
IBM
®

DB2

Universal

Database
™

Data

Movement

Utilities

Guide

and

Reference

Version

8.2

SC09-4830-01

���

IBM
®

DB2

Universal

Database
™

Data

Movement

Utilities

Guide

and

Reference

Version

8.2

SC09-4830-01

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Notices.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative.

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

To

order

DB2

publications

from

DB2

Marketing

and

Sales

in

the

United

States

or

Canada,

call

1-800-IBM-4YOU

(426-4968).

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1999

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

. v

Who

Should

Use

this

Book

.

.

.

.

.

.

.

.

. v

How

this

Book

is

Structured

.

.

.

.

.

.

.

.

. v

Chapter

1.

Export

.

.

.

.

.

.

.

.

.

.

. 1

Export

Overview

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Privileges,

authorities

and

authorization

required

to

use

export

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Using

Export

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Using

export

with

identity

columns

.

.

.

.

.

. 4

Recreating

an

exported

table

.

.

.

.

.

.

.

.

. 4

Exporting

large

objects

(LOBS)

.

.

.

.

.

.

.

. 4

Exporting

data

in

parallel

.

.

.

.

.

.

.

.

.

. 5

EXPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

db2Export

-

Export

.

.

.

.

.

.

.

.

.

.

.

. 12

File

type

modifiers

for

export

.

.

.

.

.

.

.

. 19

Export

Sessions

-

CLP

Examples

.

.

.

.

.

.

. 23

Chapter

2.

Import

.

.

.

.

.

.

.

.

.

. 25

Import

Overview

.

.

.

.

.

.

.

.

.

.

.

. 25

Privileges,

authorities,

and

authorization

required

to

use

import

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Using

import

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Using

import

in

a

client/server

environment

.

.

. 28

Using

import

with

buffered

inserts

.

.

.

.

.

. 29

Using

import

with

identity

columns

.

.

.

.

.

. 29

Using

import

with

generated

columns

.

.

.

.

. 31

Using

import

to

recreate

an

exported

table

.

.

.

. 32

Importing

large

objects

(LOBS)

.

.

.

.

.

.

.

. 33

Importing

user-defined

distinct

types

(UDTs)

.

.

. 34

Table

locking

during

import

.

.

.

.

.

.

.

.

. 34

IMPORT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

db2Import

-

Import

.

.

.

.

.

.

.

.

.

.

.

. 48

File

type

modifiers

for

import

.

.

.

.

.

.

.

. 59

Character

Set

and

NLS

Considerations

.

.

.

.

. 68

Import

Sessions

-

CLP

Examples

.

.

.

.

.

.

. 68

Chapter

3.

Load

.

.

.

.

.

.

.

.

.

.

. 73

Load

Overview

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Changes

to

Previous

Load

Behavior

Introduced

in

Version

6

and

Version

7

.

.

.

.

.

.

.

. 77

Changes

to

Previous

Load

Behavior

Introduced

in

Version

8

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Parallelism

and

loading

.

.

.

.

.

.

.

.

.

. 80

Privileges,

authorities,

and

authorizations

required

to

use

Load

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Using

Load

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Read

access

load

operations

.

.

.

.

.

.

.

.

. 83

Building

indexes

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Using

load

with

identity

columns

.

.

.

.

.

.

. 87

Using

load

with

generated

columns

.

.

.

.

.

. 89

Checking

for

integrity

violations

.

.

.

.

.

.

. 91

Refreshing

dependent

immediate

materialized

query

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Propagating

dependent

immediate

staging

tables

.

. 95

Multidimensional

clustering

considerations

.

.

.

. 96

Restarting

an

interrupted

load

operation

.

.

.

.

. 97

Restarting

or

Terminating

an

Allow

Read

Access

Load

Operation

.

.

.

.

.

.

.

.

.

.

.

. 97

Recovering

data

with

the

load

copy

location

file

.

. 98

LOAD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

LOAD

QUERY

.

.

.

.

.

.

.

.

.

.

.

.

. 121

db2Load

-

Load

.

.

.

.

.

.

.

.

.

.

.

. 123

db2LoadQuery

-

Load

Query

.

.

.

.

.

.

.

. 145

File

type

modifiers

for

load

.

.

.

.

.

.

.

.

. 149

Load

exception

table

.

.

.

.

.

.

.

.

.

.

. 160

Load

dump

file

.

.

.

.

.

.

.

.

.

.

.

.

. 160

Load

temporary

files

.

.

.

.

.

.

.

.

.

.

. 161

Load

utility

log

records

.

.

.

.

.

.

.

.

.

. 162

Table

locking,

table

states

and

table

space

states

162

Character

set

and

national

language

support

.

.

. 165

Pending

states

after

a

load

operation

.

.

.

.

. 165

Optimizing

load

performance

.

.

.

.

.

.

.

. 166

Load

-

CLP

Examples

.

.

.

.

.

.

.

.

.

. 171

Chapter

4.

Loading

data

in

a

partitioned

database

environment

.

. 177

Partitioned

database

load

-

overview

.

.

.

.

. 177

Using

load

in

a

partitioned

database

environment

179

Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command

.

.

.

.

.

.

.

.

. 184

Restarting

or

terminating

a

load

operation

in

a

partitioned

database

environment

.

.

.

.

.

. 186

Partitioned

database

load

configuration

options

187

Example

partitioned

database

load

sessions

.

.

. 192

Migration

and

back-level

compatibility

.

.

.

.

. 195

Loading

data

in

a

partitioned

database

environment

-

hints

and

tips

.

.

.

.

.

.

.

. 197

Chapter

5.

Moving

DB2

Data

Links

Manager

Data

.

.

.

.

.

.

.

.

.

.

. 199

Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts

.

.

.

.

.

.

.

.

.

.

.

. 199

Using

export

to

move

DB2

Data

Links

Manager

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Using

import

to

move

DB2

Data

Links

Manager

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

Using

load

to

move

DB2

Data

Links

Manager

data

203

Chapter

6.

Moving

Data

Between

Systems

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Moving

data

across

platforms

-

file

format

considerations

.

.

.

.

.

.

.

.

.

.

.

.

. 205

PC/IXF

File

Format

.

.

.

.

.

.

.

.

.

. 205

Delimited

ASCII

(DEL)

File

Format

.

.

.

.

. 206

WSF

File

Format

.

.

.

.

.

.

.

.

.

.

. 206

Moving

Data

With

DB2

Connect

.

.

.

.

.

.

. 206

db2move

-

Database

Movement

Tool

.

.

.

.

. 209

db2relocatedb

-

Relocate

Database

.

.

.

.

.

. 213

©

Copyright

IBM

Corp.

1999

-

2004

iii

||

Delimiter

restrictions

for

moving

data

.

.

.

.

. 217

Moving

data

between

typed

tables

.

.

.

.

.

. 218

Moving

Data

Between

Typed

Tables

-

Details

.

.

. 219

Traverse

Order

.

.

.

.

.

.

.

.

.

.

.

. 219

Selection

During

Data

Movement

.

.

.

.

.

. 220

Examples

of

Moving

Data

Between

Typed

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Using

replication

to

move

data

.

.

.

.

.

.

. 222

IBM

Replication

Tools

.

.

.

.

.

.

.

.

.

. 224

The

IBM

Replication

Tools

by

Component

.

.

. 224

Using

the

Data

Warehouse

Center

to

Move

Data

224

Moving

data

using

the

cursor

file

type

.

.

.

.

. 226

Appendix

A.

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Appendix

B.

Differences

Between

the

Import

and

Load

Utility

.

.

.

.

.

.

. 231

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

.

.

. 233

Appendix

D.

File

Formats

.

.

.

.

.

. 243

Export/Import/Load

Utility

File

Formats

.

.

.

. 243

Delimited

ASCII

(DEL)

File

Format

.

.

.

.

.

. 244

Example

and

Data

Type

Descriptions

.

.

.

.

. 245

Example

DEL

File

.

.

.

.

.

.

.

.

.

.

. 245

DEL

Data

Type

Descriptions

.

.

.

.

.

.

. 246

Non-delimited

ASCII

(ASC)

File

Format

.

.

.

. 249

Example

and

Data

Type

Descriptions

.

.

.

.

. 249

Example

ASC

File

.

.

.

.

.

.

.

.

.

.

. 249

ASC

Data

Type

Descriptions

.

.

.

.

.

.

. 250

PC

Version

of

IXF

File

Format

.

.

.

.

.

.

.

. 252

PC

Version

of

IXF

File

Format

-

Details

.

.

.

.

. 254

PC/IXF

Record

Types

.

.

.

.

.

.

.

.

. 254

PC/IXF

Data

Types

.

.

.

.

.

.

.

.

.

. 270

PC/IXF

Data

Type

Descriptions

.

.

.

.

.

. 275

General

Rules

Governing

PC/IXF

File

Import

into

Databases

.

.

.

.

.

.

.

.

.

.

.

. 279

Data

Type-Specific

Rules

Governing

PC/IXF

File

Import

into

Databases

.

.

.

.

.

.

.

.

. 281

FORCEIN

Option

.

.

.

.

.

.

.

.

.

.

. 283

Differences

Between

PC/IXF

and

Version

0

System/370

IXF

.

.

.

.

.

.

.

.

.

.

. 290

Worksheet

File

Format

(WSF)

.

.

.

.

.

.

.

. 290

Appendix

E.

Export/Import/Load

Utility

Unicode

Considerations

.

.

.

.

.

.

. 293

Restrictions

for

Code

Pages

1394,

1392

and

5488

294

Incompatibilities

.

.

.

.

.

.

.

.

.

.

.

. 294

Appendix

F.

Bind

Files

Used

by

the

Export,

Import

and

Load

Utilities

.

.

. 297

Appendix

G.

Warning,

error

and

completion

messages

.

.

.

.

.

.

.

. 299

Appendix

H.

DB2

Universal

Database

technical

information

.

.

.

.

.

.

.

. 301

DB2

documentation

and

help

.

.

.

.

.

.

.

. 301

DB2

documentation

updates

.

.

.

.

.

.

. 301

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 302

DB2

Information

Center

installation

scenarios

.

. 303

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

.

.

.

.

.

.

.

.

. 305

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

.

.

.

.

.

.

.

. 308

Invoking

the

DB2

Information

Center

.

.

.

.

. 310

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

.

.

.

.

.

.

. 311

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

.

.

.

.

.

.

.

.

.

. 311

DB2

PDF

and

printed

documentation

.

.

.

.

. 312

Core

DB2

information

.

.

.

.

.

.

.

.

. 312

Administration

information

.

.

.

.

.

.

. 313

Application

development

information

.

.

.

. 314

Business

intelligence

information

.

.

.

.

.

. 314

DB2

Connect

information

.

.

.

.

.

.

.

. 315

Getting

started

information

.

.

.

.

.

.

.

. 315

Tutorial

information

.

.

.

.

.

.

.

.

.

. 315

Optional

component

information

.

.

.

.

.

. 316

Release

notes

.

.

.

.

.

.

.

.

.

.

.

. 316

Printing

DB2

books

from

PDF

files

.

.

.

.

.

. 317

Ordering

printed

DB2

books

.

.

.

.

.

.

.

. 318

Invoking

contextual

help

from

a

DB2

tool

.

.

.

. 318

Invoking

message

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Invoking

command

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Invoking

SQL

state

help

from

the

command

line

processor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

DB2

tutorials

.

.

.

.

.

.

.

.

.

.

.

.

. 321

DB2

troubleshooting

information

.

.

.

.

.

.

. 321

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

Keyboard

input

and

navigation

.

.

.

.

.

. 322

Accessible

display

.

.

.

.

.

.

.

.

.

.

. 323

Compatibility

with

assistive

technologies

.

.

. 323

Accessible

documentation

.

.

.

.

.

.

.

. 323

Dotted

decimal

syntax

diagrams

.

.

.

.

.

.

. 323

Common

Criteria

certification

of

DB2

Universal

Database

products

.

.

.

.

.

.

.

.

.

.

.

. 325

Appendix

I.

Notices

.

.

.

.

.

.

.

.

. 327

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 335

Product

information

.

.

.

.

.

.

.

.

.

.

. 335

iv

Data

Movement

Utilities

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

About

This

Book

This

book

provides

information

about,

and

shows

you

how

to

use,

the

following

IBM

DB2

Universal

Database

(UDB)

data

movement

utilities:

v

The

Import

and

Export

utilities

move

data

between

a

table

or

view

and

another

database

or

spreadsheet

program;

between

DB2

databases;

and

between

DB2

databases

and

host

databases

using

DB2

Connect.

The

export

utility

moves

data

from

a

database

into

operating

system

files;

you

can

then

use

those

files

to

import

or

load

that

data

into

another

database.

v

The

Load

utility

moves

data

into

tables,

extends

existing

indexes,

and

generates

statistics.

Load

moves

data

much

faster

than

the

import

utility

when

large

amounts

of

data

are

involved.

Data

unloaded

using

the

export

utility

can

be

loaded

with

the

load

utility.

v

When

the

Load

utility

is

used

in

a

partitioned

database

environment,

large

amounts

of

data

can

be

partitioned

and

loaded

into

different

database

partitions.

v

DataPropagator

(DPROP)

is

a

component

of

DB2

Universal

Database

that

allows

automatic

copying

of

table

updates

to

other

tables

in

other

DB2

relational

databases.

v

The

Data

Warehouse

Center

(DWC)

can

be

used

to

move

data

from

operational

databases

to

a

warehouse

database.

Other

vendor’s

products

that

move

data

in

and

out

of

databases

are

also

available,

but

are

not

discussed

in

this

book.

Who

Should

Use

this

Book

This

manual

is

for

database

administrators,

application

programmers,

and

other

DB2

UDB

users

who

perform

the

following

tasks:

v

Load

data

into

DB2

tables

from

operating

system

files

v

Move

data

between

DB2

databases,

and

between

DB2

and

other

applications

(for

example,

spreadsheets)

v

Archive

data.

It

is

assumed

that

you

are

familiar

with

DB2

Universal

Database,

Structured

Query

Language

(SQL),

and

with

the

operating

system

environment

in

which

DB2

UDB

is

running.

How

this

Book

is

Structured

The

following

topics

are

covered:

Chapter

1

Describes

the

DB2

export

utility,

used

to

move

data

from

DB2

tables

into

files.

Chapter

2

Describes

the

DB2

import

utility,

used

to

move

data

from

files

into

DB2

tables

or

views.

Chapter

3

Describes

the

DB2

load

utility,

used

to

move

large

volumes

of

data

into

DB2

tables.

©

Copyright

IBM

Corp.

1999

-

2004

v

Chapter

4

Describes

loading

data

in

a

partitioned

database

environment.

Chapter

5

Describes

how

to

use

the

DB2

export,

import,

and

load

utilities

to

move

DB2

Data

Links

Manager

data.

Chapter

6

Describes

how

to

use

the

DB2

export,

import,

and

load

utilities

to

transfer

data

across

platforms,

and

to

and

from

DRDA

host

databases.

DataPropagator

(DPROP),

another

method

for

moving

data

between

databases

in

an

enterprise,

is

also

described.

Also

introduces

the

Data

Warehouse

Center

(DWC),

which

can

be

used

to

move

data

from

operational

databases

to

a

warehouse

database.

Appendix

A

Explains

the

conventions

used

in

syntax

diagrams.

Appendix

B

Summarizes

the

important

differences

between

the

DB2

load

and

import

utilities.

Appendix

C

Includes

an

API

sample

program

that

illustrates

how

to

export

data

to

a

file,

import

data

to

a

table,

load

data

into

a

table,

and

check

the

status

of

a

load

operation.

Appendix

D

Describes

external

file

formats

supported

by

the

database

manager

export,

import,

and

load

utilities.

Appendix

E

Discusses

unicode

consideration

when

using

the

export,

import

and

load

utilities.

Appendix

F

Lists

bind

files

with

their

default

isolation

levels,

as

well

as

which

utilities

use

them

and

for

what

purpose.

Appendix

G

Provides

information

about

interpreting

messages

generated

by

the

database

manager

when

a

warning

or

error

condition

has

been

detected.

vi

Data

Movement

Utilities

Chapter

1.

Export

This

chapter

describes

the

DB2

UDB

export

utility,

which

is

used

to

write

data

from

a

DB2

database

to

one

or

more

files

stored

outside

of

the

database.

The

exported

data

can

then

be

imported

or

loaded

into

another

DB2

database,

using

the

DB2

import

or

the

DB2

load

utility,

respectively,

or

it

can

be

imported

into

another

application

(for

example,

a

spreadsheet).

The

following

topics

are

covered:

v

“Export

Overview”

v

“Privileges,

authorities

and

authorization

required

to

use

export”

on

page

2

v

“Using

Export”

on

page

3

v

“Using

export

with

identity

columns”

on

page

4

v

“Recreating

an

exported

table”

on

page

4

v

“Exporting

large

objects

(LOBS)”

on

page

4

v

“Exporting

data

in

parallel”

on

page

5

v

“EXPORT”

on

page

8

v

“db2Export

-

Export”

on

page

12

v

“Export

Sessions

-

CLP

Examples”

on

page

23

For

information

about

exporting

DB2

Data

Links

Manager

data,

see

“Using

export

to

move

DB2

Data

Links

Manager

data”

on

page

201.

For

information

about

exporting

data

out

of

typed

tables,

see

“Moving

data

between

typed

tables”

on

page

218.

For

information

about

exporting

data

from

a

DRDA

server

database

to

a

file

on

the

DB2

Connect

workstation,

and

the

reverse,

see

“Moving

Data

With

DB2

Connect”

on

page

206.

Export

Overview

The

export

utility

exports

data

from

a

database

to

an

operating

system

file,

which

can

be

in

one

of

several

external

file

formats.

This

operating

system

file

can

then

be

used

to

move

the

table

data

to

a

different

server

such

as

DB2®

UDB

for

iSeries™.

The

following

information

is

required

when

exporting

data:

v

An

SQL

SELECT

statement

specifying

the

data

to

be

exported.

v

The

path

and

name

of

the

operating

system

file

that

will

store

the

exported

data.

v

The

format

of

the

data

in

the

input

file.

This

format

can

be

IXF,

WSF,

or

DEL.

v

When

exporting

typed

tables,

you

might

need

to

provide

the

subtable

traverse

order

within

the

hierarchy.

If

the

IXF

format

is

to

be

used,

the

default

order

is

recommended.

When

specifying

the

order,

recall

that

the

subtables

must

be

traversed

in

the

PRE-ORDER

fashion.

When

exporting

typed

tables,

you

cannot

provide

a

SELECT

statement

directly.

Instead,

you

must

specify

the

target

subtable

name,

and

optionally

a

WHERE

clause.

The

export

utility

uses

this

information,

along

with

the

traverse

order,

to

generate

and

execute

the

required

SELECT

statement.

You

can

also

specify:

©

Copyright

IBM

Corp.

1999

-

2004

1

v

New

column

names

when

exporting

to

IXF

or

WSF

files.

If

you

do

not

want

to

specify

new

column

names,

the

column

names

in

the

existing

table

or

view

are

used

in

the

exported

file.

v

Additional

options

to

customize

the

export

operation.

v

A

message

file

name.

During

DB2

operations

such

as

exporting,

importing,

loading,

binding,

or

restoring

data,

you

can

specify

that

message

files

be

created

to

contain

the

error,

warning,

and

informational

messages

associated

with

those

operations.

Specify

the

name

of

these

files

with

the

MESSAGES

parameter.

These

message

files

are

standard

ASCII

text

files.

Each

message

in

a

message

file

begins

on

a

new

line

and

contains

information

provided

by

the

DB2

message

retrieval

facility.

To

print

them,

use

the

printing

procedure

for

your

operating

system;

to

view

them,

use

any

ASCII

editor.

If

you

want

to

use

the

export

utility

in

a

multiple

database

partition

environment,

you

can

use

db2batch

to

complete

the

task

at

each

database

partition.

The

SELECT

statement

must

be

able

to

return

only

the

data

found

locally.

The

selection

condition

is

as

follows:

SELECT

*

FROM

tablename

WHERE

NODENUMBER(column-name)

=

CURRENT

NODE

Related

concepts:

v

“Privileges,

authorities

and

authorization

required

to

use

export”

on

page

2

v

“Using

export

with

identity

columns”

on

page

4

v

“Recreating

an

exported

table”

on

page

4

v

“Exporting

large

objects

(LOBS)”

on

page

4

v

“Exporting

data

in

parallel”

on

page

5

v

“Moving

data

between

typed

tables”

on

page

218

v

“Examples

of

db2batch

tests”

in

the

Administration

Guide:

Performance

Related

tasks:

v

“Using

Export”

on

page

3

Related

reference:

v

“db2Export

-

Export”

on

page

12

v

“db2batch

-

Benchmark

Tool

Command”

in

the

Command

Reference

v

“Export

Sessions

-

CLP

Examples”

on

page

23

v

“Export/Import/Load

Utility

File

Formats”

on

page

243

v

“EXPORT”

on

page

8

Privileges,

authorities

and

authorization

required

to

use

export

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

You

must

have

SYSADM

or

DBADM

authority,

or

CONTROL

or

SELECT

privilege

for

each

table

participating

in

the

export

operation.

