

add

 

to

 

the

 

support

 

provided

 

by

 

built-in

 

SQL

 

functions,

 

and

 

can

 

be

 

used

 

wherever

 

a

 

built-in

 

function

 

can

 

be

 

used.

 

There

 

are

 

two

 

types

 

of

 

UDFs:

 

v

   

An

 

external

 

function,

 

which

 

is

 

written

 

in

 

a

 

programming

 

language

 

v

   

A

 

sourced

 

function,

 

which

 

will

 

be

 

used

 

to

 

invoke

 

other

 

UDFs

 

For

 

example,

 

two

 

numeric

 

data

 

types

 

are

 

European

 

Shoe

 

Size

 

and

 

American

 

Shoe

 

Size.

 

Both

 

types

 

represent

 

shoe

 

size,

 

but

 

they

 

are

 

incompatible,

 

because

 

the

 

measurement

 

base

 

is

 

different

 

and

 

cannot

 

be

 

compared.

 

A

 

user-defined

 

function

 

can

 

be

 

invoked

 

to

 

convert

 

one

 

shoe

 

size

 

to

 

another.

 

3.

   

State

 

which

 

columns

 

might

 

need

 

default

 

values.

 

Some

 

columns

 

cannot

 

have

 

meaningful

 

values

 

in

 

all

 

rows

 

because:

 

v

   

A

 

column

 

value

 

is

 

not

 

applicable

 

to

 

the

 

row.

 

For

 

example,

 

a

 

column

 

containing

 

an

 

employee’s

 

middle

 

initial

 

is

 

not

 

applicable

 

to

 

an

 

employee

 

who

 

has

 

no

 

middle

 

initial.

 

v

   

A

 

value

 

is

 

applicable,

 

but

 

is

 

not

 

yet

 

known.

 

For

 

example,

 

the

 

MGRNO

 

column

 

might

 

not

 

contain

 

a

 

valid

 

manager

 

number

 

because

 

the

 

previous

 

manager

 

of

 

the

 

department

 

has

 

been

 

transferred,

 

and

 

a

 

new

 

manager

 

has

 

not

 

been

 

appointed

 

yet.

 

In

 

both

 

situations,

 

you

 

can

 

choose

 

between

 

allowing

 

a

 

NULL

 

value

 

(a

 

special

 

value

 

indicating

 

that

 

the

 

column

 

value

 

is

 

unknown

 

or

 

not

 

applicable),

 

or

 

allowing

 

a

 

non-NULL

 

default

 

value

 

to

 

be

 

assigned

 

by

 

the

 

database

 

manager

 

or

 

by

 

the

 

application.

Primary

 

keys

  

A

 

key

 

is

 

a

 

set

 

of

 

columns

 

that

 

can

 

be

 

used

 

to

 

identify

 

or

 

access

 

a

 

particular

 

row

 

or

 

rows.

 

The

 

key

 

is

 

identified

 

in

 

the

 

description

 

of

 

a

 

table,

 

index,

 

or

 

referential

 

constraint.

 

The

 

same

 

column

 

can

 

be

 

part

 

of

 

more

 

than

 

one

 

key.

 

A

 

unique

 

key

 

is

 

a

 

key

 

that

 

is

 

constrained

 

so

 

that

 

no

 

two

 

of

 

its

 

values

 

are

 

equal.

 

The

 

columns

 

of

 

a

 

unique

 

key

 

cannot

 

contain

 

NULL

 

values.

 

For

 

example,

 

an

 

employee

 

number

 

column

 

can

 

be

 

defined

 

as

 

a

 

unique

 

key,

 

because

 

each

 

value

 

in

 

the

 

column

 

identifies

 

only

 

one

 

employee.

 

No

 

two

 

employees

 

can

 

have

 

the

 

same

 

employee

 

number.

 

The

 

mechanism

 

used

 

to

 

enforce

 

the

 

uniqueness

 

of

 

the

 

key

 

is

 

called

 

a

 

unique

 

index.

 

The

 

unique

 

index

 

of

 

a

 

table

 

is

 

a

 

column,

 

or

 

an

 

ordered

 

collection

 

of

 

columns,

 

for

 

which

 

each

 

value

 

identifies

 

(functionally

 

determines)

 

a

 

unique

 

row.

 

A

 

unique

 

index

 

can

 

contain

 

NULL

 

values.

 

The

 

primary

 

key

 

is

 

one

 

of

 

the

 

unique

 

keys

 

defined

 

on

 

a

 

table,

 

but

 

is

 

selected

 

to

 

be

 

the

 

key

 

of

 

first

 

importance.

 

There

 

can

 

be

 

only

 

one

 

primary

 

key

 

on

 

a

 

table.

 

A

 

primary

 

index

 

is

 

automatically

 

created

 

for

 

the

 

primary

 

key.

 

The

 

primary

 

index

 

is

 

used

 

by

 

the

 

database

 

manager

 

for

 

efficient

 

access

 

to

 

table

 

rows,

 

and

 

allows

 

the

 

database

 

manager

 

to

 

enforce

 

the

 

uniqueness

 

of

 

the

 

primary

 

key.

 

(You

 

can

 

also

 

define

 

indexes

 

on

 

non-primary

 

key

 

columns

 

to

 

efficiently

 

access

 

data

 

when

 

processing

 

queries.)

   

56

 

Administration

 

Guide:

 

Planning



If

 

a

 

table

 

does

 

not

 

have

 

a

 

″natural″

 

unique

 

key,

 

or

 

if

 

arrival

 

sequence

 

is

 

the

 

method

 

used

 

to

 

distinguish

 

unique

 

rows,

 

using

 

a

 

time

 

stamp

 

as

 

part

 

of

 

the

 

key

 

can

 

be

 

helpful.

 

Primary

 

keys

 

for

 

some

 

of

 

the

 

sample

 

tables

 

are:

 

Table

 

Key

 

Column

 

Employee

 

table

 

EMPNO

 

Department

 

table

 

DEPTNO

 

Project

 

table

 

PROJNO

The

 

following

 

example

 

shows

 

part

 

of

 

the

 

PROJECT

 

table,

 

including

 

its

 

primary

 

key

 

column.

  

Table

 

6.

 

A

 

Primary

 

Key

 

on

 

the

 

PROJECT

 

Table

 

PROJNO

 

(Primary

 

Key)

 

PROJNAME

 

DEPTNO

 

MA2100

 

Weld

 

Line

 

Automation

 

D01

 

MA2110

 

Weld

 

Line

 

Programming

 

D11

   

If

 

every

 

column

 

in

 

a

 

table

 

contains

 

duplicate

 

values,

 

you

 

cannot

 

define

 

a

 

primary

 

key

 

with

 

only

 

one

 

column.

 

A

 

key

 

with

 

more

 

than

 

one

 

column

 

is

 

a

 

composite

 

key.

 

The

 

combination

 

of

 

column

 

values

 

should

 

define

 

a

 

unique

 

entity.

 

If

 

a

 

composite

 

key

 

cannot

 

be

 

easily

 

defined,

 

you

 

may

 

consider

 

creating

 

a

 

new

 

column

 

that

 

has

 

unique

 

values.

 

The

 

following

 

example

 

shows

 

a

 

primary

 

key

 

containing

 

more

 

than

 

one

 

column

 

(a

 

composite

 

key):

  

Table

 

7.

 

A

 

Composite

 

Primary

 

Key

 

on

 

the

 

EMP_ACT

 

Table

 

EMPNO

 

(Primary

 

Key)

 

PROJNO

 

(Primary

 

Key)

 

ACTNO

   

(Primary

 

Key)

 

EMPTIME

 

EMSTDATE

 

(Primary

 

Key)

 

000250

 

AD3112

 

60

 

1.0

 

1982-01-01

 

000250

 

AD3112

 

60

 

.5

 

1982-02-01

 

000250

 

AD3112

 

70

 

.5

 

1982-02-01

   

Identifying

 

candidate

 

key

 

columns

 

To

 

identify

 

candidate

 

keys,

 

select

 

the

 

smallest

 

number

 

of

 

columns

 

that

 

define

 

a

 

unique

 

entity.

 

There

 

may

 

be

 

more

 

than

 

one

 

candidate

 

key.

 

In

 

Table

 

8,

 

there

 

appear

 

to

 

be

 

many

 

candidate

 

keys.

 

The

 

EMPNO,

 

the

 

PHONENO,

 

and

 

the

 

LASTNAME

 

columns

 

each

 

uniquely

 

identify

 

the

 

employee.

  

Table

 

8.

 

EMPLOYEE

 

Table

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

(Foreign

 

Key)

 

PHONENO

 

000010

 

Christine

 

Haas

 

A00

 

3978

 

000030

 

Sally

 

Kwan

 

C01

 

4738

 

000060

 

Irving

 

Stern

 

D11

 

6423

 

000120

 

Sean

 

O’Connell

 

A00

 

2167

 

000140

 

Heather

 

Nicholls

 

C01

 

1793

   

Chapter

 

4.

 

Logical

 

database

 

design

 

57



Table

 

8.

 

EMPLOYEE

 

Table

 

(continued)

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

(Foreign

 

Key)

 

PHONENO

 

000170

 

Masatoshi

 

Yoshimura

 

D11

 

2890

   

The

 

criteria

 

for

 

selecting

 

a

 

primary

 

key

 

from

 

a

 

pool

 

of

 

candidate

 

keys

 

should

 

be

 

persistence,

 

uniqueness,

 

and

 

stability:

 

v

   

Persistence

 

means

 

that

 

a

 

primary

 

key

 

value

 

for

 

each

 

row

 

always

 

exists.

 

v

   

Uniqueness

 

means

 

that

 

the

 

key

 

value

 

for

 

each

 

row

 

is

 

different

 

from

 

all

 

the

 

others.

 

v

   

Stability

 

means

 

that

 

primary

 

key

 

values

 

never

 

change.

Of

 

the

 

three

 

candidate

 

keys

 

in

 

the

 

example,

 

only

 

EMPNO

 

satisfies

 

all

 

of

 

these

 

criteria.

 

An

 

employee

 

may

 

not

 

have

 

a

 

phone

 

number

 

when

 

joining

 

a

 

company.

 

Last

 

names

 

can

 

change,

 

and,

 

although

 

they

 

may

 

be

 

unique

 

at

 

one

 

point,

 

are

 

not

 

guaranteed

 

to

 

be

 

so.

 

The

 

employee

 

number

 

column

 

is

 

the

 

best

 

choice

 

for

 

the

 

primary

 

key.

 

An

 

employee

 

is

 

assigned

 

a

 

unique

 

number

 

only

 

once,

 

and

 

that

 

number

 

is

 

generally

 

not

 

updated

 

as

 

long

 

as

 

the

 

employee

 

remains

 

with

 

the

 

company.

 

Since

 

each

 

employee

 

must

 

have

 

a

 

number,

 

values

 

in

 

the

 

employee

 

number

 

column

 

are

 

persistent.

  

Related

 

concepts:

  

v

   

“Identity

 

columns”

 

on

 

page

 

58

Identity

 

columns

  

An

 

identity

 

column

 

provides

 

a

 

way

 

for

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

to

 

automatically

 

generate

 

a

 

unique

 

numeric

 

value

 

for

 

each

 

row

 

in

 

a

 

table.

 

A

 

table

 

can

 

have

 

a

 

single

 

column

 

that

 

is

 

defined

 

with

 

the

 

identity

 

attribute.

 

Examples

 

of

 

an

 

identity

 

column

 

include

 

order

 

number,

 

employee

 

number,

 

stock

 

number,

 

and

 

incident

 

number.

 

Values

 

for

 

an

 

identity

 

column

 

can

 

be

 

generated

 

always

 

or

 

by

 

default.

 

v

   

An

 

identity

 

column

 

that

 

is

 

defined

 

as

 

generated

 

always

 

is

 

guaranteed

 

to

 

be

 

unique

 

by

 

DB2

 

UDB.

 

Its

 

values

 

are

 

always

 

generated

 

by

 

DB2

 

UDB;

 

applications

 

are

 

not

 

allowed

 

to

 

provide

 

an

 

explicit

 

value.

 

v

   

An

 

identity

 

column

 

that

 

is

 

defined

 

as

 

generated

 

by

 

default

 

gives

 

applications

 

a

 

way

 

to

 

explicitly

 

provide

 

a

 

value

 

for

 

the

 

identity

 

column.

 

If

 

a

 

value

 

is

 

not

 

given,

 

DB2

 

UDB

 

generates

 

one,

 

but

 

cannot

 

guarantee

 

the

 

uniqueness

 

of

 

the

 

value

 

in

 

this

 

case.

 

DB2

 

UDB

 

guarantees

 

uniqueness

 

only

 

for

 

the

 

set

 

of

 

values

 

that

 

it

 

generates.

 

Generated

 

by

 

default

 

is

 

meant

 

to

 

be

 

used

 

for

 

data

 

propagation,

 

in

 

which

 

the

 

contents

 

of

 

an

 

existing

 

table

 

are

 

copied,

 

or

 

for

 

the

 

unloading

 

and

 

reloading

 

of

 

a

 

table.

Identity

 

columns

 

are

 

ideally

 

suited

 

to

 

the

 

task

 

of

 

generating

 

unique

 

primary

 

key

 

values.

 

Applications

 

can

 

use

 

identity

 

columns

 

to

 

avoid

 

the

 

concurrency

 

and

 

performance

 

problems

 

that

 

can

 

result

 

when

 

an

 

application

 

generates

 

its

 

own

 

unique

 

counter

 

outside

 

of

 

the

 

database.

 

For

 

example,

 

one

 

common

 

application-level

 

implementation

 

is

 

to

 

maintain

 

a

 

1-row

 

table

 

containing

 

a

 

counter.

 

Each

 

transaction

 

locks

 

this

 

table,

 

increments

 

the

 

number,

 

and

 

then

 

commits;

 

that

 

is,

 

only

 

one

 

transaction

 

at

 

a

 

time

 

can

 

increment

 

the

 

counter.

 

In

 

contrast,

 

if

 

the

 

counter

 

is

 

maintained

 

through

 

an

 

identity

 

column,

 

much

 

higher

 

levels

 

of

 

concurrency

 

can

   

58

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|



be

 

achieved

 

because

 

the

 

counter

 

is

 

not

 

locked

 

by

 

transactions.

 

One

 

uncommitted

 

transaction

 

that

 

has

 

incremented

 

the

 

counter

 

will

 

not

 

prevent

 

subsequent

 

transactions

 

from

 

also

 

incrementing

 

the

 

counter.

 

The

 

counter

 

for

 

the

 

identity

 

column

 

is

 

incremented

 

(or

 

decremented)

 

independently

 

of

 

the

 

transaction.

 

If

 

a

 

given

 

transaction

 

increments

 

an

 

identity

 

counter

 

two

 

times,

 

that

 

transaction

 

may

 

see

 

a

 

gap

 

in

 

the

 

two

 

numbers

 

that

 

are

 

generated

 

because

 

there

 

may

 

be

 

other

 

transactions

 

concurrently

 

incrementing

 

the

 

same

 

identity

 

counter

 

(that

 

is,

 

inserting

 

rows

 

into

 

the

 

same

 

table).

 

If

 

an

 

application

 

must

 

have

 

a

 

consecutive

 

range

 

of

 

numbers,

 

that

 

application

 

should

 

take

 

an

 

exclusive

 

lock

 

on

 

the

 

table

 

that

 

has

 

the

 

identity

 

column.

 

This

 

decision

 

must

 

be

 

weighed

 

against

 

the

 

resulting

 

loss

 

of

 

concurrency.

 

Furthermore,

 

it

 

is

 

possible

 

that

 

a

 

given

 

identity

 

column

 

can

 

appear

 

to

 

have

 

generated

 

gaps

 

in

 

the

 

number,

 

because

 

a

 

transaction

 

that

 

generated

 

a

 

value

 

for

 

the

 

identity

 

column

 

has

 

rolled

 

back,

 

or

 

the

 

database

 

that

 

has

 

cached

 

a

 

range

 

of

 

values

 

has

 

been

 

deactivated

 

before

 

all

 

of

 

the

 

cached

 

values

 

were

 

assigned.

 

The

 

sequential

 

numbers

 

that

 

are

 

generated

 

by

 

the

 

identity

 

column

 

have

 

the

 

following

 

additional

 

properties:

 

v

   

The

 

values

 

can

 

be

 

of

 

any

 

exact

 

numeric

 

data

 

type

 

with

 

a

 

scale

 

of

 

zero;

 

that

 

is,

 

SMALLINT,

 

INTEGER,

 

BIGINT,

 

or

 

DECIMAL

 

with

 

a

 

scale

 

of

 

zero.

 

(Single-

 

and

 

double-precision

 

floating-point

 

are

 

considered

 

to

 

be

 

approximate

 

numeric

 

data

 

types.)

 

v

   

Consecutive

 

values

 

can

 

differ

 

by

 

any

 

specified

 

integer

 

increment.

 

The

 

default

 

increment

 

is

 

1.

 

v

   

The

 

counter

 

value

 

for

 

the

 

identity

 

column

 

is

 

recoverable.

 

If

 

a

 

failure

 

occurs,

 

the

 

counter

 

value

 

is

 

reconstructed

 

from

 

the

 

logs,

 

thereby

 

guaranteeing

 

that

 

unique

 

values

 

continue

 

to

 

be

 

generated.

 

v

   

Identity

 

column

 

values

 

can

 

be

 

cached

 

to

 

give

 

better

 

performance.

 

Related

 

concepts:

  

v

   

“Primary

 

keys”

 

on

 

page

 

56

Normalization

  

Normalization

 

helps

 

eliminate

 

redundancies

 

and

 

inconsistencies

 

in

 

table

 

data.

 

It

 

is

 

the

 

process

 

of

 

reducing

 

tables

 

to

 

a

 

set

 

of

 

columns

 

where

 

all

 

the

 

non-key

 

columns

 

depend

 

on

 

the

 

primary

 

key

 

column.

 

If

 

this

 

is

 

not

 

the

 

case,

 

the

 

data

 

can

 

become

 

inconsistent

 

during

 

updates.

 

This

 

section

 

briefly

 

reviews

 

the

 

rules

 

for

 

first,

 

second,

 

third,

 

and

 

fourth

 

normal

 

form.

 

The

 

fifth

 

normal

 

form

 

of

 

a

 

table,

 

which

 

is

 

covered

 

in

 

many

 

books

 

on

 

database

 

design,

 

is

 

not

 

described

 

here.

 

Form

 

Description

 

First

 

At

 

each

 

row

 

and

 

column

 

position

 

in

 

the

 

table,

 

there

 

exists

 

one

 

value,

 

never

 

a

 

set

 

of

 

values.

 

Second

 

Each

 

column

 

that

 

is

 

not

 

part

 

of

 

the

 

key

 

is

 

dependent

 

upon

 

the

 

key.

 

Third

 

Each

 

non-key

 

column

 

is

 

independent

 

of

 

other

 

non-key

 

columns,

 

and

 

is

 

dependent

 

only

 

upon

 

the

 

key.

 

Fourth

 

No

 

row

 

contains

 

two

 

or

 

more

 

independent

 

multi-valued

 

facts

 

about

 

an

 

entity.

  

Chapter

 

4.

 

Logical

 

database

 

design

 

59



First

 

normal

 

form

 

A

 

table

 

is

 

in

 

first

 

normal

 

form

 

if

 

there

 

is

 

only

 

one

 

value,

 

never

 

a

 

set

 

of

 

values,

 

in

 

each

 

cell.

 

A

 

table

 

that

 

is

 

in

 

first

 

normal

 

form

 

does

 

not

 

necessarily

 

satisfy

 

the

 

criteria

 

for

 

higher

 

normal

 

forms.

 

For

 

example,

 

the

 

following

 

table

 

violates

 

first

 

normal

 

form

 

because

 

the

 

WAREHOUSE

 

column

 

contains

 

several

 

values

 

for

 

each

 

occurrence

 

of

 

PART.

  

Table

 

9.

 

Table

 

Violating

 

First

 

Normal

 

Form

 

PART

 

(Primary

 

Key)

 

WAREHOUSE

 

P0010

 

Warehouse

 

A,

 

Warehouse

 

B,

 

Warehouse

 

C

 

P0020

 

Warehouse

 

B,

 

Warehouse

 

D

   

The

 

following

 

example

 

shows

 

the

 

same

 

table

 

in

 

first

 

normal

 

form.

  

Table

 

10.

 

Table

 

Conforming

 

to

 

First

 

Normal

 

Form

 

PART

 

(Primary

 

Key)

 

WAREHOUSE

 

(Primary

 

Key)

 

QUANTITY

 

P0010

 

Warehouse

 

A

 

400®

 

P0010

 

Warehouse

 

B

 

543

 

P0010

 

Warehouse

 

C

 

329

 

P0020

 

Warehouse

 

B

 

200

 

P0020

 

Warehouse

 

D

 

278

   

Second

 

normal

 

form

 

A

 

table

 

is

 

in

 

second

 

normal

 

form

 

if

 

each

 

column

 

that

 

is

 

not

 

part

 

of

 

the

 

key

 

is

 

dependent

 

upon

 

the

 

entire

 

key.

 

Second

 

normal

 

form

 

is

 

violated

 

when

 

a

 

non-key

 

column

 

is

 

dependent

 

upon

 

part

 

of

 

a

 

composite

 

key,

 

as

 

in

 

the

 

following

 

example:

  

Table

 

11.

 

Table

 

Violating

 

Second

 

Normal

 

Form

 

PART

 

(Primary

 

Key)

 

WAREHOUSE

 

(Primary

 

Key)

 

QUANTITY

 

WAREHOUSE_ADDRESS

 

P0010

 

Warehouse

 

A

 

400

 

1608

 

New

 

Field

 

Road

 

P0010

 

Warehouse

 

B

 

543

 

4141

 

Greenway

 

Drive

 

P0010

 

Warehouse

 

C

 

329

 

171

 

Pine

 

Lane

 

P0020

 

Warehouse

 

B

 

200

 

4141

 

Greenway

 

Drive

 

P0020

 

Warehouse

 

D

 

278

 

800

 

Massey

 

Street

   

The

 

primary

 

key

 

is

 

a

 

composite

 

key,

 

consisting

 

of

 

the

 

PART

 

and

 

the

 

WAREHOUSE

 

columns

 

together.

 

Because

 

the

 

WAREHOUSE_ADDRESS

 

column

 

depends

 

only

 

on

 

the

 

value

 

of

 

WAREHOUSE,

 

the

 

table

 

violates

 

the

 

rule

 

for

 

second

 

normal

 

form.

 

The

 

problems

 

with

 

this

 

design

 

are:

 

v

   

The

 

warehouse

 

address

 

is

 

repeated

 

in

 

every

 

record

 

for

 

a

 

part

 

stored

 

in

 

that

 

warehouse.

   

60

 

Administration

 

Guide:

 

Planning



v

   

If

 

the

 

address

 

of

 

a

 

warehouse

 

changes,

 

every

 

row

 

referring

 

to

 

a

 

part

 

stored

 

in

 

that

 

warehouse

 

must

 

be

 

updated.

 

v

   

Because

 

of

 

this

 

redundancy,

 

the

 

data

 

might

 

become

 

inconsistent,

 

with

 

different

 

records

 

showing

 

different

 

addresses

 

for

 

the

 

same

 

warehouse.

 

v

   

If

 

at

 

some

 

time

 

there

 

are

 

no

 

parts

 

stored

 

in

 

a

 

warehouse,

 

there

 

might

 

not

 

be

 

a

 

row

 

in

 

which

 

to

 

record

 

the

 

warehouse

 

address.

The

 

solution

 

is

 

to

 

split

 

the

 

table

 

into

 

the

 

following

 

two

 

tables:

  

Table

 

12.

 

PART_STOCK

 

Table

 

Conforming

 

to

 

Second

 

Normal

 

Form

 

PART

 

(Primary

 

Key)

 

WAREHOUSE

 

(Primary

 

Key)

 

QUANTITY

 

P0010

 

Warehouse

 

A

 

400

 

P0010

 

Warehouse

 

B

 

543

 

P0010

 

Warehouse

 

C

 

329

 

P0020

 

Warehouse

 

B

 

200

 

P0020

 

Warehouse

 

D

 

278

    

Table

 

13.

 

WAREHOUSE

 

Table

 

Conforms

 

to

 

Second

 

Normal

 

Form

 

WAREHOUSE

 

(Primary

 

Key)

 

WAREHOUSE_ADDRESS

 

Warehouse

 

A

 

1608

 

New

 

Field

 

Road

 

Warehouse

 

B

 

4141

 

Greenway

 

Drive

 

Warehouse

 

C

 

171

 

Pine

 

Lane

 

Warehouse

 

D

 

800

 

Massey

 

Street

   

There

 

is

 

a

 

performance

 

consideration

 

in

 

having

 

the

 

two

 

tables

 

in

 

second

 

normal

 

form.

 

Applications

 

that

 

produce

 

reports

 

on

 

the

 

location

 

of

 

parts

 

must

 

join

 

both

 

tables

 

to

 

retrieve

 

the

 

relevant

 

information.

 

Third

 

normal

 

form

 

A

 

table

 

is

 

in

 

third

 

normal

 

form

 

if

 

each

 

non-key

 

column

 

is

 

independent

 

of

 

other

 

non-key

 

columns,

 

and

 

is

 

dependent

 

only

 

on

 

the

 

key.

 

The

 

first

 

table

 

in

 

the

 

following

 

example

 

contains

 

the

 

columns

 

EMPNO

 

and

 

WORKDEPT.

 

Suppose

 

a

 

column

 

DEPTNAME

 

is

 

added

 

(see

 

Table

 

15

 

on

 

page

 

62).

 

The

 

new

 

column

 

depends

 

on

 

WORKDEPT,

 

but

 

the

 

primary

 

key

 

is

 

EMPNO.

 

The

 

table

 

now

 

violates

 

third

 

normal

 

form.

 

Changing

 

DEPTNAME

 

for

 

a

 

single

 

employee,

 

John

 

Parker,

 

does

 

not

 

change

 

the

 

department

 

name

 

for

 

other

 

employees

 

in

 

that

 

department.

 

Note

 

that

 

there

 

are

 

now

 

two

 

different

 

department

 

names

 

used

 

for

 

department

 

number

 

E11.

 

The

 

inconsistency

 

that

 

results

 

is

 

shown

 

in

 

the

 

updated

 

version

 

of

 

the

 

table.

  

Table

 

14.

 

Unnormalized

 

EMPLOYEE_DEPARTMENT

 

Table

 

Before

 

Update

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

DEPTNAME

 

000290

 

John

 

Parker

 

E11

 

Operations

 

000320

 

Ramlal

 

Mehta

 

E21

 

Software

 

Support

 

000310

 

Maude

 

Setright

 

E11

 

Operations

    

Chapter

 

4.

 

Logical

 

database

 

design

 

61



Table

 

15.

 

Unnormalized

 

EMPLOYEE_DEPARTMENT

 

Table

 

After

 

Update.

 

Information

 

in

 

the

 

table

 

has

 

become

 

inconsistent.

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

DEPTNAME

 

000290

 

John

 

Parker

 

E11

 

Installation

 

Mgmt

 

000320

 

Ramlal

 

Mehta

 

E21

 

Software

 

Support

 

000310

 

Maude

 

Setright

 

E11

 

Operations

   

The

 

table

 

can

 

be

 

normalized

 

by

 

creating

 

a

 

new

 

table,

 

with

 

columns

 

for

 

WORKDEPT

 

and

 

DEPTNAME.

 

An

 

update

 

like

 

changing

 

a

 

department

 

name

 

is

 

now

 

much

 

easier;

 

only

 

the

 

new

 

table

 

needs

 

to

 

be

 

updated.

 

An

 

SQL

 

query

 

that

 

returns

 

the

 

department

 

name

 

along

 

with

 

the

 

employee

 

name

 

is

 

more

 

complex

 

to

 

write,

 

because

 

it

 

requires

 

joining

 

the

 

two

 

tables.

 

It

 

will

 

probably

 

also

 

take

 

longer

 

to

 

run

 

than

 

a

 

query

 

on

 

a

 

single

 

table.

 

Additional

 

storage

 

space

 

is

 

required,

 

because

 

the

 

WORKDEPT

 

column

 

must

 

appear

 

in

 

both

 

tables.

 

The

 

following

 

tables

 

are

 

defined

 

as

 

a

 

result

 

of

 

normalization:

  

Table

 

16.

 

EMPLOYEE

 

Table

 

After

 

Normalizing

 

the

 

EMPLOYEE_DEPARTMENT

 

Table

 

EMPNO

 

(Primary

 

Key)

 

FIRSTNAME

 

LASTNAME

 

WORKDEPT

 

000290

 

John

 

Parker

 

E11

 

000320

 

Ramlal

 

Mehta

 

E21

 

000310

 

Maude

 

Setright

 

E11

    

Table

 

17.

 

DEPARTMENT

 

Table

 

After

 

Normalizing

 

the

 

EMPLOYEE_DEPARTMENT

 

Table

 

DEPTNO

 

(Primary

 

Key)

 

DEPTNAME

 

E11

 

Operations

 

E21

 

Software

 

Support

   

Fourth

 

normal

 

form

 

A

 

table

 

is

 

in

 

fourth

 

normal

 

form

 

if

 

no

 

row

 

contains

 

two

 

or

 

more

 

independent

 

multi-valued

 

facts

 

about

 

an

 

entity.

 

Consider

 

these

 

entities:

 

employees,

 

skills,

 

and

 

languages.

 

An

 

employee

 

can

 

have

 

several

 

skills

 

and

 

know

 

several

 

languages.

 

There

 

are

 

two

 

relationships,

 

one

 

between

 

employees

 

and

 

skills,

 

and

 

one

 

between

 

employees

 

and

 

languages.

 

A

 

table

 

is

 

not

 

in

 

fourth

 

normal

 

form

 

if

 

it

 

represents

 

both

 

relationships,

 

as

 

in

 

the

 

following

 

example:

   

62

 

Administration

 

Guide:

 

Planning



Table

 

18.

 

Table

 

Violating

 

Fourth

 

Normal

 

Form

 

EMPNO

 

(Primary

 

Key)

 

SKILL

 

(Primary

 

Key)

 

LANGUAGE

 

(Primary

 

Key)

 

000130

 

Data

 

Modelling

 

English

 

000130

 

Database

 

Design

 

English

 

000130

 

Application

 

Design

 

English

 

000130

 

Data

 

Modelling

 

Spanish

 

000130

 

Database

 

Design

 

Spanish

 

000130

 

Application

 

Design

 

Spanish

   

Instead,

 

the

 

relationships

 

should

 

be

 

represented

 

in

 

two

 

tables:

  

Table

 

19.

 

EMPLOYEE_SKILL

 

Table

 

Conforming

 

to

 

Fourth

 

Normal

 

Form

 

EMPNO

 

(Primary

 

Key)

 

SKILL

 

(Primary

 

Key)

 

000130

 

Data

 

Modelling

 

000130

 

Database

 

Design

 

000130

 

Application

 

Design

    

Table

 

20.

 

EMPLOYEE_LANGUAGE

 

Table

 

Conforming

 

to

 

Fourth

 

Normal

 

Form

 

EMPNO

 

(Primary

 

Key)

 

LANGUAGE

 

(Primary

 

Key)

 

000130

 

English

 

000130

 

Spanish

   

If,

 

however,

 

the

 

attributes

 

are

 

interdependent

 

(that

 

is,

 

the

 

employee

 

applies

 

certain

 

languages

 

only

 

to

 

certain

 

skills),

 

the

 

table

 

should

 

not

 

be

 

split.

 

A

 

good

 

strategy

 

when

 

designing

 

a

 

database

 

is

 

to

 

arrange

 

all

 

data

 

in

 

tables

 

that

 

are

 

in

 

fourth

 

normal

 

form,

 

and

 

then

 

to

 

decide

 

whether

 

the

 

results

 

give

 

you

 

an

 

acceptable

 

level

 

of

 

performance.

 

If

 

they

 

do

 

not,

 

you

 

can

 

rearrange

 

the

 

data

 

in

 

tables

 

that

 

are

 

in

 

third

 

normal

 

form,

 

and

 

then

 

reassess

 

performance.

 

Constraints

  

A

 

constraint

 

is

 

a

 

rule

 

that

 

the

 

database

 

manager

 

enforces.

 

There

 

are

 

four

 

types

 

of

 

constraints:

 

v

   

A

 

unique

 

constraint

 

is

 

a

 

rule

 

that

 

forbids

 

duplicate

 

values

 

in

 

one

 

or

 

more

 

columns

 

within

 

a

 

table.

 

Unique

 

and

 

primary

 

keys

 

are

 

the

 

supported

 

unique

 

constraints.

 

For

 

example,

 

a

 

unique

 

constraint

 

can

 

be

 

defined

 

on

 

the

 

supplier

 

identifier

 

in

 

the

 

supplier

 

table

 

to

 

ensure

 

that

 

the

 

same

 

supplier

 

identifier

 

is

 

not

 

given

 

to

 

two

 

suppliers.

 

v

   

A

 

referential

 

constraint

 

is

 

a

 

logical

 

rule

 

about

 

values

 

in

 

one

 

or

 

more

 

columns

 

in

 

one

 

or

 

more

 

tables.

 

For

 

example,

 

a

 

set

 

of

 

tables

 

shares

 

information

 

about

 

a

 

corporation’s

 

suppliers.

 

Occasionally,

 

a

 

supplier’s

 

name

 

changes.

 

You

 

can

 

define

 

a

 

referential

 

constraint

 

stating

 

that

 

the

 

ID

 

of

 

the

 

supplier

 

in

 

a

 

table

 

must

 

match

 

a

 

supplier

 

ID

 

in

 

the

 

supplier

 

information.

 

This

 

constraint

 

prevents

 

insert,

 

update,

 

or

 

delete

 

operations

 

that

 

would

 

otherwise

 

result

 

in

 

missing

 

supplier

 

information.

   

Chapter

 

4.

 

Logical

 

database

 

design

 

63



v

   

A

 

table

 

check

 

constraint

 

sets

 

restrictions

 

on

 

data

 

added

 

to

 

a

 

specific

 

table.

 

For

 

example,

 

a

 

table

 

check

 

constraint

 

can

 

ensure

 

that

 

the

 

salary

 

level

 

for

 

an

 

employee

 

is

 

at

 

least

 

$20,000

 

whenever

 

salary

 

data

 

is

 

added

 

or

 

updated

 

in

 

a

 

table

 

containing

 

personnel

 

information.

 

v

   

An

 

informational

 

constraint

 

is

 

a

 

rule

 

that

 

can

 

be

 

used

 

by

 

the

 

SQL

 

compiler,

 

but

 

that

 

is

 

not

 

enforced

 

by

 

the

 

database

 

manager.

 

Referential

 

and

 

table

 

check

 

constraints

 

can

 

be

 

turned

 

on

 

or

 

off.

 

It

 

is

 

generally

 

a

 

good

 

idea,

 

for

 

example,

 

to

 

turn

 

off

 

the

 

enforcement

 

of

 

a

 

constraint

 

when

 

large

 

amounts

 

of

 

data

 

are

 

loaded

 

into

 

a

 

database.

 

Unique

 

constraints

 

A

 

unique

 

constraint

 

is

 

the

 

rule

 

that

 

the

 

values

 

of

 

a

 

key

 

are

 

valid

 

only

 

if

 

they

 

are

 

unique

 

within

 

a

 

table.

 

Unique

 

constraints

 

are

 

optional

 

and

 

can

 

be

 

defined

 

in

 

the

 

CREATE

 

TABLE

 

or

 

ALTER

 

TABLE

 

statement

 

using

 

the

 

PRIMARY

 

KEY

 

clause

 

or

 

the

 

UNIQUE

 

clause.

 

The

 

columns

 

specified

 

in

 

a

 

unique

 

constraint

 

must

 

be

 

defined

 

as

 

NOT

 

NULL.

 

The

 

database

 

manager

 

uses

 

a

 

unique

 

index

 

to

 

enforce

 

the

 

uniqueness

 

of

 

the

 

key

 

during

 

changes

 

to

 

the

 

columns

 

of

 

the

 

unique

 

constraint.

 

A

 

table

 

can

 

have

 

an

 

arbitrary

 

number

 

of

 

unique

 

constraints,

 

with

 

at

 

most

 

one

 

unique

 

constraint

 

defined

 

as

 

the

 

primary

 

key.

 

A

 

table

 

cannot

 

have

 

more

 

than

 

one

 

unique

 

constraint

 

on

 

the

 

same

 

set

 

of

 

columns.

 

A

 

unique

 

constraint

 

that

 

is

 

referenced

 

by

 

the

 

foreign

 

key

 

of

 

a

 

referential

 

constraint

 

is

 

called

 

the

 

parent

 

key.

 

When

 

a

 

unique

 

constraint

 

is

 

defined

 

in

 

a

 

CREATE

 

TABLE

 

statement,

 

a

 

unique

 

index

 

is

 

automatically

 

created

 

by

 

the

 

database

 

manager

 

and

 

designated

 

as

 

a

 

primary

 

or

 

unique

 

system-required

 

index.

 

When

 

a

 

unique

 

constraint

 

is

 

defined

 

in

 

an

 

ALTER

 

TABLE

 

statement

 

and

 

an

 

index

 

exists

 

on

 

the

 

same

 

columns,

 

that

 

index

 

is

 

designated

 

as

 

unique

 

and

 

system-required.

 

If

 

such

 

an

 

index

 

does

 

not

 

exist,

 

the

 

unique

 

index

 

is

 

automatically

 

created

 

by

 

the

 

database

 

manager

 

and

 

designated

 

as

 

a

 

primary

 

or

 

unique

 

system-required

 

index.

 

Note

 

that

 

there

 

is

 

a

 

distinction

 

between

 

defining

 

a

 

unique

 

constraint

 

and

 

creating

 

a

 

unique

 

index.

 

Although

 

both

 

enforce

 

uniqueness,

 

a

 

unique

 

index

 

allows

 

nullable

 

columns

 

and

 

generally

 

cannot

 

be

 

used

 

as

 

a

 

parent

 

key.

 

Referential

 

constraints

 

Referential

 

integrity

 

is

 

the

 

state

 

of

 

a

 

database

 

in

 

which

 

all

 

values

 

of

 

all

 

foreign

 

keys

 

are

 

valid.

 

A

 

foreign

 

keyis

 

a

 

column

 

or

 

a

 

set

 

of

 

columns

 

in

 

a

 

table

 

whose

 

values

 

are

 

required

 

to

 

match

 

at

 

least

 

one

 

primary

 

key

 

or

 

unique

 

key

 

value

 

of

 

a

 

row

 

in

 

its

 

parent

 

table.

 

A

 

referential

 

constraint

 

is

 

the

 

rule

 

that

 

the

 

values

 

of

 

the

 

foreign

 

key

 

are

 

valid

 

only

 

if

 

one

 

of

 

the

 

following

 

conditions

 

is

 

true:

 

v

   

They

 

appear

 

as

 

values

 

of

 

a

 

parent

 

key.

 

v

   

Some

 

component

 

of

 

the

 

foreign

 

key

 

is

 

null.

The

 

table

 

containing

 

the

 

parent

 

key

 

is

 

called

 

the

 

parent

 

table

 

of

 

the

 

referential

 

constraint,

 

and

 

the

 

table

 

containing

 

the

 

foreign

 

key

 

is

 

said

 

to

 

be

 

a

 

dependent

 

of

 

that

 

table.

   

64

 

Administration

 

Guide:

 

Planning



Referential

 

constraints

 

are

 

optional

 

and

 

can

 

be

 

defined

 

in

 

the

 

CREATE

 

TABLE

 

statement

 

or

 

the

 

ALTER

 

TABLE

 

statement.

 

Referential

 

constraints

 

are

 

enforced

 

by

 

the

 

database

 

manager

 

during

 

the

 

execution

 

of

 

INSERT,

 

UPDATE,

 

DELETE,

 

ALTER

 

TABLE,

 

ADD

 

CONSTRAINT,

 

and

 

SET

 

INTEGRITY

 

statements.

 

Referential

 

constraints

 

with

 

a

 

delete

 

or

 

an

 

update

 

rule

 

of

 

RESTRICT

 

are

 

enforced

 

before

 

all

 

other

 

referential

 

constraints.

 

Referential

 

constraints

 

with

 

a

 

delete

 

or

 

an

 

update

 

rule

 

of

 

NO

 

ACTION

 

behave

 

like

 

RESTRICT

 

in

 

most

 

cases.

 

Note

 

that

 

referential

 

constraints,

 

check

 

constraints,

 

and

 

triggers

 

can

 

be

 

combined.

 

Referential

 

integrity

 

rules

 

involve

 

the

 

following

 

concepts

 

and

 

terminology:

 

Parent

 

key

 

A

 

primary

 

key

 

or

 

a

 

unique

 

key

 

of

 

a

 

referential

 

constraint.

 

Parent

 

row

 

A

 

row

 

that

 

has

 

at

 

least

 

one

 

dependent

 

row.

 

Parent

 

table

 

A

 

table

 

that

 

contains

 

the

 

parent

 

key

 

of

 

a

 

referential

 

constraint.

 

A

 

table

 

can

 

be

 

a

 

parent

 

in

 

an

 

arbitrary

 

number

 

of

 

referential

 

constraints.

 

A

 

table

 

that

 

is

 

the

 

parent

 

in

 

a

 

referential

 

constraint

 

can

 

also

 

be

 

the

 

dependent

 

in

 

a

 

referential

 

constraint.

 

Dependent

 

table

 

A

 

table

 

that

 

contains

 

at

 

least

 

one

 

referential

 

constraint

 

in

 

its

 

definition.

 

A

 

table

 

can

 

be

 

a

 

dependent

 

in

 

an

 

arbitrary

 

number

 

of

 

referential

 

constraints.

 

A

 

table

 

that

 

is

 

the

 

dependent

 

in

 

a

 

referential

 

constraint

 

can

 

also

 

be

 

the

 

parent

 

in

 

a

 

referential

 

constraint.

 

Descendent

 

table

 

A

 

table

 

is

 

a

 

descendent

 

of

 

table

 

T

 

if

 

it

 

is

 

a

 

dependent

 

of

 

T

 

or

 

a

 

descendent

 

of

 

a

 

dependent

 

of

 

T.

 

Dependent

 

row

 

A

 

row

 

that

 

has

 

at

 

least

 

one

 

parent

 

row.

 

Descendent

 

row

 

A

 

row

 

is

 

a

 

descendent

 

of

 

row

 

r

 

if

 

it

 

is

 

a

 

dependent

 

of

 

r

 

or

 

a

 

descendent

 

of

 

a

 

dependent

 

of

 

r.

 

Referential

 

cycle

 

A

 

set

 

of

 

referential

 

constraints

 

such

 

that

 

each

 

table

 

in

 

the

 

set

 

is

 

a

 

descendent

 

of

 

itself.

 

Self-referencing

 

table

 

A

 

table

 

that

 

is

 

a

 

parent

 

and

 

a

 

dependent

 

in

 

the

 

same

 

referential

 

constraint.

 

The

 

constraint

 

is

 

called

 

a

 

self-referencing

 

constraint.

 

Self-referencing

 

row

 

A

 

row

 

that

 

is

 

a

 

parent

 

of

 

itself.

Insert

 

rule

 

The

 

insert

 

rule

 

of

 

a

 

referential

 

constraint

 

is

 

that

 

a

 

non-null

 

insert

 

value

 

of

 

the

 

foreign

 

key

 

must

 

match

 

some

 

value

 

of

 

the

 

parent

 

key

 

of

 

the

 

parent

 

table.

 

The

 

value

 

of

 

a

 

composite

 

foreign

 

key

 

is

 

null

 

if

 

any

 

component

 

of

 

the

 

value

 

is

 

null.

 

This

 

rule

 

is

 

implicit

 

when

 

a

 

foreign

 

key

 

is

 

specified.

   

Chapter

 

4.

 

Logical

 

database

 

design

 

65



Update

 

rule

 

The

 

update

 

rule

 

of

 

a

 

referential

 

constraint

 

is

 

specified

 

when

 

the

 

referential

 

constraint

 

is

 

defined.

 

The

 

choices

 

are

 

NO

 

ACTION

 

and

 

RESTRICT.

 

The

 

update

 

rule

 

applies

 

when

 

a

 

row

 

of

 

the

 

parent

 

or

 

a

 

row

 

of

 

the

 

dependent

 

table

 

is

 

updated.

 

In

 

the

 

case

 

of

 

a

 

parent

 

row,

 

when

 

a

 

value

 

in

 

a

 

column

 

of

 

the

 

parent

 

key

 

is

 

updated,

 

the

 

following

 

rules

 

apply:

 

v

   

If

 

any

 

row

 

in

 

the

 

dependent

 

table

 

matches

 

the

 

original

 

value

 

of

 

the

 

key,

 

the

 

update

 

is

 

rejected

 

when

 

the

 

update

 

rule

 

is

 

RESTRICT.

 

v

   

If

 

any

 

row

 

in

 

the

 

dependent

 

table

 

does

 

not

 

have

 

a

 

corresponding

 

parent

 

key

 

when

 

the

 

update

 

statement

 

is

 

completed

 

(excluding

 

AFTER

 

triggers),

 

the

 

update

 

is

 

rejected

 

when

 

the

 

update

 

rule

 

is

 

NO

 

ACTION.

In

 

the

 

case

 

of

 

a

 

dependent

 

row,

 

the

 

NO

 

ACTION

 

update

 

rule

 

is

 

implicit

 

when

 

a

 

foreign

 

key

 

is

 

specified.

 

NO

 

ACTION

 

means

 

that

 

a

 

non-null

 

update

 

value

 

of

 

a

 

foreign

 

key

 

must

 

match

 

some

 

value

 

of

 

the

 

parent

 

key

 

of

 

the

 

parent

 

table

 

when

 

the

 

update

 

statement

 

is

 

completed.

 

The

 

value

 

of

 

a

 

composite

 

foreign

 

key

 

is

 

null

 

if

 

any

 

component

 

of

 

the

 

value

 

is

 

null.

 

Delete

 

rule

 

The

 

delete

 

rule

 

of

 

a

 

referential

 

constraint

 

is

 

specified

 

when

 

the

 

referential

 

constraint

 

is

 

defined.

 

The

 

choices

 

are

 

NO

 

ACTION,

 

RESTRICT,

 

CASCADE,

 

or

 

SET

 

NULL.

 

SET

 

NULL

 

can

 

be

 

specified

 

only

 

if

 

some

 

column

 

of

 

the

 

foreign

 

key

 

allows

 

null

 

values.

 

The

 

delete

 

rule

 

of

 

a

 

referential

 

constraint

 

applies

 

when

 

a

 

row

 

of

 

the

 

parent

 

table

 

is

 

deleted.

 

More

 

precisely,

 

the

 

rule

 

applies

 

when

 

a

 

row

 

of

 

the

 

parent

 

table

 

is

 

the

 

object

 

of

 

a

 

delete

 

or

 

propagated

 

delete

 

operation

 

(defined

 

below),

 

and

 

that

 

row

 

has

 

dependents

 

in

 

the

 

dependent

 

table

 

of

 

the

 

referential

 

constraint.

 

Consider

 

an

 

example

 

where

 

P

 

is

 

the

 

parent

 

table,

 

D

 

is

 

the

 

dependent

 

table,

 

and

 

p

 

is

 

a

 

parent

 

row

 

that

 

is

 

the

 

object

 

of

 

a

 

delete

 

or

 

propagated

 

delete

 

operation.

 

The

 

delete

 

rule

 

works

 

as

 

follows:

 

v

   

With

 

RESTRICT

 

or

 

NO

 

ACTION,

 

an

 

error

 

occurs

 

and

 

no

 

rows

 

are

 

deleted.

 

v

   

With

 

CASCADE,

 

the

 

delete

 

operation

 

is

 

propagated

 

to

 

the

 

dependents

 

of

 

p

 

in

 

table

 

D.

 

v

   

With

 

SET

 

NULL,

 

each

 

nullable

 

column

 

of

 

the

 

foreign

 

key

 

of

 

each

 

dependent

 

of

 

p

 

in

 

table

 

D

 

is

 

set

 

to

 

null.

Each

 

referential

 

constraint

 

in

 

which

 

a

 

table

 

is

 

a

 

parent

 

has

 

its

 

own

 

delete

 

rule,

 

and

 

all

 

applicable

 

delete

 

rules

 

are

 

used

 

to

 

determine

 

the

 

result

 

of

 

a

 

delete

 

operation.

 

Thus,

 

a

 

row

 

cannot

 

be

 

deleted

 

if

 

it

 

has

 

dependents

 

in

 

a

 

referential

 

constraint

 

with

 

a

 

delete

 

rule

 

of

 

RESTRICT

 

or

 

NO

 

ACTION,

 

or

 

the

 

deletion

 

cascades

 

to

 

any

 

of

 

its

 

descendents

 

that

 

are

 

dependents

 

in

 

a

 

referential

 

constraint

 

with

 

the

 

delete

 

rule

 

of

 

RESTRICT

 

or

 

NO

 

ACTION.

 

The

 

deletion

 

of

 

a

 

row

 

from

 

parent

 

table

 

P

 

involves

 

other

 

tables

 

and

 

can

 

affect

 

rows

 

of

 

these

 

tables:

 

v

   

If

 

table

 

D

 

is

 

a

 

dependent

 

of

 

P

 

and

 

the

 

delete

 

rule

 

is

 

RESTRICT

 

or

 

NO

 

ACTION,

 

then

 

D

 

is

 

involved

 

in

 

the

 

operation

 

but

 

is

 

not

 

affected

 

by

 

the

 

operation.

 

v

   

If

 

D

 

is

 

a

 

dependent

 

of

 

P

 

and

 

the

 

delete

 

rule

 

is

 

SET

 

NULL,

 

then

 

D

 

is

 

involved

 

in

 

the

 

operation,

 

and

 

rows

 

of

 

D

 

can

 

be

 

updated

 

during

 

the

 

operation.

 

v

   

If

 

D

 

is

 

a

 

dependent

 

of

 

P

 

and

 

the

 

delete

 

rule

 

is

 

CASCADE,

 

then

 

D

 

is

 

involved

 

in

 

the

 

operation

 

and

 

rows

 

of

 

D

 

can

 

be

 

deleted

 

during

 

the

 

operation.

   

66

 

Administration

 

Guide:

 

Planning



If

 

rows

 

of

 

D

 

are

 

deleted,

 

then

 

the

 

delete

 

operation

 

on

 

P

 

is

 

said

 

to

 

be

 

propagated

 

to

 

D.

 

If

 

D

 

is

 

also

 

a

 

parent

 

table,

 

then

 

the

 

actions

 

described

 

in

 

this

 

list

 

apply,

 

in

 

turn,

 

to

 

the

 

dependents

 

of

 

D.

Any

 

table

 

that

 

can

 

be

 

involved

 

in

 

a

 

delete

 

operation

 

on

 

P

 

is

 

said

 

to

 

be

 

delete-connected

 

to

 

P.

 

Thus,

 

a

 

table

 

is

 

delete-connected

 

to

 

table

 

P

 

if

 

it

 

is

 

a

 

dependent

 

of

 

P,

 

or

 

a

 

dependent

 

of

 

a

 

table

 

to

 

which

 

delete

 

operations

 

from

 

P

 

cascade.

 

The

 

following

 

restrictions

 

apply

 

to

 

delete-connected

 

relationships:

 

v

   

When

 

a

 

table

 

is

 

delete-connected

 

to

 

itself

 

in

 

a

 

referential

 

cycle

 

of

 

more

 

than

 

one

 

table,

 

the

 

cycle

 

must

 

not

 

contain

 

a

 

delete

 

rule

 

of

 

either

 

RESTRICT

 

or

 

SET

 

NULL.

 

v

   

A

 

table

 

must

 

not

 

both

 

be

 

a

 

dependent

 

table

 

in

 

a

 

CASCADE

 

relationship

 

(self-referencing

 

or

 

referencing

 

another

 

table)

 

and

 

have

 

a

 

self-referencing

 

relationship

 

with

 

a

 

delete

 

rule

 

of

 

either

 

RESTRICT

 

or

 

SET

 

NULL.

 

v

   

When

 

a

 

table

 

is

 

delete-connected

 

to

 

another

 

table

 

through

 

multiple

 

relationships

 

where

 

such

 

relationships

 

have

 

overlapping

 

foreign

 

keys,

 

these

 

relationships

 

must

 

have

 

the

 

same

 

delete

 

rule

 

and

 

none

 

of

 

these

 

can

 

be

 

SET

 

NULL.

 

v

   

When

 

a

 

table

 

is

 

delete-connected

 

to

 

another

 

table

 

through

 

multiple

 

relationships

 

where

 

one

 

of

 

the

 

relationships

 

is

 

specified

 

with

 

delete

 

rule

 

SET

 

NULL,

 

the

 

foreign

 

key

 

definition

 

of

 

this

 

relationship

 

must

 

not

 

contain

 

any

 

partitioning

 

key

 

or

 

MDC

 

key

 

column.

 

v

   

When

 

two

 

tables

 

are

 

delete-connected

 

to

 

the

 

same

 

table

 

through

 

CASCADE

 

relationships,

 

the

 

two

 

tables

 

must

 

not

 

be

 

delete-connected

 

to

 

each

 

other

 

where

 

the

 

delete

 

connected

 

paths

 

end

 

with

 

delete

 

rule

 

RESTRICT

 

or

 

SET

 

NULL.

Table

 

check

 

constraints

 

A

 

table

 

check

 

constraint

 

is

 

a

 

rule

 

that

 

specifies

 

the

 

values

 

allowed

 

in

 

one

 

or

 

more

 

columns

 

of

 

every

 

row

 

in

 

a

 

table.

 

A

 

constraint

 

is

 

optional,

 

and

 

can

 

be

 

defined

 

using

 

the

 

CREATE

 

TABLE

 

or

 

the

 

ALTER

 

TABLE

 

statement.

 

Specifying

 

table

 

check

 

constraints

 

is

 

done

 

through

 

a

 

restricted

 

form

 

of

 

a

 

search

 

condition.

 

One

 

of

 

the

 

restrictions

 

is

 

that

 

a

 

column

 

name

 

in

 

a

 

table

 

check

 

constraint

 

on

 

table

 

T

 

must

 

identify

 

a

 

column

 

of

 

table

 

T.

 

A

 

table

 

can

 

have

 

an

 

arbitrary

 

number

 

of

 

table

 

check

 

constraints.

 

A

 

table

 

check

 

constraint

 

is

 

enforced

 

by

 

applying

 

its

 

search

 

condition

 

to

 

each

 

row

 

that

 

is

 

inserted

 

or

 

updated.

 

An

 

error

 

occurs

 

if

 

the

 

result

 

of

 

the

 

search

 

condition

 

is

 

false

 

for

 

any

 

row.

 

When

 

one

 

or

 

more

 

table

 

check

 

constraints

 

is

 

defined

 

in

 

the

 

ALTER

 

TABLE

 

statement

 

for

 

a

 

table

 

with

 

existing

 

data,

 

the

 

existing

 

data

 

is

 

checked

 

against

 

the

 

new

 

condition

 

before

 

the

 

ALTER

 

TABLE

 

statement

 

completes.

 

The

 

SET

 

INTEGRITY

 

statement

 

can

 

be

 

used

 

to

 

put

 

the

 

table

 

in

 

check

 

pending

 

state,

 

which

 

allows

 

the

 

ALTER

 

TABLE

 

statement

 

to

 

proceed

 

without

 

checking

 

the

 

data.

 

Informational

 

constraints

 

An

 

informational

 

constraint

 

is

 

a

 

rule

 

that

 

can

 

be

 

used

 

by

 

the

 

SQL

 

compiler

 

to

 

improve

 

the

 

access

 

path

 

to

 

data.

 

Informational

 

constraints

 

are

 

not

 

enforced

 

by

 

the

 

database

 

manager,

 

and

 

are

 

not

 

used

 

for

 

additional

 

verification

 

of

 

data;

 

rather,

 

they

 

are

 

used

 

to

 

improve

 

query

 

performance.

 

Use

 

the

 

CREATE

 

TABLE

 

or

 

ALTER

 

TABLE

 

statement

 

to

 

define

 

a

 

referential

 

or

 

table

 

check

 

constraint,

 

specifying

 

constraint

 

attributes

 

that

 

determine

 

whether

 

or

 

not

 

the

 

database

 

manager

 

is

 

to

 

enforce

 

the

 

constraint

 

and

 

whether

 

or

 

not

 

the

 

constraint

 

is

 

to

 

be

 

used

 

for

 

query

 

optimization.

   

Chapter

 

4.

 

Logical

 

database

 

design

 

67



Related

 

reference:

  

v

   

“SET

 

INTEGRITY

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“Interaction

 

of

 

triggers

 

and

 

constraints”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

Triggers

  

A

 

trigger

 

defines

 

a

 

set

 

of

 

actions

 

that

 

are

 

performed

 

in

 

response

 

to

 

an

 

insert,

 

update,

 

or

 

delete

 

operation

 

on

 

a

 

specified

 

table.

 

When

 

such

 

an

 

SQL

 

operation

 

is

 

executed,

 

the

 

trigger

 

is

 

said

 

to

 

have

 

been

 

activated.

 

Triggers

 

are

 

optional

 

and

 

are

 

defined

 

using

 

the

 

CREATE

 

TRIGGER

 

statement.

 

Triggers

 

can

 

be

 

used,

 

along

 

with

 

referential

 

constraints

 

and

 

check

 

constraints,

 

to

 

enforce

 

data

 

integrity

 

rules.

 

Triggers

 

can

 

also

 

be

 

used

 

to

 

cause

 

updates

 

to

 

other

 

tables,

 

automatically

 

generate

 

or

 

transform

 

values

 

for

 

inserted

 

or

 

updated

 

rows,

 

or

 

invoke

 

functions

 

to

 

perform

 

tasks

 

such

 

as

 

issuing

 

alerts.

 

Triggers

 

are

 

a

 

useful

 

mechanism

 

for

 

defining

 

and

 

enforcing

 

transitional

 

business

 

rules,

 

which

 

are

 

rules

 

that

 

involve

 

different

 

states

 

of

 

the

 

data

 

(for

 

example,

 

a

 

salary

 

that

 

cannot

 

be

 

increased

 

by

 

more

 

than

 

10

 

percent).

 

Using

 

triggers

 

places

 

the

 

logic

 

that

 

enforces

 

business

 

rules

 

inside

 

the

 

database.

 

This

 

means

 

that

 

applications

 

are

 

not

 

responsible

 

for

 

enforcing

 

these

 

rules.

 

Centralized

 

logic

 

that

 

is

 

enforced

 

on

 

all

 

of

 

the

 

tables

 

means

 

easier

 

maintenance,

 

because

 

changes

 

to

 

application

 

programs

 

are

 

not

 

required

 

when

 

the

 

logic

 

changes.

 

The

 

following

 

are

 

specified

 

when

 

creating

 

a

 

trigger:

 

v

   

The

 

subject

 

table

 

specifies

 

the

 

table

 

for

 

which

 

the

 

trigger

 

is

 

defined.

 

v

   

The

 

trigger

 

event

 

defines

 

a

 

specific

 

SQL

 

operation

 

that

 

modifies

 

the

 

subject

 

table.

 

The

 

event

 

can

 

be

 

an

 

insert,

 

update,

 

or

 

delete

 

operation.

 

v

   

The

 

trigger

 

activation

 

time

 

specifies

 

whether

 

the

 

trigger

 

should

 

be

 

activated

 

before

 

or

 

after

 

the

 

trigger

 

event

 

occurs.

 

The

 

statement

 

that

 

causes

 

a

 

trigger

 

to

 

be

 

activated

 

includes

 

a

 

set

 

of

 

affected

 

rows.

 

These

 

are

 

the

 

rows

 

of

 

the

 

subject

 

table

 

that

 

are

 

being

 

inserted,

 

updated,

 

or

 

deleted.

 

The

 

trigger

 

granularity

 

specifies

 

whether

 

the

 

actions

 

of

 

the

 

trigger

 

are

 

performed

 

once

 

for

 

the

 

statement

 

or

 

once

 

for

 

each

 

of

 

the

 

affected

 

rows.

 

The

 

triggered

 

action

 

consists

 

of

 

an

 

optional

 

search

 

condition

 

and

 

a

 

set

 

of

 

SQL

 

statements

 

that

 

are

 

executed

 

whenever

 

the

 

trigger

 

is

 

activated.

 

The

 

SQL

 

statements

 

are

 

only

 

executed

 

if

 

the

 

search

 

condition

 

evaluates

 

to

 

true.

 

If

 

the

 

trigger

 

activation

 

time

 

is

 

before

 

the

 

trigger

 

event,

 

triggered

 

actions

 

can

 

include

 

statements

 

that

 

select,

 

set

 

transition

 

variables,

 

or

 

signal

 

SQLstates.

 

If

 

the

 

trigger

 

activation

 

time

 

is

 

after

 

the

 

trigger

 

event,

 

triggered

 

actions

 

can

 

include

 

statements

 

that

 

select,

 

insert,

 

update,

 

delete,

 

or

 

signal

 

SQLstates.

 

The

 

triggered

 

action

 

can

 

refer

 

to

 

the

 

values

 

in

 

the

 

set

 

of

 

affected

 

rows

 

using

 

transition

 

variables.

 

Transition

 

variables

 

use

 

the

 

names

 

of

 

the

 

columns

 

in

 

the

 

subject

 

table,

 

qualified

 

by

 

a

 

specified

 

name

 

that

 

identifies

 

whether

 

the

 

reference

 

is

 

to

 

the

 

old

 

value

 

(before

 

the

 

update)

 

or

 

the

 

new

 

value

 

(after

 

the

 

update).

 

The

 

new

 

value

 

can

 

also

 

be

 

changed

 

using

 

the

 

SET

 

Variable

 

statement

 

in

 

before,

 

insert,

 

or

 

update

 

triggers.

   

68

 

Administration

 

Guide:

 

Planning



Another

 

means

 

of

 

referring

 

to

 

the

 

values

 

in

 

the

 

set

 

of

 

affected

 

rows

 

is

 

to

 

use

 

transition

 

tables.

 

Transition

 

tables

 

also

 

use

 

the

 

names

 

of

 

the

 

columns

 

in

 

the

 

subject

 

table,

 

but

 

specify

 

a

 

name

 

to

 

allow

 

the

 

complete

 

set

 

of

 

affected

 

rows

 

to

 

be

 

treated

 

as

 

a

 

table.

 

Transition

 

tables

 

can

 

only

 

be

 

used

 

in

 

after

 

triggers,

 

and

 

separate

 

transition

 

tables

 

can

 

be

 

defined

 

for

 

old

 

and

 

new

 

values.

 

Multiple

 

triggers

 

can

 

be

 

specified

 

for

 

a

 

combination

 

of

 

table,

 

event,

 

or

 

activation

 

time.

 

The

 

order

 

in

 

which

 

the

 

triggers

 

are

 

activated

 

is

 

the

 

same

 

as

 

the

 

order

 

in

 

which

 

they

 

were

 

created.

 

Thus,

 

the

 

most

 

recently

 

created

 

trigger

 

is

 

the

 

last

 

trigger

 

to

 

be

 

activated.

 

The

 

activation

 

of

 

a

 

trigger

 

may

 

cause

 

trigger

 

cascading,

 

which

 

is

 

the

 

result

 

of

 

the

 

activation

 

of

 

one

 

trigger

 

that

 

executes

 

SQL

 

statements

 

that

 

cause

 

the

 

activation

 

of

 

other

 

triggers

 

or

 

even

 

the

 

same

 

trigger

 

again.

 

The

 

triggered

 

actions

 

may

 

also

 

cause

 

updates

 

resulting

 

from

 

the

 

application

 

of

 

referential

 

integrity

 

rules

 

for

 

deletions

 

that

 

can,

 

in

 

turn,

 

result

 

in

 

the

 

activation

 

of

 

additional

 

triggers.

 

With

 

trigger

 

cascading,

 

a

 

chain

 

of

 

triggers

 

and

 

referential

 

integrity

 

delete

 

rules

 

can

 

be

 

activated,

 

causing

 

significant

 

change

 

to

 

the

 

database

 

as

 

a

 

result

 

of

 

a

 

single

 

INSERT,

 

UPDATE,

 

or

 

DELETE

 

statement.

  

Related

 

reference:

  

v

   

“Interaction

 

of

 

triggers

 

and

 

constraints”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

Additional

 

database

 

design

 

considerations

  

When

 

designing

 

a

 

database,

 

it

 

is

 

important

 

to

 

consider

 

which

 

tables

 

users

 

should

 

be

 

able

 

to

 

access.

 

Access

 

to

 

tables

 

is

 

granted

 

or

 

revoked

 

through

 

authorizations.

 

The

 

highest

 

level

 

of

 

authority

 

is

 

system

 

administration

 

authority

 

(SYSADM).

 

A

 

user

 

with

 

SYSADM

 

authority

 

can

 

assign

 

other

 

authorizations,

 

including

 

database

 

administrator

 

authority

 

(DBADM).

 

For

 

audit

 

purposes,

 

you

 

may

 

have

 

to

 

record

 

every

 

update

 

made

 

to

 

your

 

data

 

for

 

a

 

specified

 

period.

 

For

 

example,

 

you

 

may

 

want

 

to

 

update

 

an

 

audit

 

table

 

each

 

time

 

an

 

employee’s

 

salary

 

is

 

changed.

 

Updates

 

to

 

this

 

table

 

could

 

be

 

made

 

automatically

 

if

 

an

 

appropriate

 

trigger

 

is

 

defined.

 

Audit

 

activities

 

can

 

also

 

be

 

carried

 

out

 

through

 

the

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

audit

 

facility.

 

For

 

performance

 

reasons,

 

you

 

may

 

only

 

want

 

to

 

access

 

a

 

selected

 

amount

 

of

 

data,

 

while

 

maintaining

 

the

 

base

 

data

 

as

 

history.

 

You

 

should

 

include

 

within

 

your

 

design,

 

the

 

requirements

 

for

 

maintaining

 

this

 

historical

 

data,

 

such

 

as

 

the

 

number

 

of

 

months

 

or

 

years

 

of

 

data

 

that

 

is

 

required

 

to

 

be

 

available

 

before

 

it

 

can

 

be

 

purged.

 

You

 

may

 

also

 

want

 

to

 

make

 

use

 

of

 

summary

 

information.

 

For

 

example,

 

you

 

may

 

have

 

a

 

table

 

that

 

has

 

all

 

of

 

your

 

employee

 

information

 

in

 

it.

 

However,

 

you

 

would

 

like

 

to

 

have

 

this

 

information

 

divided

 

into

 

separate

 

tables

 

by

 

division

 

or

 

department.

 

In

 

this

 

case,

 

a

 

materialized

 

query

 

table

 

for

 

each

 

division

 

or

 

department

 

based

 

on

 

the

 

data

 

in

 

the

 

original

 

table

 

would

 

be

 

helpful.

 

Security

 

implications

 

should

 

also

 

be

 

identified

 

within

 

your

 

design.

 

For

 

example,

 

you

 

may

 

decide

 

to

 

support

 

user

 

access

 

to

 

certain

 

types

 

of

 

data

 

through

 

security

 

tables.

 

You

 

can

 

define

 

access

 

levels

 

to

 

various

 

types

 

of

 

data,

 

and

 

who

 

can

 

access

 

this

 

data.

 

Confidential

 

data,

 

such

 

as

 

employee

 

and

 

payroll

 

data,

 

would

 

have

 

stringent

 

security

 

restrictions.

   

Chapter

 

4.

 

Logical

 

database

 

design

 

69

|
|
|
|
|



You

 

can

 

create

 

tables

 

that

 

have

 

a

 

structured

 

type

 

associated

 

with

 

them.

 

With

 

such

 

typed

 

tables,

 

you

 

can

 

establish

 

a

 

hierarchical

 

structure

 

with

 

a

 

defined

 

relationship

 

between

 

those

 

tables

 

called

 

a

 

type

 

hierarchy.

 

The

 

type

 

hierarchy

 

is

 

made

 

up

 

of

 

a

 

single

 

root

 

type,

 

supertypes,

 

and

 

subtypes.

 

A

 

reference

 

type

 

representation

 

is

 

defined

 

when

 

the

 

root

 

type

 

of

 

a

 

type

 

hierarchy

 

is

 

created.

 

The

 

target

 

of

 

a

 

reference

 

is

 

always

 

a

 

row

 

in

 

a

 

typed

 

table

 

or

 

view.

 

When

 

working

 

in

 

a

 

High

 

Availability

 

Disaster

 

Recovery

 

(HADR)

 

enviornment,

 

there

 

are

 

several

 

recommendations:

 

v

   

The

 

two

 

instances

 

of

 

the

 

HADR

 

environment

 

should

 

be

 

identical

 

in

 

hardware

 

and

 

software.

 

This

 

means:

 

–

   

The

 

host

 

computers

 

for

 

the

 

HADR

 

primary

 

and

 

standby

 

databases

 

should

 

be

 

identical.

 

–

   

The

 

operating

 

system

 

on

 

the

 

primary

 

and

 

standby

 

systems

 

should

 

have

 

the

 

same

 

version

 

including

 

patches.

 

(During

 

an

 

upgrade

 

this

 

may

 

not

 

be

 

possible.

 

However,

 

the

 

period

 

when

 

the

 

instances

 

are

 

out

 

of

 

step

 

should

 

be

 

kept

 

as

 

short

 

as

 

possible

 

to

 

limit

 

any

 

difficulties

 

arising

 

from

 

the

 

differences.

 

Those

 

differences

 

could

 

include

 

the

 

loss

 

of

 

support

 

for

 

new

 

features

 

during

 

a

 

failover

 

as

 

well

 

as

 

any

 

issues

 

affecting

 

normal

 

non-failover

 

operations.)

 

–

   

A

 

TCP/IP

 

interface

 

must

 

be

 

available

 

between

 

the

 

two

 

HADR

 

instances.

 

–

   

A

 

high

 

speed,

 

high

 

capacity

 

network

 

is

 

recommended.
v

   

There

 

are

 

DB2

 

UDB

 

requirements

 

that

 

should

 

be

 

considered.

 

–

   

The

 

database

 

release

 

used

 

by

 

the

 

primary

 

and

 

the

 

standby

 

should

 

be

 

identical.

 

–

   

The

 

primary

 

and

 

standby

 

DB2

 

UDB

 

software

 

must

 

have

 

the

 

same

 

bit

 

size.

 

(That

 

is,

 

both

 

should

 

be

 

at

 

32-bit

 

or

 

at

 

64-bit.)

 

–

   

The

 

table

 

spaces

 

and

 

their

 

corresponding

 

containers

 

should

 

be

 

identical

 

on

 

the

 

primary

 

and

 

standby

 

databases.

 

Those

 

characteristics

 

that

 

must

 

be

 

symmetrical

 

for

 

the

 

table

 

spaces

 

include

 

(but

 

are

 

not

 

limited

 

to):

 

the

 

table

 

space

 

type

 

(DMS

 

or

 

SMS),

 

table

 

space

 

size,

 

the

 

container

 

paths,

 

the

 

container

 

sizes,

 

and

 

the

 

container

 

file

 

type

 

(raw

 

device

 

or

 

file

 

system).

 

Relative

 

container

 

paths

 

may

 

be

 

used,

 

in

 

which

 

case

 

the

 

relative

 

path

 

must

 

be

 

the

 

same

 

on

 

each

 

instance;

 

they

 

may

 

map

 

to

 

the

 

same

 

or

 

different

 

absolute

 

paths.

 

–

   

The

 

primary

 

and

 

standby

 

databases

 

need

 

not

 

have

 

the

 

same

 

database

 

path

 

(as

 

declared

 

when

 

using

 

the

 

CREATE

 

DATABASE

 

command).

 

–

   

Buffer

 

pool

 

operations

 

on

 

the

 

primary

 

are

 

replayed

 

on

 

the

 

standby,

 

which

 

suggests

 

the

 

importance

 

of

 

the

 

primary

 

and

 

standby

 

databases

 

having

 

the

 

same

 

amount

 

of

 

memory.

  

70

 

Administration

 

Guide:

 

Planning

|
|

|
|

|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|



Chapter

 

5.

 

Physical

 

database

 

design

 

After

 

you

 

have

 

completed

 

your

 

logical

 

database

 

design,

 

there

 

are

 

a

 

number

 

of

 

issues

 

you

 

should

 

consider

 

about

 

the

 

physical

 

environment

 

in

 

which

 

your

 

database

 

and

 

tables

 

will

 

reside.

 

These

 

include

 

understanding

 

the

 

files

 

that

 

will

 

be

 

created

 

to

 

support

 

and

 

manage

 

your

 

database,

 

understanding

 

how

 

much

 

space

 

will

 

be

 

required

 

to

 

store

 

your

 

data,

 

determining

 

how

 

you

 

should

 

use

 

the

 

table

 

spaces

 

that

 

are

 

required

 

to

 

store

 

your

 

data,

 

and

 

the

 

structure

 

of

 

the

 

tables

 

used

 

to

 

hold

 

the

 

data.

 

Database

 

directories

 

and

 

files

  

When

 

you

 

create

 

a

 

database,

 

information

 

about

 

the

 

database

 

including

 

default

 

information

 

is

 

stored

 

in

 

a

 

directory

 

hierarchy.

 

The

 

hierarchical

 

directory

 

structure

 

is

 

created

 

for

 

you

 

at

 

a

 

location

 

that

 

is

 

determined

 

by

 

the

 

information

 

you

 

provide

 

in

 

the

 

CREATE

 

DATABASE

 

command.

 

If

 

you

 

do

 

not

 

specify

 

the

 

location

 

of

 

the

 

directory

 

path

 

or

 

drive

 

when

 

you

 

create

 

the

 

database,

 

the

 

default

 

location

 

is

 

used.

 

It

 

is

 

recommended

 

that

 

you

 

explicitly

 

state

 

where

 

you

 

would

 

like

 

the

 

database

 

created.

 

In

 

the

 

directory

 

you

 

specify

 

in

 

the

 

CREATE

 

DATABASE

 

command,

 

a

 

subdirectory

 

that

 

uses

 

the

 

name

 

of

 

the

 

instance

 

is

 

created.

 

This

 

subdirectory

 

ensures

 

that

 

databases

 

created

 

in

 

different

 

instances

 

under

 

the

 

same

 

directory

 

do

 

not

 

use

 

the

 

same

 

path.

 

Below

 

the

 

instance-name

 

subdirectory,

 

a

 

subdirectory

 

named

 

NODE0000

 

is

 

created.

 

This

 

subdirectory

 

differentiates

 

partitions

 

in

 

a

 

logically

 

partitioned

 

database

 

environment.

 

Below

 

the

 

node-name

 

directory,

 

a

 

subdirectory

 

named

 

SQL00001

 

is

 

created.

 

This

 

name

 

of

 

this

 

subdirectory

 

uses

 

the

 

database

 

token

 

and

 

represents

 

the

 

database

 

being

 

created.

 

SQL00001

 

contains

 

objects

 

associated

 

with

 

the

 

first

 

database

 

created,

 

and

 

subsequent

 

databases

 

are

 

given

 

higher

 

numbers:

 

SQL00002,

 

and

 

so

 

on.

 

These

 

subdirectories

 

differentiate

 

databases

 

created

 

in

 

this

 

instance

 

on

 

the

 

directory

 

that

 

you

 

specified

 

in

 

the

 

CREATE

 

DATABASE

 

command.

 

The

 

directory

 

structure

 

appears

 

as

 

follows:

    

<your_directory>/<your_instance>/NODE0000/SQL00001/

 

The

 

database

 

directory

 

contains

 

the

 

following

 

files

 

that

 

are

 

created

 

as

 

part

 

of

 

the

 

CREATE

 

DATABASE

 

command.

 

v

   

The

 

files

 

SQLBP.1

 

and

 

SQLBP.2

 

contain

 

buffer

 

pool

 

information.

 

Each

 

file

 

has

 

a

 

duplicate

 

copy

 

to

 

provide

 

a

 

backup.

 

v

   

The

 

files

 

SQLSPCS.1

 

and

 

SQLSPCS.2

 

contain

 

table

 

space

 

information.

 

Each

 

file

 

has

 

a

 

duplicate

 

copy

 

to

 

provide

 

a

 

backup.

 

v

   

The

 

SQLDBCON

 

file

 

contains

 

database

 

configuration

 

information.

 

Do

 

not

 

edit

 

this

 

file.

 

To

 

change

 

configuration

 

parameters,

 

use

 

either

 

the

 

Control

 

Center

 

or

 

the

 

command-line

 

statements

 

UPDATE

 

DATABASE

 

CONFIGURATION

 

and

 

RESET

 

DATABASE

 

CONFIGURATION.

 

v

   

The

 

DB2RHIST.ASC

 

history

 

file

 

and

 

its

 

backup

 

DB2RHIST.BAK

 

contain

 

history

 

information

 

about

 

backups,

 

restores,

 

loading

 

of

 

tables,

 

reorganization

 

of

 

tables,

 

altering

 

of

 

a

 

table

 

space,

 

and

 

other

 

changes

 

to

 

a

 

database.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

71

|
|
|
|
|
|
|



The

 

DB2TSCHNG.HIS

 

file

 

contains

 

a

 

history

 

of

 

table

 

space

 

changes

 

at

 

a

 

log-file

 

level.

 

For

 

each

 

log

 

file,

 

DB2TSCHG.HIS

 

contains

 

information

 

that

 

helps

 

to

 

identify

 

which

 

table

 

spaces

 

are

 

affected

 

by

 

the

 

log

 

file.

 

Table

 

space

 

recovery

 

uses

 

information

 

from

 

this

 

file

 

to

 

determine

 

which

 

log

 

files

 

to

 

process

 

during

 

table

 

space

 

recovery.

 

You

 

can

 

examine

 

the

 

contents

 

of

 

both

 

history

 

files

 

in

 

a

 

text

 

editor.

 

v

   

The

 

log

 

control

 

files,

 

SQLOGCTL.LFH

 

and

 

SQLOGMIR.LFH,

 

contain

 

information

 

about

 

the

 

active

 

logs.

 

Recovery

 

processing

 

uses

 

information

 

from

 

this

 

file

 

to

 

determine

 

how

 

far

 

back

 

in

 

the

 

logs

 

to

 

begin

 

recovery.

 

The

 

SQLOGDIR

 

subdirectory

 

contains

 

the

 

actual

 

log

 

files.

Note:

  

You

 

should

 

ensure

 

the

 

log

 

subdirectory

 

is

 

mapped

 

to

 

different

 

disks

 

than

 

those

 

used

 

for

 

your

 

data.

 

A

 

disk

 

problem

 

could

 

then

 

be

 

restricted

 

to

 

your

 

data

 

or

 

the

 

logs

 

but

 

not

 

both.

 

This

 

can

 

provide

 

a

 

substantial

 

performance

 

benefit

 

because

 

the

 

log

 

files

 

and

 

database

 

containers

 

do

 

not

 

compete

 

for

 

movement

 

of

 

the

 

same

 

disk

 

heads.

 

To

 

change

 

the

 

location

 

of

 

the

 

log

 

subdirectory,

 

change

 

the

 

newlogpath

 

database

 

configuration

 

parameter.

 

v

   

The

 

SQLINSLK

 

file

 

helps

 

to

 

ensure

 

that

 

a

 

database

 

is

 

used

 

by

 

only

 

one

 

instance

 

of

 

the

 

database

 

manager.

At

 

the

 

same

 

time

 

a

 

database

 

is

 

created,

 

a

 

detailed

 

deadlocks

 

event

 

monitor

 

is

 

also

 

created.

 

The

 

detailed

 

deadlocks

 

event

 

monitor

 

files

 

are

 

stored

 

in

 

the

 

database

 

directory

 

of

 

the

 

catalog

 

node.

 

When

 

the

 

event

 

monitor

 

reaches

 

its

 

maximum

 

number

 

of

 

files

 

to

 

output,

 

it

 

will

 

deactivate

 

and

 

a

 

message

 

is

 

written

 

to

 

the

 

notification

 

log.

 

This

 

prevents

 

the

 

event

 

monitor

 

from

 

consuming

 

too

 

much

 

disk

 

space.

 

Removing

 

output

 

files

 

that

 

are

 

no

 

longer

 

needed

 

will

 

allow

 

the

 

event

 

monitor

 

to

 

activate

 

again

 

on

 

the

 

next

 

database

 

activation.

 

Additional

 

information

 

for

 

SMS

 

database

 

directories

 

The

 

SQLT*

 

subdirectories

 

contain

 

the

 

default

 

System

 

Managed

 

Space

 

(SMS)

 

table

 

spaces

 

required

 

for

 

an

 

operational

 

database.

 

Three

 

default

 

table

 

spaces

 

are

 

created:

 

v

   

SQLT0000.0

 

subdirectory

 

contains

 

the

 

catalog

 

table

 

space

 

with

 

the

 

system

 

catalog

 

tables.

 

v

   

SQLT0001.0

 

subdirectory

 

contains

 

the

 

default

 

temporary

 

table

 

space.

 

v

   

SQLT0002.0

 

subdirectory

 

contains

 

the

 

default

 

user

 

data

 

table

 

space.

Each

 

subdirectory

 

or

 

container

 

has

 

a

 

file

 

created

 

in

 

it

 

called

 

SQLTAG.NAM.

 

This

 

file

 

marks

 

the

 

subdirectory

 

as

 

being

 

in

 

use

 

so

 

that

 

subsequent

 

table

 

space

 

creation

 

does

 

not

 

attempt

 

to

 

use

 

these

 

subdirectories.

 

In

 

addition,

 

a

 

file

 

called

 

SQL*.DAT

 

stores

 

information

 

about

 

each

 

table

 

that

 

the

 

subdirectory

 

or

 

container

 

contains.

 

The

 

asterisk

 

(*)

 

is

 

replaced

 

by

 

a

 

unique

 

set

 

of

 

digits

 

that

 

identifies

 

each

 

table.

 

For

 

each

 

SQL*.DAT

 

file

 

there

 

might

 

be

 

one

 

or

 

more

 

of

 

the

 

following

 

files,

 

depending

 

on

 

the

 

table

 

type,

 

the

 

reorganization

 

status

 

of

 

the

 

table,

 

or

 

whether

 

indexes,

 

LOB,

 

or

 

LONG

 

fields

 

exist

 

for

 

the

 

table:

 

v

   

SQL*.BKM

 

(contains

 

block

 

allocation

 

information

 

if

 

it

 

is

 

an

 

MDC

 

table)

 

v

   

SQL*.LF

 

(contains

 

LONG

 

VARCHAR

 

or

 

LONG

 

VARGRAPHIC

 

data)

 

v

   

SQL*.LB

 

(contains

 

BLOB,

 

CLOB,

 

or

 

DBCLOB

 

data)

 

v

   

SQL*.LBA

 

(contains

 

allocation

 

and

 

free

 

space

 

information

 

about

 

SQL*.LB

 

files)

 

v

   

SQL*.INX

 

(contains

 

index

 

table

 

data)

 

v

   

SQL*.IN1

 

(contains

 

index

 

table

 

data)

   

72

 

Administration

 

Guide:

 

Planning

|

|



v

   

SQL*.DTR

 

(contains

 

temporary

 

data

 

for

 

a

 

reorganization

 

of

 

an

 

SQL*.DAT

 

file)

 

v

   

SQL*.LFR

 

(contains

 

temporary

 

data

 

for

 

a

 

reorganization

 

of

 

an

 

SQL*.LF

 

file)

 

v

   

SQL*.RLB

 

(contains

 

temporary

 

data

 

for

 

a

 

reorganization

 

of

 

an

 

SQL*.LB

 

file)

 

v

   

SQL*.RBA

 

(contains

 

temporary

 

data

 

for

 

a

 

reorganization

 

of

 

an

 

SQL*.LBA

 

file)

 

Related

 

concepts:

  

v

   

“Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces”

 

on

 

page

 

109

 

v

   

“DMS

 

device

 

considerations”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“SMS

 

table

 

spaces”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“DMS

 

table

 

spaces”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Illustration

 

of

 

the

 

DMS

 

table-space

 

address

 

map”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Understanding

 

the

 

recovery

 

history

 

file”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

Related

 

reference:

  

v

   

“CREATE

 

DATABASE

 

Command”

 

in

 

the

 

Command

 

Reference

Space

 

requirements

 

for

 

database

 

objects

  

Estimating

 

the

 

size

 

of

 

database

 

objects

 

is

 

an

 

imprecise

 

undertaking.

 

Overhead

 

caused

 

by

 

disk

 

fragmentation,

 

free

 

space,

 

and

 

the

 

use

 

of

 

variable

 

length

 

columns

 

makes

 

size

 

estimation

 

difficult,

 

because

 

there

 

is

 

such

 

a

 

wide

 

range

 

of

 

possibilities

 

for

 

column

 

types

 

and

 

row

 

lengths.

 

After

 

initially

 

estimating

 

your

 

database

 

size,

 

create

 

a

 

test

 

database

 

and

 

populate

 

it

 

with

 

representative

 

data.

 

From

 

the

 

Control

 

Center,

 

you

 

can

 

access

 

a

 

number

 

of

 

utilities

 

that

 

are

 

designed

 

to

 

assist

 

you

 

in

 

determining

 

the

 

size

 

requirements

 

of

 

various

 

database

 

objects:

 

v

   

You

 

can

 

select

 

an

 

object

 

and

 

then

 

use

 

the

 

″Estimate

 

Size″

 

utility.

 

This

 

utility

 

can

 

tell

 

you

 

the

 

current

 

size

 

of

 

an

 

existing

 

object,

 

such

 

as

 

a

 

table.

 

You

 

can

 

then

 

change

 

the

 

object,

 

and

 

the

 

utility

 

will

 

calculate

 

new

 

estimated

 

values

 

for

 

the

 

object.

 

The

 

utility

 

will

 

help

 

you

 

approximate

 

storage

 

requirements,

 

taking

 

future

 

growth

 

into

 

account.

 

It

 

gives

 

more

 

than

 

a

 

single

 

estimate

 

of

 

the

 

size

 

of

 

the

 

object.

 

It

 

also

 

provides

 

possible

 

size

 

ranges

 

for

 

the

 

object:

 

both

 

the

 

smallest

 

size,

 

based

 

on

 

current

 

values,

 

and

 

the

 

largest

 

possible

 

size.

 

v

   

You

 

can

 

determine

 

the

 

relationships

 

between

 

objects

 

by

 

using

 

the

 

″Show

 

Related″

 

window.

 

v

   

You

 

can

 

select

 

any

 

database

 

object

 

on

 

the

 

instance

 

and

 

request

 

″Generate

 

DDL″.

 

This

 

function

 

uses

 

the

 

db2look

 

utility

 

to

 

generate

 

data

 

definition

 

statements

 

for

 

the

 

database.

 

In

 

each

 

of

 

these

 

cases,

 

either

 

the

 

″Show

 

SQL″

 

or

 

the

 

″Show

 

Command″

 

button

 

is

 

available

 

to

 

you.

 

You

 

can

 

also

 

save

 

the

 

resulting

 

SQL

 

statements

 

or

 

commands

 

in

 

script

 

files

 

to

 

be

 

used

 

later.

 

All

 

of

 

these

 

utilities

 

have

 

online

 

help

 

to

 

assist

 

you.

 

Keep

 

these

 

utilities

 

in

 

mind

 

as

 

you

 

work

 

through

 

the

 

planning

 

of

 

your

 

physical

 

database

 

requirements.

 

When

 

estimating

 

the

 

size

 

of

 

a

 

database,

 

the

 

contribution

 

of

 

the

 

following

 

must

 

be

 

considered:

 

v

   

System

 

Catalog

 

Tables

 

v

   

User

 

Table

 

Data

   

Chapter

 

5.

 

Physical

 

database

 

design

 

73



v

   

Long

 

Field

 

Data

 

v

   

Large

 

Object

 

(LOB)

 

Data

 

v

   

Index

 

Space

 

v

   

Log

 

File

 

Space

 

v

   

Temporary

 

Work

 

Space

 

Space

 

requirements

 

related

 

to

 

the

 

following

 

are

 

not

 

discussed:

 

v

   

The

 

local

 

database

 

directory

 

file

 

v

   

The

 

system

 

database

 

directory

 

file

 

v

   

The

 

file

 

management

 

overhead

 

required

 

by

 

the

 

operating

 

system,

 

including:

 

–

   

file

 

block

 

size

 

–

   

directory

 

control

 

space

 

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

system

 

catalog

 

tables”

 

on

 

page

 

74

 

v

   

“Space

 

requirements

 

for

 

user

 

table

 

data”

 

on

 

page

 

75

 

v

   

“Space

 

requirements

 

for

 

long

 

field

 

data”

 

on

 

page

 

76

 

v

   

“Space

 

requirements

 

for

 

large

 

object

 

data”

 

on

 

page

 

77

 

v

   

“Space

 

requirements

 

for

 

indexes”

 

on

 

page

 

78

 

v

   

“Space

 

requirements

 

for

 

log

 

files”

 

on

 

page

 

80

 

v

   

“Space

 

requirements

 

for

 

temporary

 

tables”

 

on

 

page

 

81

 

Related

 

reference:

  

v

   

“db2look

 

-

 

DB2

 

Statistics

 

and

 

DDL

 

Extraction

 

Tool

 

Command”

 

in

 

the

 

Command

 

Reference

Space

 

requirements

 

for

 

system

 

catalog

 

tables

  

System

 

catalog

 

tables

 

are

 

created

 

when

 

a

 

database

 

is

 

created.

 

The

 

system

 

tables

 

grow

 

as

 

database

 

objects

 

and

 

privileges

 

are

 

added

 

to

 

the

 

database.

 

Initially,

 

they

 

use

 

approximately

 

3.5

 

MB

 

of

 

disk

 

space.

 

The

 

amount

 

of

 

space

 

allocated

 

for

 

the

 

catalog

 

tables

 

depends

 

on

 

the

 

type

 

of

 

table

 

space,

 

and

 

the

 

extent

 

size

 

of

 

the

 

table

 

space

 

containing

 

the

 

catalog

 

tables.

 

For

 

example,

 

if

 

a

 

DMS

 

table

 

space

 

with

 

an

 

extent

 

size

 

of

 

32

 

is

 

used,

 

the

 

catalog

 

table

 

space

 

will

 

initially

 

be

 

allocated

 

20

 

MB

 

of

 

space.

 

Note:

  

For

 

databases

 

with

 

multiple

 

partitions,

 

the

 

catalog

 

tables

 

reside

 

only

 

on

 

the

 

partition

 

from

 

which

 

the

 

CREATE

 

DATABASE

 

command

 

was

 

issued.

 

Disk

 

space

 

for

 

the

 

catalog

 

tables

 

is

 

only

 

required

 

for

 

that

 

partition.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

 

v

   

“Definition

 

of

 

system

 

catalog

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

  

74

 

Administration

 

Guide:

 

Planning



Space

 

requirements

 

for

 

user

 

table

 

data

  

By

 

default,

 

table

 

data

 

is

 

stored

 

on

 

4

 

KB

 

pages.

 

Each

 

page

 

(regardless

 

of

 

page

 

size)

 

contains

 

68

 

bytes

 

of

 

overhead

 

for

 

the

 

database

 

manager.

 

This

 

leaves

 

4028

 

bytes

 

to

 

hold

 

user

 

data

 

(or

 

rows),

 

although

 

no

 

row

 

on

 

a

 

4

 

KB

 

page

 

can

 

exceed

 

4005

 

bytes

 

in

 

length.

 

A

 

row

 

will

 

not

 

span

 

multiple

 

pages.

 

You

 

can

 

have

 

a

 

maximum

 

of

 

500

 

columns

 

when

 

using

 

a

 

4

 

KB

 

page

 

size.

 

Table

 

data

 

pages

 

do

 

not

 

contain

 

the

 

data

 

for

 

columns

 

defined

 

with

 

LONG

 

VARCHAR,

 

LONG

 

VARGRAPHIC,

 

BLOB,

 

CLOB,

 

or

 

DBCLOB

 

data

 

types.

 

The

 

rows

 

in

 

a

 

table

 

data

 

page

 

do,

 

however,

 

contain

 

a

 

descriptor

 

for

 

these

 

columns.

 

Rows

 

are

 

usually

 

inserted

 

into

 

a

 

regular

 

table

 

in

 

first-fit

 

order.

 

The

 

file

 

is

 

searched

 

(using

 

a

 

free

 

space

 

map)

 

for

 

the

 

first

 

available

 

space

 

that

 

is

 

large

 

enough

 

to

 

hold

 

the

 

new

 

row.

 

When

 

a

 

row

 

is

 

updated,

 

it

 

is

 

updated

 

in

 

place,

 

unless

 

there

 

is

 

insufficient

 

space

 

left

 

on

 

the

 

page

 

to

 

contain

 

it.

 

If

 

this

 

is

 

the

 

case,

 

a

 

record

 

is

 

created

 

in

 

the

 

original

 

row

 

location

 

that

 

points

 

to

 

the

 

new

 

location

 

in

 

the

 

table

 

file

 

of

 

the

 

updated

 

row.

 

If

 

the

 

ALTER

 

TABLE

 

APPEND

 

ON

 

statement

 

is

 

invoked,

 

data

 

is

 

always

 

appended,

 

and

 

information

 

about

 

any

 

free

 

space

 

on

 

the

 

data

 

pages

 

is

 

not

 

kept.

 

If

 

the

 

table

 

has

 

a

 

clustering

 

index

 

defined

 

on

 

it,

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

will

 

attempt

 

to

 

physically

 

cluster

 

the

 

data

 

according

 

to

 

the

 

key

 

order

 

of

 

that

 

clustering

 

index.

 

When

 

a

 

row

 

is

 

inserted

 

into

 

the

 

table,

 

DB2

 

UDB

 

will

 

first

 

look

 

up

 

its

 

key

 

value

 

in

 

the

 

clustering

 

index.

 

If

 

the

 

key

 

value

 

is

 

found,

 

DB2

 

UDB

 

attempts

 

to

 

insert

 

the

 

record

 

on

 

the

 

data

 

page

 

pointed

 

to

 

by

 

that

 

key;

 

if

 

the

 

key

 

value

 

is

 

not

 

found,

 

the

 

next

 

higher

 

key

 

value

 

is

 

used,

 

so

 

that

 

the

 

record

 

is

 

inserted

 

on

 

the

 

page

 

containing

 

records

 

having

 

the

 

next

 

higher

 

key

 

value.

 

If

 

there

 

is

 

insufficient

 

space

 

on

 

the

 

“target”

 

page

 

in

 

the

 

table,

 

the

 

free

 

space

 

map

 

is

 

used

 

to

 

search

 

neighboring

 

pages

 

for

 

space.

 

Over

 

time,

 

as

 

space

 

on

 

the

 

data

 

pages

 

is

 

completely

 

used

 

up,

 

records

 

are

 

placed

 

further

 

and

 

further

 

from

 

the

 

“target”

 

page

 

in

 

the

 

table.

 

The

 

table

 

data

 

would

 

then

 

be

 

considered

 

unclustered,

 

and

 

a

 

table

 

reorganization

 

can

 

be

 

used

 

to

 

restore

 

clustered

 

order.

 

If

 

the

 

table

 

is

 

a

 

multidimensional

 

clustering

 

(MDC)

 

table,

 

DB2

 

UDB

 

will

 

guarantee

 

that

 

records

 

are

 

always

 

physically

 

clustered

 

along

 

one

 

or

 

more

 

defined

 

dimensions,

 

or

 

clustering

 

indexes.

 

When

 

an

 

MDC

 

table

 

is

 

defined

 

with

 

certain

 

dimensions,

 

a

 

block

 

index

 

is

 

created

 

for

 

each

 

of

 

the

 

dimensions,

 

and

 

a

 

composite

 

block

 

index

 

is

 

created

 

which

 

maps

 

cells

 

(unique

 

combinations

 

of

 

dimension

 

values)

 

to

 

blocks.

 

This

 

composite

 

block

 

index

 

is

 

used

 

to

 

determine

 

to

 

which

 

cell

 

a

 

particular

 

record

 

belongs,

 

and

 

exactly

 

which

 

blocks

 

or

 

extents

 

in

 

the

 

table

 

contains

 

records

 

belonging

 

to

 

that

 

cell.

 

As

 

a

 

result,

 

when

 

inserting

 

records,

 

DB2

 

UDB

 

searches

 

the

 

composite

 

block

 

index

 

for

 

the

 

list

 

of

 

blocks

 

containing

 

records

 

having

 

the

 

same

 

dimension

 

values,

 

and

 

limits

 

the

 

search

 

for

 

space

 

to

 

those

 

blocks

 

only.

 

If

 

the

 

cell

 

does

 

not

 

yet

 

exist,

 

or

 

if

 

there

 

is

 

insufficient

 

space

 

in

 

the

 

cell’s

 

existing

 

blocks,

 

then

 

another

 

block

 

is

 

assigned

 

to

 

the

 

cell

 

and

 

the

 

record

 

is

 

inserted

 

into

 

it.

 

A

 

free

 

space

 

map

 

is

 

still

 

used

 

within

 

blocks

 

to

 

quickly

 

find

 

available

 

space

 

in

 

the

 

blocks.

 

The

 

number

 

of

 

4

 

KB

 

pages

 

for

 

each

 

user

 

table

 

in

 

the

 

database

 

can

 

be

 

estimated

 

by

 

calculating:

    

ROUND

 

DOWN(4028/(average

 

row

 

size

 

+

 

10))

 

=

 

records_per_page

 

and

 

then

 

inserting

 

the

 

result

 

into:

    

(number_of_records/records_per_page)

 

*

 

1.1

 

=

 

number_of_pages

   

Chapter

 

5.

 

Physical

 

database

 

design

 

75

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|



where

 

the

 

average

 

row

 

size

 

is

 

the

 

sum

 

of

 

the

 

average

 

column

 

sizes,

 

and

 

the

 

factor

 

of

 

″1.1″

 

is

 

for

 

overhead.

 

Note:

  

This

 

formula

 

only

 

provides

 

an

 

estimate.

 

Accuracy

 

of

 

the

 

estimate

 

is

 

reduced

 

if

 

the

 

record

 

length

 

varies

 

because

 

of

 

fragmentation

 

and

 

overflow

 

records.

 

You

 

also

 

have

 

the

 

option

 

to

 

create

 

buffer

 

pools

 

or

 

table

 

spaces

 

that

 

have

 

an

 

8

 

KB,

 

16

 

KB,

 

or

 

32

 

KB

 

page

 

size.

 

All

 

tables

 

created

 

within

 

a

 

table

 

space

 

of

 

a

 

particular

 

size

 

have

 

a

 

matching

 

page

 

size.

 

A

 

single

 

table

 

or

 

index

 

object

 

can

 

be

 

as

 

large

 

as

 

512

 

GB,

 

assuming

 

a

 

32

 

KB

 

page

 

size.

 

You

 

can

 

have

 

a

 

maximum

 

of

 

1012

 

columns

 

when

 

using

 

an

 

8

 

KB,

 

16

 

KB,

 

or

 

32

 

KB

 

page

 

size.

 

The

 

maximum

 

number

 

of

 

columns

 

is

 

500

 

for

 

a

 

4

 

KB

 

page

 

size.

 

Maximum

 

row

 

lengths

 

also

 

vary,

 

depending

 

on

 

page

 

size:

 

v

   

When

 

the

 

page

 

size

 

is

 

4

 

KB,

 

the

 

row

 

length

 

can

 

be

 

up

 

to

 

4005

 

bytes.

 

v

   

When

 

the

 

page

 

size

 

is

 

8

 

KB,

 

the

 

row

 

length

 

can

 

be

 

up

 

to

 

8101

 

bytes.

 

v

   

When

 

the

 

page

 

size

 

is

 

16

 

KB,

 

the

 

row

 

length

 

can

 

be

 

up

 

to

 

16

 

293

 

bytes.

 

v

   

When

 

the

 

page

 

size

 

is

 

32

 

KB,

 

the

 

row

 

length

 

can

 

be

 

up

 

to

 

32

 

677

 

bytes.

Having

 

a

 

larger

 

page

 

size

 

facilitates

 

a

 

reduction

 

in

 

the

 

number

 

of

 

levels

 

in

 

any

 

index.

 

If

 

you

 

are

 

working

 

with

 

OLTP

 

(online

 

transaction

 

processing)

 

applications,

 

which

 

perform

 

random

 

row

 

reads

 

and

 

writes,

 

a

 

smaller

 

page

 

size

 

is

 

better,

 

because

 

it

 

wastes

 

less

 

buffer

 

space

 

with

 

undesired

 

rows.

 

If

 

you

 

are

 

working

 

with

 

DSS

 

(decision

 

support

 

system)

 

applications,

 

which

 

access

 

large

 

numbers

 

of

 

consecutive

 

rows

 

at

 

a

 

time,

 

a

 

larger

 

page

 

size

 

is

 

better,

 

because

 

it

 

reduces

 

the

 

number

 

of

 

I/O

 

requests

 

required

 

to

 

read

 

a

 

specific

 

number

 

of

 

rows.

 

An

 

exception

 

occurs

 

when

 

the

 

row

 

size

 

is

 

smaller

 

than

 

the

 

page

 

size

 

divided

 

by

 

255.

 

In

 

such

 

a

 

case,

 

there

 

is

 

wasted

 

space

 

on

 

each

 

page.

 

(There

 

is

 

a

 

maximum

 

of

 

only

 

255

 

rows

 

per

 

page.)

 

To

 

reduce

 

this

 

wasted

 

space,

 

a

 

smaller

 

page

 

size

 

may

 

be

 

more

 

appropriate.

 

You

 

cannot

 

restore

 

a

 

backup

 

to

 

a

 

different

 

page

 

size.

 

You

 

cannot

 

import

 

IXF

 

data

 

files

 

that

 

represent

 

more

 

than

 

755

 

columns.

 

Declared

 

temporary

 

tables

 

can

 

only

 

be

 

created

 

in

 

their

 

own

 

″user

 

temporary″

 

table

 

space

 

type.

 

There

 

is

 

no

 

default

 

user

 

temporary

 

table

 

space.

 

Temporary

 

tables

 

cannot

 

have

 

LONG

 

data.

 

The

 

tables

 

are

 

dropped

 

implicitly

 

when

 

an

 

application

 

disconnects

 

from

 

the

 

database,

 

and

 

estimates

 

of

 

their

 

space

 

requirements

 

should

 

take

 

this

 

into

 

account.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

Space

 

requirements

 

for

 

long

 

field

 

data

  

Long

 

field

 

data

 

is

 

stored

 

in

 

a

 

separate

 

table

 

object

 

that

 

is

 

structured

 

differently

 

than

 

the

 

storage

 

space

 

for

 

other

 

data

 

types.

 

Data

 

is

 

stored

 

in

 

32

 

KB

 

areas

 

that

 

are

 

broken

 

up

 

into

 

segments

 

whose

 

sizes

 

are

 

″powers

 

of

 

two″

 

times

 

512

 

bytes.

 

(Hence

 

these

 

segments

 

can

 

be

 

512

 

bytes,

 

1024

 

bytes,

 

2048

 

bytes,

 

and

 

so

 

on,

 

up

 

to

 

32

 

768

 

bytes.)

 

Long

 

field

 

data

 

types

 

(LONG

 

VARCHAR

 

or

 

LONG

 

VARGRAPHIC)

 

are

 

stored

 

in

 

a

 

way

 

that

 

enables

 

free

 

space

 

to

 

be

 

reclaimed

 

easily.

 

Allocation

 

and

 

free

 

space

 

information

 

is

 

stored

 

in

 

4

 

KB

 

allocation

 

pages,

 

which

 

appear

 

infrequently

 

throughout

 

the

 

object.

   

76

 

Administration

 

Guide:

 

Planning



The

 

amount

 

of

 

unused

 

space

 

in

 

the

 

object

 

depends

 

on

 

the

 

size

 

of

 

the

 

long

 

field

 

data,

 

and

 

whether

 

this

 

size

 

is

 

relatively

 

constant

 

across

 

all

 

occurrences

 

of

 

the

 

data.

 

For

 

data

 

entries

 

larger

 

than

 

255

 

bytes,

 

this

 

unused

 

space

 

can

 

be

 

up

 

to

 

50

 

percent

 

of

 

the

 

size

 

of

 

the

 

long

 

field

 

data.

 

If

 

character

 

data

 

is

 

less

 

than

 

the

 

page

 

size,

 

and

 

it

 

fits

 

into

 

the

 

record

 

along

 

with

 

the

 

rest

 

of

 

the

 

data,

 

the

 

CHAR,

 

GRAPHIC,

 

VARCHAR,

 

or

 

VARGRAPHIC

 

data

 

types

 

should

 

be

 

used

 

instead

 

of

 

LONG

 

VARCHAR

 

or

 

LONG

 

VARGRAPHIC.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

Space

 

requirements

 

for

 

large

 

object

 

data

  

Large

 

Object

 

(LOB)

 

data

 

is

 

stored

 

in

 

two

 

separate

 

table

 

objects

 

that

 

are

 

structured

 

differently

 

than

 

the

 

storage

 

space

 

for

 

other

 

data

 

types.

 

To

 

estimate

 

the

 

space

 

required

 

by

 

LOB

 

data,

 

you

 

need

 

to

 

consider

 

the

 

two

 

table

 

objects

 

used

 

to

 

store

 

data

 

defined

 

with

 

these

 

data

 

types:

 

v

   

LOB

 

Data

 

Objects

 

Data

 

is

 

stored

 

in

 

64

 

MB

 

areas

 

that

 

are

 

broken

 

up

 

into

 

segments

 

whose

 

sizes

 

are

 

″powers

 

of

 

two″

 

times

 

1024

 

bytes.

 

(Hence

 

these

 

segments

 

can

 

be

 

1024

 

bytes,

 

2048

 

bytes,

 

4096

 

bytes,

 

and

 

so

 

on,

 

up

 

to

 

64

 

MB.)

 

To

 

reduce

 

the

 

amount

 

of

 

disk

 

space

 

used

 

by

 

LOB

 

data,

 

you

 

can

 

specify

 

the

 

COMPACT

 

option

 

on

 

the

 

lob-options

 

clause

 

of

 

the

 

CREATE

 

TABLE

 

and

 

the

 

ALTER

 

TABLE

 

statements.

 

The

 

COMPACT

 

option

 

minimizes

 

the

 

amount

 

of

 

disk

 

space

 

required

 

by

 

allowing

 

the

 

LOB

 

data

 

to

 

be

 

split

 

into

 

smaller

 

segments.

 

This

 

process

 

does

 

not

 

involve

 

data

 

compression,

 

but

 

simply

 

uses

 

the

 

minimum

 

amount

 

of

 

space,

 

to

 

the

 

nearest

 

1

 

KB

 

boundary.

 

Using

 

the

 

COMPACT

 

option

 

may

 

result

 

in

 

reduced

 

performance

 

when

 

appending

 

to

 

LOB

 

values.

 

The

 

amount

 

of

 

free

 

space

 

contained

 

in

 

LOB

 

data

 

objects

 

is

 

influenced

 

by

 

the

 

amount

 

of

 

update

 

and

 

delete

 

activity,

 

as

 

well

 

as

 

the

 

size

 

of

 

the

 

LOB

 

values

 

being

 

inserted.

 

v

   

LOB

 

Allocation

 

Objects

 

Allocation

 

and

 

free

 

space

 

information

 

is

 

stored

 

in

 

4

 

KB

 

allocation

 

pages

 

that

 

are

 

separated

 

from

 

the

 

actual

 

data.

 

The

 

number

 

of

 

these

 

4

 

KB

 

pages

 

is

 

dependent

 

on

 

the

 

amount

 

of

 

data,

 

including

 

unused

 

space,

 

allocated

 

for

 

the

 

large

 

object

 

data.

 

The

 

overhead

 

is

 

calculated

 

as

 

follows:

 

one

 

4

 

KB

 

page

 

for

 

every

 

64

 

GB,

 

plus

 

one

 

4

 

KB

 

page

 

for

 

every

 

8

 

MB.

 

If

 

character

 

data

 

is

 

less

 

than

 

the

 

page

 

size,

 

and

 

it

 

fits

 

into

 

the

 

record

 

along

 

with

 

the

 

rest

 

of

 

the

 

data,

 

the

 

CHAR,

 

GRAPHIC,

 

VARCHAR,

 

or

 

VARGRAPHIC

 

data

 

types

 

should

 

be

 

used

 

instead

 

of

 

BLOB,

 

CLOB,

 

or

 

DBCLOB.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

 

Related

 

reference:

  

v

   

“Large

 

objects

 

(LOBs)”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

  

Chapter

 

5.

 

Physical

 

database

 

design

 

77



Space

 

requirements

 

for

 

indexes

  

For

 

each

 

index,

 

the

 

space

 

needed

 

can

 

be

 

estimated

 

as:

    

(average

 

index

 

key

 

size

 

+

 

9)

 

*

 

number

 

of

 

rows

 

*

 

2

 

where:

 

v

   

The

 

″average

 

index

 

key

 

size″

 

is

 

the

 

byte

 

count

 

of

 

each

 

column

 

in

 

the

 

index

 

key.

 

(When

 

estimating

 

the

 

average

 

column

 

size

 

for

 

VARCHAR

 

and

 

VARGRAPHIC

 

columns,

 

use

 

an

 

average

 

of

 

the

 

current

 

data

 

size,

 

plus

 

two

 

bytes.

 

Do

 

not

 

use

 

the

 

maximum

 

declared

 

size.)

 

v

   

The

 

factor

 

of

 

″2″

 

is

 

for

 

overhead,

 

such

 

as

 

non-leaf

 

pages

 

and

 

free

 

space.

Notes:

  

1.

   

For

 

every

 

column

 

that

 

allows

 

NULLs,

 

add

 

one

 

extra

 

byte

 

for

 

the

 

null

 

indicator.

 

2.

   

For

 

block

 

indexes

 

created

 

internally

 

for

 

multidimensional

 

clustering

 

(MDC)

 

tables,

 

the

 

“number

 

of

 

rows”

 

would

 

be

 

replaced

 

by

 

the

 

“number

 

of

 

blocks”.

 

Temporary

 

space

 

is

 

required

 

when

 

creating

 

the

 

index.

 

The

 

maximum

 

amount

 

of

 

temporary

 

space

 

required

 

during

 

index

 

creation

 

can

 

be

 

estimated

 

as:

    

(average

 

index

 

key

 

size

 

+

 

9)

 

*

 

number

 

of

 

rows

 

*

 

3.2

 

where

 

the

 

factor

 

of

 

″3.2″

 

is

 

for

 

index

 

overhead,

 

and

 

space

 

required

 

for

 

sorting

 

during

 

index

 

creation.

 

Note:

  

In

 

the

 

case

 

of

 

non-unique

 

indexes,

 

only

 

five

 

bytes

 

are

 

required

 

to

 

store

 

duplicate

 

key

 

entries.

 

The

 

estimates

 

shown

 

above

 

assume

 

no

 

duplicates.

 

The

 

space

 

required

 

to

 

store

 

an

 

index

 

may

 

be

 

over-estimated

 

by

 

the

 

formula

 

shown

 

above.

 

The

 

following

 

two

 

formulas

 

can

 

be

 

used

 

to

 

estimate

 

the

 

number

 

of

 

leaf

 

pages

 

(the

 

second

 

provides

 

a

 

more

 

accurate

 

estimate).

 

The

 

accuracy

 

of

 

these

 

estimates

 

depends

 

largely

 

on

 

how

 

well

 

the

 

averages

 

reflect

 

the

 

actual

 

data.

 

Note:

  

For

 

SMS

 

table

 

spaces,

 

the

 

minimum

 

required

 

space

 

is

 

12

 

KB.

 

For

 

DMS

 

table

 

spaces,

 

the

 

minimum

 

is

 

an

 

extent.

 

v

   

A

 

rough

 

estimate

 

of

 

the

 

average

 

number

 

of

 

keys

 

per

 

leaf

 

page

 

is:

    

(.9

 

*

 

(U

 

-

 

(M*2)))

 

*

 

(D

 

+

 

1)

    

----------------------------

          

K

 

+

 

7

 

+

 

(5

 

*

 

D)

 

where:

 

–

   

U,

 

the

 

usable

 

space

 

on

 

a

 

page,

 

is

 

approximately

 

equal

 

to

 

the

 

page

 

size

 

minus

 

100.

 

For

 

a

 

page

 

size

 

of

 

4096,

 

U

 

is

 

3996.

 

–

   

M

 

=

 

U

 

/

 

(9

 

+

 

minimumKeySize)

 

–

   

D

 

=

 

average

 

number

 

of

 

duplicates

 

per

 

key

 

value

 

–

   

K

 

=

 

averageKeySize

 

Remember

 

that

 

minimumKeySize

 

and

 

averageKeysize

 

must

 

have

 

an

 

extra

 

byte

 

for

 

each

 

nullable

 

key

 

part,

 

and

 

an

 

extra

 

two

 

bytes

 

for

 

the

 

length

 

of

 

each

 

variable

 

length

 

key

 

part.

 

If

 

there

 

are

 

include

 

columns,

 

they

 

should

 

be

 

accounted

 

for

 

in

 

minimumKeySize

 

and

 

averageKeySize.

 

The

 

.9

 

can

 

be

 

replaced

 

by

 

any

 

(100

 

-

 

pctfree)/100

 

value,

 

if

 

a

 

percent

 

free

 

value

 

other

 

than

 

the

 

default

 

value

 

of

 

ten

 

percent

 

was

 

specified

 

during

 

index

 

creation.

   

78

 

Administration

 

Guide:

 

Planning

|
|



v

   

A

 

more

 

accurate

 

estimate

 

of

 

the

 

average

 

number

 

of

 

keys

 

per

 

leaf

 

page

 

is:

    

L

 

=

 

number

 

of

 

leaf

 

pages

 

=

 

X

 

/

 

(avg

 

number

 

of

 

keys

 

on

 

leaf

 

page)

 

where

 

X

 

is

 

the

 

total

 

number

 

of

 

rows

 

in

 

the

 

table.

 

You

 

can

 

estimate

 

the

 

original

 

size

 

of

 

an

 

index

 

as:

    

(L

 

+

 

2L/(average

 

number

 

of

 

keys

 

on

 

leaf

 

page))

 

*

 

pagesize

 

For

 

DMS

 

table

 

spaces,

 

add

 

together

 

the

 

sizes

 

of

 

all

 

indexes

 

on

 

a

 

table,

 

and

 

round

 

up

 

to

 

a

 

multiple

 

of

 

the

 

extent

 

size

 

for

 

the

 

table

 

space

 

on

 

which

 

the

 

index

 

resides.

 

You

 

should

 

provide

 

additional

 

space

 

for

 

index

 

growth

 

due

 

to

 

INSERT/UPDATE

 

activity,

 

which

 

may

 

result

 

in

 

page

 

splits.

 

Use

 

the

 

following

 

calculations

 

to

 

obtain

 

a

 

more

 

accurate

 

estimate

 

of

 

the

 

original

 

index

 

size,

 

as

 

well

 

as

 

an

 

estimate

 

of

 

the

 

number

 

of

 

levels

 

in

 

the

 

index.

 

(This

 

may

 

be

 

of

 

particular

 

interest

 

if

 

include

 

columns

 

are

 

being

 

used

 

in

 

the

 

index

 

definition.)

 

The

 

average

 

number

 

of

 

keys

 

per

 

non-leaf

 

page

 

is

 

roughly:

    

(.9

 

*

 

(U

 

-

 

(M*2)))

 

*

 

(D

 

+

 

1)

    

----------------------------

          

K

 

+

 

13

 

+

 

(9

 

*

 

D)

 

where:

 

–

   

U,

 

the

 

usable

 

space

 

on

 

a

 

page,

 

is

 

approximately

 

equal

 

to

 

the

 

page

 

size

 

minus

 

100.

 

For

 

a

 

page

 

size

 

of

 

4096,

 

U

 

is

 

3996.

 

–

   

D

 

is

 

the

 

average

 

number

 

of

 

duplicates

 

per

 

key

 

value

 

on

 

non-leaf

 

pages

 

(this

 

will

 

be

 

much

 

smaller

 

than

 

on

 

leaf

 

pages,

 

and

 

you

 

may

 

want

 

to

 

simplify

 

the

 

calculation

 

by

 

setting

 

the

 

value

 

to

 

0).

 

–

   

M

 

=

 

U

 

/

 

(9

 

+

 

minimumKeySize

 

for

 

non-leaf

 

pages)

 

–

   

K

 

=

 

averageKeySize

 

for

 

non-leaf

 

pages

 

The

 

minimumKeySize

 

and

 

the

 

averageKeySize

 

for

 

non-leaf

 

pages

 

will

 

be

 

the

 

same

 

as

 

for

 

leaf

 

pages,

 

except

 

when

 

there

 

are

 

include

 

columns.

 

Include

 

columns

 

are

 

not

 

stored

 

on

 

non-leaf

 

pages.

 

You

 

should

 

not

 

replace

 

.9

 

with

 

(100

 

-

 

pctfree)/100,

 

unless

 

this

 

value

 

is

 

greater

 

than

 

.9,

 

because

 

a

 

maximum

 

of

 

10

 

percent

 

free

 

space

 

will

 

be

 

left

 

on

 

non-leaf

 

pages

 

during

 

index

 

creation.

 

The

 

number

 

of

 

non-leaf

 

pages

 

can

 

be

 

estimated

 

as

 

follows:

    

if

 

L

 

>

 

1

 

then

 

{P++;

 

Z++}

    

While

 

(Y

 

>

 

1)

    

{

       

P

 

=

 

P

 

+

 

Y

       

Y

 

=

 

Y

 

/

 

N

      

Z++

    

}

 

where:

 

–

   

P

 

is

 

the

 

number

 

of

 

pages

 

(0

 

initially).

 

–

   

L

 

is

 

the

 

number

 

of

 

leaf

 

pages.

 

–

   

N

 

is

 

the

 

number

 

of

 

keys

 

for

 

each

 

non-leaf

 

page.

 

–

   

Y

 

=

 

L

 

/

 

N

 

–

   

Z

 

is

 

the

 

number

 

of

 

levels

 

in

 

the

 

index

 

tree

 

(1

 

initially).

 

Total

 

number

 

of

 

pages

 

is:

    

T

 

=

 

(L

 

+

 

P

 

+

 

2)

 

*

 

1.0002

 

The

 

additional

 

0.02

 

percent

 

is

 

for

 

overhead,

 

including

 

space

 

map

 

pages.

 

The

 

amount

 

of

 

space

 

required

 

to

 

create

 

the

 

index

 

is

 

estimated

 

as:

   

Chapter

 

5.

 

Physical

 

database

 

design

 

79



T

 

*

 

pagesize

  

Related

 

concepts:

  

v

   

“Indexes”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

 

v

   

“Index

 

cleanup

 

and

 

maintenance”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Space

 

requirements

 

for

 

log

 

files

  

You

 

will

 

require

 

32

 

KB

 

of

 

space

 

for

 

log

 

control

 

files.

 

You

 

will

 

also

 

need

 

at

 

least

 

enough

 

space

 

for

 

your

 

active

 

log

 

configuration,

 

which

 

you

 

can

 

calculate

 

as

    

(logprimary

 

+

 

logsecond)

 

*

 

(logfilsiz

 

+

 

2

 

)

 

*

 

4096

 

where:

 

v

   

logprimary

 

is

 

the

 

number

 

of

 

primary

 

log

 

files,

 

defined

 

in

 

the

 

database

 

configuration

 

file

 

v

   

logsecond

 

is

 

the

 

number

 

of

 

secondary

 

log

 

files,

 

defined

 

in

 

the

 

database

 

configuration

 

file;

 

in

 

this

 

calculation,

 

logsecond

 

cannot

 

be

 

set

 

to

 

-1.

 

(When

 

logsecond

 

is

 

set

 

to

 

-1,

 

you

 

are

 

requesting

 

an

 

infinite

 

active

 

log

 

space.)

 

v

   

logfilsiz

 

is

 

the

 

number

 

of

 

pages

 

in

 

each

 

log

 

file,

 

defined

 

in

 

the

 

database

 

configuration

 

file

 

v

   

2

 

is

 

the

 

number

 

of

 

header

 

pages

 

required

 

for

 

each

 

log

 

file

 

v

   

4096

 

is

 

the

 

number

 

of

 

bytes

 

in

 

one

 

page.

If

 

the

 

database

 

is

 

enabled

 

for

 

circular

 

logging,

 

the

 

result

 

of

 

this

 

formula

 

will

 

provide

 

a

 

sufficient

 

amount

 

of

 

disk

 

space.

 

If

 

the

 

database

 

is

 

enabled

 

for

 

roll-forward

 

recovery,

 

special

 

log

 

space

 

requirements

 

should

 

be

 

taken

 

into

 

consideration:

 

v

   

With

 

the

 

logretain

 

configuration

 

parameter

 

enabled,

 

the

 

log

 

files

 

will

 

be

 

archived

 

in

 

the

 

log

 

path

 

directory.

 

The

 

online

 

disk

 

space

 

will

 

eventually

 

fill

 

up,

 

unless

 

you

 

move

 

the

 

log

 

files

 

to

 

a

 

different

 

location.

 

v

   

With

 

the

 

userexit

 

configuration

 

parameter

 

enabled,

 

a

 

user

 

exit

 

program

 

moves

 

the

 

archived

 

log

 

files

 

to

 

a

 

different

 

location.

 

Extra

 

log

 

space

 

is

 

still

 

required

 

to

 

allow

 

for:

 

–

   

Online

 

archived

 

logs

 

that

 

are

 

waiting

 

to

 

be

 

moved

 

by

 

the

 

user

 

exit

 

program

 

–

   

New

 

log

 

files

 

being

 

formatted

 

for

 

future

 

use.

If

 

the

 

database

 

is

 

enabled

 

for

 

infinite

 

logging

 

(that

 

is,

 

you

 

set

 

logsecond

 

to

 

-1),

 

the

 

userexit

 

configuration

 

parameter

 

must

 

be

 

enabled,

 

so

 

you

 

will

 

have

 

the

 

same

 

disk

 

space

 

considerations.

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

will

 

keep

 

at

 

least

 

the

 

number

 

of

 

active

 

log

 

files

 

specified

 

by

 

logprimary

 

in

 

the

 

log

 

path,

 

so

 

you

 

should

 

not

 

use

 

the

 

value

 

of

 

-1

 

for

 

logsecond

 

in

 

the

 

above

 

formula.

 

Ensure

 

you

 

provide

 

extra

 

disk

 

space

 

to

 

allow

 

the

 

delay

 

caused

 

by

 

archiving

 

log

 

files.

 

If

 

you

 

are

 

mirroring

 

the

 

log

 

path,

 

you

 

will

 

need

 

to

 

double

 

the

 

estimated

 

log

 

file

 

space

 

requirements.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

   

80

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|



v

   

“Understanding

 

recovery

 

logs”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

v

   

“Log

 

mirroring”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

Related

 

reference:

  

v

   

“logfilsiz

 

-

 

Size

 

of

 

log

 

files

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“logprimary

 

-

 

Number

 

of

 

primary

 

log

 

files

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“logsecond

 

-

 

Number

 

of

 

secondary

 

log

 

files

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“mirrorlogpath

 

-

 

Mirror

 

log

 

path

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Space

 

requirements

 

for

 

temporary

 

tables

  

Some

 

SQL

 

statements

 

require

 

temporary

 

tables

 

for

 

processing

 

(such

 

as

 

a

 

work

 

file

 

for

 

sorting

 

operations

 

that

 

cannot

 

be

 

done

 

in

 

memory).

 

These

 

temporary

 

tables

 

require

 

disk

 

space;

 

the

 

amount

 

of

 

space

 

required

 

is

 

dependent

 

upon

 

the

 

size,

 

number,

 

and

 

nature

 

of

 

the

 

queries,

 

and

 

the

 

size

 

of

 

returned

 

tables.

 

Your

 

work

 

environment

 

is

 

unique

 

which

 

makes

 

the

 

determination

 

of

 

your

 

space

 

requirements

 

for

 

temporary

 

tables

 

difficult

 

to

 

estimate.

 

For

 

example,

 

more

 

space

 

may

 

appear

 

to

 

be

 

allocated

 

for

 

system

 

temporary

 

table

 

spaces

 

than

 

is

 

actually

 

in

 

use

 

due

 

to

 

the

 

longer

 

life

 

of

 

various

 

system

 

temporary

 

tables.

 

This

 

could

 

occur

 

when

 

DB2®_SMS_TRUNC_TMPTABLE_THRESH

 

is

 

used.

 

You

 

can

 

use

 

the

 

database

 

system

 

monitor

 

and

 

the

 

query

 

table

 

space

 

APIs

 

to

 

track

 

the

 

amount

 

of

 

work

 

space

 

being

 

used

 

during

 

the

 

normal

 

course

 

of

 

operations.

  

Related

 

concepts:

  

v

   

“Space

 

requirements

 

for

 

database

 

objects”

 

on

 

page

 

73

 

Related

 

reference:

  

v

   

“sqlbmtsq

 

-

 

Table

 

Space

 

Query”

 

in

 

the

 

Administrative

 

API

 

Reference

Database

 

partition

 

groups

  

A

 

database

 

partition

 

group

 

is

 

a

 

set

 

of

 

one

 

or

 

more

 

database

 

partitions.

 

When

 

you

 

want

 

to

 

create

 

tables

 

for

 

the

 

database,

 

you

 

first

 

create

 

the

 

database

 

partition

 

group

 

where

 

the

 

table

 

spaces

 

will

 

be

 

stored,

 

then

 

you

 

create

 

the

 

table

 

space

 

where

 

the

 

tables

 

will

 

be

 

stored.

 

You

 

can

 

define

 

named

 

subsets

 

of

 

one

 

or

 

more

 

database

 

partitions

 

in

 

a

 

database.

 

Each

 

subset

 

you

 

define

 

is

 

known

 

as

 

a

 

database

 

partition

 

group.

 

Each

 

subset

 

that

 

contains

 

more

 

than

 

one

 

database

 

partition

 

is

 

known

 

as

 

a

 

multipartition

 

database

 

partition

 

group.

 

Multipartition

 

database

 

partition

 

groups

 

can

 

only

 

be

 

defined

 

with

 

database

 

partitions

 

that

 

belong

 

to

 

the

 

same

 

instance.

 

Figure

 

25

 

on

 

page

 

82

 

shows

 

an

 

example

 

of

 

a

 

database

 

with

 

five

 

partitions

 

in

 

which:

 

v

   

A

 

database

 

partition

 

group

 

spans

 

all

 

but

 

one

 

of

 

the

 

database

 

partitions

 

(Database

 

Partition

 

Group

 

1).

   

Chapter

 

5.

 

Physical

 

database

 

design

 

81

|
|
|
|
|
|
|
|
|



v

   

A

 

database

 

partition

 

group

 

contains

 

one

 

database

 

partition

 

(Database

 

Partition

 

Group

 

2).

 

v

   

A

 

database

 

partition

 

group

 

contains

 

two

 

database

 

partitions.

 

(Database

 

Partition

 

Group

 

3).

 

v

   

The

 

database

 

partition

 

within

 

Database

 

Partition

 

Group

 

2

 

is

 

shared

 

(and

 

overlaps)

 

with

 

Database

 

Partition

 

Group

 

1.

 

v

   

There

 

is

 

a

 

single

 

database

 

partition

 

within

 

Database

 

Partition

 

Group

 

3

 

that

 

is

 

shared

 

(and

 

overlaps)

 

with

 

Database

 

Partition

 

Group

 

1.

  

You

 

create

 

a

 

new

 

database

 

partition

 

group

 

using

 

the

 

CREATE

 

DATABASE

 

PARTITION

 

GROUP

 

statement.

 

You

 

can

 

modify

 

it

 

using

 

the

 

ALTER

 

DATABASE

 

PARTITION

 

GROUP

 

statement.

 

Data

 

is

 

divided

 

across

 

all

 

the

 

partitions

 

in

 

a

 

database

 

partition

 

group,

 

and

 

you

 

can

 

add

 

or

 

drop

 

one

 

or

 

more

 

database

 

partitions

 

from

 

a

 

database

 

partition

 

group.

 

If

 

you

 

are

 

using

 

a

 

multipartition

 

database

 

partition

 

group,

 

you

 

must

 

look

 

at

 

several

 

database

 

partition

 

group

 

design

 

considerations.

 

Each

 

database

 

partition

 

that

 

is

 

part

 

of

 

the

 

database

 

system

 

configuration

 

must

 

already

 

be

 

defined

 

in

 

a

 

partition

 

configuration

 

file

 

called

 

db2nodes.cfg.

 

A

 

database

 

partition

 

group

 

can

 

contain

 

as

 

little

 

as

 

one

 

database

 

partition,

 

or

 

as

 

much

 

as

 

the

 

entire

 

set

 

of

 

database

 

partitions

 

defined

 

for

 

the

 

database

 

system.

 

When

 

a

 

database

 

partition

 

group

 

is

 

created

 

or

 

modified,

 

a

 

partitioning

 

map

 

is

 

associated

 

with

 

it.

 

A

 

partitioning

 

map,

 

in

 

conjunction

 

with

 

a

 

partitioning

 

key

 

and

 

a

 

hashing

 

algorithm,

 

is

 

used

 

by

 

the

 

database

 

manager

 

to

 

determine

 

which

 

database

 

partition

 

in

 

the

 

database

 

partition

 

group

 

will

 

store

 

a

 

given

 

row

 

of

 

data.

 

In

 

a

 

non-partitioned

 

database,

 

no

 

partitioning

 

key

 

or

 

partitioning

 

map

 

is

 

required.

 

A

 

database

 

partition

 

is

 

a

 

part

 

of

 

the

 

database,

 

complete

 

with

 

user

 

data,

 

indexes,

 

configuration

 

files,

 

and

 

transaction

 

logs.

 

Default

 

database

 

partition

 

groups

 

that

 

were

 

created

 

when

 

the

 

database

 

was

 

created,

 

are

 

used

 

by

 

the

 

database

 

manager.

 

IBMCATGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

the

 

table

 

space

 

containing

 

the

 

system

 

catalogs.

 

IBMTEMPGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

system

 

temporary

 

table

 

spaces.

 

IBMDEFAULTGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

the

 

table

 

spaces

 

containing

 

the

 

user

 

defined

 

tables

 

that

 

you

 

may

 

choose

 

to

 

put

 

there.

 

A

 

user

 

temporary

 

table

 

space

 

for

 

a

 

declared

 

Database

Database
partition

Database
partition

Database
partition group 2

Database
partition group 3

Database
partition group 1

Database
partition

Database
partition

Database
partition

  

Figure

 

25.

 

Database

 

partition

 

groups

 

in

 

a

 

database

  

82

 

Administration

 

Guide:

 

Planning



temporary

 

table

 

can

 

be

 

created

 

in

 

IBMDEFAULTGROUP

 

or

 

any

 

user-created

 

database

 

partition

 

group,

 

but

 

not

 

in

 

IBMTEMPGROUP.

  

Related

 

concepts:

  

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“Partitioning

 

maps”

 

on

 

page

 

84

 

v

   

“Partitioning

 

keys”

 

on

 

page

 

85

 

Related

 

reference:

  

v

   

“ALTER

 

DATABASE

 

PARTITION

 

GROUP

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

DATABASE

 

PARTITION

 

GROUP

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Database

 

partition

 

group

 

design

  

There

 

are

 

no

 

database

 

partition

 

group

 

design

 

considerations

 

if

 

you

 

are

 

using

 

a

 

non-partitioned

 

database.

 

The

 

DB2®

 

Design

 

Advisor

 

is

 

a

 

tool

 

that

 

can

 

be

 

used

 

to

 

recommend

 

database

 

partition

 

groups.

 

The

 

DB2

 

Design

 

Advisor

 

can

 

be

 

accessed

 

from

 

the

 

Control

 

Center

 

and

 

using

 

db2advis

 

from

 

the

 

command

 

line

 

processor.

 

If

 

you

 

are

 

using

 

a

 

multiple

 

partition

 

database

 

partition

 

group,

 

consider

 

the

 

following

 

design

 

points:

 

v

   

In

 

a

 

multipartition

 

database

 

partition

 

group,

 

you

 

can

 

only

 

create

 

a

 

unique

 

index

 

if

 

it

 

is

 

a

 

superset

 

of

 

the

 

partitioning

 

key.

 

v

   

Depending

 

on

 

the

 

number

 

of

 

database

 

partitions

 

in

 

the

 

database,

 

you

 

may

 

have

 

one

 

or

 

more

 

single-partition

 

database

 

partition

 

groups,

 

and

 

one

 

or

 

more

 

multipartition

 

database

 

partition

 

groups

 

present.

 

v

   

Each

 

database

 

partition

 

must

 

be

 

assigned

 

a

 

unique

 

partition

 

number.

 

The

 

same

 

database

 

partition

 

may

 

be

 

found

 

in

 

one

 

or

 

more

 

database

 

partition

 

groups.

 

v

   

To

 

ensure

 

fast

 

recovery

 

of

 

the

 

database

 

partition

 

containing

 

system

 

catalog

 

tables,

 

avoid

 

placing

 

user

 

tables

 

on

 

the

 

same

 

database

 

partition.

 

This

 

is

 

accomplished

 

by

 

placing

 

user

 

tables

 

in

 

database

 

partition

 

groups

 

that

 

do

 

not

 

include

 

the

 

database

 

partition

 

in

 

the

 

IBMCATGROUP

 

database

 

partition

 

group.

You

 

should

 

place

 

small

 

tables

 

in

 

single-partition

 

database

 

partition

 

groups,

 

except

 

when

 

you

 

want

 

to

 

take

 

advantage

 

of

 

collocation

 

with

 

a

 

larger

 

table.

 

Collocation

 

is

 

the

 

placement

 

of

 

rows

 

from

 

different

 

tables

 

that

 

contain

 

related

 

data

 

in

 

the

 

same

 

database

 

partition.

 

Collocated

 

tables

 

allow

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

to

 

utilize

 

more

 

efficient

 

join

 

strategies.

 

Collocated

 

tables

 

can

 

reside

 

in

 

a

 

single-partition

 

database

 

partition

 

group.

 

Tables

 

are

 

considered

 

collocated

 

if

 

they

 

reside

 

in

 

a

 

multipartition

 

database

 

partition

 

group,

 

have

 

the

 

same

 

number

 

of

 

columns

 

in

 

the

 

partitioning

 

key,

 

and

 

if

 

the

 

data

 

types

 

of

 

the

 

corresponding

 

columns

 

are

 

partition

 

compatible.

 

Rows

 

in

 

collocated

 

tables

 

with

 

the

 

same

 

partitioning

 

key

 

value

 

are

 

placed

 

on

 

the

 

same

 

database

 

partition.

 

Tables

 

can

 

be

 

in

 

separate

 

table

 

spaces

 

in

 

the

 

same

 

database

 

partition

 

group,

 

and

 

still

 

be

 

considered

 

collocated.

 

You

 

should

 

avoid

 

extending

 

medium-sized

 

tables

 

across

 

too

 

many

 

database

 

partitions.

 

For

 

example,

 

a

 

100

 

MB

 

table

 

may

 

perform

 

better

 

on

 

a

 

16-partition

 

database

 

partition

 

group

 

than

 

on

 

a

 

32-partition

 

database

 

partition

 

group.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

83

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



You

 

can

 

use

 

database

 

partition

 

groups

 

to

 

separate

 

online

 

transaction

 

processing

 

(OLTP)

 

tables

 

from

 

decision

 

support

 

(DSS)

 

tables,

 

to

 

ensure

 

that

 

the

 

performance

 

of

 

OLTP

 

transactions

 

is

 

not

 

adversely

 

affected.

  

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Partitioning

 

maps”

 

on

 

page

 

84

 

v

   

“Partitioning

 

keys”

 

on

 

page

 

85

 

v

   

“Table

 

collocation”

 

on

 

page

 

87

 

v

   

“Partition

 

compatibility”

 

on

 

page

 

87

 

v

   

“Replicated

 

materialized

 

query

 

tables”

 

on

 

page

 

88

 

Related

 

reference:

  

v

   

“db2advis

 

-

 

DB2

 

Design

 

Advisor

 

Command”

 

in

 

the

 

Command

 

Reference

Partitioning

 

maps

  

In

 

a

 

partitioned

 

database

 

environment,

 

the

 

database

 

manager

 

must

 

have

 

a

 

way

 

of

 

knowing

 

which

 

table

 

rows

 

are

 

stored

 

on

 

which

 

database

 

partition.

 

The

 

database

 

manager

 

must

 

know

 

where

 

to

 

find

 

the

 

data

 

it

 

needs,

 

and

 

uses

 

a

 

map,

 

called

 

a

 

partitioning

 

map,

 

to

 

find

 

the

 

data.