Related

reference:

2

Data

Movement

Utilities

v

“db2Export

-

Export”

on

page

12

v

“EXPORT”

on

page

8

Using

Export

Prerequisites:

Before

invoking

the

export

utility,

you

must

be

connected

to

(or

be

able

to

implicitly

connect

to)

the

database

from

which

the

data

will

be

exported.

Since

the

utility

will

issue

a

COMMIT

statement,

you

should

complete

all

transactions

and

release

all

locks

by

performing

either

a

COMMIT

or

a

ROLLBACK

before

invoking

export.

Other

user

applications

accessing

the

table

using

separate

connections

need

not

disconnect.

Restrictions:

The

following

restrictions

apply

to

the

export

utility:

v

This

utility

does

not

support

the

use

of

nicknames.

v

This

utility

does

not

support

tables

with

structured

type

columns.

Procedure:

The

export

utility

can

be

invoked

through

the

command

line

processor

(CLP),

the

Export

notebook

in

the

Control

Centre,

or

an

application

programming

interface

(API),

db2Export.

Following

is

an

example

of

the

EXPORT

command

issued

through

the

CLP:

db2

export

to

staff.ixf

of

ixf

select

*

from

userid.staff

To

open

the

Export

notebook:

1.

From

the

Control

Center,

expand

the

object

tree

until

you

find

the

Tables

or

Views

folder.

2.

Click

on

the

folder

you

want

to

work

with.

Any

existing

tables

or

views

are

displayed

in

the

pane

on

the

right

side

of

the

window

(the

contents

pane).

3.

Click

the

right

mouse

button

on

the

table

or

view

you

want

in

the

contents

pane,

and

select

Export

from

the

pop-up

menu.

The

Export

notebook

opens.

Detailed

information

about

the

Control

Center

is

provided

through

its

online

help

facility.

Related

reference:

v

“db2Export

-

Export”

on

page

12

Related

samples:

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C++)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

Chapter

1.

Export

3

|
|
|

Using

export

with

identity

columns

The

export

utility

can

be

used

to

export

data

from

a

table

containing

an

identity

column.

If

the

SELECT

statement

specified

for

the

export

operation

is

of

the

form

″select

*

from

tablename″,

and

the

METHOD

option

is

not

used,

exporting

identity

column

properties

to

IXF

files

is

supported.

The

REPLACE_CREATE

and

the

CREATE

options

of

the

IMPORT

command

can

then

be

used

to

recreate

the

table,

including

its

identity

column

properties.

If

such

an

IXF

file

is

created

from

a

table

containing

an

identity

column

of

type

GENERATED

ALWAYS,

the

only

way

that

the

data

file

can

be

successfully

imported

is

to

specify

the

identityignore

modifier.

Otherwise,

all

rows

will

be

rejected

(SQL3550W).

Related

concepts:

v

“Identity

columns”

in

the

Administration

Guide:

Planning

Recreating

an

exported

table

A

table

can

be

saved

by

using

the

export

utility

and

specifying

the

IXF

file

format.

The

saved

table

(including

its

indexes)

can

then

be

recreated

using

the

import

utility.

The

export

operation

will

fail

if

the

data

you

want

to

export

exceeds

the

space

available

on

the

file

system

on

which

the

exported

file

will

be

created.

In

this

case,

you

should

limit

the

amount

of

data

selected

by

specifying

conditions

on

the

WHERE

clause,

so

that

the

export

file

will

fit

on

the

target

file

system.

You

can

invoke

the

export

utility

multiple

times

to

export

all

of

the

data.

The

DEL

and

ASC

file

formats

do

not

contain

descriptions

of

the

target

table,

but

they

do

contain

the

record

data.

To

recreate

a

table

with

data

stored

in

these

file

formats,

create

the

target

table,

and

then

use

the

load,

or

import

utility

to

populate

the

table

from

these

files.

db2look

(DB2

Statistics

and

DDL

Extraction

Tool)

can

be

used

to

capture

the

original

table

definitions,

and

to

generate

the

corresponding

data

definition

language

(DDL).

Related

concepts:

v

“Using

import

to

recreate

an

exported

table”

on

page

32

Related

reference:

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

Exporting

large

objects

(LOBS)

When

exporting

data

from

large

object

(LOB)

columns,

the

default

action

is

to

select

the

first

32KB

of

data,

and

to

place

this

data

in

the

same

file

as

the

rest

of

the

column

data.

Note:

The

IXF

file

format

does

not

store

the

LOB

options

of

the

column,

such

as

whether

or

not

the

LOB

column

is

logged.

This

means

that

the

import

utility

cannot

recreate

a

table

containing

a

LOB

column

that

is

defined

to

be

1GB

or

larger.

4

Data

Movement

Utilities

A

LOB

Location

Specifier

(LLS)

is

used

to

store

multiple

LOBs

in

a

single

file

when

exporting

LOB

information.

When

exporting

data

using

the

lobsinfile

modifier,

the

export

utility

selects

the

entire

LOB

file

and

places

it

in

one

of

the

LOB

files.

There

might

be

multiple

LOBs

per

LOB

file

and

multiple

LOB

files

in

each

LOB

path.

The

data

file

will

contain

the

LLS

records.

An

LLS

is

a

string

indicating

where

LOB

data

can

be

found

within

a

file.

The

format

of

the

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

of

the

LOB

within

the

file

(measured

in

bytes),

and

mmm

is

the

length

of

the

LOB

(in

bytes).

For

example,

an

LLS

of

db2exp.001.123.456/

indicates

that

the

LOB

is

located

in

the

file

db2exp.001,

begins

at

an

offset

of

123

bytes

into

the

file,

and

is

456

bytes

long.

If

the

indicated

size

in

the

LLS

is

0,

the

LOB

is

considered

to

have

a

length

of

0.

If

the

length

is

-1,

the

LOB

is

considered

to

be

NULL

and

the

offset

and

file

name

are

ignored.

Related

reference:

v

“db2Export

-

Export”

on

page

12

v

“EXPORT”

on

page

8

v

“Large

objects

(LOBs)”

in

the

SQL

Reference,

Volume

1

Exporting

data

in

parallel

Exporting

data

in

parallel

reduces

data

transfer,

and

distributes

the

writing

of

the

result

set,

as

well

as

the

generation

of

the

formatted

output,

across

nodes

in

a

more

effective

manner

than

would

otherwise

be

the

case.

When

data

is

exported

in

parallel

(by

invoking

multiple

export

operations,

one

for

each

partition

of

a

table),

it

is

extracted,

converted

on

the

local

nodes,

and

then

written

to

the

local

file

system.

In

contrast,

when

exporting

data

serially

(exporting

through

a

single

export

operation),

it

is

extracted

in

parallel

and

then

shipped

to

the

client,

where

a

single

process

performs

conversion

and

writes

the

result

set

to

a

local

file

system.

The

db2batch

command

is

used

to

monitor

the

performance

characteristics

and

execution

duration

of

SQL

statements.

This

utility

also

has

a

parallel

export

function

in

partitioned

database

environments

that:

v

Runs

queries

to

define

the

data

to

be

exported

v

On

each

partition,

creates

a

file

containing

the

exported

data

that

resides

on

that

partition.

Note:

If

the

target

file

path

is

shared

between

database

partitions,

a

single

file

will

contain

the

output

from

all

partitions

sharing

the

path.

A

query

is

run

in

parallel

on

each

partition

to

retrieve

the

data

on

that

partition.

When

running

the

db2batch

command

with

the

-p

s

option,

the

original

SELECT

query

is

run

in

parallel.

When

running

the

db2batch

command

with

either

the

-p

t

option

or

the

-p

d

option,

a

staging

table

is

loaded

with

the

export

data,

using

the

specified

query,

and

a

SELECT

*

query

is

run

on

the

staging

table

in

parallel

on

each

partition

to

export

the

data.

To

export

only

the

data

that

resides

on

a

given

partition,

db2batch

adds

the

predicate

NODENUMBER(colname)

=

CURRENT

NODE

to

the

WHERE

clause

of

the

query

that

is

run

on

that

partition.

The

colname

parameter

must

be

set

to

the

qualified

or

the

unqualified

name

of

a

table

column.

The

first

column

name

in

the

original

query

is

used

to

set

this

parameter.

Chapter

1.

Export

5

|
|

|
|
|
|
|
|
|
|
|
|

It

is

important

to

understand

that

db2batch

command

runs

an

SQL

query

and

sends

the

output

to

the

target

file;

it

does

not

use

the

export

utility.

The

export

utility

options

are

not

applicable

to

parallel

export

using

the

db2batch

command.

You

cannot

export

LOB

columns

using

the

db2batch

command.

Run

db2batch

command

with

the

-h

option

from

the

command

window

to

see

a

complete

description

of

command

options.

The

db2batch

command

executes

a

parallel

SQL

query

and

sends

the

output

to

a

specified

file.

Note

that

the

command

is

executing

a

select

statement,

not

the

export

utility.

LOB

columns,

regardless

of

data

length,

cannot

be

exported

using

this

method.

To

export

contents

of

the

staff

table

in

parallel,

use:

db2batch

-p

s

-d

sample

-f

staff.batch

-r

/home/userid/staff.asc

-q

on

In

this

example:

v

The

query

is

ran

in

parallel

on

a

single

table

(the

-p

s

option)

v

Connection

is

made

to

the

sample

database

(the

-d

sample

option)

v

The

control

file

staff.batch

contains

the

(semicolon

terminated)

SQL

select

statement

select

*

from

staff;

v

Output

is

stored

to

/home/userid/staff.asc

files

accessible

on

each

database

partition,

default

output

format

is

positional

ASCII

(remember

that

db2batch

is

not

using

the

export

utility)

v

Only

the

output

of

the

query

will

be

sent

to

the

file

(the

-q

option)

To

export

into

a

delimited

ASCII

file:

db2batch

-p

s

-d

sample

-f

emp_resume.batch

-r

/home/userid/emp_resume.del,

/home/mmilek/userid/emp_resume.out

-q

del

In

this

example:

v

Only

non-LOB

columns

from

emp_resume

table

are

selected

(control

file

emp_resume.batch

contains

select

empno,resume_format

from

emp_resume;)

v

The

emp_resume.del

file

contains

the

query

output

in

delimited

ASCII

format

(the

-q

del

option),

comma

is

the

default

column

delimiter

and

|

is

the

default

char

delimiter

v

The

emp_resume.out

file

contains

the

query

statistics

There

are

two

types

of

parallel

export,

depending

on

what

tables

are

queried,

and

where

those

tables

exist

in

the

partitioned

database

environment:

v

Parallel

export

from

a

partitioned

table,

or

a

join

or

subquery

on

multiple

tables

that

are

collocated

(specify

-p

s

on

the

db2batch

command).

There

are

two

ways

in

which

tables

can

be

considered

collocated:

–

The

tables

are

in

a

single

database

partition

group

defined

on

the

same

partition.

–

The

tables

are

in

the

same

database

partition

group,

and

have

partitioning

keys

with

the

same

number

and

type

of

columns.

The

corresponding

columns

of

the

partitioning

key

are

partition

compatible,

and

the

tables

are

equi-joined

on

the

entire

partition

key,

or

a

superset

of

the

partition

key.

In

each

case,

the

query

can

be

run

on

each

partition

to

generate

that

partition’s

export

data

file

using

the

NODENUMBER

function

as

described

below.

(Note

that

if

a

table

exists

in

a

single

partition

only,

export

parallelism

is

negated,

6

Data

Movement

Utilities

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|
|

|

|

|
|

|

|
|

|
|
|

|

|
|

|

|
|

|
|
|
|

|
|
|

because

the

data

is

retrieved

from

only

one

partition.

To

enable

export

parallelism

in

this

case,

refer

to

the

next

bullet.)

v

A

SELECT

from

multiple

non-collocated

tables

(specify

-p

t

tablename

or

-p

d

on

the

db2batch

command;

the

former

allows

you

to

specify

the

name

of

an

existing

table

to

use

as

a

staging

table,

while

the

latter

causes

the

export

utility

to

create

a

staging

table).

The

export

utility

uses

a

staging

table

that

is

populated

through

the

export

query.

This

staging

table

is

used

to

locate

the

rows

of

the

″export″

result

set

by

running

an

INSERT

of

the

fullselect

query

into

the

staging

table.

Once

the

staging

table

is

created,

the

export

utility

generates

an

export

data

file

at

each

partition

by

running:

"select

*

WHERE

NODENUMBER(colname)

=

CURRENT

NODE"

on

the

staging

table.

A

staging

table

can

also

be

used

to

export

a

single

partition

table

in

parallel.

In

most

cases,

transferring

the

data

from

a

single

partition

into

a

multi-partition

staging

table,

and

then

exporting

the

staging

table

in

parallel

on

all

partitions,

is

faster

than

exporting

the

single

partition

table

serially.

The

export

utility

runs

a

query

in

parallel

on

each

partition

to

retrieve

the

data

on

that

partition.

In

the

case

of

db2batch

-p

s,

the

original

SELECT

query

is

run

in

parallel.

In

the

case

of

db2batch

-p

t

and

db2batch

-p

d,

a

staging

table

is

loaded

with

the

export

data,

using

the

specified

query,

and

a

SELECT

*

query

is

run

on

the

staging

table

in

parallel

on

each

partition

to

export

the

data.

To

export

only

the

data

that

resides

on

a

given

partition,

db2batch

adds

the

predicate

NODENUMBER(colname)

=

CURRENT

NODE

to

the

WHERE

clause

of

the

query

that

is

run

on

that

partition.

The

colname

parameter

must

be

set

to

the

qualified

or

the

unqualified

name

of

a

table

column.

The

export

utility

uses

the

first

column

name

in

the

original

query

to

set

this

parameter.

Following

are

the

limitations

on

queries

used

by

the

export

utility:

v

When

specifying

db2batch

-p

s,

the

query

must

not

contain

only

column

functions,

because

a

column

name

is

needed

for

the

NODENUMBER

colname

predicate.

v

When

specifying

db2batch

-p

s,

aggregates

(such

as

min,

max,

and

avg)

must

be

based

on

a

grouping

that

includes

the

partitioning

key.

v

When

specifying

db2batch

-p

t

or

db2batch

-p

d,

the

query

cannot

contain

ORDER

BY,

because

ORDER

BY

on

a

fullselect

within

an

INSERT

statement

is

not

supported

by

DB2®

UDB.

If,

when

specifying

-p

s

on

the

db2batch

command,

you

also

use

the

-r

option

to

create

result

output

files,

the

files

on

each

partition

will

be

in

sorted

order

if

you

have

an

ORDER

BY

clause.

If

a

single

sorted

file

is

your

objective,

merge

the

sorted

file

on

each

partition

into

one

sorted

file.

For

example,

on

UNIX®

based

systems,

use

the

command

sort

-m

to

merge

the

files

into

a

single

sorted

file.

If

you

are

sending

your

output

to

an

NFS

mounted

file

system,

the

output

will

not

be

sorted,

even

if

you

specify

the

ORDER

BY

clause.

Related

concepts:

v

“Export

Overview”

on

page

1

Related

reference:

v

“db2batch

-

Benchmark

Tool

Command”

in

the

Command

Reference

Chapter

1.

Export

7

|
|

EXPORT

Exports

data

from

a

database

to

one

of

several

external

file

formats.

The

user

specifies

the

data

to

be

exported

by

supplying

an

SQL

SELECT

statement,

or

by

providing

hierarchical

information

for

typed

tables.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

or

CONTROL

or

SELECT

privilege

on

each

participating

table

or

view.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

��

EXPORT

TO

filename

OF

filetype

�

,

LOBS

TO

lob-path

�

�

�

,

LOBFILE

filename

�

MODIFIED

BY

filetype-mod

�

�

�

,

METHOD

N

(

column-name

)

MESSAGES

message-file

�

�

select-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

where-clause

��

traversal-order-list:

�

,

(

sub-table-name

)

Command

parameters:

HIERARCHY

traversal-order-list

Export

a

sub-hierarchy

using

the

specified

traverse

order.

All

sub-tables

must

be

listed

in

PRE-ORDER

fashion.

The

first

sub-table

name

is

used

as

the

target

table

name

for

the

SELECT

statement.

EXPORT

8

Data

Movement

Utilities

HIERARCHY

STARTING

sub-table-name

Using

the

default

traverse

order

(OUTER

order

for

ASC,

DEL,

or

WSF

files,

or

the

order

stored

in

PC/IXF

data

files),

export

a

sub-hierarchy

starting

from

sub-table-name.

LOBFILE

filename

Specifies

one

or

more

base

file

names

for

the

LOB

files.

When

name

space

is

exhausted

for

the

first

name,

the

second

name

is

used,

and

so

on.

When

creating

LOB

files

during

an

export

operation,

file

names

are

constructed

by

appending

the

current

base

name

from

this

list

to

the

current

path

(from

lob-path),

and

then

appending

a

3-digit

sequence

number.

For

example,

if

the

current

LOB

path

is

the

directory

/u/foo/lob/path/,

and

the

current

LOB

file

name

is

bar,

the

LOB

files

created

will

be

/u/foo/lob/path/bar.001,

/u/foo/lob/path/bar.002,

and

so

on.

LOBS

TO

lob-path

Specifies

one

or

more

paths

to

directories

in

which

the

LOB

files

are

to

be

stored.

There

will

be

at

least

one

file

per

LOB

path,

and

each

file

will

contain

at

least

one

LOB.

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

an

export

operation.

If

the

file

already

exists,

the

export

utility

appends

the

information.

If

message-file

is

omitted,

the

messages

are

written

to

standard

output.

METHOD

N

column-name

Specifies

one

or

more

column

names

to

be

used

in

the

output

file.

If

this

parameter

is

not

specified,

the

column

names

in

the

table

are

used.

This

parameter

is

valid

only

for

WSF

and

IXF

files,

but

is

not

valid

when

exporting

hierarchical

data.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

export.

OF

filetype

Specifies

the

format

of

the

data

in

the

output

file:

v

DEL

(delimited

ASCII

format),

which

is

used

by

a

variety

of

database

manager

and

file

manager

programs.

v

WSF

(work

sheet

format),

which

is

used

by

programs

such

as:

–

Lotus

1-2-3

–

Lotus

Symphony

Note:

When

exporting

BIGINT

or

DECIMAL

data,

only

values

that

fall

within

the

range

of

type

DOUBLE

can

be

exported

accurately.

Although

values

that

do

not

fall

within

this

range

are

also

exported,

importing

or

loading

these

values

back

may

result

in

incorrect

data,

depending

on

the

operating

system.

v

IXF

(integrated

exchange

format,

PC

version),

in

which

most

of

the

table

attributes,

as

well

as

any

existing

indexes,

are

saved

in

the

IXF

file,

except

when

columns

are

specified

in

the

SELECT

statement.

With

this

format,

the

table

can

be

recreated,

while

with

the

other

file

formats,

the

table

must

already

exist

before

data

can

be

imported

into

it.

select-statement

Specifies

the

SELECT

statement

that

will

return

the

data

to

be

exported.

If

the

SELECT

statement

causes

an

error,

a

message

is

written

to

the

message

EXPORT

Chapter

1.

Export

9

|

file

(or

to

standard

output).

If

the

error

code

is

one

of

SQL0012W,

SQL0347W,

SQL0360W,

SQL0437W,

or

SQL1824W,

the

export

operation

continues;

otherwise,

it

stops.

TO

filename

Specifies

the

name

of

the

file

to

which

data

is

to

be

exported.

If

the

complete

path

to

the

file

is

not

specified,

the

export

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

the

name

of

a

file

that

already

exists

is

specified,

the

export

utility

overwrites

the

contents

of

the

file;

it

does

not

append

the

information.

Examples:

The

following

example

shows

how

to

export

information

from

the

STAFF

table

in

the

SAMPLE

database

to

the

file

myfile.ixf.

The

output

will

be

in

IXF

format.

Note

that

you

must

be

connected

to

the

SAMPLE

database

before

issuing

the

command.

The

index

definitions

(if

any)

will

be

stored

in

the

output

file

except

when

the

database

connection

is

made

through

DB2

Connect.

db2

export

to

myfile.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

The

following

example

shows

how

to

export

the

information

about

employees

in

Department

20

from

the

STAFF

table

in

the

SAMPLE

database.

The

output

will

be

in

IXF

format

and

will

go

into

the

awards.ixf

file.

Note

that

you

must

first

connect

to

the

SAMPLE

database

before

issuing

the

command.

Also

note

that

the

actual

column

name

in

the

table

is

’dept’

instead

of

’department’.

db2

export

to

awards.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

where

dept

=

20

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file:

db2

export

to

myfile.del

of

del

lobs

to

mylobs/

lobfile

lobs1,

lobs2

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file,

specifying

a

second

directory

for

files

that

may

not

fit

into

the

first

directory:

db2

export

to

myfile.del

of

del

lobs

to

/db2exp1/,

/db2exp2/

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

data

to

a

DEL

file,

using

a

single

quotation

mark

as

the

string

delimiter,

a

semicolon

as

the

column

delimiter,

and

a

comma

as

the

decimal

point.

The

same

convention

should

be

used

when

importing

data

back

into

the

database:

db2

export

to

myfile.del

of

del

modified

by

chardel’’

coldel;

decpt,

select

*

from

staff

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

export

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Table

aliases

can

be

used

in

the

SELECT

statement.

EXPORT

10

Data

Movement

Utilities

|
|
|

|
|
|

The

messages

placed

in

the

message

file

include

the

information

returned

from

the

message

retrieval

service.

Each

message

begins

on

a

new

line.

The

export

utility

produces

a

warning

message

whenever

a

character

column

with

a

length

greater

than

254

is

selected

for

export

to

DEL

format

files.

PC/IXF

import

should

be

used

to

move

data

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

file

copying

step

is

not

necessary

if

the

source

and

the

target

databases

are

both

accessible

from

the

same

client.

DB2

Connect

can

be

used

to

export

tables

from

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

export

is

supported.

The

export

utility

will

not

create

multiple-part

PC/IXF

files

when

invoked

from

an

AIX

system.

The

export

utility

will

store

the

NOT

NULL

WITH

DEFAULT

attribute

of

the

table

in

an

IXF

file

if

the

SELECT

statement

provided

is

in

the

form

SELECT

*

FROM

tablename.

When

exporting

typed

tables,

subselect

statements

can

only

be

expressed

by

specifying

the

target

table

name

and

the

WHERE

clause.

Fullselect

and

select-statement

cannot

be

specified

when

exporting

a

hierarchy.

For

file

formats

other

than

IXF,

it

is

recommended

that

the

traversal

order

list

be

specified,

because

it

tells

DB2

how

to

traverse

the

hierarchy,

and

what

sub-tables

to

export.

If

this

list

is

not

specified,

all

tables

in

the

hierarchy

are

exported,

and

the

default

order

is

the

OUTER

order.

The

alternative

is

to

use

the

default

order,

which

is

the

order

given

by

the

OUTER

function.

Note:

Use

the

same

traverse

order

during

an

import

operation.

The

load

utility

does

not

support

loading

hierarchies

or

sub-hierarchies.

DB2

Data

Links

Manager

considerations:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

referenced

by

the

DATALINK

columns

are

copied

for

export,

do

the

following:

1.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

SHARE.

This

ensures

that

no

update

transactions

are

in

progress

when

EXPORT

is

run.

2.

Issue

the

EXPORT

command.

3.

Run

the

dlfm_export

utility

at

each

Data

Links

server.

Input

to

the

dlfm_export

utility

is

the

control

file

name,

which

is

generated

by

the

export

utility.

This

produces

a

tar

(or

equivalent)

archive

of

the

files

listed

within

the

control

file.

4.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

RESET.

This

makes

the

table

available

for

updates.

EXPORT

is

executed

as

an

SQL

application.

The

rows

and

columns

satisfying

the

SELECT

statement

conditions

are

extracted

from

the

database.

For

the

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

function.

EXPORT

Chapter

1.

Export

11

|
|
|

Successful

execution

of

EXPORT

results

in

generation

of

the

following

files:

v

An

export

data

file

as

specified

in

the

EXPORT

command.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

IMPORT

and

LOAD

utilities.

When

the

DATALINK

column

value

is

the

SQL

NULL

value,

handling

is

the

same

as

that

for

other

data

types.

v

Control

files

server_name,

which

are

generated

for

each

Data

Links

server.

On

Windows

operating

systems,

a

single

control

file,

ctrlfile.lst,

is

used

by

all

Data

Links

servers.

These

control

files

are

placed

in

the

directory

<data-file

path>/dlfm/YYYYMMDD/HHMMSS

(on

the

Windows

NT

operating

system,

ctrlfile.lst

is

placed

in

the

directory

<data-file

path>\dlfm\YYYYMMDD\HHMMSS).

YYYYMMDD

represents

the

date

(year

month

day),

and

HHMMSS

represents

the

time

(hour

minute

second).

The

dlfm_export

utility

is

provided

to

export

files

from

a

Data

Links

server.

This

utility

generates

an

archive

file,

which

can

be

used

to

restore

files

in

the

target

Data

Links

server.

Related

concepts:

v

“Export

Overview”

on

page

1

v

“Privileges,

authorities

and

authorization

required

to

use

export”

on

page

2

Related

tasks:

v

“Using

Export”

on

page

3

Related

reference:

v

“db2Export

-

Export”

on

page

12

v

“Export

Sessions

-

CLP

Examples”

on

page

23

v

“File

type

modifiers

for

export”

on

page

19

v

“Delimiter

restrictions

for

moving

data”

on

page

217

db2Export

-

Export

Exports

data

from

a

database

to

one

of

several

external

file

formats.

The

user

specifies

the

data

to

be

exported

by

supplying

an

SQL

SELECT

statement,

or

by

providing

hierarchical

information

for

typed

tables.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

or

CONTROL

or

SELECT

privilege

on

each

participating

table

or

view.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

EXPORT

12

Data

Movement

Utilities

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|

|

|

|
|

|

|

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2Export

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Export

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2ExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

}

db2ExportStruct;

typedef

SQL_STRUCTURE

db2ExportOut

{

db2Uint64

oRowsExported;

}

db2ExportOut;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gExport

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gExport

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gExportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqlu_media_list

*piLobFileList;

struct

sqldcol

*piDataDescriptor;

struct

sqllob

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ExportOut

*poExportInfoOut;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gExportStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

db2Export

-

Export

Chapter

1.

Export

13

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

pParmStruct

Input.

A

pointer

to

the

db2ExportStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iDataFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

data

file

name.

iFileTypeLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

file

type.

iMsgFileNameLen

Input.

A

2-byte

unsigned

integer

representing

the

length

in

bytes

of

the

message

file

name.

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

file

into

which

the

data

is

to

be

exported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

are

to

be

stored.

When

file

space

is

exhausted

on

the

first

path

in

this

list,

the

API

will

use

the

second

path,

and

so

on.

piLobFileList

Input.

An

sqlu_media_list

using

media_type

SQLU_CLIENT_LOCATION,

and

the

sqlu_location_entry

structure

containing

base

file

names.

When

the

name

space

is

exhausted

using

the

first

name

in

this

list,

the

API

will

use

the

second

name,

and

so

on.

When

creating

LOB

files

during

an

export

operation,

file

names

are

constructed

by

appending

the

current

base

name

from

this

list

to

the

current

path

(from

pLobFilePath),

and

then

appending

a

3-digit

sequence

number.

For

example,

if

the

current

LOB

path

is

the

directory

/u/foo/lob/path,

and

the

current

LOB

file

name

is

bar,

the

created

LOB

files

will

be

/u/foo/lob/path/bar.001,

/u/foo/lob/pah/bar.002,

and

so

on.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

specifying

the

column

names

for

the

output

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

export

utility.

Valid

values

for

this

parameter

(defined

in

sqlutil)

are:

SQL_METH_N

Names.

Specify

column

names

to

be

used

in

the

output

file.

SQL_METH_D

Default.

Existing

column

names

from

the

table

are

to

be

used

in

the

output

file.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

The

column

names

are

derived

from

the

output

of

the

SELECT

statement

specified

in

pActionString.

piActionString

Input.

Pointer

to

an

sqllob

structure

containing

a

valid

dynamic

SQL

SELECT

statement.

The

structure

contains

a

4-byte

long

field,

followed

by

db2Export

-

Export

14

Data

Movement

Utilities

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

the

characters

that

make

up

the

SELECT

statement.

The

SELECT

statement

specifies

the

data

to

be

extracted

from

the

database

and

written

to

the

external

file.

The

columns

for

the

external

file

(from

piDataDescriptor),

and

the

database

columns

from

the

SELECT

statement,

are

matched

according

to

their

respective

list/structure

positions.

The

first

column

of

data

selected

from

the

database

is

placed

in

the

first

column

of

the

external

file,

and

its

column

name

is

taken

from

the

first

element

of

the

external

column

array.

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

(defined

in

sqlutil)

are:

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table.

Data

exported

to

this

file

format

can

later

be

imported

or

loaded

into

the

same

table

or

into

another

database

manager

table.

piFileTypeMod

Input.

A

pointer

to

an

sqldcol

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

export.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

overwritten.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

export

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

db2Export

-

Export

Chapter

1.

Export

15

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

poExportInfoOut

A

pointer

to

the

db2ExportOut

structure.

oRowsExported

Output.

Returns

the

number

of

records

exported

to

the

target

file.

REXX

API

syntax:

EXPORT

:stmt

TO

datafile

OF

filetype

[MODIFIED

BY

:filetmod]

[USING

:dcoldata]

MESSAGES

msgfile

[ROWS

EXPORTED

:number]

CONTINUE

EXPORT

STOP

EXPORT

REXX

API

parameters:

stmt

A

REXX

host

variable

containing

a

valid

dynamic

SQL

SELECT

statement.

The

statement

specifies

the

data

to

be

extracted

from

the

database.

datafile

Name

of

the

file

into

which

the

data

is

to

be

exported.

filetype

The

format

of

the

data

in

the

export

file.

The

supported

file

formats

are:

DEL

Delimited

ASCII

WSF

Worksheet

format

IXF

PC

version

of

Integrated

Exchange

Format.

filetmod

A

host

variable

containing

additional

processing

options.

dcoldata

A

compound

REXX

host

variable

containing

the

column

names

to

be

used

in

the

export

file.

In

the

following,

XXX

represents

the

name

of

the

host

variable:

XXX.0

Number

of

columns

(number

of

elements

in

the

remainder

of

the

variable).

XXX.1

First

column

name.

XXX.2

Second

column

name.

XXX.3

and

so

on.

If

this

parameter

is

NULL,

or

a

value

for

dcoldata

has

not

been

specified,

the

utility

uses

the

column

names

from

the

database

table.

msgfile

File,

path,

or

device

name

where

error

and

warning

messages

are

to

be

sent.

db2Export

-

Export

16

Data

Movement

Utilities

|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|

||
|

|
|

|
|

||

||

||

|
|

|
|
|
|

||
|

||

||

||

|
|

|
|
|

number

A

host

variable

that

will

contain

the

number

of

exported

rows.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

export

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

Table

aliases

can

be

used

in

the

SELECT

statement.

The

messages

placed

in

the

message

file

include

the

information

returned

from

the

message

retrieval

service.

Each

message

begins

on

a

new

line.

The

export

utility

produces

a

warning

message

whenever

a

character

column

with

a

length

greater

than

254

is

selected

for

export

to

DEL

format

files.

A

warning

message

is

issued

if

the

number

of

columns

(dcolnum)

in

the

external

column

name

array,

piDataDescriptor,

is

not

equal

to

the

number

of

columns

generated

by

the

SELECT

statement.

In

this

case,

the

number

of

columns

written

to

the

external

file

is

the

lesser

of

the

two

numbers.

Excess

database

columns

or

external

column

names

are

not

used

to

generate

the

output

file.

If

the

db2uexpm.bnd

module

or

any

other

shipped

.bnd

files

are

bound

manually,

the

format

option

on

the

binder

must

not

be

used.

PC/IXF

import

should

be

used

to

move

data

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

DB2

Connect

can

be

used

to

export

tables

from

DRDA

servers

such

as

DB2

for

z/OS

and

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

iSeries.

Only

PC/IXF

export

is

supported.

The

export

utility

will

not

create

multiple-part

PC/IXF

files

when

invoked

from

an

AIX

system.

Index

definitions

for

a

table

are

included

in

the

PC/IXF

file

when

the

contents

of

a

single

database

table

are

exported

to

a

PC/IXF

file

with

a

pActionString

beginning

with

SELECT

*

FROM

tablename,

and

the

piDataDescriptor

parameter

specifying

default

names.

Indexes

are

not

saved

for

views,

or

if

the

SELECT

clause

of

the

piActionString

includes

a

join.

A

WHERE

clause,

a

GROUP

BY

clause,

or

a

HAVING

clause

in

the

piActionString

will

not

prevent

the

saving

of

indexes.

In

all

of

these

cases,

when

exporting

from

typed

tables,

the

entire

hierarchy

must

be

exported.

The

export

utility

will

store

the

NOT

NULL

WITH

DEFAULT

attribute

of

the

table

in

an

IXF

file

if

the

SELECT

statement

provided

is

in

the

form

SELECT

*

FROM

tablename.

When

exporting

typed

tables,

subselect

statements

can

only

be

expressed

by

specifying

the

target

table

name

and

the

WHERE

clause.

Fullselect

and

select-statement

cannot

be

specified

when

exporting

a

hierarchy.

db2Export

-

Export

Chapter

1.

Export

17

|
|

|

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

For

file

formats

other

than

IXF,

it

is

recommended

that

the

traversal

order

list

be

specified,

because

it

tells

DB2

how

to

traverse

the

hierarchy,

and

what

sub-tables

to

export.

If

this

list

is

not

specified,

all

tables

in

the

hierarchy

are

exported,

and

the

default

order

is

the

OUTER

order.

The

alternative

is

to

use

the

default

order,

which

is

the

order

given

by

the

OUTER

function.

Note:

Use

the

same

traverse

order

during

an

import

operation.

The

load

utility

does

not

support

loading

hierarchies

or

sub-hierarchies.

DB2

Data

Links

Manager

considerations:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

referenced

by

the

DATALINK

columns

are

copied

for

export,

do

the

following:

1.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

SHARE.

This

ensures

that

no

update

transactions

are

in

progress

when

EXPORT

is

run.

2.

Issue

the

EXPORT

command.

3.

Run

the

dlfm_export

utility

at

each

Data

Links

server.

Input

to

the

dlfm_export

utility

is

the

control

file

name,

which

is

generated

by

the

export

utility.

This

produces

a

tar

(or

equivalent)

archive

of

the

files

listed

within

the

control

file.

dlfm_export

does

not

capture

the

ACLs

information

of

the

files

that

are

archived.

4.

Issue

the

command:

QUIESCE

TABLESPACES

FOR

TABLE

tablename

RESET.

This

makes

the

table

available

for

updates.

EXPORT

is

executed

as

an

SQL

application.

The

rows

and

columns

satisfying

the

SELECT

statement

conditions

are

extracted

from

the

database.

For

the

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

function.

Successful

execution

of

EXPORT

results

in

generation

of

the

following

files:

v

An

export

data

file

as

specified

in

the

EXPORT

command.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

IMPORT

and

LOAD

utilities.

When

the

DATALINK

column

value

is

the

SQL

NULL

value,

handling

is

the

same

as

that

for

other

data

types.

v

Control

files

server_name,

which

are

generated

for

each

Data

Links

server.

On

the

Windows

NT

operating

system,

a

single

control

file,

ctrlfile.lst,

is

used

by

all

Data

Links

servers.

These

control

files

are

placed

in

the

directory

<data-file

path>/dlfm/YYYYMMDD/HHMMSS

(on

the

Windows

NT

operating

system,

ctrlfile.lst

is

placed

in

the

directory

<data-file

path>\dlfm\YYYYMMDD\HHMMSS).

YYYYMMDD

represents

the

date

(year

month

day),

and

HHMMSS

represents

the

time

(hour

minute

second).

The

dlfm_export

utility

is

provided

to

export

files

from

a

Data

Links

server.

This

utility

generates

an

archive

file,

which

can

be

used

to

restore

files

in

the

target

Data

Links

server.

Related

concepts:

v

“Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts”

on

page

199

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLCHAR”

in

the

Administrative

API

Reference

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

db2Export

-

Export

18

Data

Movement

Utilities

|
|
|
|
|

|
|

|

|
|

|

|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

v

“File

type

modifiers

for

export”

on

page

19

v

“Delimiter

restrictions

for

moving

data”

on

page

217

Related

samples:

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

v

“tload.sqb

--

How

to

export

and

load

table

data

(IBM

COBOL)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

File

type

modifiers

for

export

Table

1.

Valid

file

type

modifiers

for

export:

All

file

formats

Modifier

Description

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

If

you

specify

the

“lobsinfile”

modifier

when

using

EXPORT,

the

LOB

data

is

placed

in

the

locations

specified

by

the

LOBS

TO

clause.

Otherwise

the

LOB

data

is

sent

to

the

current

working

directory.

The

LOBS

TO

clause

specifies

one

or

more

paths

to

directories

in

which

the

LOB

files

are

to

be

stored.

There

will

be

at

least

one

file

per

LOB

path,

and

each

file

will

contain

at

least

one

LOB.

To

indicate

a

null

LOB

,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

Table

2.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.2

If

you

want

to

explicitly

specify

the

double

quotation

mark

as

the

character

string

delimiter,

it

should

be

specified

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter

as

follows:

modified

by

chardel''

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

output

data

set.

Converts

character

data

to

this

code

page

from

the

application

code

page

during

the

export

operation.

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

Note:

The

codepage

modifier

cannot

be

used

with

the

lobsinfile

modifier.

db2Export

-

Export

Chapter

1.

Export

19

|

|

|

|
|

|

|

|

|

|
|
|
|
|

Table

2.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.2

In

the

following

example,

coldel;

causes

the

export

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

column

delimiter:

db2

"export

to

temp

of

del

modified

by

coldel;

select

*

from

staff

where

dept

=

20"

datesiso

Date

format.

Causes

all

date

data

values

to

be

exported

in

ISO

format

(″YYYY-MM-DD″).3

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.2

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

2

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

nochardel

Column

data

will

not

be

surrounded

by

character

delimiters.

This

option

should

not

be

specified

if

the

data

is

intended

to

be

imported

or

loaded

using

DB2.

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.2

striplzeros

Removes

the

leading

zeros

from

all

exported

decimal

columns.

Consider

the

following

example:

db2

create

table

decimalTable

(

c1

decimal(

31,

2

)

)

db2

insert

into

decimalTable

values

(

1.1

)

db2

export

to

data

of

del

select

*

from

decimalTable

db2

export

to

data

of

del

modified

by

STRIPLZEROS

select

*

from

decimalTable

In

the

first

export

operation,

the

content

of

the

exported

file

data

will

be

+00000000000000000000000000001.10.

In

the

second

operation,

which

is

identical

to

the

first

except

for

the

striplzeros

modifier,

the

content

of

the

exported

file

data

will

be

+1.10.

db2Export

-

Export

20

Data

Movement

Utilities

22
2
2
2

2
2

33

3

3
3
3
3
3
3
3

3
3
3
3

Table

2.

Valid

file

type

modifiers

for

export:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.4

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

MMM

element

will

produce

the

following

values:

’Jan’,

’Feb’,

’Mar’,

’Apr’,

’May’,

’Jun’,

’Jul’,

’Aug’,

’Sep’,

’Oct’,

’Nov’,

and

’Dec’.

’Jan’

is

equal

to

month

1,

and

’Dec’

is

equal

to

month

12.

The

following

example

illustrates

how

to

export

data

containing

user-defined

time

stamp

formats

from

a

table

called

’schedule’:

db2

export

to

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

select

*

from

schedule

db2Export

-

Export

Chapter

1.

Export

21

22
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2

2

2
2
2

2
2

2
2
2

Table

3.

Valid

file

type

modifiers

for

export:

WSF

file

format

Modifier

Description

1

Creates

a

WSF

file

that

is

compatible

with

Lotus

1-2-3

Release

1,

or

Lotus

1-2-3

Release

1a.5

This

is

the

default.

2

Creates

a

WSF

file

that

is

compatible

with

Lotus

Symphony

Release

1.0.5

3

Creates

a

WSF

file

that

is

compatible

with

Lotus

1-2-3

Version

2,

or

Lotus

Symphony

Release

1.1.5

4

Creates

a

WSF

file

containing

DBCS

characters.

Notes:

1.

The

export

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

export

operation

fails,

and

an

error

code

is

returned.

2.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

3.

The

export

utility

normally

writes

v

date

data

in

YYYYMMDD

format

v

char(date)

data

in

″YYYY-MM-DD″

format

v

time

data

in

″HH.MM.SS″

format

v

time

stamp

data

in

″YYYY-MM-DD-HH.

MM.SS.uuuuuu″

format

Data

contained

in

any

datetime

columns

specified

in

the

SELECT

statement

for

the

export

operation

will

also

be

in

these

formats.

4.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

5.

These

files

can

also

be

directed

to

a

specific

product

by

specifying

an

L

for

Lotus

1-2-3,

or

an

S

for

Symphony

in

the

filetype-mod

parameter

string.

Only

one

value

or

product

designator

may

be

specified.

Related

reference:

v

“db2Export

-

Export”

on

page

12

v

“EXPORT”

on

page

8

v

“Delimiter

restrictions

for

moving

data”

on

page

217

db2Export

-

Export

22

Data

Movement

Utilities

2
2
2
2

2
2
2
2

2
2

2

2
2
2
2

Export

Sessions

-

CLP

Examples

The

following

example

shows

how

to

export

information

from

the

STAFF

table

in

the

SAMPLE

database

(to

which

the

user

must

be

connected)

to

myfile.ixf,

with

the

output

in

IXF

format.

If

the

database

connection

is

not

through

DB2

Connect,

the

index

definitions

(if

any)

will

be

stored

in

the

output

file;

otherwise,

only

the

data

will

be

stored:

db2

export

to

myfile.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

The

following

example

shows

how

to

export

the

information

about

employees

in

Department

20

from

the

STAFF

table

in

the

SAMPLE

database

(to

which

the

user

must

be

connected)

to

awards.ixf,

with

the

output

in

IXF

format:

db2

export

to

awards.ixf

of

ixf

messages

msgs.txt

select

*

from

staff

where

dept

=

20

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file:

db2

export

to

myfile.del

of

del

lobs

to

mylobs/

lobfile

lobs1,

lobs2

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

LOBs

to

a

DEL

file,

specifying

a

second

directory

for

files

that

might

not

fit

into

the

first

directory:

db2

export

to

myfile.del

of

del

lobs

to

/db2exp1/,

/db2exp2/

modified

by

lobsinfile

select

*

from

emp_photo

The

following

example

shows

how

to

export

data

to

a

DEL

file,

using

a

single

quotation

mark

as

the

string

delimiter,

a

semicolon

as

the

column

delimiter,

and

a

comma

as

the

decimal

point.