 

A

 

partitioning

 

map

 

is

 

an

 

internally

 

generated

 

array

 

containing

 

either

 

4

 

096

 

entries

 

for

 

multiple-partition

 

database

 

partition

 

groups,

 

or

 

a

 

single

 

entry

 

for

 

single-partition

 

database

 

partition

 

groups.

 

For

 

a

 

single-partition

 

database

 

partition

 

group,

 

the

 

partitioning

 

map

 

has

 

only

 

one

 

entry

 

containing

 

the

 

partition

 

number

 

of

 

the

 

database

 

partition

 

where

 

all

 

the

 

rows

 

of

 

a

 

database

 

table

 

are

 

stored.

 

For

 

multiple-partition

 

database

 

partition

 

groups,

 

the

 

partition

 

numbers

 

of

 

the

 

database

 

partition

 

group

 

are

 

specified

 

in

 

a

 

round-robin

 

fashion.

 

Just

 

as

 

a

 

city

 

map

 

is

 

organized

 

into

 

sections

 

using

 

a

 

grid,

 

the

 

database

 

manager

 

uses

 

a

 

partitioning

 

key

 

to

 

determine

 

the

 

location

 

(the

 

database

 

partition)

 

where

 

the

 

data

 

is

 

stored.

 

For

 

example,

 

assume

 

that

 

you

 

have

 

a

 

database

 

created

 

on

 

four

 

database

 

partitions

 

(numbered

 

0–3).

 

The

 

partitioning

 

map

 

for

 

the

 

IBMDEFAULTGROUP

 

database

 

partition

 

group

 

of

 

this

 

database

 

would

 

be:

    

0

 

1

 

2

 

3

 

0

 

1

 

2

 

...

 

If

 

a

 

database

 

partition

 

group

 

had

 

been

 

created

 

in

 

the

 

database

 

using

 

database

 

partitions

 

1

 

and

 

2,

 

the

 

partitioning

 

map

 

for

 

that

 

database

 

partition

 

group

 

would

 

be:

    

1

 

2

 

1

 

2

 

1

 

2

 

1

 

...

 

If

 

the

 

partitioning

 

key

 

for

 

a

 

table

 

to

 

be

 

loaded

 

in

 

the

 

database

 

is

 

an

 

integer

 

that

 

has

 

possible

 

values

 

between

 

1

 

and

 

500

 

000,

 

the

 

partitioning

 

key

 

is

 

hashed

 

to

 

a

 

partition

 

number

 

between

 

0

 

and

 

4

 

095.

 

That

 

number

 

is

 

used

 

as

 

an

 

index

 

into

 

the

 

partitioning

 

map

 

to

 

select

 

the

 

database

 

partition

 

for

 

that

 

row.

 

Figure

 

26

 

on

 

page

 

85

 

shows

 

how

 

the

 

row

 

with

 

the

 

partitioning

 

key

 

value

 

(c1,

 

c2,

 

c3)

 

is

 

mapped

 

to

 

partition

 

2,

 

which,

 

in

 

turn,

 

references

 

database

 

partition

 

n5.

    

84

 

Administration

 

Guide:

 

Planning



A

 

partitioning

 

map

 

is

 

a

 

flexible

 

way

 

of

 

controlling

 

where

 

data

 

is

 

stored

 

in

 

a

 

partitioned

 

database.

 

If

 

you

 

have

 

a

 

need

 

at

 

some

 

future

 

time

 

to

 

change

 

the

 

data

 

distribution

 

across

 

the

 

database

 

partitions

 

in

 

your

 

database,

 

you

 

can

 

use

 

the

 

data

 

redistribution

 

utility.

 

This

 

utility

 

allows

 

you

 

to

 

rebalance

 

or

 

introduce

 

skew

 

into

 

the

 

data

 

distribution.

 

You

 

can

 

use

 

the

 

Get

 

Table

 

Partitioning

 

Information

 

(sqlugtpi)

 

API

 

to

 

obtain

 

a

 

copy

 

of

 

a

 

partitioning

 

map

 

that

 

you

 

can

 

view.

  

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“Partitioning

 

keys”

 

on

 

page

 

85

 

Related

 

reference:

  

v

   

“sqlugtpi

 

-

 

Get

 

Table

 

Partitioning

 

Information”

 

in

 

the

 

Administrative

 

API

 

Reference

Partitioning

 

keys

  

A

 

partitioning

 

key

 

is

 

a

 

column

 

(or

 

group

 

of

 

columns)

 

that

 

is

 

used

 

to

 

determine

 

the

 

partition

 

in

 

which

 

a

 

particular

 

row

 

of

 

data

 

is

 

stored.

 

A

 

partitioning

 

key

 

is

 

defined

 

on

 

a

 

table

 

using

 

the

 

CREATE

 

TABLE

 

statement.

 

If

 

a

 

partitioning

 

key

 

is

 

not

 

defined

 

for

 

a

 

table

 

in

 

a

 

table

 

space

 

that

 

is

 

divided

 

across

 

more

 

than

 

one

 

database

 

partition

 

in

 

a

 

database

 

partition

 

group,

 

one

 

is

 

created

 

by

 

default

 

from

 

the

 

first

 

column

 

of

 

the

 

primary

 

key.

 

If

 

no

 

primary

 

key

 

is

 

specified,

 

the

 

default

 

partitioning

 

key

 

is

 

the

 

first

 

non-long

 

field

 

column

 

defined

 

on

 

that

 

table.

 

(Long

 

includes

 

all

 

long

 

data

 

types

 

and

 

all

 

large

 

object

 

(LOB)

 

data

 

types).

 

If

 

you

 

are

 

creating

 

a

 

table

 

in

 

a

 

table

 

space

 

associated

 

with

 

a

 

single-partition

 

database

 

partition

 

group,

 

and

 

you

 

want

 

to

 

have

 

a

 

partitioning

 

key,

 

you

 

must

 

define

 

the

 

partitioning

 

key

 

explicitly.

 

One

 

is

 

not

 

created

 

by

 

default.

 

If

 

no

 

columns

 

satisfy

 

the

 

requirement

 

for

 

a

 

default

 

partitioning

 

key,

 

the

 

table

 

is

 

created

 

without

 

one.

 

Tables

 

without

 

a

 

partitioning

 

key

 

are

 

only

 

allowed

 

in

 

single-partition

 

database

 

partition

 

groups.

 

You

 

can

 

add

 

or

 

drop

 

partitioning

 

keys

 

at

 

a

 

later

 

time,

 

using

 

the

 

ALTER

 

TABLE

 

statement.

 

Altering

 

the

 

partition

 

key

 

can

 

only

 

be

 

done

 

to

 

a

 

table

 

whose

 

table

 

space

 

is

 

associated

 

with

 

a

 

single-partition

 

database

 

partition

 

group.

 

n0 n2 n5 n0 n6

1 2 3 40

. . .

. . . 4095

Row: (... c1, c2, c3, ...)

Partition number

Partitioning map

Partitioning key

  

Figure

 

26.

 

Data

 

distribution

 

using

 

a

 

partitioning

 

map

  

Chapter

 

5.

 

Physical

 

database

 

design

 

85



Choosing

 

a

 

good

 

partitioning

 

key

 

is

 

important.

 

You

 

should

 

take

 

into

 

consideration:

 

v

   

How

 

tables

 

are

 

to

 

be

 

accessed

 

v

   

The

 

nature

 

of

 

the

 

query

 

workload

 

v

   

The

 

join

 

strategies

 

employed

 

by

 

the

 

database

 

system.

If

 

collocation

 

is

 

not

 

a

 

major

 

consideration,

 

a

 

good

 

partitioning

 

key

 

for

 

a

 

table

 

is

 

one

 

that

 

spreads

 

the

 

data

 

evenly

 

across

 

all

 

database

 

partitions

 

in

 

the

 

database

 

partition

 

group.

 

The

 

partitioning

 

key

 

for

 

each

 

table

 

in

 

a

 

table

 

space

 

that

 

is

 

associated

 

with

 

a

 

database

 

partition

 

group

 

determines

 

if

 

the

 

tables

 

are

 

collocated.

 

Tables

 

are

 

considered

 

collocated

 

when:

 

v

   

The

 

tables

 

are

 

placed

 

in

 

table

 

spaces

 

that

 

are

 

in

 

the

 

same

 

database

 

partition

 

group

 

v

   

The

 

partitioning

 

keys

 

in

 

each

 

table

 

have

 

the

 

same

 

number

 

of

 

columns

 

v

   

The

 

data

 

types

 

of

 

the

 

corresponding

 

columns

 

are

 

partition-compatible.

These

 

characteristics

 

ensure

 

that

 

rows

 

of

 

collocated

 

tables

 

with

 

the

 

same

 

partitioning

 

key

 

values

 

are

 

located

 

on

 

the

 

same

 

partition.

 

An

 

inappropriate

 

partitioning

 

key

 

can

 

cause

 

uneven

 

data

 

distribution.

 

Columns

 

with

 

unevenly

 

distributed

 

data,

 

and

 

columns

 

with

 

a

 

small

 

number

 

of

 

distinct

 

values

 

should

 

not

 

be

 

chosen

 

as

 

a

 

partitioning

 

key.

 

The

 

number

 

of

 

distinct

 

values

 

must

 

be

 

great

 

enough

 

to

 

ensure

 

an

 

even

 

distribution

 

of

 

rows

 

across

 

all

 

database

 

partitions

 

in

 

the

 

database

 

partition

 

group.

 

The

 

cost

 

of

 

applying

 

the

 

partitioning

 

hash

 

algorithm

 

is

 

proportional

 

to

 

the

 

size

 

of

 

the

 

partitioning

 

key.

 

The

 

partitioning

 

key

 

cannot

 

be

 

more

 

than

 

16

 

columns,

 

but

 

fewer

 

columns

 

result

 

in

 

better

 

performance.

 

Unnecessary

 

columns

 

should

 

not

 

be

 

included

 

in

 

the

 

partitioning

 

key.

 

The

 

following

 

points

 

should

 

be

 

considered

 

when

 

defining

 

partitioning

 

keys:

 

v

   

Creation

 

of

 

a

 

multiple

 

partition

 

table

 

that

 

contains

 

only

 

long

 

data

 

types

 

(LONG

 

VARCHAR,

 

LONG

 

VARGRAPHIC,

 

BLOB,

 

CLOB,

 

or

 

DBCLOB)

 

is

 

not

 

supported.

 

v

   

The

 

partitioning

 

key

 

definition

 

cannot

 

be

 

altered.

 

v

   

The

 

partitioning

 

key

 

should

 

include

 

the

 

most

 

frequently

 

joined

 

columns.

 

v

   

The

 

partitioning

 

key

 

should

 

be

 

made

 

up

 

of

 

columns

 

that

 

often

 

participate

 

in

 

a

 

GROUP

 

BY

 

clause.

 

v

   

Any

 

unique

 

key

 

or

 

primary

 

key

 

must

 

contain

 

all

 

of

 

the

 

partitioning

 

key

 

columns.

 

v

   

In

 

an

 

online

 

transaction

 

processing

 

(OLTP)

 

environment,

 

all

 

columns

 

in

 

the

 

partitioning

 

key

 

should

 

participate

 

in

 

the

 

transaction

 

by

 

using

 

equal

 

(=)

 

predicates

 

with

 

constants

 

or

 

host

 

variables.

 

For

 

example,

 

assume

 

you

 

have

 

an

 

employee

 

number,

 

emp_no,

 

that

 

is

 

often

 

used

 

in

 

transactions

 

such

 

as:

    

UPDATE

 

emp_table

 

SET

 

...

 

WHERE

    

emp_no

 

=

 

host-variable

 

In

 

this

 

case,

 

the

 

EMP_NO

 

column

 

would

 

make

 

a

 

good

 

single

 

column

 

partitioning

 

key

 

for

 

EMP_TABLE.

 

Hash

 

partitioning

 

is

 

the

 

method

 

by

 

which

 

the

 

placement

 

of

 

each

 

row

 

in

 

the

 

partitioned

 

table

 

is

 

determined.

 

The

 

method

 

works

 

as

 

follows:

 

1.

   

The

 

hashing

 

algorithm

 

is

 

applied

 

to

 

the

 

value

 

of

 

the

 

partitioning

 

key,

 

and

 

generates

 

a

 

partition

 

number

 

between

 

zero

 

and

 

4095.

 

2.

   

The

 

partitioning

 

map

 

is

 

created

 

when

 

a

 

database

 

partition

 

group

 

is

 

created.

 

Each

 

of

 

the

 

partition

 

numbers

 

is

 

sequentially

 

repeated

 

in

 

a

 

round-robin

 

fashion

 

to

 

fill

 

the

 

partitioning

 

map.

   

86

 

Administration

 

Guide:

 

Planning



3.

   

The

 

partition

 

number

 

is

 

used

 

as

 

an

 

index

 

into

 

the

 

partitioning

 

map.

 

The

 

number

 

at

 

that

 

location

 

in

 

the

 

partitioning

 

map

 

is

 

the

 

number

 

of

 

the

 

database

 

partition

 

where

 

the

 

row

 

is

 

stored.

 

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“Partitioning

 

maps”

 

on

 

page

 

84

 

v

   

“The

 

Design

 

Advisor”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

Related

 

reference:

  

v

   

“ALTER

 

TABLE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Table

 

collocation

  

You

 

may

 

discover

 

that

 

two

 

or

 

more

 

tables

 

frequently

 

contribute

 

data

 

in

 

response

 

to

 

certain

 

queries.

 

In

 

this

 

case,

 

you

 

will

 

want

 

related

 

data

 

from

 

such

 

tables

 

to

 

be

 

located

 

as

 

close

 

together

 

as

 

possible.

 

In

 

an

 

environment

 

where

 

the

 

database

 

is

 

physically

 

divided

 

among

 

two

 

or

 

more

 

database

 

partitions,

 

there

 

must

 

be

 

a

 

way

 

to

 

keep

 

the

 

related

 

pieces

 

of

 

the

 

divided

 

tables

 

as

 

close

 

together

 

as

 

possible.

 

The

 

ability

 

to

 

do

 

this

 

is

 

called

 

table

 

collocation.

 

Tables

 

are

 

collocated

 

when

 

they

 

are

 

stored

 

in

 

the

 

same

 

database

 

partition

 

group,

 

and

 

when

 

their

 

partitioning

 

keys

 

are

 

compatible.

 

Placing

 

both

 

tables

 

in

 

the

 

same

 

database

 

partition

 

group

 

ensures

 

a

 

common

 

partitioning

 

map.

 

The

 

tables

 

may

 

be

 

in

 

different

 

table

 

spaces,

 

but

 

the

 

table

 

spaces

 

must

 

be

 

associated

 

with

 

the

 

same

 

database

 

partition

 

group.

 

The

 

data

 

types

 

of

 

the

 

corresponding

 

columns

 

in

 

each

 

partitioning

 

key

 

must

 

be

 

partition-compatible.

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

has

 

the

 

ability

 

to

 

recognize,

 

when

 

accessing

 

more

 

than

 

one

 

table

 

for

 

a

 

join

 

or

 

a

 

subquery,

 

that

 

the

 

data

 

to

 

be

 

joined

 

is

 

located

 

at

 

the

 

same

 

database

 

partition.

 

When

 

this

 

happens,

 

DB2

 

can

 

choose

 

to

 

perform

 

the

 

join

 

or

 

subquery

 

at

 

the

 

database

 

partition

 

where

 

the

 

data

 

is

 

stored,

 

instead

 

of

 

having

 

to

 

move

 

data

 

between

 

database

 

partitions.

 

This

 

ability

 

to

 

carry

 

out

 

joins

 

or

 

subqueries

 

at

 

the

 

database

 

partition

 

has

 

significant

 

performance

 

advantages.

  

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“Partitioning

 

keys”

 

on

 

page

 

85

 

v

   

“Partition

 

compatibility”

 

on

 

page

 

87

Partition

 

compatibility

  

The

 

base

 

data

 

types

 

of

 

corresponding

 

columns

 

of

 

partitioning

 

keys

 

are

 

compared

 

and

 

can

 

be

 

declared

 

partition

 

compatible.

 

Partition

 

compatible

 

data

 

types

 

have

 

the

 

property

 

that

 

two

 

variables,

 

one

 

of

 

each

 

type,

 

with

 

the

 

same

 

value,

 

are

 

mapped

 

to

 

the

 

same

 

partition

 

number

 

by

 

the

 

same

 

partitioning

 

algorithm.

 

Partition

 

compatibility

 

has

 

the

 

following

 

characteristics:

 

v

   

A

 

base

 

data

 

type

 

is

 

compatible

 

with

 

another

 

of

 

the

 

same

 

base

 

data

 

type.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

87

|
|
|
|
|
|



v

   

Internal

 

formats

 

are

 

used

 

for

 

DATE,

 

TIME,

 

and

 

TIMESTAMP

 

data

 

types.

 

They

 

are

 

not

 

compatible

 

with

 

each

 

other,

 

and

 

none

 

are

 

compatible

 

with

 

CHAR.

 

v

   

Partition

 

compatibility

 

is

 

not

 

affected

 

by

 

columns

 

with

 

NOT

 

NULL

 

or

 

FOR

 

BIT

 

DATA

 

definitions.

 

v

   

NULL

 

values

 

of

 

compatible

 

data

 

types

 

are

 

treated

 

identically;

 

those

 

of

 

non-compatible

 

data

 

types

 

may

 

not

 

be.

 

v

   

Base

 

data

 

types

 

of

 

a

 

user-defined

 

type

 

are

 

used

 

to

 

analyze

 

partition

 

compatibility.

 

v

   

Decimals

 

of

 

the

 

same

 

value

 

in

 

the

 

partitioning

 

key

 

are

 

treated

 

identically,

 

even

 

if

 

their

 

scale

 

and

 

precision

 

differ.

 

v

   

Trailing

 

blanks

 

in

 

character

 

strings

 

(CHAR,

 

VARCHAR,

 

GRAPHIC,

 

or

 

VARGRAPHIC)

 

are

 

ignored

 

by

 

the

 

hashing

 

algorithm.

 

v

   

BIGINT,

 

SMALLINT,

 

and

 

INTEGER

 

are

 

compatible

 

data

 

types.

 

v

   

REAL

 

and

 

FLOAT

 

are

 

compatible

 

data

 

types.

 

v

   

CHAR

 

and

 

VARCHAR

 

of

 

different

 

lengths

 

are

 

compatible

 

data

 

types.

 

v

   

GRAPHIC

 

and

 

VARGRAPHIC

 

are

 

compatible

 

data

 

types.

 

v

   

Partition

 

compatibility

 

does

 

not

 

apply

 

to

 

LONG

 

VARCHAR,

 

LONG

 

VARGRAPHIC,

 

CLOB,

 

DBCLOB,

 

and

 

BLOB

 

data

 

types,

 

because

 

they

 

are

 

not

 

supported

 

as

 

partitioning

 

keys.

 

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“Partitioning

 

keys”

 

on

 

page

 

85

Replicated

 

materialized

 

query

 

tables

  

A

 

materialized

 

query

 

table

 

is

 

a

 

table

 

that

 

is

 

defined

 

by

 

a

 

query

 

that

 

is

 

also

 

used

 

to

 

determine

 

the

 

data

 

in

 

the

 

table.

 

Materialized

 

query

 

tables

 

can

 

be

 

used

 

to

 

improve

 

the

 

performance

 

of

 

queries.

 

If

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

determines

 

that

 

a

 

portion

 

of

 

a

 

query

 

could

 

be

 

resolved

 

using

 

a

 

materialized

 

query

 

table,

 

the

 

query

 

may

 

be

 

rewritten

 

by

 

the

 

database

 

manager

 

to

 

use

 

the

 

materialized

 

query

 

table.

 

In

 

a

 

partitioned

 

database

 

environment,

 

you

 

can

 

replicate

 

materialized

 

query

 

tables.

 

You

 

can

 

use

 

replicated

 

materialized

 

query

 

tables

 

to

 

improve

 

query

 

performance.

 

A

 

replicated

 

materialized

 

query

 

table

 

is

 

based

 

on

 

a

 

table

 

that

 

may

 

have

 

been

 

created

 

in

 

a

 

single-partition

 

database

 

partition

 

group,

 

but

 

that

 

you

 

want

 

replicated

 

across

 

all

 

of

 

the

 

database

 

partitions

 

in

 

another

 

database

 

partition

 

group.

 

To

 

create

 

the

 

replicated

 

materialized

 

query

 

table,

 

invoke

 

the

 

CREATE

 

TABLE

 

statement

 

with

 

the

 

REPLICATED

 

keyword.

 

By

 

using

 

replicated

 

materialized

 

query

 

tables,

 

you

 

can

 

obtain

 

collocation

 

between

 

tables

 

that

 

are

 

not

 

typically

 

collocated.

 

Replicated

 

materialized

 

query

 

tables

 

are

 

particularly

 

useful

 

for

 

joins

 

in

 

which

 

you

 

have

 

a

 

large

 

fact

 

table

 

and

 

small

 

dimension

 

tables.

 

To

 

minimize

 

the

 

extra

 

storage

 

required,

 

as

 

well

 

as

 

the

 

impact

 

of

 

having

 

to

 

update

 

every

 

replica,

 

tables

 

that

 

are

 

to

 

be

 

replicated

 

should

 

be

 

small

 

and

 

infrequently

 

updated.

 

Note:

  

You

 

should

 

also

 

consider

 

replicating

 

larger

 

tables

 

that

 

are

 

infrequently

 

updated:

 

the

 

one-time

 

cost

 

of

 

replication

 

is

 

offset

 

by

 

the

 

performance

 

benefits

 

that

 

can

 

be

 

obtained

 

through

 

collocation.

  

88

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|

|
|
|
|
|
|
|



By

 

specifying

 

a

 

suitable

 

predicate

 

in

 

the

 

subselect

 

clause

 

used

 

to

 

define

 

the

 

replicated

 

table,

 

you

 

can

 

replicate

 

selected

 

columns,

 

selected

 

rows,

 

or

 

both.

  

Related

 

concepts:

  

v

   

“Database

 

partition

 

group

 

design”

 

on

 

page

 

83

 

v

   

“The

 

Design

 

Advisor”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

Related

 

tasks:

  

v

   

“Creating

 

a

 

materialized

 

query

 

table”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

Related

 

reference:

  

v

   

“CREATE

 

TABLE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Table

 

space

 

design

  

A

 

table

 

space

 

is

 

a

 

storage

 

structure

 

containing

 

tables,

 

indexes,

 

large

 

objects,

 

and

 

long

 

data.

 

Table

 

spaces

 

reside

 

in

 

database

 

partition

 

groups.

 

They

 

allow

 

you

 

to

 

assign

 

the

 

location

 

of

 

database

 

and

 

table

 

data

 

directly

 

onto

 

containers.

 

(A

 

container

 

can

 

be

 

a

 

directory

 

name,

 

a

 

device

 

name,

 

or

 

a

 

file

 

name.)

 

This

 

can

 

provide

 

improved

 

performance

 

and

 

more

 

flexible

 

configuration.

 

Since

 

table

 

spaces

 

reside

 

in

 

database

 

partition

 

groups,

 

the

 

table

 

space

 

selected

 

to

 

hold

 

a

 

table

 

defines

 

how

 

the

 

data

 

for

 

that

 

table

 

is

 

distributed

 

across

 

the

 

database

 

partitions

 

in

 

a

 

database

 

partition

 

group.

 

A

 

single

 

table

 

space

 

can

 

span

 

several

 

containers.

 

It

 

is

 

possible

 

for

 

multiple

 

containers

 

(from

 

one

 

or

 

more

 

table

 

spaces)

 

to

 

be

 

created

 

on

 

the

 

same

 

physical

 

disk

 

(or

 

drive).

 

For

 

improved

 

performance,

 

each

 

container

 

should

 

use

 

a

 

different

 

disk.

 

Figure

 

27

 

illustrates

 

the

 

relationship

 

between

 

tables

 

and

 

table

 

spaces

 

within

 

a

 

database,

 

and

 

the

 

containers

 

associated

 

with

 

that

 

database.

  

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

  

Figure

 

27.

 

Table

 

spaces

 

and

 

tables

 

in

 

a

 

database

  

Chapter

 

5.

 

Physical

 

database

 

design

 

89



The

 

EMPLOYEE

 

and

 

DEPARTMENT

 

tables

 

are

 

in

 

the

 

HUMANRES

 

table

 

space,

 

which

 

spans

 

containers

 

0,

 

1,

 

2

 

and

 

3.

 

The

 

PROJECT

 

table

 

is

 

in

 

the

 

SCHED

 

table

 

space

 

in

 

container

 

4.

 

This

 

example

 

shows

 

each

 

container

 

existing

 

on

 

a

 

separate

 

disk.

 

The

 

database

 

manager

 

attempts

 

to

 

balance

 

the

 

data

 

load

 

across

 

containers.

 

As

 

a

 

result,

 

all

 

containers

 

are

 

used

 

to

 

store

 

data.

 

The

 

number

 

of

 

pages

 

that

 

the

 

database

 

manager

 

writes

 

to

 

a

 

container

 

before

 

using

 

a

 

different

 

container

 

is

 

called

 

the

 

extent

 

size.

 

The

 

database

 

manager

 

does

 

not

 

always

 

start

 

storing

 

table

 

data

 

in

 

the

 

first

 

container.

 

Figure

 

28

 

shows

 

the

 

HUMANRES

 

table

 

space

 

with

 

an

 

extent

 

size

 

of

 

two

 

4

 

KB

 

pages,

 

and

 

four

 

containers,

 

each

 

with

 

a

 

small

 

number

 

of

 

allocated

 

extents.

 

The

 

DEPARTMENT

 

and

 

EMPLOYEE

 

tables

 

both

 

have

 

seven

 

pages,

 

and

 

span

 

all

 

four

 

containers.

   

A

 

database

 

must

 

contain

 

at

 

least

 

three

 

table

 

spaces:

 

v

   

One

 

catalog

 

table

 

space,

 

which

 

contains

 

all

 

of

 

the

 

system

 

catalog

 

tables

 

for

 

the

 

database.

 

This

 

table

 

space

 

is

 

called

 

SYSCATSPACE,

 

and

 

it

 

cannot

 

be

 

dropped.

 

IBMCATGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

this

 

table

 

space.

 

v

   

One

 

or

 

more

 

user

 

table

 

spaces,

 

which

 

contain

 

all

 

user

 

defined

 

tables.

 

By

 

default,

 

one

 

table

 

space,

 

USERSPACE1,

 

is

 

created.

 

IBMDEFAULTGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

this

 

table

 

space.

 

You

 

should

 

specify

 

a

 

table

 

space

 

name

 

when

 

you

 

create

 

a

 

table,

 

or

 

the

 

results

 

may

 

not

 

be

 

what

 

you

 

intend.

 

A

 

table’s

 

page

 

size

 

is

 

determined

 

either

 

by

 

row

 

size,

 

or

 

the

 

number

 

of

 

columns.

 

The

 

maximum

 

allowable

 

length

 

for

 

a

 

row

 

is

 

dependent

 

upon

 

the

 

page

 

size

 

of

 

the

 

table

 

space

 

in

 

which

 

the

 

table

 

is

 

created.

 

Possible

 

values

 

for

 

page

 

size

 

are

 

4

 

KB

 

(the

 

default),

 

8

 

KB,

 

16

 

KB,

 

and

 

32

 

KB.

 

You

 

can

 

use

 

a

 

table

 

space

 

with

 

one

 

page

 

size

 

for

 

the

 

base

 

table,

 

and

 

a

 

different

 

table

 

space

 

with

 

a

 

different

 

page

 

size

 

for

 

long

 

or

 

LOB

 

data.

 

(Recall

 

that

 

SMS

 

does

 

not

 

support

 

tables

 

that

 

span

 

table

 

spaces,

 

but

 

that

 

DMS

 

does.)

 

If

 

the

 

number

 

of

 

columns

 

or

 

the

 

row

 

size

 

exceeds

 

the

 

limits

 

for

 

a

 

table

 

space’s

 

page

 

size,

 

an

 

error

 

is

 

returned

 

(SQLSTATE

 

42997).

 

v

   

One

 

or

 

more

 

temporary

 

table

 

spaces,

 

which

 

contain

 

temporary

 

tables.

 

Temporary

 

table

 

spaces

 

can

 

be

 

system

 

temporary

 

table

 

spaces

 

or

 

user

 

temporary

 

table

 

spaces.

 

A

 

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

  

Figure

 

28.

 

Containers

 

and

 

extents

 

in

 

a

 

table

 

space

  

90

 

Administration

 

Guide:

 

Planning



database

 

must

 

have

 

at

 

least

 

one

 

system

 

temporary

 

table

 

space;

 

by

 

default,

 

one

 

system

 

temporary

 

table

 

space

 

called

 

TEMPSPACE1

 

is

 

created

 

at

 

database

 

creation

 

time.

 

IBMTEMPGROUP

 

is

 

the

 

default

 

database

 

partition

 

group

 

for

 

this

 

table

 

space.

 

User

 

temporary

 

table

 

spaces

 

are

 

not

 

created

 

by

 

default

 

at

 

database

 

creation

 

time.

 

If

 

a

 

database

 

uses

 

more

 

than

 

one

 

temporary

 

table

 

space

 

and

 

a

 

new

 

temporary

 

object

 

is

 

needed,

 

the

 

optimizer

 

will

 

choose

 

an

 

appropriate

 

page

 

size

 

for

 

this

 

object.

 

That

 

object

 

will

 

then

 

be

 

allocated

 

to

 

the

 

temporary

 

table

 

space

 

with

 

the

 

corresponding

 

page

 

size.

 

If

 

there

 

is

 

more

 

than

 

one

 

temporary

 

table

 

space

 

with

 

that

 

page

 

size,

 

then

 

the

 

table

 

space

 

will

 

be

 

chosen

 

in

 

a

 

round-robin

 

fashion.

 

In

 

most

 

circumstances,

 

it

 

is

 

not

 

recommended

 

to

 

have

 

more

 

than

 

one

 

temporary

 

table

 

space

 

of

 

any

 

one

 

page

 

size.

 

If

 

queries

 

are

 

running

 

against

 

tables

 

in

 

table

 

spaces

 

that

 

are

 

defined

 

with

 

a

 

page

 

size

 

larger

 

than

 

the

 

4

 

KB

 

default

 

(for

 

example,

 

an

 

ORDER

 

BY

 

on

 

1012

 

columns),

 

some

 

of

 

them

 

may

 

fail.

 

This

 

will

 

occur

 

if

 

there

 

are

 

no

 

temporary

 

table

 

spaces

 

defined

 

with

 

a

 

larger

 

page

 

size.

 

You

 

may

 

need

 

to

 

create

 

a

 

temporary

 

table

 

space

 

with

 

a

 

larger

 

page

 

size

 

(8

 

KB,

 

16

 

KB,

 

or

 

32

 

KB).

 

Any

 

DML

 

(Data

 

Manipulation

 

Language)

 

statement

 

could

 

fail

 

unless

 

there

 

exists

 

a

 

temporary

 

table

 

space

 

with

 

the

 

same

 

page

 

size

 

as

 

the

 

largest

 

page

 

size

 

in

 

the

 

user

 

table

 

space.

 

You

 

should

 

define

 

a

 

single

 

SMS

 

temporary

 

table

 

space

 

with

 

a

 

page

 

size

 

equal

 

to

 

the

 

page

 

size

 

used

 

in

 

the

 

majority

 

of

 

your

 

user

 

table

 

spaces.

 

This

 

should

 

be

 

adequate

 

for

 

typical

 

environments

 

and

 

workloads.

 

In

 

a

 

partitioned

 

database

 

environment,

 

the

 

catalog

 

node

 

will

 

contain

 

all

 

three

 

default

 

table

 

spaces,

 

and

 

the

 

other

 

database

 

partitions

 

will

 

each

 

contain

 

only

 

TEMPSPACE1

 

and

 

USERSPACE1.

 

There

 

are

 

two

 

types

 

of

 

table

 

space,

 

both

 

of

 

which

 

can

 

be

 

used

 

in

 

a

 

single

 

database:

 

v

   

System

 

managed

 

space,

 

in

 

which

 

the

 

operating

 

system’s

 

file

 

manager

 

controls

 

the

 

storage

 

space.

 

v

   

Database

 

managed

 

space,

 

in

 

which

 

the

 

database

 

manager

 

controls

 

the

 

storage

 

space.

 

Related

 

concepts:

  

v

   

“Table

 

spaces

 

and

 

other

 

storage

 

structures”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

 

v

   

“Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces”

 

on

 

page

 

109

 

v

   

“Table

 

space

 

disk

 

I/O”

 

on

 

page

 

110

 

v

   

“Workload

 

considerations

 

in

 

table

 

space

 

design”

 

on

 

page

 

111

 

v

   

“Extent

 

size”

 

on

 

page

 

113

 

v

   

“Relationship

 

between

 

table

 

spaces

 

and

 

buffer

 

pools”

 

on

 

page

 

114

 

v

   

“Relationship

 

between

 

table

 

spaces

 

and

 

database

 

partition

 

groups”

 

on

 

page

 

115

 

v

   

“Temporary

 

table

 

space

 

design”

 

on

 

page

 

126

 

v

   

“Catalog

 

table

 

space

 

design”

 

on

 

page

 

128

 

Related

 

tasks:

  

v

   

“Creating

 

a

 

table

 

space”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Optimizing

 

table

 

space

 

performance

 

when

 

data

 

is

 

on

 

RAID

 

devices”

 

on

 

page

 

129

  

Chapter

 

5.

 

Physical

 

database

 

design

 

91



Related

 

reference:

  

v

   

“CREATE

 

TABLE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

System

 

managed

 

space

  

In

 

an

 

SMS

 

(System

 

Managed

 

Space)

 

table

 

space,

 

the

 

operating

 

system’s

 

file

 

system

 

manager

 

allocates

 

and

 

manages

 

the

 

space

 

where

 

the

 

table

 

is

 

stored.

 

The

 

storage

 

model

 

typically

 

consists

 

of

 

many

 

files,

 

representing

 

table

 

objects,

 

stored

 

in

 

the

 

file

 

system

 

space.

 

The

 

user

 

decides

 

on

 

the

 

location

 

of

 

the

 

files,

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

controls

 

their

 

names,

 

and

 

the

 

file

 

system

 

is

 

responsible

 

for

 

managing

 

them.

 

By

 

controlling

 

the

 

amount

 

of

 

data

 

written

 

to

 

each

 

file,

 

the

 

database

 

manager

 

distributes

 

the

 

data

 

evenly

 

across

 

the

 

table

 

space

 

containers.

 

By

 

default,

 

the

 

initial

 

table

 

spaces

 

created

 

at

 

database

 

creation

 

time

 

are

 

SMS.

 

Each

 

table

 

has

 

at

 

least

 

one

 

SMS

 

physical

 

file

 

associated

 

with

 

it.

 

If

 

you

 

need

 

improved

 

insert

 

performance,

 

you

 

should

 

consider

 

enabling

 

multipage

 

file

 

allocation.

 

This

 

allows

 

the

 

system

 

to

 

allocate

 

or

 

extend

 

the

 

file

 

by

 

a

 

full

 

extent

 

instead

 

of

 

one

 

page

 

at

 

a

 

time.

 

For

 

performance

 

reasons,

 

if

 

you

 

will

 

be

 

storing

 

multidimensional

 

(MDC)

 

tables

 

in

 

your

 

SMS

 

table

 

space,

 

you

 

should

 

enable

 

multipage

 

file

 

allocation.

 

Starting

 

in

 

version

 

8.2,

 

when

 

you

 

create

 

a

 

database

 

(including

 

a

 

partitioned

 

database),

 

multipage

 

file

 

allocation

 

is

 

enabled

 

by

 

default.

 

However,

 

multipage

 

file

 

allocation

 

may

 

not

 

be

 

the

 

default

 

when

 

creating

 

a

 

new

 

database

 

if

 

you

 

have

 

turned

 

on

 

the

 

DB2_NO_MPFA_FOR_NEW_DB

 

registry

 

variable.

 

The

 

db2empfa

 

utility

 

is

 

used

 

to

 

enable

 

multipage

 

file

 

allocation

 

for

 

a

 

database.

 

In

 

a

 

partitioned

 

database

 

environment,

 

this

 

utility

 

must

 

be

 

run

 

on

 

each

 

database

 

partition.

 

Once

 

multipage

 

file

 

allocation

 

is

 

enabled,

 

it

 

cannot

 

be

 

disabled.

 

SMS

 

table

 

spaces

 

are

 

defined

 

using

 

the

 

MANAGED

 

BY

 

SYSTEM

 

option

 

on

 

the

 

CREATE

 

DATABASE

 

command,

 

or

 

on

 

the

 

CREATE

 

TABLESPACE

 

statement.

 

You

 

must

 

consider

 

two

 

key

 

factors

 

when

 

you

 

design

 

your

 

SMS

 

table

 

spaces:

 

v

   

Containers

 

for

 

the

 

table

 

space.

 

You

 

must

 

specify

 

the

 

number

 

of

 

containers

 

that

 

you

 

want

 

to

 

use

 

for

 

your

 

table

 

space.

 

It

 

is

 

very

 

important

 

to

 

identify

 

all

 

the

 

containers

 

you

 

want

 

to

 

use,

 

because

 

you

 

cannot

 

add

 

or

 

delete

 

containers

 

after

 

an

 

SMS

 

table

 

space

 

is

 

created.

 

In

 

a

 

partitioned

 

database

 

environment,

 

when

 

a

 

new

 

partition

 

is

 

added

 

to

 

the

 

database

 

partition

 

group

 

for

 

an

 

SMS

 

table

 

space,

 

the

 

ALTER

 

TABLESPACE

 

statement

 

can

 

be

 

used

 

to

 

add

 

containers

 

for

 

the

 

new

 

partition.

 

Each

 

container

 

used

 

for

 

an

 

SMS

 

table

 

space

 

identifies

 

an

 

absolute

 

or

 

relative

 

directory

 

name.

 

Each

 

of

 

these

 

directories

 

can

 

be

 

located

 

on

 

a

 

different

 

file

 

system

 

(or

 

physical

 

disk).

 

The

 

maximum

 

size

 

of

 

the

 

table

 

space

 

can

 

be

 

estimated

 

by:

    

number

 

of

 

containers

 

*

 

(maximum

 

file

 

system

 

size

       

supported

 

by

 

the

 

operating

 

system)

 

This

 

formula

 

assumes

 

that

 

there

 

is

 

a

 

distinct

 

file

 

system

 

mapped

 

to

 

each

 

container,

 

and

 

that

 

each

 

file

 

system

 

has

 

the

 

maximum

 

amount

 

of

 

space

 

available.

 

In

 

practice,

 

this

 

may

 

not

 

be

 

the

 

case,

 

and

 

the

 

maximum

 

table

 

space

 

size

 

may

 

be

 

much

 

smaller.

 

There

 

are

 

also

 

SQL

 

limits

 

on

 

the

 

size

 

of

 

database

 

objects,

 

which

 

may

 

affect

 

the

 

maximum

 

size

 

of

 

a

 

table

 

space.

 

Note:

  

Care

 

must

 

be

 

taken

 

when

 

defining

 

the

 

containers.

 

If

 

there

 

are

 

existing

 

files

 

or

 

directories

 

on

 

the

 

containers,

 

an

 

error

 

(SQL0298N)

 

is

 

returned.

 

v

   

Extent

 

size

 

for

 

the

 

table

 

space.

   

92

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|



The

 

extent

 

size

 

can

 

only

 

be

 

specified

 

when

 

the

 

table

 

space

 

is

 

created.

 

Because

 

it

 

cannot

 

be

 

changed

 

later,

 

it

 

is

 

important

 

to

 

select

 

an

 

appropriate

 

value

 

for

 

the

 

extent

 

size.

 

If

 

you

 

do

 

not

 

specify

 

the

 

extent

 

size

 

when

 

creating

 

a

 

table

 

space,

 

the

 

database

 

manager

 

will

 

create

 

the

 

table

 

space

 

using

 

the

 

default

 

extent

 

size,

 

defined

 

by

 

the

 

dft_extent_sz

 

database

 

configuration

 

parameter.

 

This

 

configuration

 

parameter

 

is

 

initially

 

set

 

based

 

on

 

information

 

provided

 

when

 

the

 

database

 

is

 

created.

 

If

 

the

 

dft_extent_sz

 

parameter

 

is

 

not

 

specified

 

on

 

the

 

CREATE

 

DATABASE

 

command,

 

the

 

default

 

extent

 

size

 

will

 

be

 

set

 

to

 

32.

 

To

 

choose

 

appropriate

 

values

 

for

 

the

 

number

 

of

 

containers

 

and

 

the

 

extent

 

size

 

for

 

the

 

table

 

space,

 

you

 

must

 

understand:

 

v

   

The

 

limitation

 

that

 

your

 

operating

 

system

 

imposes

 

on

 

the

 

size

 

of

 

a

 

logical

 

file

 

system.

 

For

 

example,

 

some

 

operating

 

systems

 

have

 

a

 

2

 

GB

 

limit.

 

Therefore,

 

if

 

you

 

want

 

a

 

64

 

GB

 

table

 

object,

 

you

 

will

 

need

 

at

 

least

 

32

 

containers

 

on

 

this

 

type

 

of

 

system.

 

When

 

you

 

create

 

the

 

table

 

space,

 

you

 

can

 

specify

 

containers

 

that

 

reside

 

on

 

different

 

file

 

systems

 

and

 

as

 

a

 

result,

 

increase

 

the

 

amount

 

of

 

data

 

that

 

can

 

be

 

stored

 

in

 

the

 

database.

 

v

   

How

 

the

 

database

 

manager

 

manages

 

the

 

data

 

files

 

and

 

containers

 

associated

 

with

 

a

 

table

 

space.

 

The

 

first

 

table

 

data

 

file

 

(SQL00001.DAT)

 

is

 

created

 

in

 

the

 

first

 

container

 

specified

 

for

 

the

 

table

 

space,

 

and

 

this

 

file

 

is

 

allowed

 

to

 

grow

 

to

 

the

 

extent

 

size.

 

After

 

it

 

reaches

 

this

 

size,

 

the

 

database

 

manager

 

writes

 

data

 

to

 

SQL00001.DAT

 

in

 

the

 

next

 

container.

 

This

 

process

 

continues

 

until

 

all

 

of

 

the

 

containers

 

contain

 

SQL00001.DAT

 

files,

 

at

 

which

 

time

 

the

 

database

 

manager

 

returns

 

to

 

the

 

first

 

container.

 

This

 

process

 

(known

 

as

 

striping)

 

continues

 

through

 

the

 

container

 

directories

 

until

 

a

 

container

 

becomes

 

full

 

(SQL0289N),

 

or

 

no

 

more

 

space

 

can

 

be

 

allocated

 

from

 

the

 

operating

 

system

 

(disk

 

full

 

error).

 

Striping

 

is

 

also

 

used

 

for

 

index

 

(SQLnnnnn.INX),

 

long

 

field

 

(SQLnnnnn.LF),

 

and

 

LOB

 

(SQLnnnnn.LB

 

and

 

SQLnnnnn.LBA)

 

files.

 

Note:

  

The

 

SMS

 

table

 

space

 

is

 

full

 

as

 

soon

 

as

 

any

 

one

 

of

 

its

 

containers

 

is

 

full.

 

Thus,

 

it

 

is

 

important

 

to

 

have

 

the

 

same

 

amount

 

of

 

space

 

available

 

to

 

each

 

container.

 

To

 

help

 

distribute

 

data

 

across

 

the

 

containers

 

more

 

evenly,

 

the

 

database

 

manager

 

determines

 

which

 

container

 

to

 

use

 

first

 

by

 

taking

 

the

 

table

 

identifier

 

(SQL00001.DAT

 

in

 

the

 

above

 

example)

 

and

 

factoring

 

into

 

account

 

the

 

number

 

of

 

containers.

 

Containers

 

are

 

numbered

 

sequentially,

 

starting

 

at

 

0.

 

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

 

v

   

“Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces”

 

on

 

page

 

109

 

Related

 

reference:

  

v

   

“db2empfa

 

-

 

Enable

 

Multipage

 

File

 

Allocation

 

Command”

 

in

 

the

 

Command

 

Reference

  

Chapter

 

5.

 

Physical

 

database

 

design

 

93

|
|
|
|



Database

 

managed

 

space

  

In

 

a

 

DMS

 

(Database

 

Managed

 

Space)

 

table

 

space,

 

the

 

database

 

manager

 

controls

 

the

 

storage

 

space.

 

The

 

storage

 

model

 

consists

 

of

 

a

 

limited

 

number

 

of

 

devices

 

or

 

files

 

whose

 

space

 

is

 

managed

 

by

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB).

 

The

 

database

 

administrator

 

decides

 

which

 

devices

 

and

 

files

 

to

 

use,

 

and

 

DB2

 

UDB

 

manages

 

the

 

space

 

on

 

those

 

devices

 

and

 

files.

 

The

 

table

 

space

 

is

 

essentially

 

an

 

implementation

 

of

 

a

 

special

 

purpose

 

file

 

system

 

designed

 

to

 

best

 

meet

 

the

 

needs

 

of

 

the

 

database

 

manager.

 

A

 

DMS

 

table

 

space

 

containing

 

user

 

defined

 

tables

 

and

 

data

 

can

 

be

 

defined

 

as:

 

v

   

A

 

regular

 

table

 

space

 

to

 

store

 

any

 

table

 

data

 

and

 

optionally

 

index

 

data

 

v

   

A

 

large

 

table

 

space

 

to

 

store

 

long

 

field

 

or

 

LOB

 

data

 

or

 

index

 

data.

When

 

designing

 

your

 

DMS

 

table

 

spaces

 

and

 

containers,

 

you

 

should

 

consider

 

the

 

following:

 

v

   

The

 

database

 

manager

 

uses

 

striping

 

to

 

ensure

 

an

 

even

 

distribution

 

of

 

data

 

across

 

all

 

containers.

 

v

   

The

 

maximum

 

size

 

of

 

regular

 

table

 

spaces

 

is

 

64

 

GB

 

for

 

4

 

KB

 

pages;

 

128

 

GB

 

for

 

8

 

KB

 

pages;

 

256

 

GB

 

for

 

16

 

KB

 

pages;

 

and

 

512

 

GB

 

for

 

32

 

KB

 

pages.

 

The

 

maximum

 

size

 

of

 

large

 

table

 

spaces

 

is

 

2

 

TB.

 

v

   

Unlike

 

SMS

 

table

 

spaces,

 

the

 

containers

 

that

 

make

 

up

 

a

 

DMS

 

table

 

space

 

do

 

not

 

need

 

to

 

be

 

the

 

same

 

size;

 

however,

 

this

 

is

 

not

 

normally

 

recommended,

 

because

 

it

 

results

 

in

 

uneven

 

striping

 

across

 

the

 

containers,

 

and

 

sub-optimal

 

performance.

 

If

 

any

 

container

 

is

 

full,

 

DMS

 

table

 

spaces

 

use

 

available

 

free

 

space

 

from

 

other

 

containers.

 

v

   

Because

 

space

 

is

 

pre-allocated,

 

it

 

must

 

be

 

available

 

before

 

the

 

table

 

space

 

can

 

be

 

created.

 

When

 

using

 

device

 

containers,

 

the

 

device

 

must

 

also

 

exist

 

with

 

enough

 

space

 

for

 

the

 

definition

 

of

 

the

 

container.

 

Each

 

device

 

can

 

have

 

only

 

one

 

container

 

defined

 

on

 

it.

 

To

 

avoid

 

wasted

 

space,

 

the

 

size

 

of

 

the

 

device

 

and

 

the

 

size

 

of

 

the

 

container

 

should

 

be

 

equivalent.

 

If,

 

for

 

example,

 

the

 

device

 

is

 

allocated

 

with

 

5

 

000

 

pages,

 

and

 

the

 

device

 

container

 

is

 

defined

 

to

 

allocate

 

3

 

000

 

pages,

 

2

 

000

 

pages

 

on

 

the

 

device

 

will

 

not

 

be

 

usable.

 

v

   

By

 

default,

 

one

 

extent

 

in

 

every

 

container

 

is

 

reserved

 

for

 

overhead.

 

Only

 

full

 

extents

 

are

 

used,

 

so

 

for

 

optimal

 

space

 

management,

 

you

 

can

 

use

 

the

 

following

 

formula

 

to

 

determine

 

an

 

appropriate

 

size

 

to

 

use

 

when

 

allocating

 

a

 

container:

    

extent_size

 

*

 

(n

 

+

 

1)

 

where

 

extent_size

 

is

 

the

 

size

 

of

 

each

 

extent

 

in

 

the

 

table

 

space,

 

and

 

n

 

is

 

the

 

number

 

of

 

extents

 

that

 

you

 

want

 

to

 

store

 

in

 

the

 

container.

 

v

   

The

 

minimum

 

size

 

of

 

a

 

DMS

 

table

 

space

 

is

 

five

 

extents.

 

Attempting

 

to

 

create

 

a

 

table

 

space

 

smaller

 

than

 

five

 

extents

 

will

 

result

 

in

 

an

 

error

 

(SQL1422N).

 

–

   

Three

 

extents

 

in

 

the

 

table

 

space

 

are

 

reserved

 

for

 

overhead.

 

–

   

At

 

least

 

two

 

extents

 

are

 

required

 

to

 

store

 

any

 

user

 

table

 

data.

 

(These

 

extents

 

are

 

required

 

for

 

the

 

regular

 

data

 

for

 

one

 

table,

 

and

 

not

 

for

 

any

 

index,

 

long

 

field

 

or

 

large

 

object

 

data,

 

which

 

require

 

their

 

own

 

extents.)
v

   

Device

 

containers

 

must

 

use

 

logical

 

volumes

 

with

 

a

 

“character

 

special

 

interface,”

 

not

 

physical

 

volumes.

 

v

   

You

 

can

 

use

 

files

 

instead

 

of

 

devices

 

with

 

DMS

 

table

 

spaces.

 

No

 

operational

 

difference

 

exists

 

between

 

a

 

file

 

and

 

a

 

device;

 

however,

 

a

 

file

 

can

 

be

 

less

 

efficient

 

because

 

of

 

the

 

run-time

 

overhead

 

associated

 

with

 

the

 

file

 

system.

 

Files

 

are

 

useful

 

when:

   

94

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|



–

   

Devices

 

are

 

not

 

directly

 

supported

 

–

   

A

 

device

 

is

 

not

 

available

 

–

   

Maximum

 

performance

 

is

 

not

 

required

 

–

   

You

 

do

 

not

 

want

 

to

 

set

 

up

 

devices.
v

   

If

 

your

 

workload

 

involves

 

LOBs

 

or

 

LONG

 

VARCHAR

 

data,

 

you

 

may

 

derive

 

performance

 

benefits

 

from

 

file

 

system

 

caching.

 

Note

 

that

 

LOBs

 

and

 

LONG

 

VARCHARs

 

are

 

not

 

buffered

 

by

 

DB2

 

UDB’s

 

buffer

 

pool.

 

v

   

Some

 

operating

 

systems

 

allow

 

you

 

to

 

have

 

physical

 

devices

 

greater

 

than

 

2

 

GB

 

in

 

size.

 

You

 

should

 

consider

 

partitioning

 

the

 

physical

 

device

 

into

 

multiple

 

logical

 

devices,

 

so

 

that

 

no

 

container

 

is

 

larger

 

than

 

the

 

size

 

allowed

 

by

 

the

 

operating

 

system.

 

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces”

 

on

 

page

 

109

 

v

   

“Table

 

space

 

maps”

 

on

 

page

 

95

 

v

   

“How

 

containers

 

are

 

added

 

and

 

extended

 

in

 

DMS

 

table

 

spaces”

 

on

 

page

 

98

Table

 

space

 

maps

  

A

 

table

 

space

 

map

 

is

 

DB2®

 

Universal

 

Database’s

 

(DB2

 

UDB’s)

 

internal

 

representation

 

of

 

a

 

DMS

 

table

 

space

 

that

 

describes

 

the

 

logical

 

to

 

physical

 

conversion

 

of

 

page

 

locations

 

in

 

a

 

table

 

space.

 

The

 

following

 

information

 

describes

 

why

 

a

 

table

 

space

 

map

 

is

 

useful,

 

and

 

where

 

the

 

information

 

in

 

a

 

table

 

space

 

map

 

comes

 

from.

 

In

 

a

 

DB2

 

UDB

 

database,

 

pages

 

in

 

a

 

DMS

 

table

 

space

 

are

 

logically

 

numbered

 

from

 

0

 

to

 

(N-1),

 

where

 

N

 

is

 

the

 

number

 

of

 

usable

 

pages

 

in

 

the

 

table

 

space.

 

The

 

pages

 

in

 

a

 

DMS

 

table

 

space

 

are

 

grouped

 

into

 

extents,

 

based

 

on

 

the

 

extent

 

size,

 

and

 

from

 

a

 

table

 

space

 

management

 

perspective,

 

all

 

object

 

allocation

 

is

 

done

 

on

 

an

 

extent

 

basis.

 

That

 

is,

 

a

 

table

 

might

 

use

 

only

 

half

 

of

 

the

 

pages

 

in

 

an

 

extent

 

but

 

the

 

whole

 

extent

 

is

 

considered

 

to

 

be

 

in

 

use

 

and

 

owned

 

by

 

that

 

object.

 

By

 

default,

 

one

 

extent

 

is

 

used

 

to

 

hold

 

the

 

container

 

tag,

 

and

 

the

 

pages

 

in

 

this

 

extent

 

cannot

 

be

 

used

 

to

 

hold

 

data.

 

However,

 

if

 

the

 

DB2_USE_PAGE_CONTAINER_TAG

 

registry

 

variable

 

is

 

turned

 

on,

 

only

 

one

 

page

 

is

 

used

 

for

 

the

 

container

 

tag.

 

Because

 

space

 

in

 

containers

 

is

 

allocated

 

by

 

extent,

 

pages

 

that

 

do

 

not

 

make

 

up

 

a

 

full

 

extent

 

will

 

not

 

be

 

used.

 

For

 

example,

 

if

 

you

 

have

 

a

 

205-page

 

container

 

with

 

an

 

extent

 

size

 

of

 

10,

 

one

 

extent

 

will

 

be

 

used

 

for

 

the

 

tag,

 

19

 

extents

 

will

 

be

 

available

 

for

 

data,

 

and

 

the

 

five

 

remaining

 

pages

 

are

 

wasted.

 

If

 

a

 

DMS

 

table

 

space

 

contains

 

a

 

single

 

container,

 

the

 

conversion

 

from

 

logical

 

page

 

number

 

to

 

physical

 

location

 

on

 

disk

 

is

 

a

 

straightforward

 

process

 

where

 

pages

 

0,

 

1,

 

2,

 

will

 

be

 

located

 

in

 

that

 

same

 

order

 

on

 

disk.

 

It

 

is

 

also

 

a

 

fairly

 

straightforward

 

process

 

in

 

the

 

case

 

where

 

there

 

is

 

more

 

than

 

one

 

container

 

and

 

each

 

of

 

the

 

containers

 

is

 

the

 

same

 

size.

 

The

 

first

 

extent

 

in

 

the

 

table

 

space

 

(containing

 

pages

 

0

 

to

 

(extent

 

size

 

-

 

1))

 

will

 

be

 

located

 

in

 

the

 

first

 

container,

 

the

 

second

 

extent

 

will

 

be

 

located

 

in

 

the

 

second

 

container,

 

and

 

so

 

on.

 

After

 

the

 

last

 

container,

 

the

 

process

 

repeats

 

in

 

a

 

round-robin

 

fashion,

 

starting

 

back

 

at

 

the

 

first

 

container.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

95

|
|
|

|
|
|
|
|

|
|



For

 

table

 

spaces

 

containing

 

containers

 

of

 

different

 

sizes,

 

a

 

simple

 

round-robin

 

approach

 

cannot

 

be

 

used

 

as

 

it

 

will

 

not

 

take

 

advantage

 

of

 

the

 

extra

 

space

 

in

 

the

 

larger

 

containers.

 

This

 

is

 

where

 

the

 

table

 

space

 

map

 

comes

 

in

 

–

 

it

 

dictates

 

how

 

extents

 

are

 

positioned

 

within

 

the

 

table

 

space,

 

ensuring

 

that

 

all

 

of

 

the

 

extents

 

in

 

the

 

physical

 

containers

 

are

 

available

 

for

 

use.

 

Note:

  

In

 

the

 

following

 

examples,

 

the

 

container

 

sizes

 

do

 

not

 

take

 

the

 

size

 

of

 

the

 

container

 

tag

 

into

 

account.

 

The

 

container

 

sizes

 

are

 

very

 

small,

 

and

 

are

 

just

 

used

 

for

 

the

 

purpose

 

of

 

illustration,

 

they

 

are

 

not

 

recommended

 

container

 

sizes.

 

The

 

examples

 

show

 

containers

 

of

 

different

 

sizes

 

within

 

a

 

table

 

space,

 

but

 

you

 

are

 

advised

 

to

 

use

 

containers

 

of

 

the

 

same

 

size.

 

Example

 

1:

 

There

 

are

 

3

 

containers

 

in

 

a

 

table

 

space,

 

each

 

container

 

contains

 

80

 

usable

 

pages,

 

and

 

the

 

extent

 

size

 

for

 

the

 

table

 

space

 

is

 

20.

 

Each

 

container

 

will

 

therefore

 

have

 

4

 

extents

 

(80

 

/

 

20)

 

for

 

a

 

total

 

of

 

12

 

extents.

 

These

 

extents

 

will

 

be

 

located

 

on

 

disk

 

as

 

shown

 

in

 

Figure

 

29.

   

To

 

see

 

a

 

table

 

space

 

map,

 

take

 

a

 

table

 

space

 

snapshot

 

using

 

the

 

snapshot

 

monitor.

 

In

 

Example

 

1

 

where

 

the

 

three

 

containers

 

are

 

of

 

equal

 

size,

 

the

 

table

 

space

 

map

 

looks

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

      

11

      

239

        

0

        

3

    

0

   

3

 

(0,

 

1,

 

2)

   

A

 

range

 

is

 

the

 

piece

 

of

 

the

 

map

 

in

 

which

 

a

 

contiguous

 

range

 

of

 

stripes

 

all

 

contain

 

the

 

same

 

set

 

of

 

containers.

 

In

 

Example

 

1,

 

all

 

of

 

the

 

stripes

 

(0

 

to

 

3)

 

contain

 

the

 

same

 

set

 

of

 

3

 

containers

 

(0,

 

1,

 

and

 

2)

 

and

 

therefore

 

this

 

is

 

considered

 

a

 

single

 

range.

 

The

 

headings

 

in

 

the

 

table

 

space

 

map

 

are

 

Range

 

Number,

 

Stripe

 

Set,

 

Stripe

 

Offset,

 

Maximum

 

extent

 

number

 

addressed

 

by

 

the

 

range,

 

Maximum

 

page

 

number

 

addressed

 

by

 

the

 

range,

 

Start

 

Stripe,

 

End

 

Stripe,

 

Range

 

adjustment,

 

and

 

Container

 

list.

 

These

 

will

 

be

 

explained

 

in

 

more

 

detail

 

for

 

Example

 

2.

 

Container 0

Extent 0

Extent 3

Extent 6

Extent 9

Container 1

Extent 1

Extent 4

Extent 7

Extent 10

Container 2

Extent 2

Extent 5

Extent 8

Extent 11

Table space

  

Figure

 

29.

 

Table

 

space

 

with

 

three

 

containers

 

and

 

12

 

extents

  

96

 

Administration

 

Guide:

 

Planning



This

 

table

 

space

 

can

 

also

 

be

 

diagrammed

 

as

 

shown

 

in

 

Figure

 

30,

 

in

 

which

 

each

 

vertical

 

line

 

corresponds

 

to

 

a

 

container,

 

each

 

horizontal

 

line

 

is

 

called

 

a

 

stripe,

 

and

 

each

 

cell

 

number

 

corresponds

 

to

 

an

 

extent.

   

Example

 

2:

 

There

 

are

 

two

 

containers

 

in

 

the

 

table

 

space:

 

the

 

first

 

is

 

100

 

pages

 

in

 

size,

 

the

 

second

 

is

 

50

 

pages

 

in

 

size,

 

and

 

the

 

extent

 

size

 

is

 

25.

 

This

 

means

 

that

 

the

 

first

 

container

 

has

 

four

 

extents

 

and

 

the

 

second

 

container

 

has

 

two

 

extents.

 

The

 

table

 

space

 

can

 

be

 

diagrammed

 

as

 

shown

 

in

 

Figure

 

31.

   

Stripes

 

0

 

and

 

1

 

contain

 

both

 

of

 

the

 

containers

 

(0

 

and

 

1)

 

but

 

stripes

 

2

 

and

 

3

 

only

 

contain

 

the

 

first

 

container

 

(0).

 

Each

 

of

 

these

 

sets

 

of

 

stripes

 

is

 

a

 

range.

 

The

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

looks

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

3

       

99

        

0

        

1

    

0

   

2

 

(0,

 

1)

        

[1]

       

[0]

       

0

       

5

      

149

        

2

        

3

    

0

   

1

 

(0)

  

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Containers

Stripes

  

Figure

 

30.

 

Table

 

space

 

with

 

three

 

containers

 

and

 

12

 

extents,

 

with

 

stripes

 

highlighted

0

0 1

1

2

3

Extent 0 Extent 1

Extent 3Extent 2

Extent 4

Extent 5

Containers

Stripes

Range 0

Range 1

  

Figure

 

31.

 

Table

 

space

 

with

 

two

 

containers,

 

with

 

ranges

 

highlighted

  

Chapter

 

5.

 

Physical

 

database

 

design

 

97



There

 

are

 

four

 

extents

 

in

 

the

 

first

 

range,

 

and

 

therefore

 

the

 

maximum

 

extent

 

number

 

addressed

 

in

 

this

 

range

 

(Max

 

Extent)

 

is

 

3.

 

Each

 

extent

 

has

 

25

 

pages

 

and

 

therefore

 

there

 

are

 

100

 

pages

 

in

 

the

 

first

 

range.

 

Since

 

page

 

numbering

 

also

 

starts

 

at

 

0,

 

the

 

maximum

 

page

 

number

 

addressed

 

in

 

this

 

range

 

(Max

 

Page)

 

is

 

99.

 

The

 

first

 

stripe

 

(Start

 

Stripe)

 

in

 

this

 

range

 

is

 

0

 

and

 

the

 

last

 

stripe

 

(End

 

Stripe)

 

in

 

the

 

range

 

is

 

stripe

 

1.

 

There

 

are

 

two

 

containers

 

in

 

this

 

range

 

and

 

those

 

are

 

0

 

and

 

1.

 

The

 

stripe

 

offset

 

is

 

the

 

first

 

stripe

 

in

 

the

 

stripe

 

set,

 

which

 

in

 

this

 

case

 

is

 

0

 

because

 

there

 

is

 

only

 

one

 

stripe

 

set.

 

The

 

range

 

adjustment

 

(Adj.)

 

is

 

an

 

offset

 

used

 

when

 

data

 

is

 

being

 

rebalanced

 

in

 

a

 

table

 

space.

 

(A

 

rebalance

 

may

 

occur

 

when

 

space

 

is

 

added

 

or

 

dropped

 

from

 

a

 

table

 

space.)

 

While

 

a

 

rebalance

 

is

 

not

 

taking

 

place,

 

this

 

will

 

always

 

be

 

0.

 

There

 

are

 

two

 

extents

 

in

 

the

 

second

 

range

 

and

 

because

 

the

 

maximum

 

extent

 

number

 

addressed

 

in

 

the

 

previous

 

range

 

is

 

3,

 

the

 

maximum

 

extent

 

number

 

addressed

 

in

 

this

 

range

 

is

 

5.

 

There

 

are

 

50

 

pages

 

(2

 

extents

 

*

 

25

 

pages)

 

in

 

the

 

second

 

range

 

and

 

because

 

the

 

maximum

 

page

 

number

 

addressed

 

in

 

the

 

previous

 

range

 

is

 

99,

 

the

 

maximum

 

page

 

number

 

addressed

 

in

 

this

 

range

 

is

 

149.

 

This

 

range

 

starts

 

at

 

stripe

 

2

 

and

 

ends

 

at

 

stripe

 

3.

  

Related

 

concepts:

  

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

 

v

   

“Snapshot

 

monitor”

 

in

 

the

 

System

 

Monitor

 

Guide

 

and

 

Reference

 

v

   

“How

 

containers

 

are

 

added

 

and

 

extended

 

in

 

DMS

 

table

 

spaces”

 

on

 

page

 

98

 

v

   

“How

 

containers

 

are

 

dropped

 

and

 

reduced

 

in

 

DMS

 

table

 

spaces”

 

on

 

page

 

106

 

Related

 

reference:

  

v

   

“GET

 

SNAPSHOT

 

Command”

 

in

 

the

 

Command

 

Reference

How

 

containers

 

are

 

added

 

and

 

extended

 

in

 

DMS

 

table

 

spaces

  

When

 

a

 

table

 

space

 

is

 

created,

 

its

 

table

 

space

 

map

 

is

 

created

 

and

 

all

 

of

 

the

 

initial

 

containers

 

are

 

lined

 

up

 

such

 

that

 

they

 

all

 

start

 

in

 

stripe

 

0.

 

This

 

means

 

that

 

data

 

will

 

be

 

striped

 

evenly

 

across

 

all

 

of

 

the

 

table

 

space

 

containers

 

until

 

the

 

individual

 

containers

 

fill

 

up.

 

(See

 

“Example

 

1”

 

on

 

page

 

99.)

 

The

 

ALTER

 

TABLESPACE

 

statement

 

lets

 

you

 

add

 

a

 

container

 

to

 

an

 

existing

 

table

 

space

 

or

 

extend

 

a

 

container

 

to

 

increase

 

its

 

storage

 

capacity.

 

Adding

 

a

 

container

 

which

 

is

 

smaller

 

than

 

existing

 

containers

 

results

 

in

 

a

 

uneven

 

distribution

 

of

 

data.

 

This

 

can

 

cause

 

parallel

 

I/O

 

operations,

 

such

 

as

 

prefetching

 

data,

 

to

 

perform

 

less

 

efficiently

 

than

 

they

 

otherwise

 

could

 

on

 

containers

 

of

 

equal

 

size.

 

When

 

new

 

containers

 

are

 

added

 

to

 

a

 

table

 

space

 

or

 

existing

 

containers

 

are

 

extended,

 

a

 

rebalance

 

of

 

the

 

table

 

space

 

data

 

may

 

occur.

 

Rebalancing

 

The

 

process

 

of

 

rebalancing

 

when

 

adding

 

or

 

extending

 

containers

 

involves

 

moving

 

table

 

space

 

extents

 

from

 

one

 

location

 

to

 

another,

 

and

 

it

 

is

 

done

 

in

 

an

 

attempt

 

to

 

keep

 

data

 

striped

 

within

 

the

 

table

 

space.

 

Access

 

to

 

the

 

table

 

space

 

is

 

not

 

restricted

 

during

 

rebalancing;

 

objects

 

can

 

be

 

dropped,

 

created,

 

populated,

 

and

 

queried

 

as

 

usual.

 

However,

 

the

 

rebalancing

 

operation

 

can

 

have

 

a

 

significant

 

impact

 

on

 

performance.

 

If

 

you

 

need

 

to

 

add

 

more

   

98

 

Administration

 

Guide:

 

Planning



than

 

one

 

container,

 

and

 

you

 

plan

 

on

 

rebalancing

 

the

 

containers,

 

you

 

should

 

add

 

them

 

at

 

the

 

same

 

time

 

within

 

a

 

single

 

ALTER

 

TABLESPACE

 

statement

 

to

 

prevent

 

the

 

database

 

manager

 

from

 

having

 

to

 

rebalance

 

the

 

data

 

more

 

than

 

once.

 

The

 

table

 

space

 

high-water

 

mark

 

plays

 

a

 

key

 

part

 

in

 

the

 

rebalancing

 

process.

 

The

 

high-water

 

mark

 

is

 

the

 

page

 

number

 

of

 

the

 

highest

 

allocated

 

page

 

in

 

the

 

table

 

space.

 

For

 

example,

 

a

 

table

 

space

 

has

 

1000

 

pages

 

and

 

an

 

extent

 

size

 

of

 

10,

 

resulting

 

in

 

100

 

extents.

 

If

 

the

 

42nd

 

extent

 

is

 

the

 

highest

 

allocated

 

extent

 

in

 

the

 

table

 

space

 

that

 

means

 

that

 

the

 

high-water

 

mark

 

is

 

42

 

*

 

10

 

=

 

420

 

pages.

 

This

 

is

 

not

 

the

 

same

 

as

 

used

 

pages

 

because

 

some

 

of

 

the

 

extents

 

below

 

the

 

high-water

 

mark

 

may

 

have

 

been

 

freed

 

up

 

such

 

that

 

they

 

are

 

available

 

for

 

reuse.

 

Before

 

the

 

rebalance

 

starts,

 

a

 

new

 

table

 

space

 

map

 

is

 

built

 

based

 

on

 

the

 

container

 

changes

 

made.

 

The

 

rebalancer

 

will

 

move

 

extents

 

from

 

their

 

location

 

determined

 

by

 

the

 

current

 

map

 

into

 

the

 

location

 

determined

 

by

 

the

 

new

 

map.

 

The

 

rebalancer

 

starts

 

at

 

extent

 

0,

 

moving

 

one

 

extent

 

at

 

a

 

time

 

until

 

the

 

extent

 

holding

 

the

 

high-water

 

mark

 

has

 

been

 

moved.

 

As

 

each

 

extent

 

is

 

moved,

 

the

 

current

 

map

 

is

 

altered

 

one

 

piece

 

at

 

a

 

time

 

to

 

look

 

like

 

the

 

new

 

map.

 

At

 

the

 

point

 

that

 

the

 

rebalance

 

is

 

complete,

 

the

 

current

 

map

 

and

 

new

 

map

 

should

 

look

 

identical

 

up

 

to

 

the

 

stripe

 

holding

 

the

 

high-water

 

mark.

 

The

 

current

 

map

 

is

 

then

 

made

 

to

 

look

 

completely

 

like

 

the

 

new

 

map

 

and

 

the

 

rebalancing

 

process

 

is

 

complete.

 

If

 

the

 

location

 

of

 

an

 

extent

 

in

 

the

 

current

 

map

 

is

 

the

 

same

 

as

 

its

 

location

 

in

 

the

 

new

 

map,

 

then

 

the

 

extent

 

is

 

not

 

moved

 

and

 

no

 

I/O

 

takes

 

place.

 

When

 

adding

 

a

 

new

 

container,

 

the

 

placement

 

of

 

that

 

container

 

within

 

the

 

new

 

map

 

depends

 

on

 

its

 

size

 

and

 

the

 

size

 

of

 

the

 

other

 

containers

 

in

 

its

 

stripe

 

set.

 

If

 

the

 

container

 

is

 

large

 

enough

 

such

 

that

 

it

 

can

 

start

 

at

 

the

 

first

 

stripe

 

in

 

the

 

stripe

 

set

 

and

 

end

 

at

 

(or

 

beyond)

 

the

 

last

 

stripe

 

in

 

the

 

stripe

 

set,

 

then

 

it

 

will

 

be

 

placed

 

that

 

way

 

(see

 

“Example

 

2”

 

on

 

page

 

100).

 

If

 

the

 

container

 

is

 

not

 

large

 

enough

 

to

 

do

 

this,

 

it

 

will

 

be

 

positioned

 

in

 

the

 

map

 

such

 

that

 

it

 

ends

 

in

 

the

 

last

 

stripe

 

of

 

the

 

stripe

 

set

 

(see

 

“Example

 

4”

 

on

 

page

 

102.)

 

This

 

is

 

done

 

to

 

minimize

 

the

 

amount

 

of

 

data

 

that

 

needs

 

to

 

be

 

rebalanced.

 

Note:

  

In

 

the

 

following

 

examples,

 

the

 

container

 

sizes

 

do

 

not

 

take

 

the

 

size

 

of

 

the

 

container

 

tag

 

into

 

account.

 

The

 

container

 

sizes

 

are

 

very

 

small,

 

and

 

are

 

just

 

used

 

for

 

the

 

purpose

 

of

 

illustration,

 

they

 

are

 

not

 

recommended

 

container

 

sizes.

 

The

 

examples

 

show

 

containers

 

of

 

different

 

sizes

 

within

 

a

 

table

 

space,

 

but

 

you

 

are

 

advised

 

to

 

use

 

containers

 

of

 

the

 

same

 

size.

 

Example

 

1:

 

If

 

you

 

create

 

a

 

table

 

space

 

with

 

three

 

containers

 

and

 

an

 

extent

 

size

 

of

 

10,

 

and

 

the

 

containers

 

are

 

60,

 

40,

 

and

 

80

 

pages

 

respectively

 

(6,

 

4,

 

and

 

8

 

extents),

 

the

 

table

 

space

 

will

 

be

 

created

 

with

 

a

 

map

 

that

 

can

 

be

 

diagrammed

 

as

 

shown

 

in

 

Figure

 

32

 

on

 

page

 

100.

    

Chapter

 

5.

 

Physical

 

database

 

design

 

99



The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

looks

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

      

11

      

119

        

0

        

3

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

15

      

159

        

4

        

5

    

0

   

2

 

(0,

 

2)

        

[2]

       

[0]

       

0

      

17

      

179

        

6

        

7

    

0

   

1

 

(2)

   

The

 

headings

 

in

 

the

 

table

 

space

 

map

 

are

 

Range

 

Number,

 

Stripe

 

Set,

 

Stripe

 

Offset,

 

Maximum

 

extent

 

number

 

addressed

 

by

 

the

 

range,

 

Maximum

 

page

 

number

 

addressed

 

by

 

the

 

range,

 

Start

 

Stripe,

 

End

 

Stripe,

 

Range

 

adjustment,

 

and

 

Container

 

list.

 

Example

 

2:

 

If

 

an

 

80-page

 

container

 

is

 

added

 

to

 

the

 

table

 

space

 

in

 

Example

 

1,

 

the

 

container

 

is

 

large

 

enough

 

to

 

start

 

in

 

the

 

first

 

stripe

 

(stripe

 

0)

 

and

 

end

 

in

 

the

 

last

 

stripe

 

(stripe

 

7).

 

It

 

is

 

positioned

 

such

 

that

 

it

 

starts

 

in

 

the

 

first

 

stripe.

 

The

 

resulting

 

table

 

space

 

can

 

be

 

diagrammed

 

as

 

shown

 

in

 

Figure

 

33

 

on

 

page

 

101.

  

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 15

Extent 16

Extent 17

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 14

Containers

Stripes

  

Figure

 

32.

 

Table

 

space

 

with

 

three

 

containers

 

and

 

18

 

extents

  

100

 

Administration

 

Guide:

 

Planning



The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

      

15

      

159

        

0

        

3

    

0

   

4

 

(0,

 

1,

 

2,

 

3)

        

[1]

       

[0]

       

0

      

21

      

219

        

4

        

5

    

0

   

3

 

(0,

 

2,

 

3)

        

[2]

       

[0]

       

0

      

25

      

259

        

6

        

7

    

0

   

2

 

(2,

 

3)

   

If

 

the

 

high-water

 

mark

 

is

 

within

 

extent

 

14,

 

the

 

rebalancer

 

will

 

start

 

at

 

extent

 

0

 

and

 

will

 

move

 

all

 

of

 

the

 

extents

 

up

 

to

 

and

 

including

 

14.

 

The

 

location

 

of

 

extent

 

0

 

within

 

both

 

of

 

the

 

maps

 

is

 

the

 

same

 

so

 

this

 

extent

 

does

 

not

 

need

 

to

 

move.

 

The

 

same

 

goes

 

for

 

extents

 

1

 

and

 

2.

 

Extent

 

3

 

does

 

need

 

to

 

move

 

so

 

the

 

extent

 

is

 

read

 

from

 

the

 

old

 

location

 

(second

 

extent

 

within

 

container

 

0)

 

and

 

written

 

to

 

the

 

new

 

location

 

(first

 

extent

 

within

 

container

 

3).

 

Every

 

extent

 

after

 

this

 

up

 

to

 

and

 

including

 

extent

 

14

 

will

 

be

 

moved.

 

Once

 

extent

 

14

 

has

 

been

 

moved,

 

the

 

current

 

map

 

will

 

be

 

made

 

to

 

look

 

like

 

the

 

new

 

map

 

and

 

the

 

rebalancer

 

will

 

terminate.

 

If

 

the

 

map

 

is

 

altered

 

such

 

that

 

all

 

of

 

the

 

newly

 

added

 

space

 

comes

 

after

 

the

 

high-water

 

mark,

 

then

 

a

 

rebalance

 

is

 

not

 

necessary

 

and

 

all

 

of

 

the

 

space

 

is

 

available

 

immediately

 

for

 

use.

 

If

 

the

 

map

 

is

 

altered

 

such

 

that

 

some

 

of

 

the

 

space

 

comes

 

after

 

the

 

high-water

 

mark,

 

then

 

the

 

space

 

in

 

the

 

stripes

 

above

 

the

 

high-water

 

mark

 

will

 

be

 

available

 

for

 

use.

 

The

 

rest

 

will

 

not

 

be

 

available

 

until

 

the

 

rebalance

 

is

 

complete.

 

If

 

you

 

decide

 

to

 

extend

 

a

 

container,

 

the

 

function

 

of

 

the

 

rebalancer

 

is

 

similar.

 

If

 

a

 

container

 

is

 

extended

 

such

 

that

 

it

 

extends

 

beyond

 

the

 

last

 

stripe

 

in

 

its

 

stripe

 

set,

 

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 6

Extent 10

Extent 14 Extent 15

Extent 11

Extent 7

Extent 3

Extent 18

Extent 21

Extent 23

Extent 25

Extent 17

Extent 20

Extent 22

Extent 24

Extent 5

Extent 9

Extent 13

Extent 4

Extent 8

Extent 12

Extent 16

Extent 19

Containers

Stripes

  

Figure

 

33.

 

Table

 

space

 

with

 

four

 

containers

 

and

 

26

 

extents

  

Chapter

 

5.

 

Physical

 

database

 

design

 

101



the

 

stripe

 

set

 

will

 

expand

 

to

 

fit

 

this

 

and

 

the

 

following

 

stripe

 

sets

 

will

 

be

 

shifted

 

out

 

accordingly.

 

The

 

result

 

is

 

that

 

the

 

container

 

will

 

not

 

extend

 

into

 

any

 

stripe

 

sets

 

following

 

it.

 

Example

 

3:

 

Consider

 

the

 

table

 

space

 

from

 

Example

 

1.

 

If

 

you

 

extend

 

container

 

1

 

from

 

40

 

pages

 

to

 

80

 

pages,

 

the

 

new

 

table

 

space

 

will

 

look

 

like

 

Figure

 

34.

   

The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

      

17

      

179

        

0

        

5

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

21

      

219

        

6

        

7

    

0

   

2

 

(1,

 

2)

   

Example

 

4:

 

Consider

 

the

 

table

 

space

 

from

 

“Example

 

1”

 

on

 

page

 

99.

 

If

 

a

 

50-page

 

(5-extent)

 

container

 

is

 

added

 

to

 

it,

 

the

 

container

 

will

 

be

 

added

 

to

 

the

 

new

 

map

 

in

 

the

 

following

 

way.

 

The

 

container

 

is

 

not

 

large

 

enough

 

to

 

start

 

in

 

the

 

first

 

stripe

 

(stripe

 

0)

 

and

 

end

 

at

 

or

 

beyond

 

the

 

last

 

stripe

 

(stripe

 

7),

 

so

 

it

 

is

 

positioned

 

such

 

that

 

it

 

ends

 

in

 

the

 

last

 

stripe.

 

(See

 

Figure

 

35

 

on

 

page

 

103.)

  

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 17

Extent 14

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 15 Extent 16

Extent 18

Extent 20

Containers

Stripes

  

Figure

 

34.

 

Table

 

space

 

with

 

three

 

containers

 

and

 

22

 

extents

  

102

 

Administration

 

Guide:

 

Planning



The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

8

       

89

        

0

        

2

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

12

      

129

        

3

        

3

    

0

   

4

 

(0,

 

1,

 

2,

 

3)

        

[2]

       

[0]

       

0

      

18

      

189

        

4

        

5

    

0

   

3

 

(0,

 

2,

 

3)

        

[3]

       

[0]

       

0

      

22

      

229

        

6

        

7

    

0

   

2

 

(2,

 

3)

   

To

 

extend

 

a

 

container,

 

use

 

the

 

EXTEND

 

or

 

RESIZE

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

To

 

add

 

containers

 

and

 

rebalance

 

the

 

data,

 

use

 

the

 

ADD

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

If

 

you

 

are

 

adding

 

a

 

container

 

to

 

a

 

table

 

space

 

that

 

already

 

has

 

more

 

than

 

one

 

stripe

 

set,

 

you

 

can

 

specify

 

which

 

stripe

 

set

 

you

 

want

 

to

 

add

 

to.

 

To

 

do

 

this,

 

you

 

use

 

the

 

ADD

 

TO

 

STRIPE

 

SET

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

If

 

you

 

do

 

not

 

specify

 

a

 

stripe

 

set,

 

the

 

default

 

behavior

 

will

 

be

 

to

 

add

 

the

 

container

 

to

 

the

 

current

 

stripe

 

set.

 

The

 

current

 

stripe

 

set

 

is

 

the

 

most

 

recently

 

created

 

stripe

 

set,

 

not

 

the

 

one

 

that

 

last

 

had

 

space

 

added

 

to

 

it.

 

Any

 

change

 

to

 

a

 

stripe

 

set

 

may

 

cause

 

a

 

rebalance

 

to

 

occur

 

to

 

that

 

stripe

 

set

 

and

 

any

 

others

 

following

 

it.

 

You

 

can

 

monitor

 

the

 

progress

 

of

 

a

 

rebalance

 

by

 

using

 

table

 

space

 

snapshots.

 

A

 

table

 

space

 

snapshot

 

can

 

provide

 

information

 

about

 

a

 

rebalance

 

such

 

as

 

the

 

start

 

time

 

of

 

the

 

rebalance,

 

how

 

many

 

extents

 

have

 

been

 

moved,

 

and

 

how

 

many

 

extents

 

need

 

to

 

move.

 

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11 Extent 12

Extent 15

Extent 18

Extent 20

Extent 22

Extent 14

Extent 17

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 13

Extent 16

Containers

Stripes

  

Figure

 

35.

 

Table

 

space

 

with

 

four

 

containers

 

and

 

23

 

extents

  

Chapter

 

5.

 

Physical

 

database

 

design

 

103



Without

 

rebalancing

 

(using

 

stripe

 

sets)

 

If

 

you

 

add

 

or

 

extend

 

a

 

container,

 

and

 

the

 

space

 

added

 

is

 

above

 

the

 

table

 

space

 

high-water

 

mark,

 

a

 

rebalance

 

will

 

not

 

occur.

 

Adding

 

a

 

container

 

will

 

almost

 

always

 

add

 

space

 

below

 

the

 

high-water

 

mark.

 

In

 

other

 

words,

 

a

 

rebalance

 

is

 

often

 

necessary

 

when

 

you

 

add

 

a

 

container.

 

There

 

is

 

an

 

option

 

to

 

force

 

new

 

containers

 

to

 

be

 

added

 

above

 

the

 

high-water

 

mark,

 

which

 

allows

 

you

 

to

 

choose

 

not

 

to

 

rebalance

 

the

 

contents

 

of

 

the

 

table

 

space.

 

An

 

advantage

 

of

 

this

 

method

 

is

 

that

 

the

 

new

 

container

 

will

 

be

 

available

 

for

 

immediate

 

use.

 

The

 

option

 

not

 

to

 

rebalance

 

applies

 

only

 

when

 

you

 

add

 

containers,

 

not

 

when

 

you

 

extend

 

existing

 

containers.

 

When

 

you

 

extend

 

containers

 

you

 

can

 

only

 

avoid

 

rebalancing

 

if

 

the

 

space

 

you

 

add

 

is

 

above

 

the

 

high-water

 

mark.

 

For

 

example,

 

if

 

you

 

have

 

a

 

number

 

of

 

containers

 

that

 

are

 

the

 

same

 

size,

 

and

 

you

 

extend

 

each

 

of

 

them

 

by

 

the

 

same

 

amount,

 

the

 

relative

 

positions

 

of

 

the

 

extents

 

will

 

not

 

change,

 

and

 

a

 

rebalance

 

will

 

not

 

occur.

 

Adding

 

containers

 

without

 

rebalancing

 

is

 

done

 

by

 

adding

 

a

 

new

 

stripe

 

set.

 

A

 

stripe

 

set

 

is

 

a

 

set

 

of

 

containers

 

in

 

a

 

table

 

space

 

that

 

has

 

data

 

striped

 

across

 

it

 

separately

 

from

 

the

 

other

 

containers

 

that

 

belong

 

to

 

that

 

table

 

space.

 

You

 

use

 

a

 

new

 

stripe

 

set

 

when

 

you

 

want

 

to

 

add

 

containers

 

to

 

a

 

table

 

space

 

without

 

rebalancing

 

the

 

data.

 

The

 

existing

 

containers

 

in

 

the

 

existing

 

stripe

 

sets

 

remain

 

untouched,

 

and

 

the

 

containers

 

you

 

are

 

adding

 

become

 

part

 

of

 

a

 

new

 

stripe

 

set.

 

To

 

add

 

containers

 

without

 

rebalancing,

 

use

 

the

 

BEGIN

 

NEW

 

STRIPE

 

SET

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

Example

 

5:

 

If

 

you

 

have

 

a

 

table

 

space

 

with

 

three

 

containers

 

and

 

an

 

extent

 

size

 

of

 

10,

 

and

 

the

 

containers

 

are

 

30,

 

40,

 

and

 

40

 

pages

 

(3,

 

4,

 

and

 

4

 

extents

 

respectively),

 

the

 

table

 

space

 

can

 

be

 

diagrammed

 

as

 

shown

 

in

 

Figure

 

36.

   

The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

 

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

  

Figure

 

36.

 

Table

 

space

 

with

 

three

 

containers

 

and

 

11

 

extents

  

104

 

Administration

 

Guide:

 

Planning



Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

8

       

89

        

0

        

2

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

10

      

109

        

3

        

3

    

0

   

2

 

(1,

 

2)

   

Example

 

6:

 

When

 

you

 

add

 

two

 

new

 

containers

 

that

 

are

 

30

 

pages

 

and

 

40

 

pages

 

(3

 

and

 

4

 

extents

 

respectively)

 

with

 

the

 

BEGIN

 

NEW

 

STRIPE

 

SET

 

option,

 

the

 

existing

 

ranges

 

will

 

not

 

be

 

affected

 

and

 

instead

 

a

 

new

 

set

 

of

 

ranges

 

will

 

be

 

created.

 

This

 

new

 

set

 

of

 

ranges

 

is

 

a

 

stripe

 

set

 

and

 

the

 

most

 

recently

 

created

 

one

 

is

 

called

 

the

 

current

 

stripe

 

set.

 

After

 

the

 

two

 

new

 

containers

 

have

 

been

 

added,

 

the

 

table

 

space

 

will

 

look

 

like

 

Figure

 

37.

   

The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

8

       

89

        

0

        

2

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

10

      

109

        

3

        

3

    

0

   

2

 

(1,

 

2)

        

[2]

       

[1]

       

4

      

16

      

169

        

4

        

6

    

0

   

2

 

(3,

 

4)

        

[3]

       

[1]

       

4

      

17

      

179

        

7

        

7

    

0

   

1

 

(4)

   

If

 

you

 

add

 

new

 

containers

 

to

 

a

 

table

 

space,

 

and

 

you

 

do

 

not

 

use

 

the

 

TO

 

STRIPE

 

SET

 

option

 

with

 

the

 

ADD

 

clause,

 

the

 

containers

 

will

 

be

 

added

 

to

 

the

 

current

 

stripe

 

set

 

(the

 

highest

 

stripe

 

set).

 

You

 

can

 

use

 

the

 

ADD

 

TO

 

STRIPE

 

SET

 

clause

 

to

 

add

 

containers

 

to

 

any

 

stripe

 

set

 

in

 

the

 

table

 

space.

 

You

 

must

 

specify

 

a

 

valid

 

stripe

 

set.

 

0

0 1 2 3 4

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 12

Extent 14

Extent 16

Extent 17

Extent 11

Extent 13

Extent 15

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Stripe
set #0

Stripe
set #1

  

Figure

 

37.

 

Table

 

space

 

with

 

two

 

stripe

 

sets

  

Chapter

 

5.

 

Physical

 

database

 

design

 

105



DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

tracks

 

the

 

stripe

 

sets

 

using

 

the

 

table

 

space

 

map,

 

and

 

adding

 

new

 

containers

 

without

 

rebalancing

 

will

 

generally

 

cause

 

the

 

map

 

to

 

grow

 

faster

 

than

 

when

 

containers

 

are

 

rebalanced.

 

When

 

the

 

table

 

space

 

map

 

becomes

 

too

 

large,

 

you

 

will

 

receive

 

error

 

SQL0259N

 

when

 

you

 

try

 

to

 

add

 

more

 

containers.

  

Related

 

concepts:

  

v

   

“Table

 

space

 

maps”

 

on

 

page

 

95

 

Related

 

tasks:

  

v

   

“Adding

 

a

 

container

 

to

 

a

 

DMS

 

table

 

space”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Modifying

 

containers

 

in

 

a

 

DMS

 

table

 

space”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

Related

 

reference:

  

v

   

“ALTER

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“GET

 

SNAPSHOT

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“Table

 

space

 

activity

 

monitor

 

elements”

 

in

 

the

 

System

 

Monitor

 

Guide

 

and

 

Reference

How

 

containers

 

are

 

dropped

 

and

 

reduced

 

in

 

DMS

 

table

 

spaces

  

With

 

a

 

DMS

 

table

 

space,

 

you

 

can

 

drop

 

a

 

container

 

from

 

the

 

table

 

space

 

or

 

reduce

 

the

 

size

 

of

 

a

 

container.

 

You

 

use

 

the

 

ALTER

 

TABLESPACE

 

statement

 

to

 

accomplish

 

this.

 

Dropping

 

or

 

reducing

 

a

 

container

 

will

 

only

 

be

 

allowed

 

if

 

the

 

number

 

of

 

extents

 

being

 

dropped

 

by

 

the

 

operation

 

is

 

less

 

than

 

or

 

equal

 

to

 

the

 

number

 

of

 

free

 

extents

 

above

 

the

 

high-water

 

mark

 

in

 

the

 

table

 

space.

 

This

 

is

 

necessary

 

because

 

page

 

numbers

 

cannot

 

be

 

changed

 

by

 

the

 

operation

 

and

 

therefore

 

all

 

extents

 

up

 

to

 

and

 

including

 

the

 

high-water

 

mark

 

must

 

sit

 

in

 

the

 

same

 

logical

 

position

 

within

 

the

 

table

 

space.

 

Therefore,

 

the

 

resulting

 

table

 

space

 

must

 

have

 

enough

 

space

 

to

 

hold

 

all

 

of

 

the

 

data

 

up

 

to

 

and

 

including

 

the

 

high-water

 

mark.

 

In

 

the

 

situation

 

where

 

there

 

is

 

not

 

enough

 

free

 

space,

 

you

 

will

 

receive

 

an

 

error

 

immediately

 

upon

 

execution

 

of

 

the

 

statement.

 

The

 

high-water

 

mark

 

is

 

the

 

page

 

number

 

of

 

the

 

highest

 

allocated

 

page

 

in

 

the

 

table

 

space.

 

For

 

example,

 

a

 

table

 

space

 

has

 

1000

 

pages

 

and

 

an

 

extent

 

size

 

of

 

10,

 

resulting

 

in

 

100

 

extents.

 

If

 

the

 

42nd

 

extent

 

is

 

the

 

highest

 

allocated

 

extent

 

in

 

the

 

table

 

space

 

that

 

means

 

that

 

the

 

high-water

 

mark

 

is

 

42

 

*

 

10

 

=

 

420

 

pages.

 

This

 

is

 

not

 

the

 

same

 

as

 

used

 

pages

 

because

 

some

 

of

 

the

 

extents

 

below

 

the

 

high-water

 

mark

 

may

 

have

 

been

 

freed

 

up

 

such

 

that

 

they

 

are

 

available

 

for

 

reuse.

 

When

 

containers

 

are

 

dropped

 

or

 

reduced,

 

a

 

rebalance

 

will

 

occur

 

if

 

data

 

resides

 

in

 

the

 

space

 

being

 

dropped

 

from

 

the

 

table

 

space.

 

Before

 

the

 

rebalance

 

starts,

 

a

 

new

 

table

 

space

 

map

 

is

 

built

 

based

 

on

 

the

 

container

 

changes

 

made.

 

The

 

rebalancer

 

will

 

move

 

extents

 

from

 

their

 

location

 

determined

 

by

 

the

 

current

 

map

 

into

 

the

 

location

 

determined

 

by

 

the

 

new

 

map.

 

The

 

rebalancer

 

starts

 

with

 

the

 

extent

 

that

 

contains

 

the

 

high-water

 

mark,

 

moving

 

one

 

extent

 

at

 

a

 

time

 

until

 

extent

 

0

 

has

 

been

 

moved.

 

As

 

each

 

extent

 

is

 

moved,

 

the

 

current

 

map

 

is

 

altered

 

one

 

piece

 

at

 

a

 

time

 

to

 

look

 

like

 

the

 

new

 

map.

 

If

 

the

 

location

 

of

 

an

 

extent

 

in

 

the

 

current

 

map

 

is

 

the

 

same

 

as

 

its

 

location

 

in

 

the

 

new

 

map,

 

then

 

the

 

extent

 

is

 

not

 

moved

 

and

 

no

 

I/O

 

takes

 

place.

 

Because

 

the

 

rebalance

 

moves

 

extents

 

starting

 

with

 

the

 

highest

 

allocated

 

one,

 

ending

 

with

 

the

   

106

 

Administration

 

Guide:

 

Planning

|
|
|
|
|



first

 

extent

 

in

 

the

 

table

 

space,

 

it

 

is

 

called

 

a

 

reverse

 

rebalance

 

(as

 

opposed

 

to

 

the

 

forward

 

rebalance

 

that

 

occurs

 

when

 

space

 

is

 

added

 

to

 

the

 

table

 

space

 

after

 

adding

 

or

 

extending

 

containers).

 

When

 

containers

 

are

 

dropped,

 

the

 

remaining

 

containers

 

are

 

renumbered

 

such

 

that

 

their

 

container

 

IDs

 

start

 

at

 

0

 

and

 

increase

 

by

 

1.

 

If

 

all

 

of

 

the

 

containers

 

in

 

a

 

stripe

 

set

 

are

 

dropped,

 

the

 

stripe

 

set

 

will

 

be

 

removed

 

from

 

the

 

map

 

and

 

all

 

stripe

 

sets

 

following

 

it

 

in

 

the

 

map

 

will

 

be

 

shifted

 

down

 

and

 

renumbered

 

such

 

that

 

there

 

are

 

no

 

gaps

 

in

 

the

 

stripe

 

set

 

numbers.

 

Note:

  

In

 

the

 

following

 

examples,

 

the

 

container

 

sizes

 

do

 

not

 

take

 

the

 

size

 

of

 

the

 

container

 

tag

 

into

 

account.

 

The

 

container

 

sizes

 

are

 

very

 

small,

 

and

 

are

 

just

 

used

 

for

 

the

 

purpose

 

of

 

illustration,

 

they

 

are

 

not

 

recommended

 

container

 

sizes.

 

The

 

examples

 

show

 

containers

 

of

 

different

 

sizes

 

within

 

a

 

table

 

space,

 

but

 

this

 

is

 

just

 

for

 

the

 

purpose

 

of

 

illustration;

 

you

 

are

 

advised

 

to

 

use

 

containers

 

of

 

the

 

same

 

size.

 

For

 

example,

 

consider

 

a

 

table

 

space

 

with

 

three

 

containers

 

and

 

an

 

extent

 

size

 

of

 

10.

 

The

 

containers

 

are

 

20,

 

50,

 

and

 

50

 

pages

 

respectively

 

(2,

 

5,

 

and

 

5

 

extents).

 

The

 

table

 

space

 

diagram

 

is

 

shown

 

in

 

Figure

 

38.

   

An

 

X

 

indicates

 

that

 

there

 

is

 

an

 

extent

 

but

 

there

 

is

 

no

 

data

 

in

 

it.

 

If

 

you

 

want

 

to

 

drop

 

container

 

0,

 

which

 

has

 

two

 

extents,

 

there

 

must

 

be

 

at

 

least

 

two

 

free

 

extents

 

above

 

the

 

high-water

 

mark.

 

The

 

high-water

 

mark

 

is

 

in

 

extent

 

7,

 

leaving

 

four

 

free

 

extents,

 

therefore

 

you

 

can

 

drop

 

container

 

0.

 

The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

5

       

59

        

0

        

1

    

0

   

3

 

(0,

 

1,

 

2)

        

[1]

       

[0]

       

0

      

11

      

119

        

2

        

4

    

0

   

2

 

(1,

 

2)

  

0

0 1 2

1

2

3

4

Extent 0 Extent 1 Extent 2

Extent 5

Extent 7

Extent 4

Extent 6

x

x

x

x

Extent 3

Containers

Stripes

  

Figure

 

38.

 

Table

 

space

 

with

 

12

 

extents,

 

including

 

four

 

extents

 

with

 

no

 

data

  

Chapter

 

5.

 

Physical

 

database

 

design

 

107



After

 

the

 

drop,

 

the

 

table

 

space

 

will

 

have

 

just

 

Container

 

0

 

and

 

Container

 

1.

 

The

 

new

 

table

 

space

 

diagram

 

is

 

shown

 

in

 

Figure

 

39.

   

The

 

corresponding

 

table

 

space

 

map,

 

as

 

shown

 

in

 

a

 

table

 

space

 

snapshot,

 

will

 

look

 

like

 

this:

      

Range

     

Stripe

  

Stripe

  

Max

        

Max

    

Start

    

End

    

Adj.

   

Containers

     

Number

    

Set

     

Offset

  

Extent

     

Page

   

Stripe

   

Stripe

        

[0]

       

[0]

       

0

       

9

       

99

        

0

        

4

    

0

   

2

 

(0,

 

1)

   

If

 

you

 

want

 

to

 

reduce

 

the

 

size

 

of

 

a

 

container,

 

the

 

rebalancer

 

works

 

in

 

a

 

similar

 

way.

 

To

 

reduce

 

a

 

container,

 

use

 

the

 

REDUCE

 

or

 

RESIZE

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

To

 

drop

 

a

 

container,

 

use

 

the

 

DROP

 

option

 

on

 

the

 

ALTER

 

TABLESPACE

 

statement.

  

Related

 

concepts:

  

v

   

“Table

 

space

 

maps”

 

on

 

page

 

95

 

Related

 

tasks:

  

v

   

“Modifying

 

containers

 

in

 

a

 

DMS

 

table

 

space”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

Related

 

reference:

  

v

   

“ALTER

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“GET

 

SNAPSHOT

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“Table

 

space

 

activity

 

monitor

 

elements”

 

in

 

the

 

System

 

Monitor

 

Guide

 

and

 

Reference

0

0 1

1

2

3

4

Extent 0 Extent 1

Extent 3

Extent 5

Extent 7

x x

Extent 2

Extent 4

Extent 6

Containers

Stripes

  

Figure

 

39.

 

Table

 

space

 

after

 

a

 

container

 

is

 

dropped

  

108

 

Administration

 

Guide:

 

Planning



Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces

  

There

 

are

 

a

 

number

 

of

 

trade-offs

 

to

 

consider

 

when

 

determining

 

which

 

type

 

of

 

table

 

space

 

you

 

should

 

use

 

to

 

store

 

your

 

data.

 

Advantages

 

of

 

an

 

SMS

 

Table

 

Space:

 

v

   

Space

 

is

 

not

 

allocated

 

by

 

the

 

system

 

until

 

it

 

is

 

required.

 

v

   

Creating

 

a

 

table

 

space

 

requires

 

less

 

initial

 

work,

 

because

 

you

 

do

 

not

 

have

 

to

 

predefine

 

the

 

containers.

 

Advantages

 

of

 

a

 

DMS

 

Table

 

Space:

 

v

   

The

 

size

 

of

 

a

 

table

 

space

 

can

 

be

 

increased

 

by

 

adding

 

or

 

extending

 

containers,

 

using

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

Existing

 

data

 

can

 

be

 

automatically

 

rebalanced

 

across

 

the

 

new

 

set

 

of

 

containers

 

to

 

retain

 

optimal

 

I/O

 

efficiency.

 

v

   

A

 

table

 

can

 

be

 

split

 

across

 

multiple

 

table

 

spaces,

 

based

 

on

 

the

 

type

 

of

 

data

 

being

 

stored:

 

–

   

Long

 

field

 

and

 

LOB

 

data

 

–

   

Indexes

 

–

   

Regular

 

table

 

data

 

You

 

might

 

want

 

to

 

separate

 

your

 

table

 

data

 

for

 

performance

 

reasons,

 

or

 

to

 

increase

 

the

 

amount

 

of

 

data

 

stored

 

for

 

a

 

table.

 

For

 

example,

 

you

 

could

 

have

 

a

 

table

 

with

 

64

 

GB

 

of

 

regular

 

table

 

data,

 

64

 

GB

 

of

 

index

 

data

 

and

 

2

 

TB

 

of

 

long

 

data.

 

If

 

you

 

are

 

using

 

8

 

KB

 

pages,

 

the

 

table

 

data

 

and

 

the

 

index

 

data

 

can

 

be

 

as

 

much

 

as

 

128

 

GB.

 

If

 

you

 

are

 

using

 

16

 

KB

 

pages,

 

it

 

can

 

be

 

as

 

much

 

as

 

256

 

GB.

 

If

 

you

 

are

 

using

 

32

 

KB

 

pages,

 

the

 

table

 

data

 

and

 

the

 

index

 

data

 

can

 

be

 

as

 

much

 

as

 

512

 

GB.

 

v

   

The

 

location

 

of

 

the

 

data

 

on

 

the

 

disk

 

can

 

be

 

controlled,

 

if

 

this

 

is

 

allowed

 

by

 

the

 

operating

 

system.

 

v

   

If

 

all

 

table

 

data

 

is

 

in

 

a

 

single

 

table

 

space,

 

a

 

table

 

space

 

can

 

be

 

dropped

 

and

 

redefined

 

with

 

less

 

overhead

 

than

 

dropping

 

and

 

redefining

 

a

 

table.

 

v

   

In

 

general,

 

a

 

well-tuned

 

set

 

of

 

DMS

 

table

 

spaces

 

will

 

outperform

 

SMS

 

table

 

spaces.

Note:

  

On

 

the

 

Solaris™

 

Operating

 

Environment,

 

DMS

 

table

 

spaces

 

with

 

raw

 

devices

 

are

 

strongly

 

recommended

 

for

 

performance-critical

 

workloads.

 

In

 

general,

 

small

 

personal

 

databases

 

are

 

easiest

 

to

 

manage

 

with

 

SMS

 

table

 

spaces.

 

On

 

the

 

other

 

hand,

 

for

 

large,

 

growing

 

databases

 

you

 

will

 

probably

 

only

 

want

 

to

 

use

 

SMS

 

table

 

spaces

 

for

 

the

 

temporary

 

table

 

spaces

 

and

 

catalog

 

table

 

space,

 

and

 

separate

 

DMS

 

table

 

spaces,

 

with

 

multiple

 

containers,

 

for

 

each

 

table.

 

In

 

addition,

 

you

 

will

 

probably

 

want

 

to

 

store

 

long

 

field

 

data

 

and

 

indexes

 

on

 

their

 

own

 

table

 

spaces.

 

If

 

you

 

choose

 

to

 

use

 

DMS

 

table

 

spaces

 

with

 

device

 

containers,

 

you

 

must

 

be

 

willing

 

to

 

tune

 

and

 

administer

 

your

 

environment.

  

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

  

Chapter

 

5.

 

Physical

 

database

 

design

 

109



Table

 

space

 

disk

 

I/O

  

The

 

type

 

and

 

design

 

of

 

your

 

table

 

space

 

determines

 

the

 

efficiency

 

of

 

the

 

I/O

 

performed

 

against

 

that

 

table

 

space.

 

Following

 

are

 

concepts

 

that

 

you

 

should

 

understand

 

before

 

considering

 

further

 

the

 

issues

 

surrounding

 

table

 

space

 

design

 

and

 

use:

 

Big-block

 

reads

 

A

 

read

 

where

 

several

 

pages

 

(usually

 

an

 

extent)

 

are

 

retrieved

 

in

 

a

 

single

 

request.

 

Reading

 

several

 

pages

 

at

 

once

 

is

 

more

 

efficient

 

than

 

reading

 

each

 

page

 

separately.

 

Prefetching

 

The

 

reading

 

of

 

pages

 

in

 

advance

 

of

 

those

 

pages

 

being

 

referenced

 

by

 

a

 

query.

 

The

 

overall

 

objective

 

is

 

to

 

reduce

 

response

 

time.

 

This

 

can

 

be

 

achieved

 

if

 

the

 

prefetching

 

of

 

pages

 

can

 

occur

 

asynchronously

 

to

 

the

 

execution

 

of

 

the

 

query.

 

The

 

best

 

response

 

time

 

is

 

achieved

 

when

 

either

 

the

 

CPU

 

or

 

the

 

I/O

 

subsystem

 

is

 

operating

 

at

 

maximum

 

capacity.

 

Page

 

cleaning

 

As

 

pages

 

are

 

read

 

and

 

modified,

 

they

 

accumulate

 

in

 

the

 

database

 

buffer

 

pool.

 

When

 

a

 

page

 

is

 

read

 

in,

 

it

 

is

 

read

 

into

 

a

 

buffer

 

pool

 

page.

 

If

 

the

 

buffer

 

pool

 

is

 

full

 

of

 

modified

 

pages,

 

one

 

of

 

these

 

modified

 

pages

 

must

 

be

 

written

 

out

 

to

 

the

 

disk

 

before

 

the

 

new

 

page

 

can

 

be

 

read

 

in.

 

To

 

prevent

 

the

 

buffer

 

pool

 

from

 

becoming

 

full,

 

page

 

cleaner

 

agents

 

write

 

out

 

modified

 

pages

 

to

 

guarantee

 

the

 

availability

 

of

 

buffer

 

pool

 

pages

 

for

 

future

 

read

 

requests.

 

Whenever

 

it

 

is

 

advantageous

 

to

 

do

 

so,

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

performs

 

big-block

 

reads.

 

This

 

typically

 

occurs

 

when

 

retrieving

 

data

 

that

 

is

 

sequential

 

or

 

partially

 

sequential

 

in

 

nature.

 

The

 

amount

 

of

 

data

 

read

 

in

 

one

 

read

 

operation

 

depends

 

on

 

the

 

extent

 

size

 

—

 

the

 

bigger

 

the

 

extent

 

size,

 

the

 

more

 

pages

 

can

 

be

 

read

 

at

 

one

 

time.

 

Sequential

 

prefetching

 

performance

 

can

 

be

 

further

 

enhanced

 

if

 

pages

 

can

 

be

 

read

 

from

 

disk

 

into

 

contiguous

 

pages

 

within

 

a

 

buffer

 

pool.

 

Since

 

buffer

 

pools

 

are

 

page-based

 

by

 

default,

 

there

 

is

 

no

 

guarantee

 

of

 

finding

 

a

 

set

 

of

 

contiguous

 

pages

 

when

 

reading

 

in

 

contiguous

 

pages

 

from

 

disk.

 

Block-based

 

buffer

 

pools

 

can

 

be

 

used

 

for

 

this

 

purpose

 

because

 

they

 

not

 

only

 

contain

 

a

 

page

 

area,

 

they

 

also

 

contain

 

a

 

block

 

area

 

for

 

sets

 

of

 

contiguous

 

pages.

 

Each

 

set

 

of

 

contiguous

 

pages

 

is

 

named

 

a

 

block

 

and

 

each

 

block

 

contains

 

a

 

number

 

of

 

pages

 

referred

 

to

 

as

 

blocksize.

 

The

 

size

 

of

 

the

 

page

 

and

 

block

 

area,

 

as

 

well

 

as

 

the

 

number

 

of

 

pages

 

in

 

each

 

block

 

is

 

configurable.

 

How

 

the

 

extent

 

is

 

stored

 

on

 

disk

 

affects

 

I/O

 

efficiency.

 

In

 

a

 

DMS

 

table

 

space

 

using

 

device

 

containers,

 

the

 

data

 

tends

 

to

 

be

 

contiguous

 

on

 

disk,

 

and

 

can

 

be

 

read

 

with

 

a

 

minimum

 

of

 

seek

 

time

 

and

 

disk

 

latency.

 

If

 

files

 

are

 

being

 

used,

 

however,

 

the

 

data

 

may

 

have

 

been

 

broken

 

up

 

by

 

the

 

file

 

system

 

and

 

stored

 

in

 

more

 

than

 

one

 

location

 

on

 

disk.

 

This

 

occurs

 

most

 

often

 

when

 

using

 

SMS

 

table

 

spaces,

 

where

 

files

 

are

 

extended

 

one

 

page

 

at

 

a

 

time,

 

making

 

fragmentation

 

more

 

likely.

 

A

 

large

 

file

 

that

 

has

 

been

 

pre-allocated

 

for

 

use

 

by

 

a

 

DMS

 

table

 

space

 

tends

 

to

 

be

 

contiguous

 

on

 

disk,

 

especially

 

if

 

the

 

file

 

was

 

allocated

 

in

 

a

 

clean

 

file

 

space.

 

You

 

can

 

control

 

the

 

degree

 

of

 

prefetching

 

by

 

changing

 

the

 

PREFETCHSIZE

 

option

 

on

 

the

 

CREATE

 

TABLESPACE

 

or

 

ALTER

 

TABLESPACE

 

statements.

 

(The

 

default

 

value

 

for

 

all

 

table

 

spaces

 

in

 

the

 

database

 

is

 

set

 

by

 

the

 

dft_prefetch_sz

 

database

 

configuration

 

parameter.)

 

The

 

PREFETCHSIZE

 

parameter

 

tells

 

DB2

 

UDB

 

how

 

many

 

pages

 

to

 

read

 

whenever

 

a

 

prefetch

 

is

 

triggered.

 

By

 

setting

 

PREFETCHSIZE

   

110

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|
|
|
|
|



to

 

be

 

a

 

multiple

 

of

 

the

 

EXTENTSIZE

 

parameter

 

on

 

the

 

CREATE

 

TABLESPACE

 

statement,

 

you

 

can

 

cause

 

multiple

 

extents

 

to

 

be

 

read

 

in

 

parallel.

 

(The

 

default

 

value

 

for

 

all

 

table

 

spaces

 

in

 

the

 

database

 

is

 

set

 

by

 

the

 

dft_extent_sz

 

database

 

configuration

 

parameter.)

 

The

 

EXTENTSIZE

 

parameter

 

specifies

 

the

 

number

 

of

 

4

 

KB

 

pages

 

that

 

will

 

be

 

written

 

to

 

a

 

container

 

before

 

skipping

 

to

 

the

 

next

 

container.

 

For

 

example,

 

suppose

 

you

 

had

 

a

 

table

 

space

 

that

 

used

 

three

 

devices.

 

If

 

you

 

set

 

the

 

PREFETCHSIZE

 

to

 

be

 

three

 

times

 

the

 

EXTENTSIZE,

 

DB2

 

UDB

 

can

 

do

 

a

 

big-block

 

read

 

from

 

each

 

device

 

in

 

parallel,

 

thereby

 

significantly

 

increasing

 

I/O

 

throughput.

 

This

 

assumes

 

that

 

each

 

device

 

is

 

a

 

separate

 

physical

 

device,

 

and

 

that

 

the

 

controller

 

has

 

sufficient

 

bandwidth

 

to

 

handle

 

the

 

data

 

stream

 

from

 

each

 

device.

 

Note

 

that

 

DB2

 

UDB

 

may

 

have

 

to

 

dynamically

 

adjust

 

the

 

prefetch

 

parameters

 

at

 

run

 

time

 

based

 

on

 

query

 

speed,

 

buffer

 

pool

 

utilization,

 

and

 

other

 

factors.

 

Some

 

file

 

systems

 

use

 

their

 

own

 

prefetching

 

method

 

(such

 

as

 

the

 

Journaled

 

File

 

System

 

on

 

AIX®).

 

In

 

some

 

cases,

 

file

 

system

 

prefetching

 

is

 

set

 

to

 

be

 

more

 

aggressive

 

than

 

DB2

 

UDB

 

prefetching.

 

This

 

may

 

cause

 

prefetching

 

for

 

SMS

 

and

 

DMS

 

table

 

spaces

 

with

 

file

 

containers

 

to

 

appear

 

to

 

outperform

 

prefetching

 

for

 

DMS

 

table

 

spaces

 

with

 

devices.

 

This

 

is

 

misleading,

 

because

 

it

 

is

 

likely

 

the

 

result

 

of

 

the

 

additional

 

level

 

of

 

prefetching

 

that

 

is

 

occurring

 

in

 

the

 

file

 

system.

 

DMS

 

table

 

spaces

 

should

 

be

 

able

 

to

 

outperform

 

any

 

equivalent

 

configuration.

 

For

 

prefetching

 

(or

 

even

 

reading)

 

to

 

be

 

efficient,

 

a

 

sufficient

 

number

 

of

 

clean

 

buffer

 

pool

 

pages

 

must

 

exist.

 

For

 

example,

 

there

 

could

 

be

 

a

 

parallel

 

prefetch

 

request

 

that

 

reads

 

three

 

extents

 

from

 

a

 

table

 

space,

 

and

 

for

 

each

 

page

 

being

 

read,

 

one

 

modified

 

page

 

is

 

written

 

out

 

from

 

the

 

buffer

 

pool.

 

The

 

prefetch

 

request

 

may

 

be

 

slowed

 

down

 

to

 

the

 

point

 

where

 

it

 

cannot

 

keep

 

up

 

with

 

the

 

query.

 

Page

 

cleaners

 

should

 

be

 

configured

 

in

 

sufficient

 

numbers

 

to

 

satisfy

 

the

 

prefetch

 

request.

  

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“Prefetching

 

data

 

into

 

the

 

buffer

 

pool”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

Related

 

reference:

  

v

   

“ALTER

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Workload

 

considerations

 

in

 

table

 

space

 

design

  

The

 

primary

 

type

 

of

 

workload

 

being

 

managed

 

by

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

in

 

your

 

environment

 

can

 

affect

 

your

 

choice

 

of

 

what

 

table

 

space

 

type

 

to

 

use,

 

and

 

what

 

page

 

size

 

to

 

specify.

 

An

 

online

 

transaction

 

processing

 

(OLTP)

 

workload

 

is

 

characterized

 

by

 

transactions

 

that

 

need

 

random

 

access

 

to

 

data,

 

often

 

involve

 

frequent

 

insert

 

or

 

update

 

activity

 

and

 

queries

 

which

 

usually

 

return

 

small

 

sets

 

of

 

data.

 

Given

 

that

 

the

 

access

 

is

 

random,

 

and

 

involves

 

one

 

or

 

a

 

few

 

pages,

 

prefetching

 

is

 

less

 

likely

 

to

 

occur.

 

DMS

 

table

 

spaces

 

using

 

device

 

containers

 

perform

 

best

 

in

 

this

 

situation.

 

DMS

 

table

 

spaces

 

with

 

file

 

containers,

 

or

 

SMS

 

table

 

spaces,

 

are

 

also

 

reasonable

 

choices

 

for

 

OLTP

 

workloads

 

if

 

maximum

 

performance

 

is

 

not

 

required.

 

With

 

little

 

or

 

no

 

sequential

 

I/O

 

expected,

 

the

 

settings

 

for

 

the

 

EXTENTSIZE

 

and

 

the

 

PREFETCHSIZE

 

parameters

 

on

 

the

 

CREATE

 

TABLESPACE

 

statement

 

are

 

not

 

important

 

for

 

I/O

 

efficiency.

 

However,

 

setting

 

a

 

sufficient

 

number

 

of

 

page

 

cleaners,

 

using

 

the

 

chngpgs_thresh

 

configuration

 

parameter,

 

is

 

important.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

111

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|



A

 

query

 

workload

 

is

 

characterized

 

by

 

transactions

 

that

 

need

 

sequential

 

or

 

partially

 

sequential

 

access

 

to

 

data,

 

and

 

that

 

usually

 

return

 

large

 

sets

 

of

 

data.

 

A

 

DMS

 

table

 

space

 

using

 

multiple

 

device

 

containers

 

(where

 

each

 

container

 

is

 

on

 

a

 

separate

 

disk)

 

offers

 

the

 

greatest

 

potential

 

for

 

efficient

 

parallel

 

prefetching.

 

The

 

value

 

of

 

the

 

PREFETCHSIZE

 

parameter

 

on

 

the

 

CREATE

 

TABLESPACE

 

statement

 

should

 

be

 

set

 

to

 

the

 

value

 

of

 

the

 

EXTENTSIZE

 

parameter,

 

multiplied

 

by

 

the

 

number

 

of

 

device

 

containers.

 

This

 

allows

 

DB2

 

UDB

 

to

 

prefetch

 

from

 

all

 

containers

 

in

 

parallel.

 

If

 

the

 

number

 

of

 

containers

 

changes,

 

or

 

there

 

is

 

a

 

need

 

to

 

make

 

prefetching

 

more

 

or

 

less

 

aggressive,

 

the

 

PREFETCHSIZE

 

value

 

can

 

be

 

changed

 

accordingly

 

by

 

using

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

A

 

reasonable

 

alternative

 

for

 

a

 

query

 

workload

 

is

 

to

 

use

 

files,

 

if

 

the

 

file

 

system

 

has

 

its

 

own

 

prefetching.

 

The

 

files

 

can

 

be

 

either

 

of

 

DMS

 

type

 

using

 

file

 

containers,

 

or

 

of

 

SMS

 

type.

 

Note

 

that

 

if

 

you

 

use

 

SMS,

 

you

 

need

 

to

 

have

 

the

 

directory

 

containers

 

map

 

to

 

separate

 

physical

 

disks

 

to

 

achieve

 

I/O

 

parallelism.

 

Your

 

goal

 

for

 

a

 

mixed

 

workload

 

is

 

to

 

make

 

single

 

I/O

 

requests

 

as

 

efficient

 

as

 

possible

 

for

 

OLTP

 

workloads,

 

and

 

to

 

maximize

 

the

 

efficiency

 

of

 

parallel

 

I/O

 

for

 

query

 

workloads.

 

The

 

considerations

 

for

 

determining

 

the

 

page

 

size

 

for

 

a

 

table

 

space

 

are

 

as

 

follows:

 

v

   

For

 

OLTP

 

applications

 

that

 

perform

 

random

 

row

 

read

 

and

 

write

 

operations,

 

a

 

smaller

 

page

 

size

 

is

 

usually

 

preferable,

 

because

 

it

 

wastes

 

less

 

buffer

 

pool

 

space

 

with

 

unwanted

 

rows.

 

v

   

For

 

decision-support

 

system

 

(DSS)

 

applications

 

that

 

access

 

large

 

numbers

 

of

 

consecutive

 

rows

 

at

 

a

 

time,

 

a

 

larger

 

page

 

size

 

is

 

usually

 

better,

 

because

 

it

 

reduces

 

the

 

number

 

of

 

I/O

 

requests

 

that

 

are

 

required

 

to

 

read

 

a

 

specific

 

number

 

of

 

rows.

 

There

 

is,

 

however,

 

an

 

exception

 

to

 

this.

 

If

 

your

 

row

 

size

 

is

 

smaller

 

than:

    

pagesize

 

/

 

255

 

there

 

will

 

be

 

wasted

 

space

 

on

 

each

 

page

 

(there

 

is

 

a

 

maximum

 

of

 

255

 

rows

 

per

 

page).

 

In

 

this

 

situation,

 

a

 

smaller

 

page

 

size

 

may

 

be

 

more

 

appropriate.

 

v

   

Larger

 

page

 

sizes

 

may

 

allow

 

you

 

to

 

reduce

 

the

 

number

 

of

 

levels

 

in

 

the

 

index.

 

v

   

Larger

 

pages

 

support

 

rows

 

of

 

greater

 

length.

 

v

   

On

 

default

 

4

 

KB

 

pages,

 

tables

 

are

 

restricted

 

to

 

500

 

columns,

 

while

 

the

 

larger

 

page

 

sizes

 

(8

 

KB,

 

16

 

KB,

 

and

 

32

 

KB)

 

support

 

1012

 

columns.

 

v

   

The

 

maximum

 

size

 

of

 

the

 

table

 

space

 

is

 

proportional

 

to

 

the

 

page

 

size

 

of

 

the

 

table

 

space.

 

Related

 

concepts:

  

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

 

Related

 

reference:

  

v

   

“chngpgs_thresh

 

-

 

Changed

 

pages

 

threshold

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“ALTER

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“SQL

 

limits”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

  

112

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|
|
|
|



Extent

 

size

  

The

 

extent

 

size

 

for

 

a

 

table

 

space

 

represents

 

the

 

number

 

of

 

pages

 

of

 

table

 

data

 

that

 

will

 

be

 

written

 

to

 

a

 

container

 

before

 

data

 

will

 

be

 

written

 

to

 

the

 

next

 

container.

 

When

 

selecting

 

an

 

extent

 

size,

 

you

 

should

 

consider:

 

v

   

The

 

size

 

and

 

type

 

of

 

tables

 

in

 

the

 

table

 

space.

 

Space

 

in

 

DMS

 

table

 

spaces

 

is

 

allocated

 

to

 

a

 

table

 

one

 

extent

 

at

 

a

 

time.

 

As

 

the

 

table

 

is

 

populated

 

and

 

an

 

extent

 

becomes

 

full,

 

a

 

new

 

extent

 

is

 

allocated.

 

DMS

 

table

 

space

 

container

 

storage

 

is

 

prereserved

 

which

 

means

 

that

 

new

 

extents

 

are

 

allocated

 

until

 

the

 

container

 

is

 

completely

 

used.

 

Space

 

in

 

SMS

 

table

 

spaces

 

is

 

allocated

 

to

 

a

 

table

 

either

 

one

 

extent

 

at

 

a

 

time

 

or

 

one

 

page

 

at

 

a

 

time.

 

As

 

the

 

table

 

is

 

populated

 

and

 

an

 

extent

 

or

 

page

 

becomes

 

full,

 

a

 

new

 

extent

 

or

 

page

 

is

 

allocated

 

until

 

all

 

of

 

the

 

extents

 

or

 

pages

 

in

 

the

 

file

 

system

 

are

 

used.

 

When

 

using

 

SMS

 

table

 

spaces,

 

multipage

 

file

 

allocation

 

is

 

allowed.

 

Multipage

 

file

 

allocation

 

allows

 

extents

 

to

 

be

 

allocated

 

instead

 

of

 

a

 

page

 

at

 

a

 

time.

 

Note:

  

Multipage

 

file

 

allocation

 

is

 

enabled

 

for

 

all

 

SMS

 

table

 

spaces

 

in

 

a

 

database

 

through

 

the

 

db2empfa

 

utility.

 

Once

 

multipage

 

file

 

allocation

 

is

 

enabled,

 

it

 

cannot

 

be

 

disabled.

 

Prior

 

to

 

Version

 

8.2,

 

databases

 

were

 

created

 

with

 

multipage

 

file

 

allocation

 

disabled

 

by

 

default.

 

In

 

Version

 

8.2,

 

this

 

default

 

has

 

changed

 

so

 

that

 

databases

 

are

 

created

 

with

 

multipage

 

file

 

allocation

 

enabled

 

by

 

default,

 

since

 

this

 

results

 

in

 

performance

 

improvements.

 

If

 

you

 

desire

 

the

 

pre-Version

 

8.2

 

behavior,

 

set

 

the

 

DB2®_NO_MPFA_FOR_NEW_DB

 

registry

 

variable

 

to

 

the

 

value

 

ON.

 

A

 

table

 

is

 

made

 

up

 

of

 

the

 

following

 

separate

 

table

 

objects:

 

–

   

A

 

data

 

object.

 

This

 

is

 

where

 

the

 

regular

 

column

 

data

 

is

 

stored.

 

–

   

An

 

index

 

object.

 

This

 

is

 

where

 

all

 

indexes

 

defined

 

on

 

the

 

table

 

are

 

stored.

 

–

   

A

 

long

 

field

 

object.

 

This

 

is

 

where

 

long

 

field

 

data,

 

if

 

your

 

table

 

has

 

one

 

or

 

more

 

LONG

 

columns,

 

is

 

stored.

 

–

   

Two

 

LOB

 

objects.

 

If

 

your

 

table

 

has

 

one

 

or

 

more

 

LOB

 

columns,

 

they

 

are

 

stored

 

in

 

these

 

two

 

table

 

objects:

 

-

   

One

 

table

 

object

 

for

 

the

 

LOB

 

data

 

-

   

A

 

second

 

table

 

object

 

for

 

metadata

 

describing

 

the

 

LOB

 

data.
–

   

A

 

block

 

map

 

object

 

for

 

multidimensional

 

tables.
Each

 

table

 

object

 

is

 

stored

 

separately,

 

and

 

each

 

object

 

allocates

 

new

 

extents

 

as

 

needed.

 

Each

 

DMS

 

table

 

object

 

is

 

also

 

paired

 

with

 

a

 

metadata

 

object

 

called

 

an

 

extent

 

map,

 

which

 

describes

 

all

 

of

 

the

 

extents

 

in

 

the

 

table

 

space

 

that

 

belong

 

to

 

the

 

table

 

object.

 

Space

 

for

 

extent

 

maps

 

is

 

also

 

allocated

 

one

 

extent

 

at

 

a

 

time.

 

Therefore,

 

the

 

initial

 

allocation

 

of

 

space

 

for

 

an

 

object

 

in

 

a

 

DMS

 

table

 

space

 

is

 

two

 

extents.

 

(The

 

initial

 

allocation

 

of

 

space

 

for

 

an

 

object

 

in

 

an

 

SMS

 

table

 

space

 

is

 

one

 

page.)

 

So,

 

if

 

you

 

have

 

many

 

small

 

tables

 

in

 

a

 

DMS

 

table

 

space,

 

you

 

may

 

have

 

a

 

relatively

 

large

 

amount

 

of

 

space

 

allocated

 

to

 

store

 

a

 

relatively

 

small

 

amount

 

of

 

data.

 

In

 

such

 

a

 

case,

 

you

 

should

 

specify

 

a

 

small

 

extent

 

size.

 

Otherwise,

 

if

 

you

 

have

 

a

 

very

 

large

 

table

 

that

 

has

 

a

 

high

 

growth

 

rate,

 

and

 

you

 

are

 

using

 

a

 

DMS

 

table

 

space

 

with

 

a

 

small

 

extent

 

size,

 

you

 

could

 

have

 

unnecessary

 

overhead

 

related

 

to

 

the

 

frequent

 

allocation

 

of

 

additional

 

extents.

 

v

   

The

 

type

 

of

 

access

 

to

 

the

 

tables.

 

If

 

access

 

to

 

the

 

tables

 

includes

 

many

 

queries

 

or

 

transactions

 

that

 

process

 

large

 

quantities

 

of

 

data,

 

prefetching

 

data

 

from

 

the

 

tables

 

may

 

provide

 

significant

 

performance

 

benefits.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

113

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|



v

   

The

 

minimum

 

number

 

of

 

extents

 

required.

 

If

 

there

 

is

 

not

 

enough

 

space

 

in

 

the

 

containers

 

for

 

five

 

extents

 

of

 

the

 

table

 

space,

 

the

 

table

 

space

 

will

 

not

 

be

 

created.

 

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

Related

 

reference:

  

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“db2empfa

 

-

 

Enable

 

Multipage

 

File

 

Allocation

 

Command”

 

in

 

the

 

Command

 

Reference

Relationship

 

between

 

table

 

spaces

 

and

 

buffer

 

pools

  

Each

 

table

 

space

 

is

 

associated

 

with

 

a

 

specific

 

buffer

 

pool.

 

The

 

default

 

buffer

 

pool

 

is

 

IBMDEFAULTBP.

 

If

 

another

 

buffer

 

pool

 

is

 

to

 

be

 

associated

 

with

 

a

 

table

 

space,

 

the

 

buffer

 

pool

 

must

 

exist

 

(it

 

is

 

defined

 

with

 

the

 

CREATE

 

BUFFERPOOL

 

statement),

 

it

 

must

 

have

 

the

 

same

 

page

 

size,

 

and

 

the

 

association

 

is

 

defined

 

when

 

the

 

table

 

space

 

is

 

created

 

(using

 

the

 

CREATE

 

TABLESPACE

 

statement).

 

The

 

association

 

between

 

the

 

table

 

space

 

and

 

the

 

buffer

 

pool

 

can

 

be

 

changed

 

using

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

Having

 

more

 

than

 

one

 

buffer

 

pool

 

allows

 

you

 

to

 

configure

 

the

 

memory

 

used

 

by

 

the

 

database

 

to

 

improve

 

overall

 

performance.

 

For

 

example,

 

if

 

you

 

have

 

a

 

table

 

space

 

with

 

one

 

or

 

more

 

large

 

(larger

 

than

 

available

 

memory)

 

tables

 

that

 

are

 

accessed

 

randomly

 

by

 

users,

 

the

 

size

 

of

 

the

 

buffer

 

pool

 

can

 

be

 

limited,

 

because

 

caching

 

the

 

data

 

pages

 

might

 

not

 

be

 

beneficial.

 

The

 

table

 

space

 

for

 

an

 

online

 

transaction

 

application

 

might

 

be

 

associated

 

with

 

a

 

larger

 

buffer

 

pool,

 

so

 

that

 

the

 

data

 

pages

 

used

 

by

 

the

 

application

 

can

 

be

 

cached

 

longer,

 

resulting

 

in

 

faster

 

response

 

times.

 

Care

 

must

 

be

 

taken

 

in

 

configuring

 

new

 

buffer

 

pools.

 

Note:

  

If

 

you

 

have

 

determined

 

that

 

a

 

page

 

size

 

of

 

8

 

KB,

 

16

 

KB,

 

or

 

32

 

KB

 

is

 

required

 

by

 

your

 

database,

 

each

 

table

 

space

 

with

 

one

 

of

 

these

 

page

 

sizes

 

must

 

be

 

mapped

 

to

 

a

 

buffer

 

pool

 

with

 

the

 

same

 

page

 

size.

 

The

 

storage

 

required

 

for

 

all

 

the

 

buffer

 

pools

 

must

 

be

 

available

 

to

 

the

 

database

 

manager

 

when

 

the

 

database

 

is

 

started.

 

If

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

is

 

unable

 

to

 

obtain

 

the

 

required

 

storage,

 

the

 

database

 

manager

 

will

 

start

 

up

 

with

 

default

 

buffer

 

pools

 

(one

 

each

 

of

 

4

 

KB,

 

8

 

KB,

 

16

 

KB,

 

and

 

32

 

KB

 

page

 

sizes),

 

and

 

issue

 

a

 

warning.

 

In

 

a

 

partitioned

 

database

 

environment,

 

you

 

can

 

create

 

a

 

buffer

 

pool

 

of

 

the

 

same

 

size

 

for

 

all

 

partitions

 

in

 

the

 

database.

 

You

 

can

 

also

 

create

 

buffer

 

pools

 

of

 

different

 

sizes

 

on

 

different

 

partitions.

  

Related

 

concepts:

  

v

   

“Table

 

spaces

 

and

 

other

 

storage

 

structures”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

Related

 

reference:

  

v

   

“ALTER

 

BUFFERPOOL

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“ALTER

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

BUFFERPOOL

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

  

114

 

Administration

 

Guide:

 

Planning

|
|
|
|
|



Relationship

 

between

 

table

 

spaces

 

and

 

database

 

partition

 

groups

  

In

 

a

 

partitioned

 

database

 

environment,

 

each

 

table

 

space

 

is

 

associated

 

with

 

a

 

specific

 

database

 

partition

 

group.

 

This

 

allows

 

the

 

characteristics

 

of

 

the

 

table

 

space

 

to

 

be

 

applied

 

to

 

each

 

partition

 

in

 

the

 

database

 

partition

 

group.

 

The

 

database

 

partition

 

group

 

must

 

exist

 

(it

 

is

 

defined

 

with

 

the

 

CREATE

 

DATABASE

 

PARTITION

 

GROUP

 

statement),

 

and

 

the

 

association

 

between

 

the

 

table

 

space

 

and

 

the

 

database

 

partition

 

group

 

is

 

defined

 

when

 

the

 

table

 

space

 

is

 

created

 

using

 

the

 

CREATE

 

TABLESPACE

 

statement.

 

You

 

cannot

 

change

 

the

 

association

 

between

 

table

 

space

 

and

 

database

 

partition

 

group

 

using

 

the

 

ALTER

 

TABLESPACE

 

statement.

 

You

 

can

 

only

 

change

 

the

 

table

 

space

 

specification

 

for

 

individual

 

partitions

 

within

 

the

 

database

 

partition

 

group.

 

In

 

a

 

single-partition

 

environment,

 

each

 

table

 

space

 

is

 

associated

 

with

 

the

 

default

 

database

 

partition

 

group.

 

The

 

default

 

database

 

partition

 

group,

 

when

 

defining

 

a

 

table

 

space,

 

is

 

IBMDEFAULTGROUP,

 

unless

 

a

 

system

 

temporary

 

table

 

space

 

is

 

being

 

defined;

 

then

 

IBMTEMPGROUP

 

is

 

used.

  

Related

 

concepts:

  

v

   

“Table

 

spaces

 

and

 

other

 

storage

 

structures”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

Related

 

reference:

  

v

   

“CREATE

 

DATABASE

 

PARTITION

 

GROUP

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“CREATE

 

TABLESPACE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Storage

 

management

 

view

  

Use

 

the

 

Storage

 

Management

 

view

 

to

 

monitor

 

the

 

storage

 

state

 

of

 

a

 

partitioned

 

database.

 

The

 

Storage

 

Management

 

view

 

is

 

the

 

graphical

 

interface

 

to

 

the

 

Storage

 

Management

 

tool.

 

In

 

the

 

Storage

 

Management

 

view,

 

you

 

can

 

take

 

storage

 

snapshots

 

for

 

a

 

database,

 

a

 

database

 

partition

 

group,

 

or

 

a

 

table

 

space.

 

When

 

a

 

table

 

space

 

snapshot

 

is

 

taken,

 

statistical

 

information

 

is

 

collected

 

from

 

the

 

system

 

catalogs

 

and

 

database

 

monitor

 

for

 

tables,

 

indexes,

 

and

 

containers

 

defined

 

under

 

the

 

scope

 

of

 

the

 

given

 

table

 

space.

 

When

 

a

 

database

 

or

 

database

 

partition

 

group

 

snapshot

 

is

 

taken,

 

statistical

 

information

 

is

 

collected

 

for

 

all

 

the

 

table

 

spaces

 

defined

 

in

 

the

 

given

 

database

 

or

 

database

 

partition

 

group.

 

When

 

a

 

database

 

snapshot

 

is

 

taken,

 

statistical

 

information

 

is

 

collected

 

for

 

all

 

the

 

database

 

partition

 

groups

 

within

 

the

 

database.

 

Different

 

types

 

of

 

storage

 

snapshots

 

can

 

be

 

used

 

to

 

help

 

you

 

monitor

 

different

 

aspects

 

of

 

storage:

 

v

   

Space

 

usage

 

can

 

be

 

monitored

 

through

 

snapshots

 

of

 

table

 

spaces.

 

v

   

On

 

partitioned

 

databases

 

only:

 

Data

 

skew

 

(database

 

distribution)

 

can

 

be

 

monitored

 

best

 

through

 

snapshots

 

of

 

database

 

partition

 

groups.

 

v

   

Cluster

 

ratio

 

of

 

indexes

 

can

 

be

 

captured

 

through

 

both

 

database

 

partition

 

group

 

snapshots

 

and

 

table

 

space

 

snapshots.

 

The

 

cluster

 

ratio

 

of

 

indexes

 

is

 

presented

 

through

 

the

 

detail

 

view

 

of

 

the

 

index

 

folder.

 

The

 

Storage

 

Management

 

view

 

also

 

enables

 

you

 

to

 

set

 

thresholds

 

for

 

data

 

skew,

 

space

 

usage,

 

and

 

index

 

cluster

 

ratio.

 

If

 

a

 

target

 

object

 

exceeds

 

a

 

specified

 

threshold,

 

the

 

icons

 

beside

 

the

 

object

 

and

 

its

 

parent

 

object

 

in

 

the

 

Storage

 

Management

 

view

 

are

 

marked

 

with

 

a

 

warning

 

flag

 

or

 

an

 

alarm

 

flag.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

115



Note:

  

You

 

can

 

only

 

set

 

data

 

skew

 

thresholds

 

for

 

partitioned

 

databases.

  

Related

 

reference:

  

v

   

“Stored

 

procedures

 

for

 

the

 

storage

 

management

 

tool”

 

on

 

page

 

116

 

v

   

“Storage

 

management

 

view

 

tables”

 

on

 

page

 

116

Stored

 

procedures

 

for

 

the

 

storage

 

management

 

tool

  

The

 

following

 

table

 

shows

 

the

 

stored

 

procedure

 

functions

 

that

 

are

 

created

 

for

 

the

 

storage

 

management

 

tool.

 

The

 

stored

 

procedures

 

are

 

automatically

 

created

 

when

 

the

 

database

 

is

 

created.

 

Also,

 

their

 

respective

 

packages

 

are

 

bound

 

on

 

demand.

  

Table

 

21.

 

Stored

 

procedures

 

for

 

the

 

storage

 

management

 

tool

 

Fully

 

qualified

 

name

 

Parameters

 

Functionality

 

SYSPROC.CREATE_STORAGEMGMT_TABLES

 

in_tbspace

 

VARCHAR(128)

 

input

 

-

 

table

 

space

 

name

 

Creates

 

all

 

storage

 

management

 

tables

 

under

 

a

 

fixed

 

″DB2TOOLS″

 

schema,

 

in

 

the

 

table

 

space

 

specified

 

by

 

input.

 

SYSPROC.DROP_STORAGEMGMT_TABLES

 

dropSpec

 

SMALLINT

 

input

 

-

 

0

 

/

 

1

 

Attempt

 

to

 

drop

 

all

 

storage

 

management

 

tables.

 

When

 

dropSpec=0,

 

the

 

process

 

will

 

stop

 

when

 

any

 

error

 

is

 

encountered;

 

when

 

dropSpec=1,

 

the

 

process

 

will

 

continue

 

ignoring

 

any

 

error

 

it

 

has

 

encountered.

 

SYSPROC.CAPTURE_STORAGEMGMT_INFO

 

in_rootType

 

SMALLINT

 

input

 

all

 

valid

 

values

 

are

 

given

 

in

 

STMG_OBJECT_TYPE

 

table

 

in_rootSchema

 

VARCHAR(128)

 

input

 

-

 

schema

 

name

 

of

 

the

 

storage

 

snapshot

 

root

 

object

 

in_rootName

 

VARCHAR(128)

 

input-

 

name

 

of

 

the

 

root

 

object

 

Attempt

 

to

 

collect

 

for

 

system

 

catalog

 

and

 

snapshot

 

the

 

storage-related

 

information

 

for

 

the

 

given

 

root

 

object,

 

as

 

well

 

as

 

its

 

the

 

storage

 

objects

 

defined

 

within

 

its

 

scope.

 

All

 

the

 

storage

 

objects

 

are

 

specified

 

in

 

STMG_OBJECT_TYPE

 

table.

    

Related

 

reference:

  

v

   

“Storage

 

management

 

view”

 

on

 

page

 

115

Storage

 

management

 

view

 

tables

  

STMG_OBJECT_TYPE

 

table:

   

The

 

STMG_OBJECT_TYPE

 

table

 

contains

 

one

 

row

 

for

 

each

 

supported

 

storage

 

type

 

that

 

can

 

be

 

monitored.

  

Table

 

22.

 

STMG_OBJECT_TYPE

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

OBJ_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

type

 

of

 

storage

 

object

   

116

 

Administration

 

Guide:

 

Planning



Table

 

22.

 

STMG_OBJECT_TYPE

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

TYPE_NAME

 

VARCHAR

 

N

 

Descriptive

 

name

 

of

 

the

 

storage

 

object

 

type

    

STMG_THRESHOLD_REGISTRY

 

table:

   

The

 

STMG_THRESHOLD_REGISTRY

 

table

 

contains

 

one

 

row

 

for

 

each

 

storage

 

threshold

 

type.

 

The

 

enabled

 

thresholds

 

are

 

used

 

by

 

the

 

analysis

 

process

 

when

 

a

 

storage

 

snapshot

 

is

 

taken.

  

Table

 

23.

 

STMG_THRESHOLD_REGISTRY

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TH_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

storage

 

threshold

 

type

 

ENABLED

 

CHARACTER

 

N

 

Y

 

=

 

the

 

threshold

 

is

 

enabled

 

N

 

=

 

the

 

threshold

 

is

 

not

 

enabled

 

and

 

therefore

 

will

 

not

 

be

 

compared

 

against

 

during

 

storage

 

analysis

 

STMG_TH_NAME

 

VARCHAR

 

Y

 

Descriptive

 

name

 

of

 

the

 

storage

 

threshold

    

STMG_CURR_THRESHOLD

 

table:

   

The

 

STMG_CURR_THRESHOLD

 

table

 

contains

 

one

 

row

 

for

 

each

 

threshold

 

type

 

which

 

is

 

explicitly

 

set

 

for

 

a

 

storage

 

object.

  

Table

 

24.

 

STMG_CURR_THRESHOLD

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TH_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

storage

 

threshold

 

type

 

OBJ_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

type

 

of

 

storage

 

object

 

OBJ_NAME

 

VARCHAR

 

N

 

The

 

name

 

of

 

the

 

storage

 

object

 

OBJ_SCHEMA

 

VARCHAR

 

N

 

The

 

schema

 

of

 

the

 

storage

 

object.

 

″-″

 

is

 

used

 

when

 

schema

 

is

 

not

 

applicable

 

for

 

the

 

object

 

WARNING_THRESHOLD

 

SMALLINT

 

Y

 

The

 

value

 

of

 

the

 

warning

 

threshold

 

set

 

for

 

the

 

storage

 

object

 

ALARM_THRESHOLD

 

SMALLINT

 

Y

 

The

 

value

 

of

 

the

 

alarm

 

threshold

 

set

 

for

 

the

 

storage

 

object

    

STMG_ROOT_OBJECT

 

table:

   

The

 

STMG_ROOT_OBJECT

 

table

 

contains

 

one

 

row

 

for

 

the

 

root

 

object

 

of

 

each

 

storage

 

snapshot.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

117



Table

 

25.

 

STMG_ROOT_OBJECT

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

type

 

of

 

storage

 

object

 

ROOT_ID

 

VARCHAR

 

N

 

The

 

ID

 

of

 

the

 

root

 

object

    

STMG_OBJECT

 

table:

   

The

 

STMG_OBJECT

 

table

 

contains

 

one

 

row

 

for

 

each

 

storage

 

object

 

that

 

is

 

analyzed

 

by

 

the

 

storage

 

snapshots

 

taken

 

so

 

far.

  

Table

 

26.

 

STMG_OBJECT

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

the

 

time

 

the

 

data

 

capturing

 

process

 

started.

 

ROOT_ID

 

CHARACTER

 

N

 

The

 

ID

 

of

 

the

 

root

 

object

 

OBJ_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

type

 

of

 

storage

 

object

 

OBJ_SCHEMA

 

VARCHAR

 

N

 

The

 

schema

 

of

 

the

 

storage

 

object.

 

″-″

 

is

 

used

 

when

 

schema

 

is

 

not

 

applicable

 

for

 

the

 

object

 

OBJ_NAME

 

VARCHAR

 

N

 

The

 

name

 

of

 

the

 

storage

 

object

 

DBPG_NAME

 

VARCHAR

 

Y

 

The

 

name

 

of

 

the

 

database

 

partition

 

group

 

the

 

object

 

residing

 

in.

 

Null

 

if

 

not

 

applicable.

 

TS_NAME

 

VARCHAR

 

Y

 

The

 

name

 

of

 

the

 

table

 

space

 

the

 

object

 

residing

 

in.

 

Null

 

if

 

not

 

applicable.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

    

STMG_HIST_THRESHOLD

 

table:

   

The

 

STMG_HIST_THRESHOLD

 

table

 

contains

 

one

 

row

 

for

 

each

 

threshold

 

used

 

for

 

the

 

analyzing

 

the

 

storage

 

objects

 

at

 

the

 

time

 

the

 

storage

 

snapshots

 

are

 

taken.

  

Table

 

27.

 

STMG_HIST_THRESHOLD

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

the

 

time

 

the

 

data

 

capturing

 

process

 

started.

 

STMG_TH_TYPE

 

INTEGER

 

N

 

Integer

 

value

 

corresponds

 

to

 

a

 

storage

 

threshold

 

type

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

   

118

 

Administration

 

Guide:

 

Planning



Table

 

27.

 

STMG_HIST_THRESHOLD

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

WARNING_THRESHOLD

 

SMALLINT

 

Y

 

The

 

value

 

of

 

the

 

warning

 

threshold

 

set

 

for

 

the

 

storage

 

object

 

at

 

the

 

time

 

the

 

storage

 

snapshot

 

was

 

taken.

 

ALARM_THRESHOLD

 

SMALLINT

 

Y

 

The

 

value

 

of

 

the

 

alarm

 

threshold

 

set

 

for

 

the

 

storage

 

object

 

at

 

the

 

time

 

the

 

storage

 

snapshot

 

was

 

taken

    

STMG_DATABASE

 

table:

   

The

 

STMG_DATABASE

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

database

 

storage

 

snapshots.

  

Table

 

28.

 

STMG_DATABASE

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

database,

 

identified

 

by

 

OBJ_ID

 

column.

 

SPACE_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

storage

 

space

 

usage

 

state

 

of

 

the

 

database.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

SKEW_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

data

 

distribution

 

state

 

of

 

the

 

database.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

CR_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

index

 

clustering

 

state

 

of

 

the

 

database.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

    

STMG_DBPGROUP

 

table:

   

The

 

STMG_DBPGROUP

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

database

 

partition

 

group

 

storage

 

snapshots.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

119



Table

 

29.

 

STMG_DBPGROUP

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

database

 

partition

 

group,

 

identified

 

by

 

OBJ_ID

 

column.

 

SPACE_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

storage

 

space

 

usage

 

state

 

of

 

the

 

database

 

partition

 

group.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

SKEW_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

data

 

distribution

 

state

 

of

 

the

 

database

 

partition

 

group.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

PARTITON_COUNT

 

SMALLINT

 

Y

 

The

 

number

 

of

 

partitions

 

included

 

in

 

the

 

database

 

partition

 

group.

 

TARGET_LEVEL

 

BIGINT

 

Y

 

The

 

average

 

data

 

size,

 

in

 

bytes,

 

over

 

all

 

the

 

partitions

 

contained

 

by

 

the

 

database

 

partition

 

group.

 

It

 

is

 

the

 

target

 

level

 

of

 

even

 

data

 

distribution.

 

DATA_SKEW

 

SMALLINT

 

Y

 

A

 

percentage

 

of

 

the

 

maximum

 

data

 

size

 

deviation

 

from

 

the

 

TARGET_LEVEL

 

among

 

all

 

the

 

partitions.

 

This

 

value

 

is

 

used

 

during

 

data

 

capture

 

and

 

analysis

 

process

 

to

 

be

 

compared

 

against

 

the

 

data

 

distribution

 

skew

 

set

 

for

 

the

 

database

 

partition

 

group

 

in

 

the

 

STMG_CURR_THRESHOLD

 

table.

 

TOTAL_SIZE

 

BIGINT

 

Y

 

The

 

total

 

size,

 

in

 

bytes,

 

over

 

all

 

the

 

partitions

 

contained

 

by

 

the

 

database

 

partition

 

group.

 

It

 

is

 

the

 

sum

 

of

 

the

 

total

 

size

 

(number

 

of

 

pages

 

multiplied

 

by

 

page

 

size)

 

of

 

all

 

table

 

spaces

 

defined

 

under

 

the

 

database

 

partition

 

group.

 

For

 

DMS

 

table

 

spaces,

 

the

 

total

 

size

 

is

 

the

 

allocated

 

size;

 

for

 

SMS

 

table

 

spaces,

 

it

 

is

 

the

 

size

 

of

 

the

 

currently

 

used

 

by

 

the

 

table

 

space.

   

120

 

Administration

 

Guide:

 

Planning



Table

 

29.

 

STMG_DBPGROUP

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

DATA_SIZE

 

BIGINT

 

Y

 

The

 

data

 

size,

 

in

 

bytes,

 

over

 

all

 

the

 

partitions

 

contained

 

by

 

the

 

database

 

partition

 

group.

 

It

 

is

 

the

 

sum

 

of

 

the

 

data

 

size

 

(number

 

of

 

data

 

pages

 

multiplied

 

by

 

page

 

size)

 

of

 

all

 

table

 

spaces

 

defined

 

under

 

the

 

database

 

partition

 

group.

 

PERCENT_USED

 

SMALLINT

 

Y

 

A

 

percentage

 

value

 

of

 

data

 

size

 

over

 

total

 

size.

 

This

 

value

 

is

 

compared

 

against

 

the

 

space

 

usage

 

threshold

 

during

 

the

 

data

 

capture

 

and

 

analysis

 

process.

 

In

 

the

 

case

 

of

 

SMS

 

table

 

spaces,

 

the

 

space

 

usage

 

threshold

 

for

 

the

 

table

 

space

 

or

 

its

 

parent

 

database

 

partition

 

group

 

should

 

be

 

set

 

to

 

100

 

to

 

avoid

 

unnecessary

 

alarms.

    

STMG_DBPARTITION

 

table:

   

The

 

STMG_DBPARTITION

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

database

 

partition

 

storage

 

snapshots.

 

This

 

is

 

meant

 

to

 

be

 

used

 

along

 

with

 

the

 

STMG_DBPGROUP

 

table.

  

Table

 

30.

 

STMG_DBPARTITION

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

PARTITION_NUM

 

INTEGER

 

Y

 

The

 

database

 

partition

 

number.

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

database

 

partition,

 

identified

 

by

 

OBJ_ID

 

column.

 

DBPG_NAME

 

CHARACTER

 

Y

 

The

 

name

 

of

 

database

 

partition

 

group

 

IN_USE

 

CHARACTER

 

Y

 

Status

 

of

 

the

 

partition

 

at

 

the

 

time

 

of

 

the

 

storage

 

snapshot.

 

Same

 

as

 

IN_USE

 

column

 

in

 

SYSCAT.NODEGROUPDEF.

 

HOST_NAME

 

VARCHAR

 

Y

 

The

 

host

 

name

 

of

 

the

 

database

 

partition.

 

HOST_SYSTEM_SIZE

 

BIGINT

 

Y

 

NOT

 

AVAILABLE

 

EST_DATA_SIZE

 

BIGINT

 

Y

 

The

 

estimated

 

data

 

size

 

on

 

the

 

database

 

partition,

 

within

 

the

 

database

 

partition

 

group

 

scope.

 

This

 

value

 

is

 

calculated

 

as

 

the

 

sum

 

of

 

the

 

table

 

partition

 

data

 

size,

 

for

 

the

 

given

 

partition.

    

STMG_TABLESPACE

 

table:

    

Chapter

 

5.

 

Physical

 

database

 

design

 

121



The

 

STMG_TABLESPACE

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

table

 

space

 

storage

 

snapshots.

  

Table

 

31.

 

STMG_TABLESPACE

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

table

 

space,

 

identified

 

by

 

OBJ_ID

 

column.

 

SPACE_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

storage

 

space

 

usage

 

state

 

of

 

the

 

table

 

space.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded

 

TYPE

 

CHARACTER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

DATATYPE

 

CHARACTER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

TOTAL_SIZE

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

PERCENT_USED

 

SMALLINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES.

 

This

 

is

 

used

 

during

 

data

 

capture

 

and

 

analysis

 

process

 

to

 

be

 

compared

 

against

 

the

 

space

 

usage

 

threshold

 

in

 

the

 

STMG_CURR_THRESHOLD

 

table.

 

DATA_SIZE

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

DATA_PAGE

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

EXTENT_SIZE

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

PREFETCH_SIZE

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

OVERHEAD

 

DOUBLE

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

TRANSFER_RATE

 

DOUBLE

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

BUFFERPOOL_ID

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

 

PAGE_SIZE

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLESPACES

    

STMG_CONTAINER

 

table:

   

The

 

STMG_CONTAINER

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

container

 

storage

 

snapshots.

  

Table

 

32.

 

STMG_CONTAINER

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

   

122

 

Administration

 

Guide:

 

Planning



Table

 

32.

 

STMG_CONTAINER

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

container,

 

identified

 

by

 

OBJ_ID

 

column.

 

TS_ID

 

INTEGER

 

Y

 

The

 

integer

 

ID

 

for

 

the

 

table

 

space

 

which

 

the

 

container

 

is

 

assigned

 

to.

 

SPACE_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

storage

 

space

 

usage

 

state

 

of

 

the

 

container.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

PARTITION_NUM

 

INTEGER

 

Y

 

The

 

partition

 

number

 

of

 

the

 

database

 

partition

 

where

 

the

 

container

 

resides.

 

TYPE

 

CHARACTER

 

Y

 

’P’

 

=

 

path

 

container;

 

’F’

 

=

 

file

 

container;

 

’D’

 

=

 

raw

 

device

 

container

 

TOTAL_PAGE

 

BIGINT

 

Y

 

Total

 

pages

 

allocated

 

for

 

the

 

container.

 

USABLE_PAGES

 

BIGINT

 

Y

 

Number

 

of

 

usable

 

pages

 

in

 

the

 

container.

 

PERCENT_USED

 

SMALLINT

 

Y

 

NOT

 

AVAILABLE.

 

This

 

is

 

to

 

be

 

used

 

during

 

data

 

capture

 

and

 

analysis

 

process

 

to

 

be

 

compared

 

against

 

the

 

space

 

usage

 

threshold

 

in

 

the

 

STMG_CURR_THRESHOLD

 

table.

 

DATA_SIZE

 

BIGINT

 

Y

 

NOT

 

AVAILABLE

 

DATA_PAGE

 

BIGINT

 

Y

 

NOT

 

AVAILABLE

    

STMG_TABLE

 

table:

   

The

 

STMG_TABLE

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

table

 

storage

 

snapshots.

  

Table

 

33.

 

STMG_TABLE

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

table,

 

identified

 

by

 

OBJ_ID

 

column.

 

DBPG_NAME

 

VARCHAR

 

Y

 

The

 

name

 

of

 

the

 

database

 

partition

 

group

 

the

 

table

 

resides

 

in.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

123



Table

 

33.

 

STMG_TABLE

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

SKEW_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

data

 

distribution

 

state

 

of

 

the

 

table.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

TOTAL_ROW_COUNT

 

BIGINT

 

Y

 

Total

 

row

 

count

 

of

 

the

 

table

 

AVG_ROW_COUNT

 

BIGINT

 

Y

 

The

 

average

 

row

 

count

 

over

 

all

 

the

 

table

 

partitions

 

TARGET_LEVEL

 

BIGINT

 

Y

 

The

 

average

 

data

 

size

 

on

 

each

 

partition,

 

in

 

bytes

 

DATA_SKEW

 

SMALLINT

 

Y

 

The

 

maximum

 

percentage

 

of

 

the

 

ROW_COUNT

 

value

 

deviated

 

from

 

the

 

TARGET_LEVEL,

 

over

 

all

 

table

 

partitions,

 

for

 

the

 

given

 

table.

 

This

 

is

 

used

 

during

 

data

 

capture

 

and

 

analysis

 

process

 

to

 

be

 

compared

 

against

 

the

 

data

 

skew

 

threshold

 

in

 

the

 

STMG_CURR_THRESHOLD

 

table.

 

AVG_ROW_LENGTH

 

BIGINT

 

Y

 

The

 

average

 

row

 

length

 

of

 

the

 

table.

 

If

 

this

 

statistic

 

has

 

been

 

collected,

 

it

 

will

 

be

 

the

 

sum

 

of

 

the

 

average

 

column

 

length

 

of

 

all

 

the

 

columns

 

in

 

this

 

table;

 

when

 

there

 

is

 

no

 

statistical

 

data,

 

this

 

value

 

is

 

calculated

 

by

 

adding

 

the

 

fixed

 

columns’

 

length

 

with

 

the

 

percentage

 

of

 

the

 

variable

 

columns’

 

length.

 

COLCOUNT

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

ESTIMATED_SIZE

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

NPAGES

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

FPAGES

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

OVERFLOW

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

MAIN_TBSPACE

 

VARCHAR

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

INDEX_TBSPACE

 

VARCHAR

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

 

LONG_TBSPACE

 

VARCHAR

 

Y

 

As

 

defined

 

in

 

SYSCAT.TABLES

    

STMG_TBPARTITION

 

table:

   

The

 

STMG_TBPARTITION

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

table

 

partition

 

storage

 

snapshots.

  

Table

 

34.

 

STMG_TBPARTITION

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

   

124

 

Administration

 

Guide:

 

Planning



Table

 

34.

 

STMG_TBPARTITION

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

PARTITION_NUM

 

INTEGER

 

N

 

The

 

partition

 

number

 

of

 

the

 

database

 

partition

 

where

 

the

 

table

 

partition

 

resides.

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

table

 

partition,

 

identified

 

by

 

OBJ_ID

 

column.

 

DBPG_NAME

 

VARCHAR

 

Y

 

The

 

name

 

of

 

the

 

database

 

partition

 

group

 

where

 

the

 

table

 

resides.

 

ROWCOUNT

 

BIGINT

 

Y

 

The

 

number

 

of

 

rows

 

in

 

this

 

table

 

partition

    

STMG_INDEX

 

table:

   

The

 

STMG_INDEX

 

table

 

contains

 

one

 

row

 

for

 

each

 

detailed

 

entry

 

of

 

index

 

storage

 

snapshots.

  

Table

 

35.

 

STMG_INDEX

 

table

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

STMG_TIMESTAMP

 

TIMESTAMP

 

N

 

The

 

timestamp

 

of

 

the

 

storage

 

snapshot.

 

It

 

indicates

 

when

 

the

 

data

 

capturing

 

process

 

started.

 

OBJ_ID

 

VARCHAR

 

N

 

The

 

unique

 

identifier

 

for

 

each

 

storage

 

object

 

under

 

a

 

given

 

storage

 

snapshot

 

timestamp

 

COMPLETE_TIMESTAMP

 

TIMESTAMP

 

Y

 

The

 

timestamp

 

of

 

when

 

the

 

data

 

capturing

 

process

 

has

 

completed

 

for

 

the

 

index,

 

identified

 

by

 

OBJ_ID

 

column.

 

DBPG_NAME

 

VARCHAR

 

Y

 

The

 

name

 

of

 

the

 

database

 

partition

 

group

 

where

 

the

 

index

 

resides

 

in.

 

TB_SCHEMA

 

VARCHAR

 

Y

 

As

 

TABNAME

 

defined

 

in

 

SYSCAT.INDEXES

 

TB_NAME

 

VARCHAR

 

Y

 

As

 

TABSCHEMA

 

defined

 

in

 

SYSCAT.INDEXES

 

CR_THRESHOLD_EXCEEDED

 

SMALLINT

 

Y

 

A

 

flag

 

indicating

 

the

 

index

 

clustering

 

state.

 

0

 

=

 

normal

 

operational

 

state;

 

1

 

=

 

warning

 

threshold

 

exceeded;

 

2

 

=

 

alarm

 

threshold

 

exceeded.

 

COLCOUNT

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

ESTIMATED_SIZE

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

NLEAF

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

NLEVELS

 

SMALLINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

FIRSTKEYCARD

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

FIRST2KEYCARD

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

FIRST3KEYCARD

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

   

Chapter

 

5.

 

Physical

 

database

 

design

 

125



Table

 

35.

 

STMG_INDEX

 

table

 

(continued)

 

Column

 

name

 

Data

 

type

 

Nullable

 

Description

 

FIRST4KEYCARD

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

FULLKEYCARD

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

CLUSTERRATIO

 

SMALLINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES,

 

this

 

is

 

used

 

during

 

data

 

capture

 

and

 

analysis

 

process

 

to

 

compare

 

against

 

the

 

threshold

 

set

 

for

 

the

 

given

 

index.

 

CLUSTERFACTOR

 

BIGINT

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

SEQUENTIAL_PAGES

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

 

DENSITY

 

INTEGER

 

Y

 

As

 

defined

 

in

 

SYSCAT.INDEXES

    

Related

 

reference:

  

v

   

“Storage

 

management

 

view”

 

on

 

page

 

115

Temporary

 

table

 

space

 

design

  

It

 

is

 

recommended

 

that

 

you

 

define

 

a

 

single

 

SMS

 

temporary

 

table

 

space

 

with

 

a

 

page

 

size

 

equal

 

to

 

the

 

page

 

size

 

used

 

in

 

the

 

majority

 

of

 

your

 

regular

 

table

 

spaces.

 

This

 

should

 

be

 

suitable

 

for

 

typical

 

environments

 

and

 

workloads.

 

However,

 

it

 

can

 

be

 

advantageous

 

to

 

experiment

 

with

 

different

 

temporary

 

table

 

space

 

configurations

 

and

 

workloads.

 

The

 

following

 

points

 

should

 

be

 

considered:

 

v

   

Temporary

 

tables

 

are

 

in

 

most

 

cases

 

accessed

 

in

 

batches

 

and

 

sequentially.

 

That

 

is,

 

a

 

batch

 

of

 

rows

 

is

 

inserted,

 

or

 

a

 

batch

 

of

 

sequential

 

rows

 

is

 

fetched.

 

Therefore,

 

a

 

larger

 

page

 

size

 

typically

 

results

 

in

 

better

 

performance,

 

because

 

fewer

 

logical

 

or

 

physical

 

page

 

I/O

 

requests

 

are

 

required

 

to

 

read

 

a

 

given

 

amount

 

of

 

data.

 

This

 

is

 

not

 

always

 

the

 

case

 

when

 

the

 

average

 

temporary

 

table

 

row

 

size

 

is

 

smaller

 

than

 

the

 

page

 

size

 

divided

 

by

 

255.

 

A

 

maximum

 

of

 

255

 

rows

 

can

 

exist

 

on

 

any

 

page,

 

regardless

 

of

 

the

 

page

 

size.

 

For

 

example,

 

a

 

query

 

that

 

requires

 

a

 

temporary

 

table

 

with

 

15-byte

 

rows

 

would

 

be

 

better

 

served

 

by

 

a

 

4

 

KB

 

temporary

 

table

 

space

 

page

 

size,

 

because

 

255

 

such

 

rows

 

can

 

all

 

be

 

contained

 

within

 

a

 

4

 

KB

 

page.

 

An

 

8

 

KB

 

(or

 

larger)

 

page

 

size

 

would

 

result

 

in

 

at

 

least

 

4

 

KB

 

(or

 

more)

 

bytes

 

of

 

wasted

 

space

 

on

 

each

 

temporary

 

table

 

page,

 

and

 

would

 

not

 

reduce

 

the

 

number

 

of

 

required

 

I/O

 

requests.

 

v

   

If

 

more

 

than

 

fifty

 

percent

 

of

 

the

 

regular

 

table

 

spaces

 

in

 

your

 

database

 

use

 

the

 

same

 

page

 

size,

 

it

 

can

 

be

 

advantageous

 

to

 

define

 

your

 

temporary

 

table

 

spaces

 

with

 

the

 

same

 

page

 

size.

 

The

 

reason

 

for

 

this

 

is

 

that

 

this

 

arrangement

 

enables

 

your

 

temporary

 

table

 

space

 

to

 

share

 

the

 

same

 

buffer

 

pool

 

space

 

with

 

most

 

or

 

all

 

of

 

your

 

regular

 

table

 

spaces.

 

This,

 

in

 

turn,

 

simplifies

 

buffer

 

pool

 

tuning.

 

v

   

When

 

reorganizing

 

a

 

table

 

using

 

a

 

temporary

 

table

 

space,

 

the

 

page

 

size

 

of

 

the

 

temporary

 

table

 

space

 

must

 

match

 

that

 

of

 

the

 

table.

 

For

 

this

 

reason,

 

you

 

should

 

ensure

 

that

 

there

 

are

 

temporary

 

table

 

spaces

 

defined

 

for

 

each

 

different

 

page

 

size

 

used

 

by

 

existing

 

tables

 

that

 

you

 

may

 

reorganize

 

using

 

a

 

temporary

 

table

 

space.

 

You

 

can

 

also

 

reorganize

 

without

 

a

 

temporary

 

table

 

space

 

by

 

reorganizing

 

the

 

table

 

directly

 

in

 

the

 

target

 

table

 

space.

 

Of

 

course,

 

this

 

type

 

of

 

reorganization

 

requires

 

that

 

there

 

be

 

extra

 

space

 

in

 

the

 

target

 

table

 

space

 

for

 

the

 

reorganization

 

process.

 

v

   

If

 

you

 

are

 

reliant

 

on

 

system

 

temporary

 

tables

 

in

 

SMS

 

system

 

temporary

 

table

 

spaces

 

because

 

of

 

your

 

work

 

envionment,

 

you

 

may

 

want

 

to

 

consider

 

using

 

the

 

registry

 

variable

 

DB2_SMS_TRUNC_TMPTABLE_THRESH.

 

In

 

the

 

past

 

when

 

system

 

temporary

 

tables

 

were

 

no

 

longer

 

needed,

 

they

 

were

 

truncated

 

to

 

a

 

file

   

126

 

Administration

 

Guide:

 

Planning

|
|
|
|



size

 

of

 

zero.

 

The

 

need

 

for

 

a

 

new

 

system

 

temporary

 

table

 

would

 

have

 

a

 

performance

 

cost

 

associated

 

with

 

it.

 

Using

 

this

 

registry

 

variable

 

allows

 

for

 

leaving

 

non-zero

 

system

 

temporary

 

tables

 

on

 

the

 

system

 

to

 

avoid

 

the

 

performance

 

cost

 

of

 

repeated

 

creations

 

and

 

truncations

 

of

 

system

 

temporary

 

tables.

 

v

   

In

 

general,

 

when

 

temporary

 

table

 

spaces

 

of

 

differing

 

page

 

sizes

 

exist,

 

the

 

optimizer

 

will

 

most

 

often

 

choose

 

the

 

temporary

 

table

 

space

 

with

 

the

 

largest

 

buffer

 

pool.

 

In

 

such

 

cases,

 

it

 

is

 

often

 

wise

 

to

 

assign

 

an

 

ample

 

buffer

 

pool

 

to

 

one

 

of

 

the

 

temporary

 

table

 

spaces,

 

and

 

leave

 

any

 

others

 

with

 

a

 

smaller

 

buffer

 

pool.

 

Such

 

a

 

buffer

 

pool

 

assignment

 

will

 

help

 

ensure

 

efficient

 

utilization

 

of

 

main

 

memory.

 

For

 

example,

 

if

 

your

 

catalog

 

table

 

space

 

uses

 

4

 

KB

 

pages,

 

and

 

the

 

remaining

 

table

 

spaces

 

use

 

8

 

KB

 

pages,

 

the

 

best

 

temporary

 

table

 

space

 

configuration

 

may

 

be

 

a

 

single

 

8

 

KB

 

temporary

 

table

 

space

 

with

 

a

 

large

 

buffer

 

pool,

 

and

 

a

 

single

 

4

 

KB

 

table

 

space

 

with

 

a

 

small

 

buffer

 

pool.

 

Note:

  

Catalog

 

table

 

spaces

 

are

 

restricted

 

to

 

using

 

the

 

4

 

KB

 

page

 

size.

 

As

 

such,

 

the

 

database

 

manager

 

always

 

enforces

 

the

 

existence

 

of

 

a

 

4

 

KB

 

system

 

temporary

 

table

 

space

 

to

 

enable

 

catalog

 

table

 

reorganizations.

 

v

   

There

 

is

 

generally

 

no

 

advantage

 

to

 

defining

 

more

 

than

 

one

 

temporary

 

table

 

space

 

of

 

any

 

single

 

page

 

size.

 

v

   

SMS

 

is

 

almost

 

always

 

a

 

better

 

choice

 

than

 

DMS

 

for

 

temporary

 

table

 

spaces

 

because:

 

–

   

There

 

is

 

more

 

overhead

 

in

 

the

 

creation

 

of

 

a

 

temporary

 

table

 

when

 

using

 

DMS

 

versus

 

SMS.

 

–

   

Disk

 

space

 

is

 

allocated

 

on

 

demand

 

in

 

SMS,

 

whereas

 

it

 

must

 

be

 

pre-allocated

 

in

 

DMS.

 

Pre-allocation

 

can

 

be

 

difficult:

 

Temporary

 

table

 

spaces

 

hold

 

transient

 

data

 

that

 

can

 

have

 

a

 

very

 

large

 

peak

 

storage

 

requirement,

 

and

 

a

 

much

 

smaller

 

average

 

storage

 

requirement.

 

With

 

DMS,

 

the

 

peak

 

storage

 

requirement

 

must

 

be

 

pre-allocated,

 

whereas

 

with

 

SMS,

 

the

 

extra

 

disk

 

space

 

can

 

be

 

used

 

for

 

other

 

purposes

 

during

 

off-peak

 

hours.

 

–

   

The

 

database

 

manager

 

attempts

 

to

 

keep

 

temporary

 

table

 

pages

 

in

 

memory,

 

rather

 

than

 

writing

 

them

 

out

 

to

 

disk.

 

As

 

a

 

result,

 

the

 

performance

 

advantages

 

of

 

DMS

 

are

 

less

 

significant.

 

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Temporary

 

tables

 

in

 

SMS

 

table

 

spaces”

 

on

 

page

 

127

 

Related

 

reference:

  

v

   

“REORG

 

INDEXES/TABLE

 

Command”

 

in

 

the

 

Command

 

Reference

Temporary

 

tables

 

in

 

SMS

 

table

 

spaces

  

Temporary

 

tables

 

in

 

SMS

 

table

 

spaces

 

are

 

not

 

deleted

 

by

 

default

 

once

 

they

 

are

 

no

 

longer

 

needed.

 

Instead,

 

files

 

associated

 

with

 

temporary

 

tables

 

that

 

are

 

larger

 

than

 

one

 

extent

 

in

 

size

 

are

 

truncated

 

to

 

one

 

extent.

 

In

 

cases

 

where

 

temporary

 

tables

 

are

 

used

 

repeatedly,

 

this

 

avoids

 

some

 

of

 

the

 

performance

 

cost

 

of

 

deleting

 

and

 

recreating

 

temporary

 

tables.

 

This

 

reuse

 

of

 

temporary

 

tables

 

benefits

 

users

 

whose

 

workload

 

involves

 

dealing

 

with

 

many

 

small

 

temporary

 

tables

 

on

 

smaller

 

systems

 

such

 

as

 

Windows®

 

NT

   

Chapter

 

5.

 

Physical

 

database

 

design

 

127

|
|
|
|
|

|

|
|
|
|
|

|
|



where

 

the

 

file

 

system

 

calls

 

are

 

relatively

 

expensive;

 

and

 

users

 

whose

 

disk

 

storage

 

is

 

distributed,

 

requiring

 

network

 

messages

 

to

 

complete

 

file

 

system

 

operations.

 

By

 

default,

 

files

 

that

 

hold

 

temporary

 

tables

 

larger

 

than

 

one

 

extent

 

are

 

truncated

 

to

 

one

 

extent

 

once

 

they

 

are

 

no

 

longer

 

needed.

 

You

 

can

 

increase

 

this

 

amount

 

by

 

specifying

 

a

 

larger

 

value

 

for

 

the

 

DB2®_SMS_TRUNC_TMPTABLE_THRESH

 

registry

 

variable.

 

You

 

should

 

increase

 

the

 

value

 

associated

 

with

 

this

 

registry

 

variable

 

if

 

your

 

workload

 

repeatedly

 

uses

 

large

 

SMS

 

temporary

 

tables

 

and

 

you

 

can

 

afford

 

to

 

leave

 

space

 

allocated

 

between

 

uses.

 

You

 

can

 

turn

 

off

 

this

 

feature

 

by

 

specifying

 

a

 

value

 

of

 

0

 

for

 

the

 

DB2_SMS_TRUNC_TMPTABLE_THRESH

 

registry

 

variable.

 

You

 

might

 

want

 

to

 

do

 

this

 

if

 

your

 

system

 

has

 

restrictive

 

space

 

limitations

 

and

 

you

 

are

 

experiencing

 

repeated

 

out

 

of

 

disk

 

errors

 

for

 

SMS

 

temporary

 

table

 

spaces.

 

The

 

first

 

connection

 

to

 

the

 

database

 

deletes

 

any

 

previously

 

allocated

 

files.

 

If

 

you

 

want

 

to

 

clear

 

out

 

existing

 

temporary

 

tables,

 

you

 

should

 

drop

 

all

 

database

 

connections

 

and

 

reconnect,

 

or

 

deactivate

 

the

 

database

 

and

 

reactivate

 

it.

 

If

 

you

 

want

 

to

 

ensure

 

that

 

space

 

for

 

temporary

 

tables

 

stays

 

allocated,

 

use

 

the

 

ACTIVATE

 

DATABASE

 

command

 

to

 

start

 

the

 

database.

 

This

 

will

 

avoid

 

the

 

repeated

 

cost

 

of

 

startup

 

on

 

the

 

first

 

connect

 

to

 

the

 

database.

  

Related

 

concepts:

  

v

   

“Temporary

 

table

 

space

 

design”

 

on

 

page

 

126

Catalog

 

table

 

space

 

design

  

An

 

SMS

 

table

 

space

 

is

 

recommended

 

for

 

database

 

catalogs,

 

for

 

the

 

following

 

reasons:

 

v

   

The

 

database

 

catalog

 

consists

 

of

 

many

 

tables

 

of

 

varying

 

sizes.

 

When

 

using

 

a

 

DMS

 

table

 

space,

 

a

 

minimum

 

of

 

two

 

extents

 

are

 

allocated

 

for

 

each

 

table

 

object.

 

Depending

 

on

 

the

 

extent

 

size

 

chosen,

 

a

 

significant

 

amount

 

of

 

allocated

 

and

 

unused

 

space

 

may

 

result.

 

When

 

using

 

a

 

DMS

 

table

 

space,

 

a

 

small

 

extent

 

size

 

(two

 

to

 

four

 

pages)

 

should

 

be

 

chosen;

 

otherwise,

 

an

 

SMS

 

table

 

space

 

should

 

be

 

used.

 

v

   

There

 

are

 

large

 

object

 

(LOB)

 

columns

 

in

 

the

 

catalog

 

tables.

 

LOB

 

data

 

is

 

not

 

kept

 

in

 

the

 

buffer

 

pool

 

with

 

other

 

data,

 

but

 

is

 

read

 

from

 

disk

 

each

 

time

 

it

 

is

 

needed.

 

Reading

 

LOBs

 

from

 

disk

 

reduces

 

performance.

 

Since

 

a

 

file

 

system

 

usually

 

has

 

its

 

own

 

cache,

 

using

 

an

 

SMS

 

table

 

space,

 

or

 

a

 

DMS

 

table

 

space

 

built

 

on

 

file

 

containers,

 

makes

 

avoidance

 

of

 

I/O

 

possible

 

if

 

the

 

LOB

 

has

 

previously

 

been

 

referenced.

Given

 

these

 

considerations,

 

an

 

SMS

 

table

 

space

 

is

 

a

 

somewhat

 

better

 

choice

 

for

 

the

 

catalogs.

 

Another

 

factor

 

to

 

consider

 

is

 

whether

 

you

 

will

 

need

 

to

 

enlarge

 

the

 

catalog

 

table

 

space

 

in

 

the

 

future.

 

While

 

some

 

platforms

 

have

 

support

 

for

 

enlarging

 

the

 

underlying

 

storage

 

for

 

SMS

 

containers,

 

and

 

while

 

you

 

can

 

use

 

redirected

 

restore

 

to

 

enlarge

 

an

 

SMS

 

table

 

space,

 

the

 

use

 

of

 

a

 

DMS

 

table

 

space

 

facilitates

 

the

 

addition

 

of

 

new

 

containers.

  

Related

 

concepts:

  

v

   

“Definition

 

of

 

system

 

catalog

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

   

128

 

Administration

 

Guide:

 

Planning

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|



v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

Optimizing

 

table

 

space

 

performance

 

when

 

data

 

is

 

on

 

RAID

 

devices

  

This

 

section

 

describes

 

how

 

to

 

optimize

 

performance

 

when

 

data

 

is

 

placed

 

on

 

Redundant

 

Array

 

of

 

Independent

 

Disks

 

(RAID)

 

devices.

  

Procedure:

   

You

 

should

 

do

 

the

 

following

 

for

 

each

 

table

 

space

 

that

 

uses

 

a

 

RAID

 

device:

 

v

   

Define

 

a

 

single

 

container

 

for

 

the

 

table

 

space

 

(using

 

the

 

RAID

 

device).

 

v

   

Make

 

the

 

EXTENTSIZE

 

of

 

the

 

table

 

space

 

equal

 

to,

 

or

 

a

 

multiple

 

of,

 

the

 

RAID

 

stripe

 

size.

 

v

   

Ensure

 

that

 

the

 

PREFETCHSIZE

 

of

 

the

 

table

 

space

 

is:

 

–

   

the

 

RAID

 

stripe

 

size

 

multiplied

 

by

 

the

 

number

 

of

 

RAID

 

parallel

 

devices

 

(or

 

a

 

whole

 

multiple

 

of

 

this

 

product),

 

and

 

–

   

a

 

multiple

 

of

 

the

 

EXTENTSIZE.
v

   

Use

 

the

 

DB2_PARALLEL_IO

 

registry

 

variable

 

to

 

enable

 

parallel

 

I/O

 

for

 

the

 

table

 

space.

 

DB2_PARALLEL_IO:

   

When

 

reading

 

data

 

from,

 

or

 

writing

 

data

 

to

 

table

 

space

 

containers,

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

may

 

use

 

parallel

 

I/O

 

if

 

the

 

number

 

of

 

containers

 

in

 

the

 

database

 

is

 

greater

 

than

 

1.

 

However,

 

there

 

are

 

situations

 

when

 

it

 

would

 

be

 

beneficial

 

to

 

have

 

parallel

 

I/O

 

enabled

 

for

 

single

 

container

 

table

 

spaces.

 

For

 

example,

 

if

 

the

 

container

 

is

 

created

 

on

 

a

 

single

 

RAID

 

device

 

that

 

is

 

composed

 

of

 

more

 

than

 

one

 

physical

 

disk,

 

you

 

may

 

want

 

to

 

issue

 

parallel

 

read

 

and

 

write

 

calls.

 

To

 

force

 

parallel

 

I/O

 

for

 

a

 

table

 

space

 

that

 

has

 

a

 

single

 

container,

 

you

 

can

 

use

 

the

 

DB2_PARALLEL_IO

 

registry

 

variable.

 

This

 

variable

 

can

 

be

 

set

 

to

 

″*″

 

(asterisk),

 

meaning

 

every

 

table

 

space,

 

or

 

it

 

can

 

be

 

set

 

to

 

a

 

list

 

of

 

table

 

space

 

IDs

 

separated

 

by

 

commas.

 

For

 

example:

    

db2set

 

DB2_PARALLEL_IO=*

        

{turn

 

parallel

 

I/O

 

on

 

for

 

all

 

table

 

spaces}

    

db2set

 

DB2_PARALLEL_IO=1,2,4,8

  

{turn

 

parallel

 

I/O

 

on

 

for

 

table

 

spaces

 

1,

 

2,

                                     

4,

 

and

 

8}

 

After

 

setting

 

the

 

registry

 

variable,

 

DB2

 

UDB

 

must

 

be

 

stopped

 

(db2stop),

 

and

 

then

 

restarted

 

(db2start),

 

for

 

the

 

changes

 

to

 

take

 

effect.

 

DB2_PARALLEL_IO

 

also

 

affects

 

table

 

spaces

 

with

 

more

 

than

 

one

 

container

 

defined.

 

If

 

you

 

do

 

not

 

set

 

the

 

registry

 

variable,

 

the

 

I/O

 

parallelism

 

is

 

equal

 

to

 

the

 

number

 

of

 

containers

 

in

 

the

 

table

 

space.

 

If

 

you

 

set

 

the

 

registry

 

variable,

 

the

 

I/O

 

parallelism

 

is

 

equal

 

to

 

the

 

result

 

of

 

prefetch

 

size

 

divided

 

by

 

extent

 

size.

 

You

 

might

 

want

 

to

 

set

 

the

 

registry

 

variable

 

if

 

the

 

individual

 

containers

 

in

 

the

 

table

 

space

 

are

 

striped

 

across

 

multiple

 

physical

 

disks.

 

For

 

example,

 

a

 

table

 

space

 

has

 

two

 

containers

 

and

 

the

 

prefetch

 

size

 

is

 

four

 

times

 

the

 

extent

 

size.

 

If

 

the

 

registry

 

variable

 

is

 

not

 

set,

 

a

 

prefetch

 

request

 

for

 

this

 

table

 

space

 

will

 

be

 

broken

 

into

 

two

 

requests

 

(each

 

request

 

will

 

be

 

for

 

two

 

extents).

 

Provided

 

that

 

the

 

prefetchers

 

are

 

available

 

to

 

do

 

work,

 

two

 

prefetchers

 

can

 

be

 

working

 

on

 

these

 

requests

 

in

 

parallel.

 

In

 

the

 

case

 

where

 

the

 

registry

 

variable

 

is

 

set,

   

Chapter

 

5.

 

Physical

 

database

 

design

 

129

|
|
|
|
|
|



a

 

prefetch

 

request

 

for

 

this

 

table

 

space

 

will

 

be

 

broken

 

into

 

four

 

requests

 

(one

 

extent

 

per

 

request)

 

with

 

a

 

possibility

 

of

 

four

 

prefetchers

 

servicing

 

the

 

requests

 

in

 

parallel.

 

In

 

this

 

example,

 

if

 

each

 

of

 

the

 

two

 

containers

 

had

 

a

 

single

 

disk

 

dedicated

 

to

 

it,

 

setting

 

the

 

registry

 

variable

 

for

 

this

 

table

 

space

 

might

 

result

 

in

 

contention

 

on

 

those

 

disks

 

since

 

two

 

prefetchers

 

will

 

be

 

accessing

 

each

 

of

 

the

 

two

 

disks

 

at

 

once.

 

However,

 

if

 

each

 

of

 

the

 

two

 

containers

 

was

 

striped

 

across

 

multiple

 

disks,

 

setting

 

the

 

registry

 

variable

 

would

 

potentially

 

allow

 

access

 

to

 

four

 

different

 

disks

 

at

 

once.

  

DB2_USE_PAGE_CONTAINER_TAG:

   

By

 

default,

 

DB2

 

UDB

 

uses

 

the

 

first

 

extent

 

of

 

each

 

DMS

 

container

 

(file

 

or

 

device)

 

to

 

store

 

a

 

container

 

tag.

 

The

 

container

 

tag

 

is

 

DB2

 

UDB’s

 

metadata

 

for

 

the

 

container.

 

In

 

earlier

 

versions

 

of

 

DB2

 

UDB,

 

the

 

first

 

page

 

was

 

used

 

for

 

the

 

container

 

tag,

 

instead

 

of

 

the

 

first

 

extent,

 

and

 

as

 

a

 

result

 

less

 

space

 

in

 

the

 

container

 

was

 

used

 

to

 

store

 

the

 

tag.

 

(In

 

earlier

 

versions

 

of

 

DB2

 

UDB,

 

the

 

DB2_STRIPED_CONTAINERS

 

registry

 

variable

 

was

 

used

 

to

 

create

 

table

 

spaces

 

with

 

an

 

extent

 

sized

 

tag.

 

However,

 

because

 

this

 

is

 

now

 

the

 

default

 

behavior,

 

this

 

registry

 

variable

 

no

 

longer

 

has

 

any

 

affect.)

 

When

 

the

 

DB2_USE_PAGE_CONTAINER_TAG

 

registry

 

variable

 

is

 

set

 

to

 

ON,

 

any

 

new

 

DMS

 

containers

 

created

 

will

 

be

 

created

 

with

 

a

 

one-page

 

tag,

 

instead

 

of

 

a

 

one-extent

 

tag

 

(the

 

default).

 

There

 

will

 

be

 

no

 

impact

 

to

 

existing

 

containers

 

that

 

were

 

created

 

before

 

the

 

registry

 

variable

 

was

 

set.

 

Setting

 

this

 

registry

 

variable

 

to

 

ON

 

is

 

not

 

recommended

 

unless

 

you

 

have

 

very

 

tight

 

space

 

constraints,

 

or

 

you

 

require

 

behavior

 

consistent

 

with

 

pre-Version

 

8

 

databases.

 

Setting

 

this

 

registry

 

variable

 

to

 

ON

 

can

 

have

 

a

 

negative

 

impact

 

on

 

I/O

 

performance

 

if

 

RAID

 

devices

 

are

 

used

 

for

 

table

 

space

 

containers.

 

When

 

using

 

RAID

 

devices

 

for

 

table

 

space

 

containers,

 

it

 

is

 

suggested

 

that

 

the

 

table

 

space

 

be

 

created

 

with

 

an

 

extent

 

size

 

that

 

is

 

equal

 

to,

 

or

 

a

 

multiple

 

of,

 

the

 

RAID

 

stripe

 

size.

 

However,

 

if

 

this

 

registry

 

variable

 

is

 

set

 

to

 

ON,

 

a

 

one-page

 

container

 

tag

 

will

 

be

 

used

 

and

 

the

 

extents

 

will

 

not

 

line

 

up

 

with

 

the

 

RAID

 

stripes.

 

As

 

a

 

result

 

it

 

may

 

be

 

necessary

 

during

 

an

 

I/O

 

request

 

to

 

access

 

more

 

physical

 

disks

 

than

 

would

 

be

 

optimal.

 

Users

 

are

 

thus

 

strongly

 

advised

 

against

 

setting

 

this

 

registry

 

variable.

 

To

 

create

 

containers

 

with

 

one-page

 

container

 

tags,

 

set

 

this

 

registry

 

variable

 

to

 

ON,

 

and

 

then

 

stop

 

and

 

restart

 

the

 

instance:

    

db2set

 

DB2_USE_PAGE_CONTAINER_TAG=ON

    

db2stop

    

db2start

 

To

 

stop

 

creating

 

containers

 

with

 

one-page

 

container

 

tags,

 

reset

 

this

 

registry

 

variable,

 

and

 

then

 

stop

 

and

 

restart

 

the

 

instance.

    

db2set

 

DB2_USE_PAGE_CONTAINER_TAG=

    

db2stop

    

db2start

 

The

 

Control

 

Center,

 

the

 

LIST

 

TABLESPACE

 

CONTAINERS

 

command,

 

and

 

the

 

GET

 

SNAPSHOT

 

FOR

 

TABLESPACES

 

command

 

do

 

not

 

show

 

whether

 

a

 

container

 

has

 

been

 

created

 

with

 

a

 

page

 

or

 

extent

 

sized

 

tag.

 

They

 

use

 

the

 

label

 

“file”

 

or

 

“device,”

 

depending

 

on

 

how

 

the

 

container

 

was

 

created.

 

To

 

verify

 

whether

 

a

 

container

 

was

 

created

 

with

 

a

 

page-

 

or

 

extent-size

 

tag,

 

you

 

can

 

use

 

the

 

/DTSF

 

option

 

of

 

DB2DART

 

to

 

dump

 

table

 

space

 

and

 

container

 

information,

 

and

 

then

 

look

 

at

 

the

   

130

 

Administration

 

Guide:

 

Planning



type

 

field

 

for

 

the

 

container

 

in

 

question.

 

The

 

query

 

container

 

APIs

 

(sqlbftcq

 

and

 

sqlbtcq),

 

can

 

be

 

used

 

to

 

create

 

a

 

simple

 

application

 

that

 

will

 

display

 

the

 

type.

  

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

Related

 

reference:

  

v

   

“System

 

environment

 

variables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Considerations

 

when

 

choosing

 

table

 

spaces

 

for

 

your

 

tables

  

When

 

determining

 

how

 

to

 

map

 

tables

 

to

 

table

 

spaces,

 

you

 

should

 

consider:

 

v

   

The

 

partitioning

 

of

 

your

 

tables.

 

At

 

a

 

minimum,

 

you

 

should

 

ensure

 

that

 

the

 

table

 

space

 

you

 

choose

 

is

 

in

 

a

 

database

 

partition

 

group

 

with

 

the

 

partitioning

 

you

 

want.

 

v

   

The

 

amount

 

of

 

data

 

in

 

the

 

table.

 

If

 

you

 

plan

 

to

 

store

 

many

 

small

 

tables

 

in

 

a

 

table

 

space,

 

consider

 

using

 

SMS

 

for

 

that

 

table

 

space.

 

The

 

DMS

 

advantages

 

with

 

I/O

 

and

 

space

 

management

 

efficiency

 

are

 

not

 

as

 

important

 

with

 

small

 

tables.

 

The

 

SMS

 

advantages

 

of

 

allocating

 

space

 

one

 

page

 

at

 

a

 

time,

 

and

 

only

 

when

 

needed,

 

are

 

more

 

attractive

 

with

 

smaller

 

tables.

 

If

 

one

 

of

 

your

 

tables

 

is

 

larger,

 

or

 

you

 

need

 

faster

 

access

 

to

 

the

 

data

 

in

 

the

 

tables,

 

a

 

DMS

 

table

 

space

 

with

 

a

 

small

 

extent

 

size

 

should

 

be

 

considered.

 

You

 

may

 

wish

 

to

 

use

 

a

 

separate

 

table

 

space

 

for

 

each

 

very

 

large

 

table,

 

and

 

group

 

all

 

small

 

tables

 

together

 

in

 

a

 

single

 

table

 

space.

 

This

 

separation

 

also

 

allows

 

you

 

to

 

select

 

an

 

appropriate

 

extent

 

size

 

based

 

on

 

the

 

table

 

space

 

usage.

 

v

   

The

 

type

 

of

 

data

 

in

 

the

 

table.

 

You

 

may,

 

for

 

example,

 

have

 

tables

 

containing

 

historical

 

data

 

that

 

is

 

used

 

infrequently;

 

the

 

end-user

 

may

 

be

 

willing

 

to

 

accept

 

a

 

longer

 

response

 

time

 

for

 

queries

 

executed

 

against

 

this

 

data.

 

In

 

this

 

situation,

 

you

 

could

 

use

 

a

 

different

 

table

 

space

 

for

 

the

 

historical

 

tables,

 

and

 

assign

 

this

 

table

 

space

 

to

 

less

 

expensive

 

physical

 

devices

 

that

 

have

 

slower

 

access

 

rates.

 

Alternatively,

 

you

 

may

 

be

 

able

 

to

 

identify

 

some

 

essential

 

tables

 

for

 

which

 

the

 

data

 

has

 

to

 

be

 

readily

 

available

 

and

 

for

 

which

 

you

 

require

 

fast

 

response

 

time.

 

You

 

may

 

want

 

to

 

put

 

these

 

tables

 

into

 

a

 

table

 

space

 

assigned

 

to

 

a

 

fast

 

physical

 

device

 

that

 

can

 

help

 

support

 

these

 

important

 

data

 

requirements.

 

Using

 

DMS

 

table

 

spaces,

 

you

 

can

 

also

 

distribute

 

your

 

table

 

data

 

across

 

three

 

different

 

table

 

spaces:

 

one

 

for

 

index

 

data;

 

one

 

for

 

LOB

 

and

 

long

 

field

 

data;

 

and

 

one

 

for

 

regular

 

table

 

data.

 

This

 

allows

 

you

 

to

 

choose

 

the

 

table

 

space

 

characteristics

 

and

 

the

 

physical

 

devices

 

supporting

 

those

 

table

 

spaces

 

to

 

best

 

suit

 

the

 

data.

 

For

 

example,

 

you

 

could

 

put

 

your

 

index

 

data

 

on

 

the

 

fastest

 

devices

 

you

 

have

 

available,

 

and

 

as

 

a

 

result,

 

obtain

 

significant

 

performance

 

improvements.

 

If

 

you

 

split

 

a

 

table

 

across

 

DMS

 

table

 

spaces,

 

you

 

should

 

consider

 

backing

 

up

 

and

 

restoring

 

those

 

table

 

spaces

 

together

 

if

 

roll-forward

 

recovery

 

is

 

enabled.

 

SMS

 

table

 

spaces

 

do

 

not

 

support

 

this

 

type

 

of

 

data

 

distribution

 

across

 

table

 

spaces.

 

v

   

Administrative

 

issues.

 

Some

 

administrative

 

functions

 

can

 

be

 

performed

 

at

 

the

 

table

 

space

 

level

 

instead

 

of

 

the

 

database

 

or

 

table

 

level.

 

For

 

example,

 

taking

 

a

 

backup

 

of

 

a

 

table

 

space

 

instead

 

of

 

a

 

database

 

can

 

help

 

you

 

make

 

better

 

use

 

of

 

your

 

time

 

and

 

resources.

 

It

 

allows

 

you

 

to

 

frequently

 

back

 

up

 

table

 

spaces

 

with

 

large

 

volumes

 

of

 

changes,

 

while

 

only

 

occasionally

 

backing

 

up

 

tables

 

spaces

 

with

 

very

 

low

 

volumes

 

of

 

changes.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

131



You

 

can

 

restore

 

a

 

database

 

or

 

a

 

table

 

space.

 

If

 

unrelated

 

tables

 

do

 

not

 

share

 

table

 

spaces,

 

you

 

have

 

the

 

option

 

to

 

restore

 

a

 

smaller

 

portion

 

of

 

your

 

database

 

and

 

reduce

 

costs.

 

A

 

good

 

approach

 

is

 

to

 

group

 

related

 

tables

 

in

 

a

 

set

 

of

 

table

 

spaces.

 

These

 

tables

 

could

 

be

 

related

 

through

 

referential

 

constraints,

 

or

 

through

 

other

 

defined

 

business

 

constraints.

 

If

 

you

 

need

 

to

 

drop

 

and

 

redefine

 

a

 

particular

 

table

 

often,

 

you

 

may

 

want

 

to

 

define

 

the

 

table

 

in

 

its

 

own

 

table

 

space,

 

because

 

it

 

is

 

more

 

efficient

 

to

 

drop

 

a

 

DMS

 

table

 

space

 

than

 

it

 

is

 

to

 

drop

 

a

 

table.

 

Related

 

concepts:

  

v

   

“Database

 

partition

 

groups”

 

on

 

page

 

81

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

 

v

   

“Comparison

 

of

 

SMS

 

and

 

DMS

 

table

 

spaces”

 

on

 

page

 

109

Tables

 

used

 

within

 

DB2

 

UDB

  

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

provides

 

the

 

following

 

types

 

of

 

tables:

 

v

   

Regular

 

tables,

 

which

 

are

 

implemented

 

as

 

a

 

heap

 

v

   

Append

 

mode

 

tables,

 

which

 

are

 

regular

 

tables

 

that

 

are

 

optimized

 

primarily

 

for

 

INSERTs

 

v

   

Multidimensional

 

clustering

 

(MDC)

 

tables,

 

which

 

are

 

implemented

 

as

 

tables

 

that

 

are

 

physically

 

clustered

 

on

 

more

 

than

 

one

 

key,

 

or

 

dimension,

 

at

 

the

 

same

 

time

 

v

   

Range-clustered

 

tables

 

(RCT),

 

which

 

are

 

implemented

 

as

 

sequential

 

clusters

 

of

 

data

 

that

 

provide

 

fast,

 

direct

 

access

 

Each

 

type

 

of

 

table

 

has

 

characteristics

 

that

 

make

 

it

 

useful

 

when

 

working

 

in

 

a

 

particular

 

business

 

environment.

 

For

 

each

 

table

 

that

 

you

 

use,

 

consider

 

which

 

table

 

types

 

would

 

best

 

suit

 

your

 

needs.

 

Regular

 

tables

 

with

 

indexes

 

are

 

the

 

“general

 

purpose”

 

table

 

choice.

 

Regular

 

tables

 

are

 

placed

 

into

 

append

 

mode

 

through

 

an

 

ALTER

 

TABLE

 

statement.

 

Append

 

mode

 

tables

 

are

 

suitable

 

where

 

you

 

need

 

to

 

add

 

new

 

data

 

and

 

retrieve

 

existing

 

data

 

such

 

as

 

where

 

you

 

are

 

dealing

 

with

 

customer

 

accounts

 

in

 

a

 

banking

 

environment.

 

There

 

you

 

record

 

each

 

change

 

to

 

the

 

account

 

through

 

debits,

 

credits,

 

and

 

transfers.

 

You

 

also

 

have

 

customers

 

who

 

want

 

to

 

review

 

the

 

history

 

of

 

changes

 

to

 

that

 

account.

 

Multidimensional

 

clustering

 

tables

 

are

 

used

 

in

 

data

 

warehousing

 

and

 

large

 

database

 

environments.

 

Clustering

 

indexes

 

on

 

regular

 

tables

 

support

 

single-dimensional

 

clustering

 

of

 

data.

 

MDC

 

tables

 

provide

 

the

 

benefits

 

of

 

data

 

clustering

 

across

 

more

 

than

 

one

 

dimension.

 

Range-clustered

 

tables

 

are

 

used

 

where

 

the

 

data

 

is

 

tightly

 

clustered

 

across

 

one

 

or

 

more

 

columns

 

in

 

the

 

table.

 

The

 

largest

 

and

 

smallest

 

values

 

in

 

the

 

columns

 

define

 

the

 

range

 

of

 

possible

 

values.

 

You

 

use

 

these

 

columns

 

to

 

access

 

records

 

in

 

the

 

table.

  

Related

 

concepts:

  

v

   

“Multidimensional

 

clustering

 

tables”

 

on

 

page

 

137

 

v

   

“Range-clustered

 

tables”

 

on

 

page

 

133

  

132

 

Administration

 

Guide:

 

Planning

|

|

|

|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|



Related

 

tasks:

  

v

   

“Creating

 

and

 

populating

 

a

 

table”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

v

   

“Creating

 

a

 

materialized

 

query

 

table”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

Range-clustered

 

tables

  

A

 

range-clustered

 

table

 

(RCT)

 

is

 

a

 

table

 

layout

 

scheme

 

where

 

each

 

record

 

in

 

the

 

table

 

has

 

a

 

predetermined

 

record

 

ID

 

(RID)

 

which

 

is

 

an

 

internal

 

identifier

 

used

 

to

 

locate

 

a

 

record

 

in

 

a

 

table.

 

For

 

each

 

table

 

that

 

holds

 

your

 

data,

 

consider

 

which

 

of

 

the

 

possible

 

table

 

types

 

would

 

best

 

suit

 

your

 

needs.

 

For

 

example,

 

if

 

you

 

have

 

data

 

records

 

that

 

will

 

be

 

loosely

 

clustered

 

(not

 

monotonically

 

increasing),

 

consider

 

using

 

a

 

regular

 

table

 

and

 

indexes.

 

If

 

you

 

have

 

data

 

records

 

that

 

will

 

have

 

duplicate

 

(not

 

unique)

 

values

 

in

 

the

 

key,

 

you

 

should

 

not

 

use

 

a

 

range-clustered

 

table.

 

If

 

you

 

cannot

 

afford

 

to

 

preallocate

 

a

 

fixed

 

amount

 

of

 

storage

 

on

 

disk

 

for

 

the

 

range-clustered

 

tables

 

you

 

might

 

want,

 

you

 

should

 

not

 

use

 

this

 

type

 

of

 

table.

 

These

 

factors

 

will

 

help

 

you

 

to

 

determine

 

whether

 

you

 

have

 

data

 

that

 

can

 

be

 

used

 

as

 

a

 

range-clustered

 

table.

 

An

 

algorithm

 

is

 

used

 

to

 

equate

 

the

 

value

 

of

 

the

 

key

 

for

 

the

 

record

 

with

 

the

 

location

 

of

 

a

 

specific

 

row

 

within

 

a

 

table.

 

The

 

basic

 

algorithm

 

is

 

fairly

 

simple.

 

In

 

its

 

most

 

basic

 

form

 

(using

 

a

 

single

 

column

 

instead

 

of

 

two

 

or

 

more

 

columns

 

to

 

make

 

up

 

the

 

key),

 

the

 

algorithm

 

maps

 

a

 

sequence

 

number

 

to

 

a

 

logical

 

row

 

number.

 

The

 

algorithm

 

also

 

uses

 

the

 

record’s

 

key

 

to

 

determine

 

the

 

logical

 

page

 

number

 

and

 

slot

 

number.

 

This

 

process

 

provides

 

exceptionally

 

fast

 

access

 

to

 

records;

 

that

 

is,

 

to

 

specific

 

rows

 

in

 

the

 

table.

 

The

 

algorithm

 

does

 

not

 

involve

 

hashing

 

because

 

hashing

 

does

 

not

 

preserve

 

key-value

 

ordering.

 

Preserving

 

key-value

 

ordering

 

is

 

essential

 

because

 

it

 

eliminates

 

the

 

need

 

to

 

reorganize

 

the

 

table

 

data

 

over

 

time.

 

Each

 

record

 

key

 

in

 

the

 

table

 

should

 

have

 

the

 

following

 

characteristics:

 

v

   

Unique

 

v

   

Not

 

null

 

v

   

An

 

integer

 

(SMALLINT,

 

INTEGER,

 

or

 

BIGINT)

 

v

   

Monotonically

 

increasing

 

v

   

Within

 

a

 

predetermined

 

set

 

of

 

ranges

 

based

 

on

 

each

 

column

 

in

 

the

 

key

 

The

 

ALLOW

 

OVERFLOW

 

option

 

is

 

used

 

when

 

creating

 

the

 

table

 

to

 

allow

 

key

 

values

 

to

 

exceed

 

the

 

defined

 

range.

 

The

 

DISALLOW

 

OVERFLOW

 

option

 

is

 

used

 

when

 

creating

 

the

 

table

 

where

 

key

 

values

 

will

 

not

 

exceed

 

the

 

defined

 

range.

 

In

 

this

 

case,

 

if

 

a

 

record

 

is

 

inserted

 

out

 

of

 

the

 

boundary

 

indicated

 

by

 

the

 

range,

 

an

 

SQL

 

error

 

message

 

is

 

returned.

 

Applications

 

where

 

tightly

 

clustered

 

(dense)

 

sequence

 

key

 

ranges

 

are

 

likely

 

are

 

excellent

 

candidates

 

for

 

range-clustered

 

tables.

 

When

 

using

 

this

 

type

 

of

 

key

 

to

 

create

 

a

 

range-clustered

 

table,

 

the

 

key

 

is

 

used

 

to

 

generate

 

the

 

logical

 

location

 

of

 

a

 

row

 

in

 

a

 

table.

 

This

 

process

 

avoids

 

the

 

need

 

for

 

a

 

separate

 

index.

 

Advantages

 

associated

 

with

 

a

 

range-clustered

 

table

 

structure

 

include

 

the

 

following

 

factors:

 

v

   

Direct

 

access

 

Access

 

is

 

through

 

a

 

range-clustered

 

table

 

key-to-RID

 

mapping

 

function.

 

v

   

Less

 

maintenance

   

Chapter

 

5.

 

Physical

 

database

 

design

 

133

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|

|

|



A

 

secondary

 

structure

 

such

 

as

 

a

 

B+

 

tree

 

does

 

not

 

need

 

to

 

be

 

updated

 

for

 

every

 

INSERT,

 

UPDATE,

 

or

 

DELETE.

 

v

   

Less

 

logging

 

There

 

is

 

less

 

logging

 

done

 

for

 

range-clustered

 

tables

 

when

 

compared

 

to

 

a

 

similarly

 

sized

 

regular

 

table

 

and

 

associated

 

B+

 

tree

 

index.

 

v

   

Less

 

buffer

 

pool

 

memory

 

required

 

There

 

is

 

no

 

additional

 

memory

 

required

 

to

 

store

 

a

 

secondary

 

structure.

 

v

   

Order

 

properties

 

of

 

B+

 

tree

 

tables

 

The

 

ordering

 

of

 

the

 

records

 

is

 

the

 

same

 

as

 

what

 

was

 

achieved

 

by

 

B+

 

tree

 

tables

 

without

 

requiring

 

extra

 

levels

 

or

 

B+

 

tree

 

next-key

 

locking

 

schemes.

 

With

 

RCT,

 

the

 

code

 

path

 

length

 

is

 

reduced

 

compared

 

to

 

regular

 

B+

 

tree

 

indexes.

 

To

 

obtain

 

this

 

advantage,

 

however,

 

the

 

range-clustered

 

table

 

must

 

be

 

created

 

with

 

DISALLOW

 

OVERFLOW

 

and

 

the

 

data

 

must

 

be

 

dense,

 

not

 

sparse.

 

v

   

One

 

less

 

index

 

Mapping

 

each

 

key

 

to

 

a

 

location

 

on

 

disk

 

means

 

that

 

the

 

table

 

can

 

be

 

created

 

with

 

one

 

less

 

index

 

than

 

would

 

have

 

been

 

necessary

 

otherwise.

 

With

 

range-clustered

 

tables,

 

the

 

application

 

requirements

 

for

 

accessing

 

the

 

data

 

in

 

the

 

table

 

might

 

make

 

a

 

second,

 

separate

 

index

 

unnecessary.

 

You

 

may

 

still

 

choose

 

to

 

create

 

regular

 

indexes,

 

especially

 

if

 

the

 

application

 

requires

 

it.

 

Indexes

 

are

 

used

 

to

 

perform

 

the

 

following

 

functions:

 

v

   

Locate

 

a

 

record

 

based

 

on

 

a

 

key

 

from

 

the

 

record

 

v

   

Apply

 

start

 

and

 

stop

 

key

 

scans

 

v

   

Partition

 

vertically

 

By

 

using

 

an

 

RCT,

 

the

 

only

 

property

 

of

 

an

 

index

 

that

 

is

 

not

 

accounted

 

for

 

is

 

vertical

 

partitioning.

 

When

 

deciding

 

to

 

use

 

range-clustered

 

tables,

 

consider

 

the

 

following

 

characteristics

 

which

 

differentiate

 

them

 

from

 

regular

 

tables:

 

v

   

Range-clustered

 

tables

 

have

 

no

 

free-space

 

control

 

records

 

(FSCR).

 

v

   

Space

 

is

 

preallocated.

 

Space

 

for

 

the

 

table

 

is

 

preallocated

 

and

 

reserved

 

for

 

use

 

by

 

the

 

table

 

even

 

when

 

records

 

for

 

the

 

table

 

are

 

not

 

filled

 

in.

 

At

 

table

 

creation

 

time,

 

there

 

are

 

no

 

records

 

in

 

the

 

table;

 

however,

 

the

 

entire

 

range

 

of

 

pages

 

is

 

preallocated.

 

Preallocation

 

is

 

based

 

on

 

the

 

record

 

size

 

and

 

the

 

maximum

 

number

 

of

 

records

 

to

 

be

 

stored.

 

–

   

If

 

variable

 

length

 

fields

 

such

 

as

 

VARCHAR

 

are

 

used

 

in

 

each

 

record,

 

the

 

maximum

 

length

 

of

 

the

 

field

 

is

 

used

 

and

 

the

 

overall

 

record

 

size

 

is

 

a

 

fixed

 

length.

 

The

 

overall

 

fixed

 

length

 

of

 

each

 

record

 

is

 

used

 

with

 

the

 

maximum

 

number

 

of

 

records

 

to

 

determine

 

the

 

space

 

required.

 

–

   

This

 

can

 

result

 

in

 

additional

 

space

 

being

 

allocated

 

that

 

cannot

 

be

 

effectively

 

utilized.

 

–

   

If

 

key

 

values

 

are

 

sparse,

 

there

 

is

 

unused

 

space

 

and

 

poor

 

range

 

scan

 

performance.

 

–

   

Range

 

scans

 

must

 

visit

 

all

 

possible

 

records

 

within

 

a

 

range

 

even

 

if

 

the

 

rows

 

containing

 

those

 

key

 

values

 

have

 

not

 

yet

 

been

 

inserted

 

into

 

the

 

database.
v

   

No

 

schema

 

modifications

 

permitted.

 

If

 

a

 

schema

 

modification

 

is

 

required

 

on

 

a

 

range-clustered

 

table,

 

the

 

table

 

must

 

be

 

recreated

 

to

 

include

 

the

 

new

 

schema

 

name

 

for

 

the

 

table

 

and

 

all

 

the

 

data

 

from

 

the

 

old

 

table.

 

In

 

particular:

 

–

   

Altering

 

a

 

key

 

range

 

is

 

not

 

supported.

   

134

 

Administration

 

Guide:

 

Planning

|
|

|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|



This

 

is

 

important

 

since

 

if

 

a

 

table’s

 

ranges

 

need

 

to

 

be

 

altered,

 

a

 

new

 

table

 

with

 

the

 

desired

 

ranges

 

must

 

be

 

created

 

and

 

the

 

new

 

table

 

populated

 

with

 

the

 

data

 

from

 

the

 

old

 

table.
v

   

Duplicate

 

key

 

values

 

are

 

not

 

allowed.

 

v

   

Key

 

values

 

outside

 

the

 

defined

 

range

 

are

 

not

 

allowed.

 

This

 

is

 

true

 

for

 

range-clustered

 

tables

 

defined

 

to

 

DISALLOW

 

OVERFLOW

 

only.

 

–

   

NULL

 

values

 

are

 

explicitly

 

disallowed.
v

   

Range-cluster

 

index

 

is

 

not

 

materialized

 

An

 

index

 

with

 

RCT

 

key

 

properties

 

is

 

indicated

 

in

 

the

 

system

 

catalogs

 

and

 

can

 

be

 

selected

 

by

 

the

 

optimizer,

 

but

 

the

 

index

 

is

 

not

 

materialized

 

on

 

disk.

 

With

 

a

 

regular

 

table,

 

space

 

also

 

needs

 

to

 

be

 

given

 

to

 

each

 

index

 

associated

 

with

 

a

 

table.

 

With

 

a

 

RCT,

 

no

 

space

 

is

 

required

 

for

 

the

 

RCT

 

index.

 

The

 

optimizer

 

uses

 

the

 

information

 

in

 

the

 

system

 

catalogs

 

that

 

refers

 

to

 

this

 

RCT

 

index

 

to

 

ensure

 

that

 

the

 

correct

 

access

 

method

 

for

 

the

 

table

 

can

 

be

 

chosen.

 

v

   

Creating

 

a

 

primary

 

or

 

a

 

unique

 

key

 

on

 

the

 

same

 

definition

 

as

 

the

 

range-clustered

 

table

 

index

 

is

 

not

 

permitted

 

since

 

it

 

would

 

be

 

redundant.

 

v

   

Range-clustered

 

tables

 

retain

 

the

 

original

 

key

 

value

 

ordering,

 

a

 

feature

 

that

 

guarantees

 

the

 

clustering

 

of

 

rows

 

within

 

a

 

table.

 

In

 

addition

 

to

 

those

 

considerations,

 

there

 

are

 

some

 

incompatibilities

 

that

 

either

 

limit

 

places

 

where

 

range-clustered

 

tables

 

can

 

be

 

used,

 

or

 

other

 

utilities

 

that

 

do

 

not

 

work

 

with

 

these

 

tables.

 

The

 

limitations

 

on

 

range-clustered

 

tables

 

include:

 

v

   

Declared

 

global

 

temporary

 

tables

 

(DGTT)

 

are

 

not

 

supported.

 

These

 

temp

 

tables

 

are

 

not

 

allowed

 

to

 

use

 

the

 

range

 

cluster

 

property.

 

v

   

Automatic

 

summary

 

tables

 

(AST)

 

are

 

not

 

supported.

 

These

 

tables

 

are

 

not

 

allowed

 

to

 

use

 

the

 

range

 

cluster

 

property.

 

v

   

Load

 

utility

 

is

 

not

 

supported.

 

Rows

 

must

 

be

 

inserted

 

one

 

at

 

a

 

time

 

through

 

an

 

import

 

operation

 

or

 

a

 

parallel

 

inserting

 

application.

 

v

   

REORG

 

TABLE

 

utility

 

is

 

not

 

supported.

 

Range-clustered

 

tables

 

that

 

are

 

defined

 

to

 

DISALLOW

 

OVERFLOW

 

will

 

not

 

need

 

to

 

be

 

reorganized.

 

Those

 

range-clustered

 

tables

 

defined

 

to

 

ALLOW

 

OVERFLOW

 

are

 

still

 

not

 

permitted

 

to

 

have

 

the

 

data

 

in

 

this

 

overflow

 

region

 

reorganized.

 

v

   

Range-clustered

 

tables

 

on

 

one

 

logical

 

machine

 

only.

 

On

 

the

 

Enterprise

 

Server

 

Edition

 

(ESE)

 

with

 

the

 

Database

 

Partitioning

 

Feature

 

(DPF),

 

a

 

range-clustered

 

table

 

cannot

 

exist

 

in

 

a

 

database

 

partition

 

group

 

containing

 

more

 

than

 

one

 

database

 

partition.

 

This

 

is

 

prevented

 

by

 

not

 

allowing

 

the

 

creation

 

of

 

a

 

range-clustered

 

table

 

in

 

a

 

database

 

partition

 

group

 

with

 

more

 

than

 

one

 

partition.

 

In

 

addition,

 

the

 

redistribution

 

of

 

a

 

database

 

partition

 

group

 

containing

 

a

 

range-clustered

 

table

 

in

 

one

 

of

 

its

 

table

 

spaces

 

is

 

not

 

allowed.

 

v

   

The

 

design

 

advisor

 

will

 

not

 

recommend

 

range-clustered

 

tables.

 

v

   

Range-clustered

 

tables

 

are,

 

by

 

definition,

 

already

 

clustered.

 

This

 

means

 

that

 

the

 

following

 

clustering

 

schemes

 

are

 

incompatible

 

with

 

range-clustered

 

tables:

 

–

   

Multi-dimensional

 

clustered

 

(MDC)

 

table

 

–

   

Clustering

 

indexes
v

   

Value

 

and

 

default

 

compression

 

are

 

not

 

supported.

 

v

   

Reverse

 

scans

 

on

 

the

 

range-clustered

 

table

 

are

 

not

 

supported.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

135

|
|
|

|

|

|

|

|

|
|
|
|
|
|

|
|

|
|

|
|
|

|

|

|

|

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|

|

|

|
|

|

|

|

|



v

   

The

 

REPLACE

 

option

 

on

 

the

 

IMPORT

 

command

 

is

 

not

 

supported.

 

v

   

The

 

WITH

 

EMPTY

 

TABLE

 

option

 

on

 

the

 

ALTER

 

TABLE

 

...

 

ACTIVATE

 

NOT

 

LOGGED

 

INITIALLY

 

statement

 

is

 

not

 

supported.

 

Related

 

concepts:

  

v

   

“Range-clustered

 

tables

 

and

 

out-of-range

 

record

 

key

 

values”

 

on

 

page

 

136

 

v

   

“Examples

 

of

 

range-clustered

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

Range-clustered

 

tables

 

and

 

out-of-range

 

record

 

key

 

values

  

You

 

control

 

the

 

behavior

 

of

 

a

 

range-clustered

 

table

 

(RCT)

 

that

 

allows

 

overflow

 

records

 

by

 

using

 

the

 

CREATE

 

TABLE

 

statement

 

and

 

the

 

ALLOW

 

OVERFLOW

 

option.

 

In

 

this

 

way,

 

you

 

ensure

 

that

 

all

 

of

 

the

 

pages

 

required

 

by

 

the

 

table

 

within

 

the

 

defined

 

range

 

are

 

allocated

 

immediately.

 

Once

 

created,

 

any

 

records

 

with

 

keys

 

that

 

fall

 

into

 

the

 

defined

 

range

 

work

 

the

 

same

 

way,

 

regardless

 

of

 

whether

 

the

 

table

 

is

 

created

 

with

 

the

 

overflow

 

option

 

allowed

 

or

 

disallowed.

 

The

 

difference

 

occurs

 

when

 

there

 

is

 

a

 

record

 

with

 

a

 

key

 

that

 

falls

 

outside

 

of

 

the

 

defined

 

range.

 

In

 

this

 

case,

 

when

 

the

 

table

 

allows

 

overflow

 

records,

 

the

 

record

 

is

 

placed

 

in

 

the

 

overflow

 

area,

 

which

 

is

 

dynamically

 

allocated.

 

As

 

more

 

records

 

are

 

added

 

from

 

outside

 

the

 

defined

 

range,

 

they

 

are

 

placed

 

into

 

the

 

growing

 

overflow

 

area.

 

Actions

 

against

 

the

 

table

 

that

 

involve

 

this

 

overflow

 

area

 

will

 

require

 

longer

 

processing

 

time

 

because

 

the

 

overflow

 

area

 

must

 

be

 

accessed

 

as

 

part

 

of

 

the

 

action.

 

The

 

larger

 

the

 

overflow

 

area,

 

the

 

longer

 

it

 

will

 

take

 

to

 

access

 

the

 

overflow

 

area.

 

After

 

prolonged

 

use

 

of

 

the

 

overflow

 

area,

 

consider

 

reducing

 

its

 

size

 

by

 

exporting

 

the

 

data

 

from

 

the

 

table

 

to

 

a

 

new

 

range-clustered

 

table

 

that

 

you

 

have

 

defined

 

using

 

new,

 

extended

 

ranges.

 

There

 

might

 

be

 

times

 

when

 

you

 

do

 

not

 

want

 

records

 

placed

 

into

 

a

 

range-clustered

 

table

 

to

 

have

 

record

 

key

 

values

 

falling

 

outside

 

of

 

an

 

allowed

 

or

 

defined

 

range.

 

For

 

this

 

type

 

of

 

RCT

 

to

 

exist,

 

you

 

must

 

use

 

the

 

DISALLOW

 

OVERFLOW

 

option

 

on

 

the

 

CREATE

 

TABLE

 

statement.

 

Once

 

you

 

have

 

created

 

this

 

type

 

of

 

RCT,

 

you

 

might

 

have

 

to

 

accept

 

error

 

messages

 

if

 

a

 

record

 

key

 

value

 

falls

 

outside

 

of

 

the

 

allowed

 

or

 

defined

 

range.

  

Related

 

reference:

  

v

   

“CREATE

 

TABLE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Range-clustered

 

table

 

locks

  

Within

 

normal

 

processing,

 

locking

 

of

 

records

 

takes

 

place

 

to

 

ensure

 

that

 

only

 

one

 

application

 

or

 

user

 

has

 

access

 

to

 

a

 

record

 

or

 

group

 

of

 

records

 

at

 

any

 

given

 

time.

 

With

 

range-clustered

 

tables,

 

instead

 

of

 

key

 

and

 

next-key

 

locking,

 

“discrete

 

locking”

 

is

 

used.

 

This

 

method

 

locks

 

all

 

records

 

that

 

are

 

effected

 

by,

 

or

 

might

 

be

 

effected

 

by,

 

the

 

operation

 

requested

 

by

 

the

 

application

 

or

 

user.

 

The

 

number

 

of

 

locks

 

that

 

are

 

obtained

 

depends

 

on

 

the

 

isolation

 

level.

 

Qualifying

 

rows

 

in

 

range-clustered

 

tables

 

that

 

are

 

currently

 

empty

 

but

 

have

 

been

 

preallocated

 

are

 

locked.

 

This

 

avoids

 

the

 

need

 

for

 

next-key

 

locking.

 

As

 

a

 

result,

 

fewer

 

locks

 

are

 

required

 

for

 

a

 

dense,

 

range-clustered

 

table.

  

Related

 

concepts:

  

v

   

“Locks

 

and

 

concurrency

 

control”

 

in

 

the

 

Administration

 

Guide:

 

Performance

  

136

 

Administration

 

Guide:

 

Planning

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|



Multidimensional

 

clustering

 

tables

  

Multidimensional

 

clustering

 

(MDC)

 

provides

 

an

 

elegant

 

method

 

for

 

clustering

 

data

 

in

 

tables

 

along

 

multiple

 

dimensions

 

in

 

a

 

flexible,

 

continuous,

 

and

 

automatic

 

way.

 

MDC

 

can

 

significantly

 

improve

 

query

 

performance,

 

in

 

addition

 

to

 

significantly

 

reducing

 

the

 

overhead

 

of

 

data

 

maintenance

 

operations,

 

such

 

as

 

reorganization,

 

and

 

index

 

maintenance

 

operations

 

during

 

insert,

 

update,

 

and

 

delete

 

operations.

 

MDC

 

is

 

primarily

 

intended

 

for

 

data

 

warehousing

 

and

 

large

 

database

 

environments,

 

and

 

it

 

can

 

also

 

be

 

used

 

in

 

online

 

transaction

 

processing

 

(OLTP)

 

environments.

  

Comparison

 

of

 

regular

 

and

 

MDC

 

tables:

   

Regular

 

tables

 

have

 

indexes

 

that

 

are

 

record-based.

 

Any

 

clustering

 

of

 

the

 

indexes

 

is

 

restricted

 

to

 

a

 

single

 

dimension.

 

Prior

 

to

 

Version

 

8,

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

supported

 

only

 

single-dimensional

 

clustering

 

of

 

data,

 

through

 

clustering

 

indexes.

 

Using

 

a

 

clustering

 

index,

 

DB2

 

UDB

 

attempts

 

to

 

maintain

 

the

 

physical

 

order

 

of

 

data

 

on

 

pages

 

in

 

the

 

key

 

order

 

of

 

the

 

index

 

when

 

records

 

are

 

inserted

 

and

 

updated

 

in

 

the

 

table.

 

Clustering

 

indexes

 

greatly

 

improve

 

the

 

performance

 

of

 

range

 

queries

 

that

 

have

 

predicates

 

containing

 

the

 

key

 

(or

 

keys)

 

of

 

the

 

clustering

 

index.

 

Performance

 

is

 

improved

 

with

 

a

 

good

 

clustering

 

index

 

because

 

only

 

a

 

portion

 

of

 

the

 

table

 

needs

 

to

 

be

 

accessed,

 

and

 

more

 

efficient

 

prefetching

 

can

 

be

 

performed.

 

Data

 

clustering

 

using

 

a

 

clustering

 

index

 

has

 

some

 

drawbacks,

 

however.

 

First,

 

because

 

space

 

is

 

filled

 

up

 

on

 

data

 

pages

 

over

 

time,

 

clustering

 

is

 

not

 

guaranteed.

 

An

 

insert

 

operation

 

will

 

attempt

 

to

 

add

 

a

 

record

 

to

 

a

 

page

 

nearby

 

to

 

those

 

having

 

the

 

same

 

or

 

similar

 

clustering

 

key

 

values,

 

but

 

if

 

no

 

space

 

can

 

be

 

found

 

in

 

the

 

ideal

 

location,

 

it

 

will

 

be

 

inserted

 

elsewhere

 

in

 

the

 

table.

 

Therefore,

 

periodic

 

table

 

reorganizations

 

may

 

be

 

necessary

 

to

 

re-cluster

 

the

 

table

 

and

 

to

 

setup

 

pages

 

with

 

additional

 

free

 

space

 

to

 

accommodate

 

future

 

clustered

 

insert

 

requests.

 

Second,

 

only

 

one

 

index

 

can

 

be

 

designated

 

as

 

the

 

“clustering”

 

index,

 

and

 

all

 

other

 

indexes

 

will

 

be

 

unclustered,

 

because

 

the

 

data

 

can

 

only

 

be

 

physically

 

clustered

 

along

 

one

 

dimension.

 

This

 

limitation

 

is

 

related

 

to

 

the

 

fact

 

that

 

the

 

clustering

 

index

 

is

 

record-based,

 

as

 

all

 

indexes

 

have

 

been

 

prior

 

to

 

Version

 

8.1.

 

Third,

 

because

 

record-based

 

indexes

 

contain

 

a

 

pointer

 

for

 

every

 

single

 

record

 

in

 

the

 

table,

 

they

 

can

 

be

 

very

 

large

 

in

 

size.

    

Chapter

 

5.

 

Physical

 

database

 

design

 

137

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|



The

 

table

 

in

 

Figure

 

40

 

has

 

two

 

record-based

 

indexes

 

defined

 

on

 

it:

 

v

   

A

 

clustering

 

index

 

on

 

“Region”

 

v

   

Another

 

index

 

on

 

“Year”

 

The

 

“Region”

 

index

 

is

 

a

 

clustering

 

index

 

which

 

means

 

that

 

as

 

keys

 

are

 

scanned

 

in

 

the

 

index,

 

the

 

corresponding

 

records

 

should

 

be

 

found

 

for

 

the

 

most

 

part

 

on

 

the

 

same

 

or

 

neighboring

 

pages

 

in

 

the

 

table.

 

In

 

contrast,

 

the

 

“Year”

 

index

 

is

 

unclustered

 

which

 

means

 

that

 

as

 

keys

 

are

 

scanned

 

in

 

that

 

index,

 

the

 

corresponding

 

records

 

will

 

likely

 

be

 

found

 

on

 

random

 

pages

 

throughout

 

the

 

table.

 

Scans

 

on

 

the

 

clustering

 

index

 

will

 

exhibit

 

better

 

I/O

 

performance

 

and

 

will

 

benefit

 

more

 

from

 

sequential

 

prefetching,

 

the

 

more

 

clustered

 

the

 

data

 

is

 

to

 

that

 

index.

 

MDC

 

introduces

 

indexes

 

that

 

are

 

block-based.

 

“Block

 

indexes”

 

point

 

to

 

blocks

 

or

 

groups

 

of

 

records

 

instead

 

of

 

to

 

individual

 

records.

 

By

 

physically

 

organizing

 

data

 

in

 

an

 

MDC

 

table

 

into

 

blocks

 

according

 

to

 

clustering

 

values,

 

and

 

then

 

accessing

 

these

 

blocks

 

using

 

block

 

indexes,

 

MDC

 

is

 

able

 

not

 

only

 

to

 

address

 

all

 

of

 

the

 

drawbacks

 

of

 

clustering

 

indexes,

 

but

 

to

 

provide

 

significant

 

additional

 

performance

 

benefits.

 

First,

 

MDC

 

enables

 

a

 

table

 

to

 

be

 

physically

 

clustered

 

on

 

more

 

than

 

one

 

key,

 

or

 

dimension,

 

simultaneously.

 

With

 

MDC,

 

the

 

benefits

 

of

 

single-dimensional

 

clustering

 

are

 

therefore

 

extended

 

to

 

multiple

 

dimensions,

 

or

 

clustering

 

keys.

 

Query

 

performance

 

is

 

improved

 

where

 

there

 

is

 

clustering

 

of

 

one

 

or

 

more

 

specified

 

dimensions

 

of

 

a

 

table.

 

Not

 

only

 

will

 

these

 

queries

 

access

 

only

 

those

 

pages

 

having

 

records

 

with

 

the

 

correct

 

dimension

 

values,

 

these

 

qualifying

 

pages

 

will

 

be

 

grouped

 

into

 

blocks,

 

or

 

extents.

 

Second,

 

although

 

a

 

table

 

with

 

a

 

clustering

 

index

 

can

 

become

 

unclustered

 

over

 

time,

 

an

 

MDC

 

table

 

is

 

able

 

to

 

maintain

 

and

 

guarantee

 

its

 

clustering

 

over

 

all

 

dimensions

 

automatically

 

and

 

continuously.

 

This

 

eliminates

 

the

 

need

 

to

 

reorganize

 

MDC

 

tables

 

to

 

restore

 

the

 

physical

 

order

 

of

 

the

 

data.

 

Table

Clustering index

Clustering
indexRegion

Unclustered
index

Year

  

Figure

 

40.

 

A

 

regular

 

table

 

with

 

a

 

clustering

 

index

  

138

 

Administration

 

Guide:

 

Planning

|

|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|



Third,

 

in

 

MDC

 

the

 

clustering

 

indexes

 

are

 

block-based.

 

These

 

indexes

 

are

 

drastically

 

smaller

 

than

 

regular

 

record-based

 

indexes,

 

so

 

take

 

up

 

much

 

less

 

disk

 

space

 

and

 

are

 

faster

 

to

 

scan.

   

Block

 

indexes:

   

The

 

MDC

 

table

 

Figure

 

41

 

is

 

physically

 

organized

 

such

 

that

 

records

 

having

 

the

 

same

 

“Region”

 

and

 

“Year”

 

values

 

are

 

grouped

 

together

 

into

 

separate

 

blocks,

 

or

 

extents.

 

An

 

extent

 

is

 

a

 

set

 

of

 

contiguous

 

pages

 

on

 

disk,

 

so

 

these

 

groups

 

of

 

records

 

are

 

clustered

 

on

 

physically

 

contiguous

 

data

 

pages.

 

Each

 

table

 

page

 

belongs

 

to

 

exactly

 

one

 

block,

 

and

 

all

 

blocks

 

are

 

of

 

equal

 

size

 

(that

 

is,

 

an

 

equal

 

number

 

of

 

pages).

 

The

 

size

 

of

 

a

 

block

 

is

 

equal

 

to

 

the

 

extent

 

size

 

of

 

the

 

table

 

space,

 

so

 

that

 

block

 

boundaries

 

line

 

up

 

with

 

extent

 

boundaries.

 

In

 

this

 

case,

 

two

 

block

 

indexes

 

are

 

created,

 

one

 

for

 

the

 

“Region”

 

dimension,

 

and

 

another

 

for

 

the

 

“Year”

 

dimension.

 

These

 

block

 

indexes

 

contain

 

pointers

 

only

 

to

 

the

 

blocks

 

in

 

the

 

table.

 

A

 

scan

 

of

 

the

 

“Region”

 

block

 

index

 

for

 

all

 

records

 

having

 

“Region”

 

equal

 

to

 

“East”

 

will

 

find

 

two

 

blocks

 

that

 

qualify.

 

All

 

records,

 

and

 

only

 

those

 

records,

 

having

 

“Region”

 

equal

 

to

 

“East”

 

will

 

be

 

found

 

in

 

these

 

two

 

blocks,

 

and

 

will

 

be

 

clustered

 

on

 

those

 

two

 

sets

 

of

 

contiguous

 

pages

 

or

 

extents.

 

At

 

the

 

same

 

time,

 

and

 

completely

 

independently,

 

a

 

scan

 

of

 

the

 

“Year”

 

index

 

for

 

records

 

between

 

1999

 

and

 

2000

 

will

 

find

 

three

 

blocks

 

that

 

qualify.

 

A

 

data

 

scan

 

of

 

each

 

of

 

these

 

three

 

blocks

 

will

 

return

 

all

 

records

 

and

 

only

 

those

 

records

 

that

 

are

 

between

 

1999

 

and

 

2000,

 

and

 

will

 

find

 

these

 

records

 

clustered

 

on

 

the

 

sequential

 

pages

 

within

 

each

 

of

 

the

 

blocks.

 

In

 

addition

 

to

 

these

 

clustering

 

improvements,

 

MDC

 

tables

 

provide

 

the

 

following

 

benefits:

 

v

   

Probes

 

and

 

scans

 

of

 

block

 

indexes

 

are

 

much

 

faster

 

due

 

to

 

their

 

incredibly

 

small

 

size

 

in

 

relation

 

to

 

record-based

 

indexes

 

v

   

Block

 

indexes

 

and

 

the

 

corresponding

 

organization

 

of

 

data

 

allows

 

for

 

fine-grained

 

“partition

 

elimination”,

 

or

 

selective

 

table

 

access

 

v

   

Queries

 

that

 

utilize

 

the

 

block

 

indexes

 

benefit

 

from

 

the

 

reduced

 

index

 

size,

 

optimized

 

prefetching

 

of

 

blocks,

 

and

 

guaranteed

 

clustering

 

of

 

the

 

corresponding

 

data

 

Multidimensional clustering index

East

97

East

99

North

98

South

99

West

00

Year
Block

Block
indexRegion

  

Figure

 

41.

 

A

 

multidimensional

 

clustering

 

table

  

Chapter

 

5.

 

Physical

 

database

 

design

 

139

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|



v

   

Reduced

 

locking

 

and

 

predicate

 

evaluation

 

is

 

possible

 

for

 

some

 

queries

 

v

   

Block

 

indexes

 

have

 

much

 

less

 

overhead

 

associated

 

with

 

them

 

for

 

logging

 

and

 

maintenance

 

because

 

they

 

only

 

need

 

to

 

be

 

updated

 

when

 

adding

 

the

 

first

 

record

 

to

 

a

 

block,

 

or

 

removing

 

the

 

last

 

record

 

from

 

a

 

block

 

v

   

Data

 

rolled

 

in

 

can

 

reuse

 

the

 

contiguous

 

space

 

left

 

by

 

data

 

previously

 

rolled

 

out.

Note:

  

An

 

MDC

 

table

 

defined

 

with

 

even

 

just

 

a

 

single

 

dimension

 

can

 

benefit

 

from

 

these

 

MDC

 

attributes,

 

and

 

can

 

be

 

a

 

viable

 

alternative

 

to

 

a

 

regular

 

table

 

with

 

a

 

clustering

 

index.

 

This

 

decision

 

should

 

be

 

based

 

on

 

many

 

factors,

 

including

 

the

 

queries

 

that

 

make

 

up

 

the

 

workload,

 

and

 

the

 

nature

 

and

 

distribution

 

of

 

the

 

data

 

in

 

the

 

table.

 

Refer

 

to

 

“Considerations

 

when

 

choosing

 

dimensions”

 

and

 

“MDC

 

Advisor

 

Feature

 

on

 

the

 

DB2

 

Advisor”.

 

When

 

you

 

create

 

a

 

table,

 

you

 

can

 

specify

 

one

 

or

 

more

 

keys

 

as

 

dimensions

 

along

 

which

 

to

 

cluster

 

the

 

data.

 

Each

 

of

 

these

 

MDC

 

dimensions

 

can

 

consist

 

of

 

one

 

or

 

more

 

columns

 

similar

 

to

 

regular

 

index

 

keys.

 

A

 

dimension

 

block

 

index

 

will

 

be

 

automatically

 

created

 

for

 

each

 

of

 

the

 

dimensions

 

specified,

 

and

 

it

 

will

 

be

 

used

 

by

 

the

 

optimizer

 

to

 

quickly

 

and

 

efficiently

 

access

 

data

 

along

 

each

 

dimension.

 

A

 

composite

 

block

 

index

 

will

 

also

 

automatically

 

be

 

created,

 

containing

 

all

 

all

 

columns

 

across

 

all

 

dimensions,

 

and

 

will

 

be

 

used

 

to

 

maintain

 

the

 

clustering

 

of

 

data

 

over

 

insert

 

and

 

update

 

activity.

 

A

 

composite

 

block

 

index

 

will

 

only

 

be

 

created

 

if

 

a

 

single

 

dimension

 

does

 

not

 

already

 

contain

 

all

 

the

 

dimension

 

key

 

columns.

 

The

 

composite

 

block

 

index

 

may

 

also

 

be

 

selected

 

by

 

the

 

optimizer

 

to

 

efficiently

 

access

 

data

 

that

 

satisfies

 

values

 

from

 

a

 

subset,

 

or

 

from

 

all,

 

of

 

the

 

column

 

dimensions.

 

Note:

  

The

 

usefulness

 

of

 

this

 

index

 

during

 

query

 

processing

 

depends

 

on

 

the

 

order

 

of

 

its

 

key

 

parts.

 

The

 

key

 

part

 

order

 

is

 

determined

 

by

 

the

 

order

 

of

 

the

 

columns

 

encountered

 

by

 

the

 

parser

 

when

 

parsing

 

the

 

dimensions

 

specified

 

in

 

the

 

ORGANIZE

 

BY

 

clause

 

of

 

the

 

CREATE

 

TABLE

 

statement.

 

Refer

 

to

 

section

 

“Block

 

index

 

considerations

 

for

 

MDC

 

tables”

 

for

 

more

 

information.

 

Block

 

indexes

 

are

 

structurally

 

the

 

same

 

as

 

regular

 

indexes,

 

except

 

that

 

they

 

point

 

to

 

blocks

 

instead

 

of

 

records.

 

Block

 

indexes

 

are

 

smaller

 

than

 

regular

 

indexes

 

by

 

a

 

factor

 

of

 

the

 

block

 

size

 

multiplied

 

by

 

the

 

average

 

number

 

of

 

records

 

on

 

a

 

page.

 

The

 

number

 

of

 

pages

 

in

 

a

 

block

 

is

 

equal

 

to

 

the

 

extent

 

size

 

of

 

the

 

table

 

space,

 

which

 

can

 

range

 

from

 

2

 

to

 

256

 

pages.

 

The

 

page

 

size

 

can

 

be

 

4

 

KB,

 

8

 

KB,

 

16

 

KB,

 

or

 

32

 

KB.

    

140

 

Administration

 

Guide:

 

Planning

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|



As

 

seen

 

in

 

Figure

 

42,

 

in

 

a

 

block

 

index

 

there

 

is

 

a

 

single

 

index

 

entry

 

for

 

each

 

block

 

compared

 

to

 

a

 

single

 

entry

 

for

 

each

 

row.

 

As

 

a

 

result,

 

a

 

block

 

index

 

provides

 

a

 

significant

 

reduction

 

in

 

disk

 

usage

 

and

 

significantly

 

faster

 

data

 

access.

 

In

 

an

 

MDC

 

table,

 

every

 

unique

 

combination

 

of

 

dimension

 

values

 

form

 

a

 

logical

 

cell,

 

which

 

may

 

be

 

physically

 

made

 

up

 

of

 

one

 

or

 

more

 

blocks

 

of

 

pages.

 

The

 

logical

 

cell

 

will

 

only

 

have

 

enough

 

blocks

 

associated

 

with

 

it

 

to

 

store

 

the

 

records

 

having

 

the

 

dimension

 

values

 

of

 

that

 

logical

 

cell.

 

If

 

there

 

are

 

no

 

records

 

in

 

the

 

table

 

having

 

the

 

dimension

 

values

 

of

 

a

 

particular

 

logical

 

cell,

 

no

 

blocks

 

will

 

be

 

allocated

 

for

 

that

 

logical

 

cell.

 

The

 

set

 

of

 

blocks

 

that

 

contain

 

data

 

having

 

a

 

particular

 

dimension

 

key

 

value

 

is

 

called

 

a

 

slice.

  

Working

 

with

 

an

 

MDC

 

table:

   

For

 

example,

 

we

 

will

 

imagine

 

an

 

MDC

 

table

 

called

 

“Sales”

 

that

 

records

 

sales

 

data

 

for

 

a

 

national

 

retailer.

 

The

 

table

 

is

 

clustered

 

along

 

the

 

dimensions

 

“YearAndMonth”

 

and

 

“Region”.

 

Records

 

in

 

the

 

table

 

are

 

stored

 

in

 

blocks,

 

which

 

contain

 

enough

 

consecutive

 

pages

 

on

 

disk

 

to

 

fill

 

an

 

extent.

 

In

 

Figure

 

43

 

on

 

page

 

142,

 

a

 

block

 

is

 

represented

 

by

 

an

 

rectangle,

 

and

 

is

 

numbered

 

according

 

to

 

the

 

logical

 

order

 

of

 

allocated

 

extents

 

in

 

the

 

table.

 

The

 

grid

 

in

 

the

 

diagram

 

represents

 

the

 

logical

 

partitioning

 

of

 

these

 

blocks,

 

and

 

each

 

square

 

represents

 

a

 

logical

 

cell.

 

A

 

column

 

or

 

row

 

in

 

the

 

grid

 

represents

 

a

 

slice

 

for

 

a

 

particular

 

dimension.

 

For

 

example,

 

all

 

records

 

containing

 

the

 

value

 

’South-central’

 

in

 

the

 

“Region”

 

column

 

are

 

found

 

in

 

the

 

blocks

 

contained

 

in

 

the

 

slice

 

defined

 

by

 

the

 

’South-central’

 

column

 

in

 

the

 

grid.

 

In

 

fact,

 

each

 

block

 

in

 

this

 

slice

 

also

 

only

 

contains

 

records

 

having

 

’South-central’

 

in

 

the

 

“Region”

 

field.

 

Thus,

 

a

 

block

 

is

 

contained

 

in

 

this

 

slice

 

or

 

column

 

of

 

the

 

grid

 

if

 

and

 

only

 

if

 

it

 

contains

 

records

 

having

 

’South-central’

 

in

 

the

 

“Region”

 

field.

  

…

Row index Block index

  

Figure

 

42.

 

How

 

row

 

indexes

 

differ

 

from

 

block

 

indexes

  

Chapter

 

5.

 

Physical

 

database

 

design

 

141

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|



To

 

determine

 

which

 

blocks

 

comprise

 

a

 

slice,

 

or

 

equivalently,

 

which

 

blocks

 

contain

 

all

 

records

 

having

 

a

 

particular

 

dimension

 

key

 

value,

 

a

 

dimension

 

block

 

index

 

is

 

automatically

 

created

 

for

 

each

 

dimension

 

when

 

the

 

table

 

is

 

created.

 

In

 

Figure

 

44

 

on

 

page

 

143,

 

a

 

dimension

 

block

 

index

 

is

 

created

 

on

 

the

 

“YearAndMonth”

 

dimension,

 

and

 

another

 

on

 

the

 

“Region”

 

dimension.

 

Each

 

dimension

 

block

 

index

 

is

 

structured

 

in

 

the

 

same

 

manner

 

as

 

a

 

traditional

 

RID

 

index,

 

except

 

that

 

at

 

the

 

leaf

 

level

 

the

 

keys

 

point

 

to

 

a

 

block

 

identifier

 

(BID)

 

instead

 

of

 

a

 

record

 

identifier

 

(RID).

 

A

 

RID

 

identifies

 

the

 

location

 

of

 

a

 

record

 

in

 

the

 

table

 

by

 

a

 

physical

 

page

 

number

 

and

 

a

 

slot

 

number

 

—

 

the

 

slot

 

on

 

the

 

page

 

where

 

the

 

record

 

is

 

found.

 

A

 

BID

 

represents

 

a

 

block

 

by

 

the

 

physical

 

page

 

number

 

of

 

the

 

first

 

page

 

of

 

that

 

extent,

 

and

 

a

 

dummy

 

slot

 

(0).

 

Because

 

all

 

pages

 

in

 

the

 

block

 

are

 

physically

 

consecutive

 

starting

 

from

 

that

 

one,

 

and

 

we

 

know

 

the

 

size

 

of

 

the

 

block,

 

all

 

records

 

in

 

the

 

block

 

can

 

be

 

found

 

using

 

this

 

BID.

 

A

 

slice,

 

or

 

the

 

set

 

of

 

blocks

 

containing

 

pages

 

with

 

all

 

records

 

having

 

a

 

particular

 

key

 

value

 

in

 

a

 

dimension,

 

will

 

be

 

represented

 

in

 

the

 

associated

 

dimension

 

block

 

index

 

by

 

a

 

BID

 

list

 

for

 

that

 

key

 

value.

  

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

  

Figure

 

43.

 

Multidimensional

 

table

 

with

 

dimensions

 

of

 

’Region’

 

and

 

’YearAndMonth’

 

that

 

is

 

called

 

Sales

  

142

 

Administration

 

Guide:

 

Planning

|
|
|

|
|
|
|
|
|
|
|
|
|



Figure

 

45

 

shows

 

how

 

a

 

key

 

from

 

the

 

dimension

 

block

 

index

 

on

 

“Region”

 

would

 

appear.

 

The

 

key

 

is

 

made

 

up

 

of

 

a

 

key

 

value,

 

namely

 

’South-central’,

 

and

 

a

 

list

 

of

 

BIDs.

 

Each

 

BID

 

contains

 

a

 

block

 

location.

 

In

 

Figure

 

45,

 

the

 

block

 

numbers

 

listed

 

are

 

the

 

same

 

that

 

are

 

found

 

in

 

the

 

’South-central’

 

slice

 

found

 

in

 

the

 

grid

 

for

 

the

 

Sales

 

table

 

(see

 

Figure

 

43

 

on

 

page

 

142).

   

Similarly,

 

to

 

find

 

the

 

list

 

of

 

blocks

 

containing

 

all

 

records

 

having

 

’9902’

 

for

 

the

 

“YearAndMonth”

 

dimension,

 

look

 

up

 

this

 

value

 

in

 

the

 

“YearAndMonth”

 

dimension

 

block

 

index,

 

shown

 

in

 

Figure

 

46

 

on

 

page

 

144.

  

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Dimension block
index on Region

Dimension
block index on
YearAndMonth

  

Figure

 

44.

 

Sales

 

table

 

with

 

dimensions

 

of

 

’Region’

 

and

 

’YearAndMonth’

 

showing

 

dimension

 

block

 

indexes

South-central 9 16 18 19 22 24 25 30 36 39 41 42

Key value BID list

Block ID (BID)

  

Figure

 

45.

 

Key

 

from

 

the

 

dimension

 

block

 

index

 

on

 

’Region’

  

Chapter

 

5.

 

Physical

 

database

 

design

 

143

|
|
|



Block

 

indexes

 

and

 

query

 

performance:

   

Scans

 

on

 

any

 

of

 

the

 

block

 

indexes

 

of

 

an

 

MDC

 

table

 

provide

 

clustered

 

data

 

access,

 

because

 

each

 

BID

 

corresponds

 

to

 

a

 

set

 

of

 

sequential

 

pages

 

in

 

the

 

table

 

that

 

is

 

guaranteed

 

to

 

contain

 

data

 

having

 

the

 

specified

 

dimension

 

value.

 

Moreover,

 

dimensions

 

or

 

slices

 

can

 

be

 

accessed

 

independently

 

from

 

each

 

other

 

through

 

their

 

block

 

indexes

 

without

 

compromising

 

the

 

cluster

 

factor

 

of

 

any

 

other

 

dimension

 

or

 

slice.

 

This

 

provides

 

the

 

multidimensionality

 

of

 

multidimensional

 

clustering.

 

Queries

 

that

 

take

 

advantage

 

of

 

block

 

index

 

access

 

can

 

benefit

 

from

 

a

 

number

 

of

 

factors

 

that

 

improve

 

performance.

 

First,

 

the

 

block

 

index

 

is

 

so

 

much

 

smaller

 

than

 

a

 

regular

 

index,

 

the

 

block

 

index

 

scan

 

is

 

very

 

efficient.

 

Second,

 

prefetching

 

of

 

the

 

data

 

pages

 

does

 

not

 

rely

 

on

 

sequential

 

detection

 

when

 

block

 

indexes

 

are

 

used.

 

DB2

 

UDB

 

looks

 

ahead

 

in

 

the

 

index,

 

prefetching

 

the

 

data

 

pages

 

of

 

the

 

blocks

 

into

 

memory

 

using

 

big-block

 

I/O,

 

and

 

ensuring

 

that

 

the

 

scan

 

does

 

not

 

incur

 

the

 

I/O

 

when

 

the

 

data

 

pages

 

are

 

accessed

 

in

 

the

 

table.

 

Third,

 

the

 

data

 

in

 

the

 

table

 

is

 

clustered

 

on

 

sequential

 

pages,

 

optimizing

 

I/O

 

and

 

localizing

 

the

 

result

 

set

 

to

 

a

 

selected

 

portion

 

of

 

the

 

table.

 

Fourth,

 

if

 

a

 

block-based

 

buffer

 

pool

 

is

 

used

 

with

 

its

 

block

 

size

 

being

 

the

 

extent

 

size,

 

then

 

MDC

 

blocks

 

will

 

be

 

prefetched

 

from

 

sequential

 

pages

 

on

 

disk

 

into

 

sequential

 

pages

 

in

 

memory,

 

further

 

increasing

 

the

 

effect

 

of

 

clustering

 

on

 

performance.

 

Finally,

 

the

 

records

 

from

 

each

 

block

 

are

 

retrieved

 

using

 

a

 

mini-relational

 

scan

 

of

 

its

 

data

 

pages,

 

which

 

is

 

often

 

a

 

faster

 

method

 

of

 

scanning

 

data

 

than

 

through

 

RID-based

 

retrieval.

 

Queries

 

use

 

can

 

use

 

block

 

indexes

 

to

 

narrow

 

down

 

a

 

portion

 

of

 

the

 

table

 

having

 

a

 

particular

 

dimension

 

value

 

or

 

range

 

of

 

values.

 

This

 

provides

 

a

 

fine-grained

 

form

 

of

 

“partition

 

elimination”,

 

that

 

is,

 

block

 

elimination.

 

This

 

can

 

translate

 

into

 

better

 

concurrency

 

for

 

the

 

table,

 

because

 

other

 

queries,

 

loads,

 

inserts,

 

updates

 

and

 

deletes

 

may

 

access

 

other

 

blocks

 

in

 

the

 

table

 

without

 

interacting

 

with

 

this

 

query’s

 

data

 

set.

 

If

 

the

 

Sales

 

table

 

is

 

clustered

 

on

 

three

 

dimensions,

 

the

 

individual

 

dimension

 

block

 

indexes

 

can

 

also

 

be

 

used

 

to

 

find

 

the

 

set

 

of

 

blocks

 

containing

 

records

 

which

 

satisfy

 

a

 

query

 

on

 

a

 

subset

 

of

 

all

 

of

 

the

 

dimensions

 

of

 

the

 

table.

 

If

 

the

 

table

 

has

 

dimensions

 

of

 

“YearAndMonth”,

 

“Region”

 

and

 

“Product”,

 

this

 

can

 

be

 

thought

 

of

 

as

 

a

 

logical

 

cube,

 

as

 

illustrated

 

in

 

Figure

 

47

 

on

 

page

 

145.

  

9902 2 5 7 8 14 15 17 18 31 32 33 43

Key value BID list

Block ID (BID)

  

Figure

 

46.

 

Key

 

from

 

the

 

dimension

 

block

 

index

 

on

 

’YearAndMonth’

  

144

 

Administration

 

Guide:

 

Planning

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|



Four

 

block

 

indexes

 

will

 

be

 

created

 

for

 

the

 

MDC

 

table

 

shown

 

in

 

Figure

 

47:

 

one

 

for

 

each

 

of

 

the

 

individual

 

dimensions,

 

“YearAndMonth”,

 

“Region”,

 

and

 

“Product”;

 

and

 

another

 

with

 

all

 

of

 

these

 

dimension

 

columns

 

as

 

its

 

key.

 

To

 

retrieve

 

all

 

records

 

having

 

a

 

“Product”

 

equal

 

to

 

“ProductA”

 

and

 

“Region”

 

equal

 

to

 

“Northeast”,

 

DB2

 

UDB

 

would

 

first

 

search

 

for

 

the

 

ProductA

 

key

 

from

 

the

 

“Product”

 

dimension

 

block

 

index.

 

(See

 

Figure

 

48.)

 

DB2

 

UDB

 

then

 

determines

 

the

 

blocks

 

containing

 

all

 

records

 

having

 

“Region”

 

equal

 

to

 

“Northeast”,

 

by

 

looking

 

up

 

the

 

“Northeast”

 

key

 

in

 

the

 

“Region”

 

dimension

 

block

 

index.

 

(See

 

Figure

 

49.)

   

Pro
duct 

A
Pro

duct 
B

1

5

3 16 204

2

34 4524

9

30

39

12

14 31

50 54

56

18

32 33

42

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

19

41

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

28

37

27

23

46

40

35

47

Pro
duct

  

Figure

 

47.

 

Multidimensional

 

table

 

with

 

dimensions

 

of

 

’Region’,

 

’YearAndMonth’,

 

and

 

’Product’

Product A 1 2 3 11 20 22 24 2625 30 56. . . . . .. . .

  

Figure

 

48.

 

Key

 

from

 

dimension

 

block

 

index

 

on

 

’Product’

Northeast 11 20 23 26 27 28 35 37 40 45 46 47 51 5453 56

  

Figure

 

49.

 

Key

 

from

 

dimension

 

block

 

index

 

on

 

’Region’

  

Chapter

 

5.

 

Physical

 

database

 

design

 

145

|
|
|
|
|
|
|
|
||



Block

 

index

 

scans

 

can

 

be

 

combined

 

through

 

the

 

use

 

of

 

the

 

logical

 

AND

 

and

 

logical

 

OR

 

operators

 

and

 

the

 

resulting

 

list

 

of

 

blocks

 

to

 

scan

 

also

 

provides

 

clustered

 

data

 

access.

 

Using

 

the

 

example

 

above,

 

in

 

order

 

to

 

find

 

the

 

set

 

of

 

blocks

 

containing

 

all

 

records

 

having

 

both

 

dimension

 

values,

 

you

 

have

 

to

 

find

 

the

 

intersection

 

of

 

the

 

two

 

slices.

 

This

 

is

 

done

 

by

 

using

 

the

 

logical

 

AND

 

operation

 

on

 

the

 

BID

 

lists

 

from

 

the

 

two

 

block

 

index

 

keys.

 

The

 

common

 

BID

 

values

 

are

 

11,

 

20,

 

26,

 

45,

 

54,

 

51,

 

53,

 

and

 

56.

 

The

 

following

 

example

 

illustrates

 

how

 

using

 

the

 

logical

 

OR

 

operation

 

with

 

block

 

indexes

 

to

 

satisfy

 

a

 

query

 

having

 

predicates

 

that

 

involve

 

two

 

dimensions.

 

Figure

 

50

 

assumes

 

an

 

MDC

 

table

 

where

 

the

 

two

 

dimensions

 

are

 

“Color”

 

and

 

“Nation”.

 

The

 

goal

 

is

 

to

 

retrieve

 

all

 

those

 

records

 

in

 

the

 

MDC

 

table

 

that

 

meet

 

the

 

conditions

 

of

 

having

 

“Color”

 

of

 

“blue”

 

or

 

having

 

a

 

“Nation”

 

name

 

“USA”.

   

This

 

diagram

 

shows

 

how

 

the

 

result

 

of

 

two

 

separate

 

block

 

index

 

scans

 

are

 

combined

 

to

 

determine

 

the

 

range

 

of

 

values

 

that

 

meet

 

the

 

predicate

 

restrictions.

 

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

4,0

12,0

12,0

12,0

48,0

48,0

92,0

52,0

52,0

76,0

92,076,0

76,0

100,0

100,0 112,0 216,0 276,0

100,0 112,0

216,0

216,0 276,0

(OR)

  

Figure

 

50.

 

How

 

the

 

logical

 

OR

 

operation

 

can

 

be

 

used

 

with

 

block

 

indexes

  

146

 

Administration

 

Guide:

 

Planning

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|



Based

 

on

 

the

 

predicates

 

from

 

the

 

SELECT

 

statement,

 

two

 

separate

 

dimension

 

block

 

index

 

scans

 

are

 

done;

 

one

 

for

 

the

 

blue

 

slice,

 

and

 

another

 

for

 

the

 

USA

 

slice.

 

A

 

logical

 

OR

 

operation

 

is

 

done

 

in

 

memory

 

in

 

order

 

to

 

find

 

the

 

union

 

of

 

the

 

two

 

slices,

 

and

 

determine

 

the

 

combined

 

set

 

of

 

blocks

 

found

 

in

 

both

 

slices

 

(including

 

the

 

removal

 

of

 

duplicate

 

blocks).

 

Once

 

DB2

 

UDB

 

has

 

list

 

of

 

blocks

 

to

 

scan,

 

DB2

 

UDB

 

can

 

do

 

a

 

mini-relational

 

scan

 

of

 

each

 

block.

 

Prefetching

 

of

 

the

 

blocks

 

can

 

be

 

done,

 

and

 

will

 

involve

 

just

 

one

 

I/O

 

per

 

block,

 

as

 

each

 

block

 

is

 

stored

 

as

 

an

 

extent

 

on

 

disk

 

and

 

can

 

be

 

read

 

into

 

the

 

buffer

 

pool

 

as

 

a

 

unit.

 

If

 

predicates

 

need

 

to

 

be

 

applied

 

to

 

the

 

data,

 

dimension

 

predicates

 

need

 

only

 

be

 

applied

 

to

 

one

 

record

 

in

 

the

 

block,

 

because

 

all

 

records

 

in

 

the

 

block

 

are

 

guaranteed

 

to

 

have

 

the

 

same

 

dimension

 

key

 

values.

 

If

 

other

 

predicates

 

are

 

present,

 

DB2

 

UDB

 

only

 

needs

 

to

 

check

 

these

 

on

 

the

 

remaining

 

records

 

in

 

the

 

block.

 

MDC

 

tables

 

also

 

support

 

regular

 

RID-based

 

indexes.

 

Both

 

RID

 

and

 

block

 

indexes

 

can

 

be

 

combined

 

using

 

a

 

logical

 

AND

 

operation,

 

or

 

a

 

logical

 

OR

 

operation,

 

with

 

the

 

index.

 

Block

 

indexes

 

provide

 

the

 

optimizer

 

with

 

additional

 

access

 

plans

 

to

 

choose

 

from,

 

and

 

do

 

not

 

prevent

 

the

 

use

 

of

 

traditional

 

access

 

plans

 

(RID

 

scans,

 

joins,

 

table

 

scans,

 

and

 

others).

 

Block

 

index

 

plans

 

will

 

be

 

costed

 

by

 

the

 

optimizer

 

along

 

with

 

all

 

other

 

possible

 

access

 

plans

 

for

 

a

 

particular

 

query,

 

and

 

the

 

most

 

inexpensive

 

plan

 

will

 

be

 

chosen.

 

The

 

DB2

 

Design

 

Advisor

 

can

 

help

 

to

 

recommend

 

RID-based

 

indexes

 

on

 

MDC

 

tables,

 

or

 

to

 

recommend

 

MDC

 

dimensions

 

for

 

a

 

table.

  

Maintaining

 

clustering

 

automatically

 

during

 

INSERT

 

operations:

   

Automatic

 

maintenance

 

of

 

data

 

clustering

 

in

 

an

 

MDC

 

table

 

is

 

ensured

 

using

 

the

 

composite

 

block

 

index.

 

It

 

is

 

used

 

to

 

dynamically

 

manage

 

and

 

maintain

 

the

 

physical

 

clustering

 

of

 

data

 

along

 

the

 

dimensions

 

of

 

the

 

table

 

over

 

the

 

course

 

of

 

INSERT

 

operations.

 

A

 

key

 

is

 

found

 

in

 

this

 

composite

 

block

 

index

 

only

 

for

 

each

 

of

 

those

 

logical

 

cells

 

of

 

the

 

table

 

that

 

contain

 

records.

 

This

 

block

 

index

 

is

 

therefore

 

used

 

during

 

an

 

INSERT

 

to

 

quickly

 

and

 

efficiently

 

determine

 

if

 

a

 

logical

 

cell

 

exists

 

in

 

the

 

table,

 

and

 

only

 

if

 

so,

 

determine

 

exactly

 

which

 

blocks

 

contain

 

records

 

having

 

that

 

cell’s

 

particular

 

set

 

of

 

dimension

 

values.

 

When

 

an

 

insert

 

occurs:

 

v

   

The

 

composite

 

block

 

index

 

is

 

probed

 

for

 

the

 

logical

 

cell

 

corresponding

 

to

 

the

 

dimension

 

values

 

of

 

the

 

record

 

to

 

be

 

inserted.

 

v

   

If

 

the

 

key

 

of

 

the

 

logical

 

cell

 

is

 

found

 

in

 

the

 

index,

 

its

 

list

 

of

 

block

 

ID

 

(BIDs)

 

gives

 

the

 

complete

 

list

 

of

 

blocks

 

in

 

the

 

table

 

having

 

the

 

dimension

 

values

 

of

 

the

 

logical

 

cell.

 

(See

 

Figure

 

51

 

on

 

page

 

148.)

 

This

 

limits

 

the

 

numbers

 

of

 

extents

 

of

 

the

 

table

 

to

 

search

 

for

 

space

 

to

 

insert

 

the

 

record.

 

v

   

If

 

the

 

key

 

of

 

the

 

logical

 

cell

 

is

 

not

 

found

 

in

 

the

 

index;

 

or,

 

if

 

the

 

extents

 

containing

 

these

 

values

 

are

 

full,

 

a

 

new

 

block

 

is

 

assigned

 

to

 

the

 

logical

 

cell.

 

If

 

possible,

 

the

 

reuse

 

of

 

an

 

empty

 

block

 

in

 

the

 

table

 

occurs

 

first

 

before

 

extending

 

the

 

table

 

by

 

another

 

new

 

extent

 

of

 

pages

 

(a

 

new

 

block).

   

Chapter

 

5.

 

Physical

 

database

 

design

 

147

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|



Recall

 

that

 

data

 

records

 

having

 

particular

 

dimension

 

values

 

are

 

guaranteed

 

to

 

be

 

found

 

in

 

a

 

set

 

of

 

blocks

 

that

 

contain

 

only

 

and

 

all

 

the

 

records

 

having

 

those

 

values.

 

Blocks

 

are

 

made

 

up

 

of

 

consecutive

 

pages

 

on

 

disk.

 

As

 

a

 

result,

 

access

 

to

 

these

 

records

 

is

 

sequential,

 

providing

 

clustering.

 

This

 

clustering

 

is

 

automatically

 

maintained

 

over

 

time

 

by

 

ensuring

 

that

 

records

 

are

 

only

 

inserted

 

into

 

blocks

 

from

 

cells

 

with

 

the

 

record’s

 

dimension

 

values.

 

When

 

existing

 

blocks

 

in

 

a

 

logical

 

cell

 

are

 

full,

 

an

 

empty

 

block

 

is

 

reused

 

or

 

a

 

new

 

block

 

is

 

allocated

 

and

 

added

 

to

 

the

 

set

 

of

 

blocks

 

for

 

that

 

logical

 

cell.

 

When

 

a

 

block

 

is

 

emptied

 

of

 

data

 

records,

 

the

 

block

 

ID

 

(BID)

 

is

 

removed

 

from

 

the

 

block

 

indexes.

 

This

 

disassociates

 

the

 

block

 

from

 

any

 

logical

 

cell

 

values

 

so

 

that

 

it

 

can

 

be

 

reused

 

by

 

another

 

logical

 

cell

 

in

 

the

 

future.

 

Thus,

 

cells

 

and

 

their

 

associated

 

block

 

index

 

entries

 

are

 

dynamically

 

added

 

and

 

removed

 

from

 

the

 

table

 

as

 

needed

 

to

 

accommodate

 

only

 

the

 

data

 

that

 

exists

 

in

 

the

 

table.

 

The

 

composite

 

block

 

index

 

is

 

used

 

to

 

manage

 

this,

 

because

 

it

 

maps

 

logical

 

cell

 

values

 

to

 

the

 

blocks

 

containing

 

records

 

having

 

those

 

values.

 

Because

 

clustering

 

is

 

automatically

 

maintained

 

in

 

this

 

way,

 

reorganization

 

of

 

an

 

MDC

 

table

 

is

 

never

 

needed

 

to

 

re-cluster

 

data.

 

However,

 

reorganization

 

can

 

still

 

be

 

used

 

to

 

reclaim

 

space.

 

For

 

example,

 

if

 

cells

 

have

 

many

 

sparse

 

blocks

 

where

 

data

 

could

 

fit

 

on

 

fewer

 

blocks,

 

or

 

if

 

the

 

table

 

has

 

many

 

pointer-overflow

 

pairs,

 

a

 

reorganization

 

of

 

the

 

table

 

would

 

compact

 

records

 

belonging

 

to

 

each

 

logical

 

cell

 

into

 

the

 

minimum

 

number

 

of

 

blocks

 

needed,

 

as

 

well

 

as

 

remove

 

pointer-overflow

 

pairs.

 

The

 

following

 

example

 

illustrates

 

how

 

the

 

composite

 

block

 

index

 

can

 

be

 

used

 

for

 

query

 

processing.

 

If

 

you

 

want

 

to

 

find

 

all

 

records

 

in

 

the

 

Sales

 

table

 

having

 

“Region”

 

of

 

’Northwest’

 

and

 

“YearAndMonth”

 

of

 

’9903’,

 

DB2

 

UDB

 

would

 

look

 

up

 

the

 

key

 

value

 

9903,

 

Northwest

 

in

 

the

 

composite

 

block

 

index,

 

as

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

149.

 

The

 

key

 

is

 

made

 

up

 

a

 

key

 

value,

 

namely

 

’9903,

 

Northwest’,

 

and

 

a

 

list

 

of

 

BIDs.

 

You

 

can

 

see

 

that

 

the

 

only

 

BIDs

 

listed

 

are

 

3

 

and

 

10,

 

and

 

indeed

 

there

 

are

 

only

 

two

 

blocks

 

in

 

the

 

Sales

 

table

 

containing

 

records

 

having

 

these

 

two

 

particular

 

values.

  

…

9902,
Northwest

9902,
Southwest

9902,
South-central

9901,
South-central

9901,
Northeast

9903,
Northwest

1 5 329

39

12 14 31 18

32 33

42 11

6 7 1015

8 17 43

19

41

= block 1

Legend

1

9901,
Northwest

Composite block index on YearAndMonth, Region

  

Figure

 

51.

 

Composite

 

block

 

index

 

on

 

’YearAndMonth’,

 

’Region’

  

148

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|



To

 

illustrate

 

the

 

use

 

of

 

the

 

composite

 

block

 

index

 

during

 

insert,

 

take

 

the

 

example

 

of

 

inserting

 

another

 

record

 

with

 

dimension

 

values

 

9903

 

and

 

Northwest.

 

DB2

 

UDB

 

would

 

look

 

up

 

this

 

key

 

value

 

in

 

the

 

composite

 

block

 

index

 

and

 

find

 

BIDs

 

for

 

blocks

 

3

 

and

 

10.

 

These

 

blocks

 

contain

 

all

 

records

 

and

 

the

 

only

 

records

 

having

 

these

 

dimension

 

key

 

values.

 

If

 

there

 

is

 

space

 

available,

 

DB2

 

UDB

 

inserts

 

the

 

new

 

record

 

into

 

one

 

of

 

these

 

blocks.

 

If

 

there

 

is

 

no

 

space

 

on

 

any

 

pages

 

in

 

these

 

blocks,

 

DB2

 

UDB

 

allocates

 

a

 

new

 

block

 

for

 

the

 

table,

 

or

 

uses

 

a

 

previously

 

emptied

 

block

 

in

 

the

 

table.

 

Note

 

that,

 

in

 

this

 

example,

 

block

 

48

 

is

 

currently

 

not

 

in

 

use

 

by

 

the

 

table.

 

DB2

 

UDB

 

inserts

 

the

 

record

 

into

 

the

 

block

 

and

 

associates

 

this

 

block

 

to

 

the

 

current

 

logical

 

cell

 

by

 

adding

 

the

 

BID

 

of

 

the

 

block

 

to

 

the

 

composite

 

block

 

index

 

and

 

to

 

each

 

dimension

 

block

 

index.

 

See

 

Figure

 

53

 

for

 

an

 

illustration

 

of

 

the

 

keys

 

of

 

the

 

dimension

 

block

 

indexes

 

after

 

the

 

addition

 

of

 

Block

 

48.

   

The

 

block

 

map:

   

When

 

a

 

block

 

is

 

emptied,

 

it

 

is

 

disassociated

 

from

 

its

 

current

 

logical

 

cell

 

values

 

by

 

removing

 

its

 

BID

 

from

 

the

 

block

 

indexes.

 

The

 

block

 

can

 

then

 

be

 

reused

 

by

 

another

 

logical

 

cell.

 

This

 

reduces

 

the

 

need

 

to

 

extend

 

the

 

table

 

with

 

new

 

blocks.

 

When

 

a

 

new

 

block

 

is

 

needed,

 

previously

 

emptied

 

blocks

 

need

 

to

 

be

 

found

 

quickly

 

without

 

having

 

to

 

search

 

the

 

table

 

for

 

them.

 

The

 

block

 

map

 

is

 

a

 

new

 

structure

 

used

 

to

 

facilitate

 

locating

 

empty

 

blocks

 

in

 

the

 

MDC

 

table.

 

The

 

block

 

map

 

is

 

stored

 

as

 

a

 

separate

 

object:

 

v

   

In

 

SMS,

 

as

 

a

 

separate

 

.BKM

 

file

 

v

   

In

 

DMS,

 

as

 

a

 

new

 

object

 

descriptor

 

in

 

the

 

object

 

table.

 

The

 

block

 

map

 

is

 

an

 

array

 

containing

 

an

 

entry

 

for

 

each

 

block

 

of

 

the

 

table.

 

Each

 

entry

 

comprises

 

a

 

set

 

of

 

status

 

bits

 

for

 

a

 

block.

 

The

 

status

 

bits

 

include:

 

v

   

In

 

use.

 

The

 

block

 

is

 

assigned

 

to

 

a

 

logical

 

cell.

 

v

   

Load.

 

The

 

block

 

is

 

recently

 

loaded;

 

not

 

yet

 

visible

 

by

 

scans.

 

v

   

Constraint.

 

The

 

block

 

is

 

recently

 

loaded;

 

constraint

 

checking

 

is

 

still

 

to

 

be

 

done.

 

v

   

Refresh.

 

The

 

block

 

is

 

recently

 

loaded;

 

materialized

 

query

 

views

 

still

 

need

 

to

 

be

 

refreshed.

9903, Northwest 3 10

Key value BID list

Block ID (BID)

  

Figure

 

52.

 

Key

 

from

 

composite

 

block

 

index

 

on

 

’YearAndMonth’,

 

’Region’

Northwest

9903

9903, Northwest

1

3

3

3

4

5 6 7 8 10

10

10 48

16 20 22 26 30 36 48

1312 14 32 48

  

Figure

 

53.

 

Keys

 

from

 

the

 

dimension

 

block

 

indexes

 

after

 

addition

 

of

 

Block

 

48

  

Chapter

 

5.

 

Physical

 

database

 

design

 

149

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|
|

|

|

|

|
|



The

 

left

 

side

 

of

 

the

 

artwork

 

shows

 

the

 

block

 

map

 

array

 

with

 

different

 

entries

 

for

 

each

 

block

 

in

 

the

 

table.

 

The

 

right

 

side

 

of

 

the

 

artwork

 

shows

 

how

 

each

 

extent

 

of

 

the

 

table

 

is

 

being

 

used:

 

some

 

are

 

free,

 

most

 

are

 

in

 

use,

 

and

 

records

 

are

 

only

 

found

 

in

 

blocks

 

marked

 

free

 

in

 

the

 

block

 

map.

 

For

 

simplicity,

 

only

 

one

 

of

 

the

 

two

 

dimension

 

block

 

indexes

 

is

 

shown

 

in

 

the

 

diagram.

 

Notes:

  

1.

   

There

 

are

 

pointers

 

in

 

the

 

block

 

index

 

only

 

to

 

blocks

 

which

 

are

 

marked

 

IN

 

USE

 

in

 

the

 

block

 

map.

 

2.

   

The

 

first

 

block

 

is

 

reserved.

 

This

 

block

 

contains

 

system

 

records

 

for

 

the

 

table.

 

Free

 

blocks

 

are

 

found

 

easily

 

for

 

use

 

in

 

a

 

cell,

 

by

 

scanning

 

the

 

block

 

map

 

for

 

FREE

 

blocks,

 

that

 

is,

 

those

 

without

 

any

 

bits

 

set.

 

Table

 

scans

 

also

 

use

 

the

 

block

 

map

 

to

 

access

 

only

 

extents

 

currently

 

containing

 

data.

 

Any

 

extents

 

not

 

in

 

use

 

do

 

not

 

need

 

to

 

be

 

included

 

in

 

the

 

table

 

scan

 

at

 

all.

 

To

 

illustrate,

 

a

 

table

 

scan

 

in

 

this

 

example

 

(Figure

 

54)

 

would

 

start

 

from

 

the

 

third

 

extent

 

(extent

 

2)

 

in

 

the

 

table,

 

skipping

 

the

 

first

 

reserved

 

extent

 

and

 

the

 

following

 

empty

 

extent,

 

scan

 

blocks

 

2,

 

3

 

and

 

4

 

in

 

the

 

table,

 

skip

 

the

 

next

 

extent

 

(not

 

touching

 

any

 

of

 

that

 

extent’s

 

data

 

pages),

 

and

 

then

 

continue

 

scanning

 

from

 

there.

  

Deletes

 

in

 

MDC

 

tables:

  

Reserved Free — no status
bits set

In use — data
assigned to a cell

Legend

Extents in the table
Block
map

00 X

X

11 F

F

22 U

33 U

44 U

U

55 F

66 U

……

North,
1996

North, 1997

South, 1999

East, 1996

Year

  

Figure

 

54.

 

How

 

a

 

block

 

map

 

works

  

150

 

Administration

 

Guide:

 

Planning

|

|
|
|

|

|
|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|

|



When

 

a

 

record

 

is

 

deleted

 

in

 

an

 

MDC

 

table,

 

if

 

it

 

is

 

not

 

the

 

last

 

record

 

in

 

the

 

block,

 

DB2

 

UDB

 

merely

 

deletes

 

the

 

record

 

and

 

removes

 

its

 

RID

 

from

 

any

 

record-based

 

indexes

 

defined

 

on

 

the

 

table.

 

When

 

a

 

delete

 

removes

 

the

 

last

 

record

 

in

 

a

 

block,

 

however,

 

DB2

 

UDB

 

frees

 

the

 

block

 

by

 

changing

 

its

 

IN_USE

 

status

 

bit

 

and

 

removing

 

the

 

block’s

 

BID

 

from

 

all

 

block

 

indexes.

 

Again,

 

if

 

there

 

are

 

record-based

 

indexes

 

as

 

well,

 

the

 

RID

 

is

 

removed

 

from

 

them.