The

same

convention

should

be

used

when

importing

data

back

into

the

database:

db2

export

to

myfile.del

of

del

modified

by

chardel’’

coldel;

decpt,

select

*

from

staff

Related

reference:

v

“EXPORT”

on

page

8

Chapter

1.

Export

23

24

Data

Movement

Utilities

Chapter

2.

Import

This

chapter

describes

the

DB2

UDB

import

utility,

which

uses

the

SQL

INSERT

statement

to

write

data

from

an

input

file

into

a

table

or

view.

If

the

target

table

or

view

already

contains

data,

you

can

either

replace

or

append

to

the

existing

data.

The

following

topics

are

covered:

v

“Import

Overview”

v

“Privileges,

authorities,

and

authorization

required

to

use

import”

on

page

26

v

“Using

import”

on

page

27

v

“Using

import

in

a

client/server

environment”

on

page

28

v

“Using

import

with

buffered

inserts”

on

page

29

v

“Using

import

with

identity

columns”

on

page

29

v

“Using

import

with

generated

columns”

on

page

31

v

“Using

import

to

recreate

an

exported

table”

on

page

32

v

“Importing

large

objects

(LOBS)”

on

page

33

v

“Importing

user-defined

distinct

types

(UDTs)”

on

page

34

v

“Table

locking

during

import”

on

page

34

v

“IMPORT”

on

page

35

v

“db2Import

-

Import”

on

page

48

v

“Character

Set

and

NLS

Considerations”

on

page

68

v

“Import

Sessions

-

CLP

Examples”

on

page

68

For

information

about

importing

DB2

Data

Links

Manager

data,

see

“Using

import

to

move

DB2

Data

Links

Manager

data”

on

page

202.

For

information

about

importing

data

from

typed

tables,

see

“Moving

data

between

typed

tables”

on

page

218.

For

information

about

importing

data

from

a

file

on

the

DB2

Connect

workstation

to

a

DRDA

server

database,

and

the

reverse,

see

“Moving

Data

With

DB2

Connect”

on

page

206.

Import

Overview

The

import

utility

inserts

data

from

an

input

file

into

a

table

or

updatable

view.

If

the

table

or

view

receiving

the

imported

data

already

contains

data,

you

can

either

replace

or

append

to

the

existing

data.

The

following

information

is

required

when

importing

data:

v

The

path

and

the

name

of

the

input

file.

v

The

name

or

alias

of

the

target

table

or

view.

v

The

format

of

the

data

in

the

input

file.

This

format

can

be

IXF,

WSF,

DEL,

or

ASC.

v

Whether

the

input

data

is

to

be

inserted

into

the

table

or

view,

or

whether

existing

data

in

the

table

or

view

is

to

be

updated

or

replaced

by

the

input

data.

v

A

message

file

name,

if

the

utility

is

invoked

through

the

application

programming

interface

(API),

sqluimpr.

v

When

working

with

typed

tables,

you

might

need

to

provide

the

method

or

order

by

which

to

progress

through

all

of

the

structured

types.

The

order

of

©

Copyright

IBM

Corp.

1999

-

2004

25

proceeding

top-to-bottom,

left-to-right

through

all

of

the

supertables

and

subtables

in

the

hierarchy

is

called

the

traverse

order.

This

order

is

important

when

moving

data

between

table

hierarchies,

because

it

determines

where

the

data

is

moved

in

relation

to

other

data.

When

working

with

typed

tables,

you

might

also

need

to

provide

the

subtable

list.

This

list

shows

into

which

subtables

and

attributes

to

import

data.

You

can

also

specify:

v

The

method

to

use

for

importing

the

data:

column

location,

column

name,

or

relative

column

position.

v

The

number

of

rows

to

INSERT

before

committing

the

changes

to

the

table.

Requesting

periodic

COMMITs

reduces

the

number

of

rows

that

are

lost

if

a

failure

and

a

ROLLBACK

occur

during

the

import

operation.

It

also

prevents

the

DB2®

logs

from

getting

full

when

processing

a

large

input

file.

v

The

number

of

file

records

to

skip

before

beginning

the

import

operation.

If

an

error

occurs,

you

can

restart

the

import

operation

immediately

following

the

last

row

that

was

successfully

imported

and

committed.

v

The

names

of

the

columns

within

the

table

or

view

into

which

the

data

is

to

be

inserted.

v

A

message

file

name.

During

DB2

operations

such

as

exporting,

importing,

loading,

binding,

or

restoring

data,

you

can

specify

that

message

files

be

created

to

contain

the

error,

warning,

and

informational

messages

associated

with

those

operations.

Specify

the

name

of

these

files

with

the

MESSAGES

parameter.

These

message

files

are

standard

ASCII

text

files.

Each

message

in

a

message

file

begins

on

a

new

line

and

contains

information

provided

by

the

DB2

message

retrieval

facility.

To

print

them,

use

the

printing

procedure

for

your

operating

system;

to

view

them,

use

any

ASCII

editor.

Note:

Specifying

target

table

column

names

or

a

specific

importing

method

makes

importing

to

a

remote

database

slower.

Related

concepts:

v

“Moving

data

between

typed

tables”

on

page

218

Related

reference:

v

“db2Import

-

Import”

on

page

48

v

“Import

Sessions

-

CLP

Examples”

on

page

68

v

“Export/Import/Load

Utility

File

Formats”

on

page

243

v

“IMPORT”

on

page

35

Privileges,

authorities,

and

authorization

required

to

use

import

Privileges

enable

users

to

create

or

access

database

resources.

Authority

levels

provide

a

method

of

grouping

privileges

and

higher-level

database

manager

maintenance

and

utility

operations.

Together,

these

act

to

control

access

to

the

database

manager

and

its

database

objects.

Users

can

access

only

those

objects

for

which

they

have

the

appropriate

authorization;

that

is,

the

required

privilege

or

authority.

To

use

the

import

utility

to

create

a

new

table,

you

must

have

SYSADM

authority,

DBADM

authority,

or

CREATETAB

privilege

for

the

database.

To

replace

data

in

an

existing

table

or

view,

you

must

have

SYSADM

authority,

DBADM

authority,

or

CONTROL

privilege

for

the

table

or

view,

or

INSERT,

SELECT,

UPDATE

and

26

Data

Movement

Utilities

|
|
|
|

DELETE

privileges

for

the

table

or

view.

To

append

data

to

an

existing

table

or

view,

you

must

have

SELECT

and

INSERT

privileges

for

the

table

or

view.

Related

reference:

v

“db2Import

-

Import”

on

page

48

v

“IMPORT”

on

page

35

Using

import

Prerequisites:

Before

invoking

the

import

utility,

you

must

be

connected

to

(or

be

able

to

implicitly

connect

to)

the

database

into

which

the

data

will

be

imported.

Since

the

utility

will

issue

a

COMMIT

or

a

ROLLBACK

statement,

you

should

complete

all

transactions

and

release

all

locks

by

performing

either

a

COMMIT

or

a

ROLLBACK

before

invoking

import.

Restrictions:

The

following

restrictions

apply

to

the

import

utility:

v

This

utility

does

not

support

the

use

of

nicknames.

v

If

the

existing

table

is

a

parent

table

containing

a

primary

key

that

is

referenced

by

a

foreign

key

in

a

dependent

table,

its

data

cannot

be

replaced,

only

appended

to.

v

You

cannot

perform

an

import

replace

operation

into

an

underlying

table

of

a

materialized

query

table

defined

in

refresh

immediate

mode.

v

You

cannot

import

data

into

a

system

table,

a

summary

table,

or

a

table

with

a

structured

type

column.

v

You

cannot

import

data

into

declared

temporary

tables.

v

Views

cannot

be

created

through

the

import

utility.

v

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

v

Because

the

import

utility

generates

its

own

SQL

statements,

the

maximum

statement

size

of

64KB

may,

in

some

cases,

be

exceeded.

The

following

limitation

applies

to

the

import

utility:

If

the

volume

of

output

messages

generated

by

an

import

operation

against

a

remote

database

exceeds

60KB,

the

utility

will

keep

the

first

30KB

and

the

last

30KB.

Procedure:

The

import

utility

can

be

invoked

through

the

command

line

processor

(CLP),

the

Import

notebook

in

the

Control

Centre,

or

an

application

programming

interface

(API),

sqluimpr.

Following

is

an

example

of

the

IMPORT

command

issued

through

the

CLP:

db2

import

from

stafftab.ixf

of

ixf

insert

into

userid.staff

To

open

the

Import

notebook:

1.

From

the

Control

Center,

expand

the

object

tree

until

you

find

the

Tables

folder.

Chapter

2.

Import

27

|
|

2.

Click

on

the

Tables

folder.

Any

existing

tables

are

displayed

in

the

pane

on

the

right

side

of

the

window

(the

contents

pane).

3.

Click

the

right

mouse

button

on

the

table

you

want

in

the

contents

pane,

and

select

Import

from

the

pop-up

menu.

The

Import

notebook

opens.

Detailed

information

about

the

Control

Center

is

provided

through

its

online

help

facility.

Related

reference:

v

“db2Import

-

Import”

on

page

48

Related

samples:

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C++)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

Using

import

in

a

client/server

environment

When

you

import

a

file

to

a

remote

database,

a

stored

procedure

can

be

called

to

perform

the

import

on

the

server.

A

stored

procedure

will

not

be

called

when:

v

The

application

and

database

code

pages

are

different.

v

The

file

being

imported

is

a

multiple-part

PC/IXF

file.

v

The

method

used

for

importing

the

data

is

either

column

name

or

relative

column

position.

v

The

target

column

list

provided

is

longer

than

4KB.

v

The

LOBS

FROM

clause

or

the

lobsinfile

modifier

is

specified.

v

The

NULL

INDICATORS

clause

is

specified

for

ASC

files.

When

import

uses

a

stored

procedure,

messages

are

created

in

the

message

file

using

the

default

language

installed

on

the

server.

The

messages

are

in

the

language

of

the

application

if

the

language

at

the

client

and

the

server

are

the

same.

The

import

utility

creates

two

temporary

files

in

the

tmp

subdirectory

of

the

sqllib

directory

(or

the

directory

indicated

by

the

DB2INSTPROF

registry

variable,

if

specified).

One

file

is

for

data,

and

the

other

file

is

for

messages

generated

by

the

import

utility.

If

you

receive

an

error

about

writing

or

opening

data

on

the

server,

ensure

that:

v

The

directory

exists.

v

There

is

sufficient

disk

space

for

the

files.

v

The

instance

owner

has

write

permission

in

the

directory.

Related

concepts:

v

“Import

Overview”

on

page

25

28

Data

Movement

Utilities

Using

import

with

buffered

inserts

In

a

partitioned

database

environment,

the

import

utility

can

be

enabled

to

use

buffered

inserts.

This

reduces

the

messaging

that

occurs

when

data

is

imported,

resulting

in

better

performance;

however,

since

details

about

a

failed

buffered

insert

are

not

returned,

this

option

should

only

be

enabled

if

you

are

not

concerned

about

error

reporting.

When

buffered

inserts

are

used,

import

sets

a

default

WARNINGCOUNT

value

to

1.

As

a

result,

the

utility

will

fail

if

any

rows

are

rejected.

If

a

record

is

rejected,

the

utility

will

roll

back

the

current

transaction.

The

number

of

committed

records

can

be

used

to

determine

which

records

were

successfully

inserted

into

the

database.

The

number

of

committed

records

can

be

non

zero

only

if

the

COMMITCOUNT

option

was

specified.

If

a

different

WARNINGCOUNT

value

is

explicitly

specified

on

the

import

command,

and

some

rows

were

rejected,

the

row

summary

output

by

the

utility

can

be

incorrect.

This

is

due

to

a

combination

of

the

asynchronous

error

reporting

used

with

buffered

inserts

and

the

fact

that

an

error

detected

during

the

insertion

of

a

group

of

rows

causes

all

the

rows

of

that

group

to

be

backed

out.

Since

the

utility

would

not

reliably

report

which

input

records

were

rejected,

it

would

be

difficult

to

determine

which

records

were

committed

and

which

records

need

to

be

re-inserted

into

the

database.

Use

the

DB2®

bind

utility

to

request

buffered

inserts.

The

import

package,

db2uimpm.bnd,

must

be

rebound

against

the

database

using

the

INSERT

BUF

option.

For

example:

db2

connect

to

your_database

db2

bind

db2uimpm.bnd

insert

buf

Buffered

inserts

feature

cannot

be

used

in

conjunction

with

import

operations

in

which

the

INSERT_UPDATE

parameter

is

specified.

A

new

bind

file

(db2uimpm2.bnd)

is

introduced

to

enforce

this

restriction.

The

new

file

should

never

be

bound

with

INSERT

BUF

option,

as

doing

so

will

cause

the

import

operations

in

which

the

INSERT_UPDATE

parameter

is

specified

to

fail.

Import

operations

in

which

INSERT,

REPLACE

or

REPLACE_CREATE

parameter

is

specified

are

not

affected

by

the

binding

of

the

new

file.

Related

concepts:

v

“Import

Overview”

on

page

25

Using

import

with

identity

columns

The

import

utility

can

be

used

to

import

data

into

a

table

containing

an

identity

column.

If

no

identity-related

file

type

modifiers

are

used,

the

utility

works

according

to

the

following

rules:

v

If

the

identity

column

is

GENERATED

ALWAYS,

an

identity

value

is

generated

for

a

table

row

whenever

the

corresponding

row

in

the

input

file

is

missing

a

value

for

the

identity

column,

or

a

NULL

value

is

explicitly

given.

If

a

non-NULL

value

is

specified

for

the

identity

column,

the

row

is

rejected

(SQL3550W).

v

If

the

identity

column

is

GENERATED

BY

DEFAULT,

the

import

utility

makes

use

of

user-supplied

values,

if

they

are

provided;

if

the

data

is

missing

or

explicitly

NULL,

a

value

is

generated.

Chapter

2.

Import

29

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

The

import

utility

does

not

perform

any

extra

validation

of

user-supplied

identity

values

beyond

what

is

normally

done

for

values

of

the

identity

column’s

data

type

(that

is,

SMALLINT,

INT,

BIGINT,

or

DECIMAL).

Duplicate

values

will

not

be

reported.

In

addition,

the

compound=x

modifier

cannot

be

used

when

importing

data

into

a

table

with

an

identity

column.

Two

file

type

modifiers

are

supported

by

the

import

utility

to

simplify

its

use

with

tables

that

contain

an

identity

column:

v

The

identitymissing

modifier

makes

importing

a

table

with

an

identity

column

more

convenient

if

the

input

data

file

does

not

contain

any

values

(not

even

NULLS)

for

the

identity

column.

For

example,

consider

a

table

defined

with

the

following

SQL

statement:

create

table

table1

(c1

char(30),

c2

int

generated

by

default

as

identity,

c3

real,

c4

char(1))

A

user

might

want

to

import

data

from

a

file

(import.del)

into

TABLE1,

and

this

data

might

have

been

exported

from

a

table

that

does

not

have

an

identity

column.

The

following

is

an

example

of

such

a

file:

Robert,

45.2,

J

Mike,

76.9,

K

Leo,

23.4,

I

One

way

to

import

this

file

would

be

to

explicitly

list

the

columns

to

be

imported

through

the

IMPORT

command

as

follows:

db2

import

from

import.del

of

del

replace

into

table1

(c1,

c3,

c4)

For

a

table

with

many

columns,

however,

this

syntax

might

be

cumbersome

and

prone

to

error.

An

alternate

method

of

importing

the

file

is

to

use

the

identitymissing

file

type

modifier

as

follows:

db2

import

from

import.del

of

del

modified

by

identitymissing

replace

into

table1

v

The

identityignore

modifier

is

in

some

ways

the

opposite

of

the

identitymissing

modifier:

it

indicates

to

the

import

utility

that

even

though

the

input

data

file

contains

data

for

the

identity

column,

the

data

should

be

ignored,

and

an

identity

value

should

be

generated

for

each

row.

For

example,

a

user

might

want

to

import

the

following

data

from

a

file

(import.del)

into

TABLE1,

as

defined

above:

Robert,

1,

45.2,

J

Mike,

2,

76.9,

K

Leo,

3,

23.4,

I

If

the

user-supplied

values

of

1,

2,

and

3

are

not

to

be

used

for

the

identity

column,

the

user

could

issue

the

following

IMPORT

command:

db2

import

from

import.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

Again,

this

approach

might

be

cumbersome

and

prone

to

error

if

the

table

has

many

columns.

The

identityignore

modifier

simplifies

the

syntax

as

follows:

db2

import

from

import.del

of

del

modified

by

identityignore

replace

into

table1

When

a

table

with

an

identity

column

is

exported

to

an

IXF

file,

the

REPLACE_CREATE

and

the

CREATE

options

of

the

IMPORT

command

can

be

used

to

recreate

the

table,

including

its

identity

column

properties.

If

such

an

IXF

file

is

created

from

a

table

containing

an

identity

column

of

type

GENERATED

ALWAYS,

the

only

way

that

the

data

file

can

be

successfully

imported

is

to

specify

the

identityignore

modifier.

Otherwise,

all

rows

will

be

rejected

(SQL3550W).

30

Data

Movement

Utilities

Related

concepts:

v

“Identity

columns”

in

the

Administration

Guide:

Planning

Using

import

with

generated

columns

The

import

utility

can

be

used

to

import

data

into

a

table

containing

(non-identity)

generated

columns.

If

no

generated

column-related

file

type

modifiers

are

used,

the

import

utility

works

according

to

the

following

rules:

v

A

value

will

be

generated

for

a

generated

column

whenever

the

corresponding

row

in

the

input

file

is

missing

a

value

for

the

column,

or

a

NULL

value

is

explicitly

given.

If

a

non-NULL

value

is

supplied

for

a

generated

column,

the

row

is

rejected

(SQL3550W).

v

If

the

server

generates

a

NULL

value

for

a

generated

column

that

is

not

nullable,

the

row

of

data

to

which

this

field

belongs

is

rejected

(SQL0407N).

This

could

happen,

for

example,

if

a

non-nullable

generated

column

were

defined

as

the

sum

of

two

table

columns

that

have

NULL

values

supplied

to

them

in

the

input

file.

Two

file

type

modifiers

are

supported

by

the

import

utility

to

simplify

its

use

with

tables

that

contain

generated

columns:

v

The

generatedmissing

modifier

makes

importing

data

into

a

table

with

generated

columns

more

convenient

if

the

input

data

file

does

not

contain

any

values

(not

even

NULLS)

for

all

generated

columns

present

in

the

table.

For

example,

consider

a

table

defined

with

the

following

SQL

statement:

create

table

table1

(c1

int,

c2

int,

g1

int

generated

always

as

(c1

+

c2),

g2

int

generated

always

as

(2

*

c1),

c3

char(1))

A

user

might

want

to

import

data

from

a

file

(load.del)

into

TABLE1,

and

this

data

might

have

been

exported

from

a

table

that

does

not

have

any

generated

columns.

The

following

is

an

example

of

such

a

file:

1,

5,

J

2,

6,

K

3,

7,

I

One

way

to

import

this

file

would

be

to

explicitly

list

the

columns

to

be

imported

through

the

IMPORT

command

as

follows:

db2

import

from

import.del

of

del

replace

into

table1

(c1,

c2,

c3)

For

a

table

with

many

columns,

however,

this

syntax

might

be

cumbersome

and

prone

to

error.

An

alternate

method

of

importing

the

file

is

to

use

the

generatedmissing

file

type

modifier

as

follows:

db2

import

from

import.del

of

del

modified

by

generatedmissing

replace

into

table1

v

The

generatedignore

modifier

is

in

some

ways

the

opposite

of

the

generatedmissing

modifier:

it

indicates

to

the

import

utility

that

even

though

the

input

data

file

contains

data

for

all

generated

columns,

the

data

should

be

ignored,

and

values

should

be

generated

for

each

row.

For

example,

a

user

might

want

to

import

the

following

data

from

a

file

(import.del)

into

TABLE1,

as

defined

above:

1,

5,

10,

15,

J

2,

6,

11,

16,

K

3,

7,

12,

17,

I

Chapter

2.

Import

31

The

user-supplied,

non-NULL

values

of

10,

11,

and

12

(for

g1),

and

15,

16,

and

17

(for

g2)

result

in

the

row

being

rejected

(SQL3550W).

To

avoid

this,

the

user

could

issue

the

following

IMPORT

command:

db2

import

from

import.del

of

del

method

P(1,

2,

5)

replace

into

table1

(c1,

c2,

c3)

Again,

this

approach

might

be

cumbersome

and

prone

to

error

if

the

table

has

many

columns.

The

generatedignore

modifier

simplifies

the

syntax

as

follows:

db2

import

from

import.del

of

del

modified

by

generatedignore

replace

into

table1

Related

concepts:

v

“Generated

Columns”

in

the

Application

Development

Guide:

Programming

Client

Applications

Using

import

to

recreate

an

exported

table

You

can

use

the

import

utility

to

recreate

a

table

that

was

saved

through

the

export

utility.