 

Note:

  

Therefore,

 

block

 

index

 

entries

 

need

 

only

 

be

 

removed

 

once

 

per

 

entire

 

block

 

and

 

only

 

if

 

the

 

block

 

is

 

completely

 

emptied,

 

instead

 

of

 

once

 

per

 

deleted

 

row

 

in

 

a

 

record-based

 

index.

 

Updates

 

in

 

MDC

 

tables:

   

In

 

an

 

MDC

 

table,

 

updates

 

of

 

non-dimension

 

values

 

are

 

done

 

in

 

place

 

just

 

as

 

they

 

are

 

done

 

with

 

regular

 

tables.

 

If

 

the

 

update

 

affects

 

a

 

variable

 

length

 

column

 

and

 

the

 

record

 

no

 

longer

 

fits

 

on

 

the

 

page,

 

another

 

page

 

with

 

sufficient

 

space

 

is

 

found.

 

The

 

search

 

for

 

this

 

new

 

page

 

begins

 

within

 

the

 

same

 

block.

 

If

 

there

 

is

 

no

 

space

 

in

 

that

 

block,

 

the

 

algorithm

 

to

 

insert

 

a

 

new

 

record

 

is

 

used

 

to

 

find

 

a

 

page

 

in

 

the

 

logical

 

cell

 

with

 

enough

 

space.

 

There

 

is

 

no

 

need

 

to

 

update

 

the

 

block

 

indexes,

 

unless

 

no

 

space

 

is

 

found

 

in

 

the

 

cell

 

and

 

a

 

new

 

block

 

needs

 

to

 

be

 

added

 

to

 

the

 

cell.

 

Updates

 

of

 

dimension

 

values

 

are

 

treated

 

as

 

a

 

delete

 

of

 

the

 

current

 

record

 

followed

 

by

 

an

 

insert

 

of

 

the

 

changed

 

record,

 

because

 

the

 

record

 

is

 

changing

 

the

 

logical

 

cell

 

to

 

which

 

it

 

belongs.

 

If

 

the

 

deletion

 

of

 

the

 

current

 

record

 

causes

 

a

 

block

 

to

 

be

 

emptied,

 

the

 

block

 

index

 

needs

 

to

 

be

 

updated.

 

Similarly,

 

if

 

the

 

insert

 

of

 

the

 

new

 

record

 

requires

 

it

 

to

 

be

 

inserted

 

into

 

a

 

new

 

block,

 

the

 

block

 

index

 

needs

 

to

 

be

 

updated.

 

Block

 

indexes

 

only

 

need

 

to

 

be

 

updated

 

when

 

inserting

 

the

 

first

 

record

 

into

 

a

 

block

 

or

 

when

 

deleting

 

the

 

last

 

record

 

from

 

a

 

block.

 

Index

 

overhead

 

associated

 

with

 

block

 

indexes

 

for

 

maintenance

 

and

 

logging

 

is

 

therefore

 

much

 

less

 

than

 

the

 

index

 

overhead

 

associated

 

with

 

regular

 

indexes.

 

For

 

every

 

block

 

index

 

that

 

would

 

have

 

otherwise

 

been

 

a

 

regular

 

index,

 

the

 

maintenance

 

and

 

logging

 

overhead

 

is

 

greatly

 

reduced.

 

MDC

 

tables

 

are

 

treated

 

like

 

any

 

existing

 

table;

 

that

 

is,

 

triggers,

 

referential

 

integrity,

 

views,

 

and

 

materialized

 

query

 

tables

 

can

 

all

 

be

 

defined

 

upon

 

them.

  

Load

 

considerations

 

for

 

MDC

 

tables:

   

If

 

you

 

roll

 

data

 

in

 

to

 

your

 

data

 

warehouse

 

on

 

a

 

regular

 

basis,

 

you

 

can

 

use

 

MDC

 

tables

 

to

 

your

 

advantage.

 

In

 

MDC

 

tables,

 

load

 

will

 

first

 

reuse

 

previously

 

emptied

 

blocks

 

in

 

the

 

table

 

before

 

extending

 

the

 

table

 

and

 

adding

 

new

 

blocks

 

for

 

the

 

remaining

 

data.

 

After

 

you

 

have

 

deleted

 

a

 

set

 

of

 

data,

 

for

 

example,

 

all

 

the

 

data

 

for

 

a

 

month,

 

you

 

can

 

use

 

the

 

load

 

utility

 

to

 

roll

 

in

 

the

 

next

 

month

 

of

 

data

 

and

 

it

 

can

 

reuse

 

the

 

blocks

 

that

 

have

 

been

 

emptied

 

after

 

the

 

(committed)

 

deletion.

 

When

 

loading

 

data

 

into

 

MDC

 

tables,

 

the

 

input

 

data

 

can

 

be

 

either

 

sorted

 

or

 

unsorted.

 

If

 

unsorted,

 

consider

 

doing

 

the

 

following:

 

v

   

Increase

 

the

 

util_heap

 

configuration

 

parameter.

 

Increasing

 

the

 

utility

 

heap

 

size

 

will

 

affect

 

all

 

load

 

operations

 

in

 

the

 

database

 

(as

 

well

 

as

 

backup

 

and

 

restore

 

operations).

 

v

   

Increase

 

the

 

value

 

given

 

with

 

the

 

DATA

 

BUFFER

 

clause

 

of

 

the

 

LOAD

 

command.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

151

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|

|



Increasing

 

this

 

value

 

will

 

affect

 

a

 

single

 

load

 

request.

 

The

 

utility

 

heap

 

size

 

must

 

be

 

large

 

enough

 

to

 

accommodate

 

the

 

possibility

 

of

 

multiple

 

concurrent

 

load

 

requests.

 

v

   

Ensure

 

the

 

page

 

size

 

used

 

for

 

the

 

buffer

 

pool

 

is

 

the

 

same

 

as

 

the

 

largest

 

page

 

size

 

for

 

the

 

temporary

 

table

 

space.

 

Load

 

begins

 

at

 

a

 

block

 

boundary,

 

so

 

it

 

is

 

best

 

used

 

for

 

data

 

belonging

 

to

 

new

 

cells

 

or

 

for

 

the

 

initial

 

populating

 

of

 

a

 

table.

  

Logging

 

considerations

 

for

 

MDC

 

tables:

   

In

 

cases

 

where

 

columns

 

previously

 

or

 

otherwise

 

indexed

 

by

 

RID

 

indexes

 

are

 

now

 

dimensions

 

and

 

so

 

are

 

indexed

 

with

 

block

 

indexes,

 

index

 

maintenance

 

and

 

logging

 

are

 

significantly

 

reduced.

 

Only

 

when

 

the

 

last

 

record

 

in

 

an

 

entire

 

block

 

is

 

deleted

 

does

 

DB2

 

UDB

 

need

 

to

 

remove

 

the

 

BID

 

from

 

the

 

block

 

indexes

 

and

 

log

 

this

 

index

 

operation.

 

Similarly,

 

only

 

when

 

a

 

record

 

is

 

inserted

 

to

 

a

 

new

 

block

 

(if

 

it

 

is

 

the

 

first

 

record

 

of

 

a

 

logical

 

cell

 

or

 

an

 

insert

 

to

 

a

 

logical

 

cell

 

of

 

currently

 

full

 

blocks)

 

does

 

DB2

 

UDB

 

need

 

to

 

insert

 

a

 

BID

 

in

 

the

 

block

 

indexes

 

and

 

log

 

that

 

operation.

 

Because

 

blocks

 

can

 

be

 

between

 

2

 

and

 

256

 

pages

 

of

 

records,

 

this

 

block

 

index

 

maintenance

 

and

 

logging

 

will

 

be

 

relatively

 

small.

 

Inserts

 

and

 

deletes

 

to

 

the

 

table

 

and

 

to

 

RID

 

indexes

 

will

 

still

 

be

 

logged.

  

Block

 

index

 

considerations

 

for

 

MDC

 

tables:

   

When

 

you

 

define

 

dimensions

 

for

 

an

 

MDC

 

table,

 

dimension

 

block

 

indexes

 

are

 

created.

 

In

 

addition,

 

a

 

composite

 

block

 

index

 

may

 

also

 

be

 

created

 

when

 

multiple

 

dimensions

 

are

 

defined.

 

If

 

you

 

have

 

defined

 

only

 

one

 

dimension

 

for

 

your

 

MDC

 

table,

 

however,

 

DB2

 

UDB

 

will

 

create

 

only

 

one

 

block

 

index,

 

which

 

will

 

serve

 

both

 

as

 

the

 

dimension

 

block

 

index

 

and

 

as

 

the

 

composite

 

block

 

index.

 

Similarly,

 

if

 

you

 

create

 

an

 

MDC

 

table

 

that

 

has

 

dimensions

 

on

 

column

 

A,

 

and

 

on

 

(column

 

A,

 

column

 

B),

 

DB2

 

UDB

 

will

 

create

 

a

 

dimension

 

block

 

index

 

on

 

column

 

A

 

and

 

a

 

dimension

 

block

 

index

 

on

 

column

 

A,

 

column

 

B.

 

Because

 

a

 

composite

 

block

 

index

 

is

 

a

 

block

 

index

 

of

 

all

 

the

 

dimensions

 

in

 

the

 

table,

 

the

 

dimension

 

block

 

index

 

on

 

column

 

A,

 

column

 

B

 

will

 

also

 

serve

 

as

 

the

 

composite

 

block

 

index.

 

The

 

composite

 

block

 

index

 

is

 

also

 

used

 

in

 

query

 

processing

 

to

 

access

 

data

 

in

 

the

 

table

 

having

 

specific

 

dimension

 

values.

 

Note

 

that

 

the

 

order

 

of

 

key

 

parts

 

in

 

the

 

composite

 

block

 

index

 

may

 

affect

 

its

 

use

 

or

 

applicability

 

for

 

query

 

processing.

 

The

 

order

 

of

 

its

 

key

 

parts

 

is

 

determined

 

by

 

the

 

order

 

of

 

columns

 

found

 

in

 

the

 

entire

 

ORGANIZE

 

BY

 

DIMENSIONS

 

clause

 

used

 

when

 

creating

 

the

 

MDC

 

table.

 

For

 

example,

 

if

 

a

 

table

 

is

 

created

 

using

 

the

 

statement

      

CREATE

 

TABLE

 

t1

 

(c1

 

int,

 

c2

 

int,

 

c3

 

int,

 

c4

 

int)

       

ORGANIZE

 

BY

 

DIMENSIONS

 

(c1,

 

c4,

 

(c3,c1),

 

c2)

 

then

 

the

 

composite

 

block

 

index

 

will

 

be

 

created

 

on

 

columns

 

(c1,c4,c3,c2).

 

Note

 

that

 

although

 

c1

 

is

 

specified

 

twice

 

in

 

the

 

dimensions

 

clause,

 

it

 

is

 

used

 

only

 

once

 

as

 

a

 

key

 

part

 

for

 

the

 

composite

 

block

 

index,

 

and

 

in

 

the

 

order

 

in

 

which

 

it

 

is

 

first

 

found.

 

The

 

order

 

of

 

key

 

parts

 

in

 

the

 

composite

 

block

 

index

 

makes

 

no

 

difference

 

for

 

insert

 

processing,

 

but

 

may

 

do

 

so

 

for

 

query

 

processing.

 

Therefore,

 

if

 

it

 

is

 

more

 

desirable

 

to

 

have

 

the

 

composite

 

block

 

index

 

with

 

column

 

order

 

(c1,c2,c3,c4),

 

then

 

the

 

table

 

should

 

be

 

created

 

using

 

the

 

statement

    

CREATE

 

TABLE

 

t1

 

(c1

 

int,

 

c2

 

int,

 

c3

 

int,

 

c4

 

int)

       

ORGANIZE

 

BY

 

DIMENSIONS

 

(c1,

 

c2,

 

(c3,c1),

 

c4)

  

Related

 

concepts:

    

152

 

Administration

 

Guide:

 

Planning

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|



v

   

“Indexes”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Multidimensional

 

clustering

 

considerations”

 

in

 

the

 

Data

 

Movement

 

Utilities

 

Guide

 

and

 

Reference

 

v

   

“Designing

 

multidimensional

 

clustering

 

(MDC)

 

tables”

 

on

 

page

 

153

 

v

   

“Table

 

and

 

index

 

management

 

for

 

MDC

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Optimization

 

strategies

 

for

 

MDC

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Multidimensional

 

clustering

 

(MDC)

 

table

 

creation,

 

placement,

 

and

 

use”

 

on

 

page

 

160

 

Related

 

reference:

  

v

   

“Lock

 

modes

 

for

 

table

 

and

 

RID

 

index

 

scans

 

of

 

MDC

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Locking

 

for

 

block

 

index

 

scans

 

for

 

MDC

 

tables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Designing

 

multidimensional

 

clustering

 

(MDC)

 

tables

  

Once

 

you

 

have

 

decided

 

to

 

work

 

with

 

multidimensional

 

clustering

 

tables,

 

the

 

dimensions

 

that

 

you

 

choose

 

will

 

depend

 

not

 

only

 

on

 

the

 

type

 

of

 

queries

 

that

 

will

 

use

 

the

 

tables

 

and

 

benefit

 

from

 

block-level

 

clustering,

 

but

 

even

 

more

 

importantly

 

on

 

the

 

amount

 

and

 

distribution

 

of

 

your

 

actual

 

data.

 

What

 

follows

 

is

 

a

 

discussion

 

of

 

these

 

aspects

 

of

 

designing

 

MDC

 

tables

 

and

 

some

 

guidance

 

regarding

 

the

 

selection

 

of

 

appropriate

 

dimensions

 

and

 

block

 

sizes.

  

Queries

 

that

 

will

 

benefit

 

from

 

MDC:

   

The

 

first

 

consideration

 

when

 

choosing

 

clustering

 

dimensions

 

for

 

your

 

table

 

is

 

the

 

determination

 

of

 

which

 

queries

 

will

 

benefit

 

from

 

clustering

 

at

 

a

 

block

 

level.

 

Typically,

 

there

 

will

 

be

 

several

 

candidates

 

when

 

choosing

 

dimensions

 

based

 

on

 

the

 

queries

 

that

 

make

 

up

 

the

 

work

 

to

 

be

 

done

 

on

 

the

 

data.

 

The

 

ranking

 

of

 

these

 

candidates

 

is

 

important.

 

Columns,

 

especially

 

those

 

with

 

low

 

cardinalities,

 

that

 

are

 

involved

 

in

 

equality

 

or

 

range

 

predicate

 

queries

 

will

 

show

 

the

 

greatest

 

benefit

 

from,

 

and

 

should

 

be

 

considered

 

as

 

candidates

 

for,

 

clustering

 

dimensions.

 

You

 

will

 

also

 

want

 

to

 

consider

 

creating

 

dimensions

 

for

 

foreign

 

keys

 

in

 

an

 

MDC

 

fact

 

table

 

involved

 

in

 

star

 

joins

 

with

 

dimension

 

tables.

 

You

 

should

 

keep

 

in

 

mind

 

the

 

performance

 

benefits

 

of

 

automatic

 

and

 

continuous

 

clustering

 

on

 

more

 

than

 

one

 

dimension,

 

and

 

of

 

clustering

 

at

 

an

 

extent

 

or

 

block

 

level.

 

There

 

are

 

many

 

queries

 

that

 

can

 

take

 

advantage

 

of

 

multidimensional

 

clustering.

 

Examples

 

of

 

such

 

queries

 

follow.

 

In

 

some

 

of

 

these

 

examples,

 

assume

 

that

 

there

 

is

 

an

 

MDC

 

table

 

t1

 

with

 

dimensions

 

c1,

 

c2,

 

and

 

c3.

 

In

 

the

 

other

 

examples,

 

assume

 

that

 

there

 

is

 

an

 

MDC

 

table

 

mdctable

 

with

 

dimensions

 

color

 

and

 

nation.

 

Example

 

1:

 

SELECT

 

....

 

FROM

 

t1

 

WHERE

 

c3

 

<

 

5000

 

This

 

query

 

involves

 

a

 

range

 

predicate

 

on

 

a

 

single

 

dimension,

 

so

 

it

 

can

 

be

 

internally

 

rewritten

 

to

 

access

 

the

 

table

 

using

 

the

 

dimension

 

block

 

index

 

on

 

c3.

 

The

 

index

 

is

 

scanned

 

for

 

block

 

identifiers

 

(BIDs)

 

of

 

keys

 

having

 

values

 

less

 

than

 

5000,

 

and

 

a

 

mini-relational

 

scan

 

is

 

applied

 

to

 

the

 

resulting

 

set

 

of

 

blocks

 

to

 

retrieve

 

the

 

actual

 

records.

   

Chapter

 

5.

 

Physical

 

database

 

design

 

153

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|



Example

 

2:

 

SELECT

 

....

 

FROM

 

t1

 

WHERE

 

c2

 

IN

 

(1,2037)

 

This

 

query

 

involves

 

an

 

IN

 

predicate

 

on

 

a

 

single

 

dimension,

 

and

 

can

 

trigger

 

block

 

index

 

based

 

scans.

 

This

 

query

 

can

 

be

 

internally

 

rewritten

 

to

 

access

 

the

 

table

 

using

 

the

 

dimension

 

block

 

index

 

on

 

c2.

 

The

 

index

 

is

 

scanned

 

for

 

BIDs

 

of

 

keys

 

having

 

values

 

of

 

1

 

and

 

2037,

 

and

 

a

 

mini-relational

 

scan

 

is

 

applied

 

to

 

the

 

resulting

 

set

 

of

 

blocks

 

to

 

retrieve

 

the

 

actual

 

records.

 

Example

 

3:

 

SELECT

 

*

 

FROM

 

MDCTABLE

 

WHERE

 

COLOR=’BLUE’

 

AND

 

NATION=’USA’

   

To

 

carry

 

out

 

this

 

query

 

request,

 

the

 

following

 

is

 

done

 

(and

 

is

 

shown

 

in

 

Figure

 

55):

 

v

   

A

 

dimension

 

block

 

index

 

lookup

 

is

 

done:

 

one

 

for

 

the

 

Blue

 

slice

 

and

 

another

 

for

 

the

 

USA

 

slice.

 

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

12,0

12,0

12,0

76,0

48,0

92,0

52,0 76,0

76,0

100,0

100,0

100,0 112,0

216,0

216,0 276,0

216,0

(AND)

  

Figure

 

55.

 

A

 

query

 

request

 

that

 

uses

 

a

 

logical

 

AND

 

operation

 

with

 

two

 

block

 

indexes

  

154

 

Administration

 

Guide:

 

Planning

|

|
|
|

|

|

|

|
|



v

   

A

 

block

 

logical

 

AND

 

operation

 

is

 

carried

 

out

 

to

 

determine

 

the

 

intersection

 

of

 

the

 

two

 

slices.

 

That

 

is,

 

the

 

logical

 

AND

 

operation

 

determines

 

only

 

those

 

blocks

 

that

 

are

 

found

 

in

 

both

 

slices.

 

v

   

A

 

mini-relation

 

scan

 

of

 

the

 

resulting

 

blocks

 

in

 

the

 

table

 

is

 

carried

 

out.

 

Example

 

4:

 

SELECT

 

...

 

FROM

 

t1

    

WHERE

 

c2

 

>

 

100

 

AND

 

c1

 

=

 

’16/03/1999’

 

AND

 

c3

 

>

 

1000

 

AND

 

c3

 

<

 

5000

 

This

 

query

 

involves

 

range

 

predicates

 

on

 

c2

 

and

 

c3

 

and

 

an

 

equality

 

predicate

 

on

 

c1,

 

along

 

with

 

a

 

logical

 

AND

 

operation.

 

This

 

can

 

be

 

internally

 

rewritten

 

to

 

access

 

the

 

table

 

on

 

each

 

of

 

the

 

dimension

 

block

 

indexes:

 

v

   

A

 

scan

 

of

 

the

 

c2

 

block

 

index

 

is

 

done

 

to

 

find

 

BIDs

 

of

 

keys

 

having

 

values

 

greater

 

than

 

100

 

v

   

A

 

scan

 

of

 

the

 

c3

 

block

 

index

 

is

 

done

 

to

 

find

 

BIDs

 

of

 

keys

 

having

 

values

 

between

 

1000

 

and

 

5000

 

v

   

A

 

scan

 

of

 

the

 

c1

 

block

 

index

 

is

 

done

 

to

 

find

 

BIDs

 

of

 

keys

 

having

 

the

 

value

 

’16/03/1999’.

 

A

 

logical

 

AND

 

operation

 

is

 

then

 

done

 

on

 

the

 

resulting

 

BIDs

 

from

 

each

 

block

 

scan,

 

to

 

find

 

their

 

intersection,

 

and

 

a

 

mini-relational

 

scan

 

is

 

applied

 

to

 

the

 

resulting

 

set

 

of

 

blocks

 

to

 

find

 

the

 

actual

 

records.

 

Example

 

5:

 

SELECT

 

*

 

FROM

 

MDCTABLE

 

WHERE

 

COLOR=’BLUE’

 

OR

 

NATION=’USA’

 

To

 

carry

 

out

 

this

 

query

 

request,

 

the

 

following

 

is

 

done

 

(and

 

is

 

shown

 

in

 

Figure

 

50

 

on

 

page

 

146):

 

v

   

A

 

dimension

 

block

 

index

 

lookup

 

is

 

done:

 

one

 

for

 

each

 

slice.

 

v

   

A

 

logical

 

OR

 

operation

 

is

 

done

 

to

 

find

 

the

 

union

 

of

 

the

 

two

 

slices.

 

v

   

A

 

mini-relation

 

scan

 

of

 

the

 

resulting

 

blocks

 

in

 

the

 

table

 

is

 

carried

 

out.

 

Example

 

6:

 

SELECT

 

....

 

FROM

 

t1

 

WHERE

 

c1

 

<

 

5000

 

OR

 

c2

 

IN

 

(1,2,3)

 

This

 

query

 

involves

 

a

 

range

 

predicate

 

on

 

the

 

c1

 

dimension

 

and

 

a

 

IN

 

predicate

 

on

 

the

 

c2

 

dimension,

 

as

 

well

 

as

 

a

 

logical

 

OR

 

operation.

 

This

 

can

 

be

 

internally

 

rewritten

 

to

 

access

 

the

 

table

 

on

 

the

 

dimension

 

block

 

indexes

 

c1

 

and

 

c2.

 

A

 

scan

 

of

 

the

 

c1

 

dimension

 

block

 

index

 

is

 

done

 

to

 

find

 

values

 

less

 

than

 

5000

 

and

 

another

 

scan

 

of

 

the

 

c2

 

dimension

 

block

 

index

 

is

 

done

 

to

 

find

 

values

 

1,

 

2,

 

and

 

3.

 

A

 

logical

 

OR

 

operation

 

is

 

done

 

on

 

the

 

resulting

 

BIDs

 

from

 

each

 

block

 

index

 

scan,

 

then

 

a

 

mini-relational

 

scan

 

is

 

applied

 

to

 

the

 

resulting

 

set

 

of

 

blocks

 

to

 

find

 

the

 

actual

 

records.

 

Example

 

7:

 

SELECT

 

....

 

FROM

 

t1

 

WHERE

 

c1

 

=

 

15

 

AND

 

c4

 

<

 

12

 

This

 

query

 

involves

 

an

 

equality

 

predicate

 

on

 

the

 

c1

 

dimension

 

and

 

another

 

range

 

predicate

 

on

 

a

 

column

 

that

 

is

 

not

 

a

 

dimension,

 

along

 

with

 

a

 

logical

 

AND

 

operation.

 

This

 

can

 

be

 

internally

 

rewritten

 

to

 

access

 

the

 

dimension

 

block

 

index

 

on

 

c1,

 

to

 

get

 

the

 

list

 

of

 

blocks

 

from

 

the

 

slice

 

of

 

the

 

table

 

having

 

value

 

15

 

for

 

c1.

 

If

 

there

 

is

 

a

 

RID

 

index

 

on

 

c4,

 

an

 

index

 

scan

 

can

 

be

 

done

 

to

 

retrieve

 

the

 

RIDs

 

of

 

records

 

having

 

c4

 

less

 

than

 

12,

 

and

 

then

 

the

 

resulting

 

list

 

of

 

blocks

 

undergoes

 

a

 

logical

 

AND

 

operation

 

with

 

this

 

list

 

of

 

records.

 

This

 

intersection

 

eliminates

 

RIDs

   

Chapter

 

5.

 

Physical

 

database

 

design

 

155

|
|
|

|

|

|

|
|

|

|

|



not

 

found

 

in

 

the

 

blocks

 

having

 

c1

 

of

 

15,

 

and

 

only

 

those

 

listed

 

RIDs

 

found

 

in

 

the

 

blocks

 

that

 

qualify

 

are

 

retrieved

 

from

 

the

 

table.

 

If

 

there

 

is

 

no

 

RID

 

index

 

on

 

c4,

 

then

 

the

 

block

 

index

 

can

 

be

 

scanned

 

for

 

the

 

list

 

of

 

qualifying

 

blocks,

 

and

 

during

 

the

 

mini-relational

 

scan

 

of

 

each

 

block,

 

the

 

predicate

 

c4

 

<

 

12

 

can

 

be

 

applied

 

to

 

each

 

record

 

found.

 

Example

 

8:

 

Given

 

a

 

scenario

 

where

 

there

 

are

 

dimensions

 

for

 

color,

 

year,

 

nation

 

and

 

a

 

row

 

ID

 

(RID)

 

index

 

on

 

the

 

part

 

number,

 

the

 

following

 

query

 

is

 

possible.

 

SELECT

 

*

 

FROM

 

MDCTABLE

 

WHERE

 

COLOR=’BLUE’

 

AND

 

PARTNO

 

<

 

1000

   

To

 

carry

 

out

 

this

 

query

 

request,

 

the

 

following

 

is

 

done

 

(and

 

is

 

shown

 

in

 

Figure

 

56):

 

v

   

A

 

dimension

 

block

 

index

 

lookup

 

and

 

a

 

RID

 

index

 

lookup

 

are

 

done.

 

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting row IDs to fetch

Blue

6,4

4,0

8,12

6,4

12,0

50,1

50,1

48,0

77,3

52,0 76,0

107,0

77,3

100,0

115,0

216,0

219,5

219,5

276,9

(AND)

  

Figure

 

56.

 

A

 

query

 

request

 

that

 

uses

 

a

 

logical

 

AND

 

operation

 

on

 

a

 

block

 

index

 

and

 

a

 

row

 

ID

 

(RID)

 

index

  

156

 

Administration

 

Guide:

 

Planning

|

|
|
|

|

|
|

|

|

|



v

   

A

 

logical

 

AND

 

operation

 

is

 

used

 

with

 

the

 

blocks

 

and

 

RIDs

 

to

 

determine

 

the

 

intersection

 

of

 

the

 

slice

 

and

 

those

 

rows

 

meeting

 

the

 

predicate

 

condition.

 

v

   

The

 

result

 

is

 

only

 

those

 

RIDs

 

that

 

also

 

belong

 

to

 

the

 

qualifying

 

blocks.

 

Example

 

9:

 

SELECT

 

*

 

FROM

 

MDCTABLE

 

WHERE

 

COLOR=’BLUE’

 

OR

 

PARTNO

 

<

 

1000

   

To

 

carry

 

out

 

this

 

query

 

request,

 

the

 

following

 

is

 

done

 

(and

 

is

 

shown

 

in

 

Figure

 

57):

 

v

   

A

 

dimension

 

block

 

index

 

lookup

 

and

 

a

 

RID

 

index

 

lookup

 

are

 

done.

 

v

   

A

 

logical

 

OR

 

operation

 

is

 

used

 

with

 

the

 

blocks

 

and

 

RIDs

 

to

 

determine

 

the

 

union

 

of

 

the

 

slice

 

and

 

those

 

rows

 

meeting

 

the

 

predicate

 

condition.

 

v

   

The

 

result

 

is

 

all

 

of

 

the

 

rows

 

in

 

the

 

qualifying

 

blocks,

 

plus

 

additional

 

RIDs

 

that

 

fall

 

outside

 

the

 

qualifying

 

blocks

 

that

 

meet

 

the

 

predicate

 

condition.

 

A

 

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting blocks and RIDs to fetch

Blue

6,4

4,0

4,0

8,12

12,0

8,12

12,0

50,1

48,0

107,0

48,0

77,3

52,0

52,0 76,0

107,0

76,0

115,0

100,0

115,0

100,0

216,0

219,5

216.0

276,9

276,9

,

(OR)

  

Figure

 

57.

 

How

 

block

 

index

 

and

 

row

 

ID

 

using

 

a

 

logical

 

OR

 

operation

 

works

  

Chapter

 

5.

 

Physical

 

database

 

design

 

157

|

|
|
|

|
|

|

|

|

|

|
|

|
|



mini-relational

 

scan

 

of

 

each

 

of

 

the

 

blocks

 

is

 

performed

 

to

 

retrieve

 

their

 

records,

 

and

 

the

 

additional

 

records

 

outside

 

these

 

blocks

 

are

 

retrieved

 

individually.

 

Example

 

10:

 

SELECT

 

...

 

FROM

 

t1

 

WHERE

 

c1

 

<

 

5

 

OR

 

c4

 

=

 

100

 

This

 

query

 

involves

 

a

 

range

 

predicate

 

on

 

dimension

 

c1

 

and

 

an

 

equality

 

predicate

 

on

 

a

 

non-dimension

 

column

 

c4,

 

as

 

well

 

as

 

a

 

logical

 

OR

 

operation.

 

If

 

there

 

is

 

a

 

RID

 

index

 

on

 

the

 

c4

 

column,

 

this

 

may

 

be

 

internally

 

rewritten

 

to

 

do

 

a

 

logical

 

OR

 

operation

 

using

 

the

 

dimension

 

block

 

index

 

on

 

c1

 

and

 

the

 

RID

 

index

 

on

 

c4.

 

If

 

there

 

is

 

no

 

index

 

on

 

c4,

 

a

 

table

 

scan

 

may

 

be

 

chosen

 

instead,

 

since

 

all

 

records

 

must

 

be

 

checked.

 

The

 

logical

 

OR

 

operation

 

would

 

use

 

a

 

block

 

index

 

scan

 

on

 

c1

 

for

 

values

 

less

 

than

 

4,

 

as

 

well

 

as

 

a

 

RID

 

index

 

scan

 

on

 

c4

 

for

 

values

 

of

 

100.

 

A

 

mini-relational

 

scan

 

is

 

performed

 

on

 

each

 

block

 

that

 

qualifies,

 

because

 

all

 

records

 

within

 

those

 

blocks

 

will

 

qualify,

 

and

 

any

 

additional

 

RIDs

 

for

 

records

 

outside

 

of

 

those

 

blocks

 

are

 

retrieved

 

as

 

well.

 

Example

 

11:

 

SELECT

 

....

 

FROM

 

t1,d1,d2,d3

    

WHERE

 

t1.c1

 

=

 

d1.c1

 

and

 

d1.region

 

=

 

’NY’

       

AND

 

t2.c2

 

=

 

d2.c3

 

and

 

d2.year=’1994’

       

AND

 

t3.c3

 

=

 

d3.c3

 

and

 

d3.product=’basketball’

 

This

 

query

 

involves

 

a

 

star

 

join.

 

In

 

this

 

example,

 

t1

 

is

 

the

 

fact

 

table

 

and

 

it

 

has

 

foreign

 

keys

 

c1,

 

c2,

 

and

 

c3,

 

corresponding

 

to

 

the

 

primary

 

keys

 

of

 

d1,

 

d2,

 

and

 

d3,

 

the

 

dimension

 

tables.

 

The

 

dimension

 

tables

 

do

 

not

 

have

 

to

 

be

 

MDC

 

tables.

 

Region,

 

year,

 

and

 

product

 

are

 

columns

 

of

 

the

 

respective

 

dimension

 

tables

 

which

 

can

 

be

 

indexed

 

using

 

regular

 

or

 

block

 

indexes

 

(if

 

the

 

dimension

 

tables

 

are

 

MDC

 

tables).

 

When

 

accessing

 

the

 

fact

 

table

 

on

 

c1,

 

c2,

 

and

 

c3

 

values,

 

block

 

index

 

scans

 

of

 

the

 

dimension

 

block

 

indexes

 

on

 

these

 

columns

 

can

 

be

 

done,

 

followed

 

by

 

a

 

logical

 

AND

 

operation

 

using

 

the

 

resulting

 

BIDs.

 

When

 

there

 

is

 

a

 

list

 

of

 

blocks,

 

a

 

mini-relational

 

scan

 

can

 

be

 

done

 

on

 

each

 

block

 

to

 

get

 

the

 

records.

  

Density

 

of

 

cells:

   

The

 

choices

 

made

 

for

 

the

 

appropriate

 

dimensions

 

and

 

for

 

the

 

extent

 

size

 

are

 

of

 

critical

 

importance

 

to

 

MDC

 

design.

 

These

 

factors

 

determine

 

the

 

table’s

 

expected

 

cell

 

density.

 

They

 

are

 

important

 

because

 

an

 

extent

 

is

 

allocated

 

for

 

every

 

existing

 

cell,

 

regardless

 

of

 

the

 

number

 

of

 

records

 

in

 

the

 

cell.

 

The

 

right

 

choices

 

will

 

take

 

advantage

 

of

 

block-based

 

indexing

 

and

 

multidimensional

 

clustering,

 

resulting

 

in

 

performance

 

gains.

 

The

 

goal

 

is

 

to

 

have

 

densely-filled

 

blocks

 

to

 

get

 

the

 

most

 

benefit

 

from

 

multidimensional

 

clustering,

 

and

 

to

 

get

 

optimal

 

space

 

utilization.

 

Thus,

 

a

 

very

 

important

 

consideration

 

when

 

designing

 

a

 

multidimensional

 

table

 

is

 

the

 

expected

 

density

 

of

 

cells

 

in

 

the

 

table,

 

based

 

on

 

present

 

and

 

anticipated

 

data.

 

You

 

can

 

choose

 

a

 

set

 

of

 

dimensions,

 

based

 

on

 

query

 

performance,

 

that

 

cause

 

the

 

potential

 

number

 

of

 

cells

 

in

 

the

 

table

 

to

 

be

 

very

 

large,

 

based

 

on

 

the

 

number

 

of

 

possible

 

values

 

for

 

each

 

of

 

the

 

dimensions.

 

The

 

number

 

of

 

possible

 

cells

 

in

 

the

 

table

 

is

 

equal

 

to

 

the

 

Cartesian

 

product

 

of

 

the

 

cardinalities

 

of

 

each

 

of

 

the

 

dimensions.

 

For

 

example,

 

if

 

you

 

cluster

 

the

 

table

 

on

 

dimensions

 

Day,

 

Region

 

and

 

Product

 

and

 

the

 

data

 

covers

 

5

 

years,

 

you

 

might

 

have

 

1821

 

days

 

*

 

12

 

regions

 

*

 

5

 

products

 

=

 

109

 

260

 

different

 

possible

 

cells

 

in

 

the

 

table.

 

Any

 

cell

 

that

 

contains

 

only

 

a

 

few

 

records

 

will

 

still

 

require

 

an

 

entire

 

block

 

of

 

pages

 

allocated

 

to

 

it,

 

in

 

order

 

to

 

store

 

the

 

records

 

for

 

that

 

cell.

 

If

 

the

 

block

 

size

 

is

 

large,

 

this

 

table

 

could

 

end

 

up

 

being

 

much

 

larger

 

than

 

it

 

really

 

needs

 

to

 

be.

   

158

 

Administration

 

Guide:

 

Planning

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



There

 

are

 

several

 

design

 

factors

 

that

 

can

 

contribute

 

to

 

optimal

 

cell

 

density:

 

v

   

Varying

 

the

 

number

 

of

 

dimensions.

 

v

   

Varying

 

the

 

granularity

 

of

 

one

 

or

 

more

 

dimensions.

 

v

   

Varying

 

the

 

block

 

(extent)

 

size

 

and

 

page

 

size

 

of

 

the

 

table

 

space.

 

Carry

 

out

 

the

 

following

 

steps

 

to

 

achieve

 

the

 

best

 

design

 

possible:

 

1.

   

Identify

 

candidate

 

dimensions.

 

Determine

 

which

 

queries

 

will

 

benefit

 

from

 

block-level

 

clustering.

 

Examine

 

the

 

potential

 

workload

 

for

 

columns

 

which

 

have

 

some

 

or

 

all

 

of

 

the

 

following

 

characteristics:

 

v

   

Range

 

and

 

equality

 

of

 

any

 

IN-list

 

predicates

 

v

   

Roll-in

 

or

 

roll-out

 

of

 

data

 

v

   

Group-by

 

and

 

order-by

 

clauses

 

v

   

Join

 

clauses

 

(especially

 

in

 

star

 

schema

 

environments).
2.

   

Estimate

 

the

 

number

 

of

 

cells.

 

Identify

 

how

 

many

 

potential

 

cells

 

are

 

possible

 

in

 

a

 

table

 

organized

 

along

 

a

 

set

 

of

 

candidate

 

dimensions.

 

Determine

 

the

 

number

 

of

 

unique

 

combinations

 

of

 

the

 

dimension

 

values

 

that

 

occur

 

in

 

the

 

data.

 

If

 

the

 

table

 

exists,

 

an

 

exact

 

number

 

can

 

be

 

determined

 

for

 

the

 

current

 

data

 

by

 

simply

 

selecting

 

the

 

number

 

of

 

distinct

 

values

 

in

 

each

 

of

 

the

 

columns

 

that

 

will

 

be

 

dimensions

 

for

 

the

 

table.

 

Alternatively,

 

an

 

approximation

 

can

 

be

 

determined

 

if

 

you

 

only

 

have

 

the

 

statistics

 

for

 

a

 

table,

 

by

 

multiplying

 

the

 

column

 

cardinalities

 

for

 

the

 

dimension

 

candidates.

 

Note:

  

If

 

your

 

table

 

is

 

in

 

a

 

partitioned

 

database

 

environment,

 

and

 

the

 

partitioning

 

key

 

is

 

not

 

related

 

to

 

any

 

of

 

the

 

dimensions

 

considered,

 

you

 

will

 

have

 

to

 

determine

 

an

 

average

 

amount

 

of

 

data

 

per

 

cell

 

by

 

taking

 

all

 

of

 

the

 

data

 

and

 

dividing

 

by

 

the

 

number

 

of

 

partitions.

 

3.

   

Estimate

 

the

 

space

 

occupancy

 

or

 

density.

 

On

 

average,

 

consider

 

that

 

each

 

cell

 

has

 

one

 

partially-filled

 

block

 

where

 

only

 

a

 

few

 

rows

 

are

 

stored.

 

There

 

will

 

be

 

more

 

partially-filled

 

blocks

 

as

 

the

 

number

 

of

 

rows

 

per

 

cell

 

becomes

 

smaller.

 

Also,

 

note

 

that

 

on

 

average

 

(assuming

 

little

 

or

 

no

 

data

 

skew),

 

the

 

number

 

of

 

records

 

per

 

cell

 

can

 

be

 

found

 

by

 

dividing

 

the

 

number

 

of

 

records

 

in

 

the

 

table

 

by

 

the

 

number

 

of

 

cells.

 

However,

 

if

 

your

 

table

 

is

 

in

 

a

 

partitioned

 

database

 

environment,

 

you

 

need

 

to

 

consider

 

how

 

many

 

records

 

there

 

are

 

per

 

cell

 

on

 

each

 

partition,

 

as

 

blocks

 

are

 

allocated

 

for

 

data

 

on

 

a

 

partition

 

basis.

 

When

 

estimating

 

the

 

space

 

occupancy

 

and

 

density

 

in

 

a

 

data

 

partitioned

 

environment,

 

you

 

need

 

to

 

consider

 

the

 

number

 

of

 

records

 

per

 

cell

 

on

 

average

 

on

 

each

 

partition,

 

not

 

across

 

the

 

entire

 

table.

 

See

 

the

 

section

 

called

 

“Multidimensional

 

clustering

 

(MDC)

 

table

 

creation,

 

placement,

 

and

 

use”

 

for

 

more

 

information.

 

There

 

are

 

several

 

ways

 

to

 

improve

 

the

 

density:

 

v

   

Reduce

 

the

 

block

 

size

 

so

 

that

 

partially-filled

 

blocks

 

take

 

up

 

less

 

space.

 

Reduce

 

the

 

size

 

of

 

each

 

block

 

by

 

making

 

the

 

extent

 

size

 

appropriately

 

small.

 

Each

 

cell

 

that

 

has

 

a

 

partially-filled

 

block,

 

or

 

that

 

contains

 

only

 

one

 

block

 

with

 

few

 

records

 

on

 

it,

 

wastes

 

less

 

space.

 

The

 

trade-off,

 

however,

 

is

 

that

 

for

 

those

 

cells

 

having

 

many

 

records,

 

more

 

blocks

 

are

 

needed

 

to

 

contain

 

them.

 

This

 

increases

 

the

 

number

 

of

 

block

 

identifiers

 

(BIDs)

 

for

 

these

 

cells

 

in

 

the

 

block

 

indexes,

 

making

 

these

 

indexes

 

larger

 

and

 

potentially

 

resulting

 

in

 

more

 

inserts

 

and

 

deletes

 

to

 

these

 

indexes

 

as

 

blocks

 

are

 

more

 

quickly

 

emptied

 

and

 

filled.

 

It

   

Chapter

 

5.

 

Physical

 

database

 

design

 

159

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|



also

 

results

 

in

 

more

 

small

 

groupings

 

of

 

clustered

 

data

 

in

 

the

 

table

 

for

 

these

 

more

 

populated

 

cell

 

values,

 

versus

 

a

 

smaller

 

number

 

of

 

larger

 

groupings

 

of

 

clustered

 

data.

 

v

   

Reduce

 

the

 

number

 

of

 

cells

 

by

 

reducing

 

the

 

number

 

of

 

dimensions,

 

or

 

by

 

increasing

 

the

 

granularity

 

of

 

the

 

cells

 

with

 

a

 

generated

 

column.

 

You

 

can

 

roll

 

up

 

one

 

or

 

more

 

dimensions

 

to

 

a

 

coarser

 

granularity

 

in

 

order

 

to

 

give

 

it

 

a

 

lower

 

cardinality.

 

For

 

example,

 

you

 

can

 

continue

 

to

 

cluster

 

the

 

data

 

in

 

the

 

previous

 

example

 

on

 

Region

 

and

 

Product,

 

but

 

replace

 

the

 

dimension

 

of

 

Day

 

with

 

a

 

dimension

 

of

 

YearAndMonth.

 

This

 

gives

 

cardinalities

 

of

 

60

 

(12

 

months

 

times

 

5

 

years),

 

12,

 

and

 

5

 

for

 

YearAndMonth,

 

Region,

 

and

 

Product,

 

with

 

a

 

possible

 

number

 

of

 

cells

 

of

 

3600.

 

Each

 

cell

 

then

 

holds

 

a

 

greater

 

range

 

of

 

values

 

and

 

is

 

less

 

likely

 

to

 

contain

 

only

 

a

 

few

 

records.

 

You

 

should

 

also

 

take

 

into

 

account

 

predicates

 

commonly

 

used

 

on

 

the

 

columns

 

involved,

 

such

 

as

 

whether

 

many

 

are

 

on

 

Month

 

of

 

Date,

 

or

 

Quarter,

 

or

 

Day.

 

This

 

affects

 

the

 

desirability

 

of

 

changing

 

the

 

granularity

 

of

 

the

 

dimension.

 

If,

 

for

 

example,

 

most

 

predicates

 

are

 

on

 

particular

 

days

 

and

 

you

 

have

 

clustered

 

the

 

table

 

on

 

Month,

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

can

 

use

 

the

 

block

 

index

 

on

 

YearAndMonth

 

to

 

quickly

 

narrow

 

down

 

which

 

months

 

contain

 

the

 

days

 

desired

 

and

 

access

 

only

 

those

 

associated

 

blocks.

 

When

 

scanning

 

the

 

blocks,

 

however,

 

the

 

Day

 

predicate

 

must

 

be

 

applied

 

to

 

determine

 

which

 

days

 

qualify.

 

However,

 

if

 

you

 

cluster

 

on

 

Day

 

(and

 

Day

 

has

 

high

 

cardinality),

 

the

 

block

 

index

 

on

 

Day

 

can

 

be

 

used

 

to

 

determine

 

which

 

blocks

 

to

 

scan,

 

and

 

the

 

Day

 

predicate

 

only

 

has

 

to

 

be

 

reapplied

 

to

 

the

 

first

 

record

 

of

 

each

 

cell

 

that

 

qualifies.

 

In

 

this

 

case,

 

it

 

may

 

be

 

better

 

to

 

consider

 

rolling

 

up

 

one

 

of

 

the

 

other

 

dimensions

 

to

 

increase

 

the

 

density

 

of

 

cells,

 

as

 

in

 

rolling

 

up

 

the

 

Region

 

column,

 

which

 

contains

 

12

 

different

 

values,

 

to

 

Regions

 

West,

 

North,

 

South

 

and

 

East,

 

using

 

a

 

user-defined

 

function.

 

Related

 

concepts:

  

v

   

“The

 

Design

 

Advisor”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Multidimensional

 

clustering

 

tables”

 

on

 

page

 

137

 

v

   

“Multidimensional

 

clustering

 

(MDC)

 

table

 

creation,

 

placement,

 

and

 

use”

 

on

 

page

 

160

Multidimensional

 

clustering

 

(MDC)

 

table

 

creation,

 

placement,

 

and

 

use

  

There

 

are

 

many

 

factors

 

that

 

should

 

be

 

considered

 

when

 

creating

 

MDC

 

tables.

 

The

 

following

 

sections

 

are

 

discuss

 

of

 

how

 

your

 

decisions

 

on

 

how

 

to

 

create,

 

place,

 

and

 

use

 

your

 

MDC

 

tables

 

could

 

be

 

influenced

 

by

 

your

 

current

 

database

 

environment

 

(for

 

example,

 

whether

 

you

 

have

 

a

 

partitioned

 

database

 

or

 

not),

 

and

 

by

 

your

 

choices

 

of

 

dimensions

 

for

 

your

 

MDC

 

table.

 

Also

 

discussed

 

is

 

the

 

DB2®

 

Design

 

Advisor,

 

and

 

how

 

it

 

can

 

be

 

used

 

to

 

provide

 

advice

 

on

 

some

 

of

 

these

 

issues.

  

Moving

 

data

 

from

 

an

 

existing

 

table

 

to

 

a

 

multidimensional

 

clustering

 

(MDC)

 

table:

   

To

 

improve

 

query

 

performance

 

and

 

reduce

 

the

 

overhead

 

of

 

data

 

maintenance

 

operations

 

in

 

a

 

data

 

warehouse

 

or

 

large

 

database

 

environment,

 

you

 

can

 

move

 

data

 

from

 

regular

 

tables

 

into

 

multidimensional

 

clustering

 

(MDC)

 

tables.

 

To

 

move

 

data

 

from

 

an

 

existing

 

table

 

to

 

an

 

MDC

 

table:

 

export

 

your

 

data,

 

drop

 

the

 

original

 

table

 

(optional),

 

create

 

a

 

multidimensional

 

clustering

 

(MDC)

 

table

 

(using

 

the

 

CREATE

 

TABLE

 

statement

 

with

 

the

 

ORGANIZE

 

BY

 

DIMENSIONS

 

clause),

 

and

 

load

 

the

 

MDC

 

table

 

with

 

your

 

data.

   

160

 

Administration

 

Guide:

 

Planning

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|



An

 

ALTER

 

TABLE

 

procedure

 

called

 

SYSPROC.ALTOBJ

 

can

 

be

 

used

 

to

 

carry

 

out

 

the

 

translation

 

of

 

data

 

from

 

an

 

existing

 

table

 

to

 

an

 

MDC

 

table.

 

The

 

procedure

 

is

 

called

 

from

 

the

 

DB2

 

Design

 

Advisor.

 

The

 

time

 

required

 

to

 

translate

 

the

 

data

 

between

 

the

 

tables

 

can

 

be

 

significant

 

and

 

depends

 

on

 

the

 

size

 

of

 

the

 

table

 

and

 

the

 

amount

 

of

 

data

 

that

 

needs

 

to

 

be

 

translated.

 

The

 

ALTOBJ

 

procedure

 

does

 

the

 

following

 

when

 

altering

 

a

 

table:

 

v

   

Drop

 

all

 

dependent

 

objects

 

of

 

the

 

table

 

v

   

Rename

 

the

 

table

 

v

   

Create

 

the

 

table

 

using

 

the

 

new

 

definition

 

v

   

Recreate

 

all

 

dependent

 

objects

 

of

 

the

 

table

 

v

   

Transform

 

existing

 

data

 

in

 

the

 

table

 

into

 

the

 

data

 

required

 

in

 

the

 

new

 

table.

 

That

 

is,

 

the

 

selecting

 

of

 

data

 

from

 

the

 

old

 

table

 

and

 

loading

 

that

 

data

 

into

 

the

 

new

 

one

 

where

 

column

 

functions

 

may

 

be

 

used

 

to

 

transform

 

from

 

a

 

old

 

data

 

type

 

to

 

a

 

new

 

data

 

type.

 

Multidimensional

 

clustering

 

(MDC)

 

tables

 

in

 

SMS

 

table

 

spaces:

   

If

 

you

 

plan

 

to

 

store

 

MDC

 

tables

 

in

 

an

 

SMS

 

table

 

space,

 

we

 

strongly

 

recommend

 

that

 

you

 

use

 

multipage

 

file

 

allocation.

 

Note:

  

Multipage

 

file

 

allocation

 

is

 

the

 

default

 

for

 

newly

 

created

 

databases

 

in

 

Version

 

8.2

 

and

 

later.

 

The

 

reason

 

for

 

this

 

recommendation

 

is

 

that

 

MDC

 

tables

 

are

 

always

 

extended

 

by

 

whole

 

extents,

 

and

 

it

 

is

 

important

 

that

 

all

 

the

 

pages

 

in

 

these

 

extents

 

are

 

physically

 

consecutive.

 

Therefore,

 

there

 

are

 

no

 

space

 

advantage

 

to

 

disabling

 

multipage

 

file

 

allocation;

 

and

 

furthermore,

 

enabling

 

it

 

will

 

significantly

 

increase

 

the

 

chances

 

that

 

the

 

pages

 

in

 

each

 

extent

 

are

 

physically

 

consecutive.

  

MDC

 

Advisor

 

feature

 

on

 

the

 

DB2

 

Design

 

Advisor:

   

The

 

DB2

 

Design

 

Advisor

 

(db2advis),

 

formerly

 

known

 

as

 

the

 

Index

 

Advisor,

 

has

 

an

 

MDC

 

feature.

 

This

 

feature

 

recommends

 

clustering

 

dimensions

 

for

 

use

 

in

 

an

 

MDC

 

table,

 

including

 

coarsifications

 

on

 

base

 

columns

 

in

 

order

 

to

 

improve

 

workload

 

performance.

 

The

 

term

 

coarsification

 

refers

 

to

 

a

 

mathematic

 

expression

 

to

 

reduce

 

the

 

cardinality

 

(the

 

number

 

of

 

distinct

 

values)

 

of

 

a

 

clustering

 

dimension.

 

A

 

common

 

example

 

of

 

a

 

coarsification

 

is

 

the

 

date

 

where

 

coarsification

 

could

 

be

 

by

 

date,

 

week

 

of

 

the

 

date,

 

month

 

of

 

the

 

date,

 

or

 

quarter

 

of

 

the

 

year.

 

The

 

recommendation

 

includes

 

identifying

 

potential

 

generated

 

columns

 

that

 

define

 

coarsification

 

of

 

dimensions.

 

The

 

recommendation

 

does

 

not

 

include

 

possible

 

block

 

sizes.

 

The

 

extent

 

size

 

of

 

the

 

table

 

space

 

is

 

used

 

when

 

making

 

recommendations

 

for

 

MDC

 

tales.

 

The

 

assumption

 

is

 

that

 

the

 

recommended

 

MDC

 

table

 

will

 

be

 

created

 

in

 

the

 

same

 

table

 

space

 

as

 

the

 

existing

 

table,

 

and

 

will

 

therefore

 

have

 

the

 

same

 

extent

 

size.

 

The

 

recommendations

 

for

 

MDC

 

dimensions

 

would

 

change

 

depending

 

on

 

the

 

extent

 

size

 

of

 

the

 

table

 

space

 

since

 

the

 

extent

 

size

 

impacts

 

the

 

number

 

of

 

records

 

that

 

can

 

fit

 

into

 

a

 

block

 

or

 

cell.

 

This

 

directly

 

affects

 

the

 

density

 

of

 

the

 

cells.

 

Only

 

single-column

 

dimensions,

 

and

 

not

 

composite-column

 

dimensions,

 

are

 

considered,

 

although

 

single

 

or

 

multiple

 

dimensions

 

may

 

be

 

recommended

 

for

 

the

 

table.

 

The

 

MDC

 

feature

 

will

 

recommend

 

coarsifications

 

for

 

most

 

supported

 

data

 

types

 

with

 

the

 

goal

 

of

 

reducing

 

the

 

cardinality

 

of

 

cells

 

in

 

the

 

resulting

 

MDC

 

solution.

 

The

 

data

 

type

 

exceptions

 

include:

 

CHAR,

 

VARCHAR,

 

GRAPHIC,

 

and

   

Chapter

 

5.

 

Physical

 

database

 

design

 

161

|
|
|
|
|

|

|

|

|

|

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|



VARGRAPH

 

data

 

types.

 

All

 

supported

 

data

 

types

 

are

 

cast

 

to

 

INTEGER

 

and

 

are

 

coarsified

 

through

 

a

 

generated

 

expression.

 

The

 

goal

 

of

 

the

 

MDC

 

feature

 

of

 

the

 

DB2

 

Design

 

Advisor

 

is

 

to

 

select

 

MDC

 

solutions

 

that

 

result

 

in

 

improved

 

performance.

 

A

 

secondary

 

goal

 

is

 

to

 

keep

 

the

 

storage

 

expansion

 

of

 

the

 

database

 

constrained

 

to

 

a

 

modest

 

level.

 

A

 

statistical

 

method

 

is

 

used

 

to

 

determine

 

the

 

maximum

 

storage

 

expansion

 

on

 

each

 

table.

 

The

 

analysis

 

operation

 

within

 

the

 

advisor

 

includes

 

not

 

only

 

the

 

benefits

 

of

 

block

 

index

 

access

 

but

 

also

 

the

 

impact

 

of

 

MDC

 

on

 

insert,

 

update,

 

and

 

delete

 

operations

 

against

 

dimensions

 

of

 

the

 

table.

 

These

 

actions

 

on

 

the

 

table

 

have

 

the

 

potential

 

to

 

cause

 

records

 

to

 

be

 

moved

 

between

 

cells.

 

The

 

analysis

 

operation

 

also

 

models

 

the

 

potential

 

performance

 

impact

 

of

 

any

 

table

 

expansion

 

resulting

 

from

 

the

 

organization

 

of

 

data

 

along

 

particular

 

MDC

 

dimensions.

 

The

 

MDC

 

feature

 

is

 

enabled

 

using

 

the

 

-m

 

<advise

 

type>

 

flag

 

on

 

the

 

db2advis

 

utility.

 

The

 

“C”

 

advise

 

type

 

is

 

used

 

to

 

indicate

 

multidimensional

 

clustering

 

tables.

 

The

 

advise

 

types

 

are:

 

“I”

 

for

 

index,

 

“M”

 

for

 

materialized

 

query

 

tables,

 

“C”

 

for

 

MDC,

 

and

 

“P”

 

for

 

database

 

partitioning.

 

The

 

advise

 

types

 

can

 

be

 

used

 

in

 

combination

 

with

 

each

 

other.

 

Note:

  

The

 

DB2

 

Design

 

Advisor

 

will

 

not

 

explore

 

tables

 

that

 

are

 

less

 

than

 

12

 

extents

 

in

 

size.

 

The

 

advisor

 

will

 

analyze

 

both

 

MQTs

 

and

 

regular

 

base

 

tables

 

when

 

coming

 

up

 

with

 

recommendations.

 

The

 

output

 

from

 

the

 

MDC

 

feature

 

includes:

 

v

   

Generated

 

column

 

expressions

 

for

 

each

 

table

 

for

 

coarsified

 

dimensions

 

that

 

appear

 

in

 

the

 

MDC

 

solution.

 

v

   

An

 

ORGANIZE

 

BY

 

clause

 

recommended

 

for

 

each

 

table.

 

The

 

recommendations

 

are

 

reported

 

both

 

to

 

stdout

 

and

 

to

 

the

 

ADVISE

 

tables

 

that

 

are

 

part

 

of

 

the

 

explain

 

facility.

  

Multidimensional

 

clustering

 

(MDC)

 

tables

 

and

 

database

 

partitioning:

   

Multidimensional

 

clustering

 

can

 

be

 

used

 

in

 

conjunction

 

with

 

database

 

partitioning.

 

In

 

fact,

 

MDC

 

can

 

complement

 

database

 

partitioning.

 

Database

 

partitioning

 

is

 

used

 

to

 

distribute

 

data

 

from

 

a

 

table

 

across

 

multiple

 

physical

 

or

 

logical

 

nodes

 

in

 

order

 

to:

 

v

   

Take

 

advantage

 

of

 

multiple

 

machines

 

to

 

increase

 

processing

 

requests

 

in

 

parallel.

 

v

   

Increase

 

the

 

physical

 

size

 

of

 

the

 

table

 

beyond

 

a

 

single

 

partition’s

 

limits.

 

v

   

Improve

 

the

 

scalability

 

of

 

the

 

database.

 

The

 

reason

 

for

 

partitioning

 

a

 

table

 

is

 

independent

 

of

 

whether

 

the

 

table

 

is

 

an

 

MDC

 

table

 

or

 

a

 

regular

 

table.

 

For

 

example,

 

the

 

rules

 

for

 

the

 

selection

 

of

 

columns

 

to

 

make

 

up

 

the

 

partitioning

 

key

 

are

 

the

 

same.

 

The

 

partitioning

 

key

 

for

 

an

 

MDC

 

table

 

can

 

involve

 

any

 

column,

 

whether

 

those

 

columns

 

make

 

up

 

part

 

of

 

a

 

dimension

 

of

 

the

 

table

 

or

 

not.

 

If

 

the

 

partitioning

 

key

 

is

 

identical

 

to

 

a

 

dimension

 

from

 

the

 

table,

 

then

 

each

 

database

 

partition

 

will

 

contain

 

a

 

different

 

portion

 

of

 

the

 

table.

 

For

 

example,

 

if

 

our

 

example

 

MDC

 

table

 

is

 

partitioned

 

by

 

color

 

across

 

two

 

partitions,

 

then

 

the

 

Color

 

column

 

will

 

be

 

used

 

to

 

divide

 

the

 

data.

 

As

 

a

 

result,

 

the

 

Red

 

and

 

Blue

 

slices

 

may

 

be

 

found

 

on

 

one

 

partition

 

and

 

the

 

Yellow

 

slice

 

on

 

the

 

other.

 

If

 

the

 

partitioning

 

key

 

is

   

162

 

Administration

 

Guide:

 

Planning

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

|

|
|
|

|

|

|

|
|
|
|
|

|
|
|
|
|



not

 

identical

 

to

 

the

 

dimensions

 

from

 

the

 

table,

 

then

 

each

 

database

 

partition

 

will

 

have

 

a

 

subset

 

of

 

data

 

from

 

each

 

slice.

 

When

 

choosing

 

dimensions

 

and

 

estimating

 

cell

 

occupancy

 

(see

 

the

 

section

 

called

 

“Density

 

of

 

cells”),

 

note

 

that

 

on

 

average

 

the

 

total

 

amount

 

of

 

data

 

per

 

cell

 

is

 

determined

 

by

 

taking

 

all

 

of

 

the

 

data

 

and

 

dividing

 

by

 

the

 

number

 

of

 

partitions.

  

Multidimensional

 

clustering

 

(MDC)

 

tables

 

with

 

multiple

 

dimensions:

   

If

 

you

 

know

 

that

 

certain

 

predicates

 

will

 

be

 

heavily

 

used

 

in

 

queries,

 

you

 

can

 

cluster

 

the

 

table

 

on

 

the

 

columns

 

involved,

 

using

 

the

 

ORGANIZE

 

BY

 

DIMENSIONS

 

clause.

 

Example

 

1:

 

CREATE

 

TABLE

 

T1

 

(c1

 

DATE,

 

c2

 

INT,

 

c3

 

INT,

 

c4

 

DOUBLE)

    

ORGANIZE

 

BY

 

DIMENSIONS

 

(c1,

 

c3,

 

c4)

 

The

 

table

 

in

 

Example

 

1

 

is

 

clustered

 

on

 

the

 

values

 

within

 

three

 

native

 

columns

 

forming

 

a

 

logical

 

cube

 

(that

 

is,

 

having

 

three

 

dimensions).

 

The

 

table

 

can

 

now

 

be

 

logically

 

sliced

 

up

 

during

 

query

 

processing

 

on

 

one

 

or

 

more

 

of

 

these

 

dimensions

 

such

 

that

 

only

 

the

 

blocks

 

in

 

the

 

appropriate

 

slices

 

or

 

cells

 

will

 

be

 

processed

 

by

 

the

 

relational

 

operators

 

involved.

 

Note

 

that

 

the

 

size

 

of

 

a

 

block

 

(the

 

number

 

of

 

pages)

 

will

 

be

 

the

 

extent

 

size

 

of

 

the

 

table.

  

Multidimensional

 

clustering

 

(MDC)

 

tables

 

with

 

dimensions

 

based

 

on

 

more

 

than

 

one

 

column:

   

Each

 

dimension

 

can

 

be

 

made

 

up

 

of

 

one

 

or

 

more

 

columns.

 

As

 

an

 

example,

 

you

 

can

 

create

 

a

 

table

 

that

 

is

 

clustered

 

on

 

a

 

dimension

 

containing

 

two

 

columns.

 

Example

 

2:

 

CREATE

 

TABLE

 

T1

 

(c1

 

DATE,

 

c2

 

INT,

 

c3

 

INT,

 

c4

 

DOUBLE)

    

ORGANIZE

 

BY

 

DIMENSIONS

 

(c1,

 

(c3,

 

c4))

 

In

 

Example

 

2,

 

the

 

table

 

will

 

be

 

clustered

 

on

 

two

 

dimensions,

 

c1

 

and

 

(c3,c4).

 

Thus,

 

in

 

query

 

processing,

 

the

 

table

 

can

 

be

 

logically

 

sliced

 

up

 

on

 

either

 

the

 

c1

 

dimension,

 

or

 

on

 

the

 

composite

 

(c3,

 

c4)

 

dimension.

 

The

 

table

 

will

 

have

 

the

 

same

 

number

 

of

 

blocks

 

as

 

the

 

table

 

in

 

Example

 

1,

 

but

 

one

 

less

 

dimension

 

block

 

index.

 

In

 

Example

 

1,

 

there

 

will

 

be

 

three

 

dimension

 

block

 

indexes,

 

one

 

for

 

each

 

of

 

the

 

columns

 

c1,

 

c3,

 

and

 

c4.

 

In

 

Example

 

2,

 

there

 

will

 

be

 

two

 

dimension

 

block

 

indexes,

 

one

 

on

 

the

 

column

 

c1

 

and

 

the

 

other

 

on

 

the

 

columns

 

c3

 

and

 

c4.

 

The

 

main

 

differences

 

between

 

these

 

two

 

approaches

 

is

 

that,

 

in

 

Example

 

1,

 

queries

 

involving

 

just

 

c4

 

can

 

use

 

the

 

dimension

 

block

 

index

 

on

 

c4

 

to

 

quickly

 

and

 

directly

 

access

 

blocks

 

of

 

relevant

 

data.

 

In

 

Example

 

2,

 

c4

 

is

 

a

 

second

 

key

 

part

 

in

 

a

 

dimension

 

block

 

index,

 

so

 

queries

 

involving

 

just

 

c4

 

involve

 

more

 

processing.

 

However,

 

in

 

Example

 

2

 

DB2

 

Universal

 

Database™

 

(UDB)

 

will

 

have

 

one

 

less

 

block

 

index

 

to

 

maintain

 

and

 

store.

 

The

 

DB2

 

Design

 

Advisor

 

does

 

not

 

make

 

recommendations

 

for

 

dimensions

 

containing

 

more

 

than

 

one

 

column.

  

Multidimensional

 

clustering

 

(MDC)

 

tables

 

with

 

column

 

expressions

 

as

 

dimensions:

   

Column

 

expressions

 

can

 

also

 

be

 

used

 

for

 

clustering

 

dimensions.

 

The

 

ability

 

to

 

cluster

 

on

 

column

 

expressions

 

is

 

useful

 

for

 

rolling

 

up

 

dimensions

 

to

 

a

 

coarser

 

granularity,

 

such

 

as

 

rolling

 

up

 

an

 

address

 

to

 

a

 

geographic

 

location

 

or

 

region,

 

or

 

rolling

 

up

 

a

 

date

 

to

 

a

 

week,

 

month,

 

or

 

year.

 

In

 

order

 

to

 

implement

 

the

 

rolling

 

up

 

of

 

dimensions

 

in

 

this

 

way,

 

you

 

can

 

use

 

generated

 

columns.

 

This

 

type

 

of

 

column

   

Chapter

 

5.

 

Physical

 

database

 

design

 

163

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|



definition

 

will

 

allow

 

the

 

creation

 

of

 

columns

 

using

 

expressions

 

that

 

can

 

represent

 

dimensions.

 

In

 

Example

 

3,

 

the

 

statement

 

creates

 

a

 

table

 

clustered

 

on

 

one

 

base

 

column

 

and

 

two

 

column

 

expressions.

 

Example

 

3:

 

CREATE

 

TABLE

 

T1(c1

 

DATE,

 

c2

 

INT,

 

c3

 

INT,

 

c4

 

DOUBLE,

    

c5

 

DOUBLE

 

GENERATED

 

ALWAYS

 

AS

 

(c3

 

+

 

c4),

    

c6

 

INT

 

GENERATED

 

ALWAYS

 

AS

 

(MONTH(C1))

       

ORGANIZE

 

BY

 

DIMENSIONS

 

(c2,

 

c5,

 

c6)

 

In

 

Example

 

3,

 

column

 

c5

 

is

 

an

 

expression

 

based

 

on

 

columns

 

c3

 

and

 

c4,

 

while

 

column

 

c6

 

rolls

 

up

 

column

 

c1

 

to

 

a

 

coarser

 

granularity

 

in

 

time.

 

This

 

statement

 

will

 

cluster

 

the

 

table

 

based

 

on

 

the

 

values

 

in

 

columns

 

c2,

 

c5,

 

and

 

c6.

  

Range

 

queries

 

on

 

a

 

generated

 

column

 

dimension

 

require

 

monotonic

 

column

 

functions:

   

Expressions

 

must

 

be

 

monotonic

 

to

 

derive

 

range

 

predicates

 

for

 

dimensions

 

on

 

generated

 

columns.

 

If

 

you

 

create

 

a

 

dimension

 

on

 

a

 

generated

 

column,

 

queries

 

on

 

the

 

base

 

column

 

will

 

be

 

able

 

to

 

take

 

advantage

 

of

 

the

 

block

 

index

 

on

 

the

 

generated

 

column

 

to

 

improve

 

performance,

 

with

 

one

 

exception.

 

For

 

range

 

queries

 

on

 

the

 

base

 

column

 

(date,

 

for

 

example)

 

to

 

use

 

a

 

range

 

scan

 

on

 

the

 

dimension

 

block

 

index,

 

the

 

expression

 

used

 

to

 

generate

 

the

 

column

 

in

 

the

 

CREATE

 

TABLE

 

statement

 

must

 

be

 

monotonic.

 

Although

 

a

 

column

 

expression

 

can

 

include

 

any

 

valid

 

expression

 

(including

 

user-defined

 

functions

 

(UDFs)),

 

if

 

the

 

expression

 

is

 

non-monotonic,

 

only

 

equality

 

or

 

IN

 

predicates

 

are

 

able

 

to

 

use

 

the

 

block

 

index

 

to

 

satisfy

 

the

 

query

 

when

 

these

 

predicates

 

are

 

on

 

the

 

base

 

column.

 

As

 

an

 

example,

 

assume

 

that

 

we

 

create

 

an

 

MDC

 

table

 

with

 

dimensions

 

on

 

the

 

generated

 

column

 

month,

 

where

 

month

 

=

 

INTEGER

 

(date)/100.

 

For

 

queries

 

on

 

the

 

dimension

 

(month),

 

block

 

index

 

scans

 

can

 

be

 

done.

 

For

 

queries

 

on

 

the

 

base

 

column

 

(date),

 

block

 

index

 

scans

 

can

 

also

 

be

 

done

 

to

 

narrow

 

down

 

which

 

blocks

 

to

 

scan,

 

and

 

then

 

apply

 

the

 

predicates

 

on

 

date

 

to

 

the

 

rows

 

in

 

those

 

blocks

 

only.

 

The

 

compiler

 

generates

 

additional

 

predicates

 

to

 

be

 

used

 

in

 

the

 

block

 

index

 

scan.

 

For

 

example,

 

with

 

the

 

query:

    

SELECT

 

*

 

FROM

 

MDCTABLE

 

WHERE

 

DATE

 

>

 

"19999/03/03"

 

AND

 

DATE

 

<

 

"2000/01/15"

 

the

 

compiler

 

generates

 

the

 

additional

 

predicates:

 

“month

 

>=

 

199903”

 

and

 

“month

 

<

 

200001”

 

which

 

can

 

be

 

used

 

as

 

predicates

 

for

 

a

 

dimension

 

block

 

index

 

scan.

 

When

 

scanning

 

the

 

resulting

 

blocks,

 

the

 

original

 

predicates

 

are

 

applied

 

to

 

the

 

rows

 

in

 

the

 

blocks.

 

A

 

non-monotonic

 

expression

 

will

 

only

 

allow

 

equality

 

predicates

 

to

 

be

 

applied

 

to

 

that

 

dimension.

 

A

 

good

 

example

 

of

 

a

 

non-monotonic

 

function

 

is

 

MONTH(

 

)

 

as

 

seen

 

in

 

the

 

definition

 

of

 

column

 

c6

 

in

 

Example

 

3.

 

If

 

the

 

c1

 

column

 

is

 

a

 

date,

 

timestamp,

 

or

 

valid

 

string

 

representation

 

of

 

a

 

date

 

or

 

timestamp,

 

then

 

the

 

function

 

returns

 

an

 

integer

 

value

 

in

 

the

 

range

 

of

 

1

 

to

 

12.

 

Even

 

though

 

the

 

output

 

of

 

the

 

function

 

is

 

deterministic,

 

it

 

actually

 

produces

 

output

 

similar

 

to

 

a

 

step

 

function

 

(that

 

is,

 

a

 

cyclic

 

pattern):

 

MONTH(date(’99/01/05’))

 

=

 

1

 

MONTH(date(’99/02/08’))

 

=

 

2

 

MONTH(date(’99/03/24’))

 

=

 

3

 

MONTH(date(’99/04/30’))

 

=

 

4

 

...

  

164

 

Administration

 

Guide:

 

Planning

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|



MONTH(date(’99/12/09’))

 

=

 

12

 

MONTH(date(’00/01/18’))

 

=

 

1

 

MONTH(date(’00/02/24’))

 

=

 

2

 

...

 

Although

 

date

 

in

 

this

 

example

 

is

 

continually

 

increasing,

 

MONTH(date)

 

is

 

not.

 

More

 

specifically,

 

it

 

is

 

not

 

guaranteed

 

that

 

whenever

 

date1

 

is

 

larger

 

than

 

date2,

 

MONTH(date1)

 

is

 

greater

 

than

 

or

 

equal

 

to

 

MONTH(date2).

 

It

 

is

 

this

 

condition

 

that

 

is

 

required

 

for

 

monotonicity.

 

This

 

non-monotonicity

 

is

 

allowed,

 

but

 

it

 

limits

 

the

 

dimension

 

in

 

that

 

a

 

range

 

predicate

 

on

 

the

 

base

 

column

 

cannot

 

generate

 

a

 

range

 

predicate

 

on

 

the

 

dimension.

 

However,

 

a

 

range

 

predicate

 

on

 

the

 

expression

 

is

 

fine,

 

for

 

example,

 

where

 

month(c1)

 

between

 

4

 

and

 

6.

 

This

 

can

 

use

 

the

 

index

 

on

 

the

 

dimension

 

in

 

the

 

usual

 

way,

 

with

 

a

 

starting

 

key

 

of

 

4

 

and

 

a

 

stop

 

key

 

of

 

6.

 

To

 

make

 

this

 

function

 

monotonic,

 

you

 

would

 

have

 

to

 

include

 

the

 

year

 

as

 

the

 

high

 

order

 

part

 

of

 

the

 

month.

 

DB2

 

UDB

 

provides

 

an

 

extension

 

to

 

the

 

INTEGER

 

built-in

 

function

 

to

 

help

 

in

 

defining

 

a

 

monotonic

 

expression

 

on

 

date.

 

INTEGER(date)

 

returns

 

an

 

integer

 

representation

 

of

 

the

 

date,

 

which

 

then

 

can

 

be

 

divided

 

to

 

find

 

an

 

integer

 

representation

 

of

 

the

 

year

 

and

 

month.

 

For

 

example,

 

INTEGER(date(’2000/05/24’))

 

returns

 

20000524,

 

and

 

therefore

 

INTEGER(date(’2000/05/24’))/100

 

=

 

200005.

 

The

 

function

 

INTEGER(date)/100

 

is

 

monotonic.

 

Similarly,

 

the

 

built-in

 

functions

 

DECIMAL

 

and

 

BIGINT

 

also

 

have

 

extensions

 

so

 

that

 

you

 

can

 

derive

 

monotonic

 

functions.

 

DECIMAL(timestamp)

 

returns

 

a

 

decimal

 

representation

 

of

 

a

 

timestamp,

 

and

 

this

 

can

 

be

 

used

 

in

 

monotonic

 

expressions

 

to

 

derive

 

increasing

 

values

 

for

 

month,

 

day,

 

hour,

 

minute,

 

and

 

so

 

on.

 

BIGINT(date)

 

returns

 

a

 

big

 

integer

 

representation

 

of

 

the

 

date,

 

similar

 

to

 

INTEGER(date).

 

DB2

 

UDB

 

will

 

determine

 

the

 

monotonicity

 

of

 

an

 

expression,

 

where

 

possible,

 

when

 

creating

 

the

 

generated

 

column

 

for

 

the

 

table,

 

or

 

when

 

creating

 

a

 

dimension

 

from

 

an

 

expression

 

in

 

the

 

dimensions

 

clause.

 

Certain

 

functions

 

can

 

be

 

recognized

 

as

 

monotonicity-preserving,

 

such

 

as

 

DATENUM(

 

),

 

DAYS(

 

),

 

YEAR(

 

).

 

Also,

 

various

 

mathematical

 

expressions

 

such

 

as

 

division,

 

multiplication,

 

or

 

addition

 

of

 

a

 

column

 

and

 

a

 

constant

 

are

 

monotonicity-preserving.

 

Where

 

DB2

 

UDB

 

determines

 

that

 

an

 

expression

 

is

 

not

 

monotonicity-preserving,

 

or

 

if

 

it

 

cannot

 

determine

 

this,

 

the

 

dimension

 

will

 

only

 

support

 

the

 

use

 

of

 

equality

 

predicates

 

on

 

its

 

base

 

column.

  

Related

 

concepts:

  

v

   

“Extent

 

size”

 

on

 

page

 

113

 

v

   

“Multidimensional

 

clustering

 

considerations”

 

in

 

the

 

Data

 

Movement

 

Utilities

 

Guide

 

and

 

Reference

 

v

   

“Multidimensional

 

clustering

 

tables”

 

on

 

page

 

137

 

v

   

“Designing

 

multidimensional

 

clustering

 

(MDC)

 

tables”

 

on

 

page

 

153

 

Related

 

tasks:

  

v

   

“Defining

 

dimensions

 

on

 

a

 

table”

 

in

 

the

 

Administration

 

Guide:

 

Implementation

 

Related

 

reference:

  

v

   

“CREATE

 

TABLE

 

statement”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

 

v

   

“db2empfa

 

-

 

Enable

 

Multipage

 

File

 

Allocation

 

Command”

 

in

 

the

 

Command

 

Reference

  

Chapter

 

5.

 

Physical

 

database

 

design

 

165

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|



166

 

Administration

 

Guide:

 

Planning



Chapter

 

6.

 

Designing

 

distributed

 

databases

 

Updating

 

a

 

single

 

database

 

in

 

a

 

transaction

  

The

 

simplest

 

form

 

of

 

transaction

 

is

 

to

 

read

 

from

 

and

 

write

 

to

 

only

 

one

 

database

 

within

 

a

 

single

 

unit

 

of

 

work.

 

This

 

type

 

of

 

database

 

access

 

is

 

called

 

a

 

remote

 

unit

 

of

 

work.

   

Figure

 

58

 

shows

 

a

 

database

 

client

 

running

 

a

 

funds

 

transfer

 

application

 

that

 

accesses

 

a

 

database

 

containing

 

checking

 

and

 

savings

 

account

 

tables,

 

as

 

well

 

as

 

a

 

banking

 

fee

 

schedule.

 

The

 

application

 

must:

 

v

   

Accept

 

the

 

amount

 

to

 

transfer

 

from

 

the

 

user

 

interface

 

v

   

Subtract

 

the

 

amount

 

from

 

the

 

savings

 

account,

 

and

 

determine

 

the

 

new

 

balance

 

v

   

Read

 

the

 

fee

 

schedule

 

to

 

determine

 

the

 

transaction

 

fee

 

for

 

a

 

savings

 

account

 

with

 

the

 

given

 

balance

 

v

   

Subtract

 

the

 

transaction

 

fee

 

from

 

the

 

savings

 

account

 

v

   

Add

 

the

 

amount

 

of

 

the

 

transfer

 

to

 

the

 

checking

 

account

 

v

   

Commit

 

the

 

transaction

 

(unit

 

of

 

work).

 

Procedure:

   

To

 

set

 

up

 

such

 

an

 

application,

 

you

 

must:

 

1.

   

Create

 

the

 

tables

 

for

 

the

 

savings

 

account,

 

checking

 

account

 

and

 

banking

 

fee

 

schedule

 

in

 

the

 

same

 

database

 

2.

   

If

 

physically

 

remote,

 

set

 

up

 

the

 

database

 

server

 

to

 

use

 

the

 

appropriate

 

communications

 

protocol

 

3.

   

If

 

physically

 

remote,

 

catalog

 

the

 

node

 

and

 

the

 

database

 

to

 

identify

 

the

 

database

 

on

 

the

 

database

 

server

 

4.

   

Precompile

 

your

 

application

 

program

 

to

 

specify

 

a

 

type

 

1

 

connection;

 

that

 

is,

 

specify

 

CONNECT

 

1

 

(the

 

default)

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command.

 

Related

 

concepts:

  

v

   

“Units

 

of

 

work”

 

on

 

page

 

26

Savings account

Checking account

Transaction fee

Database client

Update

Update

Read

Database

  

Figure

 

58.

 

Using

 

a

 

single

 

database

 

in

 

a

 

transaction

 

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

167



Related

 

tasks:

  

v

   

“Updating

 

a

 

single

 

database

 

in

 

a

 

multi-database

 

transaction”

 

on

 

page

 

168

 

v

   

“Updating

 

multiple

 

databases

 

in

 

a

 

transaction”

 

on

 

page

 

169

 

Related

 

reference:

  

v

   

“PRECOMPILE

 

Command”

 

in

 

the

 

Command

 

Reference

Using

 

multiple

 

databases

 

in

 

a

 

single

 

transaction

 

When

 

using

 

multiple

 

databases

 

in

 

a

 

single

 

transaction,

 

the

 

requirements

 

for

 

setting

 

up

 

and

 

administering

 

your

 

environment

 

are

 

different,

 

depending

 

on

 

the

 

number

 

of

 

databases

 

that

 

are

 

being

 

updated

 

in

 

the

 

transaction.

 

Updating

 

a

 

single

 

database

 

in

 

a

 

multi-database

 

transaction

  

If

 

your

 

data

 

is

 

distributed

 

across

 

multiple

 

databases,

 

you

 

may

 

wish

 

to

 

update

 

one

 

database

 

while

 

reading

 

from

 

one

 

or

 

more

 

other

 

databases.

 

This

 

type

 

of

 

access

 

can

 

be

 

performed

 

within

 

a

 

single

 

unit

 

of

 

work

 

(transaction).

   

Figure

 

59

 

shows

 

a

 

database

 

client

 

running

 

a

 

funds

 

transfer

 

application

 

that

 

accesses

 

two

 

database

 

servers:

 

one

 

containing

 

the

 

checking

 

and

 

savings

 

accounts,

 

and

 

another

 

containing

 

the

 

banking

 

fee

 

schedule.

  

Procedure:

   

To

 

set

 

up

 

a

 

funds

 

transfer

 

application

 

for

 

this

 

environment,

 

you

 

must:

 

1.

   

Create

 

the

 

necessary

 

tables

 

in

 

the

 

appropriate

 

databases

 

2.

   

If

 

physically

 

remote,

 

set

 

up

 

the

 

database

 

servers

 

to

 

use

 

the

 

appropriate

 

communications

 

protocols

 

3.

   

If

 

physically

 

remote,

 

catalog

 

the

 

nodes

 

and

 

the

 

databases

 

to

 

identify

 

the

 

databases

 

on

 

the

 

database

 

servers

 

4.

   

Precompile

 

your

 

application

 

program

 

to

 

specify

 

a

 

type

 

2

 

connection

 

(that

 

is,

 

specify

 

CONNECT

 

2

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command),

 

and

 

one-phase

 

commit

 

(that

 

is,

 

specify

 

SYNCPOINT

 

ONEPHASE

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command).

Database client

Update

Read Transaction fee

Database

Savings account

Database

Checking account

Update

  

Figure

 

59.

 

Using

 

multiple

 

databases

 

in

 

a

 

single

 

transaction

  

168

 

Administration

 

Guide:

 

Planning



If

 

databases

 

are

 

located

 

on

 

a

 

host

 

or

 

iSeries

 

database

 

server,

 

you

 

require

 

DB2

 

Connect™

 

for

 

connectivity

 

to

 

these

 

servers.

  

Related

 

concepts:

  

v

   

“Units

 

of

 

work”

 

on

 

page

 

26

 

Related

 

tasks:

  

v

   

“Updating

 

a

 

single

 

database

 

in

 

a

 

transaction”

 

on

 

page

 

167

 

v

   

“Updating

 

multiple

 

databases

 

in

 

a

 

transaction”

 

on

 

page

 

169

 

Related

 

reference:

  

v

   

“PRECOMPILE

 

Command”

 

in

 

the

 

Command

 

Reference

Updating

 

multiple

 

databases

 

in

 

a

 

transaction

  

If

 

your

 

data

 

is

 

distributed

 

across

 

multiple

 

databases,

 

you

 

may

 

want

 

to

 

read

 

and

 

update

 

several

 

databases

 

in

 

a

 

single

 

transaction.

 

This

 

type

 

of

 

database

 

access

 

is

 

called

 

a

 

multisite

 

update.

   

Figure

 

60

 

shows

 

a

 

database

 

client

 

running

 

a

 

funds

 

transfer

 

application

 

that

 

accesses

 

three

 

database

 

servers:

 

one

 

containing

 

the

 

checking

 

account,

 

another

 

containing

 

the

 

savings

 

account,

 

and

 

the

 

third

 

containing

 

the

 

banking

 

fee

 

schedule.

  

Procedure:

   

To

 

set

 

up

 

a

 

funds

 

transfer

 

application

 

for

 

this

 

environment,

 

you

 

have

 

two

 

options:

 

1.

   

With

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

transaction

 

manager

 

(TM):

 

a.

   

Create

 

the

 

necessary

 

tables

 

in

 

the

 

appropriate

 

databases

 

b.

   

If

 

physically

 

remote,

 

set

 

up

 

the

 

database

 

servers

 

to

 

use

 

the

 

appropriate

 

communications

 

protocols

 

c.

   

If

 

physically

 

remote,

 

catalog

 

the

 

nodes

 

and

 

the

 

databases

 

to

 

identify

 

the

 

databases

 

on

 

the

 

database

 

servers

 

Transaction fee

Database

Checking account

Database

Savings account

Database

Database client

Update

Update

Read

  

Figure

 

60.

 

Updating

 

multiple

 

databases

 

in

 

a

 

single

 

transaction

  

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

169

|

|

|
|

|
|



d.

   

Precompile

 

your

 

application

 

program

 

to

 

specify

 

a

 

type

 

2

 

connection

 

(that

 

is,

 

specify

 

CONNECT

 

2

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command),

 

and

 

two-phase

 

commit

 

(that

 

is,

 

specify

 

SYNCPOINT

 

TWOPHASE

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command)

 

e.

   

Configure

 

the

 

DB2

 

UDB

 

transaction

 

manager

 

(TM).
2.

   

Using

 

an

 

XA-compliant

 

transaction

 

manager:

 

a.

   

Create

 

the

 

necessary

 

tables

 

in

 

the

 

appropriate

 

databases

 

b.

   

If

 

physically

 

remote,

 

set

 

up

 

the

 

database

 

servers

 

to

 

use

 

the

 

appropriate

 

communications

 

protocols

 

c.

   

If

 

physically

 

remote,

 

catalog

 

the

 

nodes

 

and

 

the

 

databases

 

to

 

identify

 

the

 

databases

 

on

 

the

 

database

 

servers

 

d.

   

Precompile

 

your

 

application

 

program

 

to

 

specify

 

a

 

type

 

2

 

connection

 

(that

 

is,

 

specify

 

CONNECT

 

2

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command),

 

and

 

one-phase

 

commit

 

(that

 

is,

 

specify

 

SYNCPOINT

 

ONEPHASE

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command)

 

e.

   

Configure

 

the

 

XA-compliant

 

transaction

 

manager

 

to

 

use

 

the

 

DB2

 

UDB

 

databases.

 

Related

 

concepts:

  

v

   

“Units

 

of

 

work”

 

on

 

page

 

26

 

v

   

“DB2

 

transaction

 

manager”

 

on

 

page

 

170

 

Related

 

tasks:

  

v

   

“Updating

 

a

 

single

 

database

 

in

 

a

 

transaction”

 

on

 

page

 

167

 

v

   

“Updating

 

a

 

single

 

database

 

in

 

a

 

multi-database

 

transaction”

 

on

 

page

 

168

 

Related

 

reference:

  

v

   

“PRECOMPILE

 

Command”

 

in

 

the

 

Command

 

Reference

DB2

 

transaction

 

manager

  

The

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

transaction

 

manager

 

(TM)

 

assigns

 

identifiers

 

to

 

transactions,

 

monitors

 

their

 

progress,

 

and

 

takes

 

responsibility

 

for

 

transaction

 

completion

 

and

 

failure.

 

DB2

 

UDB

 

and

 

DB2

 

Connect™

 

provide

 

a

 

transaction

 

manager.

 

The

 

DB2

 

UDB

 

TM

 

stores

 

transaction

 

information

 

in

 

the

 

designated

 

TM

 

database.

 

The

 

database

 

manager

 

provides

 

transaction

 

manager

 

functions

 

that

 

can

 

be

 

used

 

to

 

coordinate

 

the

 

updating

 

of

 

several

 

databases

 

within

 

a

 

single

 

unit

 

of

 

work.

 

The

 

database

 

client

 

automatically

 

coordinates

 

the

 

unit

 

of

 

work,

 

and

 

uses

 

a

 

transaction

 

manager

 

database

 

to

 

register

 

each

 

transaction

 

and

 

track

 

its

 

completion

 

status.

 

You

 

can

 

use

 

the

 

DB2

 

UDB

 

transaction

 

manager

 

with

 

DB2

 

UDB

 

databases.

 

If

 

you

 

have

 

resources

 

other

 

than

 

DB2

 

UDB

 

databases

 

that

 

you

 

want

 

to

 

participate

 

in

 

a

 

two-phase

 

commit

 

transaction,

 

you

 

can

 

use

 

an

 

XA-compliant

 

transaction

 

manager.

  

Related

 

concepts:

  

v

   

“Units

 

of

 

work”

 

on

 

page

 

26

 

v

   

“DB2

 

Universal

 

Database

 

transaction

 

manager

 

configuration”

 

on

 

page

 

171

 

v

   

“Two-phase

 

commit”

 

on

 

page

 

174

  

170

 

Administration

 

Guide:

 

Planning

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|



DB2

 

Universal

 

Database

 

transaction

 

manager

 

configuration

  

If

 

you

 

are

 

using

 

an

 

XA-compliant

 

transaction

 

manager,

 

such

 

as

 

IBM®

 

WebSphere®,

 

BEA

 

Tuxedo,

 

or

 

Microsoft®

 

Transaction

 

Server,

 

you

 

should

 

follow

 

the

 

configuration

 

instructions

 

for

 

that

 

product.

 

When

 

using

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

for

 

UNIX®-based

 

systems

 

or

 

the

 

Windows®

 

operating

 

system

 

to

 

coordinate

 

your

 

transactions,

 

you

 

must

 

fulfill

 

certain

 

configuration

 

requirements.

 

If

 

you

 

use

 

TCP/IP

 

exclusively

 

for

 

communications,

 

and

 

DB2

 

UDB

 

for

 

UNIX,

 

Windows,

 

iSeries™

 

V5,

 

z/OS™

 

or

 

OS/390®

 

are

 

the

 

only

 

database

 

servers

 

involved

 

in

 

your

 

transactions,

 

configuration

 

is

 

straightforward.

 

DB2

 

Connect™

 

no

 

longer

 

supports

 

SNA

 

two

 

phase

 

commit

 

access

 

to

 

host

 

or

 

iSeries

 

servers.

 

DB2

 

Universal

 

Database

 

for

 

UNIX

 

and

 

Windows

 

and

 

DB2

 

for

 

z/OS,

 

OS/390,

 

and

 

iSeries

 

V5

 

using

 

TCP/IP

 

Connectivity

 

If

 

each

 

of

 

the

 

following

 

statements

 

is

 

true

 

for

 

your

 

environment,

 

the

 

configuration

 

steps

 

for

 

multisite

 

update

 

are

 

straightforward.

 

v

   

All

 

communications

 

with

 

remote

 

database

 

servers

 

(including

 

DB2

 

UDB

 

for

 

z/OS,

 

OS/390,

 

and

 

iSeries

 

V5)

 

use

 

TCP/IP

 

exclusively.

 

v

   

DB2

 

UDB

 

for

 

UNIX

 

based

 

systems,

 

Windows

 

operating

 

systems,

 

z/OS,

 

OS/390

 

or

 

iSeries

 

V5

 

are

 

the

 

only

 

database

 

servers

 

involved

 

in

 

the

 

transaction.

 

The

 

database

 

that

 

will

 

be

 

used

 

as

 

the

 

transaction

 

manager

 

database

 

is

 

determined

 

at

 

the

 

database

 

client

 

by

 

the

 

database

 

manager

 

configuration

 

parameter

 

tm_database.

 

Consider

 

the

 

following

 

factors

 

when

 

setting

 

this

 

configuration

 

parameter:

 

v

   

The

 

transaction

 

manager

 

database

 

can

 

be:

 

–

   

A

 

DB2

 

UDB

 

for

 

UNIX

 

or

 

Windows

 

Version

 

8

 

database

 

–

   

A

 

DB2

 

for

 

z/OS

 

and

 

OS/390

 

Version

 

7

 

database

 

or

 

a

 

DB2

 

for

 

OS/390

 

Version

 

5

 

or

 

6

 

database

 

–

   

A

 

DB2

 

for

 

iSeries

 

V5

 

database

 

DB2

 

for

 

z/OS,

 

OS/390,

 

and

 

iSeries

 

V5

 

are

 

the

 

recommended

 

database

 

servers

 

to

 

use

 

as

 

the

 

transaction

 

manager

 

database.

 

z/OS,

 

OS/390,

 

and

 

iSeries

 

V5

 

systems

 

are,

 

generally,

 

more

 

secure

 

than

 

workstation

 

servers,

 

reducing

 

the

 

possibility

 

of

 

accidental

 

power

 

downs,

 

reboots,

 

and

 

so

 

on.

 

Therefore

 

the

 

recovery

 

logs,

 

used

 

in

 

the

 

event

 

of

 

resynchronization,

 

are

 

more

 

secure.
v

   

If

 

a

 

value

 

of

 

1ST_CONN

 

is

 

specified

 

for

 

the

 

tm_database

 

configuration

 

parameter,

 

the

 

first

 

database

 

to

 

which

 

an

 

application

 

connects

 

is

 

used

 

as

 

the

 

transaction

 

manager

 

database.

 

Care

 

must

 

be

 

taken

 

when

 

using

 

1ST_CONN.

 

You

 

should

 

only

 

use

 

this

 

configuration

 

if

 

it

 

is

 

easy

 

to

 

ensure

 

that

 

all

 

involved

 

databases

 

are

 

cataloged

 

correctly;

 

that

 

is,

 

if

 

the

 

database

 

client

 

initiating

 

the

 

transaction

 

is

 

in

 

the

 

same

 

instance

 

that

 

contains

 

the

 

participating

 

databases,

 

including

 

the

 

transaction

 

manager

 

database.

 

Note

 

that

 

if

 

your

 

application

 

attempts

 

to

 

disconnect

 

from

 

the

 

database

 

being

 

used

 

as

 

the

 

transaction

 

manager

 

database,

 

you

 

will

 

receive

 

a

 

warning

 

message,

 

and

 

the

 

connection

 

will

 

be

 

held

 

until

 

the

 

unit

 

of

 

work

 

is

 

committed.

   

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

171

|
|
|
|
|
|

|
|

|
|
|
|
|



Configuration

 

parameters

 

You

 

should

 

consider

 

the

 

following

 

configuration

 

parameters

 

when

 

you

 

are

 

setting

 

up

 

your

 

environment.

 

Database

 

Manager

 

Configuration

 

Parameters

 

v

   

tm_database

 

This

 

parameter

 

identifies

 

the

 

name

 

of

 

the

 

Transaction

 

Manager

 

(TM)

 

database

 

for

 

each

 

DB2

 

UDB

 

instance.

 

v

   

spm_name

 

This

 

parameter

 

identifies

 

the

 

name

 

of

 

the

 

DB2

 

Connect

 

sync

 

point

 

manager

 

instance

 

to

 

the

 

database

 

manager.

 

For

 

resynchronization

 

to

 

be

 

successful,

 

the

 

name

 

must

 

be

 

unique

 

across

 

your

 

network.

 

v

   

resync_interval

 

This

 

parameter

 

identifies

 

the

 

time

 

interval

 

(in

 

seconds)

 

after

 

which

 

the

 

DB2

 

Transaction

 

Manager,

 

the

 

DB2

 

UDB

 

server

 

database

 

manager,

 

and

 

the

 

DB2

 

Connect

 

sync

 

point

 

manager

 

or

 

the

 

DB2

 

UDB

 

sync

 

point

 

manager

 

should

 

retry

 

the

 

recovery

 

of

 

any

 

outstanding

 

indoubt

 

transactions.

 

v

   

spm_log_file_sz

 

This

 

parameter

 

specifies

 

the

 

size

 

(in

 

4

 

KB

 

pages)

 

of

 

the

 

SPM

 

log

 

file.

 

v

   

spm_max_resync

 

This

 

parameter

 

identifies

 

the

 

number

 

of

 

agents

 

that

 

can

 

simultaneously

 

perform

 

resynchronization

 

operations.

 

v

   

spm_log_path

 

This

 

parameter

 

identifies

 

the

 

log

 

path

 

for

 

the

 

SPM

 

log

 

files.

 

Database

 

Configuration

 

Parameters

 

v

   

maxappls

 

This

 

parameter

 

specifies

 

the

 

maximum

 

permitted

 

number

 

of

 

active

 

applications.

 

Its

 

value

 

must

 

be

 

equal

 

to

 

or

 

greater

 

than

 

the

 

sum

 

of

 

the

 

connected

 

applications,

 

plus

 

the

 

number

 

of

 

these

 

applications

 

that

 

may

 

be

 

concurrently

 

in

 

the

 

process

 

of

 

completing

 

a

 

two-phase

 

commit

 

or

 

rollback,

 

plus

 

the

 

anticipated

 

number

 

of

 

indoubt

 

transactions

 

that

 

might

 

exist

 

at

 

any

 

one

 

time.

 

v

   

autorestart

 

This

 

database

 

configuration

 

parameter

 

specifies

 

whether

 

the

 

RESTART

 

DATABASE

 

routine

 

will

 

be

 

invoked

 

automatically

 

when

 

needed.

 

The

 

default

 

value

 

is

 

YES

 

(that

 

is,

 

enabled).

 

A

 

database

 

containing

 

indoubt

 

transactions

 

requires

 

a

 

restart

 

database

 

operation

 

to

 

start

 

up.

 

If

 

autorestart

 

is

 

not

 

enabled

 

when

 

the

 

last

 

connection

 

to

 

the

 

database

 

is

 

dropped,

 

the

 

next

 

connection

 

will

 

fail

 

and

 

require

 

an

 

explicit

 

RESTART

 

DATABASE

 

invocation.

 

This

 

condition

 

will

 

exist

 

until

 

the

 

indoubt

 

transactions

 

have

 

been

 

removed,

 

either

 

by

 

the

 

transaction

 

manager’s

 

resynchronization

 

operation,

 

or

 

through

 

a

 

heuristic

 

operation

 

initiated

 

by

 

the

 

administrator.

 

When

 

the

 

RESTART

 

DATABASE

 

command

 

is

 

issued,

 

a

 

message

 

is

 

returned

 

if

 

there

 

are

 

any

 

indoubt

 

transactions

 

in

 

the

 

database.

 

The

 

administrator

 

can

 

then

 

use

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

and

 

other

 

Command

 

Line

 

Processor

 

(CLP)

 

commands

 

to

 

find

 

get

 

information

 

about

 

those

 

indoubt

 

transactions.

 

Related

 

concepts:

  

v

   

“DB2

 

transaction

 

manager”

 

on

 

page

 

170

  

172

 

Administration

 

Guide:

 

Planning

|
|

|
|
|
|



Related

 

tasks:

  

v

   

“Configuring

 

IBM

 

TXSeries

 

CICS”

 

on

 

page

 

198

 

v

   

“Configuring

 

IBM

 

TXSeries

 

Encina”

 

on

 

page

 

198

 

v

   

“Configuring

 

BEA

 

Tuxedo”

 

on

 

page

 

200

 

v

   

“Configuring

 

IBM

 

WebSphere

 

Application

 

Server”

 

on

 

page

 

198

 

Related

 

reference:

  

v

   

“spm_log_path

 

-

 

Sync

 

point

 

manager

 

log

 

file

 

path

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“autorestart

 

-

 

Auto

 

restart

 

enable

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“maxappls

 

-

 

Maximum

 

number

 

of

 

active

 

applications

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“resync_interval

 

-

 

Transaction

 

resync

 

interval

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“tm_database

 

-

 

Transaction

 

manager

 

database

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“spm_name

 

-

 

Sync

 

point

 

manager

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“spm_log_file_sz

 

-

 

Sync

 

point

 

manager

 

log

 

file

 

size

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“spm_max_resync

 

-

 

Sync

 

point

 

manager

 

resync

 

agent

 

limit

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Updating

 

a

 

database

 

from

 

a

 

host

 

or

 

iSeries

 

client

  

Applications

 

executing

 

on

 

host

 

or

 

iSeries

 

can

 

access

 

data

 

residing

 

on

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

database

 

servers.

 

TCP/IP

 

is

 

the

 

only

 

protocol

 

used

 

for

 

this

 

access.

 

DB2

 

UDB

 

servers

 

on

 

all

 

platforms

 

no

 

longer

 

support

 

SNA

 

access

 

from

 

remote

 

clients.

 

Previous

 

to

 

version

 

8,

 

TCP/IP

 

access

 

from

 

host

 

or

 

iSeries

 

clients

 

only

 

supported

 

one-phase

 

commit

 

access.

 

DB2

 

UDB

 

now

 

allows

 

TCP/IP

 

two-phase

 

commit

 

access

 

from

 

host

 

or

 

iSeries

 

clients.

 

There

 

is

 

no

 

need

 

to

 

use

 

the

 

Syncpoint

 

Manager

 

(SPM)

 

when

 

using

 

TCP/IP

 

two-phase

 

commit

 

access.

 

The

 

DB2

 

UDB

 

TCP/IP

 

listener

 

must

 

be

 

active

 

on

 

the

 

server

 

to

 

be

 

accessed

 

by

 

the

 

host

 

or

 

iSeries

 

client.

 

You

 

can

 

check

 

that

 

the

 

TCP/IP

 

listener

 

is

 

active

 

by

 

using

 

the

 

db2set

 

command

 

to

 

validate

 

that

 

the

 

registry

 

variable

 

DB2COMM

 

has

 

a

 

value

 

of

 

“tcpip”;

 

and

 

that

 

the

 

database

 

manager

 

configuration

 

parameter

 

svcename

 

is

 

set

 

to

 

the

 

service

 

name

 

by

 

using

 

the

 

GET

 

DBM

 

CFG

 

command.

 

If

 

the

 

listener

 

is

 

not

 

active,

 

it

 

can

 

be

 

made

 

active

 

by

 

using

 

the

 

db2set

 

command

 

and

 

the

 

UPDATE

 

DBM

 

CFG

 

command.

  

Related

 

reference:

  

v

   

“spm_name

 

-

 

Sync

 

point

 

manager

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“Communications

 

variables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

  

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

173

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|



Two-phase

 

commit

  

Figure

 

61

 

illustrates

 

the

 

steps

 

involved

 

in

 

a

 

multisite

 

update.

 

Understanding

 

how

 

a

 

transaction

 

is

 

managed

 

will

 

help

 

you

 

to

 

resolve

 

the

 

problem

 

if

 

an

 

error

 

occurs

 

during

 

the

 

two-phase

 

commit

 

process.

  

�0�

 

The

 

application

 

is

 

prepared

 

for

 

two-phase

 

commit.

 

This

 

can

 

be

 

accomplished

 

through

 

precompilation

 

options.

 

This

 

can

 

also

 

be

 

accomplished

 

through

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

CLI

 

(Call

 

Level

 

Interface)

 

configuration.

 

�1�

 

When

 

the

 

database

 

client

 

wants

 

to

 

connect

 

to

 

the

 

SAVINGS_DB

 

database,

 

it

 

first

 

internally

 

connects

 

to

 

the

 

transaction

 

manager

 

(TM)

 

database.

 

The

 

TM

 

database

 

returns

 

an

 

acknowledgment

 

to

 

the

 

database

 

client.

 

If

 

the

 

Client
Savings
account

Checking
account

Transaction
fee

Transaction
manager

Connect

Connect

Connect

Update

Commit

Connect

Update

Select

Update

11

2

3
4

5

7

9

10

13

12

1

6

8

  

Figure

 

61.

 

Updating

 

multiple

 

databases

  

174

 

Administration

 

Guide:

 

Planning

||
|
|
|



database

 

manager

 

configuration

 

parameter

 

tm_database

 

is

 

set

 

to

 

1ST_CONN,

 

SAVINGS_DB

 

becomes

 

the

 

transaction

 

manager

 

database

 

for

 

the

 

duration

 

of

 

this

 

application

 

instance.

 

�2�

 

The

 

connection

 

to

 

the

 

SAVINGS_DB

 

database

 

takes

 

place

 

and

 

is

 

acknowledged.

 

�3�

 

The

 

database

 

client

 

begins

 

the

 

update

 

to

 

the

 

SAVINGS_ACCOUNT

 

table.

 

This

 

begins

 

the

 

unit

 

of

 

work.

 

The

 

TM

 

database

 

responds

 

to

 

the

 

database

 

client,

 

providing

 

a

 

transaction

 

ID

 

for

 

the

 

unit

 

of

 

work.

 

Note

 

that

 

the

 

registration

 

of

 

a

 

unit

 

of

 

work

 

occurs

 

when

 

the

 

first

 

SQL

 

statement

 

in

 

the

 

unit

 

of

 

work

 

is

 

run,

 

not

 

during

 

the

 

establishment

 

of

 

a

 

connection.

 

�4�

 

After

 

receiving

 

the

 

transaction

 

ID,

 

the

 

database

 

client

 

registers

 

the

 

unit

 

of

 

work

 

with

 

the

 

database

 

containing

 

the

 

SAVINGS_ACCOUNT

 

table.

 

A

 

response

 

is

 

sent

 

back

 

to

 

the

 

client

 

to

 

indicate

 

that

 

the

 

unit

 

of

 

work

 

has

 

been

 

registered

 

successfully.

 

�5�

 

SQL

 

statements

 

issued

 

against

 

the

 

SAVINGS_DB

 

database

 

are

 

handled

 

in

 

the

 

normal

 

manner.

 

The

 

response

 

to

 

each

 

statement

 

is

 

returned

 

in

 

the

 

SQLCA

 

when

 

working

 

with

 

SQL

 

statements

 

embedded

 

in

 

a

 

program.

 

�6�

 

The

 

transaction

 

ID

 

is

 

registered

 

at

 

the

 

FEE_DB

 

database

 

containing

 

the

 

TRANSACTION_FEE

 

table,

 

during

 

the

 

first

 

access

 

to

 

that

 

database

 

within

 

the

 

unit

 

of

 

work.

 

�7�

 

Any

 

SQL

 

statements

 

against

 

the

 

FEE_DB

 

database

 

are

 

handled

 

in

 

the

 

normal

 

way.

 

�8�

 

Additional

 

SQL

 

statements

 

can

 

be

 

run

 

against

 

the

 

SAVINGS_DB

 

database

 

by

 

setting

 

the

 

connection,

 

as

 

appropriate.

 

Since

 

the

 

unit

 

of

 

work

 

has

 

already

 

been

 

registered

 

with

 

the

 

SAVINGS_DB

 

database

 

�4�,

 

the

 

database

 

client

 

does

 

not

 

need

 

to

 

perform

 

the

 

registration

 

step

 

again.

 

�9�

 

Connecting

 

to,

 

and

 

using

 

the

 

CHECKING_DB

 

database

 

follows

 

the

 

same

 

rules

 

described

 

in

 

�6�

 

and

 

�7�.

 

�10�

 

When

 

the

 

database

 

client

 

requests

 

that

 

the

 

unit

 

of

 

work

 

be

 

committed,

 

a

 

prepare

 

message

 

is

 

sent

 

to

 

all

 

databases

 

participating

 

in

 

the

 

unit

 

of

 

work.

 

Each

 

database

 

writes

 

a

 

″PREPARED″

 

record

 

to

 

its

 

log

 

files,

 

and

 

replies

 

to

 

the

 

database

 

client.

 

�11�

 

After

 

the

 

database

 

client

 

receives

 

a

 

positive

 

response

 

from

 

all

 

of

 

the

 

databases,

 

it

 

sends

 

a

 

message

 

to

 

the

 

transaction

 

manager

 

database,

 

informing

 

it

 

that

 

the

 

unit

 

of

 

work

 

is

 

now

 

ready

 

to

 

be

 

committed

 

(PREPARED).

 

The

 

transaction

 

manager

 

database

 

writes

 

a

 

″PREPARED″

 

record

 

to

 

its

 

log

 

file,

 

and

 

sends

 

a

 

reply

 

to

 

inform

 

the

 

client

 

that

 

the

 

second

 

phase

 

of

 

the

 

commit

 

process

 

can

 

be

 

started.

 

�12�

 

During

 

the

 

second

 

phase

 

of

 

the

 

commit

 

process,

 

the

 

database

 

client

 

sends

 

a

 

message

 

to

 

all

 

participating

 

databases

 

to

 

tell

 

them

 

to

 

commit.

 

Each

 

database

 

writes

 

a

 

″COMMITTED″

 

record

 

to

 

its

 

log

 

file,

 

and

 

releases

 

the

 

locks

 

that

 

were

 

held

 

for

 

this

 

unit

 

of

 

work.

 

When

 

the

 

database

 

has

 

completed

 

committing

 

the

 

changes,

 

it

 

sends

 

a

 

reply

 

to

 

the

 

client.

 

�13�

 

After

 

the

 

database

 

client

 

receives

 

a

 

positive

 

response

 

from

 

all

 

participating

 

databases,

 

it

 

sends

 

a

 

message

 

to

 

the

 

transaction

 

manager

 

database,

 

informing

 

it

 

that

 

the

 

unit

 

of

 

work

 

has

 

been

 

completed.

 

The

 

transaction

 

manager

 

database

 

then

 

writes

 

a

 

″COMMITTED″

 

record

 

to

 

its

 

log

 

file,

 

indicating

 

that

 

the

 

unit

 

of

 

work

 

is

 

complete,

 

and

 

replies

 

to

 

the

 

client,

 

indicating

 

that

 

it

 

has

 

finished.

  

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

175



Related

 

concepts:

  

v

   

“Units

 

of

 

work”

 

on

 

page

 

26

 

v

   

“DB2

 

transaction

 

manager”

 

on

 

page

 

170

Error

 

recovery

 

during

 

two-phase

 

commit

  

Recovering

 

from

 

error

 

conditions

 

is

 

a

 

normal

 

task

 

associated

 

with

 

application

 

programming,

 

system

 

administration,

 

database

 

administration

 

and

 

system

 

operation.

 

Distributing

 

databases

 

over

 

several

 

remote

 

servers

 

increases

 

the

 

potential

 

for

 

error

 

resulting

 

from

 

network

 

or

 

communications

 

failures.

 

To

 

ensure

 

data

 

integrity,

 

the

 

database

 

manager

 

provides

 

the

 

two-phase

 

commit

 

process.

 

The

 

following

 

explains

 

how

 

the

 

database

 

manager

 

handles

 

errors

 

during

 

the

 

two-phase

 

commit

 

process:

 

v

   

First

 

Phase

 

Error

 

If

 

a

 

database

 

communicates

 

that

 

it

 

has

 

failed

 

to

 

prepare

 

to

 

commit

 

the

 

unit

 

of

 

work,

 

the

 

database

 

client

 

will

 

roll

 

back

 

the

 

unit

 

of

 

work

 

during

 

the

 

second

 

phase

 

of

 

the

 

commit

 

process.

 

A

 

prepare

 

message

 

will

 

not

 

be

 

sent

 

to

 

the

 

transaction

 

manager

 

database

 

in

 

this

 

case.

 

During

 

the

 

second

 

phase,

 

the

 

client

 

sends

 

a

 

rollback

 

message

 

to

 

all

 

participating

 

databases

 

that

 

successfully

 

prepared

 

to

 

commit

 

during

 

the

 

first

 

phase.

 

Each

 

database

 

then

 

writes

 

an

 

″ABORT″

 

record

 

to

 

its

 

log

 

file,

 

and

 

releases

 

the

 

locks

 

that

 

were

 

held

 

for

 

this

 

unit

 

of

 

work.

 

v

   

Second

 

Phase

 

Error

 

Error

 

handling

 

at

 

this

 

stage

 

is

 

dependent

 

upon

 

whether

 

the

 

second

 

phase

 

will

 

commit

 

or

 

roll

 

back

 

the

 

transaction.

 

The

 

second

 

phase

 

will

 

only

 

roll

 

back

 

the

 

transaction

 

if

 

the

 

first

 

phase

 

encountered

 

an

 

error.

 

If

 

one

 

of

 

the

 

participating

 

databases

 

fails

 

to

 

commit

 

the

 

unit

 

of

 

work

 

(possibly

 

due

 

to

 

a

 

communications

 

failure),

 

the

 

transaction

 

manager

 

database

 

will

 

retry

 

the

 

commit

 

on

 

the

 

failed

 

database.

 

The

 

application,

 

however,

 

will

 

be

 

informed

 

that

 

the

 

commit

 

was

 

successful

 

through

 

the

 

SQLCA.

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

will

 

ensure

 

that

 

the

 

uncommitted

 

transaction

 

in

 

the

 

database

 

server

 

is

 

committed.

 

The

 

database

 

manager

 

configuration

 

parameter

 

resync_interval

 

is

 

used

 

to

 

specify

 

how

 

long

 

the

 

transaction

 

manager

 

database

 

should

 

wait

 

between

 

attempts

 

to

 

commit

 

the

 

unit

 

of

 

work.

 

All

 

locks

 

are

 

held

 

at

 

the

 

database

 

server

 

until

 

the

 

unit

 

of

 

work

 

is

 

committed.

 

If

 

the

 

transaction

 

manager

 

database

 

fails,

 

it

 

will

 

resynchronize

 

the

 

unit

 

of

 

work

 

when

 

it

 

is

 

restarted.

 

The

 

resynchronization

 

process

 

will

 

attempt

 

to

 

complete

 

all

 

indoubt

 

transactions;

 

that

 

is,

 

those

 

transactions

 

that

 

have

 

finished

 

the

 

first

 

phase,

 

but

 

have

 

not

 

completed

 

the

 

second

 

phase

 

of

 

the

 

commit

 

process.

 

The

 

database

 

manager

 

associated

 

with

 

the

 

transaction

 

manager

 

database

 

performs

 

the

 

resynchronization

 

by:

 

1.

   

Connecting

 

to

 

the

 

databases

 

that

 

indicated

 

they

 

were

 

″PREPARED″

 

to

 

commit

 

during

 

the

 

first

 

phase

 

of

 

the

 

commit

 

process.

 

2.

   

Attempting

 

to

 

commit

 

the

 

indoubt

 

transactions

 

at

 

those

 

databases.

 

(If

 

the

 

indoubt

 

transactions

 

cannot

 

be

 

found,

 

the

 

database

 

manager

 

assumes

 

that

 

the

 

database

 

successfully

 

committed

 

the

 

transactions

 

during

 

the

 

second

 

phase

 

of

 

the

 

commit

 

process.)

 

3.

   

Committing

 

the

 

indoubt

 

transactions

 

in

 

the

 

transaction

 

manager

 

database,

 

after

 

all

 

indoubt

 

transactions

 

have

 

been

 

committed

 

in

 

the

 

participating

 

databases.

 

If

 

one

 

of

 

the

 

participating

 

databases

 

fails

 

and

 

is

 

restarted,

 

the

 

database

 

manager

 

for

 

this

 

database

 

will

 

query

 

the

 

transaction

 

manager

 

database

 

for

 

the

 

status

 

of

   

176

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|



this

 

transaction,

 

to

 

determine

 

whether

 

the

 

transaction

 

should

 

be

 

rolled

 

back.

 

If

 

the

 

transaction

 

is

 

not

 

found

 

in

 

the

 

log,

 

the

 

database

 

manager

 

assumes

 

that

 

the

 

transaction

 

was

 

rolled

 

back,

 

and

 

will

 

roll

 

back

 

the

 

indoubt

 

transaction

 

in

 

this

 

database.

 

Otherwise,

 

the

 

database

 

waits

 

for

 

a

 

commit

 

request

 

from

 

the

 

transaction

 

manager

 

database.

 

If

 

the

 

transaction

 

was

 

coordinated

 

by

 

a

 

transaction

 

processing

 

monitor

 

(XA-compliant

 

transaction

 

manager),

 

the

 

database

 

will

 

always

 

depend

 

on

 

the

 

TP

 

monitor

 

to

 

initiate

 

the

 

resynchronization.

 

If,

 

for

 

some

 

reason,

 

you

 

cannot

 

wait

 

for

 

the

 

transaction

 

manager

 

to

 

automatically

 

resolve

 

indoubt

 

transactions,

 

there

 

are

 

actions

 

you

 

can

 

take

 

to

 

manually

 

resolve

 

them.

 

This

 

manual

 

process

 

is

 

sometimes

 

referred

 

to

 

as

 

″making

 

a

 

heuristic

 

decision″.

 

Error

 

recovery

 

if

 

autorestart=off

 

If

 

the

 

autorestart

 

database

 

configuration

 

parameter

 

is

 

set

 

to

 

OFF,

 

and

 

there

 

are

 

indoubt

 

transactions

 

in

 

either

 

the

 

TM

 

or

 

RM

 

databases,

 

the

 

RESTART

 

DATABASE

 

command

 

is

 

required

 

to

 

start

 

the

 

resynchronization

 

process.

 

When

 

issuing

 

the

 

RESTART

 

DATABASE

 

command

 

from

 

the

 

command

 

line

 

processor,

 

use

 

different

 

sessions.

 

If

 

you

 

restart

 

a

 

different

 

database

 

from

 

the

 

same

 

session,

 

the

 

connection

 

established

 

by

 

the

 

previous

 

invocation

 

will

 

be

 

dropped,

 

and

 

must

 

be

 

restarted

 

once

 

again.

 

Issue

 

the

 

TERMINATE

 

command

 

to

 

drop

 

the

 

connection

 

after

 

no

 

more

 

indoubt

 

transactions

 

are

 

returned

 

by

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command.

  

Related

 

concepts:

  

v

   

“Two-phase

 

commit”

 

on

 

page

 

174

 

Related

 

tasks:

  

v

   

“Manually

 

resolving

 

indoubt

 

transactions”

 

on

 

page

 

191

 

Related

 

reference:

  

v

   

“autorestart

 

-

 

Auto

 

restart

 

enable

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“LIST

 

INDOUBT

 

TRANSACTIONS

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“TERMINATE

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“RESTART

 

DATABASE

 

Command”

 

in

 

the

 

Command

 

Reference

  

Chapter

 

6.

 

Designing

 

distributed

 

databases

 

177

|
|
|
|
|



178

 

Administration

 

Guide:

 

Planning



Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

You

 

may

 

want

 

to

 

use

 

your

 

databases

 

with

 

an

 

XA-compliant

 

transaction

 

manager

 

if

 

you

 

have

 

resources

 

other

 

than

 

DB2

 

databases

 

that

 

you

 

want

 

to

 

participate

 

in

 

a

 

two-phase

 

commit

 

transaction.

 

If

 

your

 

transactions

 

only

 

access

 

DB2

 

databases,

 

you

 

should

 

use

 

the

 

DB2

 

transaction

 

manager,

 

described

 

in

 

“Updating

 

multiple

 

databases

 

in

 

a

 

transaction”

 

on

 

page

 

169.

 

The

 

following

 

topics

 

will

 

assist

 

you

 

in

 

using

 

the

 

database

 

manager

 

with

 

an

 

XA-compliant

 

transaction

 

manager,

 

such

 

as

 

IBM

 

WebSphere

 

or

 

BEA

 

Tuxedo.

 

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

v

   

“Resource

 

manager

 

setup”

 

on

 

page

 

183

 

v

   

“xa_open

 

string

 

formats”

 

on

 

page

 

185

 

v

   

“Manually

 

resolving

 

indoubt

 

transactions”

 

on

 

page

 

191

 

v

   

“Security

 

considerations

 

for

 

XA

 

transaction

 

managers”

 

on

 

page

 

193

 

v

   

“Configuration

 

considerations

 

for

 

XA

 

transaction

 

managers”

 

on

 

page

 

194

 

v

   

“XA

 

function

 

supported

 

by

 

DB2

 

Universal

 

Database”

 

on

 

page

 

195

 

v

   

“XA

 

interface

 

problem

 

determination”

 

on

 

page

 

197

 

v

   

“Configuring

 

IBM

 

WebSphere

 

Application

 

Server”

 

on

 

page

 

198

 

v

   

“Configuring

 

IBM

 

TXSeries

 

CICS”

 

on

 

page

 

198

 

v

   

“Configuring

 

IBM

 

TXSeries

 

Encina”

 

on

 

page

 

198

 

v

   

“Configuring

 

BEA

 

Tuxedo”

 

on

 

page

 

200

If

 

you

 

are

 

looking

 

for

 

information

 

about

 

Microsoft

 

Transaction

 

Server,

 

see

 

the

 

CLI

 

Guide

 

and

 

Reference,

 

Volume

 

1.

 

If

 

you

 

are

 

using

 

an

 

XA-compliant

 

transaction

 

manager,

 

or

 

are

 

implementing

 

one,

 

more

 

information

 

is

 

available

 

from

 

our

 

technical

 

support

 

web

 

site:

 

http://www.ibm.com/software/data/db2/udb/winos2unix/support

 

Once

 

there,

 

choose

 

″DB2

 

Universal

 

Database″,

 

then

 

search

 

the

 

web

 

site

 

using

 

the

 

keyword

 

″XA″

 

for

 

the

 

latest

 

available

 

information

 

on

 

XA-compliant

 

transaction

 

managers.

 

X/Open

 

distributed

 

transaction

 

processing

 

model

  

The

 

X/Open

 

Distributed

 

Transaction

 

Processing

 

(DTP)

 

model

 

includes

 

three

 

interrelated

 

components:

 

v

   

Application

 

program

 

(AP)

 

v

   

Transaction

 

manager

 

(TM)

 

v

   

Resources

 

managers

 

(RM)

Figure

 

62

 

on

 

page

 

180

 

illustrates

 

this

 

model,

 

and

 

shows

 

the

 

relationship

 

among

 

these

 

components.

   

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

179

http://www.ibm.com/software/data/db2/library/


Application

 

program

 

(AP)

 

The

 

application

 

program

 

(AP)

 

defines

 

transaction

 

boundaries,

 

and

 

defines

 

the

 

application-specific

 

actions

 

that

 

make

 

up

 

the

 

transaction.

 

For

 

example,

 

a

 

CICS®*

 

application

 

program

 

might

 

want

 

to

 

access

 

resource

 

managers

 

(RMs),

 

such

 

as

 

a

 

database

 

and

 

a

 

CICS

 

Transient

 

Data

 

Queue,

 

and

 

use

 

programming

 

logic

 

to

 

manipulate

 

the

 

data.

 

Each

 

access

 

request

 

is

 

passed

 

to

 

the

 

appropriate

 

resource

 

managers

 

through

 

function

 

calls

 

specific

 

to

 

that

 

RM.

 

In

 

the

 

case

 

of

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB),

 

these

 

could

 

be

 

function

 

calls

 

generated

 

by

 

the

 

DB2

 

UDB

 

precompiler

 

for

 

each

 

SQL

 

statement,

 

or

 

database

 

calls

 

coded

 

directly

 

by

 

the

 

programmer

 

using

 

the

 

APIs.

 

A

 

transaction

 

manager

 

(TM)

 

product

 

usually

 

includes

 

a

 

transaction

 

processing

 

(TP)

 

monitor

 

to

 

run

 

the

 

user

 

application.

 

The

 

TP

 

monitor

 

provides

 

APIs

 

to

 

allow

 

an

 

application

 

to

 

start

 

and

 

end

 

a

 

transaction,

 

and

 

to

 

perform

 

application

 

scheduling

 

and

 

load

 

balancing

 

among

 

the

 

many

 

users

 

who

 

want

 

to

 

run

 

the

 

application.

 

The

 

application

 

program

 

in

 

a

 

distributed

 

transaction

 

processing

 

(DTP)

 

environment

 

is

 

really

 

a

 

combination

 

of

 

the

 

user

 

application

 

and

 

the

 

TP

 

monitor.

 

To

 

facilitate

 

an

 

efficient

 

online

 

transaction

 

processing

 

(OLTP)

 

environment,

 

the

 

TP

 

monitor

 

pre-allocates

 

a

 

number

 

of

 

server

 

processes

 

at

 

startup,

 

and

 

then

 

schedules

 

and

 

reuses

 

them

 

among

 

the

 

many

 

user

 

transactions.

 

This

 

conserves

 

system

 

resources,

 

by

 

allowing

 

more

 

concurrent

 

users

 

to

 

be

 

supported

 

with

 

a

 

smaller

 

number

 

of

 

server

 

processes

 

and

 

their

 

corresponding

 

RM

 

processes.

 

Reusing

 

these

 

processes

 

also

 

avoids

 

the

 

overhead

 

of

 

starting

 

up

 

a

 

process

 

in

 

the

 

TM

 

and

 

RMs

 

for

 

each

 

user

 

transaction

 

or

 

program.

 

(A

 

program

 

invokes

 

one

 

or

 

more

 

transactions.)

 

This

 

also

 

means

 

that

 

the

 

server

 

processes

 

are

 

the

 

actual

 

″user

 

processes″

 

to

 

the

 

TM

 

and

 

the

 

RMs.

 

This

 

has

 

implications

 

for

 

security

 

administration

 

and

 

application

 

programming.

 

The

 

following

 

types

 

of

 

transactions

 

are

 

possible

 

from

 

a

 

TP

 

monitor:

 

1 - AP uses resources from a set of RMs
2 - AP defines transaction boundaries through

TM interfaces
3 - TM and RMs exchange transaction information

Legend

Resource
managers (RMs)

Transaction
manager (TM)

1 2

3

Application program (AP)

  

Figure

 

62.

 

X/Open

 

distributed

 

transaction

 

processing

 

(DTP)

 

model

  

180

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|



v

   

Non-XA

 

transactions

 

These

 

transactions

 

involve

 

RMs

 

that

 

are

 

not

 

defined

 

to

 

the

 

TM,

 

and

 

are

 

therefore

 

not

 

coordinated

 

under

 

the

 

two-phase

 

commit

 

protocol

 

of

 

the

 

TM.

 

This

 

might

 

be

 

necessary

 

if

 

the

 

application

 

needs

 

to

 

access

 

an

 

RM

 

that

 

does

 

not

 

support

 

the

 

XA

 

interface.

 

The

 

TP

 

monitor

 

simply

 

provides

 

efficient

 

scheduling

 

of

 

applications

 

and

 

load

 

balancing.

 

Since

 

the

 

TM

 

does

 

not

 

explicitly

 

″open″

 

the

 

RM

 

for

 

XA

 

processing,

 

the

 

RM

 

treats

 

this

 

application

 

as

 

any

 

other

 

application

 

that

 

runs

 

in

 

a

 

non-DTP

 

environment.

 

v

   

Global

 

transactions

 

These

 

transactions

 

involve

 

RMs

 

that

 

are

 

defined

 

to

 

the

 

TM,

 

and

 

are

 

under

 

the

 

TM’s

 

two-phase

 

commit

 

control.

 

A

 

global

 

transaction

 

is

 

a

 

unit

 

of

 

work

 

that

 

could

 

involve

 

one

 

or

 

more

 

RMs.

 

A

 

transaction

 

branch

 

is

 

the

 

part

 

of

 

work

 

between

 

a

 

TM

 

and

 

an

 

RM

 

that

 

supports

 

the

 

global

 

transaction.

 

A

 

global

 

transaction

 

could

 

have

 

multiple

 

transaction

 

branches

 

when

 

multiple

 

RMs

 

are

 

accessed

 

through

 

one

 

or

 

more

 

application

 

processes

 

that

 

are

 

coordinated

 

by

 

the

 

TM.

 

Loosely

 

coupled

 

global

 

transactions

 

exist

 

when

 

each

 

of

 

a

 

number

 

of

 

application

 

processes

 

accesses

 

the

 

RMs

 

as

 

if

 

they

 

are

 

in

 

a

 

separate

 

global

 

transaction,

 

but

 

those

 

applications

 

are

 

under

 

the

 

coordination

 

of

 

the

 

TM.

 

Each

 

application

 

process

 

will

 

have

 

its

 

own

 

transaction

 

branch

 

within

 

an

 

RM.

 

When

 

a

 

commit

 

or

 

rollback

 

is

 

requested

 

by

 

any

 

one

 

of

 

the

 

APs,

 

TM,

 

or

 

RMs,

 

the

 

transaction

 

branches

 

are

 

completed

 

altogether.

 

It

 

is

 

the

 

application’s

 

responsibility

 

to

 

ensure

 

that

 

resource

 

deadlock

 

does

 

not

 

occur

 

among

 

the

 

branches.

 

(Note

 

that

 

the

 

transaction

 

coordination

 

performed

 

by

 

the

 

DB2

 

UDB

 

transaction

 

manager

 

for

 

applications

 

prepared

 

with

 

the

 

SYNCPOINT(TWOPHASE)

 

option

 

is

 

roughly

 

equivalent

 

to

 

these

 

loosely

 

coupled

 

global

 

transactions.

 

Tightly

 

coupled

 

global

 

transactions

 

exist

 

when

 

multiple

 

application

 

processes

 

take

 

turns

 

to

 

do

 

work

 

under

 

the

 

same

 

transaction

 

branch

 

in

 

an

 

RM.

 

To

 

the

 

RM,

 

the

 

two

 

application

 

processes

 

are

 

a

 

single

 

entity.

 

The

 

RM

 

must

 

ensure

 

that

 

resource

 

deadlock

 

does

 

not

 

occur

 

within

 

the

 

transaction

 

branch.

Transaction

 

manager

 

(TM)

 

The

 

transaction

 

manager

 

(TM)

 

assigns

 

identifiers

 

to

 

transactions,

 

monitors

 

their

 

progress,

 

and

 

takes

 

responsibility

 

for

 

transaction

 

completion

 

and

 

failure.

 

The

 

transaction

 

branch

 

identifiers

 

(known

 

as

 

XIDs)

 

are

 

assigned

 

by

 

the

 

TM

 

to

 

identify

 

both

 

the

 

global

 

transaction,

 

and

 

the

 

specific

 

branch

 

within

 

an

 

RM.

 

This

 

is

 

the

 

correlation

 

token

 

between

 

the

 

log

 

in

 

a

 

TM

 

and

 

the

 

log

 

in

 

an

 

RM.

 

The

 

XID

 

is

 

needed

 

for

 

two-phase

 

commit,

 

or

 

rollback,

 

to

 

perform

 

the

 

resynchronization

 

operation

 

(also

 

known

 

as

 

a

 

resync)

 

on

 

system

 

startup,

 

or

 

to

 

let

 

the

 

administrator

 

perform

 

a

 

heuristic

 

operation

 

(also

 

known

 

as

 

manual

 

intervention),

 

if

 

necessary.

 

After

 

a

 

TP

 

monitor

 

is

 

started,

 

it

 

asks

 

the

 

TM

 

to

 

open

 

all

 

the

 

RMs

 

that

 

a

 

set

 

of

 

application

 

servers

 

have

 

defined.

 

The

 

TM

 

passes

 

xa_open

 

calls

 

to

 

the

 

RMs,

 

so

 

that

 

they

 

can

 

be

 

initialized

 

for

 

DTP

 

processing.

 

As

 

part

 

of

 

this

 

startup

 

procedure,

 

the

 

TM

 

performs

 

a

 

resync

 

to

 

recover

 

all

 

indoubt

 

transactions.

 

An

 

indoubt

 

transaction

 

is

 

a

 

global

 

transaction

 

that

 

was

 

left

 

in

 

an

 

uncertain

 

state.

 

This

 

occurs

 

when

 

the

 

TM

 

(or

 

at

 

least

 

one

 

RM)

 

becomes

 

unavailable

 

after

 

successfully

 

completing

 

the

 

first

 

phase

 

(that

 

is,

 

the

 

prepare

 

phase)

 

of

 

the

 

two-phase

 

commit

 

protocol.

 

The

 

RM

 

will

 

not

 

know

 

whether

 

to

 

commit

 

or

 

roll

 

back

 

its

 

branch

 

of

 

the

 

transaction

 

until

 

the

 

TM

 

can

 

reconcile

 

its

 

own

 

log

 

with

 

the

 

RM

 

logs

 

when

 

they

 

become

 

available

 

again.

 

To

 

perform

 

the

 

resync

 

operation,

 

the

 

TM

 

issues

 

a

 

xa_recover

 

call

 

one

 

or

 

more

 

times

 

to

 

each

 

of

 

the

 

RMs

 

to

 

identify

 

all

 

the

 

indoubt

 

transactions.

 

The

 

TM

 

compares

 

the

 

replies

 

with

 

the

 

information

 

in

 

its

 

own

 

log

 

to

 

determine

 

whether

 

it

 

should

 

inform

 

the

 

RMs

 

to

 

xa_commit

 

or

 

xa_rollback

 

those

 

transactions.

 

If

 

an

 

RM

 

has

 

already

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

181



committed

 

or

 

rolled

 

back

 

its

 

branch

 

of

 

an

 

indoubt

 

transaction

 

through

 

a

 

heuristic

 

operation

 

by

 

its

 

administrator,

 

the

 

TM

 

issues

 

an

 

xa_forget

 

call

 

to

 

that

 

RM

 

to

 

complete

 

the

 

resync

 

operation.

 

When

 

a

 

user

 

application

 

requests

 

a

 

commit

 

or

 

a

 

rollback,

 

it

 

must

 

use

 

the

 

API

 

provided

 

by

 

the

 

TP

 

monitor

 

or

 

TM,

 

so

 

that

 

the

 

TM

 

can

 

coordinate

 

the

 

commit

 

and

 

rollback

 

among

 

all

 

the

 

RMs

 

involved.

 

For

 

example,

 

when

 

a

 

CICS

 

application

 

issues

 

the

 

CICS

 

SYNCPOINT

 

request

 

to

 

commit

 

a

 

transaction,

 

the

 

CICS

 

XA

 

TM

 

(implemented

 

in

 

the

 

Encina®

 

Server)

 

will

 

in

 

turn

 

issue

 

XA

 

calls,

 

such

 

as

 

xa_end,

 

xa_prepare,

 

xa_commit,

 

or

 

xa_rollback

 

to

 

request

 

the

 

RM

 

to

 

commit

 

or

 

roll

 

back

 

the

 

transaction.

 

The

 

TM

 

could

 

choose

 

to

 

use

 

one-phase

 

instead

 

of

 

two-phase

 

commit

 

if

 

only

 

one

 

RM

 

is

 

involved,

 

or

 

if

 

an

 

RM

 

replies

 

that

 

its

 

branch

 

is

 

read-only.

 

Resource

 

managers

 

(RM)

 

A

 

resource

 

manager

 

(RM)

 

provides

 

access

 

to

 

shared

 

resources,

 

such

 

as

 

databases.

 

DB2

 

UDB,

 

as

 

resource

 

manager

 

of

 

a

 

database,

 

can

 

participate

 

in

 

a

 

global

 

transaction

 

that

 

is

 

being

 

coordinated

 

by

 

an

 

XA-compliant

 

TM.

 

As

 

required

 

by

 

the

 

XA

 

interface,

 

the

 

database

 

manager

 

provides

 

a

 

db2xa_switch

 

external

 

C

 

variable

 

of

 

type

 

xa_switch_t

 

to

 

return

 

the

 

XA

 

switch

 

structure

 

to

 

the

 

TM.

 

This

 

data

 

structure

 

contains

 

the

 

addresses

 

of

 

the

 

various

 

XA

 

routines

 

to

 

be

 

invoked

 

by

 

the

 

TM,

 

and

 

the

 

operating

 

characteristics

 

of

 

the

 

RM.

 

There

 

are

 

two

 

methods

 

by

 

which

 

the

 

RM

 

can

 

register

 

its

 

participation

 

in

 

each

 

global

 

transaction:

 

static

 

registration

 

and

 

dynamic

 

registration:

 

v

   

Static

 

registration

 

requires

 

the

 

TM

 

to

 

issue

 

(for

 

every

 

transaction)

 

the

 

xa_start,

 

xa_end,

 

and

 

xa_prepare

 

series

 

of

 

calls

 

to

 

all

 

the

 

RMs

 

defined

 

for

 

the

 

server

 

application,

 

regardless

 

of

 

whether

 

a

 

given

 

RM

 

is

 

used

 

by

 

the

 

transaction.

 

This

 

is

 

inefficient

 

if

 

not

 

every

 

RM

 

is

 

involved

 

in

 

every

 

transaction,

 

and

 

the

 

degree

 

of

 

inefficiency

 

is

 

proportional

 

to

 

the

 

number

 

of

 

defined

 

RMs.

 

v

   

Dynamic

 

registration

 

(used

 

by

 

DB2

 

UDB)

 

is

 

flexible

 

and

 

efficient.

 

An

 

RM

 

registers

 

with

 

the

 

TM

 

using

 

an

 

ax_reg

 

call

 

only

 

when

 

the

 

RM

 

receives

 

a

 

request

 

for

 

its

 

resource.

 

Note

 

that

 

there

 

is

 

no

 

performance

 

disadvantage

 

with

 

this

 

method,

 

even

 

when

 

there

 

is

 

only

 

one

 

RM

 

defined,

 

or

 

when

 

every

 

RM

 

is

 

used

 

by

 

every

 

transaction,

 

because

 

the

 

ax_reg

 

and

 

the

 

xa_start

 

calls

 

have

 

similar

 

paths

 

in

 

the

 

TM.

 

The

 

XA

 

interface

 

provides

 

two-way

 

communication

 

between

 

a

 

TM

 

and

 

an

 

RM.

 

It

 

is

 

a

 

system-level

 

interface

 

between

 

the

 

two

 

DTP

 

software

 

components,

 

not

 

an

 

ordinary

 

application

 

program

 

interface

 

to

 

which

 

an

 

application

 

developer

 

codes.

 

However,

 

application

 

developers

 

should

 

be

 

familiar

 

with

 

the

 

programming

 

restrictions

 

that

 

the

 

DTP

 

software

 

components

 

impose.

 

Although

 

the

 

XA

 

interface

 

is

 

invariant,

 

each

 

XA-compliant

 

TM

 

may

 

have

 

product-specific

 

ways

 

of

 

integrating

 

an

 

RM.

 

For

 

information

 

about

 

integrating

 

your

 

DB2

 

UDB

 

product

 

as

 

a

 

resource

 

manager

 

with

 

a

 

specific

 

transaction

 

manager,

 

see

 

the

 

appropriate

 

TM

 

product

 

documentation.

  

Related

 

concepts:

  

v

   

“Security

 

considerations

 

for

 

XA

 

transaction

 

managers”

 

on

 

page

 

193

 

v

   

“XA

 

function

 

supported

 

by

 

DB2

 

Universal

 

Database”

 

on

 

page

 

195

 

v

   

“X/Open

 

XA

 

Interface

 

Programming

 

Considerations”

 

in

 

the

 

Application

 

Development

 

Guide:

 

Programming

 

Client

 

Applications

  

182

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|



Related

 

tasks:

  

v

   

“Updating

 

multiple

 

databases

 

in

 

a

 

transaction”

 

on

 

page

 

169

Resource

 

manager

 

setup

  

Each

 

database

 

is

 

defined

 

as

 

a

 

separate

 

resource

 

manager

 

(RM)

 

to

 

the

 

transaction

 

manager

 

(TM),

 

and

 

the

 

database

 

must

 

be

 

identified

 

with

 

an

 

xa_open

 

string.

 

When

 

setting

 

up

 

a

 

database

 

as

 

a

 

resource

 

manager,

 

you

 

do

 

not

 

need

 

the

 

xa_close

 

string.

 

If

 

provided,

 

this

 

string

 

will

 

be

 

ignored

 

by

 

the

 

database

 

manager.

 

Database

 

connection

 

considerations

 

Automatic

 

client

 

reroute

 

(ACR)

 

Whenever

 

a

 

server

 

crashes,

 

each

 

client

 

that

 

is

 

connected

 

to

 

that

 

server

 

gets

 

a

 

communication

 

error

 

which

 

terminates

 

the

 

connection

 

and

 

concludes

 

in

 

an

 

application

 

error.

 

In

 

application

 

environments

 

where

 

availability

 

is

 

important,

 

the

 

user

 

will

 

either

 

have

 

a

 

redundant

 

setup

 

or

 

will

 

fail

 

the

 

server

 

over

 

to

 

a

 

standby

 

node.

 

In

 

either

 

case,

 

the

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

client

 

code

 

will

 

attempt

 

to

 

re-establish

 

the

 

connection

 

to

 

either

 

the

 

original

 

database

 

(which

 

may

 

be

 

running

 

on

 

a

 

failover

 

node

 

where

 

the

 

IP

 

address

 

fails

 

over

 

as

 

well),

 

or

 

to

 

a

 

new

 

database

 

on

 

a

 

different

 

server.

 

The

 

application

 

is

 

then

 

notified

 

using

 

an

 

SQLCODE

 

to

 

indicate

 

that

 

the

 

connection

 

has

 

been

 

rerouted

 

and

 

that

 

the

 

specific

 

transaction

 

being

 

run

 

has

 

been

 

rolled

 

back.

 

At

 

that

 

point,

 

the

 

application

 

can

 

choose

 

to

 

rerun

 

that

 

transaction

 

or

 

continue

 

on.

 

Data

 

consistency

 

between

 

the

 

failed

 

primary

 

database

 

and

 

the

 

″failed

 

to″

 

standby

 

database

 

when

 

using

 

ACR

 

is

 

very

 

dependent

 

upon

 

the

 

state

 

of

 

the

 

database

 

logs

 

in

 

the

 

database

 

to

 

which

 

the

 

connection

 

has

 

been

 

rerouted.

 

For

 

the

 

purposes

 

of

 

this

 

discussion,

 

we

 

will

 

call

 

this

 

database

 

the

 

″standby

 

database″

 

and

 

the

 

server

 

on

 

which

 

this

 

standby

 

database

 

resides

 

the

 

″standby

 

server″.

 

If

 

the

 

standby

 

database

 

is

 

an

 

exact

 

copy

 

of

 

the

 

failed

 

primary

 

database

 

at

 

the

 

point

 

in

 

time

 

of

 

the

 

failure

 

then

 

the

 

data

 

at

 

the

 

standby

 

database

 

will

 

be

 

consistent

 

and

 

there

 

will

 

be

 

no

 

data

 

integrity

 

issues.

 

However,

 

if

 

the

 

standby

 

database

 

is

 

not

 

an

 

exact

 

copy

 

of

 

the

 

failed

 

primary

 

database

 

then

 

there

 

may

 

be

 

data

 

integrity

 

issues

 

resulting

 

from

 

inconsistent

 

transaction

 

outcomes

 

for

 

transactions

 

which

 

have

 

been

 

prepared

 

by

 

the

 

XA

 

Transaction

 

Manager

 

but

 

yet

 

to

 

be

 

committed.

 

These

 

are

 

known

 

as

 

indoubt

 

transactions.

 

The

 

Database

 

Administrator

 

and

 

application

 

developers

 

who

 

are

 

using

 

the

 

ACR

 

function

 

must

 

be

 

aware

 

of

 

the

 

risk

 

of

 

data

 

integrity

 

problems

 

when

 

using

 

this

 

capability.

 

The

 

following

 

sections

 

describe

 

the

 

various

 

DB2

 

UDB

 

database

 

environments

 

and

 

the

 

risks

 

of

 

data

 

integrity

 

problems

 

in

 

each.

  

High

 

availability

 

disaster

 

recovery

 

(HADR):

   

DB2

 

UDB’s

 

High

 

Availability

 

Disaster

 

Recovery

 

feature

 

(HADR)

 

can

 

be

 

used

 

to

 

control

 

the

 

level

 

of

 

log

 

duplication

 

between

 

the

 

primary

 

and

 

secondary

 

databases

 

when

 

the

 

application

 

regains

 

connectivity

 

after

 

a

 

primary

 

database

 

failure.

 

The

 

database

 

configuration

 

parameter

 

which

 

controls

 

the

 

level

 

of

 

log

 

duplication

 

is

 

called

 

hadr_syncmode.

 

There

 

are

 

three

 

possible

 

values

 

for

 

this

 

parameter:

 

v

   

SYNC

 

This

 

mode

 

provides

 

the

 

greatest

 

protection

 

against

 

transaction

 

loss

 

at

 

the

 

cost

 

of

 

longest

 

transaction

 

response

 

time

 

among

 

the

 

three

 

modes.

 

As

 

the

 

name

 

of

 

this

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

183

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|



mode

 

suggests,

 

SYNC

 

is

 

used

 

to

 

synchronize

 

the

 

writing

 

of

 

the

 

transaction

 

log

 

in

 

the

 

primary

 

database

 

and

 

in

 

the

 

standby

 

database.

 

Synchronization

 

is

 

accomplished

 

when

 

the

 

primary

 

database

 

has

 

written

 

its

 

own

 

log

 

files

 

and

 

it

 

has

 

received

 

acknowledgement

 

from

 

the

 

standby

 

database

 

that

 

the

 

logs

 

have

 

also

 

been

 

written

 

on

 

the

 

standby

 

database.

 

If

 

an

 

XA

 

Transaction

 

Manager

 

is

 

being

 

used

 

to

 

coordinate

 

transactions

 

involving

 

DB2

 

UDB

 

resources,

 

then

 

it

 

is

 

strongly

 

recommended

 

that

 

SYNC

 

mode

 

be

 

used.

 

SYNC

 

mode

 

will

 

guarantee

 

data

 

integrity

 

as

 

well

 

as

 

transaction

 

resynchronization

 

integrity

 

when

 

a

 

client

 

is

 

rerouted

 

to

 

the

 

secondary

 

database

 

since

 

it

 

is

 

an

 

exact

 

replica

 

of

 

the

 

primary

 

database.

 

v

   

NEARSYNC

 

This

 

mode

 

provides

 

slightly

 

less

 

protection

 

against

 

transaction

 

loss,

 

in

 

exchange

 

for

 

a

 

shorter

 

transaction

 

response

 

time

 

when

 

compared

 

with

 

SYNC

 

mode.

 

The

 

primary

 

database

 

considers

 

log

 

write

 

successful

 

only

 

when

 

logs

 

have

 

been

 

written

 

to

 

its

 

own

 

log

 

files

 

and

 

it

 

has

 

received

 

acknowledgement

 

from

 

the

 

secondary

 

database

 

that

 

the

 

logs

 

have

 

also

 

been

 

written

 

to

 

main

 

memory

 

on

 

the

 

standby

 

database.

 

If

 

the

 

standby

 

database

 

crashes

 

before

 

it

 

can

 

copy

 

the

 

logs

 

from

 

memory

 

to

 

disk,

 

the

 

logs

 

are

 

lost

 

on

 

the

 

standby

 

database

 

in

 

the

 

short

 

term.

 

Given

 

the

 

possibility

 

that

 

database

 

logs

 

are

 

lost,

 

and

 

the

 

situation

 

where

 

the

 

standby

 

database

 

is

 

not

 

an

 

exact

 

replica

 

of

 

the

 

primary

 

database,

 

it

 

is

 

possible

 

that

 

data

 

integrity

 

will

 

be

 

compromised.

 

The

 

compromise

 

occurs

 

if

 

the

 

given

 

transaction

 

was

 

indoubt

 

and

 

then

 

the

 

primary

 

database

 

crashes.

 

Assume

 

the

 

transaction

 

outcome

 

is

 

COMMIT.

 

When

 

the

 

XA

 

TM

 

issues

 

the

 

subsequent

 

XA_COMMIT

 

request,

 

it

 

will

 

fail

 

since

 

the

 

primary

 

database

 

has

 

crashed.

 

Since

 

the

 

XA_COMMIT

 

request

 

has

 

failed,

 

the

 

XA

 

TM

 

will

 

need

 

to

 

recover

 

this

 

transaction

 

on

 

this

 

database

 

by

 

issuing

 

an

 

XA_RECOVER

 

request.

 

The

 

standby

 

database

 

will

 

respond

 

by

 

returning

 

the

 

list

 

of

 

all

 

its

 

transactions

 

which

 

are

 

INDOUBT.

 

If

 

the

 

standby

 

database

 

were

 

to

 

crash

 

and

 

restart

 

before

 

the

 

“in

 

memory,”

 

database

 

logs

 

were

 

written

 

to

 

disk,

 

and

 

before

 

the

 

XA_RECOVER

 

request

 

was

 

issued

 

by

 

the

 

XA

 

TM,

 

the

 

standby

 

database

 

would

 

have

 

lost

 

the

 

log

 

information

 

about

 

the

 

transaction

 

and

 

could

 

not

 

return

 

it

 

in

 

response

 

to

 

the

 

XA_RECOVER

 

request.

 

The

 

XA

 

TM

 

would

 

then

 

assume

 

the

 

database

 

committed

 

this

 

transaction.

 

But,

 

what

 

has

 

really

 

occurred

 

is

 

the

 

data

 

manipulation

 

will

 

have

 

been

 

lost

 

and

 

the

 

appearance

 

that

 

the

 

transaction

 

was

 

rolled

 

back.

 

This

 

results

 

in

 

a

 

data

 

integrity

 

issue

 

since

 

all

 

other

 

resources

 

involved

 

in

 

this

 

transaction

 

were

 

COMMITTED

 

by

 

the

 

XA

 

TM.

 

Using

 

NEARSYNC

 

is

 

a

 

good

 

compromise

 

between

 

data

 

integrity

 

and

 

transaction

 

response

 

time

 

since

 

the

 

likelihood

 

of

 

both

 

the

 

primary

 

and

 

standby

 

databases

 

crashing

 

should

 

be

 

low.

 

However,

 

a

 

database

 

administrator

 

still

 

needs

 

to

 

understand

 

that

 

there

 

is

 

a

 

possibility

 

of

 

data

 

integrity

 

problems.

 

v

   

ASYNC

 

This

 

mode

 

has

 

the

 

greatest

 

chance

 

of

 

transaction

 

loss

 

in

 

the

 

event

 

of

 

primary

 

failure,

 

in

 

exchange

 

for

 

the

 

shortest

 

transaction

 

response

 

time

 

among

 

the

 

three

 

modes.

 

The

 

primary

 

database

 

considers

 

log

 

write

 

successful

 

only

 

when

 

logs

 

have

 

been

 

written

 

to

 

its

 

own

 

log

 

files

 

and

 

the

 

logs

 

have

 

been

 

delivered

 

to

 

the

 

TCP

 

layer

 

on

 

the

 

primary

 

database’s

 

host

 

machine.

 

The

 

primary

 

database

 

does

 

not

 

wait

 

for

 

acknowledgement

 

of

 

any

 

kind

 

from

 

the

 

standby

 

database.

 

The

 

logs

 

may

 

be

 

still

 

on

 

their

 

way

 

to

 

the

 

standby

 

database

 

when

 

the

 

primary

 

database

 

considers

 

relevant

 

transactions

 

committed.

 

If

 

the

 

same

 

scenario

 

as

 

described

 

in

 

NEARSYNC

 

occurs,

 

the

 

likelihood

 

of

 

loss

 

of

 

transaction

 

information

 

is

 

higher

 

than

 

with

 

NEARSYNC.

 

Therefore,

 

the

 

likelihood

 

of

 

data

 

integrity

 

issues

 

is

 

higher

 

than

 

with

 

NEARSYNC

 

and,

 

obviously,

 

with

 

SYNC.

  

184

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|



DB2

 

UDB

 

ESE

 

Database

 

Partitioned

 

Environments:

   

The

 

use

 

of

 

ACR

 

in

 

partitioned

 

environments

 

can

 

also

 

lead

 

to

 

data

 

integrity

 

issues.

 

If

 

the

 

standby

 

database

 

is

 

defined

 

to

 

be

 

a

 

different

 

partition

 

of

 

the

 

same

 

database,

 

then

 

recovery

 

of

 

indoubt

 

transactions

 

in

 

scenarios

 

as

 

described

 

in

 

the

 

High

 

Availability

 

Disaster

 

Recovery

 

NEARSYNC

 

section

 

above,

 

may

 

result

 

in

 

data

 

integrity

 

problems.

 

This

 

occurs

 

because

 

the

 

partitions

 

do

 

not

 

share

 

database

 

transaction

 

logs.

 

Therefore

 

the

 

standby

 

database

 

(partition

 

B)

 

will

 

have

 

no

 

knowledge

 

of

 

indoubt

 

transactions

 

that

 

exist

 

at

 

the

 

primary

 

database

 

(partition

 

A).

  

DB2

 

UDB

 

ESE

 

Database

 

Non

 

Partitioned

 

Environments:

   

The

 

use

 

of

 

ACR

 

in

 

non-partitioned

 

environments

 

can

 

also

 

lead

 

to

 

data

 

integrity

 

issues.

 

Assuming

 

disk

 

failover

 

technology,

 

such

 

as

 

IBM®

 

AIX®

 

High

 

Availability

 

Cluster

 

Multiprocessor

 

(HACMP),

 

Microsoft®

 

Cluster

 

Service

 

(MSCS),

 

or

 

HP’s

 

Service

 

Guard,

 

is

 

not

 

in

 

use

 

then

 

the

 

secondary

 

database

 

will

 

not

 

have

 

the

 

database

 

transaction

 

logs

 

that

 

existed

 

on

 

the

 

primary

 

database

 

when

 

it

 

failed.

 

Therefore,

 

the

 

recovery

 

of

 

indoubt

 

transactions

 

in

 

scenarios

 

as

 

described

 

in

 

the

 

High

 

Availability

 

Disaster

 

Recovery

 

NEARSYNC

 

section

 

above,

 

can

 

result

 

in

 

data

 

integrity

 

problems.

 

Transactions

 

accessing

 

partitioned

 

databases

 

In

 

a

 

partitioned

 

database

 

environment,

 

user

 

data

 

may

 

be

 

distributed

 

across

 

database

 

partitions.

 

An

 

application

 

accessing

 

the

 

database

 

connects

 

and

 

sends

 

requests

 

to

 

one

 

of

 

the

 

database

 

partitions

 

(the

 

coordinator

 

node).

 

Different

 

applications

 

can

 

connect

 

to

 

different

 

database

 

partitions,

 

and

 

the

 

same

 

application

 

can

 

choose

 

different

 

database

 

partitions

 

for

 

different

 

connections.

 

For

 

transactions

 

against

 

a

 

database

 

in

 

a

 

partitioned

 

database

 

environment,

 

all

 

access

 

must

 

be

 

through

 

the

 

same

 

database

 

partition.

 

That

 

is,

 

the

 

same

 

database

 

partition

 

must

 

be

 

used

 

from

 

the

 

start

 

of

 

the

 

transaction

 

until

 

(and

 

including)

 

the

 

time

 

that

 

the

 

transaction

 

is

 

committed.

 

Any

 

transaction

 

against

 

the

 

partitioned

 

database

 

must

 

be

 

committed

 

before

 

disconnecting.

  

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

 

v

   

“High

 

availability

 

disaster

 

recovery

 

overview”

 

in

 

the

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

Related

 

reference:

  

v

   

“xa_open

 

string

 

formats”

 

on

 

page

 

185

xa_open

 

string

 

formats

 

xa_open

 

string

 

format

 

for

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

and

 

DB2

 

Connect™

 

Version

 

8

 

FixPak

 

3

 

and

 

later

 

This

 

is

 

the

 

format

 

for

 

the

 

xa_open

 

string:

    

parm_id1

 

=

 

<parm

 

value>,parm_id2

 

=

 

<parm

 

value>,

 

...

 

It

 

does

 

not

 

matter

 

in

 

what

 

order

 

these

 

parameters

 

are

 

specified.

 

Valid

 

values

 

for

 

parm_id

 

are

 

described

 

in

 

the

 

following

 

table.

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

185

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|



Table

 

36.

 

Valid

 

Values

 

for

 

parm_id

 

Parameter

 

Name

 

Value

 

Mandatory?

 

Case

 

Sensitive?

 

Default

 

Value

 

DB

 

Database

 

alias

 

Yes

 

No

 

None

 

Database

 

alias

 

used

 

by

 

the

 

application

 

to

 

access

 

the

 

database.

 

UID

 

User

 

ID

 

No

 

Yes

 

None

 

User

 

ID

 

that

 

has

 

authority

 

to

 

connect

 

to

 

the

 

database.

 

Required

 

if

 

a

 

password

 

is

 

specified.

 

PWD

 

Password

 

No

 

Yes

 

None

 

A

 

password

 

that

 

is

 

associated

 

with

 

the

 

user

 

ID.

 

Required

 

if

 

a

 

user

 

ID

 

is

 

specified.

 

TPM

 

Transaction

 

processing

 

monitor

 

name

 

No

 

No

 

None

 

Name

 

of

 

the

 

TP

 

monitor

 

being

 

used.

 

For

 

supported

 

values,

 

see

 

the

 

next

 

table.

 

This

 

parameter

 

can

 

be

 

specified

 

to

 

allow

 

multiple

 

TP

 

monitors

 

to

 

use

 

a

 

single

 

DB2

 

UDB

 

instance.

 

The

 

specified

 

value

 

will

 

override

 

the

 

value

 

specified

 

in

 

the

 

tp_mon_name

 

database

 

manager

 

configuration

 

parameter.

 

AXLIB

 

Library

 

that

 

contains

 

the

 

TP

 

monitor’s

 

ax_reg

 

and

 

ax_unreg

 

functions.

 

No

 

Yes

 

None

 

This

 

value

 

is

 

used

 

by

 

DB2

 

UDB

 

to

 

obtain

 

the

 

addresses

 

of

 

the

 

required

 

ax_reg

 

and

 

ax_unreg

 

functions.

 

It

 

can

 

be

 

used

 

to

 

override

 

assumed

 

values

 

based

 

on

 

the

 

TPM

 

parameter,

 

or

 

it

 

can

 

be

 

used

 

by

 

TP

 

monitors

 

that

 

do

 

not

 

appear

 

on

 

the

 

list

 

for

 

TPM.

 

On

 

AIX,

 

if

 

the

 

library

 

is

 

an

 

archive

 

library,

 

the

 

archive

 

member

 

should

 

be

 

specified

 

in

 

addition

 

to

 

the

 

library

 

name.

 

For

 

example:

 

AXLIB=/usr/mqm/lib/libmqmax_r.a(libmqmax_r.o).

 

CHAIN_END

 

xa_end

 

chaining

 

flag.

 

Valid

 

values

 

are

 

T,

 

F,

 

or

 

no

 

value.

 

No

 

No

 

F

 

XA_END

 

chaining

 

is

 

an

 

optimization

 

that

 

can

 

be

 

used

 

by

 

DB2

 

UDB

 

to

 

reduce

 

network

 

flows.

 

If

 

the

 

TP

 

monitor

 

environment

 

is

 

such

 

that

 

it

 

can

 

be

 

guaranteed

 

that

 

xa_prepare

 

will

 

be

 

invoked

 

within

 

the

 

same

 

thread

 

or

 

process

 

immediately

 

following

 

the

 

call

 

to

 

xa_end,

 

and

 

if

 

CHAIN_END

 

is

 

on,

 

the

 

xa_end

 

flag

 

will

 

be

 

chained

 

with

 

the

 

xa_prepare

 

command,

 

thus

 

eliminating

 

one

 

network

 

flow.

 

A

 

value

 

of

 

T

 

means

 

that

 

CHAIN_END

 

is

 

on;

 

a

 

value

 

of

 

F

 

means

 

that

 

CHAIN_END

 

is

 

off;

 

no

 

specified

 

value

 

means

 

that

 

CHAIN_END

 

is

 

on.

 

This

 

parameter

 

can

 

be

 

used

 

to

 

override

 

the

 

setting

 

derived

 

from

 

a

 

specified

 

TPM

 

value.

 

SUSPEND_

 

CURSOR

 

Specifies

 

whether

 

cursors

 

are

 

to

 

be

 

kept

 

when

 

a

 

transaction

 

thread

 

of

 

control

 

is

 

suspended.

 

Valid

 

values

 

are

 

T,

 

F,

 

or

 

no

 

value.

 

No

 

No

 

F

   

186

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|



Table

 

36.

 

Valid

 

Values

 

for

 

parm_id

 

(continued)

 

Parameter

 

Name

 

Value

 

Mandatory?

 

Case

 

Sensitive?

 

Default

 

Value

 

TP

 

monitors

 

that

 

suspend

 

a

 

transaction

 

branch

 

can

 

reuse

 

the

 

suspended

 

thread

 

or

 

process

 

for

 

other

 

transactions.

 

If

 

SUSPEND_CURSOR

 

is

 

off,

 

all

 

cursors

 

except

 

cursors

 

with

 

hold

 

attributes

 

are

 

closed.

 

On

 

resumption

 

of

 

the

 

suspended

 

transaction,

 

the

 

application

 

must

 

obtain

 

the

 

cursors

 

again.

 

If

 

SUSPEND_CURSOR

 

is

 

on,

 

any

 

open

 

cursors

 

are

 

not

 

closed,

 

and

 

are

 

available

 

to

 

the

 

suspended

 

transaction

 

on

 

resumption.

 

A

 

value

 

of

 

T

 

means

 

that

 

SUSPEND_CURSOR

 

is

 

on;

 

a

 

value

 

of

 

F

 

means

 

that

 

SUSPEND_CURSOR

 

is

 

off;

 

no

 

specified

 

value

 

means

 

that

 

SUSPEND_CURSOR

 

is

 

on.

 

This

 

parameter

 

can

 

be

 

used

 

to

 

override

 

the

 

setting

 

derived

 

from

 

a

 

specified

 

TPM

 

value.

 

HOLD_CURSOR

 

Specifies

 

whether

 

cursors

 

are

 

held

 

across

 

transaction

 

commits.

 

Valid

 

values

 

are

 

T,

 

F,

 

or

 

no

 

value.

 

No

 

No

 

F

 

TP

 

monitors

 

typically

 

reuse

 

threads

 

or

 

processes

 

for

 

multiple

 

applications.

 

To

 

ensure

 

that

 

a

 

newly

 

loaded

 

application

 

does

 

not

 

inherit

 

cursors

 

opened

 

by

 

a

 

previous

 

application,

 

cursors

 

are

 

closed

 

after

 

a

 

commit.

 

If

 

HOLD_CURSORS

 

is

 

on,

 

cursors

 

with

 

hold

 

attributes

 

are

 

not

 

closed,

 

and

 

will

 

persist

 

across

 

transaction

 

commit

 

boundaries.

 

When

 

using

 

this

 

option,

 

the

 

global

 

transaction

 

must

 

be

 

committed

 

or

 

rolled

 

back

 

from

 

the

 

same

 

thread

 

of

 

control.

 

If

 

HOLD_CURSOR

 

is

 

off,

 

the

 

opening

 

of

 

any

 

cursors

 

with

 

hold

 

attributes

 

will

 

be

 

rejected.

 

A

 

value

 

of

 

T

 

means

 

that

 

HOLD_CURSOR

 

is

 

on;

 

a

 

value

 

of

 

F

 

means

 

that

 

HOLD_CURSOR

 

is

 

off;

 

no

 

specified

 

value

 

means

 

that

 

HOLD_CURSOR

 

is

 

on.

 

This

 

parameter

 

can

 

be

 

used

 

to

 

override

 

the

 

setting

 

derived

 

from

 

a

 

specified

 

TPM

 

value.

 

TOC

 

The

 

entity

 

(“Thread

 

of

 

Control”)

 

to

 

which

 

all

 

DB2

 

UDB

 

XA

 

Connections

 

are

 

bound.

 

Valid

 

values

 

are

 

T,

 

or

 

P,

 

or

 

not

 

set.

 

No

 

No

 

T

 

(OS

 

Thread)

 

TOC

 

(Thread

 

of

 

Control)

 

is

 

the

 

entity

 

where

 

all

 

DB2

 

UDB

 

XA

 

Connections

 

are

 

bound.

 

All

 

DB2

 

UDB

 

XA

 

Connections

 

formed

 

within

 

an

 

entity

 

must

 

be

 

unique.

 

That

 

is,

 

they

 

cannot

 

have

 

two

 

connections

 

to

 

the

 

same

 

database

 

within

 

the

 

entity.

 

The

 

TOC

 

has

 

two

 

parameters:

 

T

 

(OS

 

Thread)

 

and

 

P

 

(OS

 

Process).

 

When

 

set

 

to

 

a

 

value

 

of

 

T,

 

all

 

DB2

 

UDB

 

XA

 

Connections

 

formed

 

under

 

a

 

particular

 

OS

 

Thread

 

are

 

unique

 

to

 

that

 

thread

 

only.

 

Multiple

 

threads

 

cannot

 

share

 

DB2

 

UDB

 

XA

 

Connections.

 

Each

 

OS

 

thread

 

has

 

to

 

form

 

it’s

 

own

 

set

 

of

 

DB2

 

UDB

 

XA

 

Connections.

 

When

 

set

 

to

 

a

 

value

 

of

 

P,

 

all

 

DB2

 

UDB

 

XA

 

Connections

 

are

 

unique

 

to

 

the

 

OS

 

Process

 

and

 

all

 

XA

 

Connections

 

can

 

be

 

shared

 

between

 

OS

 

threads.

 

SREG

 

Static

 

Registration.

 

Valid

 

values

 

are

 

T,

 

or

 

F,

 

or

 

no

 

value.

 

No

 

No

 

F

 

DB2

 

UDB

 

supports

 

two

 

methods

 

of

 

registering

 

a

 

global

 

transaction.

 

The

 

first

 

is

 

Dynamic

 

Registeration,

 

where

 

DB2

 

UDB

 

calls

 

the

 

TP’s

 

ax_reg

 

function

 

to

 

register

 

the

 

transaction

 

(see

 

AXLIB).

 

The

 

second

 

method

 

is

 

Static

 

Registeration,

 

where

 

the

 

TP

 

calls

 

the

 

XA

 

API

 

xa_start

 

to

 

initiate

 

a

 

global

 

transaction.

 

Please

 

note

 

both

 

dynamic

 

and

 

static

 

registration

 

are

 

mutally

 

exclusive.

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

187

||
|
|
|
|
|
|
|
|

|||

|
|
|
|
|
|
|
|

||
|
|
|
|

|||

|
|
|
|
|



Table

 

36.

 

Valid

 

Values

 

for

 

parm_id

 

(continued)

 

Parameter

 

Name

 

Value

 

Mandatory?

 

Case

 

Sensitive?

 

Default

 

Value

 

CREG

 

xa_start

 

chaining

 

flag.

 

Valid

 

values

 

are

 

T,

 

or

 

F,

 

or

 

no

 

value.

 

No

 

No

 

F

 

xa_start

 

chaining

 

is

 

an

 

optimization

 

that

 

is

 

used

 

by

 

DB2

 

UDB

 

to

 

reduce

 

network

 

flows.

 

The

 

parameter

 

is

 

only

 

valid

 

if

 

the

 

TP

 

monitor

 

is

 

using

 

static

 

registration

 

(see

 

SREG).

 

The

 

TP

 

monitor

 

environment

 

is

 

such

 

that

 

it

 

can

 

guarantee

 

that

 

an

 

SQL

 

statement

 

will

 

be

 

invoked

 

immediately

 

after

 

the

 

call

 

to

 

the

 

XA

 

API

 

xa_start.

 

If

 

CREG

 

is

 

set

 

to

 

T,

 

the

 

SQL

 

statement

 

is

 

chained

 

to

 

the

 

xa_start

 

request,

 

thus

 

eliminating

 

one

 

network

 

flow.

 

This

 

parameter

 

can

 

be

 

used

 

to

 

override

 

the

 

setting

 

derived

 

from

 

a

 

specified

 

TPM

 

value.

   

TPM

 

and

 

tp_mon_name

 

values

 

The

 

xa_open

 

string

 

TPM

 

parameter

 

and

 

the

 

tp_mon_name

 

database

 

manager

 

configuration

 

parameter

 

are

 

used

 

to

 

indicate

 

to

 

DB2

 

UDB

 

which

 

TP

 

monitor

 

is

 

being

 

used.

 

The

 

tp_mon_name

 

value

 

applies

 

to

 

the

 

entire

 

DB2

 

UDB

 

instance.

 

The

 

TPM

 

parameter

 

applies

 

only

 

to

 

the

 

specific

 

XA

 

resource

 

manager.

 

The

 

TPM

 

value

 

overrides

 

the

 

tp_mon_name

 

parameter.

 

Valid

 

values

 

for

 

the

 

TPM

 

and

 

tp_mon_name

 

parameters

 

are

 

as

 

follows:

  

Table

 

37.

 

Valid

 

Values

 

for

 

TPM

 

and

 

tp_mon_name

 

TPM

 

Value

 

TP

 

Monitor

 

Product

 

Internal

 

Settings

 

CICS

 

IBM

 

TxSeries

 

CICS

 

AXLIB=libEncServer

 

(for

 

Windows)

      

=/usr/lpp/encina/lib/libEncServer

         

(for

 

UNIX

 

based

 

systems)

 

HOLD_CURSOR=T

 

CHAIN_END=T

 

SUSPEND_CURSOR=F

 

ENCINA

 

IBM

 

TxSeries

 

Encina

 

Monitor

 

AXLIB=libEncServer

 

(for

 

Windows)

      

=/usr/lpp/encina/lib/libEncServer

         

(for

 

UNIX

 

based

 

systems)

 

HOLD_CURSOR=F

 

CHAIN_END=T

 

SUSPEND_CURSOR=F

 

MQ

 

IBM

 

MQSeries

 

AXLIB=mqmax

 

(for

 

Windows)

      

=/usr/mqm/lib/libmqmax_r.a

 

(for

 

AIX

 

threaded

 

applications)

      

=/usr/mqm/lib/libmqmax.a

 

(for

 

AIX

 

non-threaded

 

applications)

      

=/opt/mqm/lib/libmqmax.so

 

(for

 

Solaris)

      

=/opt/mqm/lib/libmqmax_r.sl

 

(for

 

HP

 

threaded

 

applications)

      

=/opt/mqm/lib/libmqmax.sl

 

(for

 

HP

 

non-threaded

 

applications)

      

=/opt/mqm/lib/libmqmax_r.so

 

(for

 

Linux

 

threaded

 

applications)

      

=/opt/mqm/lib/libmqmax.so

 

(for

 

Linux

 

non-threaded

 

applications)

 

HOLD_CURSOR=F

 

CHAIN_END=F

 

SUSPEND_CURSOR=F

   

188

 

Administration

 

Guide:

 

Planning

||
|
|
|

|||

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



Table

 

37.

 

Valid

 

Values

 

for

 

TPM

 

and

 

tp_mon_name

 

(continued)

 

TPM

 

Value

 

TP

 

Monitor

 

Product

 

Internal

 

Settings

 

CB

 

IBM

 

Component

 

Broker

 

AXLIB=somtrx1i

 

(for

 

Windows)

      

=libsomtrx1

         

(for

 

UNIX

 

based

 

systems)

 

HOLD_CURSOR=F

 

CHAIN_END=T

 

SUSPEND_CURSOR=F

 

SF

 

IBM

 

San

 

Francisco

 

AXLIB=ibmsfDB2

 

HOLD_CURSOR=F

 

CHAIN_END=T

 

SUSPEND_CURSOR=F

 

TUXEDO

 

BEA

 

Tuxedo

 

AXLIB=libtux

 

HOLD_CURSOR=F

 

CHAIN_END=F

 

SUSPEND_CURSOR=F

 

MTS

 

Microsoft

 

Transaction

 

Server

 

It

 

is

 

not

 

necessary

 

to

 

configure

 

DB2

 

UDB

 

for

 

MTS.

 

MTS

 

is

 

automatically

 

detected

 

by

 

DB2

 

UDB’s

 

ODBC

 

driver.

 

JTA

 

Java

 

Transaction

 

API

 

It

 

is

 

not

 

necessary

 

to

 

configure

 

DB2

 

UDB

 

for

 

Enterprise

 

Java

 

Servers

 

(EJS)

 

such

 

as

 

IBM

 

WebSphere.

 

DB2

 

UDB’s

 

JDBC

 

driver

 

automatically

 

detects

 

this

 

environment.

 

Therefore

 

this

 

TPM

 

value

 

is

 

ignored.

   

xa_open

 

string

 

format

 

for

 

earlier

 

versions

 

Earlier

 

versions

 

of

 

DB2

 

UDB

 

used

 

the

 

xa_open

 

string

 

format

 

described

 

here.

 

This

 

format

 

is

 

still

 

supported

 

for

 

compatibility

 

reasons.

 

Applications

 

should

 

be

 

migrated

 

to

 

the

 

new

 

format

 

when

 

possible.

 

Each

 

database

 

is

 

defined

 

as

 

a

 

separate

 

resource

 

manager

 

(RM)

 

to

 

the

 

transaction

 

manager

 

(TM),

 

and

 

the

 

database

 

must

 

be

 

identified

 

with

 

an

 

xa_open

 

string

 

that

 

has

 

the

 

following

 

syntax:

    

"database_alias<,userid,password>"

 

The

 

database_alias

 

is

 

required

 

to

 

specify

 

the

 

alias

 

name

 

of

 

the

 

database.

 

The

 

alias

 

name

 

is

 

the

 

same

 

as

 

the

 

database

 

name

 

unless

 

you

 

have

 

explicitly

 

cataloged

 

an

 

alias

 

name

 

after

 

you

 

created

 

the

 

database.

 

The

 

user

 

name

 

and

 

password

 

are

 

optional

 

and,

 

depending

 

on

 

the

 

authentication

 

method,

 

are

 

used

 

to

 

provide

 

authentication

 

information

 

to

 

the

 

database.

 

Examples

 

1.

   

You

 

are

 

using

 

IBM

 

TxSeries

 

CICS

 

on

 

Windows

 

NT.

 

The

 

TxSeries

 

documentation

 

indicates

 

that

 

you

 

need

 

to

 

configure

 

tp_mon_name

 

with

 

a

 

value

 

of

 

libEncServer:C.

 

This

 

is

 

still

 

an

 

acceptable

 

format;

 

however,

 

with

 

DB2

 

UDB

 

or

 

DB2

 

Connect™

 

Version

 

8

 

FixPak

 

3

 

and

 

later,

 

you

 

have

 

the

 

option

 

of:

 

v

   

Specifying

 

a

 

tp_mon_name

 

of

 

CICS

 

(recommended

 

for

 

this

 

scenario):

    

db2

 

update

 

dbm

 

cfg

 

using

 

tp_mon_name

 

CICS

 

For

 

each

 

database

 

defined

 

to

 

CICS

 

in

 

the

 

Region—>

 

Resources—>

 

Product—>

 

XAD—>

 

Resource

 

manager

 

initialization

 

string,

 

specify:

    

db=dbalias,uid=userid,pwd=password

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

189



v

   

For

 

each

 

database

 

defined

 

to

 

CICS

 

in

 

the

 

Region—>

 

Resources—>

 

Product—>

 

XAD—>

 

Resource

 

manager

 

initialization

 

string,

 

specify:

    

db=dbalias,uid=userid,pwd=password,tpm=cics

 

2.

   

You

 

are

 

using

 

IBM

 

MQSeries

 

on

 

Windows

 

NT.

 

The

 

MQSeries

 

documentation

 

indicates

 

that

 

you

 

need

 

to

 

configure

 

tp_mon_name

 

with

 

a

 

value

 

of

 

mqmax.

 

This

 

is

 

still

 

an

 

acceptable

 

format;

 

however,

 

with

 

DB2

 

UDB

 

or

 

DB2

 

Connect

 

Version

 

8

 

FixPak

 

3

 

and

 

later,

 

you

 

have

 

the

 

option

 

of:

 

v

   

Specifying

 

a

 

tp_mon_name

 

of

 

MQ

 

(recommended

 

for

 

this

 

scenario):

    

db2

 

update

 

dbm

 

cfg

 

using

 

tp_mon_name

 

MQ

 

For

 

each

 

database

 

defined

 

to

 

CICS

 

in

 

the

 

Region—>

 

Resources—>

 

Product—>

 

XAD—>

 

Resource

 

manager

 

initialization

 

string,

 

specify:

    

uid=userid,db=dbalias,pwd=password

 

v

   

For

 

each

 

database

 

defined

 

to

 

CICS

 

in

 

the

 

Region—>

 

Resources—>

 

Product—>

 

XAD—>

 

Resource

 

manager

 

initialization

 

string,

 

specify:

    

uid=userid,db=dbalias,pwd=password,tpm=mq

 

3.

   

You

 

are

 

using

 

both

 

IBM

 

TxSeries

 

CICS

 

and

 

IBM

 

MQSeries

 

on

 

WIndows

 

NT.

 

A

 

single

 

DB2

 

UDB

 

instance

 

is

 

being

 

used.

 

In

 

this

 

scenario,

 

you

 

would

 

configure

 

as

 

follows:

 

a.

   

For

 

each

 

database

 

defined

 

to

 

CICS

 

in

 

the

 

Region—>

 

Resources—>

 

Product—>

 

XAD—>

 

Resource

 

manager

 

initialization

 

string,

 

specify:

    

pwd=password,uid=userid,tpm=cics,db=dbalias

 

b.

   

For

 

each

 

database

 

defined

 

as

 

a

 

resource

 

in

 

the

 

queue

 

manager

 

properties,

 

specify

 

an

 

XaOpenString

 

as:

    

db=dbalias,uid=userid,pwd=password,tpm=mq

 

4.

   

You

 

are

 

developing

 

your

 

own

 

XA-compliant

 

transaction

 

manager

 

(XA

 

TM)

 

on

 

Windows

 

NT,

 

and

 

you

 

want

 

to

 

tell

 

DB2

 

UDB

 

that

 

library

 

″myaxlib″

 

has

 

the

 

required

 

functions

 

ax_reg

 

and

 

ax_unreg.

 

Library

 

″myaxlib″

 

is

 

in

 

a

 

directory

 

specified

 

in

 

the

 

PATH

 

statement.

 

You

 

have

 

the

 

option

 

of:

 

v

   

Specifying

 

a

 

tp_mon_name

 

of

 

myaxlib:

    

db2

 

update

 

dbm

 

cfg

 

using

 

tp_mon_name

 

myaxlib

 

and,

 

for

 

each

 

database

 

defined

 

to

 

the

 

XA

 

TM,

 

specifying

 

an

 

xa_open

 

string:

    

db=dbalias,uid=userid,pwd=password

 

v

   

For

 

each

 

database

 

defined

 

to

 

the

 

XA

 

TM,

 

specifying

 

an

 

xa_open

 

string:

    

db=dbalias,uid=userid,pwd=password,axlib=myaxlib

 

5.

   

You

 

are

 

developing

 

your

 

own

 

XA-compliant

 

transaction

 

manager

 

(XA

 

TM)

 

on

 

Windows

 

NT,

 

and

 

you

 

want

 

to

 

tell

 

DB2

 

UDB

 

that

 

library

 

″myaxlib″

 

has

 

the

 

required

 

functions

 

ax_reg

 

and

 

ax_unreg.

 

Library

 

″myaxlib″

 

is

 

in

 

a

 

directory

 

specified

 

in

 

the

 

PATH

 

statement.

 

You

 

also

 

want

 

to

 

enable

 

XA

 

END

 

chaining.

 

You

 

have

 

the

 

option

 

of:

 

v

   

For

 

each

 

database

 

defined

 

to

 

the

 

XA

 

TM,

 

specifying

 

an

 

xa_open

 

string:

    

db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end=T

 

v

   

For

 

each

 

database

 

defined

 

to

 

the

 

XA

 

TM,

 

specifying

 

an

 

xa_open

 

string:

    

db=dbalias,uid=userid,pwd=password,axlib=myaxlib,chain_end

  

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

 

Related

 

reference:

    

190

 

Administration

 

Guide:

 

Planning



v

   

“tp_mon_name

 

-

 

Transaction

 

processor

 

monitor

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Updating

 

host

 

or

 

iSeries

 

database

 

servers

 

with

 

an

 

XA-compliant

 

transaction

 

manager

  

Host

 

and

 

iSeries

 

database

 

servers

 

may

 

be

 

updatable

 

depending

 

upon

 

the

 

architecture

 

of

 

the

 

XA

 

Transaction

 

Manager.

  

Procedure:

   

To

 

support

 

commit

 

sequences

 

from

 

different

 

processes,

 

the

 

DB2

 

Connect™

 

connection

 

concentrator

 

must

 

be

 

enabled.

 

To

 

enable

 

the

 

DB2

 

Connect

 

connection

 

concentrator,

 

set

 

the

 

database

 

manager

 

configuration

 

parameter

 

max_connections

 

to

 

a

 

value

 

greater

 

then

 

maxagents.

 

Note

 

that

 

the

 

DB2

 

Connect

 

connection

 

concentrator

 

requires

 

a

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

Version

 

7.1

 

client

 

or

 

later

 

to

 

support

 

XA

 

commit

 

sequences

 

from

 

different

 

processes.

 

You

 

will

 

also

 

require

 

DB2

 

Connect

 

with

 

the

 

DB2

 

UDB

 

sync

 

point

 

manager

 

(SPM)

 

configured.

  

Related

 

reference:

  

v

   

“maxagents

 

-

 

Maximum

 

number

 

of

 

agents

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“max_connections

 

-

 

Maximum

 

number

 

of

 

client

 

connections

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Manually

 

resolving

 

indoubt

 

transactions

  

An

 

XA-compliant

 

transaction

 

manager

 

(Transaction

 

Processing

 

Monitor)

 

uses

 

a

 

two-phase

 

commit

 

process

 

similar

 

to

 

that

 

used

 

by

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

transaction

 

manager.

 

The

 

principal

 

difference

 

between

 

the

 

two

 

environments

 

is

 

that

 

the

 

TP

 

monitor

 

provides

 

the

 

function

 

of

 

logging

 

and

 

controlling

 

the

 

transaction,

 

instead

 

of

 

the

 

DB2

 

UDB

 

transaction

 

manager

 

and

 

the

 

transaction

 

manager

 

database.

 

Errors

 

similar

 

to

 

those

 

that

 

occur

 

for

 

the

 

DB2

 

UDB

 

transaction

 

manager

 

can

 

occur

 

when

 

using

 

an

 

XA-compliant

 

transaction

 

manager.

 

Similar

 

to

 

the

 

DB2

 

UDB

 

transaction

 

manager,

 

an

 

XA-compliant

 

transaction

 

manager

 

will

 

attempt

 

to

 

resynchronize

 

indoubt

 

transactions.

 

If,

 

for

 

some

 

reason,

 

you

 

cannot

 

wait

 

for

 

the

 

transaction

 

manager

 

to

 

automatically

 

resolve

 

indoubt

 

transactions,

 

there

 

are

 

actions

 

you

 

can

 

take

 

to

 

manually

 

resolve

 

them.

 

This

 

manual

 

process

 

is

 

sometimes

 

referred

 

to

 

as

 

″making

 

a

 

heuristic

 

decision″.

 

The

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

(using

 

the

 

WITH

 

PROMPTING

 

option),

 

or

 

the

 

related

 

set

 

of

 

APIs,

 

allows

 

you

 

to

 

query,

 

commit,

 

and

 

roll

 

back

 

indoubt

 

transactions.

 

In

 

addition,

 

it

 

also

 

allows

 

you

 

to

 

″forget″

 

transactions

 

that

 

have

 

been

 

heuristically

 

committed

 

or

 

rolled

 

back,

 

by

 

removing

 

the

 

log

 

records

 

and

 

releasing

 

the

 

log

 

space.

  

Restrictions:

    

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

191

|
|
|
|
|
|

|
|

|
|
|
|
|
|



Use

 

these

 

commands

 

(or

 

related

 

APIs)

 

with

 

extreme

 

caution,

 

and

 

only

 

as

 

a

 

last

 

resort.

 

The

 

best

 

strategy

 

is

 

to

 

wait

 

for

 

the

 

transaction

 

manager

 

to

 

drive

 

the

 

resynchronization

 

process.

 

You

 

could

 

experience

 

data

 

integrity

 

problems

 

if

 

you

 

manually

 

commit

 

or

 

roll

 

back

 

a

 

transaction

 

in

 

one

 

of

 

the

 

participating

 

databases,

 

and

 

the

 

opposite

 

action

 

is

 

taken

 

against

 

another

 

participating

 

database.

 

Recovering

 

from

 

data

 

integrity

 

problems

 

requires

 

you

 

to

 

understand

 

the

 

application

 

logic,

 

to

 

identify

 

the

 

data

 

that

 

was

 

changed

 

or

 

rolled

 

back,

 

and

 

then

 

to

 

perform

 

a

 

point-in-time

 

recovery

 

of

 

the

 

database,

 

or

 

manually

 

undo

 

or

 

reapply

 

the

 

changes.

 

If

 

you

 

cannot

 

wait

 

for

 

the

 

transaction

 

manager

 

to

 

initiate

 

the

 

resynchronization

 

process,

 

and

 

you

 

must

 

release

 

the

 

resources

 

tied

 

up

 

by

 

an

 

indoubt

 

transaction,

 

heuristic

 

operations

 

are

 

necessary.

 

This

 

situation

 

could

 

occur

 

if

 

the

 

transaction

 

manager

 

will

 

not

 

be

 

available

 

for

 

an

 

extended

 

period

 

of

 

time

 

to

 

perform

 

the

 

resynchronization,

 

and

 

the

 

indoubt

 

transaction

 

is

 

tying

 

up

 

resources

 

that

 

are

 

urgently

 

needed.

 

An

 

indoubt

 

transaction

 

ties

 

up

 

the

 

resources

 

that

 

were

 

associated

 

with

 

this

 

transaction

 

before

 

the

 

transaction

 

manager

 

or

 

resource

 

managers

 

became

 

unavailable.

 

For

 

the

 

database

 

manager,

 

these

 

resources

 

include

 

locks

 

on

 

tables

 

and

 

indexes,

 

log

 

space,

 

and

 

storage

 

taken

 

up

 

by

 

the

 

transaction.

 

Each

 

indoubt

 

transaction

 

also

 

decreases

 

(by

 

one)

 

the

 

maximum

 

number

 

of

 

concurrent

 

transactions

 

that

 

can

 

be

 

handled

 

by

 

the

 

database.

 

Moreover,

 

an

 

offline

 

backup

 

cannot

 

be

 

taken

 

unless

 

all

 

indoubt

 

transactions

 

have

 

been

 

resolved.

 

The

 

heuristic

 

forget

 

function

 

is

 

required

 

in

 

the

 

following

 

situations:

 

v

   

when

 

a

 

heuristically

 

committed

 

or

 

rolled

 

back

 

transaction

 

causes

 

a

 

log

 

full

 

condition,

 

indicated

 

in

 

output

 

from

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

v

   

when

 

an

 

offline

 

backup

 

is

 

to

 

be

 

taken

The

 

heuristic

 

forget

 

function

 

releases

 

the

 

log

 

space

 

occupied

 

by

 

an

 

indoubt

 

transaction.

 

The

 

implication

 

is

 

that

 

if

 

a

 

transaction

 

manager

 

eventually

 

performs

 

a

 

resynchronization

 

operation

 

for

 

this

 

indoubt

 

transaction,

 

it

 

could

 

potentially

 

make

 

the

 

wrong

 

decision

 

to

 

commit

 

or

 

roll

 

back

 

other

 

resource

 

managers,

 

because

 

there

 

is

 

no

 

log

 

record

 

for

 

the

 

transaction

 

in

 

this

 

resource

 

manager.

 

In

 

general

 

a

 

″missing″

 

log

 

record

 

implies

 

that

 

the

 

resource

 

manager

 

has

 

rolled

 

back

 

the

 

transaction.

  

Procedure:

   

Although

 

there

 

is

 

no

 

foolproof

 

way

 

to

 

perform

 

heuristic

 

operations,

 

the

 

following

 

provides

 

some

 

general

 

guidelines:

 

1.

   

Connect

 

to

 

the

 

database

 

for

 

which

 

you

 

require

 

all

 

transactions

 

to

 

be

 

complete.

 

2.

   

Use

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

to

 

display

 

the

 

indoubt

 

transactions.

 

The

 

xid

 

represents

 

the

 

global

 

transaction

 

ID,

 

and

 

is

 

identical

 

to

 

the

 

xid

 

used

 

by

 

the

 

transaction

 

manager

 

and

 

by

 

other

 

resource

 

managers

 

participating

 

in

 

the

 

transaction.

 

3.

   

For

 

each

 

indoubt

 

transaction,

 

use

 

your

 

knowledge

 

about

 

the

 

application

 

and

 

the

 

operating

 

environment

 

to

 

determine

 

the

 

other

 

participating

 

resource

 

managers.

 

4.

   

Determine

 

if

 

the

 

transaction

 

manager

 

is

 

available:

 

v

   

If

 

the

 

transaction

 

manager

 

is

 

available,

 

and

 

the

 

indoubt

 

transaction

 

in

 

a

 

resource

 

manager

 

was

 

caused

 

by

 

the

 

resource

 

manager

 

not

 

being

 

available

 

in

 

the

 

second

 

commit

 

phase,

 

or

 

for

 

an

 

earlier

 

resynchronization

 

process,

 

you

 

should

 

check

 

the

 

transaction

 

manager’s

 

log

 

to

 

determine

 

what

 

action

 

has

 

been

 

taken

 

against

 

the

 

other

 

resource

 

managers.

 

You

 

should

 

then

 

take

 

the

   

192

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|
|
|
|
|
|



same

 

action

 

against

 

the

 

database;

 

that

 

is,

 

using

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command,

 

either

 

heuristically

 

commit

 

or

 

heuristically

 

roll

 

back

 

the

 

transaction.

 

v

   

If

 

the

 

transaction

 

manager

 

is

 

not

 

available,

 

you

 

will

 

need

 

to

 

use

 

the

 

status

 

of

 

the

 

transaction

 

in

 

the

 

other

 

participating

 

resource

 

managers

 

to

 

determine

 

what

 

action

 

you

 

should

 

take:

 

–

   

If

 

at

 

least

 

one

 

of

 

the

 

other

 

resource

 

managers

 

has

 

committed

 

the

 

transaction,

 

you

 

should

 

heuristically

 

commit

 

the

 

transaction

 

in

 

all

 

the

 

resource

 

managers.

 

–

   

If

 

at

 

least

 

one

 

of

 

the

 

other

 

resource

 

managers

 

has

 

rolled

 

back

 

the

 

transaction,

 

you

 

should

 

heuristically

 

roll

 

back

 

the

 

transaction.

 

–

   

If

 

the

 

transaction

 

is

 

in

 

″prepared″

 

(indoubt)

 

state

 

in

 

all

 

of

 

the

 

participating

 

resource

 

managers,

 

you

 

should

 

heuristically

 

roll

 

back

 

the

 

transaction.

 

–

   

If

 

one

 

or

 

more

 

of

 

the

 

other

 

resource

 

managers

 

is

 

not

 

available,

 

you

 

should

 

heuristically

 

roll

 

back

 

the

 

transaction.

 

To

 

obtain

 

indoubt

 

transaction

 

information

 

from

 

DB2

 

UDB

 

on

 

UNIX

 

or

 

Windows,

 

connect

 

to

 

the

 

database

 

and

 

issue

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

WITH

 

PROMPTING

 

command,

 

or

 

the

 

equivalent

 

API.

 

For

 

indoubt

 

transaction

 

information

 

with

 

respect

 

to

 

host

 

or

 

iSeries

 

database

 

servers,

 

you

 

have

 

two

 

choices:

 

v

   

You

 

can

 

obtain

 

indoubt

 

information

 

directly

 

from

 

the

 

host

 

or

 

iSeries

 

server.

 

To

 

obtain

 

indoubt

 

information

 

directly

 

from

 

DB2

 

for

 

z/OS

 

and

 

OS/390,

 

invoke

 

the

 

DISPLAY

 

THREAD

 

TYPE(INDOUBT)

 

command.

 

Use

 

the

 

RECOVER

 

command

 

to

 

make

 

a

 

heuristic

 

decision.

 

To

 

obtain

 

indoubt

 

information

 

directly

 

from

 

DB2

 

for

 

iSeries,

 

invoke

 

the

 

wrkcmtdfn

 

command.

 

v

   

You

 

can

 

obtain

 

indoubt

 

information

 

from

 

the

 

DB2

 

Connect

 

server

 

used

 

to

 

access

 

the

 

host

 

or

 

iSeries

 

database

 

server.

 

To

 

obtain

 

indoubt

 

information

 

from

 

the

 

DB2

 

Connect

 

server,

 

first

 

connect

 

to

 

the

 

DB2

 

UDB

 

sync

 

point

 

manager

 

by

 

connecting

 

to

 

the

 

DB2

 

UDB

 

instance

 

represented

 

by

 

the

 

value

 

of

 

the

 

spm_name

 

database

 

manager

 

configuration

 

parameter.

 

Then

 

issue

 

the

 

LIST

 

DRDA

 

INDOUBT

 

TRANSACTIONS

 

WITH

 

PROMPTING

 

command

 

to

 

display

 

indoubt

 

transactions

 

and

 

to

 

make

 

heuristic

 

decisions.

 

Related

 

concepts:

  

v

   

“Two-phase

 

commit”

 

on

 

page

 

174

 

Related

 

reference:

  

v

   

“LIST

 

INDOUBT

 

TRANSACTIONS

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“LIST

 

DRDA

 

INDOUBT

 

TRANSACTIONS

 

Command”

 

in

 

the

 

Command

 

Reference

 

Related

 

samples:

  

v

   

“dbxamon.c

 

--

 

Show

 

and

 

roll

 

back

 

indoubt

 

transactions.”

Security

 

considerations

 

for

 

XA

 

transaction

 

managers

  

The

 

TP

 

monitor

 

pre-allocates

 

a

 

set

 

of

 

server

 

processes

 

and

 

runs

 

the

 

transactions

 

from

 

different

 

users

 

under

 

the

 

IDs

 

of

 

the

 

server

 

processes.

 

To

 

the

 

database,

 

each

 

server

 

process

 

appears

 

as

 

a

 

big

 

application

 

that

 

has

 

many

 

units

 

of

 

work,

 

all

 

being

 

run

 

under

 

the

 

same

 

ID

 

associated

 

with

 

the

 

server

 

process.

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

193



For

 

example,

 

in

 

an

 

AIX®

 

environment

 

using

 

CICS®,

 

when

 

a

 

TXSeries®

 

CICS

 

region

 

is

 

started,

 

it

 

is

 

associated

 

with

 

the

 

AIX

 

user

 

name

 

under

 

which

 

it

 

is

 

defined.

 

All

 

the

 

CICS

 

Application

 

Server

 

processes

 

are

 

also

 

being

 

run

 

under

 

this

 

TXSeries

 

CICS

 

″master″

 

ID,

 

which

 

is

 

usually

 

defined

 

as

 

″cics″.

 

CICS

 

users

 

can

 

invoke

 

CICS

 

transactions

 

under

 

their

 

DCE

 

login

 

ID,

 

and

 

while

 

in

 

CICS,

 

they

 

can

 

also

 

change

 

their

 

ID

 

using

 

the

 

CESN

 

signon

 

transaction.

 

In

 

either

 

case,

 

the

 

end

 

user’s

 

ID

 

is

 

not

 

available

 

to

 

the

 

RM.

 

Consequently,

 

a

 

CICS

 

Application

 

Process

 

might

 

be

 

running

 

transactions

 

on

 

behalf

 

of

 

many

 

users,

 

but

 

they

 

appear

 

to

 

the

 

RM

 

as

 

a

 

single

 

program

 

with

 

many

 

units

 

of

 

work

 

from

 

the

 

same

 

″cics″

 

ID.

 

Optionally,

 

you

 

can

 

specify

 

a

 

user

 

ID

 

and

 

password

 

on

 

the

 

xa_open

 

string,

 

and

 

that

 

user

 

ID

 

will

 

be

 

used,

 

instead

 

of

 

the

 

″cics″

 

ID,

 

to

 

connect

 

to

 

the

 

database.

 

There

 

is

 

not

 

much

 

impact

 

on

 

static

 

SQL

 

statements,

 

because

 

the

 

binder’s

 

privileges,

 

not

 

the

 

end

 

user’s

 

privileges,

 

are

 

used

 

to

 

access

 

the

 

database.

 

This

 

does

 

mean,

 

however,

 

that

 

the

 

EXECUTE

 

privilege

 

of

 

the

 

database

 

packages

 

must

 

be

 

granted

 

to

 

the

 

server

 

ID,

 

and

 

not

 

to

 

the

 

end

 

user

 

ID.

 

For

 

dynamic

 

statements,

 

which

 

have

 

their

 

access

 

authentication

 

done

 

at

 

run

 

time,

 

access

 

privileges

 

to

 

the

 

database

 

objects

 

must

 

be

 

granted

 

to

 

the

 

server

 

ID

 

and

 

not

 

to

 

the

 

actual

 

user

 

of

 

those

 

objects.

 

Instead

 

of

 

relying

 

on

 

the

 

database

 

to

 

control

 

the

 

access

 

of

 

specific

 

users,

 

you

 

must

 

rely

 

on

 

the

 

TP

 

monitor

 

system

 

to

 

determine

 

which

 

users

 

can

 

run

 

which

 

programs.

 

The

 

server

 

ID

 

must

 

be

 

granted

 

all

 

privileges

 

that

 

its

 

SQL

 

users

 

require.

 

To

 

determine

 

who

 

has

 

accessed

 

a

 

database

 

table

 

or

 

view,

 

you

 

can

 

perform

 

the

 

following

 

steps:

 

1.

   

From

 

the

 

SYSCAT.PACKAGEDEP

 

catalog

 

view,

 

obtain

 

a

 

list

 

of

 

all

 

packages

 

that

 

depend

 

on

 

the

 

table

 

or

 

view.

 

2.

   

Determine

 

the

 

names

 

of

 

the

 

server

 

programs

 

(for

 

example,

 

CICS

 

programs)

 

that

 

correspond

 

to

 

these

 

packages

 

through

 

the

 

naming

 

convention

 

used

 

in

 

your

 

installation.

 

3.

   

Determine

 

the

 

client

 

programs

 

(for

 

example,

 

CICS

 

transaction

 

IDs)

 

that

 

could

 

invoke

 

these

 

programs,

 

and

 

then

 

use

 

the

 

TP

 

monitor’s

 

log

 

(for

 

example,

 

the

 

CICS

 

log)

 

to

 

determine

 

who

 

has

 

run

 

these

 

transactions

 

or

 

programs,

 

and

 

when.

 

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

Configuration

 

considerations

 

for

 

XA

 

transaction

 

managers

  

You

 

should

 

consider

 

the

 

following

 

configuration

 

parameters

 

when

 

you

 

are

 

setting

 

up

 

your

 

TP

 

monitor

 

environment:

 

v

   

tp_mon_name

 

This

 

database

 

manager

 

configuration

 

parameter

 

identifies

 

the

 

name

 

of

 

the

 

TP

 

monitor

 

product

 

being

 

used

 

(″CICS″,

 

or

 

″ENCINA″,

 

for

 

example).

 

v

   

tpname

 

This

 

database

 

manager

 

configuration

 

parameter

 

identifies

 

the

 

name

 

of

 

the

 

remote

 

transaction

 

program

 

that

 

the

 

database

 

client

 

must

 

use

 

when

 

issuing

 

an

 

allocate

 

request

 

to

 

the

 

database

 

server,

 

using

 

the

 

APPC

 

communications

 

protocol.

 

The

 

value

 

is

 

set

 

in

 

the

 

configuration

 

file

 

at

 

the

 

server,

 

and

 

must

 

be

 

the

 

same

 

as

 

the

 

transaction

 

processor

 

(TP)

 

name

 

configured

 

in

 

the

 

SNA

 

transaction

 

program.

 

v

   

tm_database

   

194

 

Administration

 

Guide:

 

Planning



Because

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

does

 

not

 

coordinate

 

transactions

 

in

 

the

 

XA

 

environment,

 

this

 

database

 

manager

 

configuration

 

parameter

 

is

 

not

 

used

 

for

 

XA-coordinated

 

transactions.

 

v

   

maxappls

 

This

 

database

 

configuration

 

parameter

 

specifies

 

the

 

maximum

 

number

 

of

 

active

 

applications

 

allowed.

 

The

 

value

 

of

 

this

 

parameter

 

must

 

be

 

equal

 

to

 

or

 

greater

 

than

 

the

 

sum

 

of

 

the

 

connected

 

applications,

 

plus

 

the

 

number

 

of

 

these

 

applications

 

that

 

may

 

be

 

concurrently

 

in

 

the

 

process

 

of

 

completing

 

a

 

two-phase

 

commit

 

or

 

rollback.

 

This

 

sum

 

should

 

then

 

be

 

increased

 

by

 

the

 

anticipated

 

number

 

of

 

indoubt

 

transactions

 

that

 

might

 

exist

 

at

 

any

 

one

 

time.

 

For

 

a

 

TP

 

monitor

 

environment

 

(for

 

example,

 

TXSeries®

 

CICS®),

 

you

 

may

 

need

 

to

 

increase

 

the

 

value

 

of

 

the

 

maxappls

 

parameter.

 

This

 

would

 

help

 

to

 

ensure

 

that

 

all

 

TP

 

monitor

 

processes

 

can

 

be

 

accommodated.

 

v

   

autorestart

 

This

 

database

 

configuration

 

parameter

 

specifies

 

whether

 

the

 

RESTART

 

DATABASE

 

routine

 

will

 

be

 

invoked

 

automatically

 

when

 

needed.

 

The

 

default

 

value

 

is

 

YES

 

(that

 

is,

 

enabled).

 

A

 

database

 

containing

 

indoubt

 

transactions

 

requires

 

a

 

restart

 

database

 

operation

 

to

 

start

 

up.

 

If

 

autorestart

 

is

 

not

 

enabled

 

when

 

the

 

last

 

connection

 

to

 

the

 

database

 

is

 

dropped,

 

the

 

next

 

connection

 

will

 

fail

 

and

 

require

 

an

 

explicit

 

RESTART

 

DATABASE

 

invocation.

 

This

 

condition

 

will

 

exist

 

until

 

the

 

indoubt

 

transactions

 

have

 

been

 

removed,

 

either

 

by

 

the

 

transaction

 

manager’s

 

resync

 

operation,

 

or

 

through

 

a

 

heuristic

 

operation

 

initiated

 

by

 

the

 

administrator.

 

When

 

the

 

RESTART

 

DATABASE

 

command

 

is

 

issued,

 

a

 

message

 

is

 

returned

 

if

 

there

 

are

 

any

 

indoubt

 

transactions

 

in

 

the

 

database.

 

The

 

administrator

 

can

 

then

 

use

 

the

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

and

 

other

 

command

 

line

 

processor

 

commands

 

to

 

find

 

get

 

information

 

about

 

those

 

indoubt

 

transactions.

 

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

 

Related

 

reference:

  

v

   

“autorestart

 

-

 

Auto

 

restart

 

enable

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“tpname

 

-

 

APPC

 

transaction

 

program

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“maxappls

 

-

 

Maximum

 

number

 

of

 

active

 

applications

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“tm_database

 

-

 

Transaction

 

manager

 

database

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“tp_mon_name

 

-

 

Transaction

 

processor

 

monitor

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“LIST

 

INDOUBT

 

TRANSACTIONS

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“RESTART

 

DATABASE

 

Command”

 

in

 

the

 

Command

 

Reference

XA

 

function

 

supported

 

by

 

DB2

 

Universal

 

Database

  

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

supports

 

the

 

XA91

 

specification

 

defined

 

in

 

X/Open

 

CAE

 

Specification

 

Distributed

 

Transaction

 

Processing:

 

The

 

XA

 

Specification,

 

with

 

the

 

following

 

exceptions:

 

v

   

Asynchronous

 

services

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

195

|
|
|



The

 

XA

 

specification

 

allows

 

the

 

interface

 

to

 

use

 

asynchronous

 

services,

 

so

 

that

 

the

 

result

 

of

 

a

 

request

 

can

 

be

 

checked

 

at

 

a

 

later

 

time.

 

The

 

database

 

manager

 

requires

 

that

 

the

 

requests

 

be

 

invoked

 

in

 

synchronous

 

mode.

 

v

   

Static

 

registration

 

The

 

XA

 

interface

 

allows

 

two

 

ways

 

to

 

register

 

an

 

RM:

 

static

 

registration

 

and

 

dynamic

 

registration.

 

DB2

 

UDB

 

supports

 

only

 

dynamic

 

registration,

 

which

 

is

 

more

 

advanced

 

and

 

efficient.

 

v

   

Association

 

migration

 

DB2

 

UDB

 

does

 

not

 

support

 

transaction

 

migration

 

between

 

threads

 

of

 

control.

XA

 

switch

 

usage

 

and

 

location

 

As

 

required

 

by

 

the

 

XA

 

interface,

 

the

 

database

 

manager

 

provides

 

a

 

db2xa_switch

 

external

 

C

 

variable

 

of

 

type

 

xa_switch_t

 

to

 

return

 

the

 

XA

 

switch

 

structure

 

to

 

the

 

TM.

 

Other

 

than

 

the

 

addresses

 

of

 

various

 

XA

 

functions,

 

the

 

following

 

fields

 

are

 

returned:

 

Field

 

Value

 

name

 

The

 

product

 

name

 

of

 

the

 

database

 

manager.

 

For

 

example,

 

DB2

 

for

 

AIX®.

 

flags

 

TMREGISTER

 

|

 

TMNOMIGRATE

  

Explicitly

 

states

 

that

 

DB2

 

UDB

 

uses

 

dynamic

 

registration,

 

and

 

that

 

the

 

TM

 

should

 

not

 

use

 

association

 

migration.

 

Implicitly

 

states

 

that

 

asynchronous

 

operation

 

is

 

not

 

supported.

 

version

 

Must

 

be

 

zero.

Using

 

the

 

DB2

 

Universal

 

Database

 

XA

 

switch

 

The

 

XA

 

architecture

 

requires

 

that

 

a

 

Resource

 

Manager

 

(RM)

 

provide

 

a

 

switch

 

that

 

gives

 

the

 

XA

 

Transaction

 

Manager

 

(TM)

 

access

 

to

 

the

 

RM’s

 

xa_

 

routines.

 

An

 

RM

 

switch

 

uses

 

a

 

structure

 

called

 

xa_switch_t.

 

The

 

switch

 

contains

 

the

 

RM’s

 

name,

 

non-NULL

 

pointers

 

to

 

the

 

RM’s

 

XA

 

entry

 

points,

 

a

 

flag,

 

and

 

a

 

version

 

number.

 

UNIX-based

 

systems

 

DB2

 

UDB’s

 

switch

 

can

 

be

 

obtained

 

through

 

either

 

of

 

the

 

following

 

two

 

ways:

 

v

   

Through

 

one

 

additional

 

level

 

of

 

indirection.

 

In

 

a

 

C

 

program,

 

this

 

can

 

be

 

accomplished

 

by

 

defining

 

the

 

macro:

    

#define

 

db2xa_switch

 

(*db2xa_switch)

 

prior

 

to

 

using

 

db2xa_switch.

 

v

   

By

 

calling

 

db2xacic

 

DB2

 

UDB

 

provides

 

this

 

API,

 

which

 

returns

 

the

 

address

 

of

 

the

 

db2xa_switch

 

structure.

 

This

 

function

 

is

 

prototyped

 

as:

    

struct

 

xa_switch_t

 

*

 

SQL_API_FN

  

db2xacic(

 

)

 

With

 

either

 

method,

 

you

 

must

 

link

 

your

 

application

 

with

 

libdb2.

 

Windows

 

NT

 

The

 

pointer

 

to

 

the

 

xa_switch

 

structure,

 

db2xa_switch,

 

is

 

exported

 

as

 

DLL

 

data.

 

This

 

implies

 

that

 

a

 

Windows®

 

NT

 

application

 

using

 

this

 

structure

 

must

 

reference

 

it

 

in

 

one

 

of

 

three

 

ways:

 

v

   

Through

 

one

 

additional

 

level

 

of

 

indirection.

 

In

 

a

 

C

 

program,

 

this

 

can

 

be

 

accomplished

 

by

 

defining

 

the

 

macro:

   

196

 

Administration

 

Guide:

 

Planning

||
|



#define

 

db2xa_switch

 

(*db2xa_switch)

 

prior

 

to

 

using

 

db2xa_switch.

 

v

   

If

 

using

 

the

 

Microsoft®

 

Visual

 

C++

 

compiler,

 

db2xa_switch

 

can

 

be

 

defined

 

as:

    

extern

 

__declspec(dllimport)

 

struct

 

xa_switch_t

 

db2xa_switch

 

v

   

By

 

calling

 

db2xacic

 

DB2

 

UDB

 

provides

 

this

 

API,

 

which

 

returns

 

the

 

address

 

of

 

the

 

db2xa_switch

 

structure.

 

This

 

function

 

is

 

prototyped

 

as:

    

struct

 

xa_switch_t

 

*

 

SQL_API_FN

  

db2xacic(

 

)

 

With

 

any

 

of

 

these

 

methods,

 

you

 

must

 

link

 

your

 

application

 

with

 

db2api.lib.

 

Example

 

C

 

Code

 

The

 

following

 

code

 

illustrates

 

the

 

different

 

ways

 

in

 

which

 

the

 

db2xa_switch

 

can

 

be

 

accessed

 

via

 

a

 

C

 

program

 

on

 

any

 

DB2

 

UDB

 

platform.

 

Be

 

sure

 

to

 

link

 

your

 

application

 

with

 

the

 

appropriate

 

library.

    

#include

 

<stdio.h>

    

#include

 

<xa.h>

      

struct

 

xa_switch_t

 

*

 

SQL_API_FN

  

db2xacic(

 

);

      

#ifdef

 

DECLSPEC_DEFN

    

extern

 

__declspec(dllimport)

 

struct

 

xa_switch_t

 

db2xa_switch;

    

#else

    

#define

 

db2xa_switch

 

(*db2xa_switch)

    

extern

 

struct

 

xa_switch_t

 

db2xa_switch;

    

#endif

 

main(

 

)

    

{

       

struct

 

xa_switch_t

 

*foo;

       

printf

 

(

 

"%s

 

\n",

 

db2xa_switch.name

 

);

       

foo

 

=

 

db2xacic();

       

printf

 

(

 

"%s

 

\n",

 

foo—>name

 

);

       

return

 

;

    

}

  

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

XA

 

interface

 

problem

 

determination

  

When

 

an

 

error

 

is

 

detected

 

during

 

an

 

XA

 

request

 

from

 

the

 

TM,

 

the

 

application

 

program

 

may

 

not

 

be

 

able

 

to

 

get

 

the

 

error

 

code

 

from

 

the

 

TM.

 

If

 

your

 

program

 

abends,

 

or

 

gets

 

a

 

cryptic

 

return

 

code

 

from

 

the

 

TP

 

monitor

 

or

 

the

 

TM,

 

you

 

should

 

check

 

the

 

First

 

Failure

 

Service

 

Log,

 

which

 

reports

 

XA

 

error

 

information

 

when

 

diagnostic

 

level

 

3

 

or

 

greater

 

is

 

in

 

effect.

 

You

 

should

 

also

 

consult

 

the

 

console

 

message,

 

TM

 

error

 

file,

 

or

 

other

 

product-specific

 

information

 

about

 

the

 

external

 

transaction

 

processing

 

software

 

that

 

you

 

are

 

using.

 

The

 

database

 

manager

 

writes

 

all

 

XA-specific

 

errors

 

to

 

the

 

First

 

Failure

 

Service

 

Log

 

with

 

SQLCODE

 

-998

 

(transaction

 

or

 

heuristic

 

errors)

 

and

 

the

 

appropriate

 

reason

 

codes.

 

Following

 

are

 

some

 

of

 

the

 

more

 

common

 

errors:

 

v

   

Invalid

 

syntax

 

in

 

the

 

xa_open

 

string.

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

197

|
|
|

|



v

   

Failure

 

to

 

connect

 

to

 

the

 

database

 

specified

 

in

 

the

 

open

 

string

 

as

 

a

 

result

 

of

 

one

 

of

 

the

 

following:

 

–

   

The

 

database

 

has

 

not

 

been

 

cataloged.

 

–

   

The

 

database

 

has

 

not

 

been

 

started.

 

–

   

The

 

server

 

application’s

 

user

 

name

 

or

 

password

 

is

 

not

 

authorized

 

to

 

connect

 

to

 

the

 

database.
v

   

Communications

 

error.

 

Related

 

concepts:

  

v

   

“X/Open

 

distributed

 

transaction

 

processing

 

model”

 

on

 

page

 

179

 

Related

 

reference:

  

v

   

“xa_open

 

string

 

formats”

 

on

 

page

 

185

XA

 

transaction

 

manager

 

configuration

 

Configuring

 

IBM

 

WebSphere

 

Application

 

Server

  

IBM®

 

WebSphere™

 

Application

 

Server

 

is

 

a

 

Java-based

 

application

 

server.

 

It

 

can

 

use

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

XA

 

support

 

via

 

the

 

Java

 

Transaction

 

API

 

(JTA)

 

provided

 

by

 

the

 

DB2

 

JDBC

 

driver.

 

Refer

 

to

 

IBM

 

WebSphere

 

documentation

 

regarding

 

how

 

to

 

use

 

the

 

Java

 

Transaction

 

API

 

with

 

WebSphere

 

Application

 

Server.

 

WebSphere

 

Application

 

Server

 

documentation

 

can

 

be

 

viewed

 

online

 

at

 

http://www.ibm.com/software/webservers/appserv/infocenter.html.

 

Configuring

 

IBM

 

TXSeries

 

CICS

  

For

 

information

 

about

 

how

 

to

 

configure

 

IBM

 

TXSeries

 

CICS®

 

to

 

use

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

as

 

a

 

resource

 

manager,

 

refer

 

to

 

your

 

IBM

 

TXSeries

 

CICS

 

Administration

 

Guide.

 

TXSeries

 

documentation

 

can

 

be

 

viewed

 

online

 

at

 

http://www.transarc.com/Library/documentation/websphere/WAS-
EE/en_US/html/.

 

Host

 

and

 

iSeries

 

database

 

servers

 

can

 

participate

 

in

 

CICS-coordinated

 

transactions.

 

Configuring

 

IBM

 

TXSeries

 

Encina

  

Following

 

are

 

the

 

various

 

APIs

 

and

 

configuration

 

parameters

 

required

 

for

 

the

 

integration

 

of

 

Encina

 

Monitor

 

and

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

servers,

 

or

 

DB2

 

for

 

z/OS

 

and

 

OS/390,

 

DB2

 

for

 

iSeries,

 

or

 

DB2

 

for

 

VSE

 

&

 

VM

 

when

 

accessed

 

through

 

DB2

 

Connect™.

 

TXSeries

 

documentation

 

can

 

be

 

viewed

 

online

 

at

 

http://www.transarc.com/Library/documentation/websphere/WAS-
EE/en_US/html/.

 

Host

 

and

 

iSeries

 

database

 

servers

 

can

 

participate

 

in

 

Encina-coordinated

 

transactions.

 

Configuring

 

DB2

 

Universal

 

Database

 

To

 

configure

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB):

 

1.

   

Each

 

database

 

name

 

must

 

be

 

defined

 

in

 

the

 

DB2

 

UDB

 

database

 

directory.

 

If

 

the

 

database

 

is

 

a

 

remote

 

database,

 

a

 

node

 

directory

 

entry

 

must

 

also

 

be

 

defined.

 

You

 

can

 

perform

 

the

 

configuration

 

using

 

the

 

Configuration

 

Assistant,

 

or

 

the

 

DB2

 

UDB

 

command

 

line

 

processor

 

(CLP).

 

For

 

example:

   

198

 

Administration

 

Guide:

 

Planning

|
|

|

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm
http://publibfp.boulder.ibm.com/epubs/html/txv5002/en_US/html/index.htm


DB2

 

CATALOG

 

DATABASE

 

inventdb

 

AS

 

inventdb

 

AT

 

NODE

 

host1

 

AUTH

 

SERVER

    

DB2

 

CATALOG

 

TCPIP

 

NODE

 

host1

 

REMOTE

 

hostname1

 

SERVER

 

svcname1

 

2.

   

The

 

DB2

 

UDB

 

client

 

can

 

optimize

 

its

 

internal

 

processing

 

for

 

Encina

 

if

 

it

 

knows

 

that

 

it

 

is

 

dealing

 

with

 

Encina.

 

You

 

can

 

specify

 

this

 

by

 

setting

 

the

 

tp_mon_name

 

database

 

manager

 

configuration

 

parameter

 

to

 

ENCINA.

 

The

 

default

 

behavior

 

is

 

no

 

special

 

optimization.

 

If

 

tp_mon_name

 

is

 

set,

 

the

 

application

 

must

 

ensure

 

that

 

the

 

thread

 

that

 

performs

 

the

 

unit

 

of

 

work

 

also

 

immediately

 

commits

 

the

 

work

 

after

 

ending

 

it.

 

No

 

other

 

unit

 

of

 

work

 

may

 

be

 

started.

 

If

 

this

 

is

 

not

 

your

 

environment,

 

ensure

 

that

 

the

 

tp_mon_name

 

value

 

is

 

NONE

 

(or,

 

through

 

the

 

CLP,

 

that

 

the

 

value

 

is

 

set

 

to

 

NULL).

 

The

 

parameter

 

can

 

be

 

updated

 

through

 

the

 

Control

 

Center

 

or

 

the

 

CLP.

 

The

 

CLP

 

command

 

is:

    

db2

 

update

 

dbm

 

cfg

 

using

 

tp_mon_name

 

ENCINA

 

Configuring

 

Encina

 

for

 

Each

 

Resource

 

Manager

 

To

 

configure

 

Encina

 

for

 

each

 

resource

 

manager

 

(RM),

 

an

 

administrator

 

must

 

define

 

the

 

Open

 

String,

 

Close

 

String,

 

and

 

Thread

 

of

 

Control

 

Agreement

 

for

 

each

 

DB2

 

UDB

 

database

 

as

 

a

 

resource

 

manager

 

before

 

the

 

resource

 

manager

 

can

 

be

 

registered

 

for

 

transactions

 

in

 

an

 

application.

 

The

 

configuration

 

can

 

be

 

performed

 

using

 

the

 

Enconcole

 

full

 

screen

 

interface,

 

or

 

the

 

Encina

 

command

 

line

 

interface.

 

For

 

example:

    

monadmin

 

create

 

rm

 

inventdb

 

-open

 

"db=inventdb,uid=user1,pwd=password1"

 

There

 

is

 

one

 

resource

 

manager

 

configuration

 

for

 

each

 

DB2

 

UDB

 

database,

 

and

 

each

 

resource

 

manager

 

configuration

 

must

 

have

 

an

 

rm

 

name

 

(″logical

 

RM

 

name″).

 

To

 

simplify

 

the

 

situation,

 

you

 

should

 

make

 

it

 

identical

 

to

 

the

 

database

 

name.

 

The

 

xa_open

 

string

 

contains

 

information

 

that

 

is

 

required

 

to

 

establish

 

a

 

connection

 

to

 

the

 

database.

 

The

 

content

 

of

 

the

 

string

 

is

 

RM-specific.

 

The

 

xa_open

 

string

 

of

 

DB2

 

UDB

 

contains

 

the

 

alias

 

name

 

of

 

the

 

database

 

to

 

be

 

opened,

 

and

 

optionally,

 

a

 

user

 

ID

 

and

 

password

 

to

 

be

 

associated

 

with

 

the

 

connection.

 

Note

 

that

 

the

 

database

 

name

 

defined

 

here

 

must

 

also

 

be

 

cataloged

 

into

 

the

 

regular

 

database

 

directory

 

required

 

for

 

all

 

database

 

access.

 

The

 

xa_close

 

string

 

is

 

not

 

used

 

by

 

DB2

 

UDB.

 

The

 

Thread

 

of

 

Control

 

Agreement

 

determines

 

if

 

an

 

application

 

agent

 

thread

 

can

 

handle

 

more

 

than

 

one

 

transaction

 

at

 

a

 

time.

 

If

 

you

 

are

 

accessing

 

DB2

 

for

 

z/OS

 

and

 

OS/390,

 

DB2

 

for

 

iSeries,

 

or

 

DB2

 

for

 

VSE

 

&

 

VM,

 

you

 

must

 

use

 

the

 

DB2

 

Syncpoint

 

Manager.

 

Referencing

 

a

 

DB2

 

UDB

 

database

 

from

 

an

 

Encina

 

application

 

To

 

reference

 

a

 

DB2

 

UDB

 

database

 

from

 

an

 

Encina

 

application:

 

1.

   

Use

 

the

 

Encina

 

Scheduling

 

Policy

 

API

 

to

 

specify

 

how

 

many

 

application

 

agents

 

can

 

be

 

run

 

from

 

a

 

single

 

TP

 

monitor

 

application

 

process.

 

For

 

example:

    

rc

 

=

 

mon_SetSchedulingPolicy

 

(MON_EXCLUSIVE)

 

2.

   

Use

 

the

 

Encina

 

RM

 

Registration

 

API

 

to

 

provide

 

the

 

XA

 

switch

 

and

 

the

 

logical

 

RM

 

name

 

to

 

be

 

used

 

by

 

Encina

 

when

 

referencing

 

the

 

RM

 

in

 

an

 

application

 

process.

 

For

 

example:

    

rc

 

=

 

mon_RegisterRmi

 

(

 

&db2xa_switch,

   

/*

 

xa

 

switch

 

*/

                           

"inventdb",

      

/*

 

logical

 

RM

 

name

 

*/

                           

&rmiId

 

);

        

/*

 

internal

 

RM

 

ID

 

*/

 

The

 

XA

 

switch

 

contains

 

the

 

addresses

 

of

 

the

 

XA

 

routines

 

in

 

the

 

RM

 

that

 

the

 

TM

 

can

 

call,

 

and

 

it

 

also

 

specifies

 

the

 

functionality

 

that

 

is

 

provided

 

by

 

the

 

RM.

 

The

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

199

|
|

|
|
|
|
|
|
|
|
|

|



XA

 

switch

 

of

 

DB2

 

UDB

 

is

 

db2xa_switch,

 

and

 

it

 

resides

 

in

 

the

 

DB2

 

UDB

 

client

 

library

 

(db2app.dll

 

on

 

Windows

 

operating

 

systems

 

and

 

libdb2

 

on

 

UNIX

 

based

 

systems).

 

The

 

logical

 

RM

 

name

 

is

 

the

 

one

 

used

 

by

 

Encina,

 

and

 

is

 

not

 

the

 

actual

 

database

 

name

 

that

 

is

 

used

 

by

 

the

 

SQL

 

application

 

that

 

runs

 

under

 

Encina.

 

The

 

actual

 

database

 

name

 

is

 

specified

 

in

 

the

 

xa_open

 

string

 

in

 

the

 

Encina

 

RM

 

Registration

 

API.

 

The

 

logical

 

RM

 

name

 

is

 

set

 

to

 

be

 

the

 

same

 

as

 

the

 

database

 

name

 

in

 

this

 

example.

 

The

 

third

 

parameter

 

returns

 

an

 

internal

 

identifier

 

or

 

handle

 

that

 

is

 

used

 

by

 

the

 

TM

 

to

 

reference

 

this

 

connection.

 

Related

 

concepts:

  

v

   

“DB2

 

Connect

 

and

 

transaction

 

processing

 

monitors”

 

in

 

the

 

DB2

 

Connect

 

User’s

 

Guide

 

Related

 

reference:

  

v

   

“tp_mon_name

 

-

 

Transaction

 

processor

 

monitor

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

 

v

   

“xa_open

 

string

 

formats”

 

on

 

page

 

185

Configuring

 

BEA

 

Tuxedo

  

Procedure:

   

To

 

configure

 

Tuxedo

 

to

 

use

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

as

 

a

 

resource

 

manager,

 

perform

 

the

 

following

 

steps:

 

1.

   

Install

 

Tuxedo

 

as

 

specified

 

in

 

the

 

documentation

 

for

 

that

 

product.

 

Ensure

 

that

 

you

 

perform

 

all

 

basic

 

Tuxedo

 

configuration,

 

including

 

the

 

log

 

files

 

and

 

environment

 

variables.

 

You

 

also

 

require

 

a

 

compiler

 

and

 

the

 

DB2

 

UDB

 

Application

 

Development

 

Client.

 

Install

 

these

 

if

 

necessary.

 

2.

   

At

 

the

 

Tuxedo

 

server

 

ID,

 

set

 

the

 

DB2INSTANCE

 

environment

 

variable

 

to

 

reference

 

the

 

instance

 

that

 

contains

 

the

 

databases

 

that

 

you

 

want

 

Tuxedo

 

to

 

use.

 

Set

 

the

 

PATH

 

variable

 

to

 

include

 

the

 

DB2

 

UDB

 

program

 

directories.

 

Confirm

 

that

 

the

 

Tuxedo

 

server

 

ID

 

can

 

connect

 

to

 

the

 

DB2

 

UDB

 

databases.

 

3.

   

Update

 

the

 

tp_mon_name

 

database

 

manager

 

configuration

 

parameter

 

with

 

the

 

value

 

TUXEDO.

 

4.

   

Add

 

a

 

definition

 

for

 

DB2

 

UDB

 

to

 

the

 

Tuxedo

 

resource

 

manager

 

definition

 

file.

 

In

 

the

 

examples

 

that

 

follow,

 

UDB_XA

 

is

 

the

 

locally-defined

 

Tuxedo

 

resource

 

manager

 

name

 

for

 

DB2

 

UDB,

 

and

 

db2xa_switch

 

is

 

the

 

DB2-defined

 

name

 

for

 

a

 

structure

 

of

 

type

 

xa_switch_t:

 

v

   

For

 

AIX.

 

In

 

the

 

file

 

${TUXDIR}/udataobj/RM,

 

add

 

the

 

definition:

    

#

 

DB2

 

UDB

    

UDB_XA:db2xa_switch:-L${DB2DIR}

 

/lib

 

-ldb2

 

where

 

{TUXDIR}

 

is

 

the

 

directory

 

where

 

you

 

installed

 

Tuxedo,

 

and

 

{DB2DIR}

 

is

 

the

 

DB2

 

UDB

 

instance

 

directory.

 

v

   

For

 

Windows

 

NT.

 

In

 

the

 

file

 

%TUXDIR%\udataobj\rm,

 

add

 

the

 

definition:

    

#

 

DB2

 

UDB

    

UDB_XA;db2xa_switch;%DB2DIR%\lib\db2api.lib

 

where

 

%TUXDIR%

 

is

 

the

 

directory

 

where

 

you

 

installed

 

Tuxedo,

 

and

 

%DB2DIR%

 

is

 

the

 

DB2

 

UDB

 

instance

 

directory.

  

200

 

Administration

 

Guide:

 

Planning

|
|



5.

   

Build

 

the

 

Tuxedo

 

transaction

 

monitor

 

server

 

program

 

for

 

DB2

 

UDB:

 

v

   

For

 

AIX:

    

${TUXDIR}/bin/buildtms

 

-r

 

UDB_XA

 

-o

 

${TUXDIR}/bin/TMS_UDB

 

where

 

{TUXDIR}

 

is

 

the

 

directory

 

where

 

you

 

installed

 

Tuxedo.

 

v

   

For

 

Windows

 

NT:

    

%TUXDIR%\bin\buildtms

 

-r

 

UDB_XA

 

-o

 

%TUXDIR%\bin\TMS_UDB

 

6.

   

Build

 

the

 

application

 

servers.

 

In

 

the

 

examples

 

that

 

follow,

 

the

 

-r

 

option

 

specifies

 

the

 

resource

 

manager

 

name,

 

the

 

-f

 

option

 

(used

 

one

 

or

 

more

 

times)

 

specifies

 

the

 

files

 

that

 

contain

 

the

 

application

 

services,

 

the

 

-s

 

option

 

specifies

 

the

 

application

 

service

 

names

 

for

 

this

 

server,

 

and

 

the

 

-o

 

option

 

specifies

 

the

 

output

 

server

 

file

 

name:

 

v

   

For

 

AIX:

    

${TUXDIR}/bin/buildserver

 

-r

 

UDB_XA

 

-f

 

svcfile.o

 

-s

 

SVC1,SVC2

       

-o

 

UDBserver

 

where

 

{TUXDIR}

 

is

 

the

 

directory

 

where

 

you

 

installed

 

Tuxedo.

 

v

   

For

 

Windows

 

NT:

    

%TUXDIR%\bin\buildserver

 

-r

 

UDB_XA

 

-f

 

svcfile.o

 

-s

 

SVC1,SVC2

       

-o

 

UDBserver

 

where

 

%TUXDIR%

 

is

 

the

 

directory

 

where

 

you

 

installed

 

Tuxedo.
7.

   

Set

 

up

 

the

 

Tuxedo

 

configuration

 

file

 

to

 

reference

 

the

 

DB2

 

UDB

 

server.

 

In

 

the

 

*GROUPS

 

section

 

of

 

the

 

UDBCONFIG

 

file,

 

add

 

an

 

entry

 

similar

 

to:

    

UDB_GRP

   

LMID=simp

 

GRPNO=3

      

TMSNAME=TMS_UDB

 

TMSCOUNT=2

      

OPENINFO="UDB_XA:db=sample,uid=db2_user,pwd=db2_user_pwd"

 

where

 

the

 

TMSNAME

 

parameter

 

specifies

 

the

 

transaction

 

monitor

 

server

 

program

 

that

 

you

 

built

 

previously,

 

and

 

the

 

OPENINFO

 

parameter

 

specifies

 

the

 

resource

 

manager

 

name.

 

This

 

is

 

followed

 

by

 

the

 

database

 

name,

 

and

 

the

 

DB2

 

UDB

 

user

 

ID

 

and

 

password,

 

which

 

are

 

used

 

for

 

authentication.

 

The

 

application

 

servers

 

that

 

you

 

built

 

previously

 

are

 

referenced

 

in

 

the

 

*SERVERS

 

section

 

of

 

the

 

Tuxedo

 

configuration

 

file.

 

8.

   

If

 

the

 

application

 

is

 

accessing

 

data

 

residing

 

on

 

DB2

 

for

 

z/OS

 

and

 

OS/390,

 

DB2

 

for

 

iSeries,

 

or

 

DB2

 

for

 

VM&VSE,

 

the

 

DB2

 

Connect

 

XA

 

concentrator

 

will

 

be

 

required.

 

9.

   

Start

 

Tuxedo:

    

tmboot

 

-y

 

After

 

the

 

command

 

completes,

 

Tuxedo

 

messages

 

should

 

indicate

 

that

 

the

 

servers

 

are

 

started.

 

In

 

addition,

 

if

 

you

 

issue

 

the

 

DB2

 

UDB

 

command

 

LIST

 

APPLICATIONS

 

ALL,

 

you

 

should

 

see

 

two

 

connections

 

(in

 

this

 

situation)

 

specified

 

by

 

the

 

TMSCOUNT

 

parameter

 

in

 

the

 

UDB

 

group

 

in

 

the

 

Tuxedo

 

configuration

 

file,

 

UDBCONFIG.

 

Related

 

concepts:

  

v

   

“DB2

 

Connect

 

and

 

transaction

 

processing

 

monitors”

 

in

 

the

 

DB2

 

Connect

 

User’s

 

Guide

 

Related

 

reference:

  

v

   

“tp_mon_name

 

-

 

Transaction

 

processor

 

monitor

 

name

 

configuration

 

parameter”

 

in

 

the

 

Administration

 

Guide:

 

Performance

   

Chapter

 

7.

 

Designing

 

for

 

XA-compliant

 

transaction

 

managers

 

201



v

   

“LIST

 

APPLICATIONS

 

Command”

 

in

 

the

 

Command

 

Reference

  

202

 

Administration

 

Guide:

 

Planning



Part

 

3.

 

Appendixes

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

203



204

 

Administration

 

Guide:

 

Planning



Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

This

 

section

 

identifies

 

the

 

incompatibilities

 

that

 

exist

 

between

 

the

 

current

 

release

 

of

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

and

 

previous

 

releases

 

of

 

DB2

 

Universal

 

Database.

 

An

 

incompatibility

 

is

 

a

 

part

 

of

 

DB2

 

Universal

 

Database

 

that

 

works

 

differently

 

than

 

it

 

did

 

in

 

a

 

previous

 

release

 

of

 

DB2

 

Universal

 

Database.

 

If

 

used

 

in

 

an

 

existing

 

application,

 

it

 

will

 

produce

 

an

 

unexpected

 

result,

 

necessitate

 

a

 

change

 

to

 

the

 

application,

 

or

 

reduce

 

performance.

 

In

 

this

 

context,

 

″application″

 

refers

 

to:

 

v

   

Application

 

program

 

code

 

v

   

Third-party

 

utilities

 

v

   

Interactive

 

SQL

 

queries

 

v

   

Command

 

or

 

API

 

invocation.

Incompatibilities

 

introduced

 

with

 

DB2

 

Universal

 

Database

 

Version

 

7

 

and

 

Version

 

8

 

are

 

described.

 

They

 

are

 

grouped

 

according

 

to

 

the

 

following

 

categories:

 

v

   

System

 

Catalog

 

Information

 

v

   

Application

 

Programming

 

v

   

SQL

 

v

   

Database

 

Security

 

and

 

Tuning

 

v

   

Utilities

 

and

 

Tools

 

v

   

Connectivity

 

and

 

Coexistence

 

v

   

Messages

 

v

   

Configuration

 

Parameters.

Each

 

incompatibility

 

section

 

includes

 

a

 

description

 

of

 

the

 

incompatibility,

 

the

 

symptom

 

or

 

effect

 

of

 

the

 

incompatibility,

 

and

 

possible

 

resolutions.

 

There

 

is

 

also

 

an

 

indicator

 

at

 

the

 

beginning

 

of

 

each

 

incompatibility

 

description

 

that

 

identifies

 

the

 

operating

 

system

 

to

 

which

 

the

 

incompatibility

 

applies:

 

Windows

 

Microsoft

 

Windows®

 

platforms

 

supported

 

by

 

DB2

 

Universal

 

Database

 

UNIX

 

UNIX®-based

 

platforms

 

supported

 

by

 

DB2

 

Universal

 

Database

 

OS/2

 

OS/2®

 

(for

 

DB2

 

Universal

 

Database

 

Version

 

7

 

only)

DB2

 

Universal

 

Database

 

planned

 

incompatibilities

  

This

 

section

 

describes

 

future

 

incompatibilities

 

that

 

users

 

of

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

should

 

keep

 

in

 

mind

 

when

 

coding

 

new

 

applications,

 

or

 

when

 

modifying

 

existing

 

applications.

 

This

 

will

 

facilitate

 

migration

 

to

 

future

 

versions

 

of

 

DB2

 

UDB.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

205

|
|
|

|
|
|
|

|

|

|

|

|
|

||

||



System

 

catalog

 

information

 

PK_COLNAMES

 

and

 

FK_COLNAMES

 

in

 

a

 

future

 

version

 

of

 

DB2

 

Universal

 

Database

  

WIN

 

UNIX

   

Change:

   

The

 

SYSCAT.REFERENCES

 

columns

 

PK_COLNAMES

 

and

 

FK_COLNAMES

 

will

 

no

 

longer

 

be

 

available.

 

Symptom:

   

Column

 

does

 

not

 

exist

 

and

 

an

 

error

 

is

 

returned.

 

Explanation:

   

Tools

 

or

 

applications

 

are

 

coded

 

to

 

use

 

the

 

obsolete

 

PK_COLNAMES

 

and

 

FK_COLNAMES

 

columns.

 

Resolution:

   

Change

 

the

 

tool

 

or

 

application

 

to

 

use

 

the

 

SYSCAT.KEYCOLUSE

 

view

 

instead.

 

COLNAMES

 

no

 

longer

 

available

 

in

 

a

 

future

 

version

 

of

 

DB2

 

Universal

 

Database

  

WIN

 

UNIX

   

Change:

   

The

 

SYSCAT.INDEXES

 

column

 

COLNAMES

 

will

 

no

 

longer

 

be

 

available.

 

Symptom:

   

Column

 

does

 

not

 

exist

 

and

 

an

 

error

 

is

 

returned.

 

Explanation:

   

Tools

 

or

 

applications

 

are

 

coded

 

to

 

use

 

the

 

obsolete

 

COLNAMES

 

column.

 

Resolution:

   

Change

 

the

 

tool

 

or

 

application

 

to

 

use

 

the

 

SYSCAT.INDEXCOLUSE

 

view

 

instead.

 

Utilities

 

and

 

tools

 

Support

 

for

 

re-creation

 

of

 

type-1

 

indexes

 

will

 

be

 

removed

  

WIN

 

UNIX

   

Change:

   

A

 

new

 

type

 

of

 

index

 

is

 

introduced

 

in

 

Version

 

8,

 

called

 

a

 

type-2

 

index.

 

In

 

type-1

 

indexes,

 

that

 

is

 

indexes

 

created

 

prior

 

to

 

Version

 

8,

 

a

 

key

 

is

 

physically

 

removed

 

from

 

a

 

leaf

 

page

 

as

 

part

 

of

 

the

 

deletion

 

or

 

update

 

of

 

a

 

table

 

row.

 

In

 

type-2

 

indexes,

 

keys

 

are

 

marked

 

as

 

deleted

 

when

 

a

 

row

 

is

 

deleted

 

or

 

updated,

 

but

 

they

 

are

 

not

 

physically

 

removed

 

until

 

after

 

the

 

deletion

 

or

 

update

 

has

 

committed.

 

When

 

support

 

for

 

re-creation

 

of

 

type-1

 

indexes

 

is

 

removed,

 

you

 

will

 

not

 

have

 

to

 

rebuild

 

your

 

indexes

 

manually.

 

Type-1

 

indexes

 

will

 

continue

 

to

 

function

 

correctly.

 

All

 

actions

 

that

 

result

 

in

 

the

 

re-creation

 

of

 

indexes

 

will

 

automatically

 

convert

 

type-1

 

indexes

 

to

 

type-2

 

indexes.

 

In

 

a

 

future

 

version,

 

support

 

for

 

type-1

 

indexes

 

will

 

be

 

removed.

 

Explanation:

   

Type-2

 

indexes

 

have

 

advantages

 

over

 

type-1

 

indexes:

 

v

   

a

 

type-2

 

index

 

can

 

be

 

created

 

on

 

columns

 

whose

 

length

 

is

 

greater

 

than

 

255

 

bytes

 

v

   

the

 

use

 

of

 

next-key

 

locking

 

is

 

reduced

 

to

 

a

 

minimum,

 

which

 

improves

 

concurrency.

  

206

 

Administration

 

Guide:

 

Planning



Resolution:

   

Develop

 

a

 

plan

 

to

 

convert

 

your

 

existing

 

indexes

 

to

 

type-2

 

indexes

 

over

 

time.

 

The

 

Online

 

Index

 

Reorganization

 

capability

 

can

 

help

 

do

 

this

 

while

 

minimizing

 

availability

 

outages.

 

Increase

 

index

 

table

 

space

 

size

 

if

 

needed.

 

Consider

 

creating

 

new

 

indexes

 

in

 

large

 

table

 

spaces

 

and

 

moving

 

existing

 

indexes

 

to

 

large

 

table

 

spaces.

 

Version

 

8

 

incompatibilities

 

with

 

previous

 

releases

 

System

 

catalog

 

information

 

IMPLEMENTED

 

column

 

in

 

catalog

 

tables

  

Windows

 

UNIX

   

Change:

   

In

 

previous

 

versions,

 

the

 

column

 

IMPLEMENTED

 

in

 

SYSIBM.SYSFUNCTIONS

 

and

 

SYSCAT.SYSFUNCTIONS

 

had

 

values

 

of

 

Y,

 

M,

 

H,

 

and

 

N.

 

In

 

Version

 

8,

 

the

 

values

 

are

 

Y

 

and

 

N.

 

Resolution:

   

Recode

 

your

 

applications

 

to

 

use

 

only

 

the

 

values

 

Y

 

and

 

N.

 

OBJCAT

 

views

 

renamed

 

to

 

SYSCAT

 

views

  

Windows

 

UNIX

   

Change:

   

The

 

following

 

OBJCAT

 

views

 

have

 

been

 

renamed

 

to

 

SYSCAT

 

views:

 

TRANSFORMS,

 

INDEXEXTENSIONS,

 

INDEXEXTENSIONMETHODS,

 

INDEXEXTENSIONDEP,

 

INDEXEXTENSIONPARMS,

 

PREDICATESPECS,

 

INDEXEXPLOITRULES.

 

Resolution:

   

Recode

 

your

 

applications

 

to

 

use

 

the

 

SYSCAT

 

views.

 

SYSCAT

 

views

 

are

 

now

 

read-only

  

Windows

 

UNIX

   

Change:

   

As

 

of

 

Version

 

8,

 

the

 

SYSCAT

 

views

 

are

 

read-only.

 

Symptom:

   

An

 

UPDATE

 

or

 

INSERT

 

operation

 

on

 

a

 

view

 

in

 

the

 

SYSCAT

 

schema

 

now

 

fails.

 

Explanation:

   

The

 

SYSSTAT

 

views

 

are

 

the

 

recommended

 

way

 

to

 

update

 

the

 

system

 

catalog

 

information.

 

Some

 

SYSCAT

 

views

 

were

 

unintentionally

 

updatable

 

and

 

this

 

has

 

now

 

been

 

fixed.

 

Resolution:

   

Change

 

your

 

applications

 

to

 

reference

 

the

 

updatable

 

SYSSTAT

 

views

 

instead.

 

Application

 

programming

 

Audit

 

context

 

records

 

statement

 

size

 

has

 

grown

  

Windows

 

UNIX

   

Change:

   

The

 

statement

 

limit

 

has

 

been

 

raised

 

to

 

2

 

MB.

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

207

|

|||
|

|



Symptom:

   

The

 

audit

 

context

 

record

 

statement

 

text

 

is

 

too

 

large

 

to

 

fit

 

into

 

the

 

table.

 

Explanation:

   

The

 

existing

 

tables

 

used

 

to

 

record

 

auditing

 

context

 

records

 

only

 

allow

 

32

 

KB

 

for

 

the

 

statement

 

text.

 

The

 

new

 

statement

 

limit

 

is

 

2

 

MB.

 

If

 

you

 

do

 

not

 

use

 

long

 

statement

 

lengths,

 

this

 

will

 

not

 

affect

 

you.

 

Resolution:

   

Create

 

a

 

new

 

table

 

to

 

hold

 

audit

 

context

 

records

 

with

 

a

 

CLOB(2M)

 

value

 

for

 

the

 

statement

 

text

 

column.

 

If

 

desired,

 

populate

 

the

 

new

 

table

 

with

 

data

 

from

 

the

 

old

 

table,

 

then

 

drop

 

the

 

old

 

table

 

and

 

use

 

the

 

new

 

one.

 

The

 

new

 

table

 

may

 

be

 

renamed

 

to

 

the

 

same

 

name

 

as

 

the

 

old

 

table.

 

Rebind

 

any

 

applications

 

that

 

use

 

the

 

new

 

table.

 

Applications

 

run

 

multithreaded

 

by

 

default

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

applications

 

run

 

in

 

multithreaded

 

mode

 

by

 

default.

 

In

 

previous

 

versions,

 

the

 

default

 

was

 

to

 

run

 

applications

 

in

 

single-threaded

 

mode.

 

This

 

change

 

means

 

that

 

calls

 

to

 

the

 

sqleSetTypeCtx

 

API

 

will

 

have

 

no

 

effect.

 

The

 

Version

 

8

 

multithreaded

 

mode

 

is

 

equivalent

 

to

 

calling

 

the

 

sqleSetTypeCtx

 

API

 

with

 

the

 

SQL_CTX_MULTI_MANUAL

 

option

 

in

 

a

 

pre-Version

 

8

 

application.

 

A

 

Version

 

7

 

client

 

can

 

still

 

run

 

an

 

application

 

in

 

single-threaded

 

mode.

 

Explanation:

   

In

 

Version

 

7,

 

if

 

you

 

wanted

 

to

 

run

 

an

 

application

 

in

 

multithreaded

 

mode,

 

you

 

had

 

to

 

call

 

context

 

APIs

 

and

 

manage

 

the

 

contexts.

 

In

 

Version

 

8,

 

this

 

is

 

not

 

necessary

 

since

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

will

 

manage

 

contexts

 

internally.

 

However,

 

in

 

Version

 

8

 

you

 

are

 

still

 

able

 

to

 

manage

 

contexts

 

for

 

applications

 

if

 

you

 

want

 

to,

 

through

 

external

 

context

 

APIs.

 

SQL0818N

 

error

 

not

 

returned

 

when

 

using

 

VERSION

 

option

  

Windows

 

UNIX

   

Change:

   

If

 

you

 

use

 

the

 

new

 

VERSION

 

option

 

on

 

the

 

PRECOMPILE,

 

BIND,

 

REBIND,

 

and

 

DROP

 

PACKAGE

 

commands,

 

requests

 

to

 

execute

 

may

 

now

 

return

 

an

 

SQL0805N

 

error

 

instead

 

of

 

an

 

SQL0818N

 

error.

 

Symptom:

   

Applications

 

coded

 

to

 

react

 

to

 

an

 

SQL0818N

 

error

 

may

 

not

 

behave

 

as

 

before.

 

Resolution:

   

Recode

 

your

 

applications

 

to

 

react

 

to

 

both

 

SQL0805N

 

and

 

SQL0818N

 

errors.

 

SQL0306N

 

error

 

not

 

returned

 

to

 

the

 

precompiler

 

when

 

a

 

host

 

variable

 

is

 

not

 

defined

  

Windows

 

UNIX

   

Change:

   

If

 

a

 

host

 

variable

 

is

 

not

 

declared

 

in

 

the

 

BEGIN

 

DECLARE

 

section

 

and

 

is

 

used

 

in

 

the

 

EXEC

 

SQL

 

section,

 

SQL0306N

 

will

 

not

 

be

 

returned

 

by

 

the

 

precompiler.

 

If

 

the

 

variable

 

is

 

declared

 

elsewhere

 

in

 

the

 

application,

 

application

 

runtime

 

will

 

return

 

SQL0804N.

 

If

 

the

 

variable

 

is

 

not

 

declared

 

anywhere

 

in

 

the

 

application,

 

the

 

compiler

 

will

 

return

 

an

 

error

 

at

 

compilation

 

time.

   

208

 

Administration

 

Guide:

 

Planning

|

|
|
|

|
|
|
|
|

|
|
|
|
|



Symptom:

   

Applications

 

coded

 

to

 

react

 

to

 

an

 

SQL0306N

 

error

 

at

 

precompilation

 

time

 

may

 

not

 

behave

 

as

 

before.

 

Resolution:

   

Host

 

variables

 

should

 

be

 

declared

 

in

 

the

 

BEGIN

 

DECLARE

 

section.

 

If

 

host

 

variables

 

are

 

declared

 

in

 

a

 

section

 

other

 

than

 

the

 

BEGIN

 

DECLARE

 

section,

 

you

 

should

 

recode

 

your

 

application

 

to

 

handle

 

SQL0804

 

return

 

codes.

 

Data

 

types

 

not

 

supported

 

for

 

use

 

with

 

scrollable

 

cursors

  

Windows

 

UNIX

   

Change:

   

Scrollable

 

cursors

 

using

 

LONG

 

VARCHAR,

 

LONG

 

VARGRAPHIC,

 

DATALINK

 

and

 

LOB

 

types,

 

distinct

 

types

 

on

 

any

 

of

 

these

 

types,

 

or

 

structured

 

types

 

will

 

not

 

be

 

supported

 

in

 

Version

 

8.

 

Any

 

of

 

these

 

data

 

types

 

supported

 

for

 

Version

 

7

 

scrollable

 

cursors

 

will

 

no

 

longer

 

be

 

supported.

 

Symptom:

   

If

 

any

 

columns

 

with

 

these

 

data

 

types

 

are

 

specified

 

in

 

the

 

select

 

list

 

of

 

a

 

scrollable

 

cursor,

 

SQL0270N

 

Reason

 

Code

 

53

 

is

 

returned.

 

Resolution:

   

Modify

 

the

 

select-list

 

of

 

the

 

scrollable

 

cursor

 

so

 

it

 

does

 

not

 

include

 

a

 

column

 

with

 

any

 

of

 

these

 

types.

 

Euro

 

version

 

of

 

code

 

page

 

conversion

 

tables

  

Windows

 

UNIX

   

Change:

   

The

 

Version

 

8

 

code

 

page

 

conversion

 

tables,

 

which

 

provide

 

support

 

for

 

the

 

euro

 

symbol,

 

are

 

slightly

 

different

 

from

 

the

 

conversion

 

tables

 

supplied

 

with

 

previous

 

versions

 

of

 

DB2

 

UDB.

 

Resolution:

   

If

 

you

 

want

 

to

 

use

 

the

 

pre-Version

 

8

 

code

 

page

 

conversion

 

tables,

 

they

 

are

 

provided

 

in

 

the

 

directory

 

sqllib/conv/v7.

 

Switching

 

between

 

a

 

LOB

 

locator

 

and

 

a

 

LOB

 

value

  

Windows

 

UNIX

   

Change:

   

The

 

ability

 

to

 

switch

 

between

 

a

 

large

 

object

 

(LOB)

 

locator

 

and

 

a

 

LOB

 

value

 

has

 

been

 

changed

 

during

 

bindout

 

on

 

a

 

cursor

 

statement.

 

When

 

an

 

application

 

is

 

bound

 

with

 

SQLRULES

 

DB2

 

(the

 

default

 

behavior),

 

the

 

user

 

will

 

not

 

be

 

able

 

to

 

switch

 

between

 

LOB

 

locators

 

and

 

LOB

 

values.

 

Resolution:

   

If

 

you

 

want

 

to

 

switch

 

between

 

a

 

LOB

 

locator

 

and

 

a

 

LOB

 

value

 

during

 

bindout

 

of

 

a

 

cursor

 

statement,

 

precompile

 

your

 

application

 

with

 

SQLRULES

 

STD.

 

Uncommitted

 

units

 

of

 

work

 

on

 

UNIX

 

platforms

  

UNIX

   

Change:

   

In

 

Version

 

8,

 

all

 

application

 

terminations

 

implicitly

 

roll

 

back

 

outstanding

 

units

 

of

 

work.

 

Windows-based

 

applications

 

will

 

not

 

change

 

as

 

they

 

already

 

perform

 

an

 

implicit

 

ROLLBACK

 

for

 

normal

 

or

 

abnormal

 

application

 

termination.

 

Prior

 

to

 

version

 

8,

 

UNIX-based

 

applications

 

that

 

did

 

not

 

use

 

either

 

explicit

 

or

 

implicit

 

context

 

support

 

would

 

commit

 

an

 

outstanding

 

unit

 

of

 

work

 

if

 

the

 

application

 

terminated

 

normally

 

without

 

directly

 

invoking

 

either

 

a

 

CONNECT

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

209



RESET,

 

COMMIT,

 

or

 

ROLLBACK

 

statement.

 

CLI,

 

ODBC,

 

and

 

Java-based

 

applications

 

(implicit

 

context

 

support)

 

and

 

applications

 

that

 

would

 

explicitly

 

create

 

application

 

contexts

 

would

 

always

 

roll

 

back

 

any

 

outstanding

 

unit

 

of

 

work

 

if

 

the

 

application

 

terminated.

 

Abnormal

 

application

 

termination

 

would

 

also

 

lead

 

to

 

an

 

implicit

 

ROLLBACK

 

for

 

the

 

outstanding

 

unit

 

of

 

work.

 

Resolution:

   

In

 

order

 

to

 

ensure

 

that

 

transactions

 

are

 

committed,

 

the

 

application

 

should

 

perform

 

either

 

an

 

explicit

 

COMMIT

 

or

 

a

 

CONNECT

 

RESET

 

before

 

terminating.

 

Change

 

to

 

savepoint

 

naming

  

Windows

 

UNIX

   

Change:

   

Savepoint

 

names

 

can

 

no

 

longer

 

start

 

with

 

″SYS″.

 

Symptom:

   

Creating

 

a

 

savepoint

 

with

 

a

 

name

 

that

 

starts

 

with

 

″SYS″

 

will

 

fail

 

with

 

error

 

SQL0707N.

 

Explanation:

   

Savepoint

 

names

 

that

 

start

 

with

 

″SYS″

 

are

 

reserved

 

for

 

use

 

by

 

the

 

system.

 

Resolution:

   

Rename

 

any

 

savepoints

 

that

 

start

 

with

 

″SYS″

 

to

 

another

 

name

 

that

 

does

 

not

 

start

 

with

 

″SYS″.

 

Code

 

page

 

conversion

 

errors

 

and

 

byte

 

substitution

  

Windows

 

UNIX

   

Change:

   

Character

 

data

 

in

 

input

 

host

 

variables

 

will

 

be

 

converted

 

to

 

the

 

database

 

code

 

page,

 

when

 

necessary,

 

before

 

being

 

used

 

in

 

the

 

SQL

 

statement

 

where

 

the

 

host

 

variable

 

appears.

 

During

 

code

 

page

 

conversion,

 

data

 

expansion

 

may

 

occur.

 

Previously,

 

when

 

code

 

page

 

conversion

 

was

 

detected

 

for

 

data

 

in

 

a

 

host

 

variable,

 

the

 

actual

 

length

 

assumed

 

for

 

the

 

host

 

variable

 

was

 

increased

 

to

 

handle

 

the

 

expansion.

 

This

 

assumed

 

increase

 

in

 

length

 

is

 

no

 

longer

 

performed,

 

to

 

mitigate

 

the

 

impact

 

of

 

the

 

change

 

of

 

the

 

data

 

type

 

length

 

on

 

other

 

SQL

 

operations.

 

Note:

  

None

 

of

 

this

 

applies

 

to

 

host

 

variables

 

that

 

are

 

used

 

in

 

the

 

context

 

of

 

FOR

 

BIT

 

DATA.

 

The

 

data

 

in

 

these

 

host

 

variables

 

will

 

not

 

be

 

converted

 

before

 

being

 

used

 

as

 

for

 

bit

 

data.

Symptom:

   

If

 

the

 

host

 

variable

 

is

 

not

 

large

 

enough

 

to

 

hold

 

the

 

expanded

 

length

 

after

 

code

 

page

 

conversion,

 

an

 

error

 

is

 

returned

 

(SQLSTATE

 

22001,

 

SQLCODE

 

-302).

 

Explanation:

   

Since

 

expansion

 

or

 

contraction

 

can

 

occur

 

during

 

code

 

page

 

conversion,

 

operations

 

that

 

depend

 

on

 

the

 

length

 

of

 

the

 

data

 

in

 

the

 

host

 

variable

 

can

 

produce

 

different

 

results

 

or

 

an

 

error

 

situation.

 

Resolution:

   

Alternatives

 

that

 

can

 

be

 

considered

 

include:

 

v

   

Coding

 

the

 

application

 

to

 

handle

 

the

 

possibility

 

of

 

code

 

page

 

conversion

 

causing

 

the

 

length

 

of

 

the

 

data

 

to

 

change

 

by

 

increasing

 

the

 

length

 

of

 

character

 

host

 

variables

 

v

   

Changing

 

the

 

data

 

to

 

avoid

 

characters

 

that

 

cause

 

expansion

   

210

 

Administration

 

Guide:

 

Planning



v

   

Changing

 

the

 

application

 

code

 

page

 

to

 

match

 

the

 

database

 

code

 

page

 

so

 

that

 

code

 

page

 

conversion

 

does

 

not

 

occur.

Code

 

page

 

conversion

 

for

 

host

 

variables

  

Windows

 

UNIX

   

Change:

   

Code

 

page

 

conversion,

 

when

 

necessary,

 

will

 

now

 

be

 

performed

 

during

 

the

 

bind

 

in

 

phase.

 

Symptom:

   

Different

 

results.

 

Explanation:

   

Now

 

that

 

code

 

page

 

conversion,

 

when

 

necessary,

 

will

 

always

 

be

 

done

 

for

 

host

 

variables,

 

predicate

 

evaluation

 

will

 

always

 

occur

 

in

 

the

 

database

 

code

 

page

 

and

 

not

 

the

 

application

 

code

 

page.

 

For

 

example,

    

SELECT

 

*

 

FROM

 

table

 

WHERE

 

:hv1

 

>

 

:hv2

 

will

 

be

 

done

 

using

 

the

 

database

 

code

 

page

 

rather

 

than

 

the

 

application

 

code

 

page.

 

The

 

collation

 

used

 

continues

 

to

 

be

 

the

 

database

 

collation.

 

Resolution:

   

Verify

 

that

 

the

 

results

 

in

 

previous

 

versions

 

were

 

indeed

 

the

 

desired

 

results.

 

If

 

they

 

were,

 

then

 

change

 

the

 

predicate

 

to

 

produce

 

the

 

desired

 

result

 

given

 

that

 

the

 

database

 

collation

 

and

 

code

 

page

 

are

 

used.

 

Alternatively,

 

change

 

the

 

application

 

code

 

page

 

or

 

the

 

database

 

code

 

page.

 

Expansion

 

and

 

contraction

 

of

 

data

 

in

 

host

 

variables

  

Windows

 

UNIX

   

Change:

   

Code

 

page

 

conversion,

 

when

 

necessary,

 

will

 

now

 

be

 

performed

 

during

 

a

 

bind

 

operation.

 

Symptom:

   

Data

 

from

 

host

 

variables

 

have

 

a

 

different

 

length.

 

Explanation:

   

Since

 

expansion

 

or

 

contraction

 

can

 

occur

 

during

 

code

 

page

 

conversion,

 

operations

 

that

 

depend

 

on

 

the

 

length

 

of

 

the

 

data

 

in

 

the

 

host

 

variable

 

can

 

produce

 

different

 

results

 

or

 

an

 

error

 

situation.

 

Resolution:

   

Change

 

the

 

data,

 

the

 

application

 

code

 

page

 

or

 

the

 

database

 

code

 

page

 

so

 

that

 

code

 

page

 

conversion

 

does

 

not

 

produce

 

changes

 

in

 

length

 

of

 

the

 

converted

 

data,

 

or

 

code

 

the

 

application

 

to

 

handle

 

the

 

possibility

 

of

 

code

 

page

 

conversion

 

causing

 

the

 

length

 

of

 

the

 

data

 

to

 

change.

 

Length

 

of

 

host

 

variables

 

after

 

code

 

page

 

conversion

  

Windows

 

UNIX

   

Change:

   

Code

 

page

 

conversion

 

will

 

no

 

longer

 

cause

 

result

 

length

 

to

 

increase

 

for

 

host

 

variables

 

or

 

parameter

 

markers

 

due

 

to

 

expansion.

 

Symptom:

   

Data

 

truncation

 

errors.

 

Explanation:

   

The

 

length

 

of

 

the

 

character

 

data

 

type

 

determined

 

for

 

the

 

untyped

 

parameter

 

marker

 

is

 

no

 

longer

 

increased

 

to

 

account

 

for

 

potential

 

expansion

 

from

 

code

 

page

 

conversion.

 

The

 

result

 

length

 

will

 

be

 

shorter

 

for

 

operations

 

that

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

211



determine

 

result

 

length

 

using

 

the

 

length

 

of

 

the

 

untyped

 

parameter

 

marker.

 

For

 

example,

 

given

 

that

 

C1

 

is

 

a

 

CHAR(10)

 

column:

    

VALUES

 

CONCAT

 

(?,

 

C1)

 

no

 

longer

 

has

 

a

 

result

 

data

 

type

 

and

 

length

 

of

 

CHAR(40)

 

for

 

a

 

database

 

where

 

3

 

times

 

expansion

 

is

 

possible

 

when

 

converting

 

from

 

the

 

application

 

code

 

page

 

to

 

the

 

database

 

code

 

page,

 

but

 

will

 

have

 

a

 

result

 

data

 

type

 

and

 

length

 

of

 

CHAR(20).

 

Resolution:

   

Use

 

a

 

CAST

 

to

 

give

 

the

 

untyped

 

parameter

 

marker

 

the

 

type

 

desired

 

or

 

change

 

the

 

operand

 

that

 

determines

 

the

 

type

 

of

 

the

 

untyped

 

parameter

 

marker

 

to

 

a

 

data

 

type

 

or

 

length

 

that

 

would

 

accommodate

 

the

 

expansion

 

of

 

the

 

data

 

due

 

to

 

code

 

page

 

conversion.

 

Change

 

to

 

output

 

of

 

DESCRIBE

 

statement

  

Windows

 

UNIX

   

Change:

   

Code

 

page

 

conversion

 

will

 

no

 

longer

 

cause

 

result

 

length

 

to

 

increase

 

for

 

host

 

variables

 

or

 

parameter

 

markers

 

due

 

to

 

expansion.

 

Symptom:

   

Output

 

from

 

DESCRIBE

 

statement

 

changes.

 

Explanation:

   

Since

 

the

 

result

 

length

 

is

 

not

 

increased

 

due

 

to

 

potential

 

expansion

 

on

 

code

 

page

 

conversion,

 

the

 

output

 

of

 

a

 

DESCRIBE

 

statement

 

that

 

describes

 

such

 

a

 

result

 

length

 

will

 

now

 

be

 

different.

 

Resolution:

   

If

 

necessary,

 

change

 

the

 

application

 

to

 

handle

 

the

 

new

 

values

 

returned

 

from

 

the

 

DESCRIBE

 

statement.

 

Error

 

when

 

using

 

SUBSTR

 

function

 

with

 

host

 

variables

  

Windows

 

UNIX

   

Change:

   

Code

 

page

 

conversion

 

will

 

no

 

longer

 

cause

 

result

 

length

 

to

 

increase

 

for

 

host

 

variables

 

or

 

parameter

 

markers

 

due

 

to

 

expansion.

 

Symptom:

   

Error

 

SQL0138N

 

from

 

SUBSTR.

 

Explanation:

   

Potential

 

expansion

 

due

 

to

 

code

 

page

 

conversion

 

was

 

taken

 

into

 

account

 

by

 

increasing

 

the

 

length

 

set

 

aside

 

for

 

the

 

host

 

variable.

 

This

 

allowed,

 

for

 

example,

 

SUBSTR

 

(:hv,19,1)

 

to

 

work

 

successfully

 

for

 

a

 

host

 

variable

 

with

 

a

 

length

 

of

 

10.

 

This

 

will

 

no

 

longer

 

work.

 

Resolution:

   

Increase

 

the

 

length

 

of

 

the

 

host

 

variable

 

to

 

account

 

for

 

the

 

length

 

of

 

the

 

converted

 

data

 

or

 

change

 

the

 

SUBSTR

 

invocation

 

to

 

specify

 

positions

 

within

 

the

 

length

 

of

 

the

 

host

 

variable.

 

Non-thread

 

safe

 

libraries

 

are

 

no

 

longer

 

supported

 

on

 

Solaris

  

UNIX

   

Change:

   

The

 

non-thread

 

safe

 

library

 

libdb2_noth.so

 

is

 

no

 

longer

 

available.

 

Symptom:

   

Tools

 

or

 

applications

 

that

 

require

 

libdb2_noth.so

 

will

 

not

 

work.

   

212

 

Administration

 

Guide:

 

Planning



Explanation:

   

Since

 

support

 

for

 

the

 

obsolete

 

non-thread

 

safe

 

libraries

 

is

 

no

 

longer

 

required,

 

the

 

libdb2_noth.so

 

library

 

is

 

not

 

included

 

with

 

DB2

 

UDB

 

for

 

Solaris

 

Operating

 

Environment™.

 

Resolution:

   

Change

 

the

 

tool

 

or

 

application

 

to

 

use

 

the

 

thread-safe

 

libdb2.so

 

library

 

instead.

 

Re-link

 

your

 

applications

 

with

 

the

 

-mt

 

parameter.

 

Importing

 

or

 

exporting

 

a

 

DBCLOB

 

when

 

connected

 

to

 

a

 

Unicode

 

database

  

Windows

 

UNIX

   

Change:

   

Prior

 

to

 

Version

 

8,

 

if

 

you

 

exported

 

data

 

that

 

contained

 

a

 

DBCLOB

 

from

 

a

 

Unicode

 

database

 

(UTF-8),

 

and

 

used

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

would

 

be

 

exported

 

in

 

code

 

page

 

1200

 

(the

 

Unicode

 

graphic

 

code

 

page).

 

If

 

you

 

imported

 

data

 

that

 

contained

 

a

 

DBCLOB,

 

and

 

used

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

would

 

be

 

imported

 

in

 

code

 

page

 

1200

 

(the

 

Unicode

 

graphic

 

code

 

page).

 

This

 

behavior

 

is

 

maintained

 

in

 

Version

 

8

 

if

 

you

 

set

 

the

 

DB2GRAPHICUNICODESERVER

 

registry

 

variable

 

to

 

ON.

 

In

 

Version

 

8,

 

the

 

default

 

setting

 

of

 

the

 

DB2GRAPHICUNICODESERVER

 

registry

 

variable

 

is

 

OFF.

 

If

 

you

 

export

 

data

 

containing

 

a

 

DBCLOB

 

and

 

using

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

will

 

be

 

exported

 

in

 

the

 

application’s

 

graphic

 

code

 

page.

 

If

 

you

 

import

 

data

 

containing

 

a

 

DBCLOB

 

and

 

using

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

will

 

be

 

imported

 

in

 

the

 

application’s

 

graphic

 

code

 

page.

 

If

 

your

 

application

 

code

 

page

 

is

 

IBM-eucJP

 

(954)

 

or

 

IBM-eucTW

 

(964),

 

and

 

you

 

export

 

data

 

containing

 

a

 

DBCLOB

 

and

 

using

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

will

 

be

 

exported

 

in

 

the

 

application’s

 

character

 

code

 

page.

 

If

 

you

 

import

 

data

 

containing

 

a

 

DBCLOB

 

and

 

using

 

the

 

LOBSINFILE

 

file

 

type

 

modifier,

 

the

 

DBCLOB

 

will

 

be

 

imported

 

in

 

the

 

application’s

 

character

 

code

 

page.

 

Symptom:

   

When

 

importing

 

data

 

with

 

the

 

LOBSINFILE

 

file

 

type

 

modifier

 

into

 

a

 

Unicode

 

database,

 

the

 

character

 

data

 

will

 

be

 

converted

 

correctly,

 

but

 

the

 

DBCLOB

 

data

 

is

 

corrupted.

 

Resolution:

   

If

 

you

 

are

 

moving

 

data

 

between

 

a

 

Version

 

8

 

database

 

and

 

an

 

earlier

 

database,

 

set

 

the

 

DB2GRAPHICUNICODESERVER

 

registry

 

variable

 

to

 

ON

 

to

 

retain

 

the

 

previous

 

behavior.

 

SQL

 

Identical

 

specific

 

names

 

not

 

permitted

 

for

 

functions

 

and

 

procedures

  

Windows

 

UNIX

   

Change:

   

The

 

name

 

space

 

for

 

SPECIFICNAME

 

has

 

been

 

unified.

 

Previous

 

versions

 

of

 

DB2

 

UDB

 

would

 

allow

 

a

 

function

 

and

 

a

 

procedure

 

to

 

have

 

the

 

same

 

specific

 

name,

 

but

 

Version

 

8

 

does

 

not

 

allow

 

this.

 

Symptom:

   

If

 

you

 

are

 

migrating

 

a

 

database

 

to

 

Version

 

8,

 

the

 

db2ckmig

 

utility

 

will

 

check

 

for

 

functions

 

and

 

procedures

 

with

 

the

 

same

 

specific

 

name.

 

If

 

duplicate

 

names

 

are

 

encountered

 

during

 

migration,

 

the

 

migration

 

will

 

fail.

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

213



Resolution:

   

Drop

 

the

 

procedure

 

and

 

recreate

 

it

 

with

 

a

 

different

 

specific

 

name.

 

EXECUTE

 

privilege

 

on

 

functions

 

and

 

procedures

  

Windows

 

UNIX

   

Change:

   

Previously,

 

a

 

user

 

only

 

had

 

to

 

create

 

a

 

routine

 

for

 

others

 

to

 

be

 

able

 

to

 

use

 

it.

 

Now

 

after

 

creating

 

a

 

routine,

 

a

 

user

 

has

 

to

 

GRANT

 

EXECUTE

 

on

 

it

 

first

 

before

 

others

 

can

 

use

 

it.

 

In

 

previous

 

versions,

 

there

 

were

 

no

 

authorization

 

checks

 

on

 

procedures,

 

but

 

the

 

invoker

 

had

 

to

 

have

 

EXECUTE

 

privilege

 

on

 

any

 

package

 

invoked

 

from

 

the

 

procedure.

 

For

 

an

 

embedded

 

application

 

precompiled

 

with

 

CALL_RESOLUTION

 

IMMEDIATE

 

in

 

Version

 

8,

 

and

 

for

 

a

 

CLI

 

cataloged

 

procedure,

 

the

 

invoker

 

has

 

to

 

have

 

EXECUTE

 

privilege

 

on

 

the

 

procedure

 

and

 

only

 

the

 

definer

 

of

 

the

 

procedure

 

has

 

to

 

have

 

EXECUTE

 

privilege

 

on

 

any

 

packages.

 

Symptom:

  

1.

   

An

 

application

 

may

 

not

 

work

 

correctly.

 

2.

   

An

 

existing

 

procedure

 

that

 

is

 

made

 

up

 

of

 

multiple

 

packages,

 

and

 

for

 

which

 

the

 

definer

 

of

 

the

 

procedure

 

does

 

not

 

have

 

access

 

to

 

all

 

the

 

packages,

 

will

 

not

 

work

 

correctly.

Resolution:

  

1.

   

Issue

 

the

 

required

 

GRANT

 

EXECUTE

 

statements.

 

If

 

all

 

the

 

routines

 

are

 

in

 

a

 

single

 

schema,

 

the

 

privileges

 

for

 

each

 

type

 

of

 

routine

 

can

 

be

 

granted

 

with

 

a

 

single

 

statement,

 

for

 

example:

 

GRANT

 

EXECUTE

 

ON

 

FUNCTION

 

schema1.*

 

TO

 

PUBLIC

 

2.

   

If

 

one

 

package

 

is

 

usable

 

by

 

everyone

 

but

 

another

 

package

 

is

 

restricted

 

to

 

a

 

few

 

privileged

 

users,

 

a

 

stored

 

procedure

 

that

 

uses

 

both

 

packages

 

will

 

watch

 

for

 

an

 

authority

 

error

 

when

 

it

 

tries

 

to

 

access

 

the

 

second

 

package.

 

If

 

it

 

sees

 

the

 

authority

 

error,

 

it

 

knows

 

that

 

the

 

user

 

is

 

not

 

a

 

privileged

 

user

 

and

 

the

 

procedure

 

bypasses

 

part

 

of

 

its

 

logic.

 

You

 

can

 

resolve

 

this

 

in

 

several

 

ways:

 

a.

   

When

 

precompiling

 

a

 

program,

 

CALL_RESOLUTION

 

DEFERRED

 

should

 

be

 

set

 

to

 

indicate

 

that

 

the

 

program

 

will

 

be

 

executed

 

as

 

an

 

invocation

 

of

 

the

 

deprecated

 

sqleproc()

 

API

 

when

 

the

 

precompiler

 

fails

 

to

 

resolve

 

a

 

procedure

 

on

 

a

 

CALL

 

statement.

 

b.

   

The

 

CLI

 

keyword

 

UseOldStpCall

 

can

 

be

 

added

 

to

 

the

 

db2cli.ini

 

file

 

to

 

control

 

the

 

way

 

in

 

which

 

procedures

 

are

 

invoked.

 

It

 

can

 

have

 

two

 

values:

 

A

 

value

 

of

 

0

 

means

 

procedures

 

will

 

not

 

be

 

invoked

 

using

 

the

 

old

 

call

 

method,

 

while

 

a

 

value

 

of

 

1

 

means

 

procedures

 

will

 

be

 

invoked

 

using

 

the

 

old

 

call

 

method.

 

c.

   

Grant

 

EXECUTE

 

privilege

 

to

 

everyone

 

who

 

executes

 

the

 

package.

Adding

 

a

 

foreign

 

key

 

constraint

 

to

 

a

 

table

  

Windows

 

UNIX

   

Change:

   

In

 

previous

 

versions,

 

if

 

you

 

created

 

a

 

foreign

 

key

 

constraint

 

that

 

referenced

 

a

 

table

 

in

 

check

 

pending

 

state,

 

the

 

dependent

 

table

 

would

 

also

 

be

 

put

 

into

 

check

 

pending

 

state.

 

In

 

Version

 

8,

 

if

 

you

 

create

 

a

 

foreign

 

key

 

constraint

 

that

 

references

 

a

 

table

 

in

 

check

 

pending

 

state,

 

there

 

are

 

two

 

possible

 

results:

   

214

 

Administration

 

Guide:

 

Planning



1.

   

If

 

the

 

foreign

 

key

 

constraint

 

is

 

added

 

upon

 

creation

 

of

 

the

 

dependent

 

table,

 

the

 

creation

 

of

 

the

 

table

 

and

 

the

 

addition

 

of

 

the

 

constraint

 

will

 

be

 

successful

 

because

 

the

 

table

 

will

 

be

 

created

 

empty,

 

and

 

therefore

 

no

 

rows

 

will

 

violate

 

the

 

constraint.

 

2.

   

If

 

a

 

foreign

 

key

 

is

 

added

 

to

 

an

 

existing

 

table,

 

you

 

will

 

receive

 

error

 

SQL0668N.

Resolution:

   

Use

 

the

 

SET

 

INTEGRITY

 

...

 

IMMEDIATE

 

CHECKED

 

statement

 

to

 

turn

 

on

 

integrity

 

checking

 

for

 

the

 

table

 

that

 

is

 

in

 

check

 

pending

 

state,

 

before

 

adding

 

the

 

foreign

 

key

 

that

 

references

 

the

 

table.

 

Change

 

to

 

SET

 

INTEGRITY

 

...

 

IMMEDIATE

 

CHECKED

  

Windows

 

UNIX

   

Change:

   

In

 

previous

 

releases,

 

a

 

table

 

that

 

had

 

the

 

SET

 

INTEGRITY

 

...

 

UNCHECKED

 

statement

 

issued

 

on

 

it

 

(i.e.

 

with

 

some

 

’U’

 

bytes

 

in

 

the

 

const_checked

 

column

 

of

 

SYSCAT.TABLES)

 

would

 

by

 

default

 

be

 

fully

 

processed

 

upon

 

the

 

next

 

SET

 

INTEGRITY

 

...

 

IMMEDIATE

 

CHECKED

 

statement,

 

meaning

 

all

 

records

 

would

 

be

 

checked

 

for

 

constraint

 

violations.

 

You

 

had

 

to

 

explicitly

 

specify

 

INCREMENTAL

 

to

 

avoid

 

full

 

processing.

 

In

 

Version

 

8,

 

when

 

the

 

SET

 

INTEGRITY

 

...