The

table

must

have

been

exported

to

an

IXF

file,

and

the

SELECT

statement

used

during

the

export

operation

must

have

met

certain

conditions

(for

example,

no

column

names

can

be

used

in

the

SELECT

clause;

only

select

*

is

permitted).

When

creating

a

table

from

an

IXF

file,

not

all

attributes

of

the

original

table

are

preserved.

For

example,

referential

constraints,

foreign

key

definitions,

and

user-defined

data

types

are

not

retained.

The

following

attributes

of

the

original

table

are

retained:

v

Primary

key

name,

and

definition

v

Unique

constraints

names,

and

definitions,

but

not

other

types

of

constraints

or

triggers

v

Column

information:

–

Column

name

–

Column

data

type,

including

user-defined

distinct

types,

which

are

preserved

as

their

base

type

–

Identity

properties

–

Lengths

(except

for

lob_file

types)

–

Code

page

(if

applicable)

–

DATALINK

options

–

Identity

options

–

Whether

the

column

is

defined

as

nullable

or

not

nullable

–

Default

values

for

constants,

if

any,

but

not

other

types

of

default

values
v

Index

information:

–

Index

name

–

Index

creator

name

–

Column

names,

and

whether

each

column

is

sorted

in

ascending,

or

in

descending

order

–

Whether

the

index

is

defined

as

unique

–

Whether

the

index

is

clustered

–

Whether

the

index

allows

reverse

scans

–

pctfree

values

–

minpctused

values

The

following

attributes

of

the

original

table

are

not

retained:

32

Data

Movement

Utilities

v

Whether

the

source

was

a

normal

table,

a

materialized

query

table,

a

view,

or

a

set

of

columns

from

any

or

all

of

these

sources

v

Table

information:

–

Materialized

query

table

definition

(if

applicable)

–

Materialized

query

table

options

(if

applicable)

–

Table

space

options;

however,

this

information

can

be

specified

through

the

IMPORT

command
v

Column

information:

–

Any

default

value

except

constant

values

–

LOB

options

(if

any)

–

References

clause

of

the

create

table

statement

(if

any)

–

Referential

constraints

(if

any)

–

Check

constraints

(if

any)

–

Generated

column

options

(if

any)
v

Index

information:

–

Include

columns

(if

any)

Related

concepts:

v

“Recreating

an

exported

table”

on

page

4

Importing

large

objects

(LOBS)

When

importing

into

large

object

(LOB)

columns,

the

data

can

come

either

from

the

same

file

as

the

rest

of

the

column

data,

or

from

separate

files.

If

the

data

is

coming

from

separate

files

the

LOBSINFILE

file

type

modifier

must

be

specified.

The

column

in

the

main

input

data

file

contains

either

the

import

data

(default),

or

the

name

of

a

file

where

the

import

data

is

stored.

Notes:

1.

When

LOB

data

is

stored

in

the

main

input

data

file,

no

more

than

32KB

of

data

is

allowed.

Truncation

warnings

are

ignored.

2.

All

of

the

LOB

data

must

be

stored

in

the

main

file,

or

each

LOB

is

stored

in

separate

files.

The

main

file

cannot

have

a

mixture

of

LOB

data

and

file

names.

LOB

values

are

imported

from

separate

files

by

using

the

lobsinfile

modifier,

and

the

LOBS

FROM

clause.

A

LOB

Location

Specifier

(LLS)

can

be

used

to

store

multiple

LOBs

in

a

single

file

when

importing,

exporting

and

loading

LOB

information.

An

LLS

is

a

string

indicating

where

LOB

data

can

be

found

within

a

file.

The

format

of

the

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

of

the

LOB

within

the

file

(measured

in

bytes),

and

mmm

is

the

length

of

the

LOB

(in

bytes).

For

example,

an

LLS

of

db2exp.001.123.456/

indicates

that

the

LOB

is

located

in

the

file

db2exp.001,

begins

at

an

offset

of

123

bytes

into

the

file,

and

is

256

bytes

long.

If

the

indicated

size

in

the

LLS

is

0,

the

LOB

is

considered

to

have

a

length

of

0.

If

the

length

is

-1,

the

LOB

is

considered

to

be

NULL

and

the

offset

and

file

name

are

ignored.

When

importing

or

loading

data

with

the

modified

by

lobsinfile

option

specified,

An

LLS

will

be

expected

for

each

of

the

corresponding

LOB

columns.

If

Chapter

2.

Import

33

something

other

than

an

LLS

is

encountered

for

a

LOB

column,

the

database

will

treat

it

as

a

LOB

file,

and

will

load

the

entire

file

as

the

LOB.

Related

reference:

v

“General

Rules

Governing

PC/IXF

File

Import

into

Databases”

on

page

279

v

“Data

Type-Specific

Rules

Governing

PC/IXF

File

Import

into

Databases”

on

page

281

v

“IMPORT”

on

page

35

v

“Large

objects

(LOBs)”

in

the

SQL

Reference,

Volume

1

Importing

user-defined

distinct

types

(UDTs)

The

import

utility

casts

user-defined

distinct

types

(UDTs)

to

similar

base

data

types

automatically.

This

saves

you

from

having

to

explicitly

cast

UDTs

to

the

base

data

types.

Casting

allows

for

comparisons

between

UDTs

and

the

base

data

types

in

SQL.

Related

concepts:

v

“User-defined

distinct

types”

in

the

Application

Development

Guide:

Programming

Server

Applications

Table

locking

during

import

The

import

utility

supports

two

table

locking

modes.

The

offline

mode

(ALLOW

NO

ACCESS)

prevents

concurrent

applications

from

accessing

table

data.

This

is

the

default

mode.

The

online

mode

(ALLOW

WRITE

ACCESS)

allows

concurrent

applications

both

read

and

write

access

to

the

import

target

table.

By

default,

the

import

utility

is

bound

to

the

database

with

isolation

level

RS

(read

stability).

Online

Import

(ALLOW

WRITE

ACCESS):

The

Import

utility

acquires

a

nonexclusive

(IX)

lock

on

the

target

table.

Holding

this

lock

on

the

table

has

the

following

implications:

v

If

there

are

other

applications

holding

an

incompatible

table

lock,

the

import

utility

will

not

start

inserting

data

until

all

of

these

applications

commit

or

roll

back

their

changes.

v

While

import

is

running,

any

other

application

requesting

an

incompatible

table

lock

will

wait

until

the

import

commits

or

rolls

back

the

current

transaction.

Note

that

import’s

table

lock

does

not

persist

across

a

transaction

boundary.

As

a

result,

online

import

has

to

request

and

potentially

wait

for

a

table

lock

after

every

commit.

v

If

there

are

other

applications

holding

an

incompatible

row

lock,

the

import

utility

will

stop

inserting

data

until

all

of

these

applications

commit

or

roll

back

their

changes.

v

While

import

is

running,

any

other

application

requesting

an

incompatible

row

lock

will

wait

until

the

import

operation

commits

or

rolls

back

the

current

transaction.

To

preserve

the

online

properties,

and

to

reduce

the

chance

of

a

deadlock,

online

import

will

periodically

commit

the

current

transaction

and

release

all

row

locks

34

Data

Movement

Utilities

4
4
4
4

4
4

4

4
4

4
4
4

4
4
4
4
4

4
4
4

4
4
4

4
4

before

escalating

to

an

exclusive

(X)

table

lock.

Consequently,

during

an

online

import,

commits

might

be

performed

even

if

the

commitcount

option

was

not

used.

A

commit

frequency

can

either

be

explicitly

specified,

or

the

AUTOMATIC

commit

mode

can

be

used.

No

commits

will

be

performed

if

a

commitcount

value

of

zero

is

explicitly

specified.

Note

that

a

deadlock

will

occur

if

the

concurrent

application

holding

a

conflicting

row

lock

attempts

to

escalate

to

a

table

lock.

Import

runs

in

the

online

mode

if

’ALLOW

WRITE

ACCESS’

is

specified.

The

online

mode

is

not

compatible

with

the

following:

v

REPLACE,

CREATE

and

REPLACE_CREATE

import

modes

v

Buffered

inserts

v

Imports

into

a

target

view

v

Imports

into

a

hierarchy

table

v

Imports

into

a

target

table

using

table

lock

size

Offline

Import

(ALLOW

NO

ACCESS):

If

a

large

number

of

rows

is

being

imported

into

a

table,

the

existing

lock

might

escalate

to

an

exclusive

lock.

If

another

application

working

on

the

same

table

is

holding

some

row

locks,

a

deadlock

will

occur

if

the

lock

escalates

to

an

exclusive

lock.

To

avoid

this,

the

import

utility

requests

an

exclusive

lock

on

the

table

at

the

beginning

of

its

operation.

This

is

the

default

import

behavior.

Holding

a

lock

on

the

table

has

two

implications.

First,

if

there

are

other

applications

holding

a

table

lock,

or

row

locks

on

the

import

target

table,

the

import

utility

will

wait

until

all

of

those

applications

commit

or

roll

back

their

changes.

Second,

while

import

is

running,

any

other

application

requesting

locks

will

wait

until

the

import

operation

has

completed.

Import

runs

in

the

offline

mode

if

’ALLOW

WRITE

ACCESS’

is

not

specified.

Related

concepts:

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

IMPORT

Inserts

data

from

an

external

file

with

a

supported

file

format

into

a

table,

hierarchy,

or

view.

LOAD

is

a

faster

alternative,

but

the

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

v

IMPORT

using

the

INSERT

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

each

participating

table

or

view

–

INSERT

and

SELECT

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

INSERT_UPDATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

Chapter

2.

Import

35

4
4
4
4
4
4

4
4

4

4

4

4

4

4

4
4
4
4
4

4
4
4
4
4
4

–

INSERT,

SELECT,

UPDATE

and

DELETE

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

REPLACE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

and

DELETE

privilege

on

the

table

or

view
v

IMPORT

to

a

new

table

using

the

CREATE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space,

as

well

as

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

-

CREATIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema
v

IMPORT

to

an

existing

hierarchy

using

the

REPLACE

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

every

sub-table

in

the

hierarchy

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Command

syntax:

��

IMPORT

FROM

filename

OF

filetype

�

,

LOBS

FROM

lob-path

�

MODIFIED

BY

filetype-mod

�

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL

INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

�

�

ALLOW

NO

ACCESS

ALLOW

WRITE

ACCESS

COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

�

�

WARNINGCOUNT

n

NOTIMEOUT

MESSAGES

message-file

�

IMPORT

36

Data

Movement

Utilities

444444

444

�

�

�

INSERT

INTO

table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy

description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy

description

AS

ROOT

TABLE

UNDER

sub-table-name

�

�

DATALINK

SPECIFICATION

datalink-spec

��

hierarchy

description:

ALL

TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

,

(

sub-table-name

)

,

(

insert-column

)

traversal-order-list:

�

,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX

IN

tablespace-name

LONG

IN

tablespace-name

datalink-spec:

�

,

(

)

DL_LINKTYPE

URL

DL_URL_REPLACE_PREFIX

″prefix″

DL_URL_SUFFIX

″suffix″

DL_URL_DEFAULT_PREFIX

″prefix″

Command

parameters:

ALL

TABLES

An

implicit

keyword

for

hierarchy

only.

When

importing

a

hierarchy,

the

default

is

to

import

all

tables

specified

in

the

traversal

order.

ALLOW

NO

ACCESS

Runs

import

in

the

offline

mode.

An

exclusive

(X)

lock

on

the

target

table

is

acquired

before

any

rows

are

inserted.

This

prevents

concurrent

applications

from

accessing

table

data.

This

is

the

default

import

behavior.

IMPORT

Chapter

2.

Import

37

4
4
4
4

ALLOW

WRITE

ACCESS

Runs

import

in

the

online

mode.

An

intent

exclusive

(IX)

lock

on

the

target

table

is

acquired

when

the

first

row

is

inserted.

This

allows

concurrent

readers

and

writers

to

access

table

data.

Online

mode

is

not

compatible

with

the

REPLACE,

CREATE,

or

REPLACE_CREATE

import

options.

Online

mode

is

not

supported

in

conjunction

with

buffered

inserts.

The

import

operation

will

periodically

commit

inserted

data

to

prevent

lock

escalation

to

a

table

lock

and

to

avoid

running

out

of

active

log

space.

These

commits

will

be

performed

even

if

the

COMMITCOUNT

option

was

not

used.

During

each

commit,

import

will

lose

its

IX

table

lock,

and

will

attempt

to

reacquire

it

after

the

commit.

AS

ROOT

TABLE

Creates

one

or

more

sub-tables

as

a

stand-alone

table

hierarchy.

COMMITCOUNT

n/AUTOMATIC

Performs

a

COMMIT

after

every

n

records

are

imported.

When

a

number

n

is

specified,

import

performs

a

COMMIT

after

every

n

records

are

imported.

When

compound

inserts

are

used,

a

user-specified

commit

frequency

of

n

is

rounded

up

to

the

first

integer

multiple

of

the

compound

count

value.

When

AUTOMATIC

is

specified,

import

internally

determines

when

a

commit

needs

to

be

performed.

The

utility

will

commit

for

either

one

of

two

reasons:

v

to

avoid

running

out

of

active

log

space

v

to

avoid

lock

escalation

from

row

level

to

table

level

If

the

ALLOW

WRITE

ACCESS

option

is

specified,

and

the

COMMITCOUNT

option

is

not

specified,

the

import

utility

will

perform

commits

as

if

COMMITCOUNT

AUTOMATIC

had

been

specified.

CREATE

Creates

the

table

definition

and

row

contents

in

the

code

page

of

the

database.

If

the

data

was

exported

from

a

DB2

table,

sub-table,

or

hierarchy,

indexes

are

created.

If

this

option

operates

on

a

hierarchy,

and

data

was

exported

from

DB2,

a

type

hierarchy

will

also

be

created.

This

option

can

only

be

used

with

IXF

files.

Note:

If

the

data

was

exported

from

an

MVS

host

database,

and

it

contains

LONGVAR

fields

whose

lengths,

calculated

on

the

page

size,

are

less

than

254,

CREATE

may

fail

because

the

rows

are

too

long.

See

Using

import

to

recreate

an

exported

table

for

a

list

of

restrictions.

In

this

case,

the

table

should

be

created

manually,

and

IMPORT

with

INSERT

should

be

invoked,

or,

alternatively,

the

LOAD

command

should

be

used.

DATALINK

SPECIFICATION

For

each

DATALINK

column,

there

can

be

one

column

specification

enclosed

by

parentheses.

Each

column

specification

consists

of

one

or

more

DL_LINKTYPE,

prefix,

and

a

DL_URL_SUFFIX

specification.

The

prefix

specification

can

be

either

DL_URL_REPLACE_PREFIX

or

DL_URL_DEFAULT_PREFIX.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

found

within

the

insert-column

list,

or

within

the

table

definition

(if

an

insert-column

list

is

not

specified).

IMPORT

38

Data

Movement

Utilities

4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4

4

4

4
4
4

3
3
3
3
3

3
3
3
3
3
3
3

DL_LINKTYPE

If

specified,

it

should

match

the

LINKTYPE

of

the

column

definition.

Thus,

DL_LINKTYPE

URL

is

acceptable

if

the

column

definition

specifies

LINKTYPE

URL.

DL_URL_DEFAULT_PREFIX

″prefix″

If

specified,

it

should

act

as

the

default

prefix

for

all

DATALINK

values

within

the

same

column.

In

this

context,

prefix

refers

to

the

″scheme

host

port″

part

of

the

URL

specification.

Examples

of

prefix

are:

"http://server"

"file://server"

"file:"

"http://server:80"

If

no

prefix

is

found

in

a

column’s

data,

and

a

default

prefix

is

specified

with

DL_URL_DEFAULT_PREFIX,

the

default

prefix

is

prefixed

to

the

column

value

(if

not

NULL).

For

example,

if

DL_URL_DEFAULT_PREFIX

specifies

the

default

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://coyote/a/b/c″.

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_REPLACE_PREFIX

″prefix″

This

clause

is

useful

for

loading

or

importing

data

previously

generated

by

the

export

utility,

when

the

user

wants

to

globally

replace

the

host

name

in

the

data

with

another

host

name.

If

specified,

it

becomes

the

prefix

for

all

non-NULL

column

values.

If

a

column

value

has

a

prefix,

this

will

replace

it.

If

a

column

value

has

no

prefix,

the

prefix

specified

by

DL_URL_REPLACE_PREFIX

is

prefixed

to

the

column

value.

For

example,

if

DL_URL_REPLACE_PREFIX

specifies

the

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://toronto/a/b/c″.

Note

that

″toronto″

replaces

″coyote″.

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_SUFFIX

″suffix″

If

specified,

it

is

appended

to

every

non-NULL

column

value

for

the

column.

It

is,

in

fact,

appended

to

the

″path″

component

of

the

URL

part

of

the

DATALINK

value.

FROM

filename

Specifies

the

file

that

contains

the

data

to

be

imported.

If

the

path

is

omitted,

the

current

working

directory

is

used.

HIERARCHY

Specifies

that

hierarchical

data

is

to

be

imported.

IN

tablespace-name

Identifies

the

table

space

in

which

the

table

will

be

created.

The

table

space

must

exist,

and

must

be

a

REGULAR

table

space.

If

no

other

table

space

is

specified,

all

table

parts

are

stored

in

this

table

space.

If

this

clause

is

not

specified,

the

table

is

created

in

a

table

space

created

by

the

authorization

IMPORT

Chapter

2.

Import

39

|
|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|

|

ID.

If

none

is

found,

the

table

is

placed

into

the

default

table

space

USERSPACE1.

If

USERSPACE1

has

been

dropped,

table

creation

fails.

INDEX

IN

tablespace-name

Identifies

the

table

space

in

which

any

indexes

on

the

table

will

be

created.

This

option

is

allowed

only

when

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

specified

table

space

must

exist,

and

must

be

a

REGULAR

or

LARGE

DMS

table

space.

Note:

Specifying

which

table

space

will

contain

an

index

can

only

be

done

when

the

table

is

created.

insert-column

Specifies

the

name

of

a

column

in

the

table

or

the

view

into

which

data

is

to

be

inserted.

INSERT

Adds

the

imported

data

to

the

table

without

changing

the

existing

table

data.

INSERT_UPDATE

Adds

rows

of

imported

data

to

the

target

table,

or

updates

existing

rows

(of

the

target

table)

with

matching

primary

keys.

INTO

table-name

Specifies

the

database

table

into

which

the

data

is

to

be

imported.

This

table

cannot

be

a

system

table,

a

declared

temporary

table

or

a

summary

table.

One

can

use

an

alias

for

INSERT,

INSERT_UPDATE,

or

REPLACE,

except

in

the

case

of

a

down-level

server,

when

the

fully

qualified

or

the

unqualified

table

name

should

be

used.

A

qualified

table

name

is

in

the

form:

schema.tablename.

The

schema

is

the

user

name

under

which

the

table

was

created.

LOBS

FROM

lob-path

Specifies

one

or

more

paths

that

store

LOB

files.

The

names

of

the

LOB

data

files

are

stored

in

the

main

data

file

(ASC,

DEL,

or

IXF),

in

the

column

that

will

be

loaded

into

the

LOB

column.

This

option

is

ignored

if

the

lobsinfile

modifier

is

not

specified.

LONG

IN

tablespace-name

Identifies

the

table

space

in

which

the

values

of

any

long

columns

(LONG

VARCHAR,

LONG

VARGRAPHIC,

LOB

data

types,

or

distinct

types

with

any

of

these

as

source

types)

will

be

stored.

This

option

is

allowed

only

if

the

primary

table

space

specified

in

the

IN

clause

is

a

DMS

table

space.

The

table

space

must

exist,

and

must

be

a

LARGE

DMS

table

space.

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

an

import

operation.

If

the

file

already

exists,

the

import

utility

appends

the

information.

If

the

complete

path

to

the

file

is

not

specified,

the

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

message-file

is

omitted,

the

messages

are

written

to

standard

output.

METHOD

L

Specifies

the

start

and

end

column

numbers

from

which

to

import

data.

A

column

number

is

a

byte

offset

from

the

beginning

of

a

row

of

data.

It

is

numbered

starting

from

1.

IMPORT

40

Data

Movement

Utilities

Note:

This

method

can

only

be

used

with

ASC

files,

and

is

the

only

valid

option

for

that

file

type.

N

Specifies

the

names

of

the

columns

to

be

imported.

Note:

This

method

can

only

be

used

with

IXF

files.

P

Specifies

the

field

numbers

of

the

input

data

fields

to

be

imported.

Note:

This

method

can

only

be

used

with

IXF

or

DEL

files,

and

is

the

only

valid

option

for

the

DEL

file

type.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

import.

NOTIMEOUT

Specifies

that

the

import

utility

will

not

time

out

while

waiting

for

locks.

This

option

supersedes

the

locktimeout

database

configuration

parameter.

Other

applications

are

not

affected.

NULL

INDICATORS

null-indicator-list

This

option

can

only

be

used

when

the

METHOD

L

parameter

is

specified.

That

is,

the

input

file

is

an

ASC

file.

The

null

indicator

list

is

a

comma-separated

list

of

positive

integers

specifying

the

column

number

of

each

null

indicator

field.

The

column

number

is

the

byte

offset

of

the

null

indicator

field

from

the

beginning

of

a

row

of

data.

There

must

be

one

entry

in

the

null

indicator

list

for

each

data

field

defined

in

the

METHOD

L

parameter.