 

IMMEDIATE

 

CHECKED

 

statement

 

is

 

issued,

 

the

 

default

 

is

 

to

 

leave

 

the

 

unchecked

 

data

 

alone

 

(i.e.

 

keeping

 

the

 

’U’

 

bytes)

 

by

 

doing

 

only

 

incremental

 

processing.

 

(A

 

warning

 

will

 

be

 

returned

 

that

 

old

 

data

 

remains

 

unverified.)

 

Explanation:

   

This

 

change

 

is

 

made

 

to

 

avoid

 

having

 

the

 

default

 

behavior

 

be

 

a

 

constraint

 

check

 

of

 

all

 

records,

 

which

 

usually

 

consumes

 

more

 

resources.

 

Resolution:

   

You

 

will

 

have

 

to

 

explicitly

 

specify

 

NOT

 

INCREMENTAL

 

to

 

force

 

full

 

processing.

 

Decimal

 

separator

 

for

 

CHAR

 

function

  

Windows

 

UNIX

   

Change:

   

Dynamic

 

applications

 

that

 

run

 

on

 

servers

 

with

 

a

 

locale

 

that

 

uses

 

the

 

comma

 

as

 

the

 

decimal

 

separator

 

and

 

include

 

unqualified

 

invocations

 

of

 

the

 

CHAR

 

function

 

with

 

an

 

argument

 

of

 

type

 

REAL

 

or

 

DOUBLE,

 

will

 

return

 

a

 

period

 

as

 

the

 

separator

 

character

 

in

 

the

 

result

 

of

 

the

 

CHAR(double)

 

function.

 

This

 

incompatibility

 

will

 

also

 

be

 

visible

 

when

 

objects

 

like

 

views

 

and

 

triggers

 

are

 

re-created

 

in

 

Version

 

8

 

or

 

when

 

static

 

packages

 

are

 

explicitly

 

rebound.

 

Explanation:

   

This

 

is

 

a

 

result

 

of

 

resolving

 

to

 

the

 

new

 

SYSIBM.CHAR(double)

 

function

 

signature

 

instead

 

of

 

the

 

SYSFUN.CHAR(double)

 

signature.

 

Resolution:

   

To

 

maintain

 

the

 

behavior

 

from

 

earlier

 

versions

 

of

 

DB2

 

UDB,

 

the

 

application

 

will

 

need

 

to

 

explicitly

 

invoke

 

the

 

function

 

with

 

SYSFUN.CHAR

 

instead

 

of

 

allowing

 

function

 

resolution

 

to

 

select

 

the

 

SYSIBM.CHAR

 

signature.

 

Changes

 

to

 

CALL

 

statement

  

Windows

 

UNIX

    

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

215



Change:

   

In

 

Version

 

8,

 

an

 

application

 

precompiled

 

with

 

CALL_RESOLUTION

 

IMMEDIATE

 

and

 

a

 

CLI

 

cataloged

 

procedure

 

have

 

several

 

key

 

differences

 

compared

 

to

 

previous

 

versions:

 

v

   

Host

 

variable

 

support

 

has

 

been

 

replaced

 

by

 

support

 

for

 

dynamic

 

CALL.

 

v

   

Support

 

for

 

compilation

 

of

 

applications

 

that

 

call

 

uncataloged

 

stored

 

procedures

 

has

 

been

 

removed.

 

Uncataloged

 

stored

 

procedure

 

support

 

will

 

be

 

removed

 

entirely

 

in

 

a

 

future

 

version

 

of

 

DB2

 

UDB.

 

v

   

Variable

 

argument

 

list

 

stored

 

procedure

 

support

 

has

 

been

 

deprecated.

 

v

   

There

 

are

 

different

 

rules

 

for

 

loading

 

the

 

stored

 

procedure

 

library.

Resolution:

   

The

 

CALL

 

statement

 

as

 

supported

 

prior

 

to

 

Version

 

8

 

will

 

continue

 

to

 

be

 

available

 

and

 

can

 

be

 

accessed

 

using

 

the

 

CALL_RESOLUTION

 

DEFERRED

 

option

 

on

 

the

 

PRECOMPILE

 

PROGRAM

 

command.

 

Existing

 

applications

 

(built

 

prior

 

to

 

Version

 

8)

 

will

 

continue

 

to

 

work.

 

If

 

applications

 

are

 

re-precompiled

 

without

 

the

 

CALL_RESOLUTION

 

DEFERRED

 

option,

 

then

 

source

 

code

 

changes

 

may

 

be

 

necessary.

 

Support

 

for

 

the

 

CALL_RESOLUTION

 

DEFERRED

 

statement

 

will

 

be

 

removed

 

in

 

a

 

future

 

version.

 

Output

 

from

 

UDFs

 

returning

 

fixed-length

 

strings

  

Windows

 

UNIX

   

Change:

   

A

 

UDF

 

(scalar

 

or

 

table

 

function)

 

can

 

be

 

defined

 

to

 

return

 

a

 

fixed-length

 

string

 

(CHAR(n)

 

or

 

GRAPHIC(n)).

 

In

 

previous

 

versions,

 

if

 

the

 

returned

 

value

 

contains

 

an

 

imbedded

 

null

 

character,

 

the

 

result

 

would

 

simply

 

be

 

n

 

bytes

 

(or

 

2n

 

bytes

 

for

 

GRAPHIC

 

data

 

types)

 

including

 

the

 

null

 

character

 

and

 

any

 

bytes

 

to

 

the

 

right

 

of

 

the

 

null

 

character.

 

In

 

Version

 

8,

 

DB2

 

UDB

 

looks

 

for

 

the

 

null

 

character

 

and

 

returns

 

blanks

 

from

 

that

 

point

 

(the

 

null

 

character)

 

to

 

the

 

end

 

of

 

the

 

value.

 

Resolution:

   

If

 

you

 

want

 

to

 

continue

 

the

 

pre-Version

 

8

 

behavior,

 

change

 

the

 

definition

 

of

 

the

 

returned

 

value

 

from

 

CHAR(n)

 

to

 

CHAR(n)

 

FOR

 

BIT

 

DATA.

 

There

 

is

 

no

 

method

 

to

 

continue

 

the

 

pre-Version

 

8

 

behavior

 

for

 

GRAPHIC

 

data.

 

Change

 

in

 

database

 

connection

 

behavior

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

7,

 

if

 

you

 

use

 

embedded

 

SQL

 

to

 

connect

 

to

 

a

 

database,

 

and

 

then

 

attempt

 

a

 

connection

 

to

 

a

 

non-existent

 

database,

 

the

 

attempt

 

to

 

connect

 

to

 

the

 

non-existent

 

database

 

will

 

fail

 

with

 

SQL1013N.

 

The

 

connection

 

to

 

the

 

first

 

database

 

still

 

exists.

 

In

 

Version

 

8,

 

the

 

attempt

 

to

 

connect

 

to

 

the

 

non-existent

 

database

 

will

 

result

 

in

 

a

 

disconnection

 

from

 

the

 

first

 

database.

 

This

 

will

 

result

 

in

 

the

 

application

 

being

 

left

 

with

 

no

 

connection.

 

Resolution:

   

Code

 

your

 

embedded

 

SQL

 

to

 

reconnect

 

to

 

the

 

initial

 

database

 

following

 

an

 

unsuccessful

 

attempt

 

to

 

connect

 

to

 

another

 

database.

 

Revoking

 

CONTROL

 

on

 

packages

  

Windows

 

UNIX

    

216

 

Administration

 

Guide:

 

Planning



Change:

   

A

 

user

 

can

 

grant

 

privileges

 

on

 

a

 

package

 

using

 

the

 

CONTROL

 

privilege.

 

In

 

DB2

 

UDB

 

Version

 

8,

 

the

 

WITH

 

GRANT

 

OPTION

 

provides

 

a

 

mechanism

 

to

 

determine

 

a

 

user’s

 

authorization

 

to

 

grant

 

privileges

 

on

 

packages

 

to

 

other

 

users.

 

This

 

mechanism

 

is

 

used

 

in

 

place

 

of

 

CONTROL

 

to

 

determine

 

whether

 

a

 

user

 

may

 

grant

 

privileges

 

to

 

others.

 

When

 

CONTROL

 

is

 

revoked,

 

users

 

will

 

continue

 

to

 

be

 

able

 

to

 

grant

 

privileges

 

to

 

others.

 

Symptom:

   

A

 

user

 

can

 

still

 

grant

 

privileges

 

on

 

a

 

package,

 

following

 

the

 

revocation

 

of

 

CONTROL

 

privilege.

 

Resolution:

   

If

 

a

 

user

 

should

 

no

 

longer

 

be

 

authorized

 

to

 

grant

 

privileges

 

on

 

packages

 

to

 

others,

 

revoke

 

all

 

privileges

 

on

 

the

 

package

 

and

 

grant

 

only

 

those

 

required.

 

Error

 

when

 

casting

 

a

 

FOR

 

BIT

 

DATA

 

character

 

string

 

to

 

a

 

CLOB

  

Windows

 

UNIX

   

Change:

   

Casting

 

a

 

character

 

string

 

defined

 

as

 

FOR

 

BIT

 

DATA

 

to

 

a

 

CLOB

 

(using

 

the

 

CAST

 

specification

 

or

 

the

 

CLOB

 

function)

 

now

 

returns

 

an

 

error

 

(SQLSTATE

 

42846).

 

Symptom:

   

Casting

 

to

 

a

 

CLOB

 

now

 

returns

 

an

 

error

 

where

 

previously

 

it

 

did

 

not.

 

Explanation:

   

FOR

 

BIT

 

DATA

 

is

 

not

 

supported

 

for

 

the

 

CLOB

 

data

 

type.

 

The

 

result

 

of

 

using

 

the

 

CAST

 

specification

 

or

 

the

 

CLOB

 

function

 

when

 

a

 

FOR

 

BIT

 

DATA

 

string

 

is

 

given

 

as

 

an

 

argument

 

is

 

not

 

defined.

 

This

 

situation

 

in

 

now

 

caught

 

as

 

an

 

error.

 

Resolution:

   

Change

 

the

 

argument

 

to

 

the

 

CAST

 

specification

 

or

 

the

 

CLOB

 

function

 

so

 

that

 

it

 

is

 

not

 

a

 

FOR

 

BIT

 

DATA

 

string.

 

This

 

can

 

be

 

done

 

by

 

using

 

the

 

CAST

 

specification

 

to

 

cast

 

the

 

FOR

 

BIT

 

DATA

 

string

 

to

 

a

 

FOR

 

SBCS

 

DATA

 

string

 

or

 

a

 

FOR

 

MIXED

 

DATA

 

string.

 

For

 

example,

 

if

 

C1FBD

 

is

 

a

 

VARCHAR(20)

 

column

 

declared

 

as

 

FOR

 

BIT

 

DATA,

 

in

 

a

 

non-DBCS

 

database,

 

the

 

following

 

would

 

be

 

a

 

valid

 

argument

 

to

 

the

 

CLOB

 

function:

    

CAST

 

(C1FBD

 

AS

 

VARCHAR(20)

 

FOR

 

SBCS

 

DATA)

 

Output

 

from

 

CHR

 

function

  

Windows

 

UNIX

   

Change:

   

CHR(0)

 

returns

 

a

 

blank

 

(X’20’)

 

instead

 

of

 

the

 

character

 

with

 

code

 

point

 

X’00’.

 

Symptom:

   

Output

 

from

 

the

 

CHR

 

function

 

with

 

X’00’

 

as

 

the

 

argument

 

returns

 

different

 

results.

 

Explanation:

   

String

 

handling

 

when

 

invoking

 

and

 

returning

 

from

 

user-defined

 

functions

 

interprets

 

X’00’

 

as

 

end

 

of

 

string.

 

Resolution:

   

Change

 

the

 

application

 

code

 

to

 

handle

 

the

 

new

 

output

 

value.

 

Alternatively,

 

define

 

a

 

user-defined

 

function

 

that

 

returns

 

CHAR(1)

 

FOR

 

BIT

 

DATA

 

which

 

is

 

sourced

 

on

 

the

 

SYSFUN

 

CHR

 

function,

 

and

 

place

 

this

 

function

 

before

 

SYSFUN

 

on

 

the

 

SQL

 

path.

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

217



TABLE_NAME

 

and

 

TABLE_SCHEMA

 

functions

 

cannot

 

be

 

used

 

in

 

generated

 

columns

 

or

 

check

 

constraints

  

Windows

 

UNIX

   

Change:

   

The

 

definitions

 

for

 

the

 

TABLE_NAME

 

and

 

TABLE_SCHEMA

 

functions

 

have

 

been

 

corrected,

 

and

 

can

 

now

 

not

 

be

 

used

 

in

 

generated

 

columns

 

or

 

check

 

constraints.

 

Symptom:

   

The

 

bind

 

will

 

fail

 

with

 

an

 

SQLCODE

 

-548/SQLSTATE

 

42621

 

stating

 

that

 

TABLE_NAME

 

or

 

TABLE_SCHEMA

 

is

 

invalid

 

in

 

the

 

context

 

of

 

a

 

check

 

constraint.

 

Explanation:

   

The

 

TABLE_NAME

 

and

 

TABLE_SCHEMA

 

functions

 

retrieve

 

data

 

from

 

catalog

 

views.

 

They

 

are

 

of

 

the

 

class

 

READS

 

SQL

 

DATA;

 

functions

 

of

 

class

 

READS

 

SQL

 

DATA

 

are

 

not

 

permitted

 

in

 

GENERATED

 

COLUMN

 

expressions

 

and

 

check

 

constraints,

 

since

 

DB2

 

UDB

 

cannot

 

enforce

 

the

 

correctness

 

of

 

the

 

constraint

 

over

 

time.

 

Resolution:

   

Update

 

any

 

columns

 

that

 

contain

 

generated

 

column

 

expressions

 

and

 

check

 

constraints

 

to

 

remove

 

the

 

use

 

of

 

TABLE_NAME

 

and

 

TABLE_SCHEMA.

 

To

 

alter

 

a

 

generated

 

column,

 

use

 

the

 

ALTER

 

TABLE

 

statement

 

to

 

SET

 

a

 

new

 

expression.

 

To

 

remove

 

a

 

check

 

constraint,

 

use

 

the

 

ALTER

 

TABLE

 

statement

 

with

 

the

 

DROP

 

CONSTRAINT

 

clause.

 

This

 

will

 

allow

 

you

 

to

 

BIND

 

and

 

continue

 

accessing

 

the

 

tables

 

that

 

contain

 

the

 

affected

 

columns.

 

Database

 

security

 

and

 

tuning

 

Authority

 

for

 

CREATE

 

FUNCTION,

 

CREATE

 

METHOD

 

and

 

CREATE

 

PROCEDURE

 

statements

  

Windows

 

UNIX

   

Change:

   

The

 

CREATE_EXTERNAL_ROUTINE

 

authority

 

is

 

introduced

 

in

 

Version

 

8.

 

Symptom:

   

CREATE

 

FUNCTION,

 

CREATE

 

METHOD

 

and

 

CREATE

 

PROCEDURE

 

statements

 

with

 

the

 

EXTERNAL

 

option

 

may

 

fail.

 

Resolution:

   

Grant

 

CREATE_EXTERNAL_ROUTINE

 

authority

 

to

 

users

 

who

 

issue

 

CREATE

 

FUNCTION,

 

CREATE

 

METHOD,

 

and

 

CREATE

 

PROCEDURE

 

statements

 

with

 

the

 

EXTERNAL

 

option.

 

Utilities

 

and

 

tools

 

Changes

 

when

 

monitoring

 

performance

 

using

 

the

 

Control

 

Center

  

Windows

 

UNIX

   

Symptom:

   

When

 

looking

 

within

 

the

 

Control

 

Center,

 

you

 

do

 

not

 

find

 

any

 

references

 

to

 

the

 

performance

 

monitor.

 

Explanation:

   

The

 

performance

 

monitor

 

capability

 

of

 

the

 

Control

 

Center

 

has

 

be

 

removed.

   

218

 

Administration

 

Guide:

 

Planning

|

|||
|

|
|

|
|



Resolution:

   

When

 

working

 

with

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

for

 

Windows®,

 

there

 

are

 

tools

 

that

 

can

 

be

 

used

 

to

 

monitor

 

performance:

 

v

   

DB2

 

Performance

 

Expert

 

The

 

separately

 

purchased

 

DB2

 

Performance

 

Expert

 

for

 

Multiplatforms,

 

Version

 

1.1

 

consolidates,

 

reports,

 

analyzes

 

and

 

recommends

 

self-managing

 

and

 

resource

 

tuning

 

changes

 

based

 

on

 

DB2

 

UDB

 

performance-related

 

information.

 

v

   

DB2

 

UDB

 

Health

 

Center

 

The

 

functions

 

of

 

the

 

Health

 

Center

 

provide

 

you

 

with

 

different

 

methods

 

to

 

work

 

with

 

performance-related

 

information.

 

These

 

functions

 

somewhat

 

replace

 

the

 

performance

 

monitor

 

capability

 

of

 

the

 

Control

 

Center.

 

v

   

Windows

 

Performance

 

Monitor

 

The

 

Windows

 

Performance

 

Monitor

 

enables

 

you

 

to

 

monitor

 

both

 

database

 

and

 

system

 

performance,

 

retrieving

 

information

 

from

 

any

 

of

 

the

 

performance

 

data

 

providers

 

registered

 

with

 

the

 

system.

 

Windows

 

also

 

provides

 

performance

 

information

 

data

 

on

 

all

 

aspects

 

of

 

machine

 

operation

 

including:

 

–

   

CPU

 

usage

 

–

   

Memory

 

utilization

 

–

   

Disk

 

activity

 

–

   

Network

 

activity

Running

 

online

 

utilities

 

at

 

the

 

same

 

time

  

Windows

 

UNIX

   

Symptom:

   

When

 

online

 

utilities

 

are

 

used

 

at

 

the

 

same

 

time,

 

the

 

utilities

 

may

 

take

 

a

 

long

 

time

 

to

 

complete.

 

Explanation:

   

The

 

locks

 

required

 

by

 

one

 

utility

 

affect

 

the

 

progress

 

of

 

the

 

other

 

utilities

 

running

 

at

 

the

 

same

 

time.

 

Resolution:

   

When

 

there

 

is

 

a

 

potential

 

for

 

conflict

 

between

 

the

 

locking

 

requirements

 

of

 

utilities

 

that

 

are

 

being

 

run

 

at

 

the

 

same

 

time,

 

you

 

should

 

consider

 

altering

 

your

 

scheduling

 

for

 

the

 

utilities

 

you

 

wish

 

to

 

run.

 

The

 

utilities

 

(like

 

online

 

backup

 

table

 

space,

 

load

 

table,

 

or

 

inplace

 

reorganization

 

of

 

tables)

 

use

 

locking

 

mechanisms

 

to

 

prevent

 

conflicts

 

between

 

the

 

utilities.

 

The

 

utilities

 

use

 

table

 

locks,

 

table

 

space

 

locks,

 

and

 

table

 

space

 

states

 

at

 

different

 

times

 

to

 

control

 

what

 

needs

 

to

 

be

 

done

 

in

 

the

 

database.

 

When

 

locks

 

are

 

held

 

by

 

a

 

utility,

 

the

 

other

 

utilities

 

requesting

 

similar

 

or

 

related

 

locks

 

must

 

wait

 

until

 

the

 

locks

 

are

 

released.

 

For

 

example,

 

the

 

last

 

phase

 

of

 

an

 

inplace

 

table

 

reorganization

 

cannot

 

start

 

while

 

an

 

online

 

backup

 

is

 

running

 

that

 

includes

 

the

 

table

 

being

 

reorganized.

 

You

 

can

 

pause

 

the

 

reorganization

 

request

 

if

 

you

 

require

 

the

 

backup

 

to

 

complete.

 

In

 

another

 

example,

 

the

 

online

 

load

 

utility

 

will

 

not

 

work

 

with

 

another

 

online

 

load

 

request

 

on

 

the

 

same

 

table.

 

If

 

different

 

tables

 

are

 

being

 

loaded,

 

then

 

the

 

load

 

requests

 

will

 

not

 

block

 

each

 

other.

 

Changes

 

to

 

db2move

 

summary

 

output

  

Windows

 

UNIX

    

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

219

|
|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|

|

|

|

|||
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|||
|



Change:

   

In

 

Version

 

8.2,

 

the

 

summary

 

output

 

generated

 

by

 

db2move

 

is

 

improved

 

by

 

being

 

made

 

more

 

descriptive.

 

However,

 

the

 

change

 

in

 

the

 

summary

 

output

 

may

 

cause

 

a

 

script

 

written

 

to

 

analyze

 

the

 

old

 

output

 

to

 

fail.

 

Symptom:

   

A

 

script

 

written

 

to

 

analyze

 

the

 

old

 

output

 

generated

 

by

 

db2move

 

fails.

 

Explanation:

   

The

 

summary

 

output

 

generated

 

by

 

db2move

 

is

 

improved.

 

When

 

db2move

 

is

 

run

 

with

 

the

 

“IMPORT”

 

option,

 

the

 

old

 

output

 

appeared

 

as:

    

IMPORT:

 

-Rows

 

read:

     

5;

 

-Rows

 

committed:

     

5;

   

Table

 

"DSCIARA2"."T20"

 

The

 

new

 

output

 

appears

 

as:

    

*

 

IMPORT:

  

table

 

"DSCIARA2"."T20"

      

-Rows

 

read:

          

5

      

-Inserted:

           

4

      

-Rejected:

           

1

      

-Committed:

          

5

 

When

 

db2move

 

is

 

run

 

with

 

the

 

“LOAD”

 

option,

 

the

 

old

 

output

 

appeared

 

as:

    

*

 

LOAD:

  

table

 

"DSCIARA2"."T20"

      

-Rows

 

read:

    

5;

 

-Loaded:

    

4;

  

-Rejected

   

1

  

-Deleted

   

0

  

-Committed

   

5

 

The

 

new

 

output

 

appears

 

as:

    

*

 

IMPORT:

  

table

 

"DSCIARA2"."T20"

      

-Rows

 

read:

          

5

      

-Loaded:

             

4

      

-Rejected:

           

1

      

-Deleted:

            

0

      

-Committed:

          

5

 

Resolution:

   

Your

 

script

 

used

 

to

 

analyze

 

the

 

db2move

 

output

 

will

 

need

 

to

 

be

 

modified

 

to

 

account

 

for

 

the

 

changes

 

in

 

the

 

layout

 

and

 

content.

 

Changes

 

to

 

the

 

explain

 

facility

 

tables

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

there

 

are

 

changes

 

to

 

the

 

existing

 

explain

 

facility

 

tables

 

including

 

two

 

new

 

tables:

 

ADVISE_MQT

 

and

 

ADVISE_PARTITION.

 

Symptom:

   

The

 

DB2

 

Design

 

Advisor,

 

when

 

asked

 

to

 

make

 

recommendations

 

for

 

materialized

 

query

 

tables

 

(MQTs),

 

or

 

for

 

database

 

partitions,

 

will

 

return

 

error

 

messages

 

if

 

the

 

explain

 

tables

 

have

 

not

 

been

 

created.

 

Explanation:

   

The

 

new

 

tables

 

ADVISE_MQT

 

and

 

ADVISE_PARTITION

 

have

 

not

 

been

 

created.

 

Resolution:

   

Use

 

the

 

db2exmig

 

command

 

to

 

move

 

the

 

Version

 

7

 

and

 

Version

 

8.1

 

explain

 

tables

 

to

 

Version

 

8.2.

 

This

 

command

 

has

 

the

 

necessary

 

EXPLAIN

 

DLL

 

to

 

create

 

all

 

of

 

the

 

needed

 

explain

 

facility

 

tables.

 

Changes

 

to

 

the

 

db2diag.log

 

message

 

format

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

the

 

db2diag.log

 

message

 

format

 

is

 

changed.

   

220

 

Administration

 

Guide:

 

Planning

|
|
|

|

|

|

|

|

|
|
|
|
|

|

|
|

|

|
|
|
|
|
|

|
|

|

|||
|

|
|

|
|
|

|
|

|
|
|

|||
|

|



Symptom:

   

You

 

will

 

notice

 

that

 

the

 

format

 

has

 

changed

 

when

 

reviewing

 

the

 

db2diag.log

 

messages.

 

The

 

changes

 

include

 

the

 

following

 

examples:

 

each

 

message

 

will

 

have

 

a

 

diagnostic

 

log

 

record

 

header,

 

record

 

fields

 

will

 

be

 

preceded

 

by

 

the

 

field

 

name

 

and

 

column,

 

and

 

message

 

and

 

data

 

portions

 

of

 

the

 

logging

 

record

 

will

 

be

 

clearly

 

marked.

 

All

 

of

 

the

 

changes

 

to

 

the

 

format

 

will

 

make

 

the

 

logging

 

record

 

easier

 

to

 

use

 

and

 

to

 

understand.

 

Explanation:

   

The

 

DB2

 

UDB

 

diagnostic

 

logs

 

are

 

being

 

reworked.

 

The

 

db2diag.log

 

file

 

will

 

be

 

parsable.

 

Downlevel

 

CREATE

 

DATABASE

 

and

 

DROP

 

DATABASE

 

not

 

supported

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

the

 

CREATE

 

DATABASE

 

and

 

DROP

 

DATABASE

 

commands

 

are

 

not

 

supported

 

from

 

downlevel

 

clients

 

or

 

to

 

downlevel

 

servers.

 

Symptom:

   

You

 

will

 

receive

 

error

 

SQL0901N

 

when

 

you

 

issue

 

one

 

of

 

these

 

commands.

 

Explanation:

   

The

 

CREATE

 

DATABASE

 

and

 

DROP

 

DATABASE

 

commands

 

are

 

both

 

only

 

supported

 

from

 

Version

 

8

 

clients

 

to

 

Version

 

8

 

servers.

 

You

 

cannot

 

issue

 

these

 

commands

 

from

 

a

 

Version

 

6

 

or

 

Version

 

7

 

client

 

to

 

a

 

Version

 

8

 

server.

 

You

 

cannot

 

issue

 

these

 

commands

 

from

 

a

 

Version

 

8

 

client

 

to

 

a

 

Version

 

7

 

server.

 

Resolution:

   

Create

 

or

 

drop

 

a

 

Version

 

8

 

database

 

from

 

a

 

Version

 

8

 

client.

 

Create

 

or

 

drop

 

a

 

Version

 

7

 

database

 

from

 

a

 

Version

 

6

 

or

 

Version

 

7

 

client.

 

Mode

 

change

 

to

 

tables

 

after

 

a

 

load

  

Windows

 

UNIX

   

Change:

   

In

 

previous

 

versions,

 

a

 

table

 

that

 

has

 

been

 

loaded

 

with

 

the

 

INSERT

 

option

 

and

 

has

 

immediate

 

materialized

 

query

 

tables

 

(also

 

known

 

as

 

summary

 

tables)

 

would

 

be

 

in

 

Normal

 

(Full

 

Access)

 

state

 

after

 

a

 

subsequent

 

SET

 

INTEGRITY

 

IMMEDIATE

 

CHECKED

 

statement

 

on

 

it.

 

In

 

Version

 

8,

 

the

 

table

 

will

 

be

 

in

 

No

 

Data

 

Movement

 

mode

 

after

 

the

 

SET

 

INTEGRITY

 

IMMEDIATE

 

CHECKED

 

statement.

 

Explanation:

   

Access

 

to

 

a

 

table

 

in

 

No

 

Data

 

Movement

 

mode

 

is

 

very

 

similar

 

to

 

a

 

table

 

in

 

Normal

 

(Full

 

Access)

 

mode,

 

except

 

for

 

some

 

statements

 

and

 

utilities

 

that

 

involve

 

data

 

movement

 

within

 

the

 

table

 

itself.

 

Resolution:

   

You

 

can

 

force

 

the

 

base

 

table

 

that

 

has

 

been

 

loaded

 

and

 

has

 

dependent

 

immediate

 

summary

 

tables

 

to

 

bypass

 

the

 

No

 

Data

 

Movement

 

mode

 

and

 

to

 

go

 

directly

 

into

 

Full

 

Access

 

mode

 

by

 

issuing

 

a

 

SET

 

INTEGRITY

 

...

 

IMMEDIATE

 

CHECKED

 

FULL

 

ACCESS

 

statement

 

on

 

the

 

base

 

table.

 

However,

 

use

 

of

 

this

 

option

 

is

 

not

 

recommended

 

as

 

it

 

will

 

force

 

a

 

full

 

refresh

 

of

 

the

 

dependent

 

immediate

 

materialized

 

query

 

tables

 

(also

 

known

 

as

 

summary

 

tables).

 

Load

 

utility

 

in

 

insert

 

or

 

replace

 

mode

  

Windows

 

UNIX

    

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

221

|

|



Change:

   

In

 

previous

 

versions,

 

when

 

using

 

the

 

load

 

utility

 

in

 

insert

 

or

 

replace

 

mode,

 

the

 

default

 

option

 

was

 

CASCADE

 

IMMEDIATE

 

when

 

integrity

 

checking

 

was

 

turned

 

off;

 

when

 

the

 

table

 

was

 

put

 

into

 

check

 

pending

 

state,

 

all

 

of

 

its

 

dependent

 

foreign

 

key

 

tables

 

and

 

dependent

 

materialized

 

query

 

tables

 

(also

 

known

 

as

 

summary

 

tables)

 

were

 

also

 

immediately

 

put

 

into

 

check

 

pending

 

state.

 

For

 

Version

 

8,

 

when

 

using

 

the

 

load

 

utility

 

in

 

insert

 

or

 

replace

 

mode,

 

the

 

default

 

is

 

CASCADE

 

DEFERRED

 

when

 

integrity

 

checking

 

has

 

been

 

turned

 

off.

 

Resolution:

   

You

 

can

 

put

 

dependent

 

foreign

 

key

 

tables

 

and

 

dependent

 

materialized

 

query

 

tables

 

into

 

check

 

pending

 

state

 

along

 

with

 

their

 

parent

 

tables

 

by

 

using

 

the

 

CHECK

 

PENDING

 

CASCADE

 

IMMEDIATE

 

option

 

of

 

the

 

LOAD

 

command.

 

DB2_LIKE_VARCHAR

 

does

 

not

 

control

 

collection

 

of

 

sub-element

 

statistics

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

7,

 

the

 

DB2_LIKE_VARCHAR

 

registry

 

variable

 

controlled

 

collection

 

of

 

sub-element

 

statistics

 

as

 

well

 

as

 

the

 

use

 

of

 

these

 

statistics.

 

In

 

Version

 

8,

 

DB2_LIKE_VARCHAR

 

does

 

not

 

control

 

collection

 

of

 

sub-element

 

statistics;

 

instead,

 

collection

 

of

 

sub-element

 

statistics

 

is

 

controlled

 

by

 

the

 

LIKE

 

STATISTICS

 

option

 

of

 

the

 

RUNSTATS

 

command

 

or

 

the

 

DB2RUNSTATS_COLUMN_LIKE_STATS

 

value

 

of

 

the

 

iColumnflags

 

parameter

 

of

 

the

 

db2Runstats

 

API.

 

Symptom:

   

After

 

invoking

 

the

 

RUNSTATS

 

command

 

or

 

calling

 

the

 

db2Runstats

 

API,

 

sub-element

 

statistics

 

are

 

set

 

to

 

-1

 

(the

 

default)

 

in

 

the

 

system

 

catalog;

 

this

 

can

 

be

 

observed

 

with

 

a

 

query

 

like

 

the

 

following:

 

SELECT

 

SUBSTR(TABSCHEMA,1,18),

 

SUBSTR(TABNAME,1,18),

    

SUBSTR(COLNAME,1,18),

 

COLCARD,

 

AVGCOLLEN,

 

SUB_COUNT,

 

SUB_DELIM_LENGTH

    

FROM

 

SYSSTAT.COLUMNS

    

WHERE

 

COLNAME

 

IN

 

(’P_TYPE’,

 

’P_NAME’)

    

ORDER

 

BY

 

1,2,3

 

(Replace

 

P_TYPE

 

and

 

P_NAME

 

with

 

the

 

appropriate

 

column

 

names.)

 

If

 

the

 

result

 

for

 

a

 

column

 

has

 

a

 

non-negative

 

value

 

for

 

COLCARD

 

and

 

AVGCOLLEN

 

but

 

a

 

value

 

of

 

-1

 

for

 

SUB_COUNT

 

and

 

SUB_DELIM_LENGTH,

 

this

 

indicates

 

that

 

basic

 

statistics

 

have

 

been

 

gathered

 

for

 

the

 

column,

 

but

 

sub-element

 

statistics

 

have

 

not

 

been

 

gathered.

 

Resolution:

   

If

 

you

 

specified

 

DB2_LIKE_VARCHAR=?,Y

 

(where

 

?

 

is

 

any

 

value)

 

in

 

Version

 

7,

 

then

 

you

 

should

 

specify

 

the

 

LIKE

 

STATISTICS

 

option

 

on

 

the

 

RUNSTATS

 

command

 

or

 

DB2RUNSTATS_COLUMN_LIKE_STATS

 

on

 

the

 

db2Runstats

 

API

 

to

 

collect

 

these

 

statistics

 

for

 

appropriate

 

columns.

 

Connectivity

 

and

 

coexistence

 

Down

 

level

 

server

 

support

  

Windows

 

UNIX

   

Change:

   

As

 

you

 

move

 

your

 

environment

 

from

 

Version

 

7

 

to

 

Version

 

8,

 

if

 

you

 

are

 

in

 

a

 

situation

 

where

 

you

 

migrate

 

your

 

client

 

machines

 

to

 

Version

 

8

 

before

 

you

   

222

 

Administration

 

Guide:

 

Planning



migrate

 

all

 

of

 

your

 

servers

 

to

 

Version

 

8,

 

there

 

are

 

several

 

restrictions

 

and

 

limitations.

 

These

 

restrictions

 

and

 

limitations

 

are

 

not

 

associated

 

with

 

DB2

 

Connect;

 

nor

 

with

 

zSeries,

 

OS/390,

 

or

 

iSeries

 

database

 

servers.

 

Resolution:

   

For

 

Version

 

8

 

clients

 

to

 

work

 

with

 

Version

 

7

 

servers,

 

you

 

need

 

to

 

configure/enable

 

the

 

use

 

of

 

DRDA

 

Application

 

Server

 

capability

 

on

 

the

 

Version

 

7

 

server.

 

For

 

information

 

on

 

how

 

to

 

do

 

this,

 

refer

 

to

 

the

 

Version

 

7

 

Installation

 

and

 

Configuration

 

Supplement.

 

To

 

avoid

 

the

 

known

 

restrictions

 

and

 

limitations,

 

you

 

should

 

migrate

 

all

 

of

 

your

 

servers

 

to

 

Version

 

8

 

before

 

you

 

migrate

 

any

 

of

 

your

 

client

 

machines

 

to

 

Version

 

8.

 

If

 

this

 

is

 

not

 

possible,

 

then

 

you

 

should

 

know

 

that

 

when

 

accessing

 

Version

 

7

 

servers

 

from

 

Version

 

8

 

clients,

 

there

 

is

 

no

 

support

 

available

 

for:

 

v

   

Some

 

data

 

types:

 

–

   

Large

 

object

 

(LOB)

 

data

 

types.

 

–

   

User-defined

 

distinct

 

types

 

(UDTs).

 

–

   

DATALINK

 

data

 

types.
v

   

Some

 

security

 

capabilities:

 

–

   

Authentication

 

type

 

SERVER_ENCRYPT.

 

–

   

Changing

 

passwords.

 

You

 

are

 

not

 

able

 

to

 

change

 

passwords

 

on

 

the

 

DB2

 

UDB

 

Version

 

7

 

server

 

from

 

a

 

DB2

 

UDB

 

Version

 

8

 

client.
v

   

Certain

 

connections

 

and

 

communication

 

protocols:

 

–

   

Instance

 

requests

 

that

 

require

 

an

 

ATTACH

 

instead

 

of

 

a

 

connection.

 

–

   

The

 

ATTACH

 

statement

 

is

 

not

 

supported

 

from

 

a

 

DB2

 

UDB

 

Version

 

8

 

client

 

to

 

a

 

DB2

 

UDB

 

Version

 

7

 

server.

 

–

   

The

 

only

 

supported

 

network

 

protocol

 

is

 

TCP/IP.

 

–

   

Other

 

network

 

protocols

 

like

 

SNA,

 

NetBIOS,

 

IPX/SPX,

 

and

 

others

 

are

 

not

 

supported.
v

   

Some

 

application

 

features

 

and

 

tasks:

 

–

   

The

 

DESCRIBE

 

INPUT

 

statement

 

is

 

not

 

supported

 

with

 

one

 

exception

 

for

 

ODBC/JDBC

 

applications.

 

In

 

order

 

to

 

support

 

DB2

 

UDB

 

Version

 

8

 

clients

 

running

 

ODBC/JDBC

 

applications

 

accessing

 

DB2

 

UDB

 

Version

 

7

 

servers,

 

a

 

fix

 

for

 

DESCRIBE

 

INPUT

 

support

 

must

 

be

 

applied

 

to

 

all

 

DB2

 

UDB

 

Version

 

7

 

servers

 

where

 

this

 

type

 

of

 

access

 

is

 

required.

 

This

 

fix

 

is

 

associated

 

with

 

APAR

 

IY30655

 

and

 

will

 

be

 

available

 

before

 

the

 

DB2

 

UDB

 

Version

 

8

 

General

 

Availability

 

date.

 

Use

 

the

 

“Contacting

 

IBM”

 

information

 

in

 

any

 

DB2

 

UDB

 

document

 

to

 

find

 

out

 

how

 

to

 

get

 

the

 

fix

 

associated

 

with

 

APAR

 

IY30655.

 

The

 

DESCRIBE

 

INPUT

 

statement

 

is

 

a

 

performance

 

and

 

usability

 

enhancement

 

to

 

allow

 

an

 

application

 

requestor

 

to

 

obtain

 

a

 

description

 

of

 

input

 

parameter

 

markers

 

in

 

a

 

prepared

 

statement.

 

For

 

a

 

CALL

 

statement,

 

this

 

includes

 

the

 

parameter

 

markers

 

associated

 

with

 

the

 

IN

 

and

 

INOUT

 

parameters

 

for

 

the

 

stored

 

procedure.

 

–

   

Using

 

Result.getObject(1)

 

will

 

return

 

a

 

BigDecimal

 

instead

 

of

 

a

 

Java

 

Long

 

datatype

 

as

 

required

 

by

 

the

 

JDBC

 

specification.

 

The

 

DB2

 

UDB

 

Version

 

7

 

DRDA

 

server

 

maps

 

BIGINT

 

to

 

DEC(19,0)

 

when

 

it

 

responds

 

to

 

a

 

DESCRIBE

 

INPUT

 

request

 

and

 

when

 

it

 

retrieves

 

data.

 

This

 

behavior

 

occurs

 

because

 

the

 

DB2

 

UDB

 

Version

 

7

 

server

 

operates

 

at

 

a

 

DRDA

 

level

 

where

 

BIGINT

 

is

 

not

 

defined.

 

–

   

Query

 

interrupts

 

are

 

not

 

supported.

 

This

 

affects

 

the

 

CLI/ODBC

 

SQL_QUERY_TIMEOUT

 

connection

 

attribute

 

as

 

well

 

as

 

the

 

interrupt

 

APIs.

 

–

   

Two-phase

 

commit.

 

The

 

DB2

 

UDB

 

Version

 

7

 

server

 

cannot

 

be

 

used

 

as

 

a

 

transaction

 

manager

 

database

 

when

 

using

 

coordinated

 

transactions

 

that

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

223



involve

 

DB2

 

UDB

 

Version

 

8

 

clients.

 

Nor

 

can

 

a

 

DB2

 

UDB

 

Version

 

7

 

server

 

participate

 

in

 

a

 

coordinated

 

transaction

 

where

 

a

 

DB2

 

UDB

 

Version

 

8

 

server

 

may

 

be

 

the

 

transaction

 

manager

 

database.

 

–

   

XA-compliant

 

transaction

 

managers.

 

An

 

application

 

using

 

a

 

DB2

 

UDB

 

Version

 

8

 

client

 

cannot

 

use

 

a

 

DB2

 

UDB

 

Version

 

7

 

server

 

as

 

an

 

XA

 

resource.

 

This

 

includes

 

WebSphere,

 

Microsoft

 

COM+/MTS,

 

BEA

 

WebLogic,

 

and

 

others

 

that

 

are

 

part

 

of

 

a

 

transaction

 

management

 

arrangement.

 

–

   

Monitoring.

 

Monitor

 

functions

 

are

 

not

 

supported

 

from

 

a

 

DB2

 

UDB

 

Version

 

8

 

client

 

to

 

a

 

DB2

 

UDB

 

Version

 

7

 

server.

 

–

   

Utilities.

 

Those

 

utilities

 

that

 

can

 

be

 

initiated

 

by

 

a

 

client

 

to

 

a

 

server

 

are

 

not

 

supported

 

when:

 

1.

   

The

 

client

 

is

 

at

 

DB2

 

UDB

 

Version

 

8

 

and

 

the

 

server

 

is

 

at

 

DB2

 

UDB

 

Version

 

7.

 

2.

   

SQL

 

statements

 

greater

 

than

 

32

 

KB

 

in

 

size.
–

   

Query

 

interrupts

 

are

 

not

 

supported.

 

This

 

affects

 

the

 

CLI/ODBC

 

SQL_QUERY_TIMEOUT

 

connection

 

attribute

 

as

 

well

 

as

 

the

 

interrupt

 

APIs.

 

In

 

addition

 

to

 

these

 

limitations

 

and

 

restrictions

 

for

 

DB2

 

UDB

 

Version

 

8

 

clients

 

working

 

with

 

DB2

 

UDB

 

Version

 

7

 

servers,

 

there

 

are

 

also

 

similar

 

limitations

 

and

 

restrictions

 

for

 

DB2

 

UDB

 

Version

 

8

 

tools

 

working

 

with

 

DB2

 

UDB

 

Version

 

7

 

servers.

 

The

 

following

 

DB2

 

UDB

 

Version

 

8

 

tools

 

support

 

only

 

DB2

 

UDB

 

Version

 

8

 

servers:

 

v

   

Control

 

Center

 

v

   

Task

 

Center

 

v

   

Journal

 

v

   

Satellite

 

Administration

 

Center

 

v

   

Information

 

Catalog

 

Center

 

(including

 

the

 

Web-version

 

of

 

this

 

center)

 

v

   

Health

 

Center

 

(including

 

the

 

Web-version

 

of

 

this

 

center)

 

v

   

License

 

Center

 

v

   

Spatial

 

Extender

 

v

   

Tools

 

Settings

 

v

   

Development

 

Center.

 

You

 

should

 

use

 

Stored

 

Procedure

 

Builder

 

to

 

develop

 

server

 

objects

 

on

 

pre-Version

 

8

 

servers.

 

The

 

following

 

DB2

 

UDB

 

Version

 

8

 

tools

 

support

 

DB2

 

UDB

 

Version

 

7

 

servers

 

(with

 

some

 

restrictions)

 

and

 

DB2

 

UDB

 

Version

 

8

 

servers:

 

v

   

Configuration

 

Assistant

 

It

 

is

 

possible

 

to

 

discover

 

a

 

DB2

 

UDB

 

Version

 

7

 

server

 

and

 

catalog

 

it.

 

However,

 

even

 

though

 

cataloged,

 

no

 

function

 

will

 

work

 

if

 

attempting

 

to

 

access

 

the

 

DB2

 

UDB

 

Version

 

7

 

server.

 

Also,

 

you

 

are

 

able

 

to

 

import

 

a

 

DB2

 

UDB

 

Version

 

7

 

profile

 

to

 

a

 

DB2

 

UDB

 

Version

 

8

 

server,

 

or

 

import

 

a

 

DB2

 

UDB

 

Version

 

8

 

profile

 

to

 

a

 

DB2

 

UDB

 

Version

 

7

 

server.

 

However,

 

all

 

other

 

Configuration

 

Assistant

 

functions

 

will

 

not

 

work

 

with

 

DB2

 

UDB

 

Version

 

7

 

servers.

 

v

   

Data

 

Warehouse

 

Center

 

v

   

Replication

 

Center

 

v

   

Command

 

Editor

 

(the

 

replacement

 

for

 

the

 

Command

 

Center,

 

including

 

the

 

Web-version

 

of

 

this

 

center)

 

Importing

 

and

 

saving

 

scripts

 

to

 

and

 

from

 

DB2

 

UDB

 

Version

 

7

 

servers

 

is

 

not

 

possible.

 

Any

 

utility

 

requiring

 

an

 

ATTACH

 

will

 

not

 

work.

 

v

   

SQL

 

Assist

 

v

   

Visual

 

Explain

  

224

 

Administration

 

Guide:

 

Planning

|
|

|
|



In

 

general,

 

any

 

DB2

 

UDB

 

Version

 

8

 

tool

 

that

 

is

 

only

 

launched

 

from

 

within

 

the

 

navigation

 

tree

 

of

 

the

 

Control

 

Center,

 

or

 

any

 

details

 

view

 

based

 

on

 

these

 

tools,

 

will

 

not

 

be

 

available

 

or

 

accessible

 

to

 

DB2

 

UDB

 

Version

 

7

 

and

 

earlier

 

servers.

 

You

 

should

 

consider

 

using

 

the

 

DB2

 

UDB

 

Version

 

7

 

tools

 

when

 

working

 

with

 

DB2

 

UDB

 

Version

 

7

 

or

 

earlier

 

servers.

 

Scrollable

 

cursor

 

support

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

scrollable

 

cursor

 

functionality

 

will

 

not

 

be

 

supported

 

from

 

a

 

Version

 

8

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

client

 

to

 

a

 

Version

 

7

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

server.

 

Support

 

for

 

scrollable

 

cursors

 

will

 

only

 

be

 

available

 

from

 

a

 

Version

 

8

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

client

 

to

 

a

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

Version

 

8

 

server

 

or

 

to

 

a

 

DB2

 

UDB

 

for

 

z/OS

 

and

 

OS/390

 

Version

 

7

 

server.

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

Version

 

7

 

clients

 

will

 

continue

 

to

 

support

 

existing

 

scrollable

 

cursor

 

functionality

 

to

 

Version

 

8

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

servers.

 

Resolution:

   

Upgrade

 

servers

 

to

 

Version

 

8.

 

Version

 

7

 

server

 

access

 

via

 

a

 

DB2

 

Connect

 

Version

 

8

 

server

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

access

 

from

 

a

 

DB2

 

UDB

 

for

 

Unix

 

and

 

Windows

 

client

 

to

 

a

 

Version

 

7

 

DB2

 

UDB

 

server

 

will

 

not

 

be

 

supported

 

through

 

a

 

Version

 

8

 

server,

 

where

 

the

 

functionality

 

is

 

provided

 

either

 

by

 

DB2

 

Connect

 

Enterprise

 

Edition

 

Version

 

8

 

or

 

by

 

DB2

 

UDB

 

Enterprise

 

Server

 

Edition

 

Version

 

8.

 

Resolution:

   

Upgrade

 

servers

 

to

 

Version

 

8.

 

Type

 

1

 

connection

 

with

 

CLP

 

and

 

embedded

 

SQL

  

Windows

 

UNIX

   

Change:

   

In

 

previous

 

versions

 

of

 

DB2

 

UDB,

 

when

 

using

 

the

 

Command

 

Line

 

Processor

 

(CLP)

 

or

 

embedded

 

SQL

 

and

 

connected

 

to

 

a

 

database

 

with

 

a

 

Type

 

1

 

connection,

 

an

 

attempt

 

to

 

connect

 

to

 

another

 

database

 

during

 

a

 

unit

 

of

 

work

 

would

 

fail

 

with

 

an

 

SQL0752N

 

error.

 

In

 

Version

 

8,

 

the

 

unit

 

of

 

work

 

is

 

committed,

 

the

 

connection

 

is

 

reset,

 

and

 

the

 

connection

 

to

 

the

 

second

 

database

 

is

 

allowed.

 

The

 

unit

 

of

 

work

 

will

 

be

 

committed

 

and

 

the

 

connection

 

will

 

be

 

reset

 

even

 

if

 

AUTOCOMMIT

 

is

 

off.

 

Messages

 

DB2

 

Connect

 

messages

 

returned

 

instead

 

of

 

DB2

 

UDB

 

messages

  

Windows

 

UNIX

   

Change:

   

In

 

Version

 

8,

 

conditions

 

that

 

would

 

have

 

returned

 

a

 

DB2

 

UDB

 

message

 

in

 

previous

 

releases

 

may

 

now

 

return

 

a

 

DB2

 

Connect

 

message.

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

225



The

 

messages

 

affected

 

by

 

this

 

change

 

are

 

related

 

to

 

bind,

 

connection,

 

or

 

security

 

errors.

 

SQL

 

errors

 

for

 

queries

 

and

 

other

 

SQL

 

requests

 

are

 

not

 

affected

 

by

 

this

 

change.

 

Examples:

 

v

   

SQLCODE

 

-30081

 

will

 

be

 

returned

 

instead

 

of

 

SQLCODE

 

-1224

 

v

   

SQLCODE

 

-30082

 

will

 

be

 

returned

 

instead

 

of

 

SQLCODE

 

-1403

 

v

   

SQLCODE

 

-30104

 

will

 

be

 

returned

 

instead

 

of

 

SQLCODE

 

-4930

Symptom:

   

Applications

 

coded

 

to

 

react

 

to

 

DB2

 

UDB

 

messages

 

may

 

not

 

behave

 

as

 

before.

 

Configuration

 

parameters

 

Obsolete

 

database

 

manager

 

configuration

 

parameters

  

Windows

 

UNIX

   

Change:

   

The

 

following

 

database

 

manager

 

configuration

 

parameters

 

are

 

obsolete:

 

v

   

backbufsz:

 

In

 

previous

 

versions

 

you

 

could

 

perform

 

a

 

backup

 

operation

 

using

 

a

 

default

 

buffer

 

size,

 

and

 

the

 

value

 

of

 

backbufsz

 

would

 

be

 

taken

 

as

 

the

 

default.

 

In

 

Version

 

8

 

you

 

should

 

explicitly

 

specify

 

the

 

size

 

of

 

your

 

backup

 

buffers

 

when

 

you

 

use

 

the

 

backup

 

utility.

 

v

   

dft_client_adpt:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

dft_client_comm:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

dir_obj_name:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

dir_path_name:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

dir_type:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

dos_rqrioblk

 

v

   

drda_heap_sz

 

v

   

fcm_num_anchors,

 

fcm_num_connect,

 

and

 

fcm_num_rqb:

 

DB2

 

UDB

 

will

 

now

 

adjust

 

message

 

anchors,

 

connection

 

entries,

 

and

 

request

 

blocks

 

dynamically

 

and

 

automatically,

 

so

 

you

 

will

 

not

 

have

 

to

 

adjust

 

these

 

parameters

 

v

   

fileserver:

 

IPX/SPX

 

is

 

no

 

longer

 

supported

 

v

   

initdari_jvm:

 

Java

 

stored

 

procedures

 

will

 

now

 

run

 

multithreaded

 

by

 

default,

 

and

 

are

 

run

 

in

 

separate

 

processes

 

from

 

other

 

language

 

routines,

 

so

 

this

 

parameter

 

is

 

no

 

longer

 

supported

 

v

   

ipx_socket:

 

IPX/SPX

 

is

 

no

 

longer

 

supported

 

v

   

jdk11_path:

 

replaced

 

by

 

jdk_path

 

database

 

manager

 

configuration

 

parameter

 

v

   

keepdari:

 

replaced

 

by

 

keepfenced

 

database

 

manager

 

configuration

 

parameter

 

v

   

max_logicagents:

 

replaced

 

by

 

max_connections

 

database

 

manager

 

configuration

 

parameter

 

v

   

maxdari:

 

replaced

 

by

 

fenced_pool

 

database

 

manager

 

configuration

 

parameter

 

v

   

num_initdaris:

 

replaced

 

by

 

num_initfenced

 

database

 

manager

 

configuration

 

parameter

 

v

   

objectname:

 

IPX/SPX

 

is

 

no

 

longer

 

supported

 

v

   

restbufsz:

 

In

 

previous

 

versions

 

you

 

could

 

perform

 

a

 

restore

 

operation

 

using

 

a

 

default

 

buffer

 

size,

 

and

 

the

 

value

 

of

 

restbufsz

 

would

 

be

 

taken

 

as

 

the

 

default.

 

In

 

Version

 

8

 

you

 

should

 

explicitly

 

specify

 

the

 

size

 

of

 

your

 

restore

 

buffers

 

when

 

use

 

restore

 

utility.

   

226

 

Administration

 

Guide:

 

Planning

|
|
|



v

   

route_obj_name:

 

DCE

 

directory

 

services

 

are

 

no

 

longer

 

supported

 

v

   

ss_logon:

 

this

 

is

 

an

 

OS/2

 

parameter,

 

and

 

OS/2

 

is

 

no

 

longer

 

supported

 

v

   

udf_mem_sz:

 

UDFs

 

no

 

longer

 

pass

 

data

 

in

 

shared

 

memory,

 

so

 

this

 

parameter

 

is

 

not

 

supported

Resolution:

   

Remove

 

all

 

references

 

to

 

these

 

parameters

 

from

 

your

 

applications.

 

Obsolete

 

database

 

configuration

 

parameters

  

Windows

 

UNIX

   

Change:

   

The

 

following

 

database

 

configuration

 

parameters

 

are

 

obsolete:

 

v

   

buffpage:

 

In

 

previous

 

versions,

 

you

 

could

 

create

 

or

 

alter

 

a

 

buffer

 

pool

 

using

 

a

 

default

 

size,

 

and

 

the

 

value

 

of

 

buffpage

 

would

 

be

 

taken

 

as

 

the

 

default.

 

In

 

Version

 

8,

 

you

 

should

 

explicitly

 

specify

 

the

 

size

 

of

 

your

 

buffer

 

pools,

 

using

 

the

 

SIZE

 

keyword

 

on

 

the

 

ALTER

 

BUFFERPOOL

 

or

 

CREATE

 

BUFFERPOOL

 

statements.

 

v

   

copyprotect

 

v

   

indexsort

Resolution:

   

Remove

 

all

 

references

 

to

 

these

 

parameters

 

from

 

your

 

applications.

 

Version

 

7

 

incompatibilities

 

with

 

previous

 

releases

 

Application

 

Programming

 

Query

 

Patroller

 

Universal

 

Client

  

WIN

 

UNIX

 

OS/2

   

Change:

   

This

 

new

 

version

 

of

 

the

 

client

 

application

 

enabler

 

(CAE)

 

will

 

only

 

work

 

with

 

Query

 

Patroller

 

Server

 

Version

 

7,

 

because

 

there

 

are

 

new

 

stored

 

procedures.

 

CAE

 

is

 

the

 

application

 

interface

 

to

 

Db2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

through

 

which

 

all

 

applications

 

must

 

eventually

 

pass

 

to

 

access

 

the

 

database.

 

Symptom:

   

If

 

this

 

CAE

 

is

 

run

 

against

 

a

 

back-level

 

server,

 

message

 

SQL29001

 

is

 

returned.

 

Object

 

Transform

 

Functions

 

and

 

Structured

 

Types

  

WIN

 

UNIX

 

OS/2

   

Change:

   

There

 

is

 

a

 

minor

 

and

 

remotely

 

possible

 

incompatibility

 

between

 

a

 

pre-Version

 

7

 

client

 

and

 

a

 

Version

 

7

 

server

 

that

 

relates

 

to

 

changes

 

that

 

have

 

been

 

made

 

to

 

the

 

SQLDA.

 

Byte

 

8

 

of

 

the

 

second

 

SQLVAR

 

can

 

now

 

take

 

on

 

the

 

value

 

X’12’

 

(in

 

addition

 

to

 

the

 

values

 

X’00’

 

and

 

X’01’).

 

Applications

 

that

 

do

 

not

 

anticipate

 

the

 

new

 

value

 

may

 

be

 

affected

 

by

 

this

 

extension.

 

Resolution:

   

Because

 

there

 

may

 

be

 

other

 

extensions

 

to

 

this

 

field

 

in

 

future

 

releases,

 

developers

 

are

 

advised

 

to

 

only

 

test

 

for

 

explicitly

 

defined

 

values.

 

Versions

 

of

 

Class

 

and

 

Jar

 

Files

 

Used

 

by

 

the

 

JVM

  

WIN

 

UNIX

 

OS/2

    

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

227

|
|
|
|



Change:

   

Previously,

 

once

 

a

 

Java

 

stored

 

procedure

 

or

 

user-defined

 

function

 

(UDF)

 

was

 

started,

 

the

 

Java

 

Virtual

 

Machine

 

(JVM)

 

locked

 

all

 

files

 

given

 

in

 

the

 

CLASSPATH

 

(including

 

those

 

in

 

sqllib/function).

 

The

 

JVM

 

used

 

these

 

files

 

until

 

the

 

database

 

manager

 

was

 

stopped.

 

Depending

 

on

 

the

 

environment

 

in

 

which

 

you

 

run

 

a

 

stored

 

procedure

 

or

 

UDF

 

(that

 

is,

 

depending

 

on

 

the

 

value

 

of

 

the

 

keepdari

 

database

 

manager

 

configuration

 

parameter,

 

and

 

whether

 

or

 

not

 

the

 

stored

 

procedure

 

is

 

fenced),

 

refreshing

 

classes

 

will

 

let

 

you

 

replace

 

class

 

and

 

jar

 

files

 

without

 

stopping

 

the

 

database

 

manager.

 

This

 

is

 

different

 

from

 

the

 

previous

 

behavior.

 

Changed

 

Functionality

 

of

 

Install,

 

Replace,

 

and

 

Remove

 

Jar

 

Commands

  

WIN

 

UNIX

 

OS/2

   

Change:

   

Previously,

 

installation

 

of

 

a

 

jar

 

caused

 

the

 

flushing

 

of

 

all

 

DARI

 

(Database

 

Application

 

Remote

 

Interface)

 

processes.

 

This

 

way,

 

a

 

new

 

stored

 

procedure

 

class

 

was

 

guaranteed

 

to

 

be

 

picked

 

up

 

on

 

the

 

next

 

call.

 

Currently,

 

no

 

jar

 

commands

 

flush

 

DARI

 

processes.

 

To

 

ensure

 

that

 

classes

 

from

 

newly

 

installed

 

or

 

replaced

 

jars

 

are

 

picked

 

up,

 

you

 

must

 

explicitly

 

issue

 

the

 

SQLEJ.REFRESH_CLASSES

 

command.

 

Another

 

incompatibility

 

introduced

 

by

 

not

 

flushing

 

DARI

 

processes

 

is

 

the

 

fact

 

that

 

for

 

fenced

 

stored

 

procedures,

 

with

 

the

 

value

 

of

 

the

 

keepdari

 

database

 

manager

 

configuration

 

parameter

 

set

 

to

 

″YES″,

 

clients

 

may

 

get

 

different

 

versions

 

of

 

the

 

jar

 

files.

 

Consider

 

the

 

following

 

scenario:

 

1.

   

User

 

A

 

replaces

 

a

 

jar

 

and

 

does

 

not

 

refresh

 

classes.

 

2.

   

User

 

A

 

then

 

calls

 

a

 

stored

 

procedure

 

from

 

the

 

jar.

 

Assuming

 

that

 

this

 

call

 

uses

 

the

 

same

 

DARI

 

process,

 

User

 

A

 

will

 

get

 

an

 

old

 

version

 

of

 

the

 

jar

 

file.

 

3.

   

User

 

B

 

calls

 

the

 

same

 

stored

 

procedure.

 

This

 

call

 

uses

 

a

 

new

 

DARI,

 

which

 

means

 

that

 

the

 

newly

 

created

 

class

 

loader

 

will

 

pick

 

up

 

the

 

new

 

version

 

of

 

the

 

jar

 

file.

In

 

other

 

words,

 

if

 

classes

 

are

 

not

 

refreshed

 

after

 

jar

 

operations,

 

a

 

stored

 

procedure

 

from

 

different

 

versions

 

of

 

jars

 

may

 

be

 

called,

 

depending

 

on

 

which

 

DARI

 

processes

 

are

 

used.

 

This

 

differs

 

from

 

the

 

previous

 

behavior,

 

which

 

ensured

 

(by

 

flushing

 

DARI

 

processes)

 

that

 

new

 

classes

 

were

 

always

 

used.

 

32-bit

 

Application

 

Incompatibility

  

UNIX

   

Change:

   

32-bit

 

executables

 

(DB2

 

UDB

 

applications)

 

will

 

not

 

run

 

against

 

the

 

new

 

64-bit

 

database

 

engine.

 

Symptom:

   

The

 

application

 

fails

 

to

 

link.

 

When

 

you

 

attempt

 

to

 

link

 

32-bit

 

objects

 

against

 

the

 

64-bit

 

DB2

 

UDB

 

application

 

library,

 

an

 

operating

 

system

 

linker

 

error

 

message

 

is

 

displayed.

 

Resolution:

   

The

 

application

 

must

 

be

 

recompiled

 

as

 

a

 

64-bit

 

executable,

 

and

 

relinked

 

against

 

the

 

new

 

64-bit

 

DB2

 

UDB

 

libraries.

 

Changing

 

the

 

Length

 

Field

 

of

 

the

 

Scratchpad

  

WIN

 

UNIX

 

OS/2

    

228

 

Administration

 

Guide:

 

Planning



Change:

   

Any

 

user-defined

 

function

 

(UDF)

 

that

 

changes

 

the

 

length

 

field

 

of

 

the

 

scratchpad

 

passed

 

to

 

the

 

UDF

 

will

 

now

 

receive

 

SQLCODE

 

-450.

 

Symptom:

   

A

 

UDF

 

that

 

changes

 

the

 

length

 

field

 

of

 

the

 

scratchpad

 

fails.

 

The

 

invoking

 

statement

 

receives

 

SQLCODE

 

-450,

 

with

 

the

 

schema

 

and

 

the

 

specific

 

name

 

of

 

the

 

function

 

filled

 

in.

 

Resolution:

   

Rewrite

 

the

 

UDF

 

body

 

to

 

not

 

change

 

the

 

length

 

field

 

of

 

the

 

scratchpad.

 

SQL

 

Applications

 

that

 

Use

 

Regular

 

Tables

 

Qualified

 

by

 

the

 

Schema

 

SESSION

  

WIN

 

UNIX

 

OS/2

   

Change:

   

The

 

schema

 

SESSION

 

is

 

the

 

only

 

schema

 

allowed

 

for

 

temporary

 

tables,

 

and

 

is

 

now

 

used

 

by

 

DB2

 

UDB

 

to

 

indicate

 

that

 

a

 

SESSION-qualified

 

table

 

may

 

refer

 

to

 

a

 

temporary

 

table.

 

However,

 

SESSION

 

is

 

not

 

a

 

keyword

 

reserved

 

for

 

temporary

 

tables,

 

and

 

can

 

be

 

used

 

as

 

a

 

schema

 

for

 

regular

 

base

 

tables.

 

An

 

application,

 

therefore,

 

may

 

find

 

a

 

SESSION.T1

 

real

 

table

 

and

 

a

 

SESSION.T1

 

declared

 

temporary

 

table

 

existing

 

simultaneously.

 

If,

 

when

 

a

 

package

 

is

 

being

 

bound,

 

a

 

static

 

statement

 

that

 

includes

 

a

 

table

 

reference

 

qualified

 

(explicitly

 

or

 

implicitly)

 

by

 

″SESSION″

 

is

 

encountered,

 

neither

 

a

 

section

 

nor

 

dependencies

 

for

 

this

 

statement

 

are

 

stored

 

in

 

the

 

catalogs.

 

Instead,

 

this

 

section

 

will

 

need

 

to

 

be

 

incrementally

 

bound

 

at

 

run

 

time.

 

This

 

will

 

place

 

a

 

copy

 

of

 

the

 

section

 

in

 

the

 

dynamic

 

SQL

 

cache,

 

where

 

the

 

cached

 

copy

 

will

 

be

 

private

 

only

 

to

 

the

 

unique

 

instance

 

of

 

the

 

application.

 

If,

 

at

 

run

 

time,

 

a

 

declared

 

temporary

 

table

 

matching

 

the

 

table

 

name

 

exists,

 

the

 

declared

 

temporary

 

table

 

is

 

used,

 

even

 

if

 

a

 

permanent

 

base

 

table

 

of

 

the

 

same

 

name

 

exists.

 

Symptom:

   

In

 

Version

 

6

 

(and

 

earlier),

 

any

 

package

 

with

 

static

 

statements

 

involving

 

tables

 

qualified

 

by

 

SESSION

 

would

 

always

 

refer

 

to

 

a

 

permanent

 

base

 

table.

 

When

 

binding

 

the

 

package,

 

a

 

section,

 

as

 

well

 

as

 

relevant

 

dependency

 

records

 

for

 

that

 

statement,

 

would

 

be

 

saved

 

in

 

the

 

catalogs.

 

In

 

Version

 

7,

 

these

 

statements

 

are

 

not

 

bound

 

at

 

bind

 

time,

 

and

 

could

 

resolve

 

to

 

a

 

declared

 

temporary

 

table

 

of

 

the

 

same

 

name

 

at

 

run

 

time.

 

Thus,

 

the

 

following

 

situations

 

can

 

arise:

 

v

   

Migrating

 

from

 

Version

 

5.

 

If

 

such

 

a

 

package

 

existed

 

in

 

Version

 

5,

 

it

 

will

 

be

 

bound

 

again

 

in

 

Version

 

6,

 

and

 

the

 

static

 

statements

 

will

 

now

 

be

 

incrementally

 

bound.

 

This

 

could

 

affect

 

performance,

 

because

 

these

 

incrementally

 

bound

 

sections

 

behave

 

like

 

cached

 

dynamic

 

SQL,

 

except

 

that

 

the

 

cached

 

dynamic

 

section

 

cannot

 

be

 

shared

 

among

 

other

 

applications

 

(even

 

different

 

instances

 

of

 

the

 

same

 

application

 

executable).

 

v

   

Migrating

 

from

 

Version

 

6

 

to

 

Version

 

7.

 

If

 

such

 

a

 

package

 

existed

 

in

 

Version

 

6,

 

it

 

will

 

not

 

necessarily

 

be

 

bound

 

again

 

in

 

Version

 

7.

 

Instead,

 

the

 

statements

 

will

 

still

 

execute

 

as

 

regular

 

static

 

SQL,

 

using

 

the

 

section

 

that

 

was

 

saved

 

in

 

the

 

catalog

 

at

 

original

 

bind

 

time.

 

However,

 

if

 

this

 

package

 

is

 

rebound

 

(either

 

implicitly

 

or

 

explicitly),

 

the

 

statements

 

in

 

the

 

package

 

with

 

SESSION-qualified

 

table

 

references

 

will

 

no

 

longer

 

be

 

stored,

 

and

 

will

 

require

 

incremental

 

binding.

 

This

 

could

 

degrade

 

performance.

 

To

 

summarize,

 

any

 

packages

 

bound

 

in

 

Version

 

7

 

with

 

static

 

statements

 

referring

 

to

 

SESSION-qualified

 

tables

 

will

 

no

 

longer

 

perform

 

like

 

static

 

SQL,

 

because

 

they

 

require

 

incremental

 

binding.

 

If,

 

in

 

fact,

 

the

 

application

 

process

 

issues

 

a

 

DECLARE

 

GLOBAL

 

TEMPORARY

 

TABLE

 

statement

 

for

 

a

 

table

 

that

 

has

 

the

 

same

 

name

 

as

 

an

   

Appendix

 

A.

 

Incompatibilities

 

between

 

releases

 

229



existing

 

SESSION-qualified

 

table,

 

view,

 

or

 

alias,

 

references

 

to

 

those

 

objects

 

will

 

always

 

be

 

taken

 

to

 

refer

 

to

 

the

 

declared

 

temporary

 

table.

 

Resolution:

   

If

 

possible,

 

change

 

the

 

schema

 

names

 

of

 

permanent

 

tables

 

so

 

that

 

they

 

are

 

not

 

″SESSION″.

 

Otherwise,

 

there

 

is

 

no

 

recourse

 

but

 

to

 

be

 

aware

 

of

 

the

 

performance

 

implications,

 

and

 

the

 

possible

 

conflict

 

with

 

declared

 

temporary

 

tables

 

that

 

may

 

occur.

 

The

 

following

 

query

 

can

 

be

 

used

 

to

 

identify

 

tables,

 

views,

 

and

 

aliases

 

that

 

may

 

be

 

affected

 

if

 

an

 

application

 

uses

 

temporary

 

tables:

    

select

 

tabschema,

 

tabname

 

from

 

SYSCAT.TABLES

 

where

 

tabschema

 

=

 

’SESSION’

 

The

 

following

 

query

 

can

 

be

 

used

 

to

 

identify

 

Version

 

7

 

bound

 

packages

 

that

 

have

 

static

 

sections

 

stored

 

in

 

the

 

catalogs,

 

and

 

whose

 

behavior

 

might

 

change

 

if

 

the

 

package

 

is

 

rebound

 

(only

 

relevant

 

when

 

moving

 

from

 

Version

 

6

 

to

 

Version

 

7):

    

select

 

pkgschema,

 

pkgname,

 

bschema,

 

bname

 

from

 

syscat.packagedep

       

where

 

bschema

 

=

 

’SESSION’

 

and

 

btype

 

in

 

(’T’,

 

’V’,

 

’I’)

 

Utilities

 

and

 

Tools

 

db2set

 

on

 

AIX

 

and

 

Solaris

  

UNIX

   

Change:

   

The

 

command

 

″db2set

 

-ul

 

(user

 

level)″

 

and

 

its

 

related

 

functions

 

are

 

not

 

ported

 

to

 

AIX

 

or

 

Solaris.

 

Connectivity

 

and

 

Coexistence

 

32-bit

 

Client

 

Incompatibility

  

WIN

 

UNIX

 

OS/2

   

Change:

   

32-bit

 

clients

 

cannot

 

attach

 

to

 

instances

 

or

 

connect

 

to

 

databases

 

on

 

64-bit

 

servers.

 

Symptom:

   

If

 

both

 

the

 

client

 

and

 

the

 

server

 

are

 

running

 

Version

 

7

 

code,

 

SQL1434N

 

is

 

returned;

 

otherwise,

 

the

 

attachment

 

or

 

connection

 

fails

 

with

 

SQLCODE

 

-30081.

 

Resolution:

   

Use

 

64-bit

 

clients.

   

230

 

Administration

 

Guide:

 

Planning



Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

This

 

section

 

contains

 

information

 

about

 

the

 

national

 

language

 

support

 

(NLS)

 

provided

 

by

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB),

 

including

 

information

 

about

 

territories,

 

languages,

 

and

 

code

 

pages

 

(code

 

sets)

 

supported,

 

and

 

how

 

to

 

configure

 

and

 

use

 

DB2

 

UDB

 

NLS

 

features

 

in

 

your

 

databases

 

and

 

applications.

 

National

 

language

 

versions

  

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

Version

 

8

 

is

 

available

 

in

 

Simplified

 

Chinese,

 

Traditional

 

Chinese,

 

Czech,

 

Danish,

 

English,

 

Finnish,

 

French,

 

German,

 

Italian,

 

Japanese,

 

Korean,

 

Norwegian,

 

Polish,

 

Brazilian

 

Portuguese,

 

Russian,

 

Spanish,

 

and

 

Swedish.

 

The

 

DB2

 

UDB

 

Run-Time

 

Client

 

is

 

available

 

in

 

these

 

additional

 

languages:

 

Arabic,

 

Bulgarian,

 

Croatian,

 

Dutch,

 

Greek,

 

Hebrew,

 

Hungarian,

 

Portuguese,

 

Romanian,

 

Slovak,

 

Slovenian,

 

and

 

Turkish.

  

Related

 

reference:

  

v

   

“Supported

 

territory

 

codes

 

and

 

code

 

pages”

 

on

 

page

 

231

Supported

 

territory

 

codes

 

and

 

code

 

pages

  

The

 

following

 

tables

 

show

 

the

 

languages

 

and

 

code

 

sets

 

supported

 

by

 

the

 

database

 

servers,

 

and

 

how

 

these

 

values

 

are

 

mapped

 

to

 

territory

 

code

 

and

 

code

 

page

 

values

 

that

 

are

 

used

 

by

 

the

 

database

 

manager.

 

The

 

following

 

is

 

an

 

explanation

 

of

 

the

 

columns

 

in

 

the

 

tables:

 

v

   

Code

 

page

 

shows

 

the

 

IBM-defined

 

code

 

page

 

as

 

mapped

 

from

 

the

 

operating

 

system

 

code

 

set.

 

v

   

Group

 

shows

 

whether

 

a

 

code

 

page

 

is

 

single-byte

 

(″S″),

 

double-byte

 

(″D″),

 

or

 

neutral

 

(″N″).

 

The

 

″-n″

 

is

 

a

 

number

 

used

 

to

 

create

 

a

 

letter-number

 

combination.

 

Matching

 

combinations

 

show

 

where

 

connection

 

and

 

conversion

 

is

 

allowed

 

by

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB).

 

For

 

example,

 

all

 

″S-1″

 

groups

 

can

 

work

 

together.

 

However,

 

if

 

the

 

group

 

is

 

neutral,

 

then

 

connection

 

and

 

conversion

 

with

 

any

 

other

 

code

 

page

 

listed

 

is

 

allowed.

 

v

   

Code

 

set

 

shows

 

the

 

code

 

set

 

associated

 

with

 

the

 

supported

 

language.

 

The

 

code

 

set

 

is

 

mapped

 

to

 

the

 

DB2

 

UDB

 

code

 

page.

 

v

   

Territory

 

code

 

shows

 

the

 

code

 

that

 

is

 

used

 

by

 

the

 

database

 

manager

 

internally

 

to

 

provide

 

region-specific

 

support.

 

v

   

Locale

 

shows

 

the

 

locale

 

values

 

supported

 

by

 

the

 

database

 

manager.

 

v

   

Operating

 

system

 

shows

 

the

 

operating

 

system

 

that

 

supports

 

the

 

languages

 

and

 

code

 

sets.

 

Table

 

38.

 

Unicode

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1200

 

N-1

 

16-bit

 

Unicode

 

Any

 

Any

 

Any

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

231

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|



Table

 

38.

 

Unicode

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1208

 

N-1

 

UTF-8

 

encoding

 

of

 

Unicode

 

Any

 

Any

 

Any

    

Table

 

39.

 

Albania,

 

territory

 

identifier:

 

AL

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

355

 

sq_AL

 

AIX

 

850

 

S-1

 

IBM-850

 

355

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

355

 

sq_AL.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

355

 

SQ_AL

 

AIX

 

37

 

S-1

 

IBM-37

 

355

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

355

 

-

 

Host

 

819

 

S-1

 

iso88591

 

355

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

355

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

355

 

-

 

HP-UX

 

437

 

S-1

 

IBM-437

 

355

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

355

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

355

 

-

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

355

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

355

 

-

 

Windows

    

Table

 

40.

 

Arabic

 

countries/regions,

 

territory

 

identifier:

 

AA

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1046

 

S-6

 

IBM-1046

 

785

 

Ar_AA

 

AIX

 

1089

 

S-6

 

ISO8859-6

 

785

 

ar_AA

 

AIX

 

1208

 

N-1

 

UTF-8

 

785

 

AR_AA

 

AIX

 

420

 

S-6

 

IBM-420

 

785

 

-

 

Host

 

425

 

S-6

 

IBM-425

 

785

 

-

 

Host

 

1089

 

S-6

 

iso88596

 

785

 

ar_SA.iso88596

 

HP-UX

 

864

 

S-6

 

IBM-864

 

785

 

-

 

OS/2

 

1256

 

S-6

 

1256

 

785

 

-

 

Windows

    

Table

 

41.

 

Australia,

 

territory

 

identifier:

 

AU

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

61

 

en_AU

 

AIX

 

850

 

S-1

 

IBM-850

 

61

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

61

 

en_AU.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

61

 

EN_AU

 

AIX

 

37

 

S-1

 

IBM-37

 

61

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

61

 

-

 

Host

 

819

 

S-1

 

iso88591

 

61

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

61

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

61

 

-

 

HP-UX

 

437

 

S-1

 

IBM-437

 

61

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

61

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

61

 

en_AU

 

SCO

   

232

 

Administration

 

Guide:

 

Planning



Table

 

41.

 

Australia,

 

territory

 

identifier:

 

AU

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

61

 

en_AU

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

61

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

61

 

-

 

Windows

    

Table

 

42.

 

Austria,

 

territory

 

identifier:

 

AT

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

43

 

-

 

AIX

 

850

 

S-1

 

IBM-850

 

43

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

43

 

-

 

AIX

 

1208

 

N-1

 

UTF-8

 

43

 

-

 

AIX

 

37

 

S-1

 

IBM-37

 

43

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

43

 

-

 

Host

 

819

 

S-1

 

iso88591

 

43

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

43

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

43

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

43

 

de_AT

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

43

 

de_AT@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

43

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

43

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

43

 

de_AT

 

SCO

 

819

 

S-1

 

ISO8859-1

 

43

 

de_AT

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

43

 

de_AT.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

43

 

-

 

Windows

    

Table

 

43.

 

Belarus,

 

territory

 

identifier:

 

BY

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1167

 

S-5

 

KOI8-RU

 

375

 

–

 

–

 

915

 

S-5

 

ISO8859-5

 

375

 

be_BY

 

AIX

 

1208

 

N-1

 

UTF-8

 

375

 

BE_BY

 

AIX

 

1025

 

S-5

 

IBM-1025

 

375

 

-

 

Host

 

1154

 

S-5

 

IBM-1154

 

375

 

-

 

Host

 

915

 

S-5

 

ISO8859-5

 

375

 

-

 

OS/2

 

1131

 

S-5

 

IBM-1131

 

375

 

-

 

OS/2

 

1251

 

S-5

 

1251

 

375

 

-

 

Windows

    

Table

 

44.

 

Belgium,

 

territory

 

identifier:

 

BE

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

32

 

fr_BE

 

AIX

 

819

 

S-1

 

ISO8859-1

 

32

 

nl_BE

 

AIX

 

850

 

S-1

 

IBM-850

 

32

 

Fr_BE

 

AIX

 

850

 

S-1

 

IBM-850

 

32

 

Nl_BE

 

AIX

 

923

 

S-1

 

ISO8859-15

 

32

 

fr_BE.8859-15

 

AIX

 

923

 

S-1

 

ISO8859-15

 

32

 

nl_BE.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

32

 

FR_BE

 

AIX

 

1208

 

N-1

 

UTF-8

 

32

 

NL_BE

 

AIX

 

274

 

S-1

 

IBM-274

 

32

 

-

 

Host

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

233

||||||



Table

 

44.

 

Belgium,

 

territory

 

identifier:

 

BE

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

500

 

S-1

 

IBM-500

 

32

 

-

 

Host

 

1148

 

S-1

 

IBM-1148

 

32

 

-

 

Host

 

819

 

S-1

 

iso88591

 

32

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

32

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

32

 

fr_BE

 

Linux

 

819

 

S-1

 

ISO-8859-1

 

32

 

nl_BE

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

32

 

fr_BE@euro

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

32

 

nl_BE@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

32

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

32

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

32

 

fr_BE

 

SCO

 

819

 

S-1

 

ISO8859-1

 

32

 

nl_BE

 

SCO

 

819

 

S-1

 

ISO8859-1

 

32

 

fr_BE

 

Solaris

 

819

 

S-1

 

ISO8859-1

 

32

 

nl_BE

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

32

 

fr_BE.ISO8859-15

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

32

 

nl_BE.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

32

 

-

 

Windows

    

Table

 

45.

 

Bulgaria,

 

territory

 

identifier:

 

BG

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

915

 

S-5

 

ISO8859-5

 

359

 

bg_BG

 

AIX

 

1208

 

N-1

 

UTF-8

 

359

 

BG_BG

 

AIX

 

1025

 

S-5

 

IBM-1025

 

359

 

-

 

Host

 

1154

 

S-5

 

IBM-1154

 

359

 

-

 

Host

 

915

 

S-5

 

iso88595

 

359

 

bg_BG.iso88595

 

HP-UX

 

855

 

S-5

 

IBM-855

 

359

 

-

 

OS/2

 

915

 

S-5

 

ISO8859-5

 

359

 

-

 

OS/2

 

1251

 

S-5

 

1251

 

359

 

-

 

Windows

    

Table

 

46.

 

Brazil,

 

territory

 

identifier:

 

BR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

55

 

pt_BR

 

AIX

 

850

 

S-1

 

IBM-850

 

55

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

55

 

pt_BR.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

55

 

PT_BR

 

AIX

 

37

 

S-1

 

IBM-37

 

55

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

55

 

-

 

Host

 

819

 

S-1

 

ISO8859-1

 

55

 

-

 

HP-UX

 

923

 

S-1

 

ISO8859-15

 

55

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

55

 

pt_BR

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

55

 

-

 

Linux

 

850

 

S-1

 

IBM-850

 

55

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

55

 

pt_BR

 

SCO

 

819

 

S-1

 

ISO8859-1

 

55

 

pt_BR

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

55

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

55

 

-

 

Windows

    

234

 

Administration

 

Guide:

 

Planning



Table

 

47.

 

Canada,

 

territory

 

identifier:

 

CA

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

1

 

fr_CA

 

AIX

 

850

 

S-1

 

IBM-850

 

1

 

Fr_CA

 

AIX

 

923

 

S-1

 

ISO8859-15

 

1

 

fr_CA.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

1

 

FR_CA

 

AIX

 

37

 

S-1

 

IBM-37

 

1

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

1

 

-

 

Host

 

819

 

S-1

 

iso88591

 

1

 

fr_CA.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

1

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

1

 

fr_CA.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

1

 

en_CA

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

1

 

-

 

Linux

 

850

 

S-1

 

IBM-850

 

1

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

1

 

en_CA

 

SCO

 

819

 

S-1

 

ISO8859-1

 

1

 

fr_CA

 

SCO

 

819

 

S-1

 

ISO8859-1

 

1

 

en_CA

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

1

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

1

 

-

 

Windows

    

Table

 

48.

 

Canada

 

(French),

 

territory

 

identifier:

 

CA

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

863

 

S-1

 

IBM-863

 

2

 

-

 

OS/2

    

Table

 

49.

 

China

 

(PRC),

 

territory

 

identifier:

 

CN

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1383

 

D-4

 

IBM-eucCN

 

86

 

zh_CN

 

AIX

 

1386

 

D-4

 

GBK

 

86

 

Zh_CN.GBK

 

AIX

 

1208

 

N-1

 

UTF-8

 

86

 

ZH_CN

 

AIX

 

935

 

D-4

 

IBM-935

 

86

 

-

 

Host

 

1388

 

D-4

 

IBM-1388

 

86

 

-

 

Host

 

1383

 

D-4

 

hp15CN

 

86

 

zh_CN.hp15CN

 

HP-UX

 

1383

 

D-4

 

GBK

 

86

 

zh_CN.GBK

 

Linux

 

1381

 

D-4

 

IBM-1381

 

86

 

-

 

OS/2

 

1386

 

D-4

 

GBK

 

86

 

-

 

OS/2

 

1383

 

D-4

 

eucCN

 

86

 

zh_CN

 

SCO

 

1383

 

D-4

 

eucCN

 

86

 

zh_CN.eucCN

 

SCO

 

1383

 

D-4

 

gb2312

 

86

 

zh

 

Solaris

 

1208

 

N-1

 

UTF-8

 

86

 

zh.UTF-8

 

Solaris

 

1381

 

D-4

 

IBM-1381

 

86

 

-

 

Windows

 

1386

 

D-4

 

GBK

 

86

 

-

 

Windows

 

1392/5488

 

D-4

   

86

 

-

   

See

 

note

 

1

 

on

 

page

 

250.

    

Table

 

50.

 

Croatia,

 

territory

 

identifier:

 

HR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

385

 

hr_HR

 

AIX

 

1208

 

N-1

 

UTF-8

 

385

 

HR_HR

 

AIX

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

235



Table

 

50.

 

Croatia,

 

territory

 

identifier:

 

HR

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

870

 

S-2

 

IBM-870

 

385

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

385

 

-

 

Host

 

912

 

S-2

 

iso88592

 

385

 

hr_HR.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

385

 

hr_HR

 

Linux

 

852

 

S-2

 

IBM-852

 

385

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

385

 

hr_HR.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

385

 

-

 

Windows

    

Table

 

51.

 

Czech

 

Republic,

 

territory

 

identifier:

 

CZ

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

421

 

cs_CZ

 

AIX

 

1208

 

N-1

 

UTF-8

 

421

 

CS_CZ

 

AIX

 

870

 

S-2

 

IBM-870

 

421

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

421

 

-

 

Host

 

912

 

S-2

 

iso88592

 

421

 

cs_CZ.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

421

 

cs_CZ

 

Linux

 

852

 

S-2

 

IBM-852

 

421

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

421

 

cs_CZ.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

421

 

-

 

Windows

    

Table

 

52.

 

Denmark,

 

territory

 

identifier:

 

DK

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

45

 

da_DK

 

AIX

 

850

 

S-1

 

IBM-850

 

45

 

Da_DK

 

AIX

 

923

 

S-1

 

ISO8859-15

 

45

 

da_DK.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

45

 

DA_DK

 

AIX

 

277

 

S-1

 

IBM-277

 

45

 

-

 

Host

 

1142

 

S-1

 

IBM-1142

 

45

 

-

 

Host

 

819

 

S-1

 

iso88591

 

45

 

da_DK.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

45

 

_

 

HP-UX

 

1051

 

S-1

 

roman8

 

45

 

da_DK.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

45

 

da_DK

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

45

 

-

 

Linux

 

850

 

S-1

 

IBM-850

 

45

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

45

 

da

 

SCO

 

819

 

S-1

 

ISO8859-1

 

45

 

da_DA

 

SCO

 

819

 

S-1

 

ISO8859-1

 

45

 

da_DK

 

SCO

 

819

 

S-1

 

ISO8859-1

 

45

 

da

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

45

 

da.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

45

 

-

 

Windows

    

Table

 

53.

 

Estonia,

 

territory

 

identifier:

 

EE

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

922

 

S-10

 

IBM-922

 

372

 

Et_EE

 

AIX

 

1208

 

N-1

 

UTF-8

 

372

 

ET_EE

 

AIX

 

1122

 

S-10

 

IBM-1122

 

372

 

-

 

Host

   

236

 

Administration

 

Guide:

 

Planning



Table

 

53.

 

Estonia,

 

territory

 

identifier:

 

EE

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1157

 

S-10

 

IBM-1157

 

372

 

-

 

Host

 

922

 

S-10

 

IBM-922

 

372

 

-

 

OS/2

 

1257

 

S-10

 

1257

 

372

 

-

 

Windows

    

Table

 

54.

 

Finland,

 

territory

 

identifier:

 

FI

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

358

 

fi_FI

 

AIX

 

850

 

S-1

 

IBM-850

 

358

 

Fi_FI

 

AIX

 

923

 

S-1

 

ISO8859-15

 

358

 

fi_FI.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

358

 

FI_FI

 

AIX

 

278

 

S-1

 

IBM-278

 

358

 

-

 

Host

 

1143

 

S-1

 

IBM-1143

 

358

 

-

 

Host

 

819

 

S-1

 

iso88591

 

358

 

fi_FI.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

358

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

358

 

fi-FI.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

358

 

fi_FI

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

358

 

fi_FI@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

358

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

358

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

358

 

SCO

 

819

 

S-1

 

ISO8859-1

 

358

 

fi_FI

 

SCO

 

819

 

S-1

 

ISO8859-1

 

358

 

sv_FI

 

SCO

 

819

 

S-1

 

ISO8859-1

 

358

 

-

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

358

 

fi.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

358

 

-

 

Windows

    

Table

 

55.

 

FYR

 

Macedonia,

 

territory

 

identifier:

 

MK

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

915

 

S-5

 

ISO8859-5

 

389

 

mk_MK

 

AIX

 

1208

 

N-1

 

UTF-8

 

389

 

MK_MK

 

AIX

 

1025

 

S-5

 

IBM-1025

 

389

 

-

 

Host

 

1154

 

S-5

 

IBM-1154

 

389

 

-

 

Host

 

915

 

S-5

 

iso88595

 

389

 

-

 

HP-UX

 

855

 

S-5

 

IBM-855

 

389

 

-

 

OS/2

 

915

 

S-5

 

ISO8859-5

 

389

 

-

 

OS/2

 

1251

 

S-5

 

1251

 

389

 

-

 

Windows

    

Table

 

56.

 

France,

 

territory

 

identifier:

 

FR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

33

 

fr_FR

 

AIX

 

850

 

S-1

 

IBM-850

 

33

 

Fr_FR

 

AIX

 

923

 

S-1

 

ISO8859-15

 

33

 

fr_FR.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

33

 

FR_FR

 

AIX

 

297

 

S-1

 

IBM-297

 

33

 

-

 

Host

 

1147

 

S-1

 

IBM-1147

 

33

 

-

 

Host

 

819

 

S-1

 

iso88591

 

33

 

fr_FR.iso88591

 

HP-UX

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

237



Table

 

56.

 

France,

 

territory

 

identifier:

 

FR

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

923

 

S-1

 

iso885915

 

33

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

33

 

fr_FR.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

33

 

fr_FR

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

33

 

fr_FR@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

33

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

33

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

33

 

SCO

 

819

 

S-1

 

ISO8859-1

 

33

 

fr_FR

 

SCO

 

819

 

S-1

 

ISO8859-1

 

33

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

33

 

fr.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

33

 

fr.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

33

 

-

 

Windows

    

Table

 

57.

 

Germany,

 

territory

 

identifier:

 

DE

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

49

 

de_DE

 

AIX

 

850

 

S-1

 

IBM-850

 

49

 

De_DE

 

AIX

 

923

 

S-1

 

ISO8859-15

 

49

 

de_DE.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

49

 

DE_DE

 

AIX

 

273

 

S-1

 

IBM-273

 

49

 

-

 

Host

 

1141

 

S-1

 

IBM-1141

 

49

 

-

 

Host

 

819

 

S-1

 

iso88591

 

49

 

de_DE.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

49

 

_

 

HP-UX

 

1051

 

S-1

 

roman8

 

49

 

de_DE.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

49

 

de_DE

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

49

 

de_DE@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

49

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

49

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

49

 

SCO

 

819

 

S-1

 

ISO8859-1

 

49

 

de_DE

 

SCO

 

819

 

S-1

 

ISO8859-1

 

49

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

49

 

de.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

49

 

de.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

49

 

-

 

Windows

    

Table

 

58.

 

Greece,

 

territory

 

identifier:

 

GR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

813

 

S-7

 

ISO8859-7

 

30

 

el_GR

 

AIX

 

1208

 

N-1

 

UTF-8

 

30

 

EL_GR

 

AIX

 

423

 

S-7

 

IBM-423

 

30

 

-

 

Host

 

875

 

S-7

 

IBM-875

 

30

 

-

 

Host

 

813

 

S-7

 

iso88597

 

30

 

el_GR.iso88597

 

HP-UX

 

813

 

S-7

 

ISO-8859-7

 

30

 

el_GR

 

Linux

 

813

 

S-7

 

ISO8859-7

 

30

 

-

 

OS/2

 

869

 

S-7

 

IBM-869

 

30

 

-

 

OS/2

 

813

 

S-7

 

ISO8859-7

 

30

 

el_GR.ISO8859-7

 

SCO

 

737

 

S-7

 

737

 

30

 

-

 

Windows

 

1253

 

S-7

 

1253

 

30

 

-

 

Windows

   

238

 

Administration

 

Guide:

 

Planning



Table

 

59.

 

Hungary,

 

territory

 

identifier:

 

HU

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

36

 

hu_HU

 

AIX

 

1208

 

N-1

 

UTF-8

 

36

 

HU_HU

 

AIX

 

870

 

S-2

 

IBM-870

 

36

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

36

 

-

 

Host

 

912

 

S-2

 

iso88592

 

36

 

hu_HU.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

36

 

hu_HU

 

Linux

 

852

 

S-2

 

IBM-852

 

36

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

36

 

hu_HU.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

36

 

-

 

Windows

    

Table

 

60.

 

Iceland,

 

territory

 

identifier:

 

IS

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

354

 

is_IS

 

AIX

 

850

 

S-1

 

IBM-850

 

354

 

Is_IS

 

AIX

 

923

 

S-1

 

ISO8859-15

 

354

 

is_IS.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

354

 

IS_IS

 

AIX

 

871

 

S-1

 

IBM-871

 

354

 

-

 

Host

 

1149

 

S-1

 

IBM-1149

 

354

 

-

 

Host

 

819

 

S-1

 

iso88591

 

354

 

is_IS.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

354

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

354

 

is_IS.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

354

 

is_IS

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

354

 

-

 

Linux

 

850

 

S-1

 

IBM-850

 

354

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

354

 

SCO

 

819

 

S-1

 

ISO8859-1

 

354

 

is_IS

 

SCO

 

819

 

S-1

 

ISO8859-1

 

354

 

-

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

354

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

354

 

-

 

Windows

    

Table

 

61.

 

India,

 

territory

 

identifier:

 

IN

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

806

 

S-13

 

IBM-806

 

91

 

hi_IN

 

-

 

1137

 

S-13

 

IBM-1137

 

91

 

-

 

Host

    

Table

 

62.

 

Indonesia,

 

territory

 

identifier:

 

ID

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1252

 

S-1

 

1252

 

62

 

-

 

Windows

    

Table

 

63.

 

Ireland,

 

territory

 

identifier:

 

IE

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

353

 

-

 

AIX

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

239



Table

 

63.

 

Ireland,

 

territory

 

identifier:

 

IE

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

850

 

S-1

 

IBM-850

 

353

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

353

 

-

 

AIX

 

1208

 

N-1

 

UTF-8

 

353

 

-

 

AIX

 

285

 

S-1

 

IBM-285

 

353

 

-

 

Host

 

1146

 

S-1

 

IBM-1146

 

353

 

-

 

Host

 

819

 

S-1

 

iso88591

 

353

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

353

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

353

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

353

 

en_IE

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

353

 

en_IE@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

353

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

353

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

353

 

en_IE.ISO8859-1

 

SCO

 

819

 

S-1

 

ISO8859-1

 

353

 

en_IE

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

353

 

en_IE.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

353

 

-

 

Windows

    

Table

 

64.

 

Israel,

 

territory

 

identifier:

 

IL

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

856

 

S-8

 

IBM-856

 

972

 

Iw_IL

 

AIX

 

916

 

S-8

 

ISO8859-8

 

972

 

iw_IL

 

AIX

 

1208

 

N-1

 

UTF-8

 

972

 

HE-IL

 

AIX

 

916

 

S-8

 

ISO-8859-8

 

972

 

iw_IL

 

Linux

 

424

 

S-8

 

IBM-424

 

972

 

-

 

Host

 

862

 

S-8

 

IBM-862

 

972

 

-

 

OS/2

 

1255

 

S-8

 

1255

 

972

 

-

 

Windows

    

Table

 

65.

 

Italy,

 

territory

 

identifier:

 

IT

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

39

 

it_IT

 

AIX

 

850

 

S-1

 

IBM-850

 

39

 

It_IT

 

AIX

 

923

 

S-1

 

ISO8859-15

 

39

 

it_IT.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

39

 

It_IT

 

AIX

 

280

 

S-1

 

IBM-280

 

39

 

-

 

Host

 

1144

 

S-1

 

IBM-1144

 

39

 

-

 

Host

 

819

 

S-1

 

iso88591

 

39

 

it_IT.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

39

 

_

 

HP-UX

 

1051

 

S-1

 

roman8

 

39

 

it_IT.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

39

 

it_IT

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

39

 

it_IT@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

39

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

39

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

39

 

SCO

 

819

 

S-1

 

ISO8859-1

 

39

 

it_IT

 

SCO

 

819

 

S-1

 

ISO8859-1

 

39

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

39

 

it.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

39

 

it.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

39

 

-

 

Windows

   

240

 

Administration

 

Guide:

 

Planning



Table

 

66.

 

Japan,

 

territory

 

identifier:

 

JP

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

932

 

D-1

 

IBM-932

 

81

 

Ja_JP

 

AIX

 

943

 

D-1

 

IBM-943

 

81

 

Ja_JP

 

AIX

 

See

 

note

 

2

 

on

 

page

 

250.

 

954

 

D-1

 

IBM-eucJP

 

81

 

ja_JP

 

AIX

 

1208

 

N-1

 

UTF-8

 

81

 

JA_JP

 

AIX

 

930

 

D-1

 

IBM-930

 

81

 

-

 

Host

 

939

 

D-1

 

IBM-939

 

81

 

-

 

Host

 

5026

 

D-1

 

IBM-5026

 

81

 

-

 

Host

 

5035

 

D-1

 

IBM-5035

 

81

 

-

 

Host

 

1390

 

D-1

   

81

 

-

 

Host

 

1399

 

D-1

   

81

 

-

 

Host

 

954

 

D-1

 

eucJP

 

81

 

ja_JP.eucJP

 

HP-UX

 

5039

 

D-1

 

SJIS

 

81

 

ja_JP.SJIS

 

HP-UX

 

954

 

D-1

 

EUC-JP

 

81

 

ja_JP

 

Linux

 

932

 

D-1

 

IBM-932

 

81

 

-

 

OS/2

 

942

 

D-1

 

IBM-942

 

81

 

-

 

OS/2

 

943

 

D-1

 

IBM-943

 

81

 

-

 

OS/2

 

954

 

D-1

 

eucJP

 

81

 

ja

 

SCO

 

954

 

D-1

 

eucJP

 

81

 

ja_JP

 

SCO

 

954

 

D-1

 

eucJP

 

81

 

ja_JP.EUC

 

SCO

 

954

 

D-1

 

eucJP

 

81

 

ja_JP.eucJP

 

SCO

 

943

 

D-1

 

IBM-943

 

81

 

ja_JP.PCK

 

Solaris

 

954

 

D-1

 

eucJP

 

81

 

ja

 

Solaris

 

954

 

D-1

 

eucJP

 

81

 

japanese

 

Solaris

 

1208

 

N-1

 

UTF-8

 

81

 

ja_JP.UTF-8

 

Solaris

 

943

 

D-1

 

IBM-943

 

81

 

-

 

Windows

 

1394

 

D-1

   

81

 

-

   

See

 

note

 

3

 

on

 

page

 

250.

    

Table

 

67.

 

Kazakhstan,

 

territory

 

identifier:

 

KZ

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1251

 

S-5

 

1251

 

7

 

-

 

Windows

    

Table

 

68.

 

Korea,

 

South,

 

territory

 

identifier:

 

KR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

970

 

D-3

 

IBM-eucKR

 

82

 

ko_KR

 

AIX

 

1208

 

N-1

 

UTF-8

 

82

 

KO_KR

 

AIX

 

933

 

D-3

 

IBM-933

 

82

 

-

 

Host

 

1364

 

D-3

 

IBM-1364

 

82

 

-

 

Host

 

970

 

D-3

 

eucKR

 

82

 

ko_KR.eucKR

 

HP-UX

 

970

 

D-3

 

EUC-KR

 

82

 

ko_KR

 

Linux

 

949

 

D-3

 

IBM-949

 

82

 

-

 

OS/2

 

970

 

D-3

 

eucKR

 

82

 

ko_KR.eucKR

 

SGI

 

970

 

D-3

 

5601

 

82

 

ko

 

Solaris

 

1208

 

N-1

 

UTF-8

 

82

 

ko.UTF-8

 

Solaris

 

1363

 

D-3

 

1363

 

82

 

-

 

Windows

    

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

241



Table

 

69.

 

Latin

 

America,

 

territory

 

identifier:

 

Lat

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

3

 

-

 

AIX

 

850

 

S-1

 

IBM-850

 

3

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

3

 

-

 

AIX

 

1208

 

N-1

 

UTF-8

 

3

 

-

 

AIX

 

284

 

S-1

 

IBM-284

 

3

 

-

 

Host

 

1145

 

S-1

 

IBM-1145

 

3

 

-

 

Host

 

819

 

S-1

 

iso88591

 

3

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

3

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

3

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

3

 

-

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

3

 

-

 

Linux

 

437

 

S-1

 

IBM-437

 

3

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

3

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

3

 

-

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

3

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

3

 

-

 

Windows

    

Table

 

70.

 

Latvia,

 

territory

 

identifier:

 

LV

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

921

 

S-10

 

IBM-921

 

371

 

Lv_LV

 

AIX

 

1208

 

N-1

 

UTF-8

 

371

 

LV_LV

 

AIX

 

1112

 

S-10

 

IBM-1112

 

371

 

-

 

Host

 

1156

 

S-10

 

IBM-1156

 

371

 

-

 

Host

 

921

 

S-10

 

IBM-921

 

371

 

-

 

OS/2

 

1257

 

S-10

 

1257

 

371

 

-

 

Windows

    

Table

 

71.

 

Lithunia,

 

territory

 

identifier:

 

LT

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

921

 

S-10

 

IBM-921

 

370

 

Lt_LT

 

AIX

 

1208

 

N-1

 

UTF-8

 

370

 

LT_LT

 

AIX

 

1112

 

S-10

 

IBM-1112

 

370

 

-

 

Host

 

1156

 

S-10

 

IBM-1156

 

370

 

-

 

Host

 

921

 

S-10

 

IBM-921

 

370

 

-

 

OS/2

 

1257

 

S-10

 

1257

 

370

 

-

 

Windows

    

Table

 

72.

 

Malaysia,

 

territory

 

identifier:

 

ID

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1252

 

S-1

 

1252

 

60

 

-

 

Windows

    

Table

 

73.

 

Netherlands,

 

territory

 

identifier:

 

NL

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

31

 

nl_NL

 

AIX

 

850

 

S-1

 

IBM-850

 

31

 

Nl_NL

 

AIX

 

923

 

S-1

 

ISO8859-15

 

31

 

nl_NL.8859-15

 

AIX

   

242

 

Administration

 

Guide:

 

Planning



Table

 

73.

 

Netherlands,

 

territory

 

identifier:

 

NL

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1208

 

N-1

 

UTF-8

 

31

 

NL_NL

 

AIX

 

37

 

S-1

 

IBM-37

 

31

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

31

 

-

 

Host

 

819

 

S-1

 

iso88591

 

31

 

nl_NL.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

31

 

_

 

HP-UX

 

1051

 

S-1

 

roman8

 

31

 

nl_NL.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

31

 

nl_NL

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

31

 

nl_NL@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

31

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

31

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

31

 

nl

 

SCO

 

819

 

S-1

 

ISO8859-1

 

31

 

nl_NL

 

SCO

 

819

 

S-1

 

ISO8859-1

 

31

 

nl

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

31

 

nl.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

31

 

-

 

Windows

    

Table

 

74.

 

New

 

Zealand,

 

territory

 

identifier:

 

NZ

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

64

 

-

 

AIX

 

850

 

S-1

 

IBM-850

 

64

 

-

 

AIX

 

923

 

S-1

 

ISO8859-15

 

64

 

-

 

AIX

 

1208

 

N-1

 

UTF-8

 

64

 

-

 

AIX

 

37

 

S-1

 

IBM-37

 

64

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

64

 

-

 

Host

 

819

 

S-1

 

ISO8859-1

 

64

 

-

 

HP-UX

 

923

 

S-1

 

ISO8859-15

 

64

 

-

 

HP-UX

 

850

 

S-1

 

IBM-850

 

64

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

64

 

en_NZ

 

SCO

 

819

 

S-1

 

ISO8859-1

 

64

 

en_NZ

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

64

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

64

 

-

 

Windows

    

Table

 

75.

 

Norway,

 

territory

 

identifier:

 

NO

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

47

 

no_NO

 

AIX

 

850

 

S-1

 

IBM-850

 

47

 

No_NO

 

AIX

 

923

 

S-1

 

ISO8859-15

 

47

 

no_NO.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

47

 

NO_NO

 

AIX

 

277

 

S-1

 

IBM-277

 

47

 

-

 

Host

 

1142

 

S-1

 

IBM-1142

 

47

 

-

 

Host

 

819

 

S-1

 

iso88591

 

47

 

no_NO.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

47

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

47

 

no_NO.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

47

 

no_NO

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

47

 

-

 

Linux

 

850

 

S-1

 

IBM-850

 

47

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

47

 

no

 

SCO

 

819

 

S-1

 

ISO8859-1

 

47

 

no_NO

 

SCO

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

243



Table

 

75.

 

Norway,

 

territory

 

identifier:

 

NO

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

47

 

no

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

47

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

47

 

-

 

Windows

    

Table

 

76.

 

Poland,

 

territory

 

identifier:

 

PL

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

48

 

pl_PL

 

AIX

 

1208

 

N-1

 

UTF-8

 

48

 

PL_PL

 

AIX

 

870

 

S-2

 

IBM-870

 

48

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

48

 

-

 

Host

 

912

 

S-2

 

iso88592

 

48

 

pl_PL.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

48

 

pl_PL

 

Linux

 

852

 

S-2

 

IBM-852

 

48

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

48

 

pl_PL.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

48

 

-

 

Windows

    

Table

 

77.

 

Portugal,

 

territory

 

identifier:

 

PT

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

351

 

pt_PT

 

AIX

 

850

 

S-1

 

IBM-850

 

351

 

Pt_PT

 

AIX

 

923

 

S-1

 

ISO8859-15

 

351

 

pt_PT.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

351

 

PT_PT

 

AIX

 

37

 

S-1

 

IBM-37

 

351

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

351

 

-

 

Host

 

819

 

S-1

 

iso88591

 

351

 

pt_PT.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

351

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

351

 

pt_PT.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

351

 

pt_PT

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

351

 

pt_PT@euro

 

Linux

 

850

 

S-1

 

IBM-850

 

351

 

-

 

OS/2

 

860

 

S-1

 

IBM-860

 

351

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

351

 

pt

 

SCO

 

819

 

S-1

 

ISO8859-1

 

351

 

pt_PT

 

SCO

 

819

 

S-1

 

ISO8859-1

 

351

 

pt

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

351

 

pt.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

351

 

-

 

Windows

    

Table

 

78.

 

Romania,

 

territory

 

identifier:

 

RO

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

40

 

ro_RO

 

AIX

 

1208

 

N-1

 

UTF-8

 

40

 

RO_RO

 

AIX

 

870

 

S-2

 

IBM-870

 

40

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

40

 

-

 

Host

 

912

 

S-2

 

iso88592

 

40

 

ro_RO.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

40

 

ro_RO

 

Linux

 

852

 

S-2

 

IBM-852

 

40

 

-

 

OS/2

   

244

 

Administration

 

Guide:

 

Planning



Table

 

78.

 

Romania,

 

territory

 

identifier:

 

RO

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

40

 

ro_RO.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

40

 

-

 

Windows

    

Table

 

79.

 

Russia,

 

territory

 

identifier:

 

RU

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

915

 

S-5

 

ISO8859-5

 

7

 

ru_RU

 

AIX

 

1208

 

N-1

 

UTF-8

 

7

 

RU_RU

 

AIX

 

1025

 

S-5

 

IBM-1025

 

7

 

-

 

Host

 

1154

 

S-5

 

IBM-1154

 

7

 

-

 

Host

 

915

 

S-5

 

iso88595

 

7

 

ru_RU.iso88595

 

HP-UX

 

878

 

S-5

 

KOI8-R

 

7

 

ru_RU.koi8-r

 

Linux,

 

Solaris

 

915

 

S-5

 

ISO-8859-5

 

7

 

ru_RU

 

Linux

 

866

 

S-5

 

IBM-866

 

7

 

-

 

OS/2

 

915

 

S-5

 

ISO8859-5

 

7

 

-

 

OS/2

 

915

 

S-5

 

ISO8859-5

 

7

 

ru_RU.ISO8859-5

 

SCO

 

1251

 

S-5

 

1251

 

7

 

-

 

Windows

    

Table

 

80.

 

Serbia/Montenegro,

 

territory

 

identifier:

 

SP

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

915

 

S-5

 

ISO8859-5

 

381

 

sr_SP

 

AIX

 

1208

 

N-1

 

UTF-8

 

381

 

SR_SP

 

AIX

 

1025

 

S-5

 

IBM-1025

 

381

 

-

 

Host

 

1154

 

S-5

 

IBM-1154

 

381

 

-

 

Host

 

915

 

S-5

 

iso88595

 

381

 

-

 

HP-UX

 

855

 

S-5

 

IBM-855

 

381

 

-

 

OS/2

 

915

 

S-5

 

ISO8859-5

 

381

 

-

 

OS/2

 

1251

 

S-5

 

1251

 

381

 

-

 

Windows

    

Table

 

81.

 

Slovakia,

 

territory

 

identifier:

 

SK

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

422

 

sk_SK

 

AIX

 

1208

 

N-1

 

UTF-8

 

422

 

SK_SK

 

AIX

 

870

 

S-2

 

IBM-870

 

422

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

422

 

-

 

Host

 

912

 

S-2

 

iso88592

 

422

 

sk_SK.iso88592

 

HP-UX

 

852

 

S-2

 

IBM-852

 

422

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

422

 

sk_SK.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

422

 

-

 

Windows

    

Table

 

82.

 

Slovenia,

 

territory

 

identifier:

 

SI

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

912

 

S-2

 

ISO8859-2

 

386

 

sl_SI

 

AIX

 

1208

 

N-1

 

UTF-8

 

386

 

SL_SI

 

AIX

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

245

||||||
|



Table

 

82.

 

Slovenia,

 

territory

 

identifier:

 

SI

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

870

 

S-2

 

IBM-870

 

386

 

-

 

Host

 

1153

 

S-2

 

IBM-1153

 

386

 

-

 

Host

 

912

 

S-2

 

iso88592

 

386

 

sl_SI.iso88592

 

HP-UX

 

912

 

S-2

 

ISO-8859-2

 

386

 

sl_SI

 

Linux

 

852

 

S-2

 

IBM-852

 

386

 

-

 

OS/2

 

912

 

S-2

 

ISO8859-2

 

386

 

sl_SI.ISO8859-2

 

SCO

 

1250

 

S-2

 

1250

 

386

 

-

 

Windows

    

Table

 

83.

 

South

 

Africa,

 

territory

 

identifier:

 

ZA

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

27

 

en_ZA

 

AIX

 

850

 

S-1

 

IBM-850

 

27

 

En_ZA

 

AIX

 

923

 

S-1

 

ISO8859-15

 

27

 

en_ZA.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

27

 

EN_ZA

 

AIX

 

285

 

S-1

 

IBM-285

 

27

 

-

 

Host

 

1146

 

S-1

 

IBM-1146

 

27

 

-

 

Host

 

819

 

S-1

 

iso88591

 

27

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

27

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

27

 

-

 

HP-UX

 

437

 

S-1

 

IBM-437

 

27

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

27

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

27

 

en_ZA.ISO8859-1

 

SCO

 

819

 

S-1

 

ISO8859-1

 

27

 

-

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

27

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

27

 

-

 

Windows

    

Table

 

84.

 

Spain,

 

territory

 

identifier:

 

ES

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

34

 

es_ES

 

AIX

 

850

 

S-1

 

IBM-850

 

34

 

Es_ES

 

AIX

 

923

 

S-1

 

ISO8859-15

 

34

 

es_ES.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

34

 

ES_ES

 

AIX

 

284

 

S-1

 

IBM-284

 

34

 

-

 

Host

 

1145

 

S-1

 

IBM-1145

 

34

 

-

 

Host

 

819

 

S-1

 

iso88591

 

34

 

es_ES.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

34

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

34

 

es_ES.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

34

 

es_ES

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

34

 

es_ES@euro

 

Linux

 

437

 

S-1

 

IBM-437

 

34

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

34

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

34

 

es

 

SCO

 

819

 

S-1

 

ISO8859-1

 

34

 

es_ES

 

SCO

 

819

 

S-1

 

ISO8859-1

 

34

 

es

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

34

 

es.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

34

 

es.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

34

 

-

 

Windows

    

246

 

Administration

 

Guide:

 

Planning



Table

 

85.

 

Spain

 

(Catalan),

 

territory

 

identifier:

 

ES

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

34

 

ca_ES

 

AIX

 

850

 

S-1

 

IBM-850

 

34

 

Ca_ES

 

AIX

 

923

 

S-1

 

ISO8859-15

 

34

 

ca_ES.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

34

 

CA_ES

 

AIX

    

Table

 

86.

 

Sweden,

 

territory

 

identifier:

 

SE

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

46

 

sv_SE

 

AIX

 

850

 

S-1

 

IBM-850

 

46

 

Sv_SE

 

AIX

 

923

 

S-1

 

ISO8859-15

 

46

 

sv_SE.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

46

 

SV_SE

 

AIX

 

278

 

S-1

 

IBM-278

 

46

 

-

 

Host

 

1143

 

S-1

 

IBM-1143

 

46

 

-

 

Host

 

819

 

S-1

 

iso88591

 

46

 

sv_SE.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

46

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

46

 

sv_SE.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

46

 

sv_SE

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

46

 

-

 

Linux

 

437

 

S-1

 

IBM-437

 

46

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

46

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

46

 

sv

 

SCO

 

819

 

S-1

 

ISO8859-1

 

46

 

sv_SE

 

SCO

 

819

 

S-1

 

ISO8859-1

 

46

 

sv

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

46

 

sv.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

46

 

sv.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

46

 

-

 

Windows

    

Table

 

87.

 

Switzerland,

 

territory

 

identifier:

 

CH

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

41

 

de_CH

 

AIX

 

850

 

S-1

 

IBM-850

 

41

 

De_CH

 

AIX

 

923

 

S-1

 

ISO8859-15

 

41

 

de_CH.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

41

 

DE_CH

 

AIX

 

500

 

S-1

 

IBM-500

 

41

 

-

 

Host

 

1148

 

S-1

 

IBM-1148

 

41

 

-

 

Host

 

819

 

S-1

 

iso88591

 

41

 

-

 

HP-UX

 

923

 

S-1

 

iso885915

 

41

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

41

 

-

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

41

 

de_CH

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

41

 

-

 

Linux

 

437

 

S-1

 

IBM-437

 

41

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

41

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

41

 

de_CH

 

SCO

 

819

 

S-1

 

ISO8859-1

 

41

 

fr_CH

 

SCO

 

819

 

S-1

 

ISO8859-1

 

41

 

it_CH

 

SCO

 

819

 

S-1

 

ISO8859-1

 

41

 

de_CH

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

41

 

-

 

Solaris

 

1252

 

S-1

 

1252

 

41

 

-

 

Windows

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

247



Table

 

88.

 

Taiwan,

 

territory

 

identifier:

 

TW

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

950

 

D-2

 

big5

 

88

 

Zh_TW

 

AIX

 

See

 

note

 

8

 

on

 

page

 

251.

 

964

 

D-2

 

IBM-eucTW

 

88

 

zh_TW

 

AIX

 

1208

 

N-1

 

UTF-8

 

88

 

ZH_TW

 

AIX

 

937

 

D-2

 

IBM-937

 

88

 

-

 

Host

 

1371

 

D-2

 

IBM-1371

 

88

 

-

 

Host

 

950

 

D-2

 

big5

 

88

 

zh_TW.big5

 

HP-UX

 

964

 

D-2

 

eucTW

 

88

 

zh_TW.eucTW

 

HP-UX

 

950

 

D-2

 

BIG5

 

88

 

zh_TW

 

Linux

 

938

 

D-2

 

IBM-938

 

88

 

-

 

OS/2

 

948

 

D-2

 

IBM-948

 

88

 

-

 

OS/2

 

950

 

D-2

 

big5

 

88

 

-

 

OS/2

 

950

 

D-2

 

big5

 

88

 

zh_TW.BIG5

 

Solaris

 

964

 

D-2

 

cns11643

 

88

 

zh_TW

 

Solaris

 

1208

 

N-1

 

UTF-8

 

88

 

zh_TW.UTF-8

 

Solaris

 

950

 

D-2

 

big5

 

88

 

-

 

Windows

 

See

 

note

 

8

 

on

 

page

 

251.

    

Table

 

89.

 

Thailand,

 

territory

 

identifier:

 

TH

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

874

 

S-20

 

TIS620-1

 

66

 

th_TH

 

AIX

 

1208

 

N-1

 

UTF-8

 

66

 

TH_TH

 

AIX

 

838

 

S-20

 

IBM-838

 

66

 

-

 

Host

 

1160

 

S-20

 

IBM-1160

 

66

 

-

 

Host

 

874

 

S-20

 

tis620

 

66

 

th_TH.tis620

 

HP-UX

 

874

 

S-20

 

TIS620-1

 

66

 

-

 

OS/2

 

874

 

S-20

 

TIS620-1

 

66

 

-

 

Windows

    

Table

 

90.

 

Turkey,

 

territory

 

identifier:

 

TR

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

920

 

S-9

 

ISO8859-9

 

90

 

tr_TR

 

AIX

 

1208

 

N-1

 

UTF-8

 

90

 

TR_TR

 

AIX

 

1026

 

S-9

 

IBM-1026

 

90

 

-

 

Host

 

1155

 

S-9

 

IBM-1155

 

90

 

-

 

Host

 

920

 

S-9

 

iso88599

 

90

 

tr_TR.iso88599

 

HP-UX

 

920

 

S-9

 

ISO-8859-9

 

90

 

tr_TR

 

Linux

 

857

 

S-9

 

IBM-857

 

90

 

-

 

OS/2

 

920

 

S-9

 

ISO8859-9

 

90

 

tr_TR.ISO8859-9

 

SCO

 

1254

 

S-9

 

1254

 

90

 

-

 

Windows

    

Table

 

91.

 

United

 

Kingdom,

 

territory

 

identifier:

 

GB

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

44

 

en_GB

 

AIX

 

850

 

S-1

 

IBM-850

 

44

 

En_GB

 

AIX

   

248

 

Administration

 

Guide:

 

Planning



Table

 

91.

 

United

 

Kingdom,

 

territory

 

identifier:

 

GB

 

(continued)

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

923

 

S-1

 

ISO8859-15

 

44

 

en_GB.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

44

 

EN_GB

 

AIX

 

285

 

S-1

 

IBM-285

 

44

 

-

 

Host

 

1146

 

S-1

 

IBM-1146

 

44

 

-

 

Host

 

819

 

S-1

 

iso88591

 

44

 

en_GB.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

44

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

44

 

en_GB.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

44

 

en_GB

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

44

 

-

 

Linux

 

437

 

S-1

 

IBM-437

 

44

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

44

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

44

 

en_GB

 

SCO

 

819

 

S-1

 

ISO8859-1

 

44

 

en

 

SCO

 

819

 

S-1

 

ISO8859-1

 

44

 

en_GB

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

44

 

en_GB.ISO8859-15

 

Solaris

 

1252

 

S-1

 

1252

 

44

 

-

 

Windows

    

Table

 

92.

 

Ukraine,

 

territory

 

identifier:

 

UA

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1124

 

S-12

 

IBM-1124

 

380

 

Uk_UA

 

AIX

 

1208

 

N-1

 

UTF-8

 

380

 

UK_UA

 

AIX

 

1123

 

S-12

 

IBM-1123

 

380

 

-

 

Host

 

1158

 

S-12

 

IBM-1158

 

380

 

-

 

Host

 

1168

 

S-12

 

KOI8-U

 

380

 

uk_UA.koi8u

 

Linux

 

1125

 

S-12

 

IBM-1125

 

380

 

-

 

OS/2

 

1251

 

S-12

 

1251

 

380

 

-

 

Windows

    

Table

 

93.

 

United

 

States

 

of

 

America,

 

territory

 

identifier:

 

US

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

819

 

S-1

 

ISO8859-1

 

1

 

en_US

 

AIX

 

850

 

S-1

 

IBM-850

 

1

 

En_US

 

AIX

 

923

 

S-1

 

ISO8859-15

 

1

 

en_US.8859-15

 

AIX

 

1208

 

N-1

 

UTF-8

 

1

 

EN_US

 

AIX

 

37

 

S-1

 

IBM-37

 

1

 

-

 

Host

 

1140

 

S-1

 

IBM-1140

 

1

 

-

 

Host

 

819

 

S-1

 

iso88591

 

1

 

en_US.iso88591

 

HP-UX

 

923

 

S-1

 

iso885915

 

1

 

-

 

HP-UX

 

1051

 

S-1

 

roman8

 

1

 

en_US.roman8

 

HP-UX

 

819

 

S-1

 

ISO-8859-1

 

1

 

en_US

 

Linux

 

923

 

S-1

 

ISO-8859-15

 

1

 

-

 

Linux

 

437

 

S-1

 

IBM-437

 

1

 

-

 

OS/2

 

850

 

S-1

 

IBM-850

 

1

 

-

 

OS/2

 

819

 

S-1

 

ISO8859-1

 

1

 

en_US

 

SCO

 

819

 

S-1

 

ISO8859-1

 

1

 

en_US

 

SGI

 

819

 

S-1

 

ISO8859-1

 

1

 

en_US

 

Solaris

 

923

 

S-1

 

ISO8859-15

 

1

 

en_US.ISO8859-15

 

Solaris

 

1208

 

N-1

 

UTF-8

 

1

 

en_US.UTF-8

 

Solaris

 

1252

 

S-1

 

1252

 

1

 

-

 

Windows

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

249

||||||



Table

 

94.

 

Vietnam,

 

territory

 

identifier:

 

VN

 

Code

 

page

 

Group

 

Code

 

set

 

Territory

 

code

 

Locale

 

Operating

 

system

 

1129

 

S-11

 

IBM-1129

 

84

 

Vi_VN

 

AIX

 

1208

 

N-1

 

UTF-8

 

84

 

VI_VN

 

AIX

 

1130

 

S-11

 

IBM-1130

 

84

 

-

 

Host

 

1164

 

S-11

 

IBM-1164

 

84

 

-

 

Host

 

1129

 

S-11

 

IBM-1129

 

84

 

-

 

OS/2

 

1258

 

S-11

 

1258

 

84

 

-

 

Windows

   

Notes:

  

1.

   

CCSIDs

 

1392

 

and

 

5488

 

(GB

 

18030)

 

can

 

only

 

be

 

used

 

with

 

the

 

load

 

or

 

import

 

utilities

 

to

 

move

 

data

 

from

 

CCSIDs

 

1392

 

and

 

5488

 

to

 

a

 

DB2

 

UDB

 

Unicode

 

database,

 

or

 

to

 

export

 

from

 

a

 

DB2

 

UDB

 

Unicode

 

database

 

to

 

CCSIDs

 

1392

 

or

 

5488.

 

2.

   

On

 

AIX

 

4.3

 

or

 

later

 

the

 

code

 

page

 

is

 

943.

 

If

 

you

 

are

 

using

 

AIX

 

4.2

 

or

 

earlier,

 

the

 

code

 

page

 

is

 

932.

 

3.

   

Code

 

page

 

1394

 

(Shift

 

JIS

 

X0213)

 

can

 

only

 

be

 

used

 

with

 

the

 

load

 

or

 

import

 

utilities

 

to

 

move

 

data

 

from

 

code

 

page

 

1394

 

to

 

a

 

DB2

 

UDB

 

Unicode

 

database,

 

or

 

to

 

export

 

from

 

a

 

DB2

 

UDB

 

Unicode

 

database

 

to

 

code

 

page

 

1394.

 

4.

   

The

 

following

 

map

 

to

 

Arabic

 

Countries/Regions

 

(AA):

 

v

   

Arabic

 

(Saudi

 

Arabia)

 

v

   

Arabic

 

(Iraq)

 

v

   

Arabic

 

(Egypt)

 

v

   

Arabic

 

(Libya)

 

v

   

Arabic

 

(Algeria)

 

v

   

Arabic

 

(Morocco)

 

v

   

Arabic

 

(Tunisia)

 

v

   

Arabic

 

(Oman)

 

v

   

Arabic

 

(Yemen)

 

v

   

Arabic

 

(Syria)

 

v

   

Arabic

 

(Jordan)

 

v

   

Arabic

 

(Lebanon)

 

v

   

Arabic

 

(Kuwait)

 

v

   

Arabic

 

(United

 

Arab

 

Emirates)

 

v

   

Arabic

 

(Bahrain)

 

v

   

Arabic

 

(Qatar)
5.

   

The

 

following

 

map

 

to

 

English

 

(US):

 

v

   

English

 

(Jamaica)

 

v

   

English

 

(Caribbean)
6.

   

The

 

following

 

map

 

to

 

Latin

 

America

 

(Lat):

 

v

   

Spanish

 

(Mexican)

 

v

   

Spanish

 

(Guatemala)

 

v

   

Spanish

 

(Costa

 

Rica)

 

v

   

Spanish

 

(Panama)

 

v

   

Spanish

 

(Dominican

 

Republic)

   

250

 

Administration

 

Guide:

 

Planning



v

   

Spanish

 

(Venezuela)

 

v

   

Spanish

 

(Colombia)

 

v

   

Spanish

 

(Peru)

 

v

   

Spanish

 

(Argentina)

 

v

   

Spanish

 

(Ecuador)

 

v

   

Spanish

 

(Chile)

 

v

   

Spanish

 

(Uruguay)

 

v

   

Spanish

 

(Paraguay)

 

v

   

Spanish

 

(Bolivia)
7.

   

The

 

following

 

Indic

 

scripts

 

are

 

supported

 

through

 

Unicode:

 

Hindi,

 

Gujarati,

 

Kannada,

 

Konkani,

 

Marathi,

 

Punjabi,

 

Sanskrit,

 

Tamil

 

and

 

Telugu.

 

8.

   

Code

 

page

 

950

 

is

 

also

 

known

 

as

 

Big5.

 

Microsoft

 

code

 

page

 

950

 

differs

 

from

 

IBM

 

code

 

page

 

950

 

in

 

the

 

following

 

ways:

  

Range

 

Description

 

IBM

 

Microsoft

 

Difference

 

X’8140’

 

to

 

X’8DFE’

 

User

 

defined

 

characters

 

User

 

defined

 

area

 

User

 

defined

 

area

 

Same

 

X’8E40’

 

to

 

X’A0FE’

 

User

 

defined

 

characters

 

User

 

defined

 

area

 

User

 

defined

 

area

 

Same

 

X’A140’

 

to

 

X’A3BF’

 

Special

 

symbols

 

System

 

characters

 

System

 

characters

 

Same

 

X’A3C0’

 

to

 

X’A3E0’

 

Control

 

symbols

 

System

 

characters

 

Empty

 

Different

 

X’A3E1’

 

to

 

X’A3FE’

 

Reserved

 

Empty

 

Empty

 

Same

 

X’A440’

 

to

 

X’C67E’

 

Primary

 

use

 

characters

 

System

 

characters

 

System

 

characters

 

Same

 

X’C6A1’

 

to

 

X’C878’

 

Eten

 

added

 

symbols

 

System

 

characters

 

User

 

defined

 

area

 

Different

 

X’C879’

 

to

 

X’C8CC’

 

Eten

 

added

 

symbols

 

Empty

 

User

 

defined

 

area

 

Different

 

X’C8CD’

 

to

 

X’C8D3’

 

Eten

 

added

 

symbols

 

System

 

characters

 

User

 

defined

 

area

 

Different

 

X’C8D4’

 

to

 

X’C8FD’

 

Reserved

 

System

 

characters

 

User

 

defined

 

area

 

Different

 

X’C8FE’

 

Invalid/

 

undefined

 

character

 

System

 

characters

 

User

 

defined

 

area

 

Different

 

X’C940’

 

to

 

X’F9D5’

 

Secondary

 

use

 

characters

 

System

 

characters

 

System

 

characters

 

Same

 

X’F9D6’

 

to

 

X’F9FE’

 

Eten

 

extension

 

for

 

Big-5

 

User

 

defined

 

area

 

System

 

characters

 

Different

 

X’FA40’

 

to

 

X’FEFE’

 

User

 

defined

 

characters

 

User

 

defined

 

area

 

User

 

defined

 

area

 

Same

 

X’8181’

 

to

 

X’8C82’

 

User

 

defined

 

characters

 

User

 

defined

 

area

 

Empty

 

Different

 

X’F286’

 

to

 

X’F9A0’

 

IBM

 

select

 

characters

 

System

 

characters

 

Empty

 

Different

 

Total

 

characters

 

14

 

060

 

13

 

502

 

Total

 

user

 

defined

 

characters

 

6

 

204

 

6

 

217

 

Total

 

defined

 

code

 

points

 

20

 

264

 

19

 

719

    

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

251



Related

 

tasks:

  

v

   

“Installing

 

the

 

previous

 

tables

 

for

 

converting

 

between

 

code

 

page

 

1394

 

and

 

Unicode”

 

on

 

page

 

280

Enabling

 

and

 

disabling

 

euro

 

symbol

 

support

  

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

provides

 

support

 

for

 

the

 

euro

 

currency

 

symbol.

 

The

 

euro

 

symbol

 

has

 

been

 

added

 

to

 

numerous

 

code

 

pages.

 

Many

 

DB2

 

UDB

 

internal

 

code

 

page

 

conversion

 

tables,

 

and

 

many

 

external

 

code

 

page

 

conversion

 

table

 

files

 

located

 

in

 

the

 

sqllib/conv/

 

directory

 

have

 

been

 

enhanced

 

to

 

support

 

the

 

euro

 

symbol.

 

Microsoft

 

ANSI

 

code

 

pages

 

have

 

been

 

modified

 

to

 

include

 

the

 

euro

 

currency

 

symbol

 

in

 

position

 

X’80’.

 

Code

 

page

 

850

 

has

 

been

 

modified

 

to

 

replace

 

the

 

character

 

DOTLESS

 

I

 

(found

 

at

 

position

 

X’D5’)

 

with

 

the

 

euro

 

currency

 

symbol.

 

DB2

 

UDB

 

internal

 

code

 

page

 

conversion

 

routines

 

use

 

these

 

revised

 

code

 

page

 

definitions

 

as

 

the

 

default

 

to

 

provide

 

euro

 

symbol

 

support.

 

However,

 

if

 

you

 

want

 

to

 

use

 

the

 

non-euro

 

definitions

 

of

 

the

 

code

 

page

 

conversion

 

tables,

 

follow

 

the

 

procedure

 

below

 

after

 

installation

 

is

 

complete.

  

Prerequisites:

   

For

 

replacing

 

existing

 

external

 

code

 

page

 

conversion

 

table

 

files,

 

you

 

may

 

want

 

to

 

back

 

up

 

the

 

current

 

files

 

before

 

copying

 

the

 

non-euro

 

versions

 

over

 

them.

 

The

 

files

 

are

 

located

 

in

 

the

 

directory

 

sqllib/conv/.

 

On

 

UNIX,

 

sqllib/conv/

 

is

 

linked

 

to

 

the

 

install

 

path

 

of

 

DB2

 

UDB.

  

Procedure:

   

To

 

disable

 

euro-symbol

 

support:

 

1.

   

Stop

 

the

 

DB2

 

UDB

 

instance.

 

2.

   

Download

 

the

 

appropriate

 

conversion

 

table

 

files,

 

in

 

binary:

 

v

   

For

 

big-endian

 

platforms

 

from

 

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/conv/BigEndian/.

 

This

 

ftp

 

server

 

is

 

anonymous,

 

so

 

if

 

you

 

are

 

connecting

 

via

 

the

 

command

 

line,

 

log

 

in

 

as

 

user

 

″anonymous″

 

and

 

use

 

your

 

e-mail

 

address

 

as

 

your

 

password.

 

After

 

logging

 

in,

 

change

 

to

 

the

 

conversion

 

tables

 

directory:

 

cd

 

ps/products/db2/info/vr8/conv/BigEndian/

 

v

   

For

 

little-endian

 

platforms

 

from

 

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/conv/LittleEndian/.

 

This

 

ftp

 

server

 

is

 

anonymous,

 

so

 

if

 

you

 

are

 

connecting

 

via

 

the

 

command

 

line,

 

log

 

in

 

as

 

user

 

″anonymous″

 

and

 

use

 

your

 

e-mail

 

address

 

as

 

your

 

password.

 

After

 

logging

 

in,

 

change

 

to

 

the

 

conversion

 

tables

 

directory:

 

cd

 

ps/products/db2/info/vr8/conv/LittleEndian
3.

   

Copy

 

the

 

files

 

to

 

your

 

sqllib/conv/

 

directory.

 

4.

   

Restart

 

the

 

DB2

 

UDB

 

instance.

 

Code

 

pages

 

819

 

and

 

1047:

   

For

 

code

 

pages

 

819

 

(ISO

 

8859-1

 

Latin

 

1

 

ASCII)

 

and

 

1047

 

(Latin

 

1

 

Open

 

System

 

EBCDIC),

 

the

 

euro

 

replacement

 

code

 

pages,

 

923

 

(ISO

 

8859-15

 

Latin

 

9

 

ASCII)

 

and

 

924

 

(Latin

 

9

 

Open

 

System

 

EBCDIC)

 

respectively,

 

contain

 

not

 

just

 

the

 

euro

 

symbol

   

252

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|



but

 

also

 

several

 

new

 

characters.

 

DB2

 

UDB

 

continues

 

to

 

use

 

the

 

old

 

(non-euro)

 

definitions

 

of

 

these

 

two

 

code

 

pages

 

and

 

conversion

 

tables,

 

namely

 

819

 

and

 

1047,

 

by

 

default.

 

There

 

are

 

two

 

ways

 

to

 

activate

 

the

 

new

 

923/924

 

code

 

page

 

and

 

the

 

associated

 

conversion

 

tables:

 

v

   

Create

 

a

 

new

 

database

 

that

 

uses

 

the

 

new

 

code

 

page.

 

For

 

example,

 

DB2

 

CREATE

 

DATABASE

 

dbname

 

USING

 

CODESET

 

ISO8859-15

 

TERRITORY

 

US

 

v

   

Rename

 

or

 

copy

 

the

 

923

 

or

 

924

 

conversion

 

table

 

file

 

in

 

the

 

sqllib/conv/

 

directory

 

to

 

819

 

or

 

1047,

 

respectively.

 

Related

 

concepts:

  

v

   

“Character

 

conversion”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

Related

 

reference:

  

v

   

“Conversion

 

tables

 

for

 

code

 

pages

 

923

 

and

 

924”

 

on

 

page

 

260

 

v

   

“Conversion

 

table

 

files

 

for

 

euro-enabled

 

code

 

pages”

 

on

 

page

 

253

Conversion

 

table

 

files

 

for

 

euro-enabled

 

code

 

pages

  

The

 

following

 

tables

 

list

 

the

 

conversion

 

tables

 

that

 

have

 

been

 

enhanced

 

to

 

support

 

the

 

euro

 

currency

 

symbol.

 

If

 

you

 

want

 

to

 

disable

 

euro

 

symbol

 

support,

 

download

 

the

 

conversion

 

table

 

file

 

indicated

 

in

 

the

 

column

 

titled

 

″Conversion

 

table

 

file″.

  

Arabic:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

420,

 

16804

 

1046,

 

9238

 

04201046.cnv,

 

IBM00420.ucs

 

420,

 

16804

 

1256,

 

5352

 

04201256.cnv,

 

IBM00420.ucs

 

420,

 

16804

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00420.ucs

 

864,

 

17248

 

1046,

 

9238

 

08641046.cnv,

 

10460864.cnv,

 

IBM00864.ucs

 

864,

 

17248

 

1256,

 

5352

 

08641256.cnv,

 

12560864.cnv,

 

IBM00864.ucs

 

864,

 

17248

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00864.ucs

 

1046,

 

9238

 

864,

 

17248

 

10460864.cnv,

 

08641046.cnv,

 

IBM01046.ucs

 

1046,

 

9238

 

1089

 

10461089.cnv,

 

10891046.cnv,

 

IBM01046.ucs

 

1046,

 

9238

 

1256,

 

5352

 

10461256.cnv,

 

12561046.cnv,

 

IBM01046.ucs

 

1046,

 

9238

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01046.ucs

 

1089

 

1046,

 

9238

 

10891046.cnv,

 

10461089.cnv

 

1256,

 

5352

 

864,

 

17248

 

12560864.cnv,

 

08641256.cnv,

 

IBM01256.ucs

 

1256,

 

5352

 

1046,

 

9238

 

12561046.cnv,

 

10461256.cnv,

 

IBM01256.ucs

 

1256,

 

5352

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01256.ucs

    

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

253



Baltic:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

921,

 

901

 

1257

 

09211257.cnv,

 

12570921.cnv,

 

IBM00921.ucs

 

921,

 

901

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00921.ucs

 

1112,

 

1156

 

1257,

 

5353

 

11121257.cnv

 

1257,

 

5353

 

921,

 

901

 

12570921.cnv,

 

09211257.cnv,

 

IBM01257.ucs

 

1257,

 

5353

 

922,

 

902

 

12570922.cnv,

 

09221257.cnv,

 

IBM01257.ucs

 

1257,

 

5353

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01257.ucs

    

Belarus:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

1131,

 

849

 

1251,

 

5347

 

11311251.cnv,

 

12511131.cnv

 

1131,

 

849

 

1283

 

11311283.cnv

    

Cyrillic:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

855,

 

872

 

866,

 

808

 

08550866.cnv,

 

08660855.cnv

 

855,

 

872

 

1251,

 

5347

 

08551251.cnv,

 

12510855.cnv

 

866,

 

808

 

855,

 

872

 

08660855.cnv,

 

08550866.cnv

 

866,

 

808

 

1251,

 

5347

 

08661251.cnv,

 

12510866.cnv

 

1025,

 

1154

 

855,

 

872

 

10250855.cnv,

 

IBM01025.ucs

 

1025,

 

1154

 

866,

 

808

 

10250866.cnv,

 

IBM01025.ucs

 

1025,

 

1154

 

1131,

 

849

 

10251131.cnv,

 

IBM01025.ucs

 

1025,

 

1154

 

1251,

 

5347

 

10251251.cnv,

 

IBM01025.ucs

 

1025,

 

1154

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01025.ucs

 

1251,

 

5347

 

855,

 

872

 

12510855.cnv,

 

08551251.cnv,

 

IBM01251.ucs

 

1251,

 

5347

 

866,

 

808

 

12510866.cnv,

 

08661251.cnv,

 

IBM01251.ucs

 

1251,

 

5347

 

1124

 

12511124.cnv,

 

11241251.cnv,

 

IBM01251.ucs

 

1251,

 

5347

 

1125,

 

848

 

12511125.cnv,

 

11251251.cnv,

 

IBM01251.ucs

 

1251,

 

5347

 

1131,

 

849

 

12511131.cnv,

 

11311251.cnv,

 

IBM01251.ucs

 

1251,

 

5347

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01251.ucs

    

254

 

Administration

 

Guide:

 

Planning



Estonia:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

922,

 

902

 

1257

 

09221257.cnv,

 

12570922.cnv,

 

IBM00922.ucs

 

922,

 

902

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00922.ucs

 

1122,

 

1157

 

1257,

 

5353

 

11221257.cnv

    

Greek:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

423

 

869,

 

9061

 

04230869.cnv

 

813,

 

4909

 

869,

 

9061

 

08130869.cnv,

 

08690813.cnv,

 

IBM00813.ucs

 

813,

 

4909

 

1253,

 

5349

 

08131253.cnv,

 

12530813.cnv,

 

IBM00813.ucs

 

813,

 

4909

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00813.ucs

 

869,

 

9061

 

813,

 

4909

 

08690813.cnv,

 

08130869.cnv

 

869,

 

9061

 

1253,

 

5349

 

08691253.cnv,

 

12530869.cnv

 

875,

 

4971

 

813,

 

4909

 

08750813.cnv,

 

IBM00875.ucs

 

875,

 

4971

 

1253,

 

5349

 

08751253.cnv,

 

IBM00875.ucs

 

875,

 

4971

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00875.ucs

 

1253,

 

5349

 

813,

 

4909

 

12530813.cnv,

 

08131253.cnv,

 

IBM01253.ucs

 

1253,

 

5349

 

869,

 

9061

 

12530869.cnv,

 

08691253.cnv,

 

IBM01253.ucs

 

1253,

 

5349

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01253.ucs

    

Hebrew:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

424,

 

12712

 

856,

 

9048

 

04240856.cnv,

 

IBM00424.ucs

 

424,

 

12712

 

862,

 

867

 

04240862.cnv,

 

IBM00424.ucs

 

424,

 

12712

 

916

 

04240916.cnv,

 

IBM00424.ucs

 

424,

 

12712

 

1255,

 

5351

 

04241255.cnv,

 

IBM00424.ucs

 

424,

 

12712

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00424.ucs

 

856,

 

9048

 

862,

 

867

 

08560862.cnv,

 

08620856.cnv,

 

IBM0856.ucs

 

856,

 

9048

 

916

 

08560916.cnv,

 

09160856.cnv,

 

IBM0856.ucs

 

856,

 

9048

 

1255,

 

5351

 

08561255.cnv,

 

12550856.cnv,

 

IBM0856.ucs

 

856,

 

9048

 

1200,

 

1208,

 

13488,

 

17584

 

IBM0856.ucs

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

255



Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

862,

 

867

 

856,

 

9048

 

08620856.cnv,

 

08560862.cnv,

 

IBM00862.ucs

 

862,

 

867

 

916

 

08620916.cnv,

 

09160862.cnv,

 

IBM00862.ucs

 

862,

 

867

 

1255,

 

5351

 

08621255.cnv,

 

12550862.cnv,

 

IBM00862.ucs

 

862,

 

867

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00862.ucs

 

916

 

856,

 

9048

 

09160856.cnv,

 

08560916.cnv

 

916

 

862,

 

867

 

09160862.cnv,

 

08620916.cnv

 

1255,

 

5351

 

856,

 

9048

 

12550856.cnv,

 

08561255.cnv,

 

IBM01255.ucs

 

1255,

 

5351

 

862,

 

867

 

12550862.cnv,

 

08621255.cnv,

 

IBM01255.ucs

 

1255,

 

5351

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01255.ucs

    

Japanese:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

290,

 

8482

 

850,

 

858

 

02900850.cnv

 

1027,

 

5123

 

850,

 

858

 

10270850.cnv

    

Latin-1:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

37,

 

1140

 

437

 

00370437.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

850,

 

858

 

00370850.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

860

 

00370860.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

1051

 

00371051.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

1252,

 

5348

 

00371252.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

1275

 

00371275.cnv,

 

IBM00037.ucs

 

37,

 

1140

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00037.ucs

 

273,

 

1141

 

437

 

02730437.cnv,

 

IBM00273.ucs

 

273,

 

1141

 

850,

 

858

 

02730850.cnv,

 

IBM00273.ucs

 

273,

 

1141

 

1051

 

02731051.cnv,

 

IBM00273.ucs

 

273,

 

1141

 

1252,

 

5348

 

02731252.cnv,

 

IBM00273.ucs

 

273,

 

1141

 

1275

 

02731275.cnv,

 

IBM00273.ucs

 

273,

 

1141

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00273.ucs

 

277,

 

1142

 

437

 

02770437.cnv,

 

IBM00277.ucs

 

277,

 

1142

 

850,

 

858

 

02770850.cnv,

 

IBM00277.ucs

 

277,

 

1142

 

1051

 

02771051.cnv,

 

IBM00277.ucs

 

277,

 

1142

 

1252,

 

5348

 

02771252.cnv,

 

IBM00277.ucs

   

256

 

Administration

 

Guide:

 

Planning



Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

277,

 

1142

 

1275

 

02771275.cnv,

 

IBM00277.ucs

 

277,

 

1142

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00277.ucs

 

278,

 

1143

 

437

 

02780437.cnv,

 

IBM00278.ucs

 

278,

 

1143

 

850,

 

858

 

02780850.cnv,

 

IBM00278.ucs

 

278,

 

1143

 

1051

 

02781051.cnv,

 

IBM00278.ucs

 

278,

 

1143

 

1252,

 

5348

 

02781252.cnv,

 

IBM00278.ucs

 

278,

 

1143

 

1275

 

02781275.cnv,

 

IBM00278.ucs

 

278,

 

1143

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00278.ucs

 

280,

 

1144

 

437

 

02800437.cnv,

 

IBM00280.ucs

 

280,

 

1144

 

850,

 

858

 

02800850.cnv,

 

IBM00280.ucs

 

280,

 

1144

 

1051

 

02801051.cnv,

 

IBM00280.ucs

 

280,

 

1144

 

1252,

 

5348

 

02801252.cnv,

 

IBM00280.ucs

 

280,

 

1144

 

1275

 

02801275.cnv,

 

IBM00280.ucs

 

280,

 

1144

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00280.ucs

 

284,

 

1145

 

437

 

02840437.cnv,

 

IBM00284.ucs

 

284,

 

1145

 

850,

 

858

 

02840850.cnv,

 

IBM00284.ucs

 

284,

 

1145

 

1051

 

02841051.cnv,

 

IBM00284.ucs

 

284,

 

1145

 

1252,

 

5348

 

02841252.cnv,

 

IBM00284.ucs

 

284,

 

1145

 

1275

 

02841275.cnv,

 

IBM00284.ucs

 

284,

 

1145

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00284.ucs

 

285,

 

1146

 

437

 

02850437.cnv,

 

IBM00285.ucs

 

285,

 

1146

 

850,

 

858

 

02850850.cnv,

 

IBM00285.ucs

 

285,

 

1146

 

1051

 

02851051.cnv,

 

IBM00285.ucs

 

285,

 

1146

 

1252,

 

5348

 

02851252.cnv,

 

IBM00285.ucs

 

285,

 

1146

 

1275

 

02851275.cnv,

 

IBM00285.ucs

 

285,

 

1146

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00285.ucs

 

297,

 

1147

 

437

 

02970437.cnv,

 

IBM00297.ucs

 

297,

 

1147

 

850,

 

858

 

02970850.cnv,

 

IBM00297.ucs

 

297,

 

1147

 

1051

 

02971051.cnv,

 

IBM00297.ucs

 

297,

 

1147

 

1252,

 

5348

 

02971252.cnv,

 

IBM00297.ucs

 

297,

 

1147

 

1275

 

02971275.cnv,

 

IBM00297.ucs

 

297,

 

1147

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00297.ucs

 

437

 

850,

 

858

 

04370850.cnv,

 

08500437.cnv

 

500,

 

1148

 

437

 

05000437.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

850,

 

858

 

05000850.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

857,

 

9049

 

05000857.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

920

 

05000920.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

1051

 

05001051.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

1114,

 

5210

 

05001114.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

1252,

 

5348

 

05001252.cnv,

 

IBM00500.ucs

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

257



Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

500,

 

1148

 

1254,

 

5350

 

05001254.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

1275

 

05001275.cnv,

 

IBM00500.ucs

 

500,

 

1148

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00500.ucs

 

850,

 

858

 

437

 

08500437.cnv,

 

04370850.cnv

 

850,

 

858

 

860

 

08500860.cnv,

 

08600850.cnv

 

850,

 

858

 

1114,

 

5210

 

08501114.cnv,

 

11140850.cnv

 

850,

 

858

 

1275

 

08501275.cnv,

 

12750850.cnv

 

860

 

850,

 

858

 

08600850.cnv,

 

08500860.cnv

 

871,

 

1149

 

437

 

08710437.cnv,

 

IBM00871.ucs

 

871,

 

1149

 

850,

 

858

 

08710850.cnv,

 

IBM00871.ucs

 

871,

 

1149

 

1051

 

08711051.cnv,

 

IBM00871.ucs

 

871,

 

1149

 

1252,

 

5348

 

08711252.cnv,

 

IBM00871.ucs

 

871,

 

1149

 

1275

 

08711275.cnv,

 

IBM00871.ucs

 

871,

 

1149

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00871.ucs

 

1275

 

850,

 

858

 

12750850.cnv,

 

08501275.cnv

    

Latin-2:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

852,

 

9044

 

1250,

 

5346

 

08521250.cnv,

 

12500852.cnv

 

870,

 

1153

 

852,

 

9044

 

08700852.cnv,

 

IBM00870.ucs

 

870,

 

1153

 

1250,

 

5346

 

08701250.cnv,

 

IBM00870.ucs

 

870,

 

1153

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00870.ucs

 

1250,

 

5346

 

852,

 

9044

 

12500852.cnv,

 

08521250.cnv,

 

IBM01250.ucs

 

1250,

 

5346

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01250.ucs

    

Simplified

 

Chinese:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

837,

 

935,

 

1388

 

1200,

 

1208,

 

13488,

 

17584

 

1388ucs2.cnv

 

1386

 

1200,

 

1208,

 

13488,

 

17584

 

1386ucs2.cnv,

 

ucs21386.cnv

    

Traditional

 

Chinese:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

937,

 

835,

 

1371

 

950,

 

1370

 

09370950.cnv,

 

0937ucs2.cnv

 

937,

 

835,

 

1371

 

1200,

 

1208,

 

13488,

 

17584

 

0937ucs2.cnv

 

1114,

 

5210

 

850,

 

858

 

11140850.cnv,

 

08501114.cnv

    

258

 

Administration

 

Guide:

 

Planning



Thailand:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

838,

 

1160

 

874,

 

1161

 

08380874.cnv,

 

IBM00838.ucs

 

838,

 

1160

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00838.ucs

 

874,

 

1161

 

1200,

 

1208,

 

13488,

 

17584

 

IBM00874.ucs

    

Turkish:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

857,

 

9049

 

1254,

 

5350

 

08571254.cnv,

 

12540857.cnv

 

1026,

 

1155

 

857,

 

9049

 

10260857.cnv,

 

IBM01026.ucs

 

1026,

 

1155

 

1254,

 

5350

 

10261254.cnv,

 

IBM01026.ucs

 

1026,

 

1155

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01026.ucs

 

1254,

 

5350

 

857,

 

9049

 

12540857.cnv,

 

08571254.cnv,

 

IBM01254.ucs

 

1254,

 

5350

 

1200,

 

1208,

 

13488,

 

17584

 

IBM01254.ucs

    

Ukraine:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

1123,

 

1158

 

1124

 

11231124.cnv

 

1123,

 

1158

 

1125,

 

848

 

11231125.cnv

 

1123,

 

1158

 

1251,

 

5347

 

11231251.cnv

 

1124

 

1251,

 

5347

 

11241251.cnv,

 

12511124.cnv

 

1125,

 

848

 

1251,

 

5347

 

11251251.cnv,

 

12511125.cnv

    

Unicode:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

1200,

 

1208,

 

13488,

 

17584

 

813,

 

4909

 

IBM00813.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

862,

 

867

 

IBM00862.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

864,

 

17248

 

IBM00864.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

874,

 

1161

 

IBM00874.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

921,

 

901

 

IBM00921.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

922,

 

902

 

IBM00922.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1046,

 

9238

 

IBM01046.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1250,

 

5346

 

IBM01250.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1251,

 

5347

 

IBM01251.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1253,

 

5349

 

IBM01253.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1254,

 

5350

 

IBM01254.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1255,

 

5351

 

IBM01255.ucs

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

259



Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

1200,

 

1208,

 

13488,

 

17584

 

1256,

 

5352

 

IBM01256.ucs

 

1200,

 

1208,

 

13488,

 

17584

 

1386

 

ucs21386.cnv,

 

1386ucs2.cnv

    

Vietnamese:

   

Database

 

server

 

CCSIDs/CPGIDs

 

Database

 

client

 

CCSIDs/CPGIDs

 

Conversion

 

table

 

files

 

1130,

 

1164

 

1258,

 

5354

 

11301258.cnv

 

1258,

 

5354

 

1129,

 

1163

 

12581129.cnv

    

Related

 

concepts:

  

v

   

“Character

 

conversion”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

Related

 

tasks:

  

v

   

“Enabling

 

and

 

disabling

 

euro

 

symbol

 

support”

 

on

 

page

 

252

Conversion

 

tables

 

for

 

code

 

pages

 

923

 

and

 

924

  

The

 

following

 

is

 

a

 

list

 

of

 

all

 

the

 

code

 

page

 

conversion

 

table

 

files

 

that

 

are

 

associated

 

with

 

code

 

pages

 

923

 

and

 

924.

 

Each

 

file

 

is

 

of

 

the

 

form

 

XXXXYYYY.cnv

 

or

 

ibmZZZZZ.ucs,

 

where

 

XXXXX

 

is

 

the

 

source

 

code

 

page

 

number

 

and

 

YYYY

 

is

 

the

 

target

 

code

 

page

 

number.

 

The

 

file

 

ibmZZZZZ.ucs

 

supports

 

conversion

 

between

 

code

 

page

 

ZZZZZ

 

and

 

Unicode.

 

To

 

activate

 

a

 

particular

 

code

 

page

 

conversion

 

table,

 

rename

 

or

 

copy

 

that

 

conversion

 

table

 

file

 

to

 

its

 

new

 

name

 

as

 

shown

 

in

 

the

 

second

 

column.

 

For

 

example,

 

to

 

support

 

the

 

euro

 

symbol

 

when

 

connecting

 

a

 

8859-1/15

 

(Latin

 

1/9)

 

client

 

to

 

a

 

Windows

 

1252

 

database,

 

you

 

need

 

to

 

rename

 

or

 

copy

 

the

 

following

 

code

 

page

 

conversion

 

table

 

files

 

in

 

the

 

sqllib/conv/

 

directory:

 

v

   

09231252.cnv

 

to

 

08191252.cnv

 

v

   

12520923.cnv

 

to

 

12520819.cnv

 

v

   

ibm00923.ucs

 

to

 

ibm00819.ucs

 

923

 

and

 

924

 

conversion

 

table

 

files

 

in

 

the

 

sqlllib/conv/

 

directory

 

New

 

name

 

00370923.cnv

 

00370819.cnv

 

02730923.cnv

 

02730819.cnv

 

02770923.cnv

 

02770819.cnv

 

02780923.cnv

 

02780819.cnv

 

02800923.cnv

 

02800819.cnv

 

02840923.cnv

 

02840819.cnv

 

02850923.cnv

 

02850819.cnv

 

02970923.cnv

 

02970819.cnv

 

04370923.cnv

 

04370819.cnv

 

05000923.cnv

 

05000819.cnv

   

260

 

Administration

 

Guide:

 

Planning



923

 

and

 

924

 

conversion

 

table

 

files

 

in

 

the

 

sqlllib/conv/

 

directory

 

New

 

name

 

08500923.cnv

 

08500819.cnv

 

08600923.cnv

 

08600819.cnv

 

08630923.cnv

 

08630819.cnv

 

08710923.cnv

 

08710819.cnv

 

09230437.cnv

 

08190437.cnv

 

09230500.cnv

 

08190500.cnv

 

09230850.cnv

 

08190850.cnv

 

09230860.cnv

 

08190860.cnv

 

09230863.cnv

 

08190863.cnv

 

09231043.cnv

 

08191043.cnv

 

09231051.cnv

 

08191051.cnv

 

09231114.cnv

 

08191114.cnv

 

09231252.cnv

 

08191252.cnv

 

09231275.cnv

 

08191275.cnv

 

09241252.cnv

 

10471252.cnv

 

10430923.cnv

 

10430819.cnv

 

10510923.cnv

 

10510819.cnv

 

11140923.cnv

 

11140819.cnv

 

12520923.cnv

 

12520819.cnv

 

12750923.cnv

 

12750819.cnv

 

ibm00923.ucs

 

ibm00819.ucs

    

Related

 

concepts:

  

v

   

“Character

 

conversion”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

Related

 

tasks:

  

v

   

“Enabling

 

and

 

disabling

 

euro

 

symbol

 

support”

 

on

 

page

 

252

Choosing

 

a

 

language

 

for

 

your

 

database

  

When

 

you

 

create

 

a

 

database,

 

you

 

have

 

to

 

decide

 

what

 

language

 

your

 

data

 

will

 

be

 

stored

 

in.

 

When

 

you

 

create

 

a

 

database,

 

you

 

can

 

specify

 

the

 

territory

 

and

 

code

 

set.

 

The

 

territory

 

and

 

code

 

set

 

may

 

be

 

different

 

from

 

the

 

current

 

operating

 

system

 

settings.

 

If

 

you

 

do

 

not

 

explicitly

 

choose

 

a

 

territory

 

and

 

code

 

set

 

at

 

database

 

creation

 

time,

 

the

 

database

 

will

 

be

 

created

 

using

 

the

 

current

 

locale.

 

When

 

you

 

are

 

choosing

 

a

 

code

 

set,

 

make

 

sure

 

it

 

can

 

encode

 

all

 

the

 

characters

 

in

 

the

 

language

 

you

 

will

 

be

 

using.

 

Another

 

option

 

is

 

to

 

store

 

data

 

in

 

a

 

Unicode

 

database,

 

which

 

means

 

that

 

you

 

do

 

not

 

have

 

to

 

choose

 

a

 

specific

 

language;

 

Unicode

 

encoding

 

includes

 

characters

 

from

 

almost

 

all

 

of

 

the

 

living

 

languages

 

in

 

the

 

world.

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

261



Locale

 

setting

 

for

 

the

 

DB2

 

Administration

 

Server

 

Ensure

 

that

 

the

 

locale

 

of

 

the

 

DB2

 

Administration

 

Server

 

instance

 

is

 

compatible

 

with

 

the

 

locale

 

of

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

instance.

 

Otherwise,

 

the

 

DB2

 

UDB

 

instance

 

cannot

 

communicate

 

with

 

the

 

DB2

 

Administration

 

Server.

 

If

 

the

 

LANG

 

environment

 

variable

 

is

 

not

 

set

 

in

 

the

 

user

 

profile

 

of

 

the

 

DB2

 

Administration

 

Server,

 

the

 

DB2

 

Administration

 

Server

 

will

 

be

 

started

 

with

 

the

 

default

 

system

 

locale.

 

If

 

the

 

default

 

system

 

locale

 

is

 

not

 

defined,

 

the

 

DB2

 

Administration

 

Server

 

will

 

be

 

started

 

with

 

code

 

page

 

819.

 

If

 

the

 

DB2

 

UDB

 

instance

 

uses

 

one

 

of

 

the

 

DBCS

 

locales,

 

and

 

the

 

DB2

 

Administration

 

Server

 

is

 

started

 

with

 

code

 

page

 

819,

 

the

 

instance

 

will

 

not

 

be

 

able

 

to

 

communicate

 

with

 

the

 

DB2

 

Administration

 

Server.

 

The

 

locale

 

of

 

the

 

DB2

 

Administration

 

Server

 

and

 

the

 

locale

 

of

 

the

 

DB2

 

UDB

 

instance

 

must

 

be

 

compatible.

 

For

 

example,

 

on

 

a

 

Simplified

 

Chinese

 

Linux

 

system,

 

LANG=zh_CN

 

should

 

be

 

set

 

in

 

the

 

DB2

 

Administration

 

Server’s

 

user

 

profile.

 

Enabling

 

bidirectional

 

support

  

Bidirectional

 

layout

 

transformations

 

are

 

implemented

 

in

 

DB2

 

Universal

 

Database

 

using

 

the

 

new

 

Coded

 

Character

 

Set

 

Identifier

 

(CCSID)

 

definitions.

 

For

 

the

 

new

 

bidirectional-specific

 

CCSIDs,

 

layout

 

transformations

 

are

 

performed

 

instead

 

of,

 

or

 

in

 

addition

 

to,

 

code

 

page

 

conversions.

 

To

 

use

 

this

 

support,

 

the

 

DB2BIDI

 

registry

 

variable

 

must

 

be

 

set

 

to

 

YES.

 

By

 

default,

 

this

 

variable

 

is

 

not

 

set.

 

It

 

is

 

used

 

by

 

the

 

server

 

for

 

all

 

conversions,

 

and

 

can

 

only

 

be

 

set

 

when

 

the

 

server

 

is

 

started.

 

Setting

 

DB2BIDI

 

to

 

YES

 

may

 

have

 

some

 

performance

 

impact

 

because

 

of

 

additional

 

checking

 

and

 

layout

 

transformations.

  

Restrictions:

   

The

 

following

 

restrictions

 

apply:

 

v

   

If

 

you

 

select

 

a

 

CCSID

 

that

 

is

 

not

 

appropriate

 

for

 

the

 

code

 

page

 

or

 

string

 

type

 

of

 

your

 

client

 

platform,

 

you

 

may

 

get

 

unexpected

 

results.

 

If

 

you

 

select

 

an

 

incompatible

 

CCSID

 

(for

 

example,

 

the

 

Hebrew

 

CCSID

 

for

 

connection

 

to

 

an

 

Arabic

 

database),

 

or

 

if

 

DB2BIDI

 

has

 

not

 

been

 

set

 

for

 

the

 

server,

 

you

 

will

 

receive

 

an

 

error

 

message

 

when

 

you

 

try

 

to

 

connect.

 

v

   

The

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

Command

 

Line

 

Processor

 

on

 

the

 

Windows

 

operating

 

system

 

does

 

not

 

have

 

bidirectional

 

support.

 

v

   

CCSID

 

override

 

is

 

not

 

supported

 

for

 

cases

 

where

 

the

 

HOST

 

EBCDIC

 

platform

 

is

 

the

 

client,

 

and

 

DB2

 

UDB

 

is

 

the

 

server.

 

When

 

converting

 

from

 

one

 

Arabic

 

CCSID

 

to

 

another

 

Arabic

 

CCSID,

 

DB2

 

UDB

 

employs

 

the

 

following

 

logic

 

to

 

deshape

 

(or

 

expand)

 

the

 

lam-alef

 

ligature.

 

Deshaping

 

will

 

occur

 

when

 

the

 

Text

 

Shaping

 

attribute

 

of

 

the

 

source

 

Arabic

 

CCSID

 

is

 

shaped

 

but

 

the

 

Text

 

Shaping

 

attribute

 

of

 

the

 

target

 

Arabic

 

CCSID

 

is

 

unshaped.

 

The

 

logic

 

to

 

deshape

 

the

 

lam-alef

 

ligature

 

is:

 

1.

   

If

 

the

 

last

 

character

 

of

 

the

 

data

 

stream

 

is

 

a

 

blank

 

character,

 

then

 

every

 

character

 

after

 

the

 

lam-alef

 

ligature

 

will

 

be

 

shifted

 

to

 

the

 

end

 

of

 

the

 

data

 

stream,

 

therefore

 

making

 

available

 

an

 

empty

 

position

 

for

 

the

 

current

 

lam-alef

 

ligature

 

to

 

be

 

deshaped

 

(expanded)

 

into

 

its

 

two

 

constituent

 

characters:

 

lam

 

and

 

alef.

 

2.

   

Otherwise,

 

if

 

the

 

first

 

character

 

of

 

the

 

data

 

stream

 

is

 

a

 

blank

 

character,

 

then

 

every

 

character

 

before

 

the

 

lam-alef

 

ligature

 

will

 

be

 

shifted

 

to

 

the

 

beginning

 

of

   

262

 

Administration

 

Guide:

 

Planning

|
|
|

|
|



the

 

data

 

stream,

 

therefore

 

making

 

available

 

an

 

empty

 

position

 

for

 

the

 

current

 

lam-alef

 

ligature

 

to

 

be

 

deshaped

 

(expanded)

 

into

 

its

 

two

 

constituent

 

characters:

 

lam

 

and

 

alef.

 

3.

   

Otherwise,

 

there

 

is

 

no

 

blank

 

character

 

at

 

the

 

beginning

 

and

 

end

 

of

 

the

 

data

 

stream,

 

and

 

the

 

lam-alef

 

ligature

 

cannot

 

be

 

deshaped.

 

If

 

the

 

target

 

CCSID

 

does

 

have

 

the

 

lam-alef

 

ligature,

 

then

 

the

 

lam-alef

 

ligature

 

remains

 

as

 

is;

 

otherwise,

 

the

 

lam-alef

 

ligature

 

is

 

replaced

 

by

 

the

 

target

 

CCSID’s

 

SUBstitution

 

character.

 

Conversely

 

when

 

converting

 

from

 

an

 

Arabic

 

CCSID

 

whose

 

Text

 

Shaping

 

attribute

 

is

 

unshaped

 

to

 

an

 

Arabic

 

CCSID

 

whose

 

Text

 

Shaping

 

attribute

 

is

 

shaped,

 

the

 

source

 

lam

 

and

 

alef

 

characters

 

will

 

be

 

contracted

 

to

 

one

 

ligature

 

character,

 

and

 

a

 

blank

 

character

 

is

 

inserted

 

at

 

the

 

end

 

of

 

the

 

target

 

area

 

data

 

stream.

  

Procedure:

   

To

 

specify

 

a

 

particular

 

bidirectional

 

CCSID

 

in

 

a

 

non-DRDA

 

environment:

 

v

   

Ensure

 

the

 

DB2BIDI

 

registry

 

variable

 

is

 

set

 

to

 

YES.

 

v

   

Select

 

the

 

CCSID

 

that

 

matches

 

the

 

characteristics

 

of

 

your

 

client,

 

and

 

set

 

DB2CODEPAGE

 

to

 

that

 

value.

 

v

   

If

 

you

 

already

 

have

 

a

 

connection

 

to

 

the

 

database,

 

you

 

must

 

issue

 

a

 

TERMINATE

 

command,

 

and

 

then

 

reconnect

 

to

 

allow

 

the

 

new

 

setting

 

for

 

DB2CODEPAGE

 

to

 

take

 

effect.

For

 

DRDA

 

environments,

 

if

 

the

 

HOST

 

EBCDIC

 

platform

 

also

 

supports

 

these

 

bidirectional

 

CCSIDs,

 

you

 

only

 

need

 

to

 

set

 

the

 

DB2CODEPAGE

 

value.

 

Note

 

that

 

you

 

must

 

not

 

further

 

specify

 

the

 

same

 

CCSID

 

on

 

the

 

BIDI

 

parameter

 

in

 

the

 

PARMS

 

field

 

of

 

the

 

DCS

 

database

 

directory

 

entry

 

for

 

the

 

server

 

database,

 

otherwise

 

an

 

extra

 

bidi

 

layout

 

conversion

 

would

 

occur,

 

and

 

render

 

any

 

Arabic

 

data

 

to

 

be

 

incorrectly

 

reversed.

 

However,

 

if

 

the

 

HOST

 

platform

 

does

 

not

 

support

 

these

 

CCSIDs,

 

you

 

must

 

also

 

specify

 

a

 

CCSID

 

override

 

for

 

the

 

HOST

 

database

 

server

 

to

 

which

 

you

 

are

 

connecting.

 

This

 

is

 

accomplished

 

through

 

the

 

use

 

of

 

the

 

BIDI

 

parameter

 

in

 

the

 

PARMS

 

field

 

of

 

the

 

DCS

 

database

 

directory

 

entry

 

for

 

the

 

server

 

database.

 

The

 

override

 

is

 

necessary

 

because,

 

in

 

a

 

DRDA

 

environment,

 

code

 

page

 

conversions

 

and

 

layout

 

transformations

 

are

 

performed

 

by

 

the

 

receiver

 

of

 

data.

 

However,

 

if

 

the

 

HOST

 

server

 

does

 

not

 

support

 

these

 

bidirectional

 

CCSIDs,

 

it

 

does

 

not

 

perform

 

layout

 

transformation

 

on

 

the

 

data

 

that

 

it

 

receives

 

from

 

DB2

 

UDB.

 

If

 

you

 

use

 

a

 

CCSID

 

override,

 

the

 

DB2

 

UDB

 

client

 

performs

 

layout

 

transformation

 

on

 

the

 

outbound

 

data

 

as

 

well.

  

Related

 

concepts:

  

v

   

“Bidirectional

 

support

 

with

 

DB2

 

Connect”

 

on

 

page

 

266

 

v

   

“Handling

 

BiDi

 

data”

 

in

 

the

 

DB2

 

Connect

 

User’s

 

Guide

 

Related

 

reference:

  

v

   

“Bidirectional-specific

 

CCSIDs”

 

on

 

page

 

263

 

v

   

“General

 

registry

 

variables”

 

in

 

the

 

Administration

 

Guide:

 

Performance

Bidirectional-specific

 

CCSIDs

  

The

 

following

 

bidirectional

 

attributes

 

are

 

required

 

for

 

correct

 

handling

 

of

 

bidirectional

 

data

 

on

 

different

 

platforms:

 

v

   

Text

 

type

 

v

   

Numeric

 

shaping

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

263

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



v

   

Orientation

 

v

   

Text

 

shaping

 

v

   

Symmetric

 

swapping

Because

 

default

 

values

 

on

 

different

 

platforms

 

are

 

not

 

the

 

same,

 

problems

 

can

 

occur

 

when

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

data

 

is

 

moved

 

from

 

one

 

platform

 

to

 

another.

 

For

 

example,

 

the

 

Windows

 

operating

 

system

 

uses

 

LOGICAL

 

UNSHAPED

 

data,

 

while

 

z/OS

 

and

 

OS/390

 

usually

 

use

 

SHAPED

 

VISUAL

 

data.

 

Therefore,

 

without

 

support

 

for

 

bidirectional

 

attributes,

 

data

 

sent

 

from

 

DB2

 

Universal

 

Database

 

for

 

z/OS

 

and

 

OS/390

 

to

 

DB2

 

UDB

 

on

 

Windows

 

32-bit

 

operating

 

systems

 

may

 

display

 

incorrectly.

 

DB2

 

UDB

 

supports

 

bidirectional

 

data

 

attributes

 

through

 

special

 

bidirectional

 

Coded

 

Character

 

Set

 

Identifiers

 

(CCSIDs).

 

The

 

following

 

bidirectional

 

CCSIDs

 

have

 

been

 

defined

 

and

 

are

 

implemented

 

with

 

DB2

 

UDB

 

as

 

shown

 

in

 

Table

 

95.

 

CDRA

 

string

 

types

 

are

 

defined

 

as

 

shown

 

in

 

Table

 

96

 

on

 

page

 

265.

  

Table

 

95.

 

Bidirectional

 

CCSIDs

 

CCSID

 

Code

 

Page

 

String

 

Type

 

420

 

420

 

4

 

424

 

424

 

4

 

856

 

856

 

5

 

862

 

862

 

4

 

864

 

864

 

5

 

867

 

862

 

4

 

916

 

916

 

5

 

1046

 

1046

 

5

 

1089

 

1089

 

5

 

1200

 

1200

 

10

 

1208

 

1208

 

10

 

1255

 

1255

 

5

 

1256

 

1256

 

5

 

5351

 

1255

 

5

 

5352

 

1256

 

5

 

8612

 

420

 

5

 

8616

 

424

 

10

 

9048

 

856

 

5

 

9238

 

1046

 

5

 

12712

 

424

 

4

 

13488

 

13488

 

10

 

16804

 

420

 

4

 

17248

 

864

 

5

 

62208

 

856

 

4

 

62209

 

862

 

10

 

62210

 

916

 

4

 

62211

 

424

 

5

   

264

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|
|



Table

 

95.

 

Bidirectional

 

CCSIDs

 

(continued)

 

CCSID

 

Code

 

Page

 

String

 

Type

 

62213

 

862

 

5

 

62215

 

1255

 

4

 

62218

 

864

 

4

 

62220

 

856

 

6

 

62221

 

862

 

6

 

62222

 

916

 

6

 

62223

 

1255

 

6

 

62224

 

420

 

6

 

62225

 

864

 

6

 

62226

 

1046

 

6

 

62227

 

1089

 

6

 

62228

 

1256

 

6

 

62229

 

424

 

8

 

62230

 

856

 

8

 

62231

 

862

 

8

 

62232

 

916

 

8

 

62233

 

420

 

8

 

62234

 

420

 

9

 

62235

 

424

 

6

 

62236

 

856

 

10

 

62237

 

1255

 

8

 

62238

 

916

 

10

 

62239

 

1255

 

10

 

62240

 

424

 

11

 

62241

 

856

 

11

 

62242

 

862

 

11

 

62243

 

916

 

11

 

62244

 

1255

 

11

 

62245

 

424

 

10

 

62246

 

1046

 

8

 

62247

 

1046

 

9

 

62248

 

1046

 

4

 

62249

 

1046

 

12

 

62250

 

420

 

12

    

Table

 

96.

 

CDRA

 

string

 

types

 

String

 

type

 

Text

 

type

 

Numeric

 

shaping

 

Orientation

 

Text

 

shaping

 

Symmetrical

 

swapping

 

4

 

Visual

 

Passthrough

 

LTR

 

Shaped

 

Off

 

5

 

Implicit

 

Arabic

 

LTR

 

Unshaped

 

On

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

265



Table

 

96.

 

CDRA

 

string

 

types

 

(continued)

 

String

 

type

 

Text

 

type

 

Numeric

 

shaping

 

Orientation

 

Text

 

shaping

 

Symmetrical

 

swapping

 

6

 

Implicit

 

Arabic

 

RTL

 

Unshaped

 

On

 

7*

 

Visual

 

Passthrough

 

Contextual*

 

Unshaped

 

ligature

 

Off

 

8

 

Visual

 

Passthrough

 

RTL

 

Shaped

 

Off

 

9

 

Visual

 

Passthrough

 

RTL

 

Shaped

 

On

 

10

 

Implicit

 

Arabic

 

Contextual

 

LTR

 

Unshaped

 

On

 

11

 

Implicit

 

Arabic

 

Contextual

 

RTL

 

Unshaped

 

On

 

12

 

Implicit

 

Arabic

 

RTL

 

Shaped

 

Off

   

Note:

  

*

 

String

 

orientation

 

is

 

left-to-right

 

(LTR)

 

when

 

the

 

first

 

alphabetic

 

character

 

is

 

a

 

Latin

 

character,

 

and

 

right-to-left

 

(RTL)

 

when

 

it

 

is

 

an

 

Arabic

 

or

 

Hebrew

 

character.

 

Characters

 

are

 

unshaped,

 

but

 

LamAlef

 

ligatures

 

are

 

kept

 

and

 

are

 

not

 

broken

 

into

 

constituents.

  

Related

 

concepts:

  

v

   

“Bidirectional

 

support

 

with

 

DB2

 

Connect”

 

on

 

page

 

266

 

Related

 

tasks:

  

v

   

“Enabling

 

bidirectional

 

support”

 

on

 

page

 

262

Bidirectional

 

support

 

with

 

DB2

 

Connect

  

When

 

data

 

is

 

exchanged

 

between

 

DB2®

 

Connect

 

and

 

a

 

database

 

on

 

the

 

server,

 

it

 

is

 

usually

 

the

 

receiver

 

that

 

performs

 

conversion

 

on

 

the

 

incoming

 

data.

 

The

 

same

 

convention

 

would

 

normally

 

apply

 

to

 

bidirectional

 

layout

 

transformations,

 

and

 

is

 

in

 

addition

 

to

 

the

 

usual

 

code

 

page

 

conversion.

 

DB2

 

Connect™

 

has

 

the

 

optional

 

ability

 

to

 

perform

 

bidirectional

 

layout

 

transformation

 

on

 

data

 

it

 

is

 

about

 

to

 

send

 

to

 

the

 

server

 

database,

 

in

 

addition

 

to

 

data

 

received

 

from

 

the

 

server

 

database.

 

In

 

order

 

for

 

DB2

 

Connect

 

to

 

perform

 

bidirectional

 

layout

 

transformation

 

on

 

outgoing

 

data

 

for

 

a

 

server

 

database,

 

the

 

bidirectional

 

CCSID

 

of

 

the

 

server

 

database

 

must

 

be

 

overridden.

 

This

 

is

 

accomplished

 

through

 

the

 

use

 

of

 

the

 

BIDI

 

parameter

 

in

 

the

 

PARMS

 

field

 

of

 

the

 

DCS

 

database

 

directory

 

entry

 

for

 

the

 

server

 

database.

 

Note:

  

If

 

you

 

want

 

DB2

 

Connect

 

to

 

perform

 

layout

 

transformation

 

on

 

the

 

data

 

it

 

is

 

about

 

to

 

send

 

to

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

host

 

or

 

iSeries™

 

database,

 

even

 

though

 

you

 

do

 

not

 

have

 

to

 

override

 

its

 

CCSID,

 

you

 

must

 

still

 

add

 

the

 

BIDI

 

parameter

 

to

 

the

 

PARMS

 

field

 

of

 

the

 

DCS

 

database

 

directory.

 

In

 

this

 

case,

 

the

 

CCSID

 

that

 

you

 

should

 

provide

 

is

 

the

 

default

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

CCSID.

 

The

 

BIDI

 

parameter

 

is

 

to

 

be

 

specified

 

as

 

the

 

ninth

 

parameter

 

in

 

the

 

PARMS

 

field,

 

along

 

with

 

the

 

bidirectional

 

CCSID

 

with

 

which

 

you

 

want

 

to

 

override

 

the

 

default

 

server

 

database

 

bidirectional

 

CCSID:

    

",,,,,,,,BIDI=xyz"

   

266

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|

|
|
|
|
|
|



where

 

xyz

 

is

 

the

 

CCSID

 

override.

 

Note:

  

The

 

registry

 

variable

 

DB2BIDI

 

must

 

be

 

set

 

to

 

YES

 

for

 

the

 

BIDI

 

parameter

 

to

 

take

 

effect.

 

The

 

use

 

of

 

this

 

feature

 

is

 

best

 

described

 

with

 

an

 

example.

 

Suppose

 

you

 

have

 

a

 

Hebrew

 

DB2

 

UDB

 

client

 

running

 

CCSID

 

62213

 

(bidirectional

 

string

 

type

 

5),

 

and

 

you

 

want

 

to

 

access

 

a

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

running

 

CCSID

 

00424

 

(bidirectional

 

string

 

type

 

4).

 

However,

 

you

 

know

 

that

 

the

 

data

 

contained

 

in

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

is

 

based

 

on

 

CCSID

 

08616

 

(bidirectional

 

string

 

type

 

6).

 

There

 

are

 

two

 

problems

 

here:

 

The

 

first

 

is

 

that

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

does

 

not

 

know

 

the

 

difference

 

in

 

the

 

bidirectional

 

string

 

types

 

with

 

CCSIDs

 

00424

 

and

 

08616.

 

The

 

second

 

problem

 

is

 

that

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

does

 

not

 

recognize

 

the

 

DB2

 

UDB

 

client

 

CCSID

 

(62213).

 

It

 

only

 

supports

 

CCSID

 

00862,

 

which

 

is

 

based

 

on

 

the

 

same

 

code

 

page

 

as

 

CCSID

 

62213.

 

You

 

will

 

need

 

to

 

ensure

 

that

 

data

 

sent

 

to

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

is

 

in

 

bidirectional

 

string

 

type

 

6

 

format

 

to

 

begin

 

with,

 

and

 

also

 

let

 

DB2

 

Connect

 

know

 

that

 

it

 

has

 

to

 

perform

 

bidirectional

 

transformation

 

on

 

data

 

it

 

receives

 

from

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database.

 

You

 

will

 

need

 

to

 

use

 

following

 

catalog

 

command

 

for

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database:

    

db2

 

catalog

 

dcs

 

database

 

nydb1

 

as

 

telaviv

 

parms

 

",,,,,,,,BIDI=08616"

 

This

 

command

 

tells

 

DB2

 

Connect

 

to

 

override

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

CCSID

 

of

 

00424

 

with

 

08616.

 

This

 

override

 

includes

 

the

 

following

 

processing:

 

1.

   

DB2

 

Connect

 

connects

 

to

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database

 

using

 

CCSID

 

00862.

 

2.

   

DB2

 

Connect

 

performs

 

bidirectional

 

layout

 

transformation

 

on

 

the

 

data

 

it

 

is

 

about

 

to

 

send

 

to

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database.

 

The

 

transformation

 

is

 

from

 

CCSID

 

62213

 

(bidirectional

 

string

 

type

 

5)

 

to

 

CCSID

 

62221

 

(bidirectional

 

string

 

type

 

6).

 

3.

   

DB2

 

Connect

 

performs

 

bidirectional

 

layout

 

transformation

 

on

 

data

 

it

 

receives

 

from

 

the

 

DB2

 

UDB

 

host

 

or

 

iSeries

 

database.

 

This

 

transformation

 

is

 

from

 

CCSID

 

08616

 

(bidirectional

 

string

 

type

 

6)

 

to

 

CCSID

 

62213

 

(bidirectional

 

string

 

type

 

5).

Note:

  

In

 

some

 

cases,

 

use

 

of

 

a

 

bidirectional

 

CCSID

 

may

 

cause

 

the

 

SQL

 

query

 

itself

 

to

 

be

 

modified

 

in

 

such

 

a

 

way

 

that

 

it

 

is

 

not

 

recognized

 

by

 

the

 

DB2

 

UDB

 

server.

 

Specifically,

 

you

 

should

 

avoid

 

using

 

IMPLICIT

 

CONTEXTUAL

 

and

 

IMPLICIT

 

RIGHT-TO-LEFT

 

CCSIDs

 

when

 

a

 

different

 

string

 

type

 

can

 

be

 

used.

 

CONTEXTUAL

 

CCSIDs

 

can

 

produce

 

unpredictable

 

results

 

if

 

the

 

SQL

 

query

 

contains

 

quoted

 

strings.

 

Avoid

 

using

 

quoted

 

strings

 

in

 

SQL

 

statements;

 

use

 

host

 

variables

 

whenever

 

possible.

 

If

 

a

 

specific

 

bidirectional

 

CCSID

 

is

 

causing

 

problems

 

that

 

cannot

 

be

 

rectified

 

by

 

following

 

these

 

recommendations,

 

set

 

DB2BIDI

 

to

 

NO.

  

Related

 

concepts:

  

v

   

“Handling

 

BiDi

 

data”

 

in

 

the

 

DB2

 

Connect

 

User’s

 

Guide

 

Related

 

reference:

  

v

   

“Bidirectional-specific

 

CCSIDs”

 

on

 

page

 

263

  

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

267



Collating

 

sequences

  

The

 

database

 

manager

 

compares

 

character

 

data

 

using

 

a

 

collating

 

sequence.

 

This

 

is

 

an

 

ordering

 

for

 

a

 

set

 

of

 

characters

 

that

 

determines

 

whether

 

a

 

particular

 

character

 

sorts

 

higher,

 

lower,

 

or

 

the

 

same

 

as

 

another.

 

Note:

  

Character

 

string

 

data

 

defined

 

with

 

the

 

FOR

 

BIT

 

DATA

 

attribute,

 

and

 

BLOB

 

data,

 

is

 

sorted

 

using

 

the

 

binary

 

sort

 

sequence.

 

For

 

example,

 

a

 

collating

 

sequence

 

can

 

be

 

used

 

to

 

indicate

 

that

 

lowercase

 

and

 

uppercase

 

versions

 

of

 

a

 

particular

 

character

 

are

 

to

 

be

 

sorted

 

equally.

 

The

 

database

 

manager

 

allows

 

databases

 

to

 

be

 

created

 

with

 

custom

 

collating

 

sequences.

 

For

 

Unicode

 

databases,

 

the

 

various

 

collating

 

sequences

 

supported

 

are

 

described

 

in

 

the

 

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

topic.

 

The

 

following

 

sections

 

help

 

you

 

determine

 

and

 

implement

 

a

 

particular

 

collating

 

sequence

 

for

 

a

 

database.

 

Each

 

single-byte

 

character

 

in

 

a

 

database

 

is

 

represented

 

internally

 

as

 

a

 

unique

 

number

 

between

 

0

 

and

 

255

 

(in

 

hexadecimal

 

notation,

 

between

 

X'00'

 

and

 

X'FF').

 

This

 

number

 

is

 

referred

 

to

 

as

 

the

 

code

 

point

 

of

 

the

 

character;

 

the

 

assignment

 

of

 

numbers

 

to

 

characters

 

in

 

a

 

set

 

is

 

collectively

 

called

 

a

 

code

 

page.

 

A

 

collating

 

sequence

 

is

 

a

 

mapping

 

between

 

the

 

code

 

point

 

and

 

the

 

desired

 

position

 

of

 

each

 

character

 

in

 

a

 

sorted

 

sequence.

 

The

 

numeric

 

value

 

of

 

the

 

position

 

is

 

called

 

the

 

weight

 

of

 

the

 

character

 

in

 

the

 

collating

 

sequence.

 

In

 

the

 

simplest

 

collating

 

sequence,

 

the

 

weights

 

are

 

identical

 

to

 

the

 

code

 

points.

 

This

 

is

 

called

 

the

 

identity

 

sequence.

 

For

 

example,

 

suppose

 

the

 

characters

 

B

 

and

 

b

 

have

 

the

 

code

 

points

 

X'42'

 

and

 

X'62',

 

respectively.

 

If

 

(according

 

to

 

the

 

collating

 

sequence

 

table)

 

they

 

both

 

have

 

a

 

sort

 

weight

 

of

 

X'42'

 

(B),

 

they

 

collate

 

the

 

same.

 

If

 

the

 

sort

 

weight

 

for

 

B

 

is

 

X'9E',

 

and

 

the

 

sort

 

weight

 

for

 

b

 

is

 

X'9D',

 

b

 

will

 

be

 

sorted

 

before

 

B.

 

The

 

collation

 

sequence

 

table

 

specifies

 

the

 

weight

 

of

 

each

 

character.

 

The

 

table

 

is

 

different

 

from

 

a

 

code

 

page,

 

which

 

specifies

 

the

 

code

 

point

 

of

 

each

 

character.

 

Consider

 

the

 

following

 

example.

 

The

 

ASCII

 

characters

 

A

 

through

 

Z

 

are

 

represented

 

by

 

X'41'

 

through

 

X'5A'.

 

To

 

describe

 

a

 

collating

 

sequence

 

in

 

which

 

these

 

characters

 

are

 

sorted

 

consecutively

 

(no

 

intervening

 

characters),

 

you

 

can

 

write:

 

X'41',

 

X'42',

 

...

 

X'59',

 

X'5A'.

 

The

 

hexadecimal

 

value

 

of

 

a

 

multi-byte

 

character

 

is

 

also

 

used

 

as

 

the

 

weight.

 

For

 

example,

 

suppose

 

the

 

code

 

points

 

for

 

the

 

double-byte

 

characters

 

A

 

and

 

B

 

are

 

X'8260'

 

and

 

X'8261'

 

respectively,

 

then

 

the

 

collation

 

weights

 

for

 

X'82',

 

X'60',

 

and

 

X'61'

 

are

 

used

 

to

 

sort

 

these

 

two

 

characters

 

according

 

to

 

their

 

code

 

points.

 

The

 

weights

 

in

 

a

 

collating

 

sequence

 

need

 

not

 

be

 

unique.

 

For

 

example,

 

you

 

could

 

give

 

uppercase

 

letters

 

and

 

their

 

lowercase

 

equivalents

 

the

 

same

 

weight.

 

Specifying

 

a

 

collating

 

sequence

 

can

 

be

 

simplified

 

if

 

the

 

collating

 

sequence

 

provides

 

weights

 

for

 

all

 

256

 

code

 

points.

 

The

 

weight

 

of

 

each

 

character

 

can

 

be

 

determined

 

using

 

the

 

code

 

point

 

of

 

the

 

character.

 

In

 

all

 

cases,

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

uses

 

the

 

collation

 

table

 

that

 

was

 

specified

 

at

 

database

 

creation

 

time.

 

If

 

you

 

want

 

the

 

multi-byte

 

characters

 

to

 

be

 

sorted

 

the

 

way

 

that

 

they

 

appear

 

in

 

their

 

code

 

point

 

table,

 

you

 

must

 

specify

 

IDENTITY

 

as

 

the

 

collation

 

sequence

 

when

 

you

 

create

 

the

 

database.

   

268

 

Administration

 

Guide:

 

Planning

|
|
|

|
|
|
|
|

|
|
|
|



Note:

  

For

 

Unicode

 

databases,

 

the

 

various

 

collating

 

sequences

 

supported

 

are

 

described

 

in

 

the

 

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

topic.

 

Once

 

a

 

collating

 

sequence

 

is

 

defined,

 

all

 

future

 

character

 

comparisons

 

for

 

that

 

database

 

will

 

be

 

performed

 

with

 

that

 

collating

 

sequence.

 

Except

 

for

 

character

 

data

 

defined

 

as

 

FOR

 

BIT

 

DATA

 

or

 

BLOB

 

data,

 

the

 

collating

 

sequence

 

will

 

be

 

used

 

for

 

all

 

SQL

 

comparisons

 

and

 

ORDER

 

BY

 

clauses,

 

and

 

also

 

in

 

setting

 

up

 

indexes

 

and

 

statistics.

 

Potential

 

problems

 

can

 

occur

 

in

 

the

 

following

 

cases:

 

v

   

An

 

application

 

merges

 

sorted

 

data

 

from

 

a

 

database

 

with

 

application

 

data

 

that

 

was

 

sorted

 

using

 

a

 

different

 

collating

 

sequence.

 

v

   

An

 

application

 

merges

 

sorted

 

data

 

from

 

one

 

database

 

with

 

sorted

 

data

 

from

 

another,

 

but

 

the

 

databases

 

have

 

different

 

collating

 

sequences.

 

v

   

An

 

application

 

makes

 

assumptions

 

about

 

sorted

 

data

 

that

 

are

 

not

 

true

 

for

 

the

 

relevant

 

collating

 

sequence.

 

For

 

example,

 

numbers

 

collating

 

lower

 

than

 

alphabetics

 

may

 

or

 

may

 

not

 

be

 

true

 

for

 

a

 

particular

 

collating

 

sequence.

A

 

final

 

point

 

to

 

remember

 

is

 

that

 

the

 

results

 

of

 

any

 

sort

 

based

 

on

 

a

 

direct

 

comparison

 

of

 

character

 

code

 

points

 

will

 

only

 

match

 

query

 

results

 

that

 

are

 

ordered

 

using

 

an

 

identity

 

collating

 

sequence.

  

Related

 

concepts:

  

v

   

“Character

 

conversion”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

 

v

   

“Character

 

comparisons

 

based

 

on

 

collating

 

sequences”

 

in

 

the

 

Application

 

Development

 

Guide:

 

Programming

 

Client

 

Applications

Collating

 

Thai

 

characters

  

Thai

 

contains

 

special

 

vowels

 

(″leading

 

vowels″),

 

tonal

 

marks

 

and

 

other

 

special

 

characters

 

that

 

are

 

not

 

sorted

 

sequentially.

  

Restrictions:

   

You

 

must

 

either

 

create

 

your

 

database

 

with

 

a

 

Thai

 

locale

 

and

 

code

 

set,

 

or

 

create

 

a

 

Unicode

 

database.

  

Procedure:

   

When

 

you

 

create

 

a

 

database

 

using

 

Thai

 

and

 

corresponding

 

code

 

set,

 

use

 

the

 

COLLATE

 

USING

 

NLSCHAR

 

clause

 

on

 

the

 

CREATE

 

DATABASE

 

command.

 

When

 

you

 

create

 

a

 

Unicode

 

database,

 

use

 

the

 

COLLATE

 

USING

 

UCA400_LTH

 

clause

 

on

 

the

 

CREATE

 

DATABASE

 

command.

  

Related

 

concepts:

  

v

   

“Collating

 

sequences”

 

on

 

page

 

268

 

Related

 

reference:

  

v

   

“CREATE

 

DATABASE

 

Command”

 

in

 

the

 

Command

 

Reference

  

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

269

|
|
|

|
|

|
|
|
|



Date

 

and

 

time

 

formats

 

by

 

territory

 

code

  

The

 

character

 

string

 

representation

 

of

 

date

 

and

 

time

 

formats

 

is

 

the

 

default

 

format

 

of

 

datetime

 

values

 

associated

 

with

 

the

 

territory

 

code

 

of

 

the

 

application.

 

This

 

default

 

format

 

can

 

be

 

overridden

 

by

 

specifying

 

the

 

DATETIME

 

format

 

option

 

when

 

the

 

program

 

is

 

precompiled

 

or

 

bound

 

to

 

the

 

database.

 

Following

 

is

 

a

 

description

 

of

 

the

 

input

 

and

 

output

 

formats

 

for

 

date

 

and

 

time:

 

v

   

Input

 

Time

 

Format

 

–

   

There

 

is

 

no

 

default

 

input

 

time

 

format

 

–

   

All

 

time

 

formats

 

are

 

allowed

 

as

 

input

 

for

 

all

 

territory

 

codes.
v

   

Output

 

Time

 

Format

 

–

   

The

 

default

 

output

 

time

 

format

 

is

 

equal

 

to

 

the

 

local

 

time

 

format.
v

   

Input

 

Date

 

Format

 

–

   

There

 

is

 

no

 

default

 

input

 

date

 

format

 

–

   

Where

 

the

 

local

 

format

 

for

 

date

 

conflicts

 

with

 

an

 

ISO,

 

JIS,

 

EUR,

 

or

 

USA

 

date

 

format,

 

the

 

local

 

format

 

is

 

recognized

 

for

 

date

 

input.

 

For

 

example,

 

see

 

the

 

UK

 

entry

 

in

 

Table

 

97.
v

   

Output

 

Date

 

Format

 

–

   

The

 

default

 

output

 

date

 

format

 

is

 

shown

 

in

 

Table

 

97.

 

Note:

  

Table

 

97

 

also

 

shows

 

a

 

listing

 

of

 

the

 

string

 

formats

 

for

 

the

 

various

 

territory

 

codes.

 

Table

 

97.

 

Date

 

and

 

Time

 

Formats

 

by

 

Territory

 

Code

 

Territory

 

Code

 

Local

 

Date

 

Format

 

Local

 

Time

 

Format

 

Default

 

Output

 

Date

 

Format

 

Input

 

Date

 

Formats

 

355

 

Albania

 

yyyy-mm-dd

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

785

 

Arabic

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

001

 

Australia

 

(1)

 

mm-dd-yyyy

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

061

 

Australia

 

dd-mm-yyyy

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

032

 

Belgium

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

055

 

Brazil

 

dd.mm.yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

359

 

Bulgaria

 

dd.mm.yyyy

 

JIS

 

EUR

 

LOC,

 

USA,

 

EUR,

 

ISO

 

001

 

Canada

 

mm-dd-yyyy

 

JIS

 

USA

 

LOC,

 

USA,

 

EUR,

 

ISO

 

002

 

Canada

 

(French)

 

dd-mm-yyyy

 

ISO

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

385

 

Croatia

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

042

 

Czech

 

Republic

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

045

 

Denmark

 

dd-mm-yyyy

 

ISO

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

358

 

Finland

 

dd/mm/yyyy

 

ISO

 

EUR

 

LOC,

 

EUR,

 

ISO

   

270

 

Administration

 

Guide:

 

Planning



Table

 

97.

 

Date

 

and

 

Time

 

Formats

 

by

 

Territory

 

Code

 

(continued)

 

Territory

 

Code

 

Local

 

Date

 

Format

 

Local

 

Time

 

Format

 

Default

 

Output

 

Date

 

Format

 

Input

 

Date

 

Formats

 

389

 

FYR

 

Macedonia

 

dd.mm.yyyy

 

JIS

 

EUR

 

LOC,

 

USA,

 

EUR,

 

ISO

 

033

 

France

 

dd/mm/yyyy

 

JIS

 

EUR

 

LOC,

 

EUR,

 

ISO

 

049

 

Germany

 

dd/mm/yyyy

 

ISO

 

ISO

 

LOC,

 

EUR,

 

ISO

 

030

 

Greece

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

036

 

Hungary

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

354

 

Iceland

 

dd-mm-yyyy

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

091

 

India

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

972

 

Israel

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

039

 

Italy

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

081

 

Japan

 

mm/dd/yyyy

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

082

 

Korea

 

mm/dd/yyyy

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

001

 

Latin

 

America

 

(1)

 

mm-dd-yyyy

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

003

 

Latin

 

America

 

dd-mm-yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

031

 

Netherlands

 

dd-mm-yyyy

 

JIS

 

LOC

 

LOC,

 

USA,

 

EUR,

 

ISO

 

047

 

Norway

 

dd/mm/yyyy

 

ISO

 

EUR

 

LOC,

 

EUR,

 

ISO

 

048

 

Poland

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

351

 

Portugal

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

086

 

People’s

 

Republic

 

of

 

China

 

mm/dd/yyyy

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

040

 

Romania

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

007

 

Russia

 

dd/mm/yyyy

 

ISO

 

LOC

 

LOC,

 

EUR,

 

ISO

 

381

 

Serbia/

 

Montenegro

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

042

 

Slovakia

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

386

 

Slovenia

 

yyyy-mm-dd

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

034

 

Spain

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

046

 

Sweden

 

dd/mm/yyyy

 

ISO

 

ISO

 

LOC,

 

EUR,

 

ISO

 

041

 

Switzerland

 

dd/mm/yyyy

 

ISO

 

EUR

 

LOC,

 

EUR,

 

ISO

 

088

 

Taiwan

 

mm-dd-yyyy

 

JIS

 

ISO

 

LOC,

 

USA,

 

EUR,

 

ISO

 

066

 

Thailand

 

(2)

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

271



Table

 

97.

 

Date

 

and

 

Time

 

Formats

 

by

 

Territory

 

Code

 

(continued)

 

Territory

 

Code

 

Local

 

Date

 

Format

 

Local

 

Time

 

Format

 

Default

 

Output

 

Date

 

Format

 

Input

 

Date

 

Formats

 

090

 

Turkey

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

044

 

UK

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

001

 

USA

 

mm-dd-yyyy

 

JIS

 

USA

 

LOC,

 

USA,

 

EUR,

 

ISO

 

084

 

Vietnam

 

dd/mm/yyyy

 

JIS

 

LOC

 

LOC,

 

EUR,

 

ISO

 

Notes:

  

1.

   

Countries/Regions

 

using

 

the

 

default

 

C

 

locale

 

are

 

assigned

 

territory

 

code

 

001.

 

2.

   

yyyy

 

in

 

Buddhist

 

era

 

is

 

equivalent

 

to

 

Gregorian

 

+

 

543

 

years

 

(Thailand

 

only).

    

Related

 

reference:

  

v

   

“BIND

 

Command”

 

in

 

the

 

Command

 

Reference

 

v

   

“PRECOMPILE

 

Command”

 

in

 

the

 

Command

 

Reference

Unicode

 

character

 

encoding

  

The

 

Unicode

 

character

 

encoding

 

standard

 

is

 

a

 

fixed-length,

 

character

 

encoding

 

scheme

 

that

 

includes

 

characters

 

from

 

almost

 

all

 

of

 

the

 

living

 

languages

 

of

 

the

 

world.

 

Information

 

on

 

Unicode

 

can

 

be

 

found

 

in

 

the

 

latest

 

edition

 

of

 

The

 

Unicode

 

Standard

 

book,

 

and

 

from

 

The

 

Unicode

 

Consortium

 

web

 

site

 

(www.unicode.org).

 

Unicode

 

uses

 

two

 

encoding

 

forms:

 

8-bit

 

and

 

16-bit.

 

The

 

default

 

encoding

 

form

 

is

 

16-bit,

 

that

 

is,

 

each

 

character

 

is

 

16

 

bits

 

(two

 

bytes)

 

wide,

 

and

 

is

 

usually

 

shown

 

as

 

U+hhhh,

 

where

 

hhhh

 

is

 

the

 

hexadecimal

 

code

 

point

 

of

 

the

 

character.

 

While

 

the

 

resulting

 

65

 

000+

 

code

 

elements

 

are

 

sufficient

 

for

 

encoding

 

most

 

of

 

the

 

characters

 

of

 

the

 

major

 

languages

 

of

 

the

 

world,

 

the

 

Unicode

 

standard

 

also

 

provides

 

an

 

extension

 

mechanism

 

that

 

allows

 

the

 

encoding

 

of

 

as

 

many

 

as

 

one

 

million

 

more

 

characters.

 

The

 

extension

 

mechanism

 

uses

 

a

 

pair

 

of

 

high

 

and

 

low

 

surrogate

 

characters

 

to

 

encode

 

one

 

extended

 

or

 

supplementary

 

character.

 

The

 

first

 

(or

 

high)

 

surrogate

 

character

 

has

 

a

 

code

 

value

 

between

 

U+D800

 

and

 

U+DBFF,

 

and

 

the

 

second

 

(or

 

low)

 

surrogate

 

character

 

has

 

a

 

code

 

value

 

between

 

U+DC00

 

and

 

U+DFFF.

 

UCS-2

 

The

 

International

 

Standards

 

Organization

 

(ISO)

 

and

 

the

 

International

 

Electrotechnical

 

Commission

 

(IEC)

 

standard

 

10646

 

(ISO/IEC

 

10646)

 

specifies

 

the

 

Universal

 

Multiple-Octet

 

Coded

 

Character

 

Set

 

(UCS)

 

that

 

has

 

a

 

16-bit

 

(two-byte)

 

version

 

(UCS-2)

 

and

 

a

 

32-bit

 

(four-byte)

 

version

 

(UCS-4).

 

UCS-2

 

is

 

identical

 

to

 

the

 

Unicode

 

16-bit

 

form

 

without

 

surrogates.

 

UCS-2

 

can

 

encode

 

all

 

the

 

(16-bit)

 

characters

 

defined

 

in

 

the

 

Unicode

 

version

 

3.0

 

repertoire.

 

Two

 

UCS-2

 

characters

 

—

 

a

 

high

 

followed

 

by

 

a

 

low

 

surrogate

 

—

 

are

 

required

 

to

 

encode

 

each

 

of

 

the

 

new

 

supplementary

 

characters

 

introduced

 

starting

 

in

 

Unicode

 

version

 

3.1.

 

These

 

supplementary

 

characters

 

are

 

defined

 

outside

 

the

 

original

 

16-bit

 

Basic

 

Multilingual

 

Plane

 

(BMP

 

or

 

Plane

 

0).

   

272

 

Administration

 

Guide:

 

Planning

|
|

http://www.unicode.org


UTF-8

 

Sixteen-bit

 

Unicode

 

characters

 

pose

 

a

 

major

 

problem

 

for

 

byte-oriented

 

ASCII-based

 

applications

 

and

 

file

 

systems.

 

For

 

example,

 

non-Unicode

 

aware

 

applications

 

may

 

misinterpret

 

the

 

leading

 

8

 

zero

 

bits

 

of

 

the

 

uppercase

 

character

 

’A’

 

(U+0041)

 

as

 

the

 

single-byte

 

ASCII

 

NULL

 

character.

 

UTF-8

 

(UCS

 

Transformation

 

Format

 

8)

 

is

 

an

 

algorithmic

 

transformation

 

that

 

transforms

 

fixed-length

 

Unicode

 

characters

 

into

 

variable-length

 

ASCII-safe

 

byte

 

strings.

 

In

 

UTF-8,

 

ASCII

 

and

 

control

 

characters

 

are

 

represented

 

by

 

their

 

usual

 

single-byte

 

codes,

 

and

 

other

 

characters

 

become

 

two

 

or

 

more

 

bytes

 

long.

 

UTF-8

 

can

 

encode

 

both

 

non-supplementary

 

and

 

supplementary

 

characters.

 

UTF-16

 

ISO/IEC

 

10646

 

also

 

defines

 

an

 

extension

 

technique

 

for

 

encoding

 

some

 

UCS-4

 

characters

 

using

 

two

 

UCS-2

 

characters.

 

This

 

extension,

 

called

 

UTF-16,

 

is

 

identical

 

to

 

the

 

Unicode

 

16-bit

 

encoding

 

form

 

with

 

surrogates.

 

In

 

summary,

 

the

 

UTF-16

 

character

 

repertoire

 

consists

 

of

 

all

 

the

 

UCS-2

 

characters

 

plus

 

the

 

additional

 

one

 

million

 

characters

 

accessible

 

via

 

the

 

surrogate

 

pairs.

 

When

 

serializing

 

16-bit

 

Unicode

 

characters

 

into

 

bytes,

 

some

 

processors

 

place

 

the

 

most

 

significant

 

byte

 

in

 

the

 

initial

 

position

 

(known

 

as

 

big-endian

 

order),

 

while

 

others

 

place

 

the

 

least

 

significant

 

byte

 

first

 

(known

 

as

 

little-endian

 

order).

 

The

 

default

 

byte

 

ordering

 

for

 

Unicode

 

is

 

big-endian.

 

The

 

number

 

of

 

bytes

 

for

 

each

 

UTF-16

 

character

 

in

 

UTF-8format

 

can

 

be

 

determined

 

from

 

Table

 

98.

  

Table

 

98.

 

UTF-8

 

Bit

 

Distribution

 

Code

 

Value

 

(binary)

 

UTF-16

 

(binary)

 

1st

 

byte

 

(binary)

 

2nd

 

byte

 

(binary)

 

3rd

 

byte

 

(binary)

 

4th

 

byte

 

(binary)

 

00000000

 

0xxxxxxx

 

00000000

 

0xxxxxxx

 

0xxxxxxx

 

00000yyy

 

yyxxxxxx

 

00000yyy

 

yyxxxxxx

 

110yyyyy

 

10xxxxxx

 

zzzzyyyy

 

yyxxxxxx

 

zzzzyyyy

 

yyxxxxxx

 

1110zzzz

 

10yyyyyy

 

10xxxxxx

 

uuuuu

 

zzzzyyyy

 

yyxxxxxx

 

110110ww

 

wwzzzzyy

 

110111yy

 

yyxxxxxx

 

11110uuu

 

(where

 

uuuuu

 

=

 

wwww+1)

 

10uuzzzz

 

10yyyyyy

 

10xxxxxx

   

In

 

each

 

of

 

the

 

above,

 

the

 

series

 

of

 

u’s,

 

w’s,

 

x’s,

 

y’s,

 

and

 

z’s

 

is

 

the

 

bit

 

representation

 

of

 

the

 

character.

 

For

 

example,

 

U+0080

 

transforms

 

into

 

11000010

 

10000000

 

in

 

binary,

 

and

 

the

 

surrogate

 

character

 

pair

 

U+D800

 

U+DC00

 

becomes

 

11110000

 

10010000

 

10000000

 

10000000

 

in

 

binary.

  

Related

 

concepts:

  

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

273



v

   

“Unicode

 

handling

 

of

 

data

 

types”

 

on

 

page

 

276

 

v

   

“Unicode

 

literals”

 

on

 

page

 

278

 

Related

 

tasks:

  

v

   

“Creating

 

a

 

Unicode

 

database”

 

on

 

page

 

278

Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database

  

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

supports

 

UTF-8

 

and

 

UCS-2.

 

When

 

a

 

Unicode

 

database

 

is

 

created,

 

CHAR,

 

VARCHAR,

 

LONG

 

VARCHAR,

 

and

 

CLOB

 

data

 

are

 

stored

 

in

 

UTF-8

 

form,

 

and

 

GRAPHIC,

 

VARGRAPHIC,

 

LONG

 

VARGRAPHIC,

 

and

 

DBCLOB

 

data

 

are

 

stored

 

in

 

UCS-2

 

big-endian

 

form.

 

In

 

versions

 

of

 

DB2

 

UDB

 

prior

 

to

 

Version

 

7.2

 

FixPak

 

4,

 

DB2

 

UDB

 

treats

 

the

 

two

 

characters

 

in

 

a

 

surrogate

 

pair

 

as

 

two

 

independent

 

Unicode

 

characters.

 

Therefore

 

transforming

 

the

 

pair

 

from

 

UTF-16/UCS-2

 

to

 

UTF-8

 

results

 

in

 

two

 

three-byte

 

sequences.

 

Starting

 

in

 

DB2

 

UDB

 

Version

 

7.2

 

FixPak

 

4,

 

DB2

 

UDB

 

recognizes

 

surrogate

 

pairs

 

when

 

transforming

 

between

 

UTF-16/UCS-2

 

and

 

UTF-8,

 

thus

 

a

 

pair

 

of

 

UTF-16

 

surrogates

 

will

 

become

 

one

 

UTF-8

 

four-byte

 

sequence.

 

In

 

other

 

usages,

 

DB2

 

UDB

 

continues

 

to

 

treat

 

a

 

surrogate

 

pair

 

as

 

two

 

independent

 

UCS-2

 

characters.

 

You

 

can

 

safely

 

store

 

supplementary

 

characters

 

in

 

DB2

 

UDB

 

Unicode

 

databases,

 

provided

 

you

 

know

 

how

 

to

 

distinguish

 

them

 

from

 

the

 

non-supplementary

 

characters.

 

DB2

 

UDB

 

treats

 

each

 

Unicode

 

character,

 

including

 

those

 

(non-spacing)

 

characters

 

such

 

as

 

the

 

COMBINING

 

ACUTE

 

ACCENT

 

character

 

(U+0301),

 

as

 

an

 

individual

 

character.

 

Therefore

 

DB2

 

UDB

 

would

 

not

 

recognize

 

that

 

the

 

character

 

LATIN

 

SMALL

 

LETTER

 

A

 

WITH

 

ACUTE

 

(U+00E1)

 

is

 

canonically

 

equivalent

 

to

 

the

 

character

 

LATIN

 

SMALL

 

LETTER

 

A

 

(U+0061)

 

followed

 

by

 

the

 

character

 

COMBINING

 

ACUTE

 

ACCENT

 

(U+0301).

 

The

 

default

 

collating

 

sequence

 

for

 

a

 

UCS-2

 

Unicode

 

database

 

is

 

IDENTITY,

 

which

 

orders

 

the

 

characters

 

by

 

their

 

code

 

points.

 

Therefore,

 

by

 

default,

 

all

 

Unicode

 

characters

 

are

 

ordered

 

and

 

compared

 

according

 

to

 

their

 

code

 

points.

 

For

 

non-supplementary

 

Unicode

 

characters,

 

their

 

binary

 

collation

 

orders

 

when

 

encoded

 

in

 

UTF-8

 

and

 

UCS-2

 

are

 

the

 

same.

 

But

 

if

 

you

 

have

 

any

 

supplementary

 

character

 

that

 

requires

 

a

 

pair

 

of

 

surrogate

 

characters

 

to

 

encode,

 

then

 

in

 

UTF-8

 

encoding

 

the

 

character

 

will

 

be

 

collated

 

towards

 

the

 

end,

 

but

 

in

 

UCS-2

 

encoding

 

the

 

same

 

character

 

will

 

be

 

collated

 

somewhere

 

in

 

the

 

middle,

 

and

 

its

 

two

 

surrogate

 

characters

 

can

 

be

 

separated.

 

The

 

reason

 

is

 

the

 

extended

 

character,

 

when

 

encoded

 

in

 

UTF-8,

 

has

 

a

 

four-byte

 

binary

 

code

 

value

 

of

 

11110xxx

 

10xxxxxx

 

10xxxxxx

 

10xxxxxx,

 

which

 

is

 

greater

 

than

 

the

 

UTF-8

 

encoding

 

of

 

U+FFFF,

 

namely

 

X’EFBFBF’.

 

But

 

in

 

UCS-2,

 

the

 

same

 

supplementary

 

character

 

is

 

encoded

 

as

 

a

 

pair

 

of

 

UCS-2

 

high

 

and

 

low

 

surrogate

 

characters,

 

and

 

has

 

the

 

binary

 

form

 

of

 

1101

 

1000

 

xxxx

 

xxxx

 

1101

 

1100

 

xxxx

 

xxxx,

 

which

 

is

 

less

 

than

 

the

 

UCS-2

 

encoding

 

of

 

U+FFFF.

 

A

 

Unicode

 

database

 

can

 

also

 

be

 

created

 

with

 

the

 

IDENTITY_16BIT

 

collation

 

option.

 

The

 

IDENTITY_16BIT

 

collator

 

implements

 

the

 

CESU-8

 

Compatibility

 

Encoding

 

Scheme

 

for

 

UTF-16:

 

8-Bit

 

algorithm

 

as

 

specified

 

in

 

the

 

Unicode

 

Technical

 

Report

 

#26

 

available

 

at

 

the

 

Unicode

 

Technical

 

Consortium

 

web

 

site

 

(www.unicode.org).

 

CESU-8

 

is

 

binary

 

identical

 

to

 

UTF-8

 

except

 

for

 

the

 

Unicode

 

supplementary

 

characters,

 

that

 

is,

 

those

 

characters

 

that

 

are

 

defined

 

outside

 

the

 

16-bit

 

Basic

 

Multilingual

 

Plane

 

(BMP

 

or

 

Plane

 

0).

 

In

 

UTF-8

 

encoding,

 

a

 

supplementary

 

character

 

is

 

represented

 

by

 

one

 

four-byte

 

sequence,

 

but

 

the

 

same

 

character

 

in

   

274

 

Administration

 

Guide:

 

Planning

|

|
|
|

|
|
|
|
|
|
|
|



CESU-8

 

requires

 

two

 

three-byte

 

sequences.

 

Using

 

the

 

IDENTITY_16BIT

 

collation

 

option

 

will

 

yield

 

the

 

same

 

collation

 

order

 

for

 

both

 

character

 

and

 

graphic

 

data.

 

DB2

 

UDB

 

Version

 

8.2

 

supports

 

two

 

new

 

collation

 

sequence

 

keywords

 

for

 

Unicode

 

databases:

 

UCA400_NO

 

and

 

UCA400_LTH.

 

The

 

UCA400_NO

 

collator

 

implements

 

the

 

UCA

 

(Unicode

 

Collation

 

Algorithm)

 

based

 

on

 

the

 

Unicode

 

Standard

 

version

 

4.00

 

with

 

normalization

 

implicitly

 

set

 

to

 

on.

 

The

 

UCA400_LTH

 

collator

 

also

 

implements

 

the

 

UCA

 

version

 

4.00,

 

but

 

will

 

sort

 

all

 

Thai

 

characters

 

as

 

per

 

the

 

Royal

 

Thai

 

Dictionary

 

order.

 

Details

 

of

 

the

 

UCA

 

can

 

be

 

found

 

in

 

the

 

Unicode

 

Technical

 

Standard

 

#10

 

available

 

at

 

the

 

Unicode

 

Consortium

 

web

 

site

 

(www.unicode.org).

 

All

 

culturally

 

sensitive

 

parameters,

 

such

 

as

 

date

 

or

 

time

 

format,

 

decimal

 

separator,

 

and

 

others,

 

are

 

based

 

on

 

the

 

current

 

territory

 

of

 

the

 

client.

 

A

 

Unicode

 

database

 

allows

 

connection

 

from

 

every

 

code

 

page

 

supported

 

by

 

DB2

 

UDB.

 

The

 

database

 

manager

 

automatically

 

performs

 

code

 

page

 

conversion

 

for

 

character

 

and

 

graphic

 

strings

 

between

 

the

 

client’s

 

code

 

page

 

and

 

Unicode.

 

Every

 

client

 

is

 

limited

 

by

 

the

 

character

 

repertoire,

 

the

 

input

 

method,

 

and

 

the

 

fonts

 

supported

 

by

 

its

 

environment,

 

but

 

the

 

UCS-2

 

database

 

itself

 

accepts

 

and

 

stores

 

all

 

UCS-2

 

characters.

 

Therefore,

 

every

 

client

 

usually

 

works

 

with

 

a

 

subset

 

of

 

UCS-2

 

characters,

 

but

 

the

 

database

 

manager

 

allows

 

the

 

entire

 

repertoire

 

of

 

UCS-2

 

characters.

 

When

 

characters

 

are

 

converted

 

from

 

a

 

local

 

code

 

page

 

to

 

Unicode,

 

there

 

may

 

be

 

expansion

 

in

 

the

 

number

 

of

 

bytes.

 

Prior

 

to

 

Version

 

8,

 

based

 

on

 

the

 

semantics

 

of

 

SQL

 

statements,

 

character

 

data

 

may

 

have

 

been

 

marked

 

as

 

being

 

encoded

 

in

 

the

 

client’s

 

code

 

page,

 

and

 

the

 

database

 

server

 

would

 

have

 

manipulated

 

the

 

entire

 

statement

 

in

 

the

 

client’s

 

code

 

page.

 

This

 

manipulation

 

could

 

have

 

resulted

 

in

 

potential

 

expansion

 

of

 

the

 

data.

 

Starting

 

in

 

Version

 

8,

 

once

 

an

 

SQL

 

statement

 

enters

 

the

 

database

 

server,

 

it

 

operates

 

only

 

on

 

the

 

database

 

server’s

 

code

 

page.

 

In

 

this

 

case

 

there

 

is

 

no

 

size

 

change.

 

Code

 

Page/CCSID

 

Numbers

 

Within

 

IBM®,

 

the

 

UCS-2

 

code

 

page

 

has

 

been

 

registered

 

as

 

code

 

page

 

1200,

 

with

 

a

 

growing

 

character

 

set;

 

that

 

is,

 

when

 

new

 

characters

 

are

 

added

 

to

 

a

 

code

 

page,

 

the

 

code

 

page

 

number

 

does

 

not

 

change.

 

Code

 

page

 

1200

 

always

 

refers

 

to

 

the

 

current

 

version

 

of

 

Unicode.

 

A

 

specific

 

version

 

of

 

the

 

UCS

 

standard,

 

as

 

defined

 

by

 

Unicode

 

2.0

 

and

 

ISO/IEC

 

10646-1,

 

has

 

also

 

been

 

registered

 

within

 

IBM

 

as

 

CCSID

 

13488.

 

This

 

CCSID

 

has

 

been

 

used

 

internally

 

by

 

DB2

 

UDB

 

for

 

storing

 

graphic

 

string

 

data

 

in

 

IBM

 

eucJP

 

(Japan)

 

and

 

IBM

 

eucTW

 

(Taiwan)

 

databases.

 

CCSID

 

13488

 

and

 

code

 

page

 

1200

 

both

 

refer

 

to

 

UCS-2,

 

and

 

are

 

handled

 

the

 

same

 

way,

 

except

 

for

 

the

 

value

 

of

 

their

 

″double-byte″

 

(DBCS)

 

space:

  

CP/CCSID

 

Single-byte

 

(SBCS)

 

space

 

Double-byte

 

(DBCS)

 

space

 

1200

 

N/A

 

U+0020

 

13488

 

N/A

 

U+3000

   

Note:

  

In

 

a

 

UCS-2

 

database,

 

U+3000

 

has

 

no

 

special

 

meaning.

 

Regarding

 

the

 

conversion

 

tables,

 

since

 

code

 

page

 

1200

 

is

 

a

 

superset

 

of

 

CCSID

 

13488,

 

the

 

same

 

(superset)

 

tables

 

are

 

used

 

for

 

both.

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

275

|
|

|
|
|
|
|
|
|



Within

 

IBM,

 

UTF-8

 

has

 

been

 

registered

 

as

 

CCSID

 

1208

 

with

 

growing

 

character

 

set

 

(sometimes

 

also

 

referred

 

to

 

as

 

code

 

page

 

1208).

 

As

 

new

 

characters

 

are

 

added

 

to

 

the

 

standard,

 

this

 

number

 

(1208)

 

will

 

not

 

change.

 

The

 

MBCS

 

code

 

page

 

number

 

is

 

1208,

 

which

 

is

 

the

 

database

 

code

 

page

 

number,

 

and

 

the

 

code

 

page

 

of

 

character

 

string

 

data

 

within

 

the

 

database.

 

The

 

double-byte

 

code

 

page

 

number

 

for

 

UCS-2

 

is

 

1200,

 

which

 

is

 

the

 

code

 

page

 

of

 

graphic

 

string

 

data

 

within

 

the

 

database.

 

Thai

 

and

 

Unicode

 

collation

 

algorithm

 

differences

 

The

 

collation

 

algorithm

 

used

 

in

 

a

 

Thai

 

Industrial

 

Standard

 

(TIS)

 

TIS620-1

 

(code

 

page

 

874)

 

Thai

 

database

 

with

 

the

 

NLSCHAR

 

collation

 

option

 

is

 

similar,

 

but

 

not

 

identical

 

to,

 

the

 

collation

 

algorithm

 

used

 

in

 

a

 

Unicode

 

database

 

with

 

the

 

UCA400_LTH

 

collation

 

option.

 

The

 

differences

 

are

 

as

 

follows:

 

v

   

When

 

sorting

 

TIS620-1

 

data,

 

each

 

character

 

only

 

has

 

one

 

weight,

 

and

 

that

 

weight

 

is

 

used

 

to

 

compare

 

with

 

another

 

character’s

 

weight

 

during

 

collation.

 

When

 

sorting

 

Unicode

 

data,

 

each

 

character

 

has

 

several

 

weights,

 

and

 

all

 

the

 

weights

 

of

 

that

 

character

 

can

 

be

 

used

 

during

 

collation.

 

v

   

When

 

sorting

 

TIS620-1

 

data,

 

the

 

space

 

character

 

X’20’,

 

hyphen

 

character

 

X’2D’,

 

and

 

full

 

stop

 

character

 

X’2E’

 

all

 

have

 

smaller

 

weights

 

than

 

all

 

the

 

Thai

 

characters.

 

When

 

sorting

 

Unicode

 

data,

 

however,

 

those

 

three

 

characters

 

are

 

considered

 

as

 

punctuation

 

marks;

 

and

 

are

 

used

 

for

 

comparison

 

only

 

when

 

all

 

other

 

characters

 

in

 

the

 

two

 

strings

 

being

 

compared

 

are

 

equal.

 

v

   

The

 

Paiyannoi

 

character

 

X’CF’

 

and

 

the

 

Maiyamok

 

character

 

X’E6’

 

in

 

a

 

TIS620-1

 

database

 

are

 

treated

 

as

 

punctuation

 

marks

 

when

 

they

 

follow

 

other

 

Thai

 

characters,

 

and

 

as

 

normal

 

characters,

 

with

 

their

 

own

 

weights,

 

when

 

they

 

appear

 

at

 

the

 

beginning

 

of

 

a

 

string.

 

The

 

same

 

two

 

characters

 

in

 

a

 

Unicode

 

database

 

(U+0E2F

 

and

 

U+0E46

 

respectively)

 

are

 

always

 

treated

 

as

 

punctuation

 

marks,

 

and

 

will

 

be

 

used

 

for

 

comparison

 

when

 

all

 

other

 

characters

 

in

 

the

 

two

 

strings

 

being

 

compared

 

are

 

equal.

 

More

 

information

 

on

 

Thai

 

characters

 

can

 

be

 

found

 

in

 

chapter

 

10.1

 

Thai

 

of

 

the

 

Unicode

 

Standard

 

book,

 

version

 

4.0,

 

ISBN

 

0-321-18578-1.

  

Related

 

concepts:

  

v

   

“Unicode

 

character

 

encoding”

 

on

 

page

 

272

 

v

   

“Unicode

 

handling

 

of

 

data

 

types”

 

on

 

page

 

276

 

v

   

“Unicode

 

literals”

 

on

 

page

 

278

 

Related

 

tasks:

  

v

   

“Creating

 

a

 

Unicode

 

database”

 

on

 

page

 

278

Unicode

 

handling

 

of

 

data

 

types

  

All

 

data

 

types

 

supported

 

by

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

are

 

also

 

supported

 

in

 

a

 

UCS-2

 

database.

 

In

 

particular,

 

graphic

 

string

 

data

 

is

 

supported

 

for

 

a

 

UCS-2

 

database,

 

and

 

is

 

stored

 

in

 

UCS-2/Unicode.

 

Every

 

client,

 

including

 

SBCS

 

clients,

 

can

 

work

 

with

 

graphic

 

string

 

data

 

types

 

in

 

UCS-2/Unicode

 

when

 

connected

 

to

 

a

 

UCS-2

 

database.

 

A

 

UCS-2

 

database

 

is

 

like

 

any

 

MBCS

 

database

 

where

 

character

 

string

 

data

 

is

 

measured

 

in

 

number

 

of

 

bytes.

 

When

 

working

 

with

 

character

 

string

 

data

 

in

 

UTF-8,

 

one

 

should

 

not

 

assume

 

that

 

each

 

character

 

is

 

one

 

byte.

 

In

 

multibyte

 

UTF-8

   

276

 

Administration

 

Guide:

 

Planning

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|



encoding,

 

each

 

ASCII

 

character

 

is

 

one

 

byte,

 

but

 

non-ASCII

 

characters

 

take

 

two

 

to

 

four

 

bytes

 

each.

 

This

 

should

 

be

 

taken

 

into

 

account

 

when

 

defining

 

CHAR

 

fields.

 

Depending

 

on

 

the

 

ratio

 

of

 

ASCII

 

to

 

non-ASCII

 

characters,

 

a

 

CHAR

 

field

 

of

 

size

 

n

 

bytes

 

can

 

contain

 

anywhere

 

from

 

n/4

 

to

 

n

 

characters.

 

Using

 

character

 

string

 

UTF-8

 

encoding

 

versus

 

the

 

graphic

 

string

 

UCS-2

 

data

 

type

 

also

 

has

 

an

 

impact

 

on

 

the

 

total

 

storage

 

requirements.

 

In

 

a

 

situation

 

where

 

the

 

majority

 

of

 

characters

 

are

 

ASCII,

 

with

 

some

 

non-ASCII

 

characters

 

in

 

between,

 

storing

 

UTF-8

 

data

 

may

 

be

 

a

 

better

 

alternative,

 

because

 

the

 

storage

 

requirements

 

are

 

closer

 

to

 

one

 

byte

 

per

 

character.

 

On

 

the

 

other

 

hand,

 

in

 

situations

 

where

 

the

 

majority

 

of

 

characters

 

are

 

non-ASCII

 

characters

 

that

 

expand

 

to

 

three-

 

or

 

four-byte

 

UTF-8

 

sequences

 

(for

 

example

 

ideographic

 

characters),

 

the

 

UCS-2

 

graphic-string

 

format

 

may

 

be

 

a

 

better

 

alternative,

 

because

 

every

 

three-byte

 

UTF-8

 

sequence

 

becomes

 

a

 

16-bit

 

UCS-2

 

character,

 

while

 

each

 

four-byte

 

UTF-8

 

sequence

 

becomes

 

two

 

16-bit

 

UCS-2

 

characters.

 

In

 

MBCS

 

environments,

 

SQL

 

functions

 

that

 

operate

 

on

 

character

 

strings,

 

such

 

as

 

LENGTH,

 

SUBSTR,

 

POSSTR,

 

MAX,

 

MIN,

 

and

 

the

 

like,

 

operate

 

on

 

the

 

number

 

of

 

″bytes″

 

rather

 

than

 

number

 

of

 

″characters″.

 

The

 

behavior

 

is

 

the

 

same

 

in

 

a

 

UCS-2

 

database,

 

but

 

you

 

should

 

take

 

extra

 

care

 

when

 

specifying

 

offsets

 

and

 

lengths

 

for

 

a

 

UCS-2

 

database,

 

because

 

these

 

values

 

are

 

always

 

defined

 

in

 

the

 

context

 

of

 

the

 

database

 

code

 

page.

 

That

 

is,

 

in

 

the

 

case

 

of

 

a

 

UCS-2

 

database,

 

these

 

offsets

 

should

 

be

 

defined

 

in

 

UTF-8.

 

Since

 

some

 

single-byte

 

characters

 

require

 

more

 

than

 

one

 

byte

 

in

 

UTF-8,

 

SUBSTR

 

indexes

 

that

 

are

 

valid

 

for

 

a

 

single-byte

 

database

 

may

 

not

 

be

 

valid

 

for

 

a

 

UCS-2

 

database.

 

If

 

you

 

specify

 

incorrect

 

indexes,

 

SQLCODE

 

-191

 

(SQLSTATE

 

22504)

 

is

 

returned.

 

SQL

 

CHAR

 

data

 

types

 

are

 

supported

 

(in

 

the

 

C

 

language)

 

by

 

the

 

char

 

data

 

type

 

in

 

user

 

programs.

 

SQL

 

GRAPHIC

 

data

 

types

 

are

 

supported

 

by

 

sqldbchar

 

in

 

user

 

programs.

 

Note

 

that,

 

for

 

a

 

UCS-2

 

database,

 

sqldbchar

 

data

 

is

 

always

 

in

 

big-endian

 

(high

 

byte

 

first)

 

format.

 

When

 

an

 

application

 

program

 

is

 

connected

 

to

 

a

 

UCS-2

 

database,

 

character

 

string

 

data

 

is

 

converted

 

between

 

the

 

application

 

code

 

page

 

and

 

UTF-8,

 

and

 

graphic

 

string

 

data

 

is

 

converted

 

between

 

the

 

application

 

graphic

 

code

 

page

 

and

 

UCS-2

 

by

 

DB2

 

UDB.

 

When

 

retrieving

 

data

 

from

 

a

 

Unicode

 

database

 

to

 

an

 

application

 

that

 

does

 

not

 

use

 

an

 

SBCS,

 

EUC,

 

or

 

Unicode

 

code

 

page,

 

the

 

defined

 

substitution

 

character

 

is

 

returned

 

for

 

each

 

blank

 

padded

 

to

 

a

 

graphic

 

column.

 

DB2

 

UDB

 

pads

 

fixed-length

 

Unicode

 

graphic

 

columns

 

with

 

ASCII

 

blanks

 

(U+0200),

 

a

 

character

 

that

 

has

 

no

 

equivalent

 

in

 

pure

 

DBCS

 

code

 

pages.

 

As

 

a

 

result,

 

each

 

ASCII

 

blank

 

used

 

in

 

the

 

padding

 

of

 

the

 

graphic

 

column

 

is

 

converted

 

to

 

the

 

substitution

 

character

 

on

 

retrieval.

 

Similarly,

 

in

 

a

 

DATE,

 

TIME

 

or

 

TIMESTAMP

 

string,

 

any

 

SBCS

 

character

 

that

 

does

 

not

 

have

 

a

 

pure

 

DBCS

 

equivalent

 

is

 

also

 

converted

 

to

 

the

 

substitution

 

character

 

when

 

retrieved

 

from

 

a

 

Unicode

 

database

 

to

 

an

 

application

 

that

 

does

 

not

 

use

 

an

 

SBCS,

 

EUC,

 

or

 

Unicode

 

code

 

page.

 

Note:

  

Prior

 

to

 

Version

 

8,

 

graphic

 

string

 

data

 

was

 

always

 

assumed

 

to

 

be

 

in

 

UCS-2.

 

To

 

provide

 

backward

 

compatibility

 

to

 

applications

 

that

 

depend

 

on

 

the

 

previous

 

behavior

 

of

 

DB2

 

UDB,

 

the

 

registry

 

variable

 

DB2GRAPHICUNICODESERVER

 

has

 

been

 

introduced.

 

Its

 

default

 

value

 

is

 

OFF.

 

Changing

 

the

 

value

 

of

 

this

 

variable

 

to

 

ON

 

will

 

cause

 

DB2

 

UDB

 

to

 

use

 

its

 

earlier

 

behavior

 

and

 

assume

 

that

 

graphic

 

string

 

data

 

is

 

always

 

in

 

UCS-2.

 

Additionally,

 

the

 

DB2

 

UDB

 

server

 

will

 

check

 

the

 

version

 

of

 

DB2

 

UDB

 

running

 

on

 

the

 

client,

 

and

 

will

 

simulate

 

Version

 

7

 

behavior

 

if

 

the

 

client

 

is

 

running

 

Version

 

7.

  

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

277



Related

 

concepts:

  

v

   

“Unicode

 

character

 

encoding”

 

on

 

page

 

272

 

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

Creating

 

a

 

Unicode

 

database

  

Procedure:

   

By

 

default,

 

databases

 

are

 

created

 

in

 

the

 

code

 

page

 

of

 

the

 

application

 

creating

 

them.

 

Therefore,

 

if

 

you

 

create

 

your

 

database

 

from

 

a

 

Unicode

 

(UTF-8)

 

client

 

(for

 

example,

 

the

 

UNIVERSAL

 

locale

 

of

 

AIX

 

or

 

if

 

the

 

DB2CODEPAGE

 

registry

 

variable

 

on

 

the

 

client

 

is

 

set

 

to

 

1208),

 

your

 

database

 

will

 

be

 

created

 

as

 

a

 

Unicode

 

database.

 

Alternatively,

 

you

 

can

 

explicitly

 

specify

 

″UTF-8″

 

as

 

the

 

CODESET

 

name,

 

and

 

use

 

any

 

valid

 

TERRITORY

 

code

 

supported

 

by

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB).

 

To

 

create

 

a

 

Unicode

 

database

 

with

 

the

 

territory

 

code

 

for

 

the

 

United

 

States

 

of

 

America:

    

DB2

 

CREATE

 

DATABASE

 

dbname

 

USING

 

CODESET

 

UTF-8

 

TERRITORY

 

US

 

To

 

create

 

a

 

Unicode

 

database

 

using

 

the

 

sqlecrea

 

API,

 

you

 

should

 

set

 

the

 

values

 

in

 

sqledbterritoryinfo

 

accordingly.

 

For

 

example,

 

set

 

SQLDBCODESET

 

to

 

UTF-8,

 

and

 

SQLDBLOCALE

 

to

 

any

 

valid

 

territory

 

code

 

(for

 

example,

 

US).

  

Related

 

concepts:

  

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

 

Related

 

reference:

  

v

   

“sqlecrea

 

-

 

Create

 

Database”

 

in

 

the

 

Administrative

 

API

 

Reference

 

v

   

“CREATE

 

DATABASE

 

Command”

 

in

 

the

 

Command

 

Reference

Unicode

 

literals

  

Unicode

 

literals

 

can

 

be

 

specified

 

in

 

two

 

ways:

 

v

   

As

 

a

 

graphic

 

string

 

constant,

 

using

 

the

 

G’...’

 

or

 

N’....’

 

format.

 

Any

 

literal

 

specified

 

in

 

this

 

way

 

will

 

be

 

converted

 

by

 

the

 

database

 

manager

 

from

 

the

 

application

 

code

 

page

 

to

 

16-bit

 

Unicode.

 

v

   

As

 

a

 

Unicode

 

hexadecimal

 

string,

 

using

 

the

 

UX’....’

 

or

 

GX’....’

 

format.

 

The

 

constant

 

specified

 

between

 

the

 

quotation

 

marks

 

after

 

UX

 

or

 

GX

 

must

 

be

 

a

 

multiple

 

of

 

four

 

hexadecimal

 

digits

 

in

 

big-endian

 

order.

 

Each

 

four-digit

 

group

 

represents

 

one

 

16-bit

 

Unicode

 

code

 

point.

 

Note

 

that

 

surrogate

 

characters

 

always

 

appear

 

in

 

pairs,

 

therefore

 

you

 

need

 

two

 

four-digit

 

groups

 

to

 

represent

 

the

 

high

 

and

 

low

 

surrogate

 

characters.

 

When

 

using

 

the

 

command

 

line

 

processor

 

(CLP),

 

the

 

first

 

method

 

is

 

easier

 

if

 

the

 

UCS-2

 

character

 

exists

 

in

 

the

 

local

 

application

 

code

 

page

 

(for

 

example,

 

when

 

entering

 

any

 

code

 

page

 

850

 

character

 

from

 

a

 

terminal

 

that

 

is

 

using

 

code

 

page

 

850).

 

The

 

second

 

method

 

should

 

be

 

used

 

for

 

characters

 

that

 

are

 

outside

 

of

 

the

 

application

 

code

 

page

 

repertoire

 

(for

 

example,

 

when

 

specifying

 

Japanese

 

characters

 

from

 

a

 

terminal

 

that

 

is

 

using

 

code

 

page

 

850).

  

Related

 

concepts:

  

v

   

“Unicode

 

character

 

encoding”

 

on

 

page

 

272

   

278

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|



v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

 

Related

 

reference:

  

v

   

“Constants”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

String

 

comparisons

 

in

 

a

 

Unicode

 

database

  

Pattern

 

matching

 

is

 

one

 

area

 

where

 

the

 

behavior

 

of

 

existing

 

MBCS

 

databases

 

is

 

slightly

 

different

 

from

 

the

 

behavior

 

of

 

a

 

UCS-2

 

database.

 

For

 

MBCS

 

databases

 

in

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB),

 

the

 

current

 

behavior

 

is

 

as

 

follows:

 

If

 

the

 

match-expression

 

contains

 

MBCS

 

data,

 

the

 

pattern

 

can

 

include

 

both

 

SBCS

 

and

 

non-SBCS

 

characters.

 

The

 

special

 

characters

 

in

 

the

 

pattern

 

are

 

interpreted

 

as

 

follows:

 

v

   

An

 

SBCS

 

halfwidth

 

underscore

 

refers

 

to

 

one

 

SBCS

 

character.

 

v

   

A

 

non-SBCS

 

fullwidth

 

underscore

 

refers

 

to

 

one

 

non-SBCS

 

character.

 

v

   

A

 

percent

 

(either

 

SBCS

 

halfwidth

 

or

 

non-SBCS

 

fullwidth)

 

refers

 

to

 

zero

 

or

 

more

 

SBCS

 

or

 

non-SBCS

 

characters.

 

In

 

a

 

Unicode

 

database,

 

there

 

is

 

really

 

no

 

distinction

 

between

 

″single-byte″

 

and

 

″non-single-byte″

 

characters.

 

Although

 

the

 

UTF-8

 

format

 

is

 

a

 

″mixed-byte″

 

encoding

 

of

 

Unicode

 

characters,

 

there

 

is

 

no

 

real

 

distinction

 

between

 

SBCS

 

and

 

non-SBCS

 

characters

 

in

 

UTF-8.

 

Every

 

character

 

is

 

a

 

Unicode

 

character,

 

regardless

 

of

 

the

 

number

 

of

 

bytes

 

in

 

UTF-8

 

format.

 

In

 

a

 

Unicode

 

graphic

 

column,

 

every

 

non-supplementary

 

character,

 

including

 

the

 

halfwidth

 

underscore

 

(U+005F)

 

and

 

halfwidth

 

percent

 

(U+0025),

 

is

 

two

 

bytes

 

in

 

width.

 

For

 

Unicode

 

databases,

 

the

 

special

 

characters

 

in

 

the

 

pattern

 

are

 

interpreted

 

as

 

follows:

 

v

   

For

 

character

 

strings,

 

a

 

halfwidth

 

underscore

 

(X’5F’)

 

or

 

a

 

fullwidth

 

underscore

 

(X’EFBCBF’)

 

refers

 

to

 

one

 

Unicode

 

character.

 

A

 

halfwidth

 

percent

 

(X’25’)

 

or

 

a

 

fullwidth

 

percent

 

(X’EFBC85’)

 

refers

 

to

 

zero

 

or

 

more

 

Unicode

 

characters.

 

v

   

For

 

graphic

 

strings,

 

a

 

halfwidth

 

underscore

 

(U+005F)

 

or

 

a

 

fullwidth

 

underscore

 

(U+FF3F)

 

refers

 

to

 

one

 

Unicode

 

character.

 

A

 

halfwidth

 

percent

 

(U+0025)

 

or

 

a

 

fullwidth

 

percent

 

(U+FF05)

 

refers

 

to

 

zero

 

or

 

more

 

Unicode

 

characters.

Note:

  

You

 

need

 

two

 

underscores

 

to

 

match

 

a

 

Unicode

 

supplementary

 

graphic

 

character

 

because

 

such

 

a

 

character

 

is

 

represented

 

by

 

two

 

UCS-2

 

characters

 

in

 

a

 

GRAPHIC

 

column.

 

Only

 

one

 

underscore

 

is

 

needed

 

to

 

match

 

a

 

Unicode

 

supplementary

 

character

 

in

 

a

 

CHAR

 

column.

 

For

 

the

 

optional

 

″escape

 

expression″,

 

which

 

specifies

 

a

 

character

 

to

 

be

 

used

 

to

 

modify

 

the

 

special

 

meaning

 

of

 

the

 

underscore

 

and

 

percent

 

sign

 

characters,

 

the

 

expression

 

can

 

be

 

specified

 

by

 

any

 

one

 

of:

 

v

   

A

 

constant

 

v

   

A

 

special

 

register

 

v

   

A

 

host

 

variable

 

v

   

A

 

scalar

 

function

 

whose

 

operands

 

are

 

any

 

of

 

the

 

above

 

v

   

An

 

expression

 

concatenating

 

any

 

of

 

the

 

above

with

 

the

 

restrictions

 

that:

 

v

   

No

 

element

 

in

 

the

 

expression

 

can

 

be

 

of

 

type

 

LONG

 

VARCHAR,

 

CLOB,

 

LONG

 

VARGRAPHIC,

 

or

 

DBCLOB.

 

In

 

addition,

 

it

 

cannot

 

be

 

a

 

BLOB

 

file

 

reference

 

variable.

   

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

279

|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|



v

   

For

 

CHAR

 

columns,

 

the

 

result

 

of

 

the

 

expression

 

must

 

be

 

one

 

character

 

or

 

a

 

binary

 

string

 

containing

 

exactly

 

one

 

(1)

 

byte

 

(SQLSTATE

 

22019).

 

For

 

GRAPHIC

 

columns,

 

the

 

result

 

of

 

the

 

expression

 

must

 

be

 

one

 

character

 

(SQLSTATE

 

22019).

 

Related

 

concepts:

  

v

   

“Unicode

 

character

 

encoding”

 

on

 

page

 

272

 

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

 

Related

 

reference:

  

v

   

“Character

 

strings”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

 

v

   

“Graphic

 

strings”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

1

Installing

 

the

 

previous

 

tables

 

for

 

converting

 

between

 

code

 

page

 

1394

 

and

 

Unicode

  

The

 

conversion

 

tables

 

for

 

code

 

page

 

1394

 

(also

 

known

 

as

 

Shift

 

JIS

 

X0213)

 

and

 

Unicode

 

have

 

been

 

enhanced.

 

The

 

conversion

 

between

 

Japanese

 

Shift

 

JIS

 

X0213

 

(1394)

 

and

 

Unicode

 

now

 

conforms

 

to

 

the

 

final

 

ISO/IEC

 

10646-1:2000

 

Amendment-1

 

for

 

JIS

 

X0213

 

characters.

 

The

 

previous

 

version

 

of

 

the

 

conversion

 

tables

 

is

 

available

 

via

 

FTP

 

from

 

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/conv/.

  

Procedure:

   

To

 

install

 

the

 

previous

 

definitions

 

for

 

converting

 

between

 

Shift

 

JIS

 

X0213

 

and

 

Unicode:

 

1.

   

Stop

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

instance.

 

2.

   

Point

 

your

 

Web

 

browser

 

to

 

ftp://ftp.software.ibm.com/ps/products/db2/info/vr8/conv/

 

or

 

use

 

FTP

 

to

 

connect

 

to

 

the

 

ftp.software.ibm.com

 

site.

 

This

 

FTP

 

server

 

is

 

anonymous.

 

3.

   

If

 

you

 

are

 

connecting

 

via

 

the

 

command

 

line,

 

log

 

in

 

by

 

entering

 

anonymous

 

as

 

your

 

user

 

ID

 

and

 

your

 

e-mail

 

address

 

as

 

your

 

password.

 

4.

   

After

 

logging

 

in,

 

change

 

to

 

the

 

conversion

 

tables

 

directory:

 

cd

 

ps/products/db2/info/vr8/conv

 

5.

   

Copy

 

the

 

two

 

files,

 

1394ucs4.cnv

 

and

 

ucs41394.cnv,

 

in

 

binary

 

form

 

to

 

your

 

sqllib/conv/

 

directory.

 

6.

   

Restart

 

the

 

DB2

 

UDB

 

instance.

 

Related

 

concepts:

  

v

   

“Unicode

 

implementation

 

in

 

DB2

 

Universal

 

Database”

 

on

 

page

 

274

 

Related

 

reference:

  

v

   

“Supported

 

territory

 

codes

 

and

 

code

 

pages”

 

on

 

page

 

231

Alternative

 

Unicode

 

conversion

 

tables

 

for

 

the

 

coded

 

character

 

set

 

identifier

 

(CCSID)

 

943

  

Some

 

characters

 

in

 

the

 

coded

 

character

 

set

 

identifier

 

(CCSID)

 

943

 

have

 

two

 

code

 

points

 

each.

 

One

 

of

 

the

 

code

 

points

 

is

 

commonly

 

called

 

the

 

NEC

 

code

 

point.

 

The

 

other

 

is

 

commonly

 

known

 

as

 

the

 

IBM®

 

code

 

point.

 

Other

 

characters

 

in

 

CCSID

 

943

 

also

 

have

 

two

 

code

 

points,

 

an

 

NEC

 

code

 

point

 

and

 

a

 

JIS

 

code

 

point.

 

For

 

example,

 

the

 

Roman

 

numeral

 

1

 

can

 

be

 

referred

 

to

 

by

 

both

 

X’8754’

 

(the

 

NEC

 

code

 

point)

 

and

   

280

 

Administration

 

Guide:

 

Planning

|
|
|

|

|

|

|
|
|
|
|



X’FA4A’

 

(the

 

IBM

 

code

 

point).

 

Similarly,

 

the

 

mathematics

 

symbol

 

for

 

the

 

union

 

set

 

operation

 

can

 

be

 

represented

 

by

 

both

 

X’879C’

 

(the

 

NEC

 

code

 

point),

 

and

 

X’81BE’

 

(the

 

JIS

 

code

 

point).

 

When

 

using

 

the

 

DB2®

 

Universal

 

Database

 

(DB2

 

UDB)

 

default

 

CCSID

 

943

 

to

 

Unicode

 

conversion

 

tables,

 

if

 

a

 

symbol

 

can

 

be

 

represented

 

by

 

two

 

code

 

points,

 

both

 

code

 

points

 

are

 

converted

 

to

 

the

 

same

 

Unicode

 

character.

 

When

 

converting

 

from

 

Unicode

 

to

 

CCSID

 

943,

 

the

 

characters

 

are

 

converted

 

only

 

to

 

the

 

IBM

 

or

 

JIS

 

code

 

points.

 

For

 

example,

 

if

 

you

 

are

 

using

 

the

 

default

 

conversion

 

tables

 

to

 

convert

 

the

 

Roman

 

numeral

 

1

 

from

 

CCSID

 

943

 

into

 

Unicode

 

and

 

then

 

back

 

again,

 

the

 

following

 

happens:

 

v

   

X’FA4A’

 

(the

 

IBM

 

code

 

point)

 

is

 

converted

 

to

 

U+2160,

 

and

 

then

 

converted

 

back

 

to

 

X’FA4A’

 

v

   

But

 

X’8754’

 

(the

 

NEC

 

code

 

point)

 

is

 

also

 

converted

 

to

 

U+2160,

 

and

 

then

 

converted

 

back

 

to

 

X’FA4A’.

 

Similarly,

 

carrying

 

out

 

the

 

same

 

conversion

 

using

 

the

 

Microsoft®

 

version

 

of

 

the

 

Unicode

 

conversion

 

tables

 

for

 

CCSID

 

943

 

will

 

end

 

up

 

mapping

 

both

 

X’FA4A’

 

and

 

X’8754’

 

onto

 

X’8754’.

 

In

 

addition,

 

there

 

are

 

characters

 

in

 

CCSID

 

943

 

that

 

can

 

be

 

converted

 

into

 

different

 

Unicode

 

characters,

 

depending

 

on

 

which

 

conversion

 

tables

 

are

 

used.

 

For

 

example,

 

the

 

CCSID

 

943

 

character

 

X’815C’

 

is

 

converted

 

to

 

the

 

Unicode

 

character

 

U+2014

 

using

 

the

 

DB2

 

UDB

 

default

 

conversion

 

tables,

 

but

 

is

 

converted

 

to

 

U+2015

 

when

 

using

 

the

 

Microsoft

 

conversion

 

tables.

 

If

 

you

 

want

 

DB2

 

UDB

 

to

 

use

 

the

 

Microsoft

 

version

 

of

 

the

 

conversion

 

tables,

 

you

 

have

 

to

 

replace

 

the

 

DB2

 

UDB

 

conversion

 

tables

 

with

 

the

 

Microsoft

 

conversion

 

tables.

 

The

 

use

 

of

 

these

 

Microsoft

 

conversion

 

tables

 

is

 

restricted

 

to

 

closed

 

environments

 

between

 

a

 

DB2

 

UDB

 

database

 

of

 

CCSID

 

943

 

and

 

DB2

 

UDB

 

clients

 

of

 

CCSID

 

943

 

where

 

both

 

the

 

clients

 

and

 

the

 

database

 

are

 

using

 

the

 

Microsoft

 

version

 

of

 

the

 

conversion

 

tables.

 

If

 

you

 

have

 

a

 

DB2

 

UDB

 

client

 

using

 

the

 

default

 

DB2

 

UDB

 

conversion

 

tables,

 

and

 

another

 

DB2

 

UDB

 

client

 

using

 

the

 

Microsoft

 

version

 

of

 

the

 

conversion

 

tables,

 

and

 

both

 

clients

 

are

 

connected

 

to

 

the

 

same

 

DB2

 

UDB

 

database

 

of

 

CCSID

 

943,

 

then

 

the

 

same

 

character

 

may

 

be

 

stored

 

as

 

two

 

different

 

code

 

points

 

in

 

the

 

database.

  

Related

 

concepts:

  

v

   

“Unicode

 

character

 

encoding”

 

on

 

page

 

272

 

Related

 

tasks:

  

v

   

“Replacing

 

the

 

Unicode

 

conversion

 

tables

 

for

 

coded

 

character

 

set

 

(CCSID)

 

943

 

with

 

the

 

Microsoft

 

conversion

 

tables”

 

on

 

page

 

281

Replacing

 

the

 

Unicode

 

conversion

 

tables

 

for

 

coded

 

character

 

set

 

(CCSID)

 

943

 

with

 

the

 

Microsoft

 

conversion

 

tables

  

When

 

you

 

convert

 

between

 

CCSID

 

943

 

and

 

Unicode,

 

the

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

default

 

code

 

page

 

conversion

 

tables

 

are

 

used.

 

If

 

you

 

want

 

to

 

use

 

a

 

different

 

version

 

of

 

the

 

conversion

 

tables,

 

such

 

as

 

the

 

Microsoft

 

version,

 

you

 

must

 

manually

 

replace

 

the

 

default

 

conversion

 

table

 

(.cnv)

 

files.

  

Prerequisites:

    

Appendix

 

B.

 

National

 

language

 

support

 

(NLS)

 

281

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|
|
|
|

|



Before

 

replacing

 

the

 

existing

 

code

 

page

 

conversion

 

table

 

files

 

in

 

the

 

sqllib/conv

 

directory,

 

you

 

should

 

back

 

up

 

the

 

files

 

in

 

case

 

you

 

want

 

to

 

change

 

them

 

back.

 

On

 

UNIX,

 

sqllib/conv

 

is

 

linked

 

to

 

the

 

install

 

path

 

of

 

DB2

 

UDB.

  

Restrictions:

   

For

 

this

 

to

 

be

 

effective,

 

every

 

DB2

 

UDB

 

client

 

that

 

connects

 

to

 

the

 

same

 

database

 

must

 

have

 

its

 

conversion

 

table

 

changed.

 

Otherwise

 

the

 

different

 

clients

 

might

 

store

 

the

 

same

 

character

 

using

 

different

 

code

 

points.

  

Procedure:

   

To

 

replace

 

the

 

DB2

 

UDB

 

default

 

conversion

 

tables

 

for

 

converting

 

between

 

CCSID

 

943

 

and

 

Unicode:

 

1.

   

Copy

 

sqllib/conv/ms/0943ucs2.cnv

 

to

 

sqllib/conv/0943ucs2.cnv.

 

2.

   

Copy

 

sqllib/conv/ms/ucs20943.cnv

 

to

 

sqllib/conv/ucs20943.cnv.

 

3.

   

Restart

 

DB2

 

UDB.

 

Related

 

concepts:

  

v

   

“Alternative

 

Unicode

 

conversion

 

tables

 

for

 

the

 

coded

 

character

 

set

 

identifier

 

(CCSID)

 

943”

 

on

 

page

 

280

  

282

 

Administration

 

Guide:

 

Planning

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|



Appendix

 

C.

 

Enabling

 

large

 

page

 

support

 

in

 

a

 

64-bit

 

environment

 

(AIX)

  

In

 

addition

 

to

 

the

 

traditional

 

page

 

size

 

of

 

4

 

KB,

 

the

 

POWER4

 

processor

 

in

 

the

 

IBM

 

eServer

 

pSeries

 

systems

 

also

 

supports

 

a

 

new

 

16

 

MB

 

page

 

size.

 

AIX

 

5L

 

for

 

POWER

 

Version

 

5.1

 

with

 

the

 

5100-02

 

Recommended

 

Maintenance

 

package,

 

or

 

Version

 

5.2,

 

contain

 

support

 

for

 

pages

 

with

 

a

 

16

 

MB

 

size.

 

When

 

running

 

under

 

this

 

environment,

 

DB2

 

Universal

 

Database™

 

(DB2

 

UDB)

 

for

 

AIX

 

64-bit

 

Edition

 

can

 

be

 

enabled

 

to

 

use

 

these

 

large

 

pages.

 

Large

 

page

 

usage

 

is

 

primarily

 

intended

 

to

 

provide

 

performance

 

improvements

 

to

 

high

 

performance

 

computing

 

applications.

 

Applications

 

that

 

require

 

intensive

 

memory

 

access

 

and

 

that

 

use

 

large

 

amounts

 

of

 

virtual

 

memory

 

may

 

obtain

 

performance

 

improvements

 

by

 

using

 

large

 

pages.

 

Notes:

  

1.

   

For

 

detail

 

instructions

 

on

 

how

 

to

 

run

 

the

 

vmtune

 

or

 

the

 

vmo

 

command,

 

refer

 

to

 

your

 

AIX

 

manuals.

 

2.

   

You

 

should

 

be

 

extremely

 

cautious

 

when

 

configuring

 

your

 

system

 

for

 

pinning

 

memory

 

and

 

supporting

 

large

 

pages.

 

Pinning

 

too

 

much

 

memory

 

results

 

in

 

heavy

 

paging

 

activities

 

for

 

the

 

memory

 

pages

 

that

 

are

 

not

 

pinned.

 

Allocating

 

too

 

much

 

physical

 

memory

 

to

 

large

 

pages

 

will

 

degrade

 

system

 

performance

 

if

 

there

 

is

 

insufficient

 

memory

 

to

 

support

 

the

 

4

 

KB

 

pages.

 

3.

   

Setting

 

the

 

DB2_LGPAGE_BP

 

registry

 

variable

 

also

 

implies

 

that

 

the

 

memory

 

is

 

pinned.

 

Prerequisites:

   

You

 

are

 

working

 

in

 

an

 

AIX

 

5.x

 

or

 

later

 

64-bit

 

environment.

 

You

 

must

 

have

 

root

 

authority

 

to

 

work

 

with

 

the

 

AIX

 

operating

 

system

 

commands.

  

Procedure:

   

To

 

enable

 

large

 

page

 

support,

 

you

 

must:

 

1.

   

Configure

 

your

 

AIX

 

server

 

for

 

large

 

page

 

support:

    

For

 

AIX

 

5.1

 

operating

 

systems:

 

Issue

 

the

 

vmtune

 

command

 

with

 

the

 

following

 

flags:

    

vmtune

 

-g

 

<LargePageSize>

 

-L

 

<LargePages>

    

For

 

AIX

 

5.2

 

operating

 

systems:

 

Issue

 

the

 

vmo

 

command

 

with

 

the

 

following

 

flags:

    

vmo

 

-r

 

-o

 

lgpg_size=<LargePageSize>

 

lgpg_regions=<LargePages>

 

where

    

<LargePageSize>

 

Specifies

 

the

 

size

 

in

 

bytes

 

of

 

the

 

hardware-supported

 

large

 

pages.

    

<LargePages>

 

Specifies

 

the

 

number

 

of

 

large

 

pages

 

to

 

reserve.

 

For

 

example,

 

if

 

you

 

need

 

to

 

allocate

 

25

 

GB

 

for

 

large

 

page

 

support,

 

run

 

the

 

command

 

as

 

follows:

    

For

 

AIX

 

5.1

 

operating

 

systems:

    

vmtune

 

-g

 

16777216

 

-L

 

1600

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

283

|
|
|
|
|
|



On

 

AIX

 

5.2

 

operating

 

systems:

    

vmo

 

-r

 

-o

 

lgpg_size=16777216

 

lgpg_regions=1600

 

2.

   

Run

 

the

 

bosboot

 

command

 

so

 

that

 

the

 

previously

 

run

 

vmtune

 

command

 

or

 

vmo

 

command

 

will

 

take

 

effect

 

following

 

the

 

next

 

system

 

boot.

 

3.

   

After

 

the

 

server

 

comes

 

up,

 

enable

 

it

 

for

 

pinned

 

memory:

    

For

 

AIX

 

5.1

 

operating

 

systems:

 

Issue

 

the

 

vmtune

 

command

 

with

 

the

 

following

 

flags:

    

vmtune

 

-S

 

1

    

For

 

AIX

 

5.2

 

operating

 

systems:

 

Issue

 

the

 

vmo

 

command

 

with

 

the

 

following

 

flags:

    

vmo

 

-o

 

v_pinshm=1

 

4.

   

Use

 

the

 

db2set

 

command

 

to

 

set

 

the

 

DB2_LGPAGE_BP

 

registry

 

variable

 

to

 

“YES”,

 

then

 

start

 

DB2

 

UDB:

    

db2set

 

DB2_LGPAGE_BP=YES

    

db2start

  

Related

 

concepts:

  

v

   

“Table

 

space

 

design”

 

on

 

page

 

89

 

v

   

“System

 

managed

 

space”

 

on

 

page

 

92

 

v

   

“Database

 

managed

 

space”

 

on

 

page

 

94

  

284

 

Administration

 

Guide:

 

Planning



Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

DB2

 

documentation

 

and

 

help

 

DB2®

 

technical

 

information

 

is

 

available

 

through

 

the

 

following

 

tools

 

and

 

methods:

 

v

   

DB2

 

Information

 

Center

 

–

   

Topics

 

–

   

Help

 

for

 

DB2

 

tools

 

–

   

Sample

 

programs

 

–

   

Tutorials
v

   

Downloadable

 

PDF

 

files,

 

PDF

 

files

 

on

 

CD,

 

and

 

printed

 

books

 

–

   

Guides

 

–

   

Reference

 

manuals
v

   

Command

 

line

 

help

 

–

   

Command

 

help

 

–

   

Message

 

help

 

–

   

SQL

 

state

 

help
v

   

Installed

 

source

 

code

 

–

   

Sample

 

programs

You

 

can

 

access

 

additional

 

DB2

 

Universal

 

Database™

 

technical

 

information

 

such

 

as

 

technotes,

 

white

 

papers,

 

and

 

Redbooks™

 

online

 

at

 

ibm.com®.

 

Access

 

the

 

DB2

 

Information

 

Management

 

software

 

library

 

site

 

at

 

www.ibm.com/software/data/pubs/.

 

DB2

 

documentation

 

updates

 

IBM®

 

may

 

periodically

 

make

 

documentation

 

FixPaks

 

and

 

other

 

documentation

 

updates

 

to

 

the

 

DB2

 

Information

 

Center

 

available.

 

If

 

you

 

access

 

the

 

DB2

 

Information

 

Center

 

at

 

http://publib.boulder.ibm.com/infocenter/db2help/,

 

you

 

will

 

always

 

be

 

viewing

 

the

 

most

 

up-to-date

 

information.

 

If

 

you

 

have

 

installed

 

the

 

DB2

 

Information

 

Center

 

locally,

 

then

 

you

 

need

 

to

 

install

 

any

 

updates

 

manually

 

before

 

you

 

can

 

view

 

them.

 

Documentation

 

updates

 

allow

 

you

 

to

 

update

 

the

 

information

 

that

 

you

 

installed

 

from

 

the

 

DB2

 

Information

 

Center

 

CD

 

when

 

new

 

information

 

becomes

 

available.

 

The

 

Information

 

Center

 

is

 

updated

 

more

 

frequently

 

than

 

either

 

the

 

PDF

 

or

 

the

 

hardcopy

 

books.

 

To

 

get

 

the

 

most

 

current

 

DB2

 

technical

 

information,

 

install

 

the

 

documentation

 

updates

 

as

 

they

 

become

 

available

 

or

 

go

 

to

 

the

 

DB2

 

Information

 

Center

 

at

 

the

 

www.ibm.com

 

site.

  

Related

 

concepts:

  

v

   

“CLI

 

sample

 

programs”

 

in

 

the

 

CLI

 

Guide

 

and

 

Reference,

 

Volume

 

1

 

v

   

“Java

 

sample

 

programs”

 

in

 

the

 

Application

 

Development

 

Guide:

 

Building

 

and

 

Running

 

Applications

 

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

Related

 

tasks:

  

v

   

“Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool”

 

on

 

page

 

303

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

285

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/


v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

305

 

Related

 

reference:

  

v

   

“DB2

 

PDF

 

and

 

printed

 

documentation”

 

on

 

page

 

297

DB2

 

Information

 

Center

  

The

 

DB2®

 

Information

 

Center

 

gives

 

you

 

access

 

to

 

all

 

of

 

the

 

information

 

you

 

need

 

to

 

take

 

full

 

advantage

 

of

 

DB2

 

family

 

products,

 

including

 

DB2

 

Universal

 

Database™,

 

DB2

 

Connect™,

 

DB2

 

Information

 

Integrator

 

and

 

DB2

 

Query

 

Patroller™.

 

The

 

DB2

 

Information

 

Center

 

also

 

contains

 

information

 

for

 

major

 

DB2

 

features

 

and

 

components

 

including

 

replication,

 

data

 

warehousing,

 

and

 

the

 

DB2

 

extenders.

 

The

 

DB2

 

Information

 

Center

 

has

 

the

 

following

 

features

 

if

 

you

 

view

 

it

 

in

 

Mozilla

 

1.0

 

or

 

later

 

or

 

Microsoft®

 

Internet

 

Explorer

 

5.5

 

or

 

later.

 

Some

 

features

 

require

 

you

 

to

 

enable

 

support

 

for

 

JavaScript™:

 

Flexible

 

installation

 

options

 

You

 

can

 

choose

 

to

 

view

 

the

 

DB2

 

documentation

 

using

 

the

 

option

 

that

 

best

 

meets

 

your

 

needs:

 

v

   

To

 

effortlessly

 

ensure

 

that

 

your

 

documentation

 

is

 

always

 

up

 

to

 

date,

 

you

 

can

 

access

 

all

 

of

 

your

 

documentation

 

directly

 

from

 

the

 

DB2

 

Information

 

Center

 

hosted

 

on

 

the

 

IBM®

 

Web

 

site

 

at

 

http://publib.boulder.ibm.com/infocenter/db2help/

 

v

   

To

 

minimize

 

your

 

update

 

efforts

 

and

 

keep

 

your

 

network

 

traffic

 

within

 

your

 

intranet,

 

you

 

can

 

install

 

the

 

DB2

 

documentation

 

on

 

a

 

single

 

server

 

on

 

your

 

intranet

 

v

   

To

 

maximize

 

your

 

flexibility

 

and

 

reduce

 

your

 

dependence

 

on

 

network

 

connections,

 

you

 

can

 

install

 

the

 

DB2

 

documentation

 

on

 

your

 

own

 

computer

Search

 

You

 

can

 

search

 

all

 

of

 

the

 

topics

 

in

 

the

 

DB2

 

Information

 

Center

 

by

 

entering

 

a

 

search

 

term

 

in

 

the

 

Search

 

text

 

field.

 

You

 

can

 

retrieve

 

exact

 

matches

 

by

 

enclosing

 

terms

 

in

 

quotation

 

marks,

 

and

 

you

 

can

 

refine

 

your

 

search

 

with

 

wildcard

 

operators

 

(*,

 

?)

 

and

 

Boolean

 

operators

 

(AND,

 

NOT,

 

OR).

 

Task-oriented

 

table

 

of

 

contents

 

You

 

can

 

locate

 

topics

 

in

 

the

 

DB2

 

documentation

 

from

 

a

 

single

 

table

 

of

 

contents.

 

The

 

table

 

of

 

contents

 

is

 

organized

 

primarily

 

by

 

the

 

kind

 

of

 

tasks

 

you

 

may

 

want

 

to

 

perform,

 

but

 

also

 

includes

 

entries

 

for

 

product

 

overviews,

 

goals,

 

reference

 

information,

 

an

 

index,

 

and

 

a

 

glossary.

 

v

   

Product

 

overviews

 

describe

 

the

 

relationship

 

between

 

the

 

available

 

products

 

in

 

the

 

DB2

 

family,

 

the

 

features

 

offered

 

by

 

each

 

of

 

those

 

products,

 

and

 

up

 

to

 

date

 

release

 

information

 

for

 

each

 

of

 

these

 

products.

 

v

   

Goal

 

categories

 

such

 

as

 

installing,

 

administering,

 

and

 

developing

 

include

 

topics

 

that

 

enable

 

you

 

to

 

quickly

 

complete

 

tasks

 

and

 

develop

 

a

 

deeper

 

understanding

 

of

 

the

 

background

 

information

 

for

 

completing

 

those

 

tasks.

   

286

 

Administration

 

Guide:

 

Planning

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/


v

   

Reference

 

topics

 

provide

 

detailed

 

information

 

about

 

a

 

subject,

 

including

 

statement

 

and

 

command

 

syntax,

 

message

 

help,

 

and

 

configuration

 

parameters.

Show

 

current

 

topic

 

in

 

table

 

of

 

contents

 

You

 

can

 

show

 

where

 

the

 

current

 

topic

 

fits

 

into

 

the

 

table

 

of

 

contents

 

by

 

clicking

 

the

 

Refresh

 

/

 

Show

 

Current

 

Topic

 

button

 

in

 

the

 

table

 

of

 

contents

 

frame

 

or

 

by

 

clicking

 

the

 

Show

 

in

 

Table

 

of

 

Contents

 

button

 

in

 

the

 

content

 

frame.

 

This

 

feature

 

is

 

helpful

 

if

 

you

 

have

 

followed

 

several

 

links

 

to

 

related

 

topics

 

in

 

several

 

files

 

or

 

arrived

 

at

 

a

 

topic

 

from

 

search

 

results.

 

Index

 

You

 

can

 

access

 

all

 

of

 

the

 

documentation

 

from

 

the

 

index.

 

The

 

index

 

is

 

organized

 

in

 

alphabetical

 

order

 

by

 

index

 

term.

 

Glossary

 

You

 

can

 

use

 

the

 

glossary

 

to

 

look

 

up

 

definitions

 

of

 

terms

 

used

 

in

 

the

 

DB2

 

documentation.

 

The

 

glossary

 

is

 

organized

 

in

 

alphabetical

 

order

 

by

 

glossary

 

term.

 

Integrated

 

localized

 

information

 

The

 

DB2

 

Information

 

Center

 

displays

 

information

 

in

 

the

 

preferred

 

language

 

set

 

in

 

your

 

browser

 

preferences.

 

If

 

a

 

topic

 

is

 

not

 

available

 

in

 

your

 

preferred

 

language,

 

the

 

DB2

 

Information

 

Center

 

displays

 

the

 

English

 

version

 

of

 

that

 

topic.

For

 

iSeries™

 

technical

 

information,

 

refer

 

to

 

the

 

IBM

 

eServer™

 

iSeries

 

information

 

center

 

at

 

www.ibm.com/eserver/iseries/infocenter/.

  

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center

 

installation

 

scenarios”

 

on

 

page

 

287

 

Related

 

tasks:

  

v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

296

 

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)”

 

on

 

page

 

290

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)”

 

on

 

page

 

292

DB2

 

Information

 

Center

 

installation

 

scenarios

  

Different

 

working

 

environments

 

can

 

pose

 

different

 

requirements

 

for

 

how

 

to

 

access

 

DB2®

 

information.

 

The

 

DB2

 

Information

 

Center

 

can

 

be

 

accessed

 

on

 

the

 

IBM®

 

Web

 

site,

 

on

 

a

 

server

 

on

 

your

 

organization’s

 

network,

 

or

 

on

 

a

 

version

 

installed

 

on

 

your

 

computer.

 

In

 

all

 

three

 

cases,

 

the

 

documentation

 

is

 

contained

 

in

 

the

 

DB2

 

Information

 

Center,

 

which

 

is

 

an

 

architected

 

web

 

of

 

topic-based

 

information

 

that

 

you

 

view

 

with

 

a

 

browser.

 

By

 

default,

 

DB2

 

products

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site.

 

However,

 

if

 

you

 

want

 

to

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

an

 

intranet

 

server

 

or

 

on

 

your

 

own

 

computer,

 

you

 

must

 

install

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Information

 

Center

 

CD

 

found

 

in

 

your

 

product

 

Media

 

Pack.

 

Refer

 

to

 

the

 

summary

 

of

 

options

 

for

 

accessing

 

DB2

 

documentation

 

which

 

follows,

 

along

 

with

 

the

 

three

 

installation

 

scenarios,

 

to

 

help

 

determine

 

which

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

287

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/eserver/iseries/infocenter/


method

 

of

 

accessing

 

the

 

DB2

 

Information

 

Center

 

works

 

best

 

for

 

you

 

and

 

your

 

work

 

environment,

 

and

 

what

 

installation

 

issues

 

you

 

might

 

need

 

to

 

consider.

  

Summary

 

of

 

options

 

for

 

accessing

 

DB2

 

documentation:

   

The

 

following

 

table

 

provides

 

recommendations

 

on

 

which

 

options

 

are

 

possible

 

in

 

your

 

work

 

environment

 

for

 

accessing

 

the

 

DB2

 

product

 

documentation

 

in

 

the

 

DB2

 

Information

 

Center.

  

Internet

 

access

 

Intranet

 

access

 

Recommendation

 

Yes

 

Yes

 

Access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site,

 

or

 

access

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

an

 

intranet

 

server.

 

Yes

 

No

 

Access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site.

 

No

 

Yes

 

Access

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

an

 

intranet

 

server.

 

No

 

No

 

Access

 

the

 

DB2

 

Information

 

Center

 

on

 

a

 

local

 

computer.

    

Scenario:

 

Accessing

 

the

 

DB2

 

Information

 

Center

 

on

 

your

 

computer:

   

Tsu-Chen

 

owns

 

a

 

factory

 

in

 

a

 

small

 

town

 

that

 

does

 

not

 

have

 

a

 

local

 

ISP

 

to

 

provide

 

him

 

with

 

Internet

 

access.

 

He

 

purchased

 

DB2

 

Universal

 

Database™

 

to

 

manage

 

his

 

inventory,

 

his

 

product

 

orders,

 

his

 

banking

 

account

 

information,

 

and

 

his

 

business

 

expenses.

 

Never

 

having

 

used

 

a

 

DB2

 

product

 

before,

 

Tsu-Chen

 

needs

 

to

 

learn

 

how

 

to

 

do

 

so

 

from

 

the

 

DB2

 

product

 

documentation.

 

After

 

installing

 

DB2

 

Universal

 

Database

 

on

 

his

 

computer

 

using

 

the

 

typical

 

installation

 

option,

 

Tsu-Chen

 

tries

 

to

 

access

 

the

 

DB2

 

documentation.

 

However,

 

his

 

browser

 

gives

 

him

 

an

 

error

 

message

 

that

 

the

 

page

 

he

 

tried

 

to

 

open

 

cannot

 

be

 

found.

 

Tsu-Chen

 

checks

 

the

 

installation

 

manual

 

for

 

his

 

DB2

 

product

 

and

 

discovers

 

that

 

he

 

has

 

to

 

install

 

the

 

DB2

 

Information

 

Center

 

if

 

he

 

wants

 

to

 

access

 

DB2

 

documentation

 

on

 

his

 

computer.

 

He

 

finds

 

the

 

DB2

 

Information

 

Center

 

CD

 

in

 

the

 

media

 

pack

 

and

 

installs

 

it.

 

From

 

the

 

application

 

launcher

 

for

 

his

 

operating

 

system,

 

Tsu-Chen

 

now

 

has

 

access

 

to

 

the

 

DB2

 

Information

 

Center

 

and

 

can

 

learn

 

how

 

to

 

use

 

his

 

DB2

 

product

 

to

 

increase

 

the

 

success

 

of

 

his

 

business.

  

Scenario:

 

Accessing

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site:

   

Colin

 

is

 

an

 

information

 

technology

 

consultant

 

with

 

a

 

training

 

firm.

 

He

 

specializes

 

in

 

database

 

technology

 

and

 

SQL

 

and

 

gives

 

seminars

 

on

 

these

 

subjects

 

to

 

businesses

 

all

 

over

 

North

 

America

 

using

 

DB2

 

Universal

 

Database.

 

Part

 

of

 

Colin’s

 

seminars

 

includes

 

using

 

DB2

 

documentation

 

as

 

a

 

teaching

 

tool.

 

For

 

example,

 

while

 

teaching

 

courses

 

on

 

SQL,

 

Colin

 

uses

 

the

 

DB2

 

documentation

 

on

 

SQL

 

as

 

a

 

way

 

to

 

teach

 

basic

 

and

 

advanced

 

syntax

 

for

 

database

 

queries.

 

Most

 

of

 

the

 

businesses

 

at

 

which

 

Colin

 

teaches

 

have

 

Internet

 

access.

 

This

 

situation

 

influenced

 

Colin’s

 

decision

 

to

 

configure

 

his

 

mobile

 

computer

 

to

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site

 

when

 

he

 

installed

 

the

 

latest

 

version

 

of

 

DB2

 

Universal

 

Database.

 

This

 

configuration

 

allows

 

Colin

 

to

 

have

 

online

 

access

 

to

 

the

 

latest

 

DB2

 

documentation

 

during

 

his

 

seminars.

   

288

 

Administration

 

Guide:

 

Planning

|
|

|

|
|
|

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|



However,

 

sometimes

 

while

 

travelling

 

Colin

 

does

 

not

 

have

 

Internet

 

access.

 

This

 

posed

 

a

 

problem

 

for

 

him,

 

especially

 

when

 

he

 

needed

 

to

 

access

 

to

 

DB2

 

documentation

 

to

 

prepare

 

for

 

seminars.

 

To

 

avoid

 

situations

 

like

 

this,

 

Colin

 

installed

 

a

 

copy

 

of

 

the

 

DB2

 

Information

 

Center

 

on

 

his

 

mobile

 

computer.

 

Colin

 

enjoys

 

the

 

flexibility

 

of

 

always

 

having

 

a

 

copy

 

of

 

DB2

 

documentation

 

at

 

his

 

disposal.