A

column

number

of

zero

indicates

that

the

corresponding

data

field

always

contains

data.

A

value

of

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

NULL.

Any

character

other

than

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

not

NULL,

and

that

column

data

specified

by

the

METHOD

L

option

will

be

imported.

The

NULL

indicator

character

can

be

changed

using

the

MODIFIED

BY

option,

with

the

nullindchar

file

type

modifier.

OF

filetype

Specifies

the

format

of

the

data

in

the

input

file:

v

ASC

(non-delimited

ASCII

format)

v

DEL

(delimited

ASCII

format),

which

is

used

by

a

variety

of

database

manager

and

file

manager

programs

v

WSF

(work

sheet

format),

which

is

used

by

programs

such

as:

–

Lotus

1-2-3

–

Lotus

Symphony
v

IXF

(integrated

exchange

format,

PC

version),

which

means

it

was

exported

from

the

same

or

another

DB2

table.

An

IXF

file

also

contains

the

table

definition

and

definitions

of

any

existing

indexes,

except

when

columns

are

specified

in

the

SELECT

statement.

REPLACE

Deletes

all

existing

data

from

the

table

by

truncating

the

data

object,

and

inserts

the

imported

data.

The

table

definition

and

the

index

definitions

are

not

changed.

This

option

can

only

be

used

if

the

table

exists.

It

is

not

valid

for

tables

with

DATALINK

columns.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

IMPORT

Chapter

2.

Import

41

4
4
4
4

REPLACE_CREATE

If

the

table

exists,

deletes

all

existing

data

from

the

table

by

truncating

the

data

object,

and

inserts

the

imported

data

without

changing

the

table

definition

or

the

index

definitions.

If

the

table

does

not

exist,

creates

the

table

and

index

definitions,

as

well

as

the

row

contents,

in

the

code

page

of

the

database.

See

Using

import

to

recreate

an

exported

table

for

a

list

of

restrictions.

This

option

can

only

be

used

with

IXF

files.

It

is

not

valid

for

tables

with

DATALINK

columns.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

RESTARTCOUNT

n

Specifies

that

an

import

operation

is

to

be

started

at

record

n

+

1.

The

first

n

records

are

skipped.

This

option

is

functionally

equivalent

to

SKIPCOUNT.

RESTARTCOUNT

and

SKIPCOUNT

are

mutually

exclusive.

ROWCOUNT

n

Specifies

the

number

n

of

physical

records

in

the

file

to

be

imported

(inserted

or

updated).

Allows

a

user

to

import

only

n

rows

from

a

file,

starting

from

the

record

determined

by

the

SKIPCOUNT

or

RESTARTCOUNT

options.

If

the

SKIPCOUNT

or

RESTARTCOUNT

options

are

not

specified,

the

first

n

rows

are

imported.

If

SKIPCOUNT

m

or

RESTARTCOUNT

m

is

specified,

rows

m+1

to

m+n

are

imported.

When

compound

inserts

are

used,

user

specified

rowcount

n

is

rounded

up

to

the

first

integer

multiple

of

the

compound

count

value.

SKIPCOUNT

n

Specifies

that

an

import

operation

is

to

be

started

at

record

n

+

1.

The

first

n

records

are

skipped.

This

option

is

functionally

equivalent

to

RESTARTCOUNT.

SKIPCOUNT

and

RESTARTCOUNT

are

mutually

exclusive.

STARTING

sub-table-name

A

keyword

for

hierarchy

only,

requesting

the

default

order,

starting

from

sub-table-name.

For

PC/IXF

files,

the

default

order

is

the

order

stored

in

the

input

file.

The

default

order

is

the

only

valid

order

for

the

PC/IXF

file

format.

sub-table-list

For

typed

tables

with

the

INSERT

or

the

INSERT_UPDATE

option,

a

list

of

sub-table

names

is

used

to

indicate

the

sub-tables

into

which

data

is

to

be

imported.

traversal-order-list

For

typed

tables

with

the

INSERT,

INSERT_UPDATE,

or

the

REPLACE

option,

a

list

of

sub-table

names

is

used

to

indicate

the

traversal

order

of

the

importing

sub-tables

in

the

hierarchy.

UNDER

sub-table-name

Specifies

a

parent

table

for

creating

one

or

more

sub-tables.

WARNINGCOUNT

n

Stops

the

import

operation

after

n

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

import

file

or

the

target

table

is

specified

incorrectly,

the

import

utility

will

generate

a

warning

for

each

row

that

it

IMPORT

42

Data

Movement

Utilities

3
3
3

4
4
4
4
4
4
4
4
4

4
4
4
4
4

4
4
4
4
4

attempts

to

import,

which

will

cause

the

import

to

fail.

If

n

is

zero,

or

this

option

is

not

specified,

the

import

operation

will

continue

regardless

of

the

number

of

warnings

issued.

Examples:

Example

1

The

following

example

shows

how

to

import

information

from

myfile.ixf

to

the

STAFF

table:

db2

import

from

myfile.ixf

of

ixf

messages

msg.txt

insert

into

staff

SQL3150N

The

H

record

in

the

PC/IXF

file

has

product

"DB2

01.00",

date

"19970220",

and

time

"140848".

SQL3153N

The

T

record

in

the

PC/IXF

file

has

name

"myfile",

qualifier

"

",

and

source

"

".

SQL3109N

The

utility

is

beginning

to

load

data

from

file

"myfile".

SQL3110N

The

utility

has

completed

processing.

"58"

rows

were

read

from

the

input

file.

SQL3221W

...Begin

COMMIT

WORK.

Input

Record

Count

=

"58".

SQL3222W

...COMMIT

of

any

database

changes

was

successful.

SQL3149N

"58"

rows

were

processed

from

the

input

file.

"58"

rows

were

successfully

inserted

into

the

table.

"0"

rows

were

rejected.

Example

2

The

following

example

shows

how

to

import

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

import

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

Example

3

(Importing

into

a

Table

with

an

Identity

Column)

IMPORT

Chapter

2.

Import

43

4
4
4

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

import

from

datafile1.del

of

del

replace

into

table1

To

import

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

import

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

To

import

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

import

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

If

DATAFILE1

is

imported

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

inserted,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

import

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

The

import

utility

adds

rows

to

the

target

table

using

the

SQL

INSERT

statement.

The

utility

issues

one

INSERT

statement

for

each

row

of

data

in

the

input

file.

If

an

INSERT

statement

fails,

one

of

two

actions

result:

v

If

it

is

likely

that

subsequent

INSERT

statements

can

be

successful,

a

warning

message

is

written

to

the

message

file,

and

processing

continues.

IMPORT

44

Data

Movement

Utilities

v

If

it

is

likely

that

subsequent

INSERT

statements

will

fail,

and

there

is

potential

for

database

damage,

an

error

message

is

written

to

the

message

file,

and

processing

halts.

The

utility

performs

an

automatic

COMMIT

after

the

old

rows

are

deleted

during

a

REPLACE

or

a

REPLACE_CREATE

operation.

Therefore,

if

the

system

fails,

or

the

application

interrupts

the

database

manager

after

the

table

object

is

truncated,

all

of

the

old

data

is

lost.

Ensure

that

the

old

data

is

no

longer

needed

before

using

these

options.

If

the

log

becomes

full

during

a

CREATE,

REPLACE,

or

REPLACE_CREATE

operation,

the

utility

performs

an

automatic

COMMIT

on

inserted

records.

If

the

system

fails,

or

the

application

interrupts

the

database

manager

after

an

automatic

COMMIT,

a

table

with

partial

data

remains

in

the

database.

Use

the

REPLACE

or

the

REPLACE_CREATE

option

to

rerun

the

whole

import

operation,

or

use

INSERT

with

the

RESTARTCOUNT

parameter

set

to

the

number

of

rows

successfully

imported.

By

default,

automatic

COMMITs

are

not

performed

for

the

INSERT

or

the

INSERT_UPDATE

option.

They

are,

however,

performed

if

the

COMMITCOUNT

parameter

is

not

zero.

If

automatic

COMMITs

are

not

performed,

a

full

log

results

in

a

ROLLBACK.

Offline

import

does

not

perform

automatic

COMMITs

if

any

of

the

following

conditions

is

true:

v

the

target

is

a

view,

not

a

table

v

compound

inserts

are

used

v

buffered

inserts

are

used

By

default,

online

import

performs

automatic

COMMITs

to

free

both

the

active

log

space

and

the

lock

list.

Automatic

COMMITs

are

not

performed

only

if

a

COMMITCOUNT

value

of

zero

is

specified.

Whenever

the

import

utility

performs

a

COMMIT,

two

messages

are

written

to

the

message

file:

one

indicates

the

number

of

records

to

be

committed,

and

the

other

is

written

after

a

successful

COMMIT.

When

restarting

the

import

operation

after

a

failure,

specify

the

number

of

records

to

skip,

as

determined

from

the

last

successful

COMMIT.

The

import

utility

accepts

input

data

with

minor

incompatibility

problems

(for

example,

character

data

can

be

imported

using

padding

or

truncation,

and

numeric

data

can

be

imported

with

a

different

numeric

data

type),

but

data

with

major

incompatibility

problems

is

not

accepted.

One

cannot

REPLACE

or

REPLACE_CREATE

an

object

table

if

it

has

any

dependents

other

than

itself,

or

an

object

view

if

its

base

table

has

any

dependents

(including

itself).

To

replace

such

a

table

or

a

view,

do

the

following:

1.

Drop

all

foreign

keys

in

which

the

table

is

a

parent.

2.

Run

the

import

utility.

3.

Alter

the

table

to

recreate

the

foreign

keys.

If

an

error

occurs

while

recreating

the

foreign

keys,

modify

the

data

to

maintain

referential

integrity.

IMPORT

Chapter

2.

Import

45

4
4
4
4

4
4

4

4

4

4
4
4

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

Importing

to

a

remote

database

requires

enough

disk

space

on

the

server

for

a

copy

of

the

input

data

file,

the

output

message

file,

and

potential

growth

in

the

size

of

the

database.

If

an

import

operation

is

run

against

a

remote

database,

and

the

output

message

file

is

very

long

(more

than

60KB),

the

message

file

returned

to

the

user

on

the

client

may

be

missing

messages

from

the

middle

of

the

import

operation.

The

first

30KB

of

message

information

and

the

last

30KB

of

message

information

are

always

retained.

Importing

PC/IXF

files

to

a

remote

database

is

much

faster

if

the

PC/IXF

file

is

on

a

hard

drive

rather

than

on

diskettes.

The

database

table

or

hierarchy

must

exist

before

data

in

the

ASC,

DEL,

or

WSF

file

formats

can

be

imported;

however,

if

the

table

does

not

already

exist,

IMPORT

CREATE

or

IMPORT

REPLACE_CREATE

creates

the

table

when

it

imports

data

from

a

PC/IXF

file.

For

typed

tables,

IMPORT

CREATE

can

create

the

type

hierarchy

and

the

table

hierarchy

as

well.

PC/IXF

import

should

be

used

to

move

data

(including

hierarchical

data)

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

file

copying

step

is

not

necessary

if

the

source

and

the

target

databases

are

both

accessible

from

the

same

client.

The

data

in

ASC

and

DEL

files

is

assumed

to

be

in

the

code

page

of

the

client

application

performing

the

import.

PC/IXF

files,

which

allow

for

different

code

pages,

are

recommended

when

importing

data

in

different

code

pages.

If

the

PC/IXF

file

and

the

import

utility

are

in

the

same

code

page,

processing

occurs

as

for

a

regular

application.

If

the

two

differ,

and

the

FORCEIN

option

is

specified,

the

import

utility

assumes

that

data

in

the

PC/IXF

file

has

the

same

code

page

as

the

application

performing

the

import.

This

occurs

even

if

there

is

a

conversion

table

for

the

two

code

pages.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

a

conversion

table,

all

data

in

the

PC/IXF

file

will

be

converted

from

the

file

code

page

to

the

application

code

page.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

no

conversion

table,

the

import

operation

will

fail.

This

applies

only

to

PC/IXF

files

on

DB2

UDB

clients

on

the

AIX

operating

system.

For

table

objects

on

an

8

KB

page

that

are

close

to

the

limit

of

1012

columns,

import

of

PC/IXF

data

files

may

cause

DB2

to

return

an

error,

because

the

maximum

size

of

an

SQL

statement

was

exceeded.

This

situation

can

occur

only

if

the

columns

are

of

type

CHAR,

VARCHAR,

or

CLOB.

The

restriction

does

not

apply

to

import

of

DEL

or

ASC

files.

If

PC/IXF

files

are

being

used

to

create

a

new

table,

an

alternative

is

use

db2look

to

dump

the

DDL

statement

that

created

the

table,

and

then

to

issue

that

statement

through

the

CLP.

DB2

Connect

can

be

used

to

import

data

to

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

import

(INSERT

option)

is

supported.

The

RESTARTCOUNT

parameter,

but

not

the

COMMITCOUNT

parameter,

is

also

supported.

IMPORT

46

Data

Movement

Utilities

When

using

the

CREATE

option

with

typed

tables,

create

every

sub-table

defined

in

the

PC/IXF

file;

sub-table

definitions

cannot

be

altered.

When

using

options

other

than

CREATE

with

typed

tables,

the

traversal

order

list

enables

one

to

specify

the

traverse

order;

therefore,

the

traversal

order

list

must

match

the

one

used

during

the

export

operation.

For

the

PC/IXF

file

format,

one

need

only

specify

the

target

sub-table

name,

and

use

the

traverse

order

stored

in

the

file.

The

import

utility

can

be

used

to

recover

a

table

previously

exported

to

a

PC/IXF

file.

The

table

returns

to

the

state

it

was

in

when

exported.

Data

cannot

be

imported

to

a

system

table,

a

declared

temporary

table,

or

a

summary

table.

Views

cannot

be

created

through

the

import

utility.

On

the

Windows

operating

system:

v

Importing

logically

split

PC/IXF

files

is

not

supported.

v

Importing

bad

format

PC/IXF

or

WSF

files

is

not

supported.

DB2

Data

Links

Manager

considerations:

Before

running

the

DB2

import

utility,

do

the

following:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Register

the

required

prefix

names

to

the

DB2

Data

Links

Managers.

There

may

be

other

administrative

tasks,

such

as

registering

the

database,

if

required.

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

original

configuration’s

Data

Links

servers

are

the

same

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated.)

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

During

the

insert

operation,

DATALINK

column

processing

links

the

files

in

the

appropriate

Data

Links

servers

according

to

the

column

specifications

at

the

target

database.

Related

concepts:

v

“Import

Overview”

on

page

25

v

“Privileges,

authorities,

and

authorization

required

to

use

import”

on

page

26

Related

tasks:

v

“Using

import”

on

page

27

Related

reference:

v

“db2Import

-

Import”

on

page

48

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

v

“Import

Sessions

-

CLP

Examples”

on

page

68

IMPORT

Chapter

2.

Import

47

|
|
|
|

|
|

v

“LOAD”

on

page

100

v

“File

type

modifiers

for

import”

on

page

59

v

“Delimiter

restrictions

for

moving

data”

on

page

217

db2Import

-

Import

Inserts

data

from

an

external

file

with

a

supported

file

format

into

a

table,

hierarchy,

or

view.

A

faster

alternative

is

Load

however,

the

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

v

IMPORT

using

the

INSERT

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

each

participating

table

or

view

–

INSERT

and

SELECT

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

INSERT_UPDATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

UPDATE

and

DELETE

privilege

on

each

participating

table

or

view
v

IMPORT

to

an

existing

table

using

the

REPLACE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

the

table

or

view

–

INSERT,

SELECT,

and

DELETE

privilege

on

the

table

or

view
v

IMPORT

to

a

new

table

using

the

CREATE

or

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database

and

USE

privilege

on

the

table

space,

as

well

as

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

implicit

or

explicit

schema

name

of

the

table

does

not

exist

-

CREATIN

privilege

on

the

schema,

if

the

schema

name

of

the

table

refers

to

an

existing

schema
v

IMPORT

to

a

table

or

a

hierarchy

that

does

not

exist

using

the

CREATE,

or

the

REPLACE_CREATE

option,

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CREATETAB

authority

on

the

database,

and

one

of:

-

IMPLICIT_SCHEMA

authority

on

the

database,

if

the

schema

name

of

the

table

does

not

exist

-

CREATEIN

privilege

on

the

schema,

if

the

schema

of

the

table

exists

IMPORT

48

Data

Movement

Utilities

-

CONTROL

privilege

on

every

sub-table

in

the

hierarchy,

if

the

REPLACE_CREATE

option

on

the

entire

hierarchy

is

used
v

IMPORT

to

an

existing

hierarchy

using

the

REPLACE

option

requires

one

of

the

following:

–

sysadm

–

dbadm

–

CONTROL

privilege

on

every

sub-table

in

the

hierarchy

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

db2Import

-

API

*/

SQL_API_RC

SQL_API_FN

db2Import

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2Import

parameter

structure

*/

typedef

SQL_STRUCTURE

db2ImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2ImportIn

*piImportInfoIn;

struct

db2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

}

db2ImportStruct;

/*

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2ImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2ImportIn;

/*

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2ImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsInserted;

db2Import

-

Import

Chapter

2.

Import

49

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2ImportOut;

Generic

API

syntax:

/*

db2gImport

-

Generic

API

*/

SQL_API_RC

SQL_API_FN

db2gImport

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

/*

db2gImport

parameter

structure

*/

typedef

SQL_STRUCTURE

db2gImportStruct

{

char

*piDataFileName;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piMsgFileName;

db2int16

iCallerAction;

struct

db2gImportIn

*piImportInfoIn;

struct

dbg2ImportOut

*poImportInfoOut;

db2int32

*piNullIndicators;

db2Uint16

iDataFileNameLen;

db2Uint16

iFileTypeLen;

db2Uint16

iMsgFileNameLen;

}

db2gImportStruct;

/*

Generic

Import

input

structure

*/

typedef

SQL_STRUCTURE

db2gImportIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

db2Uint64

iSkipcount;

db2int32

*piCommitcount;

db2Uint32

iWarningcount;

db2Uint16

iNoTimeout;

db2Uint16

iAccessLevel;

}

db2gImportIn;

/*

Generic

Import

output

structure

*/

typedef

SQL_STRUCTURE

db2gImportOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsInserted;

db2Uint64

oRowsUpdated;

db2Uint64

oRowsRejected;

db2Uint64

oRowsCommitted;

}

db2gImportOut;

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter

pParmStruct.

pParmStruct

Input/Output.

A

pointer

to

the

db2ImportStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

db2Import

-

Import

50

Data

Movement

Utilities

4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

piDataFileName

Input.

A

string

containing

the

path

and

the

name

of

the

external

input

file

from

which

the

data

is

to

be

imported.

piLobPathList

Input.

An

sqlu_media_list

using

media_type

SQLU_LOCAL_MEDIA,

and

the

sqlu_media_entry

structure

listing

paths

on

the

client

where

the

LOB

files

can

be

found.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

import

from

the

external

file.

The

value

of

the

dcolmeth

field

determines

how

the

remainder

of

the

information

provided

in

this

parameter

is

interpreted

by

the

import

utility.

Valid

values

for

this

parameter

are:

SQL_METH_N

Names.

Selection

of

columns

from

the

external

input

file

is

by

column

name.

SQL_METH_P

Positions.

Selection

of

columns

from

the

external

input

file

is

by

column

position.

SQL_METH_L

Locations.

Selection

of

columns

from

the

external

input

file

is

by

column

location.

The

database

manager

rejects

an

import

call

with

a

location

pair

that

is

invalid

because

of

any

one

of

the

following

conditions:

v

Either

the

beginning

or

the

ending

location

is

not

in

the

range

from

1

to

the

largest

signed

2-byte

integer.

v

The

ending

location

is

smaller

than

the

beginning

location.

v

The

input

column

width

defined

by

the

location

pair

is

not

compatible

with

the

type

and

the

length

of

the

target

column.

A

location

pair

with

both

locations

equal

to

zero

indicates

that

a

nullable

column

is

to

be

filled

with

NULLs.

SQL_METH_D

Default.

If

piDataDescriptor

is

NULL,

or

is

set

to

SQL_METH_D,

default

selection

of

columns

from

the

external

input

file

is

done.

In

this

case,

the

number

of

columns

and

the

column

specification

array

are

both

ignored.

For

DEL,

IXF,

or

WSF

files,

the

first

n

columns

of

data

in

the

external

input

file

are

taken

in

their

natural

order,

where

n

is

the

number

of

database

columns

into

which

the

data

is

to

be

imported.

piActionString

Input.

Pointer

to

an

sqlchar

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

identifying

the

columns

into

which

data

is

to

be

imported.

The

character

array

is

of

the

form:

{INSERT

|

INSERT_UPDATE

|

REPLACE

|

CREATE

|

REPLACE_CREATE}

INTO

{tname[(tcolumn-list)]

|

[{ALL

TABLES

|

(tname[(tcolumn-list)][,

tname[(tcolumn-list)]])}]

[IN]

HIERARCHY

{STARTING

tname

|

(tname[,

tname])}

[UNDER

sub-table-name

|

AS

ROOT

TABLE]}

[DATALINK

SPECIFICATION

datalink-spec]

db2Import

-

Import

Chapter

2.