 

Using

 

the

 

db2set

 

command,

 

he

 

can

 

easily

 

configure

 

the

 

registry

 

variables

 

on

 

his

 

mobile

 

computer

 

to

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

either

 

the

 

IBM

 

Web

 

site,

 

or

 

his

 

mobile

 

computer,

 

depending

 

on

 

his

 

situation.

  

Scenario:

 

Accessing

 

the

 

DB2

 

Information

 

Center

 

on

 

an

 

intranet

 

server:

   

Eva

 

works

 

as

 

a

 

senior

 

database

 

administrator

 

for

 

a

 

life

 

insurance

 

company.

 

Her

 

administration

 

responsibilities

 

include

 

installing

 

and

 

configuring

 

the

 

latest

 

version

 

of

 

DB2

 

Universal

 

Database

 

on

 

the

 

company’s

 

UNIX®

 

database

 

servers.

 

Her

 

company

 

recently

 

informed

 

its

 

employees

 

that,

 

for

 

security

 

reasons,

 

it

 

would

 

not

 

provide

 

them

 

with

 

Internet

 

access

 

at

 

work.

 

Because

 

her

 

company

 

has

 

a

 

networked

 

environment,

 

Eva

 

decides

 

to

 

install

 

a

 

copy

 

of

 

the

 

DB2

 

Information

 

Center

 

on

 

an

 

intranet

 

server

 

so

 

that

 

all

 

employees

 

in

 

the

 

company

 

who

 

use

 

the

 

company’s

 

data

 

warehouse

 

on

 

a

 

regular

 

basis

 

(sales

 

representatives,

 

sales

 

managers,

 

and

 

business

 

analysts)

 

have

 

access

 

to

 

DB2

 

documentation.

 

Eva

 

instructs

 

her

 

database

 

team

 

to

 

install

 

the

 

latest

 

version

 

of

 

DB2

 

Universal

 

Database

 

on

 

all

 

of

 

the

 

employee’s

 

computers

 

using

 

a

 

response

 

file,

 

to

 

ensure

 

that

 

each

 

computer

 

is

 

configured

 

to

 

access

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

host

 

name

 

and

 

the

 

port

 

number

 

of

 

the

 

intranet

 

server.

 

However,

 

through

 

a

 

misunderstanding

 

Migual,

 

a

 

junior

 

database

 

administrator

 

on

 

Eva’s

 

team,

 

installs

 

a

 

copy

 

of

 

the

 

DB2

 

Information

 

Center

 

on

 

several

 

of

 

the

 

employee

 

computers,

 

rather

 

than

 

configuring

 

DB2

 

Universal

 

Database

 

to

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

intranet

 

server.

 

To

 

correct

 

this

 

situation

 

Eva

 

tells

 

Migual

 

to

 

use

 

the

 

db2set

 

command

 

to

 

change

 

the

 

DB2

 

Information

 

Center

 

registry

 

variables

 

(DB2_DOCHOST

 

for

 

the

 

host

 

name,

 

and

 

DB2_DOCPORT

 

for

 

the

 

port

 

number)

 

on

 

each

 

of

 

these

 

computers.

 

Now

 

all

 

of

 

the

 

appropriate

 

computers

 

on

 

the

 

network

 

have

 

access

 

to

 

the

 

DB2

 

Information

 

Center,

 

and

 

employees

 

can

 

find

 

answers

 

to

 

their

 

DB2

 

questions

 

in

 

the

 

DB2

 

documentation.

  

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

Related

 

tasks:

  

v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)”

 

on

 

page

 

290

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)”

 

on

 

page

 

292

 

Related

 

reference:

  

v

   

“db2set

 

-

 

DB2

 

Profile

 

Registry

 

Command”

 

in

 

the

 

Command

 

Reference

  

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

289

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|



Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)

  

DB2

 

product

 

documentation

 

can

 

be

 

accessed

 

in

 

three

 

ways:

 

on

 

the

 

IBM

 

Web

 

site,

 

on

 

an

 

intranet

 

server,

 

or

 

on

 

a

 

version

 

installed

 

on

 

your

 

computer.

 

By

 

default,

 

DB2

 

products

 

access

 

DB2

 

documentation

 

on

 

the

 

IBM

 

Web

 

site.

 

If

 

you

 

want

 

to

 

access

 

the

 

DB2

 

documentation

 

on

 

an

 

intranet

 

server

 

or

 

on

 

your

 

own

 

computer,

 

you

 

must

 

install

 

the

 

documentation

 

from

 

the

 

DB2

 

Information

 

Center

 

CD.

 

Using

 

the

 

DB2

 

Setup

 

wizard,

 

you

 

can

 

define

 

your

 

installation

 

preferences

 

and

 

install

 

the

 

DB2

 

Information

 

Center

 

on

 

a

 

computer

 

that

 

uses

 

a

 

UNIX

 

operating

 

system.

  

Prerequisites:

   

This

 

section

 

lists

 

the

 

hardware,

 

operating

 

system,

 

software,

 

and

 

communication

 

requirements

 

for

 

installing

 

the

 

DB2

 

Information

 

Center

 

on

 

UNIX

 

computers.

 

v

   

Hardware

 

requirements

 

You

 

require

 

one

 

of

 

the

 

following

 

processors:

 

–

   

PowerPC

 

(AIX)

 

–

   

HP

 

9000

 

(HP-UX)

 

–

   

Intel

 

32–bit

 

(Linux)

 

–

   

Solaris

 

UltraSPARC

 

computers

 

(Solaris

 

Operating

 

Environment)
v

   

Operating

 

system

 

requirements

 

You

 

require

 

one

 

of

 

the

 

following

 

operating

 

systems:

 

–

   

IBM

 

AIX

 

5.1

 

(on

 

PowerPC)

 

–

   

HP-UX

 

11i

 

(on

 

HP

 

9000)

 

–

   

Red

 

Hat

 

Linux

 

8.0

 

(on

 

Intel

 

32–bit)

 

–

   

SuSE

 

Linux

 

8.1

 

(on

 

Intel

 

32–bit)

 

–

   

Sun

 

Solaris

 

Version

 

8

 

(on

 

Solaris

 

Operating

 

Environment

 

UltraSPARC

 

computers)

Note:

  

The

 

DB2

 

Information

 

Center

 

runs

 

on

 

a

 

subset

 

of

 

the

 

UNIX

 

operating

 

systems

 

on

 

which

 

DB2

 

clients

 

are

 

supported.

 

It

 

is

 

therefore

 

recommended

 

that

 

you

 

either

 

access

 

the

 

DB2

 

Information

 

Center

 

from

 

the

 

IBM

 

Web

 

site,

 

or

 

that

 

you

 

install

 

and

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

an

 

intranet

 

server.

 

v

   

Software

 

requirements

 

–

   

The

 

following

 

browser

 

is

 

supported:

 

-

   

Mozilla

 

Version

 

1.0

 

or

 

greater
v

   

The

 

DB2

 

Setup

 

wizard

 

is

 

a

 

graphical

 

installer.

 

You

 

must

 

have

 

an

 

implementation

 

of

 

the

 

X

 

Window

 

System

 

software

 

capable

 

of

 

rendering

 

a

 

graphical

 

user

 

interface

 

for

 

the

 

DB2

 

Setup

 

wizard

 

to

 

run

 

on

 

your

 

computer.

 

Before

 

you

 

can

 

run

 

the

 

DB2

 

Setup

 

wizard

 

you

 

must

 

ensure

 

that

 

you

 

have

 

properly

 

exported

 

your

 

display.

 

For

 

example,

 

enter

 

the

 

following

 

command

 

at

 

the

 

command

 

prompt:

 

export

 

DISPLAY=9.26.163.144:0.

 

v

   

Communication

 

requirements

 

–

   

TCP/IP

 

Procedure:

   

To

 

install

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard:

   

290

 

Administration

 

Guide:

 

Planning

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|



1.

   

Log

 

on

 

to

 

the

 

system.

  

2.

   

Insert

 

and

 

mount

 

the

 

DB2

 

Information

 

Center

 

product

 

CD

 

on

 

your

 

system.

  

3.

   

Change

 

to

 

the

 

directory

 

where

 

the

 

CD

 

is

 

mounted

 

by

 

entering

 

the

 

following

 

command:

    

cd

 

/cd

 

where

 

/cd

 

represents

 

the

 

mount

 

point

 

of

 

the

 

CD.

  

4.

   

Enter

 

the

 

./db2setup

 

command

 

to

 

start

 

the

 

DB2

 

Setup

 

wizard.

  

5.

   

The

 

IBM

 

DB2

 

Setup

 

Launchpad

 

opens.

 

To

 

proceed

 

directly

 

to

 

the

 

installation

 

of

 

the

 

DB2

 

Information

 

Center,

 

click

 

Install

 

Product.

 

Online

 

help

 

is

 

available

 

to

 

guide

 

you

 

through

 

the

 

remaining

 

steps.

 

To

 

invoke

 

the

 

online

 

help,

 

click

 

Help.

 

You

 

can

 

click

 

Cancel

 

at

 

any

 

time

 

to

 

end

 

the

 

installation.

  

6.

   

On

 

the

 

Select

 

the

 

product

 

you

 

would

 

like

 

to

 

install

 

page,

 

click

 

Next.

  

7.

   

Click

 

Next

 

on

 

the

 

Welcome

 

to

 

the

 

DB2

 

Setup

 

wizard

 

page.

 

The

 

DB2

 

Setup

 

wizard

 

will

 

guide

 

you

 

through

 

the

 

program

 

setup

 

process.

  

8.

   

To

 

proceed

 

with

 

the

 

installation,

 

you

 

must

 

accept

 

the

 

license

 

agreement.

 

On

 

the

 

License

 

Agreement

 

page,

 

select

 

I

 

accept

 

the

 

terms

 

in

 

the

 

license

 

agreement

 

and

 

click

 

Next.

  

9.

   

Select

 

Install

 

DB2

 

Information

 

Center

 

on

 

this

 

computer

 

on

 

the

 

Select

 

the

 

installation

 

action

 

page.

 

If

 

you

 

want

 

to

 

use

 

a

 

response

 

file

 

to

 

install

 

the

 

DB2

 

Information

 

Center

 

on

 

this

 

or

 

other

 

computers

 

at

 

a

 

later

 

time,

 

select

 

Save

 

your

 

settings

 

in

 

a

 

response

 

file.

 

Click

 

Next.

 

10.

   

Select

 

the

 

languages

 

in

 

which

 

the

 

DB2

 

Information

 

Center

 

will

 

be

 

installed

 

on

 

Select

 

the

 

languages

 

to

 

install

 

page.

 

Click

 

Next.

 

11.

   

Configure

 

the

 

DB2

 

Information

 

Center

 

for

 

incoming

 

communication

 

on

 

the

 

Specify

 

the

 

DB2

 

Information

 

Center

 

port

 

page.

 

Click

 

Next

 

to

 

continue

 

the

 

installation.

 

12.

   

Review

 

the

 

installation

 

choices

 

you

 

have

 

made

 

in

 

the

 

Start

 

copying

 

files

 

page.

 

To

 

change

 

any

 

settings,

 

click

 

Back.

 

Click

 

Install

 

to

 

copy

 

the

 

DB2

 

Information

 

Center

 

files

 

onto

 

your

 

computer.

You

 

can

 

also

 

install

 

the

 

DB2

 

Information

 

Center

 

using

 

a

 

response

 

file.

 

The

 

installation

 

logs

 

db2setup.his,

 

db2setup.log,

 

and

 

db2setup.err

 

are

 

located,

 

by

 

default,

 

in

 

the

 

/tmp

 

directory.

 

The

 

db2setup.log

 

file

 

captures

 

all

 

DB2

 

product

 

installation

 

information,

 

including

 

errors.

 

The

 

db2setup.his

 

file

 

records

 

all

 

DB2

 

product

 

installations

 

on

 

your

 

computer.

 

DB2

 

appends

 

the

 

db2setup.log

 

file

 

to

 

the

 

db2setup.his

 

file.

 

The

 

db2setup.err

 

file

 

captures

 

any

 

error

 

output

 

that

 

is

 

returned

 

by

 

Java,

 

for

 

example,

 

exceptions

 

and

 

trap

 

information.

 

When

 

the

 

installation

 

is

 

complete,

 

the

 

DB2

 

Information

 

Center

 

will

 

be

 

installed

 

in

 

one

 

of

 

the

 

following

 

directories,

 

depending

 

upon

 

your

 

UNIX

 

operating

 

system:

 

v

   

AIX:

 

/usr/opt/db2_08_01

 

v

   

HP-UX:

 

/opt/IBM/db2/V8.1

 

v

   

Linux:

 

/opt/IBM/db2/V8.1

 

v

   

Solaris

 

Operating

 

Environment:

 

/opt/IBM/db2/V8.1

 

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

v

   

“DB2

 

Information

 

Center

 

installation

 

scenarios”

 

on

 

page

 

287

  

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

291

|

|

|
|

|

|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|



Related

 

tasks:

  

v

   

“Installing

 

DB2

 

using

 

a

 

response

 

file

 

(UNIX)”

 

in

 

the

 

Installation

 

and

 

Configuration

 

Supplement

 

v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

296

 

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)”

 

on

 

page

 

292

Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)

  

DB2

 

product

 

documentation

 

can

 

be

 

accessed

 

in

 

three

 

ways:

 

on

 

the

 

IBM

 

Web

 

site,

 

on

 

an

 

intranet

 

server,

 

or

 

on

 

a

 

version

 

installed

 

on

 

your

 

computer.

 

By

 

default,

 

DB2

 

products

 

access

 

DB2

 

documentation

 

on

 

the

 

IBM

 

Web

 

site.

 

If

 

you

 

want

 

to

 

access

 

the

 

DB2

 

documentation

 

on

 

an

 

intranet

 

server

 

or

 

on

 

your

 

own

 

computer,

 

you

 

must

 

install

 

the

 

DB2

 

documentation

 

from

 

the

 

DB2

 

Information

 

Center

 

CD.

 

Using

 

the

 

DB2

 

Setup

 

wizard,

 

you

 

can

 

define

 

your

 

installation

 

preferences

 

and

 

install

 

the

 

DB2

 

Information

 

Center

 

on

 

a

 

computer

 

that

 

uses

 

a

 

Windows

 

operating

 

system.

  

Prerequisites:

   

This

 

section

 

lists

 

the

 

hardware,

 

operating

 

system,

 

software,

 

and

 

communication

 

requirements

 

for

 

installing

 

the

 

DB2

 

Information

 

Center

 

on

 

Windows.

 

v

   

Hardware

 

requirements

 

You

 

require

 

one

 

of

 

the

 

following

 

processors:

 

–

   

32-bit

 

computers:

 

a

 

Pentium

 

or

 

Pentium

 

compatible

 

CPU
v

   

Operating

 

system

 

requirements

 

You

 

require

 

one

 

of

 

the

 

following

 

operating

 

systems:

 

–

   

Windows

 

2000

 

–

   

Windows

 

XP

Note:

  

The

 

DB2

 

Information

 

Center

 

runs

 

on

 

a

 

subset

 

of

 

the

 

Windows

 

operating

 

systems

 

on

 

which

 

DB2

 

clients

 

are

 

supported.

 

It

 

is

 

therefore

 

recommended

 

that

 

you

 

either

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site,

 

or

 

that

 

you

 

install

 

and

 

access

 

the

 

DB2

 

Information

 

Center

 

on

 

an

 

intranet

 

server.

 

v

   

Software

 

requirements

 

–

   

The

 

following

 

browsers

 

are

 

supported:

 

-

   

Mozilla

 

1.0

 

or

 

greater

 

-

   

Internet

 

Explorer

 

Version

 

5.5

 

or

 

6.0

 

(Version

 

6.0

 

for

 

Windows

 

XP)
v

   

Communication

 

requirements

 

–

   

TCP/IP

 

Restrictions:

   

v

   

You

 

require

 

an

 

account

 

with

 

administrative

 

privileges

 

to

 

install

 

the

 

DB2

 

Information

 

Center.

  

292

 

Administration

 

Guide:

 

Planning

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|



Procedure:

   

To

 

install

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard:

  

1.

   

Log

 

on

 

to

 

the

 

system

 

with

 

the

 

account

 

that

 

you

 

have

 

defined

 

for

 

the

 

DB2

 

Information

 

Center

 

installation.

  

2.

   

Insert

 

the

 

CD

 

into

 

the

 

drive.

 

If

 

enabled,

 

the

 

auto-run

 

feature

 

starts

 

the

 

IBM

 

DB2

 

Setup

 

Launchpad.

  

3.

   

The

 

DB2

 

Setup

 

wizard

 

determines

 

the

 

system

 

language

 

and

 

launches

 

the

 

setup

 

program

 

for

 

that

 

language.

 

If

 

you

 

want

 

to

 

run

 

the

 

setup

 

program

 

in

 

a

 

language

 

other

 

than

 

English,

 

or

 

the

 

setup

 

program

 

fails

 

to

 

auto-start,

 

you

 

can

 

start

 

the

 

DB2

 

Setup

 

wizard

 

manually.

 

To

 

start

 

the

 

DB2

 

Setup

 

wizard

 

manually:

 

a.

   

Click

 

Start

 

and

 

select

 

Run.

 

b.

   

In

 

the

 

Open

 

field,

 

type

 

the

 

following

 

command:

      

x:\setup.exe

 

/i

 

2-letter

 

language

 

identifier

 

where

 

x:

 

represents

 

your

 

CD

 

drive,

 

and

 

2-letter

 

language

 

identifier

 

represents

 

the

 

language

 

in

 

which

 

the

 

setup

 

program

 

will

 

be

 

run.

 

c.

   

Click

 

OK.

 

4.

   

The

 

IBM

 

DB2

 

Setup

 

Launchpad

 

opens.

 

To

 

proceed

 

directly

 

to

 

the

 

installation

 

of

 

the

 

DB2

 

Information

 

Center,

 

click

 

Install

 

Product.

 

Online

 

help

 

is

 

available

 

to

 

guide

 

you

 

through

 

the

 

remaining

 

steps.

 

To

 

invoke

 

the

 

online

 

help,

 

click

 

Help.

 

You

 

can

 

click

 

Cancel

 

at

 

any

 

time

 

to

 

end

 

the

 

installation.

  

5.

   

On

 

the

 

Select

 

the

 

product

 

you

 

would

 

like

 

to

 

install

 

page,

 

click

 

Next.

  

6.

   

Click

 

Next

 

on

 

the

 

Welcome

 

to

 

the

 

DB2

 

Setup

 

wizard

 

page.

 

The

 

DB2

 

Setup

 

wizard

 

will

 

guide

 

you

 

through

 

the

 

program

 

setup

 

process.

  

7.

   

To

 

proceed

 

with

 

the

 

installation,

 

you

 

must

 

accept

 

the

 

license

 

agreement.

 

On

 

the

 

License

 

Agreement

 

page,

 

select

 

I

 

accept

 

the

 

terms

 

in

 

the

 

license

 

agreement

 

and

 

click

 

Next.

  

8.

   

Select

 

Install

 

DB2

 

Information

 

Center

 

on

 

this

 

computer

 

on

 

the

 

Select

 

the

 

installation

 

action

 

page.

 

If

 

you

 

want

 

to

 

use

 

a

 

response

 

file

 

to

 

install

 

the

 

DB2

 

Information

 

Center

 

on

 

this

 

or

 

other

 

computers

 

at

 

a

 

later

 

time,

 

select

 

Save

 

your

 

settings

 

in

 

a

 

response

 

file.

 

Click

 

Next.

  

9.

   

Select

 

the

 

languages

 

in

 

which

 

the

 

DB2

 

Information

 

Center

 

will

 

be

 

installed

 

on

 

Select

 

the

 

languages

 

to

 

install

 

page.

 

Click

 

Next.

 

10.

   

Configure

 

the

 

DB2

 

Information

 

Center

 

for

 

incoming

 

communication

 

on

 

the

 

Specify

 

the

 

DB2

 

Information

 

Center

 

port

 

page.

 

Click

 

Next

 

to

 

continue

 

the

 

installation.

 

11.

   

Review

 

the

 

installation

 

choices

 

you

 

have

 

made

 

in

 

the

 

Start

 

copying

 

files

 

page.

 

To

 

change

 

any

 

settings,

 

click

 

Back.

 

Click

 

Install

 

to

 

copy

 

the

 

DB2

 

Information

 

Center

 

files

 

onto

 

your

 

computer.

You

 

can

 

install

 

the

 

DB2

 

Information

 

Center

 

using

 

a

 

response

 

file.

 

You

 

can

 

also

 

use

 

the

 

db2rspgn

 

command

 

to

 

generate

 

a

 

response

 

file

 

based

 

on

 

an

 

existing

 

installation.

 

For

 

information

 

on

 

errors

 

encountered

 

during

 

installation,

 

see

 

the

 

db2.log

 

and

 

db2wi.log

 

files

 

located

 

in

 

the

 

’My

 

Documents’\DB2LOG\

 

directory.

 

The

 

location

 

of

 

the

 

’My

 

Documents’

 

directory

 

will

 

depend

 

on

 

the

 

settings

 

on

 

your

 

computer.

 

The

 

db2wi.log

 

file

 

captures

 

the

 

most

 

recent

 

DB2

 

installation

 

information.

 

The

 

db2.log

 

captures

 

the

 

history

 

of

 

DB2

 

product

 

installations.

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

293

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|



Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

v

   

“DB2

 

Information

 

Center

 

installation

 

scenarios”

 

on

 

page

 

287

 

Related

 

tasks:

  

v

   

“Installing

 

a

 

DB2

 

product

 

using

 

a

 

response

 

file

 

(Windows)”

 

in

 

the

 

Installation

 

and

 

Configuration

 

Supplement

 

v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

296

 

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)”

 

on

 

page

 

290

 

Related

 

reference:

  

v

   

“db2rspgn

 

-

 

Response

 

File

 

Generator

 

Command

 

(Windows)”

 

in

 

the

 

Command

 

Reference

Invoking

 

the

 

DB2

 

Information

 

Center

  

The

 

DB2

 

Information

 

Center

 

gives

 

you

 

access

 

to

 

all

 

of

 

the

 

information

 

that

 

you

 

need

 

to

 

use

 

DB2

 

products

 

for

 

Linux,

 

UNIX,

 

and

 

Windows

 

operating

 

systems

 

such

 

as

 

DB2

 

Universal

 

Database,

 

DB2

 

Connect,

 

DB2

 

Information

 

Integrator,

 

and

 

DB2

 

Query

 

Patroller.

 

You

 

can

 

invoke

 

the

 

DB2

 

Information

 

Center

 

from

 

one

 

of

 

the

 

following

 

places:

 

v

   

Computers

 

on

 

which

 

a

 

DB2

 

UDB

 

client

 

or

 

server

 

is

 

installed

 

v

   

An

 

intranet

 

server

 

or

 

local

 

computer

 

on

 

which

 

the

 

DB2

 

Information

 

Center

 

installed

 

v

   

The

 

IBM

 

Web

 

site

 

Prerequisites:

   

Before

 

you

 

invoke

 

the

 

DB2

 

Information

 

Center:

 

v

   

Optional:

 

Configure

 

your

 

browser

 

to

 

display

 

topics

 

in

 

your

 

preferred

 

language

 

v

   

Optional:

 

Configure

 

your

 

DB2

 

client

 

to

 

use

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server

 

Procedure:

   

To

 

invoke

 

the

 

DB2

 

Information

 

Center

 

on

 

a

 

computer

 

on

 

which

 

a

 

DB2

 

UDB

 

client

 

or

 

server

 

is

 

installed:

 

v

   

From

 

the

 

Start

 

Menu

 

(Windows

 

operating

 

system):

 

Click

 

Start

 

—�

 

Programs

 

—�

 

IBM

 

DB2

 

—�

 

Information

 

—�

 

Information

 

Center.

 

v

   

From

 

the

 

command

 

line

 

prompt:

 

–

   

For

 

Linux

 

and

 

UNIX

 

operating

 

systems,

 

issue

 

the

 

db2icdocs

 

command.

 

–

   

For

 

the

 

Windows

 

operating

 

system,

 

issue

 

the

 

db2icdocs.exe

 

command.

To

 

open

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

an

 

intranet

 

server

 

or

 

local

 

computer

 

in

 

a

 

Web

 

browser:

   

294

 

Administration

 

Guide:

 

Planning

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|

|

|
|



v

   

Open

 

the

 

Web

 

page

 

at

 

http://<host-name>:<port-number>/,

 

where

 

<host-name>

 

represents

 

the

 

host

 

name

 

and

 

<port-number>

 

represents

 

the

 

port

 

number

 

on

 

which

 

the

 

DB2

 

Information

 

Center

 

is

 

available.

To

 

open

 

the

 

DB2

 

Information

 

Center

 

on

 

the

 

IBM

 

Web

 

site

 

in

 

a

 

Web

 

browser:

 

v

   

Open

 

the

 

Web

 

page

 

at

 

publib.boulder.ibm.com/infocenter/db2help/.

 

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

Related

 

tasks:

  

v

   

“Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

296

 

v

   

“Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool”

 

on

 

page

 

303

 

v

   

“Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server”

 

on

 

page

 

295

 

v

   

“Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

305

Updating

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server

  

The

 

DB2

 

Information

 

Center

 

available

 

from

 

http://publib.boulder.ibm.com/infocenter/db2help/

 

will

 

be

 

periodically

 

updated

 

with

 

new

 

or

 

changed

 

documentation.

 

IBM

 

may

 

also

 

make

 

DB2

 

Information

 

Center

 

updates

 

available

 

to

 

download

 

and

 

install

 

on

 

your

 

computer

 

or

 

intranet

 

server.

 

Updating

 

the

 

DB2

 

Information

 

Center

 

does

 

not

 

update

 

DB2

 

client

 

or

 

server

 

products.

  

Prerequisites:

   

You

 

must

 

have

 

access

 

to

 

a

 

computer

 

that

 

is

 

connected

 

to

 

the

 

Internet.

  

Procedure:

   

To

 

update

 

the

 

DB2

 

Information

 

Center

 

installed

 

on

 

your

 

computer

 

or

 

intranet

 

server:

 

1.

   

Open

 

the

 

DB2

 

Information

 

Center

 

hosted

 

on

 

the

 

IBM

 

Web

 

site

 

at:

 

http://publib.boulder.ibm.com/infocenter/db2help/

 

2.

   

In

 

the

 

Downloads

 

section

 

of

 

the

 

welcome

 

page

 

under

 

the

 

Service

 

and

 

Support

 

heading,

 

click

 

the

 

DB2

 

Universal

 

Database

 

documentation

 

link.

 

3.

   

Determine

 

if

 

the

 

version

 

of

 

your

 

DB2

 

Information

 

Center

 

is

 

out

 

of

 

date

 

by

 

comparing

 

the

 

latest

 

refreshed

 

documentation

 

image

 

level

 

to

 

the

 

documentation

 

level

 

you

 

have

 

installed.

 

The

 

documentation

 

level

 

you

 

have

 

installed

 

is

 

listed

 

on

 

the

 

DB2

 

Information

 

Center

 

welcome

 

page.

 

4.

   

If

 

a

 

more

 

recent

 

version

 

of

 

the

 

DB2

 

Information

 

Center

 

is

 

available,

 

download

 

the

 

latest

 

refreshed

 

DB2

 

Information

 

Center

 

image

 

applicable

 

to

 

your

 

operating

 

system.

 

5.

   

To

 

install

 

the

 

refreshed

 

DB2

 

Information

 

Center

 

image,

 

follow

 

the

 

instructions

 

provided

 

on

 

the

 

Web

 

page.

  

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

295

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/


Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center

 

installation

 

scenarios”

 

on

 

page

 

287

 

Related

 

tasks:

  

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(UNIX)”

 

on

 

page

 

290

 

v

   

“Installing

 

the

 

DB2

 

Information

 

Center

 

using

 

the

 

DB2

 

Setup

 

wizard

 

(Windows)”

 

on

 

page

 

292

Displaying

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

DB2

 

Information

 

Center

  

The

 

DB2

 

Information

 

Center

 

attempts

 

to

 

display

 

topics

 

in

 

the

 

language

 

specified

 

in

 

your

 

browser

 

preferences.

 

If

 

a

 

topic

 

has

 

not

 

been

 

translated

 

into

 

your

 

preferred

 

language,

 

the

 

DB2

 

Information

 

Center

 

displays

 

the

 

topic

 

in

 

English.

  

Procedure:

   

To

 

display

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

Internet

 

Explorer

 

browser:

 

1.

   

In

 

Internet

 

Explorer,

 

click

 

the

 

Tools

 

—>

 

Internet

 

Options

 

—>

 

Languages...

 

button.

 

The

 

Language

 

Preferences

 

window

 

opens.

 

2.

   

Ensure

 

your

 

preferred

 

language

 

is

 

specified

 

as

 

the

 

first

 

entry

 

in

 

the

 

list

 

of

 

languages.

 

v

   

To

 

add

 

a

 

new

 

language

 

to

 

the

 

list,

 

click

 

the

 

Add...

 

button.

 

Note:

  

Adding

 

a

 

language

 

does

 

not

 

guarantee

 

that

 

the

 

computer

 

has

 

the

 

fonts

 

required

 

to

 

display

 

the

 

topics

 

in

 

the

 

preferred

 

language.

 

v

   

To

 

move

 

a

 

language

 

to

 

the

 

top

 

of

 

the

 

list,

 

select

 

the

 

language

 

and

 

click

 

the

 

Move

 

Up

 

button

 

until

 

the

 

language

 

is

 

first

 

in

 

the

 

list

 

of

 

languages.
3.

   

Refresh

 

the

 

page

 

to

 

display

 

the

 

DB2

 

Information

 

Center

 

in

 

your

 

preferred

 

language.

To

 

display

 

topics

 

in

 

your

 

preferred

 

language

 

in

 

the

 

Mozilla

 

browser:

 

1.

   

In

 

Mozilla,

 

select

 

the

 

Edit

 

—>

 

Preferences

 

—>

 

Languages

 

button.

 

The

 

Languages

 

panel

 

is

 

displayed

 

in

 

the

 

Preferences

 

window.

 

2.

   

Ensure

 

your

 

preferred

 

language

 

is

 

specified

 

as

 

the

 

first

 

entry

 

in

 

the

 

list

 

of

 

languages.

 

v

   

To

 

add

 

a

 

new

 

language

 

to

 

the

 

list,

 

click

 

the

 

Add...

 

button

 

to

 

select

 

a

 

language

 

from

 

the

 

Add

 

Languages

 

window.

 

v

   

To

 

move

 

a

 

language

 

to

 

the

 

top

 

of

 

the

 

list,

 

select

 

the

 

language

 

and

 

click

 

the

 

Move

 

Up

 

button

 

until

 

the

 

language

 

is

 

first

 

in

 

the

 

list

 

of

 

languages.
3.

   

Refresh

 

the

 

page

 

to

 

display

 

the

 

DB2

 

Information

 

Center

 

in

 

your

 

preferred

 

language.

 

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

  

296

 

Administration

 

Guide:

 

Planning

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|



DB2

 

PDF

 

and

 

printed

 

documentation

 

The

 

following

 

tables

 

provide

 

official

 

book

 

names,

 

form

 

numbers,

 

and

 

PDF

 

file

 

names.

 

To

 

order

 

hardcopy

 

books,

 

you

 

must

 

know

 

the

 

official

 

book

 

name.

 

To

 

print

 

a

 

PDF

 

file,

 

you

 

must

 

know

 

the

 

PDF

 

file

 

name.

 

The

 

DB2

 

documentation

 

is

 

categorized

 

by

 

the

 

following

 

headings:

 

v

   

Core

 

DB2

 

information

 

v

   

Administration

 

information

 

v

   

Application

 

development

 

information

 

v

   

Business

 

intelligence

 

information

 

v

   

DB2

 

Connect

 

information

 

v

   

Getting

 

started

 

information

 

v

   

Tutorial

 

information

 

v

   

Optional

 

component

 

information

 

v

   

Release

 

notes

The

 

following

 

tables

 

describe,

 

for

 

each

 

book

 

in

 

the

 

DB2

 

library,

 

the

 

information

 

needed

 

to

 

order

 

the

 

hard

 

copy,

 

or

 

to

 

print

 

or

 

view

 

the

 

PDF

 

for

 

that

 

book.

 

A

 

full

 

description

 

of

 

each

 

of

 

the

 

books

 

in

 

the

 

DB2

 

library

 

is

 

available

 

from

 

the

 

IBM

 

Publications

 

Center

 

at

 

www.ibm.com/shop/publications/order

 

Core

 

DB2

 

information

 

The

 

information

 

in

 

these

 

books

 

is

 

fundamental

 

to

 

all

 

DB2

 

users;

 

you

 

will

 

find

 

this

 

information

 

useful

 

whether

 

you

 

are

 

a

 

programmer,

 

a

 

database

 

administrator,

 

or

 

someone

 

who

 

works

 

with

 

DB2

 

Connect,

 

DB2

 

Warehouse

 

Manager,

 

or

 

other

 

DB2

 

products.

  

Table

 

99.

 

Core

 

DB2

 

information

 

Name

 

Form

 

Number

 

PDF

 

File

 

Name

 

IBM

 

DB2

 

Universal

 

Database

 

Command

 

Reference

 

SC09-4828

 

db2n0x81

 

IBM

 

DB2

 

Universal

 

Database

 

Glossary

 

No

 

form

 

number

 

db2t0x81

 

IBM

 

DB2

 

Universal

 

Database

 

Message

 

Reference,

 

Volume

 

1

 

GC09-4840,

 

not

 

available

 

in

 

hardcopy

 

db2m1x81

 

IBM

 

DB2

 

Universal

 

Database

 

Message

 

Reference,

 

Volume

 

2

 

GC09-4841,

 

not

 

available

 

in

 

hardcopy

 

db2m2x81

 

IBM

 

DB2

 

Universal

 

Database

 

What’s

 

New

 

SC09-4848

 

db2q0x81

   

Administration

 

information

 

The

 

information

 

in

 

these

 

books

 

covers

 

those

 

topics

 

required

 

to

 

effectively

 

design,

 

implement,

 

and

 

maintain

 

DB2

 

databases,

 

data

 

warehouses,

 

and

 

federated

 

systems.

  

Table

 

100.

 

Administration

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Administration

 

Guide:

 

Planning

 

SC09-4822

 

db2d1x81

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

297

|

|
|
|
|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

http://www.ibm.com/shop/publications/order


Table

 

100.

 

Administration

 

information

 

(continued)

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Administration

 

Guide:

 

Implementation

 

SC09-4820

 

db2d2x81

 

IBM

 

DB2

 

Universal

 

Database

 

Administration

 

Guide:

 

Performance

 

SC09-4821

 

db2d3x81

 

IBM

 

DB2

 

Universal

 

Database

 

Administrative

 

API

 

Reference

 

SC09-4824

 

db2b0x81

 

IBM

 

DB2

 

Universal

 

Database

 

Data

 

Movement

 

Utilities

 

Guide

 

and

 

Reference

 

SC09-4830

 

db2dmx81

 

IBM

 

DB2

 

Universal

 

Database

 

Data

 

Recovery

 

and

 

High

 

Availability

 

Guide

 

and

 

Reference

 

SC09-4831

 

db2hax81

 

IBM

 

DB2

 

Universal

 

Database

 

Data

 

Warehouse

 

Center

 

Administration

 

Guide

 

SC27-1123

 

db2ddx81

 

IBM

 

DB2

 

Universal

 

Database

 

SQL

 

Reference,

 

Volume

 

1

 

SC09-4844

 

db2s1x81

 

IBM

 

DB2

 

Universal

 

Database

 

SQL

 

Reference,

 

Volume

 

2

 

SC09-4845

 

db2s2x81

 

IBM

 

DB2

 

Universal

 

Database

 

System

 

Monitor

 

Guide

 

and

 

Reference

 

SC09-4847

 

db2f0x81

   

Application

 

development

 

information

 

The

 

information

 

in

 

these

 

books

 

is

 

of

 

special

 

interest

 

to

 

application

 

developers

 

or

 

programmers

 

working

 

with

 

DB2

 

Universal

 

Database

 

(DB2

 

UDB).

 

You

 

will

 

find

 

information

 

about

 

supported

 

languages

 

and

 

compilers,

 

as

 

well

 

as

 

the

 

documentation

 

required

 

to

 

access

 

DB2

 

UDB

 

using

 

the

 

various

 

supported

 

programming

 

interfaces,

 

such

 

as

 

embedded

 

SQL,

 

ODBC,

 

JDBC,

 

SQLJ,

 

and

 

CLI.

 

If

 

you

 

are

 

using

 

the

 

DB2

 

Information

 

Center,

 

you

 

can

 

also

 

access

 

HTML

 

versions

 

of

 

the

 

source

 

code

 

for

 

the

 

sample

 

programs.

  

Table

 

101.

 

Application

 

development

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Application

 

Development

 

Guide:

 

Building

 

and

 

Running

 

Applications

 

SC09-4825

 

db2axx81

 

IBM

 

DB2

 

Universal

 

Database

 

Application

 

Development

 

Guide:

 

Programming

 

Client

 

Applications

 

SC09-4826

 

db2a1x81

 

IBM

 

DB2

 

Universal

 

Database

 

Application

 

Development

 

Guide:

 

Programming

 

Server

 

Applications

 

SC09-4827

 

db2a2x81

 

IBM

 

DB2

 

Universal

 

Database

 

Call

 

Level

 

Interface

 

Guide

 

and

 

Reference,

 

Volume

 

1

 

SC09-4849

 

db2l1x81

   

298

 

Administration

 

Guide:

 

Planning



Table

 

101.

 

Application

 

development

 

information

 

(continued)

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Call

 

Level

 

Interface

 

Guide

 

and

 

Reference,

 

Volume

 

2

 

SC09-4850

 

db2l2x81

 

IBM

 

DB2

 

Universal

 

Database

 

Data

 

Warehouse

 

Center

 

Application

 

Integration

 

Guide

 

SC27-1124

 

db2adx81

 

IBM

 

DB2

 

XML

 

Extender

 

Administration

 

and

 

Programming

 

SC27-1234

 

db2sxx81

   

Business

 

intelligence

 

information

 

The

 

information

 

in

 

these

 

books

 

describes

 

how

 

to

 

use

 

components

 

that

 

enhance

 

the

 

data

 

warehousing

 

and

 

analytical

 

capabilities

 

of

 

DB2

 

Universal

 

Database.

  

Table

 

102.

 

Business

 

intelligence

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Warehouse

 

Manager

 

Standard

 

Edition

 

Information

 

Catalog

 

Center

 

Administration

 

Guide

 

SC27-1125

 

db2dix81

 

IBM

 

DB2

 

Warehouse

 

Manager

 

Standard

 

Edition

 

Installation

 

Guide

 

GC27-1122

 

db2idx81

 

IBM

 

DB2

 

Warehouse

 

Manager

 

Standard

 

Edition

 

Managing

 

ETI

 

Solution

 

Conversion

 

Programs

 

with

 

DB2

 

Warehouse

 

Manager

 

SC18-7727

 

iwhe1mstx80

   

DB2

 

Connect

 

information

 

The

 

information

 

in

 

this

 

category

 

describes

 

how

 

to

 

access

 

data

 

on

 

mainframe

 

and

 

midrange

 

servers

 

using

 

DB2

 

Connect

 

Enterprise

 

Edition

 

or

 

DB2

 

Connect

 

Personal

 

Edition.

  

Table

 

103.

 

DB2

 

Connect

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

Connectivity

 

Supplement

 

No

 

form

 

number

 

db2h1x81

 

IBM

 

DB2

 

Connect

 

Quick

 

Beginnings

 

for

 

DB2

 

Connect

 

Enterprise

 

Edition

 

GC09-4833

 

db2c6x81

 

IBM

 

DB2

 

Connect

 

Quick

 

Beginnings

 

for

 

DB2

 

Connect

 

Personal

 

Edition

 

GC09-4834

 

db2c1x81

 

IBM

 

DB2

 

Connect

 

User’s

 

Guide

 

SC09-4835

 

db2c0x81

   

Getting

 

started

 

information

 

The

 

information

 

in

 

this

 

category

 

is

 

useful

 

when

 

you

 

are

 

installing

 

and

 

configuring

 

servers,

 

clients,

 

and

 

other

 

DB2

 

products.

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

299



Table

 

104.

 

Getting

 

started

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Quick

 

Beginnings

 

for

 

DB2

 

Clients

 

GC09-4832,

 

not

 

available

 

in

 

hardcopy

 

db2itx81

 

IBM

 

DB2

 

Universal

 

Database

 

Quick

 

Beginnings

 

for

 

DB2

 

Servers

 

GC09-4836

 

db2isx81

 

IBM

 

DB2

 

Universal

 

Database

 

Quick

 

Beginnings

 

for

 

DB2

 

Personal

 

Edition

 

GC09-4838

 

db2i1x81

 

IBM

 

DB2

 

Universal

 

Database

 

Installation

 

and

 

Configuration

 

Supplement

 

GC09-4837,

 

not

 

available

 

in

 

hardcopy

 

db2iyx81

 

IBM

 

DB2

 

Universal

 

Database

 

Quick

 

Beginnings

 

for

 

DB2

 

Data

 

Links

 

Manager

 

GC09-4829

 

db2z6x81

   

Tutorial

 

information

 

Tutorial

 

information

 

introduces

 

DB2

 

features

 

and

 

teaches

 

how

 

to

 

perform

 

various

 

tasks.

  

Table

 

105.

 

Tutorial

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

Business

 

Intelligence

 

Tutorial:

 

Introduction

 

to

 

the

 

Data

 

Warehouse

 

No

 

form

 

number

 

db2tux81

 

Business

 

Intelligence

 

Tutorial:

 

Extended

 

Lessons

 

in

 

Data

 

Warehousing

 

No

 

form

 

number

 

db2tax81

 

Information

 

Catalog

 

Center

 

Tutorial

 

No

 

form

 

number

 

db2aix81

 

Video

 

Central

 

for

 

e-business

 

Tutorial

 

No

 

form

 

number

 

db2twx81

 

Visual

 

Explain

 

Tutorial

 

No

 

form

 

number

 

db2tvx81

   

Optional

 

component

 

information

 

The

 

information

 

in

 

this

 

category

 

describes

 

how

 

to

 

work

 

with

 

optional

 

DB2

 

components.

  

Table

 

106.

 

Optional

 

component

 

information

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Cube

 

Views

 

Guide

 

and

 

Reference

 

SC18–7298

 

db2aax81

 

IBM

 

DB2

 

Query

 

Patroller

 

Guide:

 

Installation,

 

Administration

 

and

 

Usage

 

Guide

 

GC09–7658

 

db2dwx81

 

IBM

 

DB2

 

Spatial

 

Extender

 

and

 

Geodetic

 

Extender

 

User’s

 

Guide

 

and

 

Reference

 

SC27-1226

 

db2sbx81

   

300

 

Administration

 

Guide:

 

Planning



Table

 

106.

 

Optional

 

component

 

information

 

(continued)

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

IBM

 

DB2

 

Universal

 

Database

 

Data

 

Links

 

Manager

 

Administration

 

Guide

 

and

 

Reference

 

SC27-1221

 

db2z0x82

 

DB2

 

Net

 

Search

 

Extender

 

Administration

 

and

 

User’s

 

Guide

 

Note:

 

HTML

 

for

 

this

 

document

 

is

 

not

 

installed

 

from

 

the

 

HTML

 

documentation

 

CD.

 

SH12-6740

 

N/A

   

Release

 

notes

 

The

 

release

 

notes

 

provide

 

additional

 

information

 

specific

 

to

 

your

 

product’s

 

release

 

and

 

FixPak

 

level.

 

The

 

release

 

notes

 

also

 

provide

 

summaries

 

of

 

the

 

documentation

 

updates

 

incorporated

 

in

 

each

 

release,

 

update,

 

and

 

FixPak.

  

Table

 

107.

 

Release

 

notes

 

Name

 

Form

 

number

 

PDF

 

file

 

name

 

DB2

 

Release

 

Notes

 

See

 

note.

 

See

 

note.

 

DB2

 

Installation

 

Notes

 

Available

 

on

 

product

 

CD-ROM

 

only.

 

Not

 

available.

   

Note:

  

The

 

Release

 

Notes

 

are

 

available

 

in:

 

v

   

XHTML

 

and

 

Text

 

format,

 

on

 

the

 

product

 

CDs

 

v

   

PDF

 

format,

 

on

 

the

 

PDF

 

Documentation

 

CD

In

 

addition

 

the

 

portions

 

of

 

the

 

Release

 

Notes

 

that

 

discuss

 

Known

 

Problems

 

and

 

Workarounds

 

and

 

Incompatibilities

 

Between

 

Releases

 

also

 

appear

 

in

 

the

 

DB2

 

Information

 

Center.

 

To

 

view

 

the

 

Release

 

Notes

 

in

 

text

 

format

 

on

 

UNIX-based

 

platforms,

 

see

 

the

 

Release.Notes

 

file.

 

This

 

file

 

is

 

located

 

in

 

the

 

DB2DIR/Readme/%L

 

directory,

 

where

 

%L

 

represents

 

the

 

locale

 

name

 

and

 

DB2DIR

 

represents:

 

v

   

For

 

AIX

 

operating

 

systems:

 

/usr/opt/db2_08_01

 

v

   

For

 

all

 

other

 

UNIX-based

 

operating

 

systems:

 

/opt/IBM/db2/V8.1

 

Related

 

concepts:

  

v

   

“DB2

 

documentation

 

and

 

help”

 

on

 

page

 

285

 

Related

 

tasks:

  

v

   

“Printing

 

DB2

 

books

 

from

 

PDF

 

files”

 

on

 

page

 

302

 

v

   

“Ordering

 

printed

 

DB2

 

books”

 

on

 

page

 

302

 

v

   

“Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool”

 

on

 

page

 

303

  

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

301



Printing

 

DB2

 

books

 

from

 

PDF

 

files

  

You

 

can

 

print

 

DB2

 

books

 

from

 

the

 

PDF

 

files

 

on

 

the

 

DB2

 

PDF

 

Documentation

 

CD.

 

Using

 

Adobe

 

Acrobat

 

Reader,

 

you

 

can

 

print

 

either

 

the

 

entire

 

book

 

or

 

a

 

specific

 

range

 

of

 

pages.

  

Prerequisites:

   

Ensure

 

that

 

you

 

have

 

Adobe

 

Acrobat

 

Reader

 

installed.

 

If

 

you

 

need

 

to

 

install

 

Adobe

 

Acrobat

 

Reader,

 

it

 

is

 

available

 

from

 

the

 

Adobe

 

Web

 

site

 

at

 

www.adobe.com

  

Procedure:

   

To

 

print

 

a

 

DB2

 

book

 

from

 

a

 

PDF

 

file:

 

1.

   

Insert

 

the

 

DB2

 

PDF

 

Documentation

 

CD.

 

On

 

UNIX

 

operating

 

systems,

 

mount

 

the

 

DB2

 

PDF

 

Documentation

 

CD.

 

Refer

 

to

 

your

 

Quick

 

Beginnings

 

book

 

for

 

details

 

on

 

how

 

to

 

mount

 

a

 

CD

 

on

 

UNIX

 

operating

 

systems.

 

2.

   

Open

 

index.htm.

 

The

 

file

 

opens

 

in

 

a

 

browser

 

window.

 

3.

   

Click

 

on

 

the

 

title

 

of

 

the

 

PDF

 

you

 

want

 

to

 

see.

 

The

 

PDF

 

will

 

open

 

in

 

Acrobat

 

Reader.

 

4.

   

Select

 

File

 

→

 

Print

 

to

 

print

 

any

 

portions

 

of

 

the

 

book

 

that

 

you

 

want.

 

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

Related

 

tasks:

  

v

   

“Mounting

 

the

 

CD-ROM

 

(AIX)”

 

in

 

the

 

Quick

 

Beginnings

 

for

 

DB2

 

Servers

 

v

   

“Mounting

 

the

 

CD-ROM

 

(HP-UX)”

 

in

 

the

 

Quick

 

Beginnings

 

for

 

DB2

 

Servers

 

v

   

“Mounting

 

the

 

CD-ROM

 

(Linux)”

 

in

 

the

 

Quick

 

Beginnings

 

for

 

DB2

 

Servers

 

v

   

“Ordering

 

printed

 

DB2

 

books”

 

on

 

page

 

302

 

v

   

“Mounting

 

the

 

CD-ROM

 

(Solaris

 

Operating

 

Environment)”

 

in

 

the

 

Quick

 

Beginnings

 

for

 

DB2

 

Servers

 

Related

 

reference:

  

v

   

“DB2

 

PDF

 

and

 

printed

 

documentation”

 

on

 

page

 

297

Ordering

 

printed

 

DB2

 

books

  

If

 

you

 

prefer

 

to

 

use

 

hardcopy

 

books,

 

you

 

can

 

order

 

them

 

in

 

one

 

of

 

three

 

ways.

  

Procedure:

   

Printed

 

books

 

can

 

be

 

ordered

 

in

 

some

 

countries

 

or

 

regions.

 

Check

 

the

 

IBM

 

Publications

 

website

 

for

 

your

 

country

 

or

 

region

 

to

 

see

 

if

 

this

 

service

 

is

 

available

 

in

 

your

 

country

 

or

 

region.

 

When

 

the

 

publications

 

are

 

available

 

for

 

ordering,

 

you

 

can:

 

v

   

Contact

 

your

 

IBM

 

authorized

 

dealer

 

or

 

marketing

 

representative.

 

To

 

find

 

a

 

local

 

IBM

 

representative,

 

check

 

the

 

IBM

 

Worldwide

 

Directory

 

of

 

Contacts

 

at

 

www.ibm.com/planetwide

 

v

   

Phone

 

1-800-879-2755

 

in

 

the

 

United

 

States

 

or

 

1-800-IBM-4YOU

 

in

 

Canada.

   

302

 

Administration

 

Guide:

 

Planning

|
|
|

|
|
|

|

http://www.adobe.com/
http://www.ibm.com/planetwide


v

   

Visit

 

the

 

IBM

 

Publications

 

Center

 

at

 

http://www.ibm.com/shop/publications/order.

 

The

 

ability

 

to

 

order

 

books

 

from

 

the

 

IBM

 

Publications

 

Center

 

may

 

not

 

be

 

available

 

in

 

all

 

countries.

At

 

the

 

time

 

the

 

DB2

 

product

 

becomes

 

available,

 

the

 

printed

 

books

 

are

 

the

 

same

 

as

 

those

 

that

 

are

 

available

 

in

 

PDF

 

format

 

on

 

the

 

DB2

 

PDF

 

Documentation

 

CD.

 

Content

 

in

 

the

 

printed

 

books

 

that

 

appears

 

in

 

the

 

DB2

 

Information

 

Center

 

CD

 

is

 

also

 

the

 

same.

 

However,

 

there

 

is

 

some

 

additional

 

content

 

available

 

in

 

DB2

 

Information

 

Center

 

CD

 

that

 

does

 

not

 

appear

 

anywhere

 

in

 

the

 

PDF

 

books

 

(for

 

example,

 

SQL

 

Administration

 

routines

 

and

 

HTML

 

samples).

 

Not

 

all

 

books

 

available

 

on

 

the

 

DB2

 

PDF

 

Documentation

 

CD

 

are

 

available

 

for

 

ordering

 

in

 

hardcopy.

 

Note:

  

The

 

DB2

 

Information

 

Center

 

is

 

updated

 

more

 

frequently

 

than

 

either

 

the

 

PDF

 

or

 

the

 

hardcopy

 

books;

 

install

 

documentation

 

updates

 

as

 

they

 

become

 

available

 

or

 

refer

 

to

 

the

 

DB2

 

Information

 

Center

 

at

 

http://publib.boulder.ibm.com/infocenter/db2help/

 

to

 

get

 

the

 

most

 

current

 

information.

  

Related

 

tasks:

  

v

   

“Printing

 

DB2

 

books

 

from

 

PDF

 

files”

 

on

 

page

 

302

 

Related

 

reference:

  

v

   

“DB2

 

PDF

 

and

 

printed

 

documentation”

 

on

 

page

 

297

Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool

  

Contextual

 

help

 

provides

 

information

 

about

 

the

 

tasks

 

or

 

controls

 

that

 

are

 

associated

 

with

 

a

 

particular

 

window,

 

notebook,

 

wizard,

 

or

 

advisor.

 

Contextual

 

help

 

is

 

available

 

from

 

DB2

 

administration

 

and

 

development

 

tools

 

that

 

have

 

graphical

 

user

 

interfaces.

 

There

 

are

 

two

 

types

 

of

 

contextual

 

help:

 

v

   

Help

 

accessed

 

through

 

the

 

Help

 

button

 

that

 

is

 

located

 

on

 

each

 

window

 

or

 

notebook

 

v

   

Infopops,

 

which

 

are

 

pop-up

 

information

 

windows

 

displayed

 

when

 

the

 

mouse

 

cursor

 

is

 

placed

 

over

 

a

 

field

 

or

 

control,

 

or

 

when

 

a

 

field

 

or

 

control

 

is

 

selected

 

in

 

a

 

window,

 

notebook,

 

wizard,

 

or

 

advisor

 

and

 

F1

 

is

 

pressed.

The

 

Help

 

button

 

gives

 

you

 

access

 

to

 

overview,

 

prerequisite,

 

and

 

task

 

information.

 

The

 

infopops

 

describe

 

the

 

individual

 

fields

 

and

 

controls.

  

Procedure:

   

To

 

invoke

 

contextual

 

help:

 

v

   

For

 

window

 

and

 

notebook

 

help,

 

start

 

one

 

of

 

the

 

DB2

 

tools,

 

then

 

open

 

any

 

window

 

or

 

notebook.

 

Click

 

the

 

Help

 

button

 

at

 

the

 

bottom

 

right

 

corner

 

of

 

the

 

window

 

or

 

notebook

 

to

 

invoke

 

the

 

contextual

 

help.

 

You

 

can

 

also

 

access

 

the

 

contextual

 

help

 

from

 

the

 

Help

 

menu

 

item

 

at

 

the

 

top

 

of

 

each

 

of

 

the

 

DB2

 

tools

 

centers.

 

Within

 

wizards

 

and

 

advisors,

 

click

 

on

 

the

 

Task

 

Overview

 

link

 

on

 

the

 

first

 

page

 

to

 

view

 

contextual

 

help.

 

v

   

For

 

infopop

 

help

 

about

 

individual

 

controls

 

on

 

a

 

window

 

or

 

notebook,

 

click

 

the

 

control,

 

then

 

click

 

F1.

 

Pop-up

 

information

 

containing

 

details

 

about

 

the

 

control

 

is

 

displayed

 

in

 

a

 

yellow

 

window.

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

303

|
|
|

|
|
|
|

|
|

|
|
|

|
|

http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/


Note:

  

To

 

display

 

infopops

 

simply

 

by

 

holding

 

the

 

mouse

 

cursor

 

over

 

a

 

field

 

or

 

control,

 

select

 

the

 

Automatically

 

display

 

infopops

 

check

 

box

 

on

 

the

 

Documentation

 

page

 

of

 

the

 

Tool

 

Settings

 

notebook.

 

Similar

 

to

 

infopops,

 

diagnosis

 

pop-up

 

information

 

is

 

another

 

form

 

of

 

context-sensitive

 

help;

 

they

 

contain

 

data

 

entry

 

rules.

 

Diagnosis

 

pop-up

 

information

 

is

 

displayed

 

in

 

a

 

purple

 

window

 

that

 

appears

 

when

 

data

 

that

 

is

 

not

 

valid

 

or

 

that

 

is

 

insufficient

 

is

 

entered.

 

Diagnosis

 

pop-up

 

information

 

can

 

appear

 

for:

 

–

   

Compulsory

 

fields.

 

–

   

Fields

 

whose

 

data

 

follows

 

a

 

precise

 

format,

 

such

 

as

 

a

 

date

 

field.

 

Related

 

tasks:

  

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

305

 

v

   

“How

 

to

 

use

 

the

 

DB2

 

UDB

 

help:

 

Common

 

GUI

 

help”

Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor

  

Message

 

help

 

describes

 

the

 

cause

 

of

 

a

 

message

 

and

 

describes

 

any

 

action

 

you

 

should

 

take

 

in

 

response

 

to

 

the

 

error.

  

Procedure:

   

To

 

invoke

 

message

 

help,

 

open

 

the

 

command

 

line

 

processor

 

and

 

enter:

     

?

 

XXXnnnnn

 

where

 

XXXnnnnn

 

represents

 

a

 

valid

 

message

 

identifier.

 

For

 

example,

 

?

 

SQL30081

 

displays

 

help

 

about

 

the

 

SQL30081

 

message.

  

Related

 

concepts:

  

v

   

“Introduction

 

to

 

messages”

 

in

 

the

 

Message

 

Reference

 

Volume

 

1

 

Related

 

reference:

  

v

   

“db2

 

-

 

Command

 

Line

 

Processor

 

Invocation

 

Command”

 

in

 

the

 

Command

 

Reference

Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor

  

Command

 

help

 

explains

 

the

 

syntax

 

of

 

commands

 

in

 

the

 

command

 

line

 

processor.

  

Procedure:

   

To

 

invoke

 

command

 

help,

 

open

 

the

 

command

 

line

 

processor

 

and

 

enter:

    

?

 

command

 

where

 

command

 

represents

 

a

 

keyword

 

or

 

the

 

entire

 

command.

 

For

 

example,

 

?

 

catalog

 

displays

 

help

 

for

 

all

 

of

 

the

 

CATALOG

 

commands,

 

while

 

?

 

catalog

 

database

 

displays

 

help

 

only

 

for

 

the

 

CATALOG

 

DATABASE

 

command.

   

304

 

Administration

 

Guide:

 

Planning

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|



Related

 

tasks:

  

v

   

“Invoking

 

contextual

 

help

 

from

 

a

 

DB2

 

tool”

 

on

 

page

 

303

 

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

305

 

Related

 

reference:

  

v

   

“db2

 

-

 

Command

 

Line

 

Processor

 

Invocation

 

Command”

 

in

 

the

 

Command

 

Reference

Invoking

 

SQL

 

state

 

help

 

from

 

the

 

command

 

line

 

processor

  

DB2

 

Univerrsal

 

Database

 

returns

 

an

 

SQLSTATE

 

value

 

for

 

conditions

 

that

 

could

 

be

 

the

 

result

 

of

 

an

 

SQL

 

statement.

 

SQLSTATE

 

help

 

explains

 

the

 

meanings

 

of

 

SQL

 

states

 

and

 

SQL

 

state

 

class

 

codes.

  

Procedure:

   

To

 

invoke

 

SQL

 

state

 

help,

 

open

 

the

 

command

 

line

 

processor

 

and

 

enter:

    

?

 

sqlstate

 

or

 

?

 

class

 

code

 

where

 

sqlstate

 

represents

 

a

 

valid

 

five-digit

 

SQL

 

state

 

and

 

class

 

code

 

represents

 

the

 

first

 

two

 

digits

 

of

 

the

 

SQL

 

state.

 

For

 

example,

 

?

 

08003

 

displays

 

help

 

for

 

the

 

08003

 

SQL

 

state,

 

and

 

?

 

08

 

displays

 

help

 

for

 

the

 

08

 

class

 

code.

  

Related

 

tasks:

  

v

   

“Invoking

 

the

 

DB2

 

Information

 

Center”

 

on

 

page

 

294

 

v

   

“Invoking

 

message

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

 

v

   

“Invoking

 

command

 

help

 

from

 

the

 

command

 

line

 

processor”

 

on

 

page

 

304

DB2

 

tutorials

  

The

 

DB2®

 

tutorials

 

help

 

you

 

learn

 

about

 

various

 

aspects

 

of

 

DB2

 

Universal

 

Database.

 

The

 

tutorials

 

provide

 

lessons

 

with

 

step-by-step

 

instructions

 

in

 

the

 

areas

 

of

 

developing

 

applications,

 

tuning

 

SQL

 

query

 

performance,

 

working

 

with

 

data

 

warehouses,

 

managing

 

metadata,

 

and

 

developing

 

Web

 

services

 

using

 

DB2.

  

Before

 

you

 

begin:

   

You

 

can

 

view

 

the

 

XHTML

 

versions

 

of

 

the

 

tutorials

 

from

 

the

 

Information

 

Center

 

at

 

http://publib.boulder.ibm.com/infocenter/db2help/.

 

Some

 

tutorial

 

lessons

 

use

 

sample

 

data

 

or

 

code.

 

See

 

each

 

tutorial

 

for

 

a

 

description

 

of

 

any

 

prerequisites

 

for

 

its

 

specific

 

tasks.

  

DB2

 

Universal

 

Database

 

tutorials:

   

Click

 

on

 

a

 

tutorial

 

title

 

in

 

the

 

following

 

list

 

to

 

view

 

that

 

tutorial.

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

305

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/


Business

 

Intelligence

 

Tutorial:

 

Introduction

 

to

 

the

 

Data

 

Warehouse

 

Center

 

Perform

 

introductory

 

data

 

warehousing

 

tasks

 

using

 

the

 

Data

 

Warehouse

 

Center.

 

Business

 

Intelligence

 

Tutorial:

 

Extended

 

Lessons

 

in

 

Data

 

Warehousing

 

Perform

 

advanced

 

data

 

warehousing

 

tasks

 

using

 

the

 

Data

 

Warehouse

 

Center.

 

Information

 

Catalog

 

Center

 

Tutorial

 

Create

 

and

 

manage

 

an

 

information

 

catalog

 

to

 

locate

 

and

 

use

 

metadata

 

using

 

the

 

Information

 

Catalog

 

Center.

 

Visual

 

Explain

 

Tutorial

 

Analyze,

 

optimize,

 

and

 

tune

 

SQL

 

statements

 

for

 

better

 

performance

 

using

 

Visual

 

Explain.

DB2

 

troubleshooting

 

information

  

A

 

wide

 

variety

 

of

 

troubleshooting

 

and

 

problem

 

determination

 

information

 

is

 

available

 

to

 

assist

 

you

 

in

 

using

 

DB2®

 

products.

 

DB2

 

documentation

 

Troubleshooting

 

information

 

can

 

be

 

found

 

throughout

 

the

 

DB2

 

Information

 

Center,

 

as

 

well

 

as

 

throughout

 

the

 

PDF

 

books

 

that

 

make

 

up

 

the

 

DB2

 

library.

 

You

 

can

 

refer

 

to

 

the

 

″Support

 

and

 

troubleshooting″

 

branch

 

of

 

the

 

DB2

 

Information

 

Center

 

navigation

 

tree

 

(in

 

the

 

left

 

pane

 

of

 

your

 

browser

 

window)

 

to

 

see

 

a

 

complete

 

listing

 

of

 

the

 

DB2

 

troubleshooting

 

documentation.

  

DB2

 

Technical

 

Support

 

Web

 

site

 

Refer

 

to

 

the

 

DB2

 

Technical

 

Support

 

Web

 

site

 

if

 

you

 

are

 

experiencing

 

problems

 

and

 

want

 

help

 

finding

 

possible

 

causes

 

and

 

solutions.

 

The

 

Technical

 

Support

 

site

 

has

 

links

 

to

 

the

 

latest

 

DB2

 

publications,

 

TechNotes,

 

Authorized

 

Program

 

Analysis

 

Reports

 

(APARs),

 

FixPaks

 

and

 

the

 

latest

 

listing

 

of

 

internal

 

DB2

 

error

 

codes,

 

and

 

other

 

resources.

 

You

 

can

 

search

 

through

 

this

 

knowledge

 

base

 

to

 

find

 

possible

 

solutions

 

to

 

your

 

problems.

  

Access

 

the

 

DB2

 

Technical

 

Support

 

Web

 

site

 

at

 

http://www.ibm.com/software/data/db2/udb/winos2unix/support

 

DB2

 

Problem

 

Determination

 

Tutorial

 

Series

 

Refer

 

to

 

the

 

DB2

 

Problem

 

Determination

 

Tutorial

 

Series

 

Web

 

site

 

to

 

find

 

information

 

on

 

how

 

to

 

quickly

 

identify

 

and

 

resolve

 

problems

 

you

 

might

 

encounter

 

while

 

working

 

with

 

DB2

 

products.

 

One

 

tutorial

 

introduces

 

you

 

to

 

the

 

DB2

 

problem

 

determination

 

facilities

 

and

 

tools

 

available,

 

and

 

helps

 

you

 

decide

 

when

 

to

 

use

 

them.

 

Other

 

tutorials

 

deal

 

with

 

related

 

topics,

 

such

 

as

 

″Database

 

Engine

 

Problem

 

Determination″,

 

″Performance

 

Problem

 

Determination″,

 

and

 

″Application

 

Problem

 

Determination″.

  

See

 

the

 

full

 

set

 

of

 

DB2

 

problem

 

determination

 

tutorials

 

on

 

the

 

DB2

 

Technical

 

Support

 

site

 

at

 

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

 

Related

 

concepts:

  

v

   

“DB2

 

Information

 

Center”

 

on

 

page

 

286

 

v

   

“Introduction

 

to

 

problem

 

determination

 

-

 

DB2

 

Technical

 

Support

 

tutorial”

 

in

 

the

 

Troubleshooting

 

Guide

  

306

 

Administration

 

Guide:

 

Planning

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/support/pdm/db2tutorials.html


Accessibility

  

Accessibility

 

features

 

help

 

users

 

with

 

physical

 

disabilities,

 

such

 

as

 

restricted

 

mobility

 

or

 

limited

 

vision,

 

to

 

use

 

software

 

products

 

successfully.

 

The

 

following

 

list

 

specifies

 

the

 

major

 

accessibility

 

features

 

in

 

DB2®

 

Version

 

8

 

products:

 

v

   

All

 

DB2

 

functionality

 

is

 

available

 

using

 

the

 

keyboard

 

for

 

navigation

 

instead

 

of

 

the

 

mouse.

 

For

 

more

 

information,

 

see

 

“Keyboard

 

input

 

and

 

navigation.”

 

v

   

You

 

can

 

customize

 

the

 

size

 

and

 

color

 

of

 

the

 

fonts

 

on

 

DB2

 

user

 

interfaces.

 

For

 

more

 

information,

 

see

 

“Accessible

 

display.”

 

v

   

DB2

 

products

 

support

 

accessibility

 

applications

 

that

 

use

 

the

 

Java™

 

Accessibility

 

API.

 

For

 

more

 

information,

 

see

 

“Compatibility

 

with

 

assistive

 

technologies”

 

on

 

page

 

308.

 

v

   

DB2

 

documentation

 

is

 

provided

 

in

 

an

 

accessible

 

format.

 

For

 

more

 

information,

 

see

 

“Accessible

 

documentation”

 

on

 

page

 

308.

Keyboard

 

input

 

and

 

navigation

 

Keyboard

 

input

 

You

 

can

 

operate

 

the

 

DB2

 

tools

 

using

 

only

 

the

 

keyboard.

 

You

 

can

 

use

 

keys

 

or

 

key

 

combinations

 

to

 

perform

 

operations

 

that

 

can

 

also

 

be

 

done

 

using

 

a

 

mouse.

 

Standard

 

operating

 

system

 

keystrokes

 

are

 

used

 

for

 

standard

 

operating

 

system

 

operations.

 

For

 

more

 

information

 

about

 

using

 

keys

 

or

 

key

 

combinations

 

to

 

perform

 

operations,

 

see

 

Keyboard

 

shortcuts

 

and

 

accelerators:

 

Common

 

GUI

 

help.

 

Keyboard

 

navigation

 

You

 

can

 

navigate

 

the

 

DB2

 

tools

 

user

 

interface

 

using

 

keys

 

or

 

key

 

combinations.

 

For

 

more

 

information

 

about

 

using

 

keys

 

or

 

key

 

combinations

 

to

 

navigate

 

the

 

DB2

 

Tools,

 

see

 

Keyboard

 

shortcuts

 

and

 

accelerators:

 

Common

 

GUI

 

help.

 

Keyboard

 

focus

 

In

 

UNIX®

 

operating

 

systems,

 

the

 

area

 

of

 

the

 

active

 

window

 

where

 

your

 

keystrokes

 

will

 

have

 

an

 

effect

 

is

 

highlighted.

 

Accessible

 

display

 

The

 

DB2

 

tools

 

have

 

features

 

that

 

improve

 

accessibility

 

for

 

users

 

with

 

low

 

vision

 

or

 

other

 

visual

 

impairments.

 

These

 

accessibility

 

enhancements

 

include

 

support

 

for

 

customizable

 

font

 

properties.

 

Font

 

settings

 

You

 

can

 

select

 

the

 

color,

 

size,

 

and

 

font

 

for

 

the

 

text

 

in

 

menus

 

and

 

dialog

 

windows,

 

using

 

the

 

Tools

 

Settings

 

notebook.

 

For

 

more

 

information

 

about

 

specifying

 

font

 

settings,

 

see

 

Changing

 

the

 

fonts

 

for

 

menus

 

and

 

text:

 

Common

 

GUI

 

help.

 

Non-dependence

 

on

 

color

 

You

 

do

 

not

 

need

 

to

 

distinguish

 

between

 

colors

 

in

 

order

 

to

 

use

 

any

 

of

 

the

 

functions

 

in

 

this

 

product.

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

307

|
|
|
|

|
|



Compatibility

 

with

 

assistive

 

technologies

 

The

 

DB2

 

tools

 

interfaces

 

support

 

the

 

Java

 

Accessibility

 

API,

 

which

 

enables

 

you

 

to

 

use

 

screen

 

readers

 

and

 

other

 

assistive

 

technologies

 

with

 

DB2

 

products.

 

Accessible

 

documentation

 

Documentation

 

for

 

DB2

 

is

 

provided

 

in

 

XHTML

 

1.0

 

format,

 

which

 

is

 

viewable

 

in

 

most

 

Web

 

browsers.

 

XHTML

 

allows

 

you

 

to

 

view

 

documentation

 

according

 

to

 

the

 

display

 

preferences

 

set

 

in

 

your

 

browser.

 

It

 

also

 

allows

 

you

 

to

 

use

 

screen

 

readers

 

and

 

other

 

assistive

 

technologies.

 

Syntax

 

diagrams

 

are

 

provided

 

in

 

dotted

 

decimal

 

format.

 

This

 

format

 

is

 

available

 

only

 

if

 

you

 

are

 

accessing

 

the

 

online

 

documentation

 

using

 

a

 

screen-reader.

  

Related

 

concepts:

  

v

   

“Dotted

 

decimal

 

syntax

 

diagrams”

 

on

 

page

 

308

Dotted

 

decimal

 

syntax

 

diagrams

  

Syntax

 

diagrams

 

are

 

provided

 

in

 

dotted

 

decimal

 

format

 

for

 

users

 

accessing

 

the

 

Information

 

Center

 

using

 

a

 

screen

 

reader.

 

In

 

dotted

 

decimal

 

format,

 

each

 

syntax

 

element

 

is

 

written

 

on

 

a

 

separate

 

line.

 

If

 

two

 

or

 

more

 

syntax

 

elements

 

are

 

always

 

present

 

together

 

(or

 

always

 

absent

 

together),

 

they

 

can

 

appear

 

on

 

the

 

same

 

line,

 

because

 

they

 

can

 

be

 

considered

 

as

 

a

 

single

 

compound

 

syntax

 

element.

 

Each

 

line

 

starts

 

with

 

a

 

dotted

 

decimal

 

number;

 

for

 

example,

 

3

 

or

 

3.1

 

or

 

3.1.1.

 

To

 

hear

 

these

 

numbers

 

correctly,

 

make

 

sure

 

that

 

your

 

screen

 

reader

 

is

 

set

 

to

 

read

 

out

 

punctuation.

 

All

 

the

 

syntax

 

elements

 

that

 

have

 

the

 

same

 

dotted

 

decimal

 

number

 

(for

 

example,

 

all

 

the

 

syntax

 

elements

 

that

 

have

 

the

 

number

 

3.1)

 

are

 

mutually

 

exclusive

 

alternatives.

 

If

 

you

 

hear

 

the

 

lines

 

3.1

 

USERID

 

and

 

3.1

 

SYSTEMID,

 

you

 

know

 

that

 

your

 

syntax

 

can

 

include

 

either

 

USERID

 

or

 

SYSTEMID,

 

but

 

not

 

both.

 

The

 

dotted

 

decimal

 

numbering

 

level

 

denotes

 

the

 

level

 

of

 

nesting.

 

For

 

example,

 

if

 

a

 

syntax

 

element

 

with

 

dotted

 

decimal

 

number

 

3

 

is

 

followed

 

by

 

a

 

series

 

of

 

syntax

 

elements

 

with

 

dotted

 

decimal

 

number

 

3.1,

 

all

 

the

 

syntax

 

elements

 

numbered

 

3.1

 

are

 

subordinate

 

to

 

the

 

syntax

 

element

 

numbered

 

3.

 

Certain

 

words

 

and

 

symbols

 

are

 

used

 

next

 

to

 

the

 

dotted

 

decimal

 

numbers

 

to

 

add

 

information

 

about

 

the

 

syntax

 

elements.

 

Occasionally,

 

these

 

words

 

and

 

symbols

 

might

 

occur

 

at

 

the

 

beginning

 

of

 

the

 

element

 

itself.

 

For

 

ease

 

of

 

identification,

 

if

 

the

 

word

 

or

 

symbol

 

is

 

a

 

part

 

of

 

the

 

syntax

 

element,

 

it

 

is

 

preceded

 

by

 

the

 

backslash

 

(\)

 

character.

 

The

 

*

 

symbol

 

can

 

be

 

used

 

next

 

to

 

a

 

dotted

 

decimal

 

number

 

to

 

indicate

 

that

 

the

 

syntax

 

element

 

repeats.

 

For

 

example,

 

syntax

 

element

 

*FILE

 

with

 

dotted

 

decimal

 

number

 

3

 

is

 

given

 

the

 

format

 

3

 

\*

 

FILE.

 

Format

 

3*

 

FILE

 

indicates

 

that

 

syntax

 

element

 

FILE

 

repeats.

 

Format

 

3*

 

\*

 

FILE

 

indicates

 

that

 

syntax

 

element

 

*

 

FILE

 

repeats.

 

Characters

 

such

 

as

 

commas,

 

which

 

are

 

used

 

to

 

separate

 

a

 

string

 

of

 

syntax

 

elements,

 

are

 

shown

 

in

 

the

 

syntax

 

just

 

before

 

the

 

items

 

they

 

separate.

 

These

 

characters

 

can

 

appear

 

on

 

the

 

same

 

line

 

as

 

each

 

item,

 

or

 

on

 

a

 

separate

 

line

 

with

 

the

 

same

 

dotted

 

decimal

 

number

 

as

 

the

 

relevant

 

items.

 

The

 

line

 

can

 

also

 

show

 

another

 

symbol

 

giving

 

information

 

about

 

the

 

syntax

 

elements.

 

For

 

example,

 

the

 

lines

 

5.1*,

 

5.1

 

LASTRUN,

 

and

 

5.1

 

DELETE

 

mean

 

that

 

if

 

you

 

use

 

more

 

than

 

one

 

of

 

the

   

308

 

Administration

 

Guide:

 

Planning

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|



LASTRUN

 

and

 

DELETE

 

syntax

 

elements,

 

the

 

elements

 

must

 

be

 

separated

 

by

 

a

 

comma.

 

If

 

no

 

separator

 

is

 

given,

 

assume

 

that

 

you

 

use

 

a

 

blank

 

to

 

separate

 

each

 

syntax

 

element.

 

If

 

a

 

syntax

 

element

 

is

 

preceded

 

by

 

the

 

%

 

symbol,

 

this

 

indicates

 

a

 

reference

 

that

 

is

 

defined

 

elsewhere.

 

The

 

string

 

following

 

the

 

%

 

symbol

 

is

 

the

 

name

 

of

 

a

 

syntax

 

fragment

 

rather

 

than

 

a

 

literal.

 

For

 

example,

 

the

 

line

 

2.1

 

%OP1

 

means

 

that

 

you

 

should

 

refer

 

to

 

separate

 

syntax

 

fragment

 

OP1.

 

The

 

following

 

words

 

and

 

symbols

 

are

 

used

 

next

 

to

 

the

 

dotted

 

decimal

 

numbers:

 

v

   

?

 

means

 

an

 

optional

 

syntax

 

element.

 

A

 

dotted

 

decimal

 

number

 

followed

 

by

 

the

 

?

 

symbol

 

indicates

 

that

 

all

 

the

 

syntax

 

elements

 

with

 

a

 

corresponding

 

dotted

 

decimal

 

number,

 

and

 

any

 

subordinate

 

syntax

 

elements,

 

are

 

optional.

 

If

 

there

 

is

 

only

 

one

 

syntax

 

element

 

with

 

a

 

dotted

 

decimal

 

number,

 

the

 

?

 

symbol

 

is

 

displayed

 

on

 

the

 

same

 

line

 

as

 

the

 

syntax

 

element,

 

(for

 

example

 

5?

 

NOTIFY).

 

If

 

there

 

is

 

more

 

than

 

one

 

syntax

 

element

 

with

 

a

 

dotted

 

decimal

 

number,

 

the

 

?

 

symbol

 

is

 

displayed

 

on

 

a

 

line

 

by

 

itself,

 

followed

 

by

 

the

 

syntax

 

elements

 

that

 

are

 

optional.

 

For

 

example,

 

if

 

you

 

hear

 

the

 

lines

 

5

 

?,

 

5

 

NOTIFY,

 

and

 

5

 

UPDATE,

 

you

 

know

 

that

 

syntax

 

elements

 

NOTIFY

 

and

 

UPDATE

 

are

 

optional;

 

that

 

is,

 

you

 

can

 

choose

 

one

 

or

 

none

 

of

 

them.

 

The

 

?

 

symbol

 

is

 

equivalent

 

to

 

a

 

bypass

 

line

 

in

 

a

 

railroad

 

diagram.

 

v

   

!

 

means

 

a

 

default

 

syntax

 

element.

 

A

 

dotted

 

decimal

 

number

 

followed

 

by

 

the

 

!

 

symbol

 

and

 

a

 

syntax

 

element

 

indicates

 

that

 

the

 

syntax

 

element

 

is

 

the

 

default

 

option

 

for

 

all

 

syntax

 

elements

 

that

 

share

 

the

 

same

 

dotted

 

decimal

 

number.

 

Only

 

one

 

of

 

the

 

syntax

 

elements

 

that

 

share

 

the

 

same

 

dotted

 

decimal

 

number

 

can

 

specify

 

a

 

!

 

symbol.

 

For

 

example,

 

if

 

you

 

hear

 

the

 

lines

 

2?

 

FILE,

 

2.1!

 

(KEEP),

 

and

 

2.1

 

(DELETE),

 

you

 

know

 

that

 

(KEEP)

 

is

 

the

 

default

 

option

 

for

 

the

 

FILE

 

keyword.

 

In

 

this

 

example,

 

if

 

you

 

include

 

the

 

FILE

 

keyword

 

but

 

do

 

not

 

specify

 

an

 

option,

 

default

 

option

 

KEEP

 

will

 

be

 

applied.

 

A

 

default

 

option

 

also

 

applies

 

to

 

the

 

next

 

higher

 

dotted

 

decimal

 

number.

 

In

 

this

 

example,

 

if

 

the

 

FILE

 

keyword

 

is

 

omitted,

 

default

 

FILE(KEEP)

 

is

 

used.

 

However,

 

if

 

you

 

hear

 

the

 

lines

 

2?

 

FILE,

 

2.1,

 

2.1.1!

 

(KEEP),

 

and

 

2.1.1

 

(DELETE),

 

the

 

default

 

option

 

KEEP

 

only

 

applies

 

to

 

the

 

next

 

higher

 

dotted

 

decimal

 

number,

 

2.1

 

(which

 

does

 

not

 

have

 

an

 

associated

 

keyword),

 

and

 

does

 

not

 

apply

 

to

 

2?

 

FILE.

 

Nothing

 

is

 

used

 

if

 

the

 

keyword

 

FILE

 

is

 

omitted.

 

v

   

*

 

means

 

a

 

syntax

 

element

 

that

 

can

 

be

 

repeated

 

0

 

or

 

more

 

times.

 

A

 

dotted

 

decimal

 

number

 

followed

 

by

 

the

 

*

 

symbol

 

indicates

 

that

 

this

 

syntax

 

element

 

can

 

be

 

used

 

zero

 

or

 

more

 

times;

 

that

 

is,

 

it

 

is

 

optional

 

and

 

can

 

be

 

repeated.

 

For

 

example,

 

if

 

you

 

hear

 

the

 

line

 

5.1*

 

data

 

area,

 

you

 

know

 

that

 

you

 

can

 

include

 

one

 

data

 

area,

 

more

 

than

 

one

 

data

 

area,

 

or

 

no

 

data

 

area.

 

If

 

you

 

hear

 

the

 

lines

 

3*,

 

3

 

HOST,

 

and

 

3

 

STATE,

 

you

 

know

 

that

 

you

 

can

 

include

 

HOST,

 

STATE,

 

both

 

together,

 

or

 

nothing.

Notes:

  

1.

   

If

 

a

 

dotted

 

decimal

 

number

 

has

 

an

 

asterisk

 

(*)

 

next

 

to

 

it

 

and

 

there

 

is

 

only

 

one

 

item

 

with

 

that

 

dotted

 

decimal

 

number,

 

you

 

can

 

repeat

 

that

 

same

 

item

 

more

 

than

 

once.

 

2.

   

If

 

a

 

dotted

 

decimal

 

number

 

has

 

an

 

asterisk

 

next

 

to

 

it

 

and

 

several

 

items

 

have

 

that

 

dotted

 

decimal

 

number,

 

you

 

can

 

use

 

more

 

than

 

one

 

item

 

from

 

the

 

list,

 

but

 

you

 

cannot

 

use

 

the

 

items

 

more

 

than

 

once

 

each.

 

In

 

the

 

previous

 

example,

 

you

 

could

 

write

 

HOST

 

STATE,

 

but

 

you

 

could

 

not

 

write

 

HOST

 

HOST.

 

3.

   

The

 

*

 

symbol

 

is

 

equivalent

 

to

 

a

 

loop-back

 

line

 

in

 

a

 

railroad

 

syntax

 

diagram.
v

   

+

 

means

 

a

 

syntax

 

element

 

that

 

must

 

be

 

included

 

one

 

or

 

more

 

times.

 

A

 

dotted

 

decimal

 

number

 

followed

 

by

 

the

 

+

 

symbol

 

indicates

 

that

 

this

 

syntax

 

element

 

must

 

be

 

included

 

one

 

or

 

more

 

times;

 

that

 

is,

 

it

 

must

 

be

 

included

 

at

 

least

 

once

   

Appendix

 

D.

 

DB2

 

Universal

 

Database

 

technical

 

information

 

309

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|



and

 

can

 

be

 

repeated.

 

For

 

example,

 

if

 

you

 

hear

 

the

 

line

 

6.1+

 

data

 

area,

 

you

 

must

 

include

 

at

 

least

 

one

 

data

 

area.

 

If

 

you

 

hear

 

the

 

lines

 

2+,

 

2

 

HOST,

 

and

 

2

 

STATE,

 

you

 

know

 

that

 

you

 

must

 

include

 

HOST,

 

STATE,

 

or

 

both.

 

Similar

 

to

 

the

 

*

 

symbol,

 

the

 

+

 

symbol

 

can

 

only

 

repeat

 

a

 

particular

 

item

 

if

 

it

 

is

 

the

 

only

 

item

 

with

 

that

 

dotted

 

decimal

 

number.

 

The

 

+

 

symbol,

 

like

 

the

 

*

 

symbol,

 

is

 

equivalent

 

to

 

a

 

loop-back

 

line

 

in

 

a

 

railroad

 

syntax

 

diagram.

 

Related

 

concepts:

  

v

   

“Accessibility”

 

on

 

page

 

307

 

Related

 

tasks:

  

v

   

“Contents

 

:

 

Common

 

help”

 

Related

 

reference:

  

v

   

“How

 

to

 

read

 

the

 

syntax

 

diagrams”

 

in

 

the

 

SQL

 

Reference,

 

Volume

 

2

Common

 

Criteria

 

certification

 

of

 

DB2

 

Universal

 

Database

 

products

 

DB2

 

Universal

 

Database

 

is

 

being

 

evaluated

 

for

 

certification

 

under

 

the

 

Common

 

Criteria

 

at

 

evaluation

 

assurance

 

level

 

4

 

(EAL4).

 

For

 

more

 

information

 

about

 

Common

 

Criteria,

 

see

 

the

 

Common

 

Criteria

 

web

 

site

 

at:

 

http://niap.nist.gov/cc-
scheme/.

   

310

 

Administration

 

Guide:

 

Planning

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/


Appendix

 

E.

 

Notices

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

all

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

that

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

IBM

 

intellectual

 

property

 

right

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

described

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

Director

 

of

 

Licensing

 

IBM

 

Corporation

 

North

 

Castle

 

Drive

 

Armonk,

 

NY

 

10504-1785

 

U.S.A.

For

 

license

 

inquiries

 

regarding

 

double-byte

 

(DBCS)

 

information,

 

contact

 

the

 

IBM

 

Intellectual

 

Property

 

Department

 

in

 

your

 

country/region

 

or

 

send

 

inquiries,

 

in

 

writing,

 

to:

IBM

 

World

 

Trade

 

Asia

 

Corporation

 

Licensing

 

2-31

 

Roppongi

 

3-chome,

 

Minato-ku

 

Tokyo

 

106,

 

Japan

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country/region

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

PUBLICATION

 

“AS

 

IS”

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY,

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions;

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

publication.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

the

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product,

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

IBM

 

may

 

use

 

or

 

distribute

 

any

 

of

 

the

 

information

 

you

 

supply

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

311



Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independently

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

that

 

has

 

been

 

exchanged,

 

should

 

contact:

 

IBM

 

Canada

 

Limited

 

Office

 

of

 

the

 

Lab

 

Director

 

8200

 

Warden

 

Avenue

 

Markham,

 

Ontario

 

L6G

 

1C7

 

CANADA

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

document

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

Customer

 

Agreement,

 

IBM

 

International

 

Program

 

License

 

Agreement,

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

Any

 

performance

 

data

 

contained

 

herein

 

was

 

determined

 

in

 

a

 

controlled

 

environment.

 

Therefore,

 

the

 

results

 

obtained

 

in

 

other

 

operating

 

environments

 

may

 

vary

 

significantly.

 

Some

 

measurements

 

may

 

have

 

been

 

made

 

on

 

development-level

 

systems,

 

and

 

there

 

is

 

no

 

guarantee

 

that

 

these

 

measurements

 

will

 

be

 

the

 

same

 

on

 

generally

 

available

 

systems.

 

Furthermore,

 

some

 

measurements

 

may

 

have

 

been

 

estimated

 

through

 

extrapolation.

 

Actual

 

results

 

may

 

vary.

 

Users

 

of

 

this

 

document

 

should

 

verify

 

the

 

applicable

 

data

 

for

 

their

 

specific

 

environment.

 

Information

 

concerning

 

non-IBM

 

products

 

was

 

obtained

 

from

 

the

 

suppliers

 

of

 

those

 

products,

 

their

 

published

 

announcements,

 

or

 

other

 

publicly

 

available

 

sources.

 

IBM

 

has

 

not

 

tested

 

those

 

products

 

and

 

cannot

 

confirm

 

the

 

accuracy

 

of

 

performance,

 

compatibility,

 

or

 

any

 

other

 

claims

 

related

 

to

 

non-IBM

 

products.

 

Questions

 

on

 

the

 

capabilities

 

of

 

non-IBM

 

products

 

should

 

be

 

addressed

 

to

 

the

 

suppliers

 

of

 

those

 

products.

 

All

 

statements

 

regarding

 

IBM’s

 

future

 

direction

 

or

 

intent

 

are

 

subject

 

to

 

change

 

or

 

withdrawal

 

without

 

notice,

 

and

 

represent

 

goals

 

and

 

objectives

 

only.

 

This

 

information

 

may

 

contain

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious,

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

COPYRIGHT

 

LICENSE:

 

This

 

information

 

may

 

contain

 

sample

 

application

 

programs,

 

in

 

source

 

language,

 

which

 

illustrate

 

programming

 

techniques

 

on

 

various

 

operating

 

platforms.

 

You

 

may

 

copy,

 

modify,

 

and

 

distribute

 

these

 

sample

 

programs

 

in

 

any

 

form

 

without

 

payment

 

to

 

IBM

 

for

 

the

 

purposes

 

of

 

developing,

 

using,

 

marketing,

 

or

 

distributing

 

application

 

programs

 

conforming

 

to

 

the

 

application

 

programming

 

interface

 

for

 

the

 

operating

 

platform

 

for

 

which

 

the

 

sample

 

programs

 

are

 

written.

 

These

 

examples

 

have

 

not

 

been

 

thoroughly

 

tested

 

under

 

all

 

conditions.

 

IBM,

 

therefore,

 

cannot

 

guarantee

 

or

 

imply

 

reliability,

 

serviceability,

 

or

 

function

 

of

 

these

 

programs.

 

Each

 

copy

 

or

 

any

 

portion

 

of

 

these

 

sample

 

programs

 

or

 

any

 

derivative

 

work

 

must

 

include

 

a

 

copyright

 

notice

 

as

 

follows:

   

312

 

Administration

 

Guide:

 

Planning



©

 

(your

 

company

 

name)

 

(year).

 

Portions

 

of

 

this

 

code

 

are

 

derived

 

from

 

IBM

 

Corp.

 

Sample

 

Programs.

 

©

 

Copyright

 

IBM

 

Corp.

 

_enter

 

the

 

year

 

or

 

years_.

 

All

 

rights

 

reserved.

 

Trademarks

 

The

 

following

 

terms

 

are

 

trademarks

 

of

 

International

 

Business

 

Machines

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both,

 

and

 

have

 

been

 

used

 

in

 

at

 

least

 

one

 

of

 

the

 

documents

 

in

 

the

 

DB2

 

UDB

 

documentation

 

library.

  

ACF/VTAM

 

AISPO

 

AIX

 

AIXwindows

 

AnyNet

 

APPN

 

AS/400

 

BookManager

 

C

 

Set++

 

C/370

 

CICS

 

Database

 

2

 

DataHub

 

DataJoiner

 

DataPropagator

 

DataRefresher

 

DB2

 

DB2

 

Connect

 

DB2

 

Extenders

 

DB2

 

OLAP

 

Server

 

DB2

 

Information

 

Integrator

 

DB2

 

Query

 

Patroller

 

DB2

 

Universal

 

Database

 

Distributed

 

Relational

   

Database

 

Architecture

 

DRDA

 

eServer

 

Extended

 

Services

 

FFST

 

First

 

Failure

 

Support

 

Technology

 

IBM

 

IMS

 

IMS/ESA

 

iSeries

 

LAN

 

Distance

 

MVS

 

MVS/ESA

 

MVS/XA

 

Net.Data

 

NetView

 

OS/390

 

OS/400

 

PowerPC

 

pSeries

 

QBIC

 

QMF

 

RACF

 

RISC

 

System/6000

 

RS/6000

 

S/370

 

SP

 

SQL/400

 

SQL/DS

 

System/370

 

System/390

 

SystemView

 

Tivoli

 

VisualAge

 

VM/ESA

 

VSE/ESA

 

VTAM

 

WebExplorer

 

WebSphere

 

WIN-OS/2

 

z/OS

 

zSeries

   

The

 

following

 

terms

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

other

 

companies

 

and

 

have

 

been

 

used

 

in

 

at

 

least

 

one

 

of

 

the

 

documents

 

in

 

the

 

DB2

 

UDB

 

documentation

 

library:

 

Microsoft,

 

Windows,

 

Windows

 

NT,

 

and

 

the

 

Windows

 

logo

 

are

 

trademarks

 

of

 

Microsoft

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

Intel

 

and

 

Pentium

 

are

 

trademarks

 

of

 

Intel

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

Java

 

and

 

all

 

Java-based

 

trademarks

 

are

 

trademarks

 

of

 

Sun

 

Microsystems,

 

Inc.

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

   

Appendix

 

E.

 

Notices

 

313



UNIX

 

is

 

a

 

registered

 

trademark

 

of

 

The

 

Open

 

Group

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

Other

 

company,

 

product,

 

or

 

service

 

names

 

may

 

be

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

   

314

 

Administration

 

Guide:

 

Planning



Index

 

A
accessibility

dotted

 

decimal

 

syntax

 

diagrams

 

308

 

features

 

307

 

agents
data

 

warehouse

 

43

 

described

 

47

 

AIX
large

 

page

 

support

 

283

 

system

 

commands
vmo

 

283

 

vmtune

 

283

 

append

 

mode

 

tables

 

132

 

application

 

design
collating

 

sequences,

 

guidelines

 

268

 

applications
incompatibility

 

207

 

audit

 

activities

 

69

 

audit

 

context

 

records
incompatibility

 

207

 

authentication
description

 

25

 

authority
incompatibility

 

207

 

authorization
database

 

design

 

considerations

 

69

 

description

 

25

 

automatic

 

client

 

reroute

 

183

 

automatic

 

maintenance

 

18

 

backup

 

15

 

B
backup

automatic

 

18

 

backups
automated

 

15

 

BEA

 

Tuxedo,

 

configuring

 

200

 

bidirectional

 

CCSID

 

support
DB2

 

262

 

DB2

 

Connect

 

266

 

list

 

of

 

CCSIDs

 

263

 

block

 

indexes

 

137

 

buffer

 

pools
description

 

3

 

IBMDEFAULTBP

 

114

 

business

 

rules
description

 

12

 

transitional

 

68

 

C
CALL

 

statement
incompatibility

 

207

 

capacity
for

 

each

 

environment

 

34

 

casting

 

FOR

 

BIT

 

DATA
incompatibility

 

207

 

catalog

 

table

 

spaces

 

89,

 

128

 

CCSID

 

(coded

 

character

 

set

 

identifier)

 

280,

 

281

 

bidirectional

 

support
DB2

 

262

 

DB2

 

Connect

 

266

 

types

 

listed

 

263

 

CHAR

 

function
incompatibility

 

207

 

character

 

strings
Unicode

 

276

 

check

 

constraints
as

 

business

 

rules

 

12

 

check

 

pending

 

state

 

63

 

choosing
extent

 

size

 

113

 

multidimensional

 

table

 

dimensions

 

153

 

table

 

spaces

 

89

 

CHR

 

function
incompatibility

 

207

 

client

 

reroute
automatic

 

183

 

clustering,

 

data

 

137

 

code

 

page

 

950
IBM

 

and

 

Microsoft

 

differences

 

231

 

code

 

page

 

conversion
incompatibility

 

207

 

code

 

pages
923

 

and

 

924

 

252,

 

260

 

converting

 

1394

 

to

 

Unicode,

 

previous

 

conversion

 

tables

 

280

 

converting

 

Shift

 

JIS

 

X0213

 

to

 

Unicode,

 

previous

 

conversion

 

tables

 

280

 

DB2

 

supported

 

231

 

with

 

euro

 

symbol

 

252,

 

253

 

code

 

point

 

268,

 

280

 

code

 

sets
DB2

 

supported

 

231

 

coded

 

character

 

set

 

identifier

 

943
considerations

 

when

 

using

 

280

 

collating

 

algorithm

 

differences
Thai

 

and

 

Unicode

 

274

 

collating

 

sequences
code

 

point

 

268

 

concerns,

 

general

 

268

 

identity

 

sequence

 

268

 

multi-byte

 

characters

 

268

 

overview

 

268

 

Thai

 

characters

 

269

 

Unicode

 

274

 

collocation,

 

table

 

87

 

column

 

expressions,

 

multidimensional

 

tables

 

160

 

columns
defining

 

for

 

a

 

table

 

55

 

command

 

help
invoking

 

304

 

commit
errors

 

during

 

two-phase

 

176

 

two-phase

 

174

 

compatibility
partition

 

87

 

composite

 

block

 

indexes

 

137

 

composite

 

keys
primary

 

keys

 

56

 

configuration

 

files
description

 

11

 

location

 

11

 

configuration

 

parameters
DB2

 

transaction

 

manager

 

considerations

 

171

 

description

 

11

 

incompatibility

 

207

 

configurations
multiple

 

partition

 

34

 

configure

 

automatic

 

maintenance

 

wizard

 

18

 

connection

 

failure
automatic

 

client

 

reroute

 

183

 

constants
Unicode

 

278

 

constraints
check

 

12

 

foreign

 

key

 

12

 

informational

 

12,

 

63

 

NOT

 

NULL

 

12

 

primary

 

key

 

12

 

referential

 

63

 

table

 

check

 

63

 

unique

 

12,

 

63

 

containers
description

 

3

 

DMS

 

table

 

spaces
addition

 

of

 

containers

 

to

 

98

 

dropping

 

containers

 

from

 

106

 

extension

 

of

 

containers

 

in

 

98

 

reduction

 

of

 

containers

 

in

 

106

 

CONTROL

 

privilege

 

on

 

packages
incompatibility

 

207

 

conversions
Unicode

 

to

 

CCSID

 

943

 

280,

 

281

 

coordinator

 

node

 

29

 

CREATE

 

TABLE
OVERFLOW

 

clause

 

136

 

creating
multidimensional

 

tables

 

160

 

Unicode

 

databases

 

278

 

D
data

large

 

object

 

(LOB)

 

77

 

long

 

field

 

76

 

partitioning

 

29

 

data

 

types
database

 

design

 

considerations

 

69

 

Unicode

 

handling

 

276

 

data

 

types

 

and

 

scrollable

 

cursors
incompatibility

 

207

 

data

 

warehouse

 

objects

 

43

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

315



data

 

warehousing
defined

 

43

 

informational

 

data

 

43

 

operational

 

data

 

43

 

database

 

connection
incompatibility

 

207

 

database

 

design
additional

 

considerations

 

69

 

logical

 

51

 

physical

 

71

 

database

 

directories
structure

 

described

 

71

 

database

 

objects
database

 

partition

 

groups

 

3

 

databases

 

3

 

indexes

 

3

 

instances

 

3

 

recovery

 

history

 

file

 

15

 

recovery

 

log

 

file

 

15

 

schemas

 

3

 

system

 

catalog

 

tables

 

3

 

table

 

space

 

change

 

history

 

file

 

15

 

table

 

spaces

 

3

 

tables

 

3

 

views

 

3

 

database

 

partition

 

groups
collocation

 

83

 

description

 

3,

 

81

 

designing

 

83

 

determining

 

data

 

location

 

84

 

IBMCATGROUP

 

89

 

IBMDEFAULTGROUP

 

89

 

IBMTEMPGROUP

 

89

 

database

 

partitions
and

 

multidimensional

 

clustering

 

137

 

description

 

29

 

database-managed

 

space

 

(DMS)
containers

 

98

 

description

 

94

 

overview

 

3

 

reducing

 

containers

 

106

 

databases
accessing

 

in

 

a

 

single

 

transaction

 

168

 

description

 

3

 

distributed

 

26

 

estimating

 

size

 

requirements

 

73

 

host

 

system

 

168

 

language,

 

selecting

 

261

 

nonrecoverable

 

15

 

recoverable

 

15

 

dates
formats

 

270

 

DB2

 

books
printing

 

PDF

 

files

 

302

 

DB2

 

Connect
for

 

multisite

 

updates

 

168

 

incompatibility

 

207

 

DB2

 

Information

 

Center

 

286

 

invoking

 

294

 

DB2

 

sync

 

point

 

manager

 

(SPM)

 

173

 

DB2

 

transaction

 

manager

 

170

 

DB2

 

tutorials

 

305

 

DB2_LIKE_VARCHAR
incompatibility

 

207

 

DB2_NO_MPFA_FOR

 

_NEW_DB

 

92,

 

113,

 

160

 

DB2_PARALLEL_IO

 

registry

 

variable

 

129

 

DB2_SMS_TRUNC

 

_TMPTABLE_THRESH

 

81

 

DB2_SMS_TRUNC_TMPTABLE

 

_THRESH

 

127

 

DB2_USE_PAGE_CONTAINER_TAG

 

environment

 

variable

 

129

 

db2empfa

 

utility

 

92,

 

113,

 

160

 

declustering
partial

 

29

 

defining
columns

 

55

 

delete

 

rule
with

 

referential

 

constraint

 

63

 

dependent

 

row

 

63

 

dependent

 

table

 

63

 

descendent

 

row

 

63

 

descendent

 

table

 

63

 

DESCRIBE

 

statement

 

output
incompatibility

 

207

 

design

 

advisor
multidemensional

 

clustering

 

137

 

designing
database

 

partition

 

groups

 

83

 

tables

 

spaces

 

89

 

dimension

 

block

 

indexes

 

137

 

dimensions
multidimensional

 

tables

 

137,

 

153

 

disability

 

307

 

disabling
euro

 

symbol

 

support

 

252,

 

253

 

disaster

 

recovery
high

 

availability

 

feature

 

23

 

distributed

 

relational

 

databases
units

 

of

 

work

 

26

 

distributed

 

transaction

 

processing
application

 

program

 

179

 

configuration

 

considerations

 

194

 

database

 

connection

 

considerations

 

183

 

error

 

handling

 

191

 

resource

 

manager

 

179

 

security

 

considerations

 

193

 

transaction

 

manager

 

179

 

updating

 

host

 

and

 

iSeries

 

databases

 

191

 

DMS

 

(database

 

managed

 

space)

 

3,

 

94

 

DMS

 

table

 

spaces
adding

 

containers

 

98

 

compared

 

to

 

SMS

 

table

 

spaces

 

109

 

dropping

 

containers

 

106

 

extending

 

containers

 

98

 

reducing

 

containers

 

106

 

documentation
displaying

 

294

 

dotted

 

decimal

 

syntax

 

diagrams

 

308

 

downlevel

 

servers,

 

tools,

 

and

 

clients
incompatibility

 

207

 

DTP

 

(distributed

 

transaction

 

processing)

 

179

 

E
entities,

 

database

 

51

 

estimating

 

size

 

requirements
index

 

space

 

78

 

estimating

 

size

 

requirements

 

(continued)
large

 

object

 

(LOB)

 

data

 

77

 

log

 

file

 

space

 

80

 

long

 

field

 

data

 

76

 

euro

 

code

 

page

 

conversion

 

tables
incompatibility

 

207

 

euro

 

symbol
conversion

 

table

 

files

 

253

 

enabling

 

and

 

disabling

 

252

 

EXECUTE

 

privilege
incompatibility

 

207

 

extent

 

size
choosing

 

113

 

database

 

objects

 

3

 

description

 

89

 

F
first

 

normal

 

form

 

59

 

first-fit

 

order

 

75

 

foreign

 

key

 

constraint
incompatibility

 

207

 

foreign

 

key

 

constraints
enforcing

 

business

 

rules

 

12

 

foreign

 

keys
constraints

 

63

 

fourth

 

normal

 

form

 

59

 

functions

 

and

 

procedures
incompatibility

 

207

 

G
graphic

 

strings
Unicode

 

276

 

H
hardware

 

environments

 

34

 

logical

 

database

 

partitions

 

34

 

partitions

 

with

 

multiple

 

processors

 

34

 

partitions

 

with

 

one

 

processor

 

34

 

single

 

partition,

 

multiple

 

processors

 

34

 

single

 

partition,

 

single

 

processor

 

34

 

types

 

of

 

parallelism

 

34

 

help
displaying

 

294,

 

296

 

for

 

commands
invoking

 

304

 

for

 

messages
invoking

 

304

 

for

 

SQL

 

statements
invoking

 

305

 

heuristic

 

decisions

 

191

 

heuristic

 

operations

 

191

 

high

 

availability

 

disaster

 

recovery

 

(HADR)
database

 

design

 

considerations

 

69

 

overview

 

23

 

historical

 

data
database

 

design

 

considerations

 

69

 

host

 

databases
updating

 

with

 

XA

 

transaction

 

managers

 

191

   

316

 

Administration

 

Guide:

 

Planning



host

 

variables
incompatibility

 

207

 

HTML

 

documentation
updating

 

295

 

I
I/O

 

considerations
table

 

space

 

110

 

I/O

 

parallelism

 

30

 

using

 

RAID

 

devices

 

129

 

IBM

 

TXSeries

 

CICS
configuring

 

198

 

IBM

 

TXSeries

 

Encina
configuring

 

198

 

IBMCATGROUP

 

89

 

IBMDEFAULTGROUP

 

89

 

IBMTEMPGROUP

 

89

 

identifying

 

candidate

 

key

 

columns

 

56

 

identity

 

columns
overview

 

58

 

identity

 

sequence

 

268

 

IMPLEMENTED

 

column
incompatibility

 

207

 

incompatibilities
COLNAMES

 

(planned)

 

205

 

description

 

205

 

FK_COLNAMES

 

(planned)

 

205

 

PK_COLNAMES

 

(planned)

 

205

 

planned

 

205

 

Version

 

7

 

227

 

Version

 

8

 

207

 

index

 

keys

 

3

 

index

 

space
estimating

 

size

 

requirements

 

for

 

78

 

indexes
block

 

137

 

composite

 

block

 

137

 

description

 

3

 

dimension

 

block

 

137

 

unique

 

3

 

indoubt

 

transactions
recovering

 

176,

 

179

 

resolving

 

191

 

resynchronizing

 

176

 

Information

 

Center
installing

 

287,

 

290,

 

292

 

informational

 

constraints
description

 

63

 

insert

 

rule

 

with

 

referential

 

constraint

 

63

 

installing
Information

 

Center

 

287,

 

290,

 

292

 

instances
description

 

3

 

inter-partition

 

parallelism
used

 

with

 

intra-partition

 

parallelism

 

30

 

inter-query

 

parallelism

 

30

 

intra-partition

 

parallelism
used

 

with

 

inter-partition

 

parallelism

 

30

 

intra-query

 

parallelism

 

30

 

invoking
command

 

help

 

304

 

message

 

help

 

304

 

SQL

 

statement

 

help

 

305

 

iSeries

 

databases
updating

 

with

 

XA

 

transaction

 

managers

 

191

 

J
joins

paths

 

52

 

K
key

 

columns
identifying

 

56

 

keyboard

 

shortcuts
support

 

for

 

307

 

keys
description

 

56

 

foreign

 

63

 

parent

 

63

 

partitioning

 

85

 

unique

 

63

 

L
languages

available

 

231

 

compatibility

 

between

 

DAS

 

and

 

instance

 

261

 

DB2

 

supported

 

231

 

large

 

object

 

(LOB)

 

data

 

types
column

 

definition

 

55

 

estimating

 

data

 

size

 

requirements

 

77

 

large

 

page

 

support
AIX

 

64-bit

 

environment

 

283

 

LIST

 

INDOUBT

 

TRANSACTIONS

 

command

 

191

 

literals
Unicode

 

278

 

load

 

utility
incompatibility

 

207

 

loading
data

into

 

multidimensional

 

tables

 

137

 

LOB

 

(large

 

object)

 

data

 

types
column

 

definition

 

55

 

estimating

 

size

 

requirements

 

77

 

LOB

 

locator

 

switching
incompatibility

 

207

 

locales
compatibility

 

between

 

DAS

 

and

 

instance

 

261

 

locking
discrete

 

136

 

log

 

file

 

space
estimating

 

size

 

requirements

 

80

 

logging
multidimensional

 

tables

 

137

 

logical

 

database

 

design
deciding

 

what

 

data

 

to

 

record

 

51

 

defining

 

tables

 

52

 

relationships

 

52

 

logical

 

database

 

partitions

 

34

 

long

 

fields
estimating

 

data

 

size

 

requirements

 

for

 

76

 

M
mapping

table

 

spaces

 

to

 

buffer

 

pools

 

114

 

table

 

spaces

 

to

 

database

 

partition

 

groups

 

115

 

tables

 

to

 

table

 

spaces

 

131

 

maps
table

 

space

 

95

 

materialized

 

query

 

tables

 

(MQT)
database

 

design

 

considerations

 

69

 

replicated

 

88

 

MDC

 

(multidimensional

 

clustering)

 

137

 

MDC

 

tables

 

160

 

choosing

 

dimensions

 

153

 

message

 

help
invoking

 

304

 

messages
incompatibility

 

207

 

mode

 

change

 

to

 

tables
incompatibility

 

207

 

monotonicity

 

160

 

moving

 

a

 

DBCLOB
incompatibility

 

207

 

moving

 

and

 

transforming

 

data
warehouse

 

tasks

 

described

 

47

 

moving

 

data
to

 

multidimensional

 

tables

 

160

 

MPP

 

environment

 

34

 

multi-partition

 

database

 

partition

 

group

 

81

 

multidimensional

 

clustering

 

(MDC)

 

137

 

multidimensional

 

clustering

 

tables

 

132

 

multidimensional

 

tables

 

160

 

cells

 

in

 

137

 

choosing

 

dimensions

 

153

 

density

 

of

 

values

 

153

 

in

 

SMS

 

table

 

spaces

 

160

 

moving

 

data

 

to

 

160

 

using

 

column

 

expressions

 

as

 

dimensions

 

160

 

multiple

 

partition

 

configurations

 

34

 

multisite

 

updates

 

168,

 

169

 

host

 

or

 

iSeries

 

applications

 

accessing

 

a

 

DB2

 

UDB

 

server

 

173

 

N
national

 

language

 

support

 

(NLS)
bidirectional

 

CCSID

 

support

 

263

 

national

 

languages
available

 

231

 

NLS

 

(national

 

language

 

support)
bidirectional-specific

 

CCSIDs

 

263

 

non-recoverable

 

database
backup

 

and

 

recovery

 

15

 

non-thread

 

safe

 

library

 

support
incompatibility

 

207

 

normalizing

 

tables

 

59

 

NOT

 

NULL

 

constraints

 

12

 

null

 

value
in

 

column

 

definitions

 

55

 

O
OBJCAT

 

views
incompatibility

 

207

   

Index

 

317



online
help,

 

accessing

 

303

 

ordering

 

DB2

 

books

 

302

 

P
parallelism

and

 

different

 

hardware

 

environments

 

34

 

and

 

index

 

creation

 

30

 

database

 

backup

 

and

 

restore

 

utilities

 

30

 

I/O

 

30,

 

129

 

inter-partition

 

30

 

intra-partition
description

 

30

 

load

 

utility

 

30

 

overview

 

29

 

query

 

30

 

utility

 

30

 

parent

 

key

 

63

 

parent

 

row

 

63

 

parent

 

table

 

63

 

partial

 

declustering

 

29

 

partitioned

 

databases
description

 

29

 

transaction

 

access

 

183

 

partitioning

 

data
description

 

29

 

partitioning

 

keys
description

 

85

 

partitioning

 

maps
description

 

84

 

partitions
compatibility

 

87

 

database

 

29

 

with

 

multiple

 

processors

 

34

 

with

 

one

 

processor

 

34

 

pattern

 

matching
Unicode

 

databases

 

279

 

performance
table

 

space

 

129

 

physical

 

database

 

design

 

71

 

precompiler

 

and

 

host

 

variable
incompatibility

 

207

 

primary

 

indexes

 

56

 

primary

 

keys
constraints

 

12

 

description

 

56

 

generating

 

unique

 

values

 

58

 

printed

 

books,

 

ordering

 

302

 

printing
PDF

 

files

 

302

 

privileges
planning

 

25

 

problem

 

determination
online

 

information

 

306

 

tutorials

 

306

 

processes
data

 

warehouse

 

43

 

program

 

steps
data

 

warehouse

 

43

 

Q
queries

parallelism

 

30

 

queries

 

that

 

benefit

 

from

 

multidimensional

 

clustering

 

153

 

R
RAID

 

(Redundant

 

Array

 

of

 

Independent

 

Disks)

 

devices
optimizing

 

performance

 

129

 

range-clustered

 

tables

 

132

 

advantages

 

133

 

description

 

133

 

locking

 

136

 

out-of-range

 

record

 

keys

 

136

 

recoverable

 

databases

 

15

 

recovery
history

 

file

 

15

 

log

 

file

 

15

 

objects

 

15

 

overview

 

15

 

table

 

space

 

change

 

history

 

file

 

15

 

Redundant

 

Array

 

of

 

Independent

 

Disks

 

(RAID)
optimizing

 

performance

 

129

 

reference

 

types
description

 

55

 

referential

 

constraints
description

 

63

 

referential

 

integrity
constraints

 

63

 

registry

 

variables
DB2_NO_MPFA_FOR

 

_NEW_DB

 

92,

 

113,

 

160

 

DB2_SMS_TMPTABLE

 

_THRESH

 

126

 

DB2_SMS_TRUNC

 

_TMPTABLE_THRESH

 

81

 

DB2_SMS_TRUNC_TMPTABLE

 

_THRESH

 

127

 

regular

 

tables

 

132

 

relationships
many-to-many

 

52

 

many-to-one

 

52

 

one-to-many

 

52

 

one-to-one

 

52

 

release

 

to

 

release

 

incompatibilities
description

 

205

 

remote

 

unit

 

of

 

work
updating

 

a

 

single

 

database

 

167

 

reorganization
automatic

 

18

 

replicated

 

materialized

 

query

 

tables

 

88

 

resolving

 

indoubt

 

transactions

 

191

 

resource

 

managers

 

(RM)
described

 

179

 

setting

 

up

 

a

 

database

 

as

 

183

 

root

 

types

 

55

 

rows
dependent

 

63

 

descendent

 

63

 

parent

 

63

 

self-referencing

 

63

 

S
savepoint

 

naming
incompatibility

 

207

 

scalability

 

34

 

schemas
description

 

3

 

scope
reference

 

type

 

55

 

scrollable

 

cursors
incompatibility

 

207

 

second

 

normal

 

form

 

59

 

security
authentication

 

25

 

database

 

design

 

considerations

 

69

 

description

 

24

 

self-referencing

 

row

 

63

 

self-referencing

 

table

 

63

 

SET

 

INTEGRITY
incompatibility

 

207

 

Shift

 

JIS

 

X0213

 

code

 

page
previous

 

conversion

 

tables

 

280

 

single

 

partition
multiple

 

processor

 

environment

 

34

 

single

 

processor

 

environment

 

34

 

size

 

requirements
estimating

 

73

 

temporary

 

tables
estimating

 

81

 

SMP

 

cluster

 

environment

 

34

 

SMS

 

(system

 

managed

 

space)

 

3

 

table

 

spaces
compared

 

to

 

DMS

 

table

 

spaces

 

109

 

descriptions

 

92

 

SNA

 

(Systems

 

Network

 

Architecture)
updating

 

databases

 

173

 

snapshots
storage

 

115

 

sources
data

 

warehouse

 

43

 

described

 

47

 

SPM

 

(sync

 

point

 

manager)

 

171

 

SQL

 

optimizer

 

3

 

SQL

 

statement

 

help
invoking

 

305

 

SQL

 

steps
data

 

warehouse

 

43

 

SQLDBCON

 

configuration

 

file

 

11

 

statistics

 

collection
automatic

 

18

 

statistics

 

profiling
automatic

 

18

 

steps
described

 

47

 

STMG_CONTAINER

 

table

 

116

 

STMG_CURR_THRESHOLD

 

table

 

116

 

STMG_DATABASE

 

table

 

116

 

STMG_DBPARTITION

 

table

 

116

 

STMG_DBPGROUP

 

table

 

116

 

STMG_HIST_THRESHOLD

 

table

 

116

 

STMG_INDEX

 

table

 

116

 

STMG_OBJECT

 

table

 

116

 

STMG_OBJECT_TYPE

 

table

 

116

 

STMG_ROOT_OBJECT

 

table

 

116

 

STMG_TABLE

 

table

 

116

 

STMG_TABLESPACE

 

table

 

116

 

STMG_TBPARTITION

 

table

 

116

   

318

 

Administration

 

Guide:

 

Planning



STMG_THRESHOLD_REGISTRY

 

table

 

116

 

storage

 

management

 

snapshots

 

115

 

storage

 

management

 

tool
storage

 

management

 

view

 

115

 

stored

 

procedures

 

116

 

storage

 

management

 

view
tables

 

in

 

116

 

storage

 

objects
buffer

 

pools

 

3

 

container

 

3

 

table

 

spaces

 

3

 

stored

 

procedures
for

 

storage

 

management

 

tool

 

116

 

strings
Unicode

 

comparisons

 

279

 

stripe

 

sets

 

95

 

structured

 

types
database

 

design

 

considerations

 

69

 

in

 

column

 

definitions

 

55

 

subject

 

areas
described

 

47

 

SUBSTR

 

function
incompatibility

 

207

 

subtypes
inheritance

 

55

 

supertypes
in

 

structured

 

type

 

hierarchies

 

55

 

surrogate

 

characters
Unicode

 

272,

 

274

 

sync

 

point

 

manager

 

(SPM)
description

 

171

 

SYSCAT

 

views
incompatibility

 

207

 

SYSCATSPACE

 

table

 

spaces

 

89

 

SYSPROC.CAPTURE_STORAGEMGMT

 

_INFO

 

stored

 

procedure

 

116

 

SYSPROC.CREATE_STORAGEMGMT

 

_TABLES

 

stored

 

procedure

 

116

 

SYSPROC.DROP_STORAGEMGMT

 

_TABLES

 

stored

 

procedure

 

116

 

system

 

catalog

 

tables
description

 

3

 

estimating

 

initial

 

size

 

74

 

system

 

managed

 

space

 

(SMS)

 

3,

 

92

 

system

 

temporary

 

table

 

spaces

 

89

 

Systems

 

Network

 

Architecture

 

(SNA)

 

173

 

T
table

 

spaces
catalogs

 

89,

 

128

 

choice

 

by

 

optimizer

 

89

 

database

 

managed

 

space

 

(DMS)

 

94

 

description

 

3

 

design
description

 

89

 

OLTP

 

workload

 

111

 

query

 

workload

 

111

 

workload

 

considerations

 

111

 

disk

 

I/O

 

considerations

 

110

 

mapping

 

to

 

buffer

 

pools

 

114

 

mapping

 

to

 

database

 

partition

 

groups

 

115

 

maps

 

95

 

OLTP

 

workload

 

111

 

table

 

spaces

 

(continued)
performance

 

129

 

query

 

workload

 

111

 

SYSCATSPACE

 

89

 

system

 

managed

 

space

 

(SMS)

 

92

 

temporary

 

89,

 

126

 

TEMPSPACE1

 

89

 

types
SMS

 

or

 

DMS

 

109

 

user

 

89

 

USERSPACE1

 

89

 

workload

 

considerations

 

111

 

tables
append

 

mode

 

132

 

check

 

constraints
types

 

63

 

collocation

 

87

 

dependent

 

63

 

descendent

 

63

 

description

 

3

 

estimating

 

size

 

requirements

 

73

 

introduction

 

132

 

mapping

 

to

 

table

 

spaces

 

131

 

multidimensional

 

clustering

 

132

 

normalization

 

59

 

parent

 

63

 

range-clustered

 

132,

 

133

 

regular

 

132

 

self-referencing

 

63

 

system

 

catalog

 

74

 

temporary

 

127

 

transition

 

68

 

user

 

75

 

targets
data

 

warehouse

 

43

 

rows

 

55

 

tables

 

55

 

types

 

55

 

views

 

55

 

temporary

 

table

 

spaces
design

 

89

 

recommendations

 

126

 

temporary

 

tables
size

 

requirements

 

81

 

SMS

 

table

 

spaces

 

127

 

temporary

 

work

 

spaces
size

 

requirements

 

81

 

TEMPSPACE1

 

table

 

space

 

89

 

territory

 

codes
DB2

 

supported

 

231

 

Thai

 

characters
sorting

 

269

 

third

 

normal

 

form

 

59

 

time
formats

description

 

270

 

TPM

 

values

 

185

 

TPMONNAME

 

values

 

185

 

transaction

 

managers
BEA

 

Tuxedo

 

200

 

DB2

 

transaction

 

manager

 

170

 

distributed

 

transaction

 

processing

 

179

 

IBM

 

TXSeries

 

CICS

 

198

 

IBM

 

TXSeries

 

Encina

 

198

 

IBM

 

WebSphere

 

Application

 

Server

 

198

 

transaction

 

managers

 

(continued)
multiple

 

database

 

updates

 

169

 

problem

 

determination

 

197

 

XA

 

architecture

 

195

 

transaction

 

processing

 

monitors
BEA

 

Tuxedo

 

200

 

configuration

 

considerations

 

194

 

IBM

 

TXSeries

 

CICS

 

198

 

IBM

 

TXSeries

 

Encina

 

198

 

security

 

considerations

 

193

 

transactions
accessing

 

partitioned

 

databases

 

183

 

description

 

26

 

global

 

179

 

loosely

 

coupled

 

179

 

non-XA

 

179

 

tightly

 

coupled

 

179

 

two-phase

 

commit

 

179

 

transformer

 

steps
data

 

warehouse

 

43

 

transformers
described

 

47

 

triggers
business

 

rules

 

for

 

data

 

12

 

cascading

 

68

 

description

 

68

 

troubleshooting
online

 

information

 

306

 

tutorials

 

306

 

tutorials

 

305

 

troubleshooting

 

and

 

problem

 

determination

 

306

 

Tuxedo
configuring

 

200

 

two-phase

 

commit
error

 

handling

 

176

 

process

 

174

 

updating
a

 

single

 

database

 

in

 

a

 

multi-database

 

transaction

 

168

 

multiple

 

databases

 

169

 

TXSeries

 

CICS

 

198

 

TXSeries

 

Encina

 

198

 

type

 

1

 

connection
incompatibility

 

207

 

type

 

hierarchy

 

55

 

typed

 

tables
database

 

design

 

considerations

 

69

 

description

 

55

 

typed

 

views
description

 

55

 

U
UCS-2

see

 

Unicode

 

(UCS-2)

 

272

 

UDFs

 

(user-defined

 

functions)
description

 

55

 

uncommitted

 

units

 

of

 

work

 

on

 

UNIX
incompatibility

 

207

 

Unicode

 

(UCS-2)

 

272

 

CCSID

 

274

 

character

 

strings

 

276

 

code

 

page

 

274

 

constants

 

278

 

conversion

 

tables

 

281

   

Index

 

319



Unicode

 

(UCS-2)

 

(continued)
converting

 

code

 

page

 

1394

 

to
previous

 

conversion

 

tables

 

280

 

converting

 

Shift

 

JIS

 

X0213

 

to
previous

 

conversion

 

tables

 

280

 

database

 

278

 

DB2

 

supported

 

274

 

graphic

 

strings

 

276

 

literals

 

278

 

pattern

 

matching

 

279

 

string

 

comparisons

 

279

 

surrogate

 

characters

 

272

 

uniprocessor

 

environment

 

34

 

unique

 

constraints
about

 

12

 

definition

 

63

 

unique

 

keys
description

 

56,

 

63

 

units

 

of

 

work

 

(UOW)

 

26

 

remote

 

167

 

update

 

rule,

 

with

 

referential

 

constraints

 

63

 

Updating
HMTL

 

documentation

 

295

 

user

 

table

 

page

 

limits

 

75

 

user

 

table

 

spaces

 

89

 

user

 

temporary

 

table

 

spaces
designing

 

89

 

user-defined

 

functions

 

(UDFs)
description

 

55

 

incompatibility

 

207

 

user-defined

 

program

 

steps
data

 

warehouse

 

43

 

user-defined

 

programs
described

 

47

 

user-defined

 

types

 

(UDTs)
column

 

definition

 

55

 

USERSPACE1

 

table

 

space

 

89

 

UTF-16

 

272

 

UTF-8

 

272,

 

274

 

utility

 

parallelism

 

30

 

V
variables

transition

 

68

 

VERSION

 

option
incompatibility

 

207

 

views
description

 

3

 

vmo
AIX

 

system

 

command

 

283

 

vmtune
AIX

 

system

 

command

 

283

 

W
warehouse

 

agent

 

sites
described

 

47

 

warehouse

 

agents
described

 

47

 

warehouse

 

control

 

database
data

 

warehouse

 

43

 

warehouse

 

objects

 

43

 

warehouse

 

programs
described

 

47

 

warehouse

 

tasks

 

47

 

warehousing
overview

 

43

 

WebSphere

 

Application

 

Server
configuring

 

198

 

weight,

 

definition

 

268

 

X
X/Open

 

distributed

 

transaction

 

processing

 

(DTP)

 

model

 

179

 

XA

 

interface
distributed

 

transaction

 

processing

 

model

 

179

 

XA

 

specification

 

195

 

XA

 

switch

 

195

 

XA

 

transaction

 

managers
configuration

 

considerations

 

194

 

security

 

considerations

 

193

 

troubleshooting

 

197

 

updating

 

host

 

and

 

iSeries

 

databases

 

191

  

320

 

Administration

 

Guide:

 

Planning



Contacting

 

IBM

 

In

 

the

 

United

 

States,

 

call

 

one

 

of

 

the

 

following

 

numbers

 

to

 

contact

 

IBM:

 

v

   

1-800-IBM-SERV

 

(1-800-426-7378)

 

for

 

customer

 

service

 

v

   

1-888-426-4343

 

to

 

learn

 

about

 

available

 

service

 

options

 

v

   

1-800-IBM-4YOU

 

(426-4968)

 

for

 

DB2

 

marketing

 

and

 

sales

In

 

Canada,

 

call

 

one

 

of

 

the

 

following

 

numbers

 

to

 

contact

 

IBM:

 

v

   

1-800-IBM-SERV

 

(1-800-426-7378)

 

for

 

customer

 

service

 

v

   

1-800-465-9600

 

to

 

learn

 

about

 

available

 

service

 

options

 

v

   

1-800-IBM-4YOU

 

(1-800-426-4968)

 

for

 

DB2

 

marketing

 

and

 

sales

To

 

locate

 

an

 

IBM

 

office

 

in

 

your

 

country

 

or

 

region,

 

check

 

IBM’s

 

Directory

 

of

 

Worldwide

 

Contacts

 

on

 

the

 

web

 

at

 

http://www.ibm.com/planetwide

 

Product

 

information

 

Information

 

regarding

 

DB2

 

Universal

 

Database

 

products

 

is

 

available

 

by

 

telephone

 

or

 

by

 

the

 

World

 

Wide

 

Web

 

at

 

http://www.ibm.com/software/data/db2/udb

 

This

 

site

 

contains

 

the

 

latest

 

information

 

on

 

the

 

technical

 

library,

 

ordering

 

books,

 

product

 

downloads,

 

newsgroups,

 

FixPaks,

 

news,

 

and

 

links

 

to

 

web

 

resources.

 

If

 

you

 

live

 

in

 

the

 

U.S.A.,

 

then

 

you

 

can

 

call

 

one

 

of

 

the

 

following

 

numbers:

 

v

   

1-800-IBM-CALL

 

(1-800-426-2255)

 

to

 

order

 

products

 

or

 

to

 

obtain

 

general

 

information.

 

v

   

1-800-879-2755

 

to

 

order

 

publications.

 

For

 

information

 

on

 

how

 

to

 

contact

 

IBM

 

outside

 

of

 

the

 

United

 

States,

 

go

 

to

 

the

 

IBM

 

Worldwide

 

page

 

at

 

www.ibm.com/planetwide

  

©

 

Copyright

 

IBM

 

Corp.

 

1993

 

-

 

2004

 

321

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide


322

 

Administration

 

Guide:

 

Planning





����

  

Printed

 

in

 

USA

    

SC09-4822-01

               



Sp
in
e

 

in
fo
rm
at
io
n:

  �
�

�
 

IB
M

®
 

D
B

2
 

U
ni

ve
rs

al
 

D
at

ab
as

e™
 

Ad
m

in
is

tr
at

io
n

 

G
ui

de
:

 

Pl
an

ni
ng

 

Ve
rs

io
n

 

8.
2

 


	Contents
	About this book
	Who should use this book
	How this book is structured
	A brief overview of the other Administration Guide volumes
	Administration Guide: Implementation
	Administration Guide: Performance


	Part 1. Database concepts
	Chapter 1. Basic relational database concepts
	Database objects
	Configuration parameters
	Business rules for data
	Developing a backup and recovery strategy
	Automated backup operations

	Automatic maintenance
	High availability disaster recovery (HADR) feature overview
	Security
	Authentication
	Authorization
	Units of work

	Chapter 2. Parallel database systems
	Data partitioning
	Parallelism
	Input/output parallelism
	Query parallelism
	Intrapartition parallelism
	Interpartition parallelism
	Simultaneous intrapartition and interpartition parallelism

	Utility parallelism

	Partition and processor environments
	Single partition on a single processor
	Capacity and scalability

	Single partition with multiple processors
	Capacity and scalability

	Multiple partition configurations
	Partitions with one processor
	Partitions with multiple processors
	Logical database partitions

	Summary of parallelism best suited to each hardware environment


	Chapter 3. About data warehousing
	What solutions does data warehousing provide?
	Data warehouse objects
	Subject areas
	Warehouse sources
	Warehouse targets
	Warehouse control databases
	Warehouse agents and agent sites
	Processes and steps
	SQL steps
	Program steps
	Transformer steps
	User-defined program steps


	Warehouse tasks

	Part 2. Database design
	Chapter 4. Logical database design
	What to record in a database
	Database relationships
	One-to-many and many-to-one relationships
	Many-to-many relationships
	One-to-one relationships
	Ensure that equal values represent the same entity

	Column definitions
	Primary keys
	Identifying candidate key columns

	Identity columns
	Normalization
	First normal form
	Second normal form
	Third normal form
	Fourth normal form

	Constraints
	Unique constraints
	Referential constraints
	Insert rule
	Update rule
	Delete rule

	Table check constraints
	Informational constraints

	Triggers
	Additional database design considerations

	Chapter 5. Physical database design
	Database directories and files
	Space requirements for database objects
	Space requirements for system catalog tables
	Space requirements for user table data
	Space requirements for long field data
	Space requirements for large object data
	Space requirements for indexes
	Space requirements for log files
	Space requirements for temporary tables
	Database partition groups
	Database partition group design
	Partitioning maps
	Partitioning keys
	Table collocation
	Partition compatibility
	Replicated materialized query tables
	Table space design
	System managed space
	Database managed space
	Table space maps
	How containers are added and extended in DMS table spaces
	Rebalancing
	Without rebalancing (using stripe sets)

	How containers are dropped and reduced in DMS table spaces
	Comparison of SMS and DMS table spaces
	Table space disk I/O
	Workload considerations in table space design
	Extent size
	Relationship between table spaces and buffer pools
	Relationship between table spaces and database partition groups
	Storage management view
	Stored procedures for the storage management tool
	Storage management view tables
	Temporary table space design
	Temporary tables in SMS table spaces
	Catalog table space design
	Optimizing table space performance when data is on RAID devices
	Considerations when choosing table spaces for your tables
	Tables used within DB2 UDB
	Range-clustered tables
	Range-clustered tables and out-of-range record key values
	Range-clustered table locks
	Multidimensional clustering tables
	Designing multidimensional clustering (MDC) tables
	Multidimensional clustering (MDC) table creation, placement, and use

	Chapter 6. Designing distributed databases
	Updating a single database in a transaction
	Using multiple databases in a single transaction
	Updating a single database in a multi-database transaction
	Updating multiple databases in a transaction
	DB2 transaction manager
	DB2 Universal Database transaction manager configuration
	DB2 Universal Database for UNIX and Windows and DB2 for z/OS, OS/390, and iSeries V5 using TCP/IP Connectivity
	Configuration parameters


	Updating a database from a host or iSeries client
	Two-phase commit
	Error recovery during two-phase commit
	Error recovery if autorestart=off


	Chapter 7. Designing for XA-compliant transaction managers
	X/Open distributed transaction processing model
	Application program (AP)
	Transaction manager (TM)
	Resource managers (RM)

	Resource manager setup
	Database connection considerations
	Automatic client reroute (ACR)
	Transactions accessing partitioned databases


	xa_open string formats
	xa_open string format for DB2 Universal Database™ (DB2 UDB) and DB2 Connect™ Version 8 FixPak 3 and later
	TPM and tp_mon_name values

	xa_open string format for earlier versions
	Examples

	Updating host or iSeries database servers with an XA-compliant transaction manager
	Manually resolving indoubt transactions
	Security considerations for XA transaction managers
	Configuration considerations for XA transaction managers
	XA function supported by DB2 Universal Database
	XA switch usage and location
	Using the DB2 Universal Database XA switch
	UNIX-based systems
	Windows NT
	Example C Code


	XA interface problem determination
	XA transaction manager configuration
	Configuring IBM WebSphere Application Server
	Configuring IBM TXSeries CICS
	Configuring IBM TXSeries Encina
	Configuring DB2 Universal Database
	Configuring Encina for Each Resource Manager
	Referencing a DB2 UDB database from an Encina application

	Configuring BEA Tuxedo


	Part 3. Appendixes
	Appendix A. Incompatibilities between releases
	DB2 Universal Database planned incompatibilities
	System catalog information
	PK_COLNAMES and FK_COLNAMES in a future version of DB2 Universal Database
	COLNAMES no longer available in a future version of DB2 Universal Database

	Utilities and tools
	Support for re-creation of type-1 indexes will be removed


	Version 8 incompatibilities with previous releases
	System catalog information
	IMPLEMENTED column in catalog tables
	OBJCAT views renamed to SYSCAT views
	SYSCAT views are now read-only

	Application programming
	Audit context records statement size has grown
	Applications run multithreaded by default
	SQL0818N error not returned when using VERSION option
	SQL0306N error not returned to the precompiler when a host variable is not defined
	Data types not supported for use with scrollable cursors
	Euro version of code page conversion tables
	Switching between a LOB locator and a LOB value
	Uncommitted units of work on UNIX platforms
	Change to savepoint naming
	Code page conversion errors and byte substitution
	Code page conversion for host variables
	Expansion and contraction of data in host variables
	Length of host variables after code page conversion
	Change to output of DESCRIBE statement
	Error when using SUBSTR function with host variables
	Non-thread safe libraries are no longer supported on Solaris
	Importing or exporting a DBCLOB when connected to a Unicode database

	SQL
	Identical specific names not permitted for functions and procedures
	EXECUTE privilege on functions and procedures
	Adding a foreign key constraint to a table
	Change to SET INTEGRITY ... IMMEDIATE CHECKED
	Decimal separator for CHAR function
	Changes to CALL statement
	Output from UDFs returning fixed-length strings
	Change in database connection behavior
	Revoking CONTROL on packages
	Error when casting a FOR BIT DATA character string to a CLOB
	Output from CHR function
	TABLE_NAME and TABLE_SCHEMA functions cannot be used in generated columns or check constraints

	Database security and tuning
	Authority for CREATE FUNCTION, CREATE METHOD and CREATE PROCEDURE statements

	Utilities and tools
	Changes when monitoring performance using the Control Center
	Running online utilities at the same time
	Changes to db2move summary output
	Changes to the explain facility tables
	Changes to the db2diag.log message format
	Downlevel CREATE DATABASE and DROP DATABASE not supported
	Mode change to tables after a load
	Load utility in insert or replace mode
	DB2_LIKE_VARCHAR does not control collection of sub-element statistics

	Connectivity and coexistence
	Down level server support
	Scrollable cursor support
	Version 7 server access via a DB2 Connect Version 8 server
	Type 1 connection with CLP and embedded SQL

	Messages
	DB2 Connect messages returned instead of DB2 UDB messages

	Configuration parameters
	Obsolete database manager configuration parameters
	Obsolete database configuration parameters


	Version 7 incompatibilities with previous releases
	Application Programming
	Query Patroller Universal Client
	Object Transform Functions and Structured Types
	Versions of Class and Jar Files Used by the JVM
	Changed Functionality of Install, Replace, and Remove Jar Commands
	32-bit Application Incompatibility
	Changing the Length Field of the Scratchpad

	SQL
	Applications that Use Regular Tables Qualified by the Schema SESSION

	Utilities and Tools
	db2set on AIX and Solaris

	Connectivity and Coexistence
	32-bit Client Incompatibility



	Appendix B. National language support (NLS)
	National language versions
	Supported territory codes and code pages
	Enabling and disabling euro symbol support
	Conversion table files for euro-enabled code pages
	Conversion tables for code pages 923 and 924
	Choosing a language for your database
	Locale setting for the DB2 Administration Server

	Enabling bidirectional support
	Bidirectional-specific CCSIDs
	Bidirectional support with DB2 Connect
	Collating sequences
	Collating Thai characters
	Date and time formats by territory code
	Unicode character encoding
	UCS-2
	UTF-8
	UTF-16

	Unicode implementation in DB2 Universal Database
	Code Page/CCSID Numbers
	Thai and Unicode collation algorithm differences

	Unicode handling of data types
	Creating a Unicode database
	Unicode literals
	String comparisons in a Unicode database
	Installing the previous tables for converting between code page 1394 and Unicode
	Alternative Unicode conversion tables for the coded character set identifier (CCSID) 943
	Replacing the Unicode conversion tables for coded character set (CCSID) 943 with the Microsoft conversion tables

	Appendix C. Enabling large page support in a 64-bit environment (AIX)
	Appendix D. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix E. Notices
	Trademarks

	Index
	Contacting IBM
	Product information