Import

51

4
4
4

4
4
4
4

4
4
4
4
4
4

4
4
4

4
4
4

4
4
4
4
4

4
4

4

4
4

4
4

4
4
4
4
4
4
4
4

4
4
4
4

4

4
4
4
4
4
4

INSERT

Adds

the

imported

data

to

the

table

without

changing

the

existing

table

data.

INSERT_UPDATE

Adds

the

imported

rows

if

their

primary

key

values

are

not

in

the

table,

and

uses

them

for

update

if

their

primary

key

values

are

found.

This

option

is

only

valid

if

the

target

table

has

a

primary

key,

and

the

specified

(or

implied)

list

of

target

columns

being

imported

includes

all

columns

for

the

primary

key.

This

option

cannot

be

applied

to

views.

REPLACE

Deletes

all

existing

data

from

the

table

by

truncating

the

table

object,

and

inserts

the

imported

data.

The

table

definition

and

the

index

definitions

are

not

changed.

(Indexes

are

deleted

and

replaced

if

indexixf

is

in

FileTypeMod,

and

FileType

is

SQL_IXF.)

If

the

table

is

not

already

defined,

an

error

is

returned.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

CREATE

Creates

the

table

definition

and

the

row

contents

using

the

information

in

the

specified

PC/IXF

file,

if

the

specified

table

is

not

defined.

If

the

file

was

previously

exported

by

DB2,

indexes

are

also

created.

If

the

specified

table

is

already

defined,

an

error

is

returned.

This

option

is

valid

for

the

PC/IXF

file

format

only.

REPLACE_CREATE

Replaces

the

table

contents

using

the

PC/IXF

row

information

in

the

PC/IXF

file,

if

the

specified

table

is

defined.

If

the

table

is

not

already

defined,

the

table

definition

and

row

contents

are

created

using

the

information

in

the

specified

PC/IXF

file.

If

the

PC/IXF

file

was

previously

exported

by

DB2,

indexes

are

also

created.

This

option

is

valid

for

the

PC/IXF

file

format

only.

Attention:

If

an

error

occurs

after

the

existing

data

is

deleted,

that

data

is

lost.

tname

The

name

of

the

table,

typed

table,

view,

or

object

view

into

which

the

data

is

to

be

inserted.

An

alias

for

REPLACE,

INSERT_UPDATE,

or

INSERT

can

be

specified,

except

in

the

case

of

a

down-level

server,

when

a

qualified

or

unqualified

name

should

be

specified.

If

it

is

a

view,

it

cannot

be

a

read-only

view.

tcolumn-list

A

list

of

table

or

view

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

column

names

are

not

specified,

column

names

as

defined

in

the

CREATE

TABLE

or

the

ALTER

TABLE

statement

are

used.

If

no

column

list

is

specified

for

typed

tables,

data

is

inserted

into

all

columns

within

each

sub-table.

sub-table-name

Specifies

a

parent

table

when

creating

one

or

more

sub-tables

under

the

CREATE

option.

db2Import

-

Import

52

Data

Movement

Utilities

4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4
4

4
4
4
4
4
4

4
4
4
4
4
4
4

4
4

44
4
4
4
4

4
4
4
4
4
4
4

4
4
4

ALL

TABLES

An

implicit

keyword

for

hierarchy

only.

When

importing

a

hierarchy,

the

default

is

to

import

all

tables

specified

in

the

traversal-order-list.

HIERARCHY

Specifies

that

hierarchical

data

is

to

be

imported.

STARTING

Keyword

for

hierarchy

only.

Specifies

that

the

default

order,

starting

from

a

given

sub-table

name,

is

to

be

used.

UNDER

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

under

a

given

sub-table.

AS

ROOT

TABLE

Keyword

for

hierarchy

and

CREATE

only.

Specifies

that

the

new

hierarchy,

sub-hierarchy,

or

sub-table

is

to

be

created

as

a

stand-alone

hierarchy.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links

Manager.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

IMPORT

command.

The

tname

and

the

tcolumn-list

parameters

correspond

to

the

tablename

and

the

colname

lists

of

SQL

INSERT

statements,

and

have

the

same

restrictions.

The

columns

in

tcolumn-list

and

the

external

columns

(either

specified

or

implied)

are

matched

according

to

their

position

in

the

list

or

the

structure

(data

from

the

first

column

specified

in

the

sqldcol

structure

is

inserted

into

the

table

or

view

field

corresponding

to

the

first

element

of

the

tcolumn-list).

If

unequal

numbers

of

columns

are

specified,

the

number

of

columns

actually

processed

is

the

lesser

of

the

two

numbers.

This

could

result

in

an

error

(because

there

are

no

values

to

place

in

some

non-nullable

table

fields)

or

an

informational

message

(because

some

external

file

columns

are

ignored).

piFileType

Input.

A

string

that

indicates

the

format

of

the

data

within

the

external

file.

Supported

external

file

formats

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

imported

later

into

the

same

table

or

into

another

database

manager

table.

SQL_WSF

Worksheet

formats

for

exchange

with

Lotus

Symphony

and

1-2-3

programs.

db2Import

-

Import

Chapter

2.

Import

53

4
4
4
4

4
4

4
4
4

4
4
4
4

4
4
4
4

4
4
4
4

4
4

4
4
4
4
4

4
4
4
4
4

4
4
4

4
4

4
4
4
4

4
4
4
4

4
4
4

piFileTypeMod

Input.

A

pointer

to

a

structure

containing

a

2-byte

long

field,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

import.

piMsgFileName

Input.

A

string

containing

the

destination

for

error,

warning,

and

informational

messages

returned

by

the

utility.

It

can

be

the

path

and

the

name

of

an

operating

system

file

or

a

standard

device.

If

the

file

already

exists,

it

is

appended

to.

If

it

does

not

exist,

a

file

is

created.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

are:

SQLU_INITIAL

Initial

call.

This

value

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

import

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

was

not

performed,

and

the

utility

is

to

terminate

processing

the

initial

request.

piImportInfoIn

Input.

Pointer

to

the

db2ImportIn

structure.

poImportInfoOut

Output.

Pointer

to

the

db2ImportOut

structure.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

The

number

of

elements

in

this

array

must

match

the

number

of

columns

in

the

input

file;

there

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

imported

from

the

data

file.

Therefore,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

piDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

column

in

the

data

file

that

is

to

be

used

as

a

null

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

column

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

db2Import

-

Import

54

Data

Movement

Utilities

4
4
4
4
4

4
4

4
4
4
4
4

4
4

4
4

4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4
4

4
4

4
4

4
4
4
4
4
4
4
4
4
4
4
4
4

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

iRowcount

rows

in

a

file.

If

iRowcount

is

0,

import

will

attempt

to

process

all

the

rows

from

the

file.

iSkipcount

Input.

The

number

of

records

to

skip

before

starting

to

insert

or

update

records.

Functionally

equivalent

to

iRestartcount.

piCommitcount

Input.

The

number

of

records

to

import

before

committing

them

to

the

database.

A

commit

is

performed

whenever

piCommitcount

records

are

imported.

A

NULL

value

specifies

the

default

commit

count

value,

which

is

zero

for

offline

import

and

AUTOMATIC

for

online

import.

Commitcount

AUTOMATIC

is

specified

by

passing

in

the

value

DB2IMPORT_COMMIT_AUTO.

iWarningcount

Input.

Stops

the

import

operation

after

iWarningcount

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

import

file

or

the

target

table

is

specified

incorrectly,

the

import

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

import,

which

will

cause

the

import

to

fail.

If

iWarningcount

is

0,

or

this

option

is

not

specified,

the

import

operation

will

continue

regardless

of

the

number

of

warnings

issued.

iNoTimeout

Input.

Specifies

that

the

import

utility

will

not

time

out

while

waiting

for

locks.

This

option

supersedes

the

locktimeout

database

configuration

parameter.

Other

applications

are

not

affected.

Valid

values

are:

DB2IMPORT_LOCKTIMEOUT

Indicates

that

the

value

of

the

locktimeout

configuration

parameter

is

respected.

DB2IMPORT_NO_LOCKTIMEOUT

Indicates

there

is

no

timeout.

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

import

utility

locks

the

table

exclusively.

SQLU_ALLOW_WRITE_ACCESS

Specifies

that

the

data

in

the

table

should

still

be

accessible

to

readers

and

writers

while

the

import

is

in

progress.

oRowsRead

Output.

Number

of

records

read

from

the

file

during

import.

oRowsSkipped

Output.

Number

of

records

skipped

before

inserting

or

updating

begins.

oRowsInserted

Output.

Number

of

rows

inserted

into

the

target

table.

oRowsUpdated

Output.

Number

of

rows

in

the

target

table

updated

with

information

from

the

imported

records

(records

whose

primary

key

value

already

exists

in

the

table).

db2Import

-

Import

Chapter

2.

Import

55

4
4
4
4

4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4
4
4

4
4
4
4

4
4
4

4
4

4
4

4
4

4
4
4

4
4

4
4

4
4

4
4
4
4

oRowsRejected

Output.

Number

of

records

that

could

not

be

imported.

oRowsCommitted

Output.

Number

of

records

imported

successfully

and

committed

to

the

database.

Usage

notes:

Be

sure

to

complete

all

table

operations

and

release

all

locks

before

starting

an

import

operation.

This

can

be

done

by

issuing

a

COMMIT

after

closing

all

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.

The

import

utility

adds

rows

to

the

target

table

using

the

SQL

INSERT

statement.

The

utility

issues

one

INSERT

statement

for

each

row

of

data

in

the

input

file.

If

an

INSERT

statement

fails,

one

of

two

actions

result:

v

If

it

is

likely

that

subsequent

INSERT

statements

can

be

successful,

a

warning

message

is

written

to

the

message

file,

and

processing

continues.

v

If

it

is

likely

that

subsequent

INSERT

statements

will

fail,

and

there

is

potential

for

database

damage,

an

error

message

is

written

to

the

message

file,

and

processing

halts.

The

utility

performs

an

automatic

COMMIT

after

the

old

rows

are

deleted

during

a

REPLACE

or

a

REPLACE_CREATE

operation.

Therefore,

if

the

system

fails,

or

the

application

interrupts

the

database

manager

after

the

table

object

is

truncated,

all

of

the

old

data

is

lost.

Ensure

that

the

old

data

is

no

longer

needed

before

using

these

options.

If

the

log

becomes

full

during

a

CREATE,

REPLACE,

or

REPLACE_CREATE

operation,

the

utility

performs

an

automatic

COMMIT

on

inserted

records.

If

the

system

fails,

or

the

application

interrupts

the

database

manager

after

an

automatic

COMMIT,

a

table

with

partial

data

remains

in

the

database.

Use

the

REPLACE

or

the

REPLACE_CREATE

option

to

rerun

the

whole

import

operation,

or

use

INSERT

with

the

iRestartcount

parameter

set

to

the

number

of

rows

successfully

imported.

By

default,

automatic

COMMITs

are

not

performed

for

the

INSERT

or

the

INSERT_UPDATE

option.

They

are,

however,

performed

if

the

*piCommitcount

parameter

is

not

zero.

A

full

log

results

in

a

ROLLBACK.

Whenever

the

import

utility

performs

a

COMMIT,

two

messages

are

written

to

the

message

file:

one

indicates

the

number

of

records

to

be

committed,

and

the

other

is

written

after

a

successful

COMMIT.

When

restarting

the

import

operation

after

a

failure,

specify

the

number

of

records

to

skip,

as

determined

from

the

last

successful

COMMIT.

The

import

utility

accepts

input

data

with

minor

incompatibility

problems

(for

example,

character

data

can

be

imported

using

padding

or

truncation,

and

numeric

data

can

be

imported

with

a

different

numeric

data

type),

but

data

with

major

incompatibility

problems

is

not

accepted.

One

cannot

REPLACE

or

REPLACE_CREATE

an

object

table

if

it

has

any

dependents

other

than

itself,

or

an

object

view

if

its

base

table

has

any

dependents

(including

itself).

To

replace

such

a

table

or

a

view,

do

the

following:

1.

Drop

all

foreign

keys

in

which

the

table

is

a

parent.

db2Import

-

Import

56

Data

Movement

Utilities

4
4

4
4
4

2.

Run

the

import

utility.

3.

Alter

the

table

to

recreate

the

foreign

keys.

If

an

error

occurs

while

recreating

the

foreign

keys,

modify

the

data

to

maintain

referential

integrity.

Referential

constraints

and

foreign

key

definitions

are

not

preserved

when

creating

tables

from

PC/IXF

files.

(Primary

key

definitions

are

preserved

if

the

data

was

previously

exported

using

SELECT

*.)

Importing

to

a

remote

database

requires

enough

disk

space

on

the

server

for

a

copy

of

the

input

data

file,

the

output

message

file,

and

potential

growth

in

the

size

of

the

database.

If

an

import

operation

is

run

against

a

remote

database,

and

the

output

message

file

is

very

long

(more

than

60

KB),

the

message

file

returned

to

the

user

on

the

client

may

be

missing

messages

from

the

middle

of

the

import

operation.

The

first

30

KB

of

message

information

and

the

last

30

KB

of

message

information

are

always

retained.

Importing

PC/IXF

files

to

a

remote

database

is

much

faster

if

the

PC/IXF

file

is

on

a

hard

drive

rather

than

on

diskettes.

Non-default

values

for

piDataDescriptor,

or

specifying

an

explicit

list

of

table

columns

in

piActionString,

makes

importing

to

a

remote

database

slower.

The

database

table

or

hierarchy

must

exist

before

data

in

the

ASC,

DEL,

or

WSF

file

formats

can

be

imported;

however,

if

the

table

does

not

already

exist,

IMPORT

CREATE

or

IMPORT

REPLACE_CREATE

creates

the

table

when

it

imports

data

from

a

PC/IXF

file.

For

typed

tables,

IMPORT

CREATE

can

create

the

type

hierarchy

and

the

table

hierarchy

as

well.

PC/IXF

import

should

be

used

to

move

data

(including

hierarchical

data)

between

databases.

If

character

data

containing

row

separators

is

exported

to

a

delimited

ASCII

(DEL)

file

and

processed

by

a

text

transfer

program,

fields

containing

the

row

separators

will

shrink

or

expand.

The

data

in

ASC

and

DEL

files

is

assumed

to

be

in

the

code

page

of

the

client

application

performing

the

import.

PC/IXF

files,

which

allow

for

different

code

pages,

are

recommended

when

importing

data

in

different

code

pages.

If

the

PC/IXF

file

and

the

import

utility

are

in

the

same

code

page,

processing

occurs

as

for

a

regular

application.

If

the

two

differ,

and

the

FORCEIN

option

is

specified,

the

import

utility

assumes

that

data

in

the

PC/IXF

file

has

the

same

code

page

as

the

application

performing

the

import.

This

occurs

even

if

there

is

a

conversion

table

for

the

two

code

pages.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

a

conversion

table,

all

data

in

the

PC/IXF

file

will

be

converted

from

the

file

code

page

to

the

application

code

page.

If

the

two

differ,

the

FORCEIN

option

is

not

specified,

and

there

is

no

conversion

table,

the

import

operation

will

fail.

This

applies

only

to

PC/IXF

files

on

DB2

for

AIX

clients.

For

table

objects

on

an

8KB

page

that

are

close

to

the

limit

of

1012

columns,

import

of

PC/IXF

data

files

may

cause

DB2

to

return

an

error,

because

the

maximum

size

of

an

SQL

statement

was

exceeded.

This

situation

can

occur

only

if

the

columns

are

of

type

CHAR,

VARCHAR,

or

CLOB.

The

restriction

does

not

apply

to

import

of

DEL

or

ASC

files.

db2Import

-

Import

Chapter

2.

Import

57

DB2

Connect

can

be

used

to

import

data

to

DRDA

servers

such

as

DB2

for

OS/390,

DB2

for

VM

and

VSE,

and

DB2

for

OS/400.

Only

PC/IXF

import

(INSERT

option)

is

supported.

The

restartcnt

parameter,

but

not

the

commitcnt

parameter,

is

also

supported.

When

using

the

CREATE

option

with

typed

tables,

create

every

sub-table

defined

in

the

PC/IXF

file;

sub-table

definitions

cannot

be

altered.

When

using

options

other

than

CREATE

with

typed

tables,

the

traversal

order

list

enables

one

to

specify

the

traverse

order;

therefore,

the

traversal

order

list

must

match

the

one

used

during

the

export

operation.

For

the

PC/IXF

file

format,

one

need

only

specify

the

target

sub-table

name,

and

use

the

traverse

order

stored

in

the

file.

The

import

utility

can

be

used

to

recover

a

table

previously

exported

to

a

PC/IXF

file.

The

table

returns

to

the

state

it

was

in

when

exported.

Data

cannot

be

imported

to

a

system

table,

a

declared

temporary

table,

or

a

summary

table.

Views

cannot

be

created

through

the

import

utility.

On

the

Windows

NT

operating

system:

v

Importing

logically

split

PC/IXF

files

is

not

supported.

v

Importing

bad

format

PC/IXF

or

WSF

files

is

not

supported.

DB2

Data

Links

Manager

Considerations

Before

running

the

DB2

import

utility,

do

the

following:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Register

the

required

prefix

names

to

the

DB2

Data

Links

Managers.

There

may

be

other

administrative

tasks,

such

as

registering

the

database,

if

required.

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

original

configuration’s

Data

Links

servers

are

the

same

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated.)

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

During

the

insert

operation,

DATALINK

column

processing

links

the

files

in

the

appropriate

Data

Links

servers

according

to

the

column

specifications

at

the

target

database.

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

v

“File

type

modifiers

for

import”

on

page

59

v

“Delimiter

restrictions

for

moving

data”

on

page

217

db2Import

-

Import

58

Data

Movement

Utilities

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“expsamp.sqb

--

Export

and

import

tables

with

table

data

to

a

DRDA

database

(IBM

COBOL)”

v

“impexp.sqb

--

Export

and

import

tables

with

table

data

(IBM

COBOL)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

File

type

modifiers

for

import

Table

4.

Valid

file

type

modifiers

for

import:

All

file

formats

Modifier

Description

compound=x

x

is

a

number

between

1

and

100

inclusive.

Uses

nonatomic

compound

SQL

to

insert

the

data,

and

x

statements

will

be

attempted

each

time.

If

this

modifier

is

specified,

and

the

transaction

log

is

not

sufficiently

large,

the

import

operation

will

fail.

The

transaction

log

must

be

large

enough

to

accommodate

either

the

number

of

rows

specified

by

COMMITCOUNT,

or

the

number

of

rows

in

the

data

file

if

COMMITCOUNT

is

not

specified.

It

is

therefore

recommended

that

the

COMMITCOUNT

option

be

specified

to

avoid

transaction

log

overflow.

This

modifier

is

incompatible

with

INSERT_UPDATE

mode,

hierarchical

tables,

and

the

following

modifiers:

usedefaults,

identitymissing,

identityignore,

generatedmissing,

and

generatedignore.

generatedignore

This

modifier

informs

the

import

utility

that

data

for

all

generated

columns

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

values

for

the

generated

columns

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

the

generatedmissing

modifier.

generatedmissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

generated

columns

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

This

modifier

cannot

be

used

with

the

generatedignore

modifier.

identityignore

This

modifier

informs

the

import

utility

that

data

for

the

identity

column

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

identity

values

being

generated

by

the

utility.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

means

that

for

GENERATED

ALWAYS

columns,

no

rows

will

be

rejected.

This

modifier

cannot

be

used

with

the

identitymissing

modifier.

identitymissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

identity

column

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

modifier

cannot

be

used

with

the

identityignore

modifier.

db2Import

-

Import

Chapter

2.

Import

59

Table

4.

Valid

file

type

modifiers

for

import:

All

file

formats

(continued)

Modifier

Description

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

The

LOBS

FROM

clause

specifies

where

the

LOB

files

are

located

when

the

“lobsinfile”

modifier

is

used.

The

LOBS

FROM

clause

means

nothing

outside

the

context

of

the

lobsinfile

modifier.

The

LOBS

FROM

clause

conveys

to

the

IMPORT

utility

the

list

of

paths

to

search

for

the

LOB

files

while

importing

the

data.

To

indicate

a

null

LOB,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

no_type_id

Valid

only

when

importing

into

a

single

sub-table.

Typical

usage

is

to

export

data

from

a

regular

table,

and

then

to

invoke

an

import

operation

(using

this

modifier)

to

convert

the

data

into

a

single

sub-table.

nodefaults

If

a

source

column

for

a

target

table

column

is

not

explicitly

specified,

and

the

table

column

is

not

nullable,

default

values

are

not

loaded.

Without

this

option,

if

a

source

column

for

one

of

the

target

table

columns

is

not

explicitly

specified,

one

of

the

following

occurs:

v

If

a

default

value

can

be

specified

for

a

column,

the

default

value

is

loaded

v

If

the

column

is

nullable,

and

a

default

value

cannot

be

specified

for

that

column,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

and

a

default

value

cannot

be

specified,

an

error

is

returned,

and

the

utility

stops

processing.

norowwarnings

Suppresses

all

warnings

about

rejected

rows.

usedefaults

If

a

source

column

for

a

target

table

column

has

been

specified,

but

it

contains

no

data

for

one

or

more

row

instances,

default

values

are

loaded.

Examples

of

missing

data

are:

v

For

DEL

files:

",,"

is

specified

for

the

column

v

For

ASC

files:

The

NULL

indicator

is

set

to

yes

for

the

column

v

For

DEL/ASC/WSF

files:

A

row

that

does

not

have

enough

columns,

or

is

not

long

enough

for

the

original

specification.

Without

this

option,

if

a

source

column

contains

no

data

for

a

row

instance,

one

of

the

following

occurs:

v

If

the

column

is

nullable,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

the

utility

rejects

the

row.

db2Import

-

Import

60

Data

Movement

Utilities

|
|
|
|
|

44

Table

5.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

Modifier

Description

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

output

data

set.

Converts

character

data

to

this

code

page

from

the

application

code

page

during

the

import

operation.

The

following

rules

apply:

v

For

pure

DBCS

(graphic)

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

v

nullindchar

must

specify

symbols

included

in

the

standard

ASCII

set

between

code

points

x20

ans

x7F,

inclusive.

This

refers

to

ASCII

symbols

and

code

points.

Notes:

1.

The

codepage

modifier

cannot

be

used

with

the

lobsinfile

modifier.

2.

If

data

expansion

occurs

when

the

code

page

is

converted

from

the

application

code

page

to

the

database

code

page,

the

data

may

be

truncated

and

loss

of

data

can

occur.

dateformat=″x″

x

is

the

format

of

the

date

in

the

source

file.2

Valid

date

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

1

-

12;

mutually

exclusive

with

M)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

A

default

value

of

1

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

date

formats

are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

implieddecimal

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition;

it

is

no

longer

assumed

to

be

at

the

end

of

the

value.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

noeofchar

The

optional

end-of-file

character

x’1A’

is

not

recognized

as

the

end

of

file.

Processing

continues

as

if

it

were

a

normal

character.

db2Import

-

Import

Chapter

2.

Import

61

Table

5.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timeformat=″x″

x

is

the

format

of

the

time

in

the

source

file.2

Valid

time

elements

are:

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

0

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

time

formats

are:

"HH:MM:SS"

"HH.MM

TT"

"SSSSS"

db2Import

-

Import

62

Data

Movement

Utilities

Table

5.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.2

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

1

is

assigned

for

unspecified

YYYY,

M,

MM,

D,

DD,

or

DDD

elements.

A

default

value

of

’Jan’

is

assigned

to

an

unspecified

MMM

element.

A

default

value

of

0

is

assigned

for

all

other

unspecified

elements.

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

valid

values

for

the

MMM

element

include:

’jan’,

’feb’,

’mar’,

’apr’,

’may’,

’jun’,

’jul’,

’aug’,

’sep’,

’oct’,

’nov’

and

’dec’.

These

values

are

case

insensitive.

The

following

example

illustrates

how

to

import

data

containing

user

defined

date

and

time

formats

into

a

table

called

schedule:

db2

import

from

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

insert

into

schedule

db2Import

-

Import

Chapter

2.

Import

63

2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2

2

2
2

2
2

2
2
2

Table

5.

Valid

file

type

modifiers

for

import:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

usegraphiccodepage

If

usegraphiccodepage

is

given,

the

assumption

is

made

that

data

being

imported

into

graphic

or

double-byte

character

large

object

(DBCLOB)

data

fields

is

in

the

graphic

code

page.

The

rest

of

the

data

is

assumed

to

be

in

the

character

code

page.

The

graphic

code

page

is

associated

with

the

character

code

page.

IMPORT

determines

the

character

code

page

through

either

the

codepage

modifier,

if

it

is

specified,

or

through

the

code

page

of

the

application

if

the

codepage

modifier

is

not

specified.

This

modifier

should

be

used

in

conjunction

with

the

delimited

data

file

generated

by

drop

table

recovery

only

if

the

table

being

recovered

has

graphic

data.

Restrictions

The

usegraphiccodepage

modifier

MUST

NOT

be

specified

with

DEL

or

ASC

files

created

by

the

EXPORT

utility,

as

these

files

contain

data

encoded

in

only

one

code

page.

The

usegraphiccodepage

modifier

is

also

ignored

by

the

double-byte

character

large

objects

(DBCLOBs)

in

files.

Table

6.

Valid

file

type

modifiers

for

import:

ASC

(non-delimited

ASCII)

file

format

Modifier

Description

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

import

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

imported

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

nullindchar=x

x

is

a

single

character.

Changes

the

character

denoting

a

null

value

to

x.

The

default

value

of

x

is

Y.3

This

modifier

is

case

sensitive

for

EBCDIC

data

files,

except

when

the

character

is

an

English

letter.

For

example,

if

the

null

indicator

character

is

specified

to

be

the

letter

N,

then

n

is

also

recognized

as

a

null

indicator.

reclen=x

x

is

an

integer

with

a

maximum

value

of

32

767.

x

characters

are

read

for

each

row,

and

a

new-line

character

is

not

used

to

indicate

the

end

of

the

row.

striptblanks

Truncates

any

trailing

blank

spaces

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

blank

spaces

are

kept.

In

the

following

example,

striptblanks

causes

the

import

utility

to

truncate

trailing

blank

spaces:

db2

import

from

myfile.asc

of

asc

modified

by

striptblanks

method

l

(1

10,

12

15)

messages

msgs.txt

insert

into

staff

This

option

cannot

be

specified

together

with

striptnulls.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

t

option,

which

is

supported

for

back-level

compatibility

only.

db2Import

-

Import

64

Data

Movement

Utilities

||
|
|
|
|
|
|

|
|
|

|

|
|
|
|

Table

6.

Valid

file

type

modifiers

for

import:

ASC

(non-delimited

ASCII)

file

format

(continued)

Modifier

Description

striptnulls

Truncates

any

trailing

NULLs

(0x00

characters)

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

NULLs

are

kept.

This

option

cannot

be

specified

together

with

striptblanks.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

padwithzero

option,

which

is

supported

for

back-level

compatibility

only.

Table

7.

Valid

file

type

modifiers

for

import:

DEL

(delimited

ASCII)

file

format

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.34

If

you

want

to

explicitly

specify

the

double

quotation

mark

as

the

character

string

delimiter,

it

should

be

specified

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter.

In

the

following

example,

chardel''

causes

the

import

utility

to

interpret

any

single

quotation

mark

(')

it

encounters

as

a

character

string

delimiter:

db2

"import

from

myfile.del

of

del

modified

by

chardel''

method

p

(1,

4)

insert

into

staff

(id,

years)"

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.34

In

the

following

example,

coldel;

causes

the

import

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

column

delimiter:

db2

import

from

myfile.del

of

del

modified

by

coldel;

messages

msgs.txt

insert

into

staff

datesiso

Date

format.

Causes

all

date

data

values

to

be

imported

in

ISO

format.

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.34

In

the

following

example,

decpt;

causes

the

import

utility

to

interpret

any

semicolon

(;)

it

encounters

as

a

decimal

point:

db2

"import

from

myfile.del

of

del

modified

by

chardel'

decpt;

messages

msgs.txt

insert

into

staff"

db2Import

-

Import

Chapter

2.

Import

65

Table

7.

Valid

file

type

modifiers

for

import:

DEL

(delimited

ASCII)

file

format

(continued)

Modifier

Description

delprioritychar

The

current

default

priority

for

delimiters

is:

record

delimiter,

character

delimiter,

column

delimiter.

This

modifier

protects

existing

applications

that

depend

on

the

older

priority

by

reverting

the

delimiter

priorities

to:

character

delimiter,

record

delimiter,

column

delimiter.

Syntax:

db2

import

...

modified

by

delprioritychar

...

For

example,

given

the

following

DEL

data

file:

"Smith,

Joshua",4000,34.98<row

delimiter>

"Vincent,<row

delimiter>,

is

a

manager",

...

...

4005,44.37<row

delimiter>

With

the

delprioritychar

modifier

specified,

there

will

be

only

two

rows

in

this

data

file.

The

second

<row

delimiter>

will

be

interpreted

as

part

of

the

first

data

column

of

the

second

row,

while

the

first

and

the

third

<row

delimiter>

are

interpreted

as

actual

record

delimiters.

If

this

modifier

is

not

specified,

there

will

be

three

rows

in

this

data

file,

each

delimited

by

a

<row

delimiter>.

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

34

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

keepblanks

Preserves

the

leading

and

trailing

blanks

in

each

field

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB.

Without

this

option,

all

leading

and

trailing

blanks

that

are

not

inside

character

delimiters

are

removed,

and

a

NULL

is

inserted

into

the

table

for

all

blank

fields.

nochardel

The

import

utility

will

assume

all

bytes

found

between

the

column

delimiters

to

be

part

of

the

column’s

data.

Character

delimiters

will

be

parsed

as

part

of

column

data.

This

option

should

not

be

specified

if

the

data

was

exported

using

DB2

(unless

nochardel

was

specified

at

export

time).

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx,

delprioritychar

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.

Table

8.

Valid

file

type

modifiers

for

import:

IXF

file

format

Modifier

Description

forcein

Directs

the

utility

to

accept

data

despite

code

page

mismatches,

and

to

suppress

translation

between

code

pages.

Fixed

length

target

fields

are

checked

to

verify

that

they

are

large

enough

for

the

data.

If

nochecklengths

is

specified,

no

checking

is

done,

and

an

attempt

is

made

to

import

each

row.

indexixf

Directs

the

utility

to

drop

all

indexes

currently

defined

on

the

existing

table,

and

to

create

new

ones

from

the

index

definitions

in

the

PC/IXF

file.

This

option

can

only

be

used

when

the

contents

of

a

table

are

being

replaced.

It

cannot

be

used

with

a

view,

or

when

a

insert-column

is

specified.

indexschema=schema

Uses

the

specified

schema

for

the

index

name

during

index

creation.

If

schema

is

not

specified

(but

the

keyword

indexschema

is

specified),

uses

the

connection

user

ID.

If

the

keyword

is

not

specified,

uses

the

schema

in

the

IXF

file.

db2Import

-

Import

66

Data

Movement

Utilities

22
2
2
2
2
2

2
2

Table

8.

Valid

file

type

modifiers

for

import:

IXF

file

format

(continued)

Modifier

Description

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

import

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

imported

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

Notes:

1.

The

import

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

import

operation

fails,

and

an

error

code

is

returned.

2.

Double

quotation

marks

around

the

date

format

string

are

mandatory.

Field

separators

cannot

contain

any

of

the

following:

a-z,

A-Z,

and

0-9.

The

field

separator

should

not

be

the

same

as

the

character

delimiter

or

field

delimiter

in

the

DEL

file

format.

A

field

separator

is

optional

if

the

start

and

end

positions

of

an

element

are

unambiguous.

Ambiguity

can

exist

if

(depending

on

the

modifier)

elements

such

as

D,

H,

M,

or

S

are

used,

because

of

the

variable

length

of

the

entries.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

Some

characters,

such

as

double

quotation

marks

and

back

slashes,

must

be

preceded

by

an

escape

character

(for

example,

\).

3.

The

character

must

be

specified

in

the

code

page

of

the

source

data.

The

character

code

point

(instead

of

the

character

symbol),

can

be

specified

using

the

syntax

xJJ

or

0xJJ,

where

JJ

is

the

hexadecimal

representation

of

the

code

point.

For

example,

to

specify

the

#

character

as

a

column

delimiter,

use

one

of

the

following:

...

modified

by

coldel#

...

...

modified

by

coldel0x23

...

...

modified

by

coldelX23

...

4.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

Table

9.

IMPORT

behavior

when

using

codepage

and

usegraphiccodepage

codepage=N

usegraphiccodepage

IMPORT

behavior

Absent

Absent

All

data

in

the

file

is

assumed

to

be

in

the

application

code

page.

db2Import

-

Import

Chapter

2.

Import

67

||

|||

|||
|

Table

9.

IMPORT

behavior

when

using

codepage

and

usegraphiccodepage

(continued)

codepage=N

usegraphiccodepage

IMPORT

behavior

Present

Absent

All

data

in

the

file

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

imported

into

the

database

if

N

is

a

single-byte

code

page.

Absent

Present

Character

data

in

the

file

is

assumed

to

be

in

the

application

code

page.

Graphic

data

is

assumed

to

be

in

the

code

page

of

the

application

graphic

data.

If

the

application

code

page

is

single-byte,

then

all

data

is

assumed

to

be

in

the

application

code

page.

Warning:

If

the

application

code

page

is

single-byte,

graphic

data

will

be

corrupted

when

imported

into

the

database,

even

if

the

database

contains

graphic

columns.

Present

Present

Character

data

is

assumed

to

be

in

code

page

N.

Graphic

data

is

assumed

to

be

in

the

graphic

code

page

of

N.

If

N

is

a

single-byte

or

double-byte

code

page,

then

all

data

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

imported

into

the

database

if

N

is

a

single-byte

code

page.

Related

reference:

v

“db2Import

-

Import”

on

page

48

v

“IMPORT”

on

page

35

v

“Delimiter

restrictions

for

moving

data”

on

page

217

Character

Set

and

NLS

Considerations

Unequal

code

page

situations,

involving

expansion

or

contraction

of

the

character

data,

can

sometimes

occur.

For

example,

Japanese

or

Traditional-Chinese

Extended

UNIX®

Code

(EUC)

and

double-byte

character

sets

(DBCS)

might

encode

different

lengths

for

the

same

character.

Normally,

comparison

of

input

data

length

to

target

column

length

is

performed

before

reading

in

any

data.

If

the

input

length

is

greater

than

the

target

length,

NULLs

are

inserted

into

that

column

if

it

is

nullable.

Otherwise,

the

request

is

rejected.

If

the

nochecklengths

modifier

is

specified,

no

initial

comparison

is

performed,

and

an

attempt

is

made

to

import

the

data.

If

the

data

is

too

long

after

translation

is

complete,

the

row

is

rejected.

Otherwise,

the

data

is

imported.

Related

concepts:

v

“Character

set

and

national

language

support”

on

page

165

Related

reference:

v

“IMPORT”

on

page

35

Import

Sessions

-

CLP

Examples

Example

1

db2Import

-

Import

68

Data

Movement

Utilities

|

|||

|||

|
|
|

|||
|
|

|
|

|
|
|

|||
|

|
|

|
|
|
|

The

following

example

shows

how

to

import

information

from

myfile.ixf

to

the

STAFF

table:

db2

import

from

myfile.ixf

of

ixf

messages

msg.txt

insert

into

staff

SQL3150N

The

H

record

in

the

PC/IXF

file

has

product

"DB2

01.00",

date

"19970220",

and

time

"140848".

SQL3153N

The

T

record

in

the

PC/IXF

file

has

name

"myfile",

qualifier

"

",

and

source

"

".

SQL3109N

The

utility

is

beginning

to

load

data

from

file

"myfile".

SQL3110N

The

utility

has

completed

processing.

"58"

rows

were

read

from

the

input

file.

SQL3221W

...Begin

COMMIT

WORK.

Input

Record

Count

=

"58".

SQL3222W

...COMMIT

of

any

database

changes

was

successful.

SQL3149N

"58"

rows

were

processed

from

the

input

file.

"58"

rows

were

successfully

inserted

into

the

table.

"0"

rows

were

rejected.

Example

2

The

following

example

shows

how

to

import

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

import

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

Example

3

(Importing

into

a

Table

with

an

Identity

Column)

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

db2Import

-

Import

Chapter

2.

Import

69

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

import

from

datafile1.del

of

del

replace

into

table1

To

import

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

import

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

To

import

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

import

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

import

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

If

DATAFILE1

is

imported

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

inserted,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Example

4

(Importing

Using

Null

Indicators)

TABLE1

has

5

columns:

v

COL1

VARCHAR

20

NOT

NULL

WITH

DEFAULT

v

COL2

SMALLINT

v

COL3

CHAR

4

v

COL4

CHAR

2

NOT

NULL

WITH

DEFAULT

v

COL5

CHAR

2

NOT

NULL

ASCFILE1

has

6

elements:

v

ELE1

positions

01

to

20

v

ELE2

positions

21

to

22

v

ELE5

positions

23

to

23

v

ELE3

positions

24

to

27

v

ELE4

positions

28

to

31

v

ELE6

positions

32

to

32

db2Import

-

Import

70

Data

Movement

Utilities

v

ELE6

positions

33

to

40

Data

Records:

1...5....10...15...20...25...30...35...40

Test

data

1

XXN

123abcdN

Test

data

2

and

3

QQY

wxyzN

Test

data

4,5

and

6

WWN6789

Y

The

following

command

imports

records

from

ASCFILE1

into

TABLE1:

db2

import

from

ascfile1

of

asc

method

L

(1

20,

21

22,

24

27,

28

31)

null

indicators

(0,

0,

23,

32)

insert

into

table1

(col1,

col5,

col2,

col3)

Notes:

1.

Since

COL4

is

not

provided

in

the

input

file,

it

will

be

inserted

into

TABLE1

with

its

default

value

(it

is

defined

NOT

NULL

WITH

DEFAULT).

2.

Positions

23

and

32

are

used

to

indicate

whether

COL2

and

COL3

of

TABLE1

will

be

loaded

NULL

for

a

given

row.

If

there

is

a

Y

in

the

column’s

null

indicator

position

for

a

given

record,

the

column

will

be

NULL.

If

there

is

an

N,

the

data

values

in

the

column’s

data

positions

of

the

input

record

(as

defined

in

L(........))

are

used

as

the

source

of

column

data

for

the

row.

In

this

example,

neither

column

in

row

1

is

NULL;

COL2

in

row

2

is

NULL;

and

COL3

in

row

3

is

NULL.

3.

In

this

example,

the

NULL

INDICATORS

for

COL1

and

COL5

are

specified

as

0

(zero),

indicating

that

the

data

is

not

nullable.

4.

The

NULL

INDICATOR

for

a

given

column

can

be

anywhere

in

the

input

record,

but

the

position

must

be

specified,

and

the

Y

or

N

values

must

be

supplied.

Related

concepts:

v

“Nicknames

and

data

source

objects”

in

the

Federated

Systems

Guide

db2Import

-

Import

Chapter

2.

Import

71

db2Import

-

Import

72

Data

Movement

Utilities

Chapter

3.

Load

This

chapter

describes

the

DB2

UDB

load

utility,

which

moves

data

from

files,

named

pipes,

devices

or

a

cursor

into

a

DB2

table.

These

data

sources

can

reside

either

on

the

node

where

the

database

resides,

or

on

a

remotely

connected

client.

The

table

being

loaded

must

exist.

If

the

table

receiving

the

new

data

already

contains

data,

you

can

replace

or

append

to

the

existing

data.

The

following

topics

are

covered:

v

“Load

Overview”

on

page

74

v

“Parallelism

and

loading”

on

page

80

v

“Privileges,

authorities,

and

authorizations

required

to

use

Load”

on

page

81

v

“Using

Load”

on

page

81

v

“Read

access

load

operations”

on

page

83

v

“Building

indexes”

on

page

86

v

“Using

load

with

identity

columns”

on

page

87

v

“Using

load

with

generated

columns”

on

page

89

v

“Checking

for

integrity

violations”

on

page

91

v

“Refreshing

dependent

immediate

materialized

query

tables”

on

page

94

v

“Propagating

dependent

immediate

staging

tables”

on

page

95

v

“Multidimensional

clustering

considerations”

on

page

96

v

“Restarting

an

interrupted

load

operation”

on

page

97

v

“Recovering

data

with

the

load

copy

location

file”

on

page

98

v

“LOAD”

on

page

100

v

“LOAD

QUERY”

on

page

121

v

“db2Load

-

Load”

on

page

123

v

“db2LoadQuery

-

Load

Query”

on

page

145

v

“Load

exception

table”

on

page

160

v

“Load

dump

file”

on

page

160

v

“Load

temporary

files”

on

page

161

v

“Load

utility

log

records”

on

page

162

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

v

“Character

set

and

national

language

support”

on

page

165

v

“Pending

states

after

a

load

operation”

on

page

165

v

“Optimizing

load

performance”

on

page

166

v

“Load

-

CLP

Examples”

on

page

171

For

information

about

loading

DB2

Data

Links

Manager

data,

see

“Using

import

to

move

DB2

Data

Links

Manager

data”

on

page

202.

©

Copyright

IBM

Corp.

1999

-

2004

73

Load

Overview

The

load

utility

is

capable

of

efficiently

moving

large

quantities

of

data

into

newly

created

tables,

or

into

tables

that

already

contain

data.

The

utility

can

handle

most

data

types,

including

large

objects

(LOBs)

and

user-defined

types

(UDTs).

The

load

utility

is

faster

than

the

import

utility,

because

it

writes

formatted

pages

directly

into

the

database,

while

the

import

utility

performs

SQL

INSERTs.

The

load

utility

does

not

fire

triggers,

and

does

not

perform

referential

or

table

constraints

checking

(other

than

validating

the

uniqueness

of

the

indexes).

The

load

process

consists

of

four

distinct

phases

(see

Figure

1):

v

Load,

during

which

the

data

is

written

to

the

table.

During

the

load

phase,

data

is

loaded

into

the

table,

and

index

keys

and

table

statistics

are

collected,

if

necessary.

Save

points,

or

points

of

consistency,

are

established

at

intervals

specified

through

the

SAVECOUNT

parameter

in

the

LOAD

command.

Messages

are

generated,

indicating

how

many

input

rows

were

successfully

loaded

at

the

time

of

the

save

point.

For

DATALINK

columns

defined

with

FILE

LINK

CONTROL,

link

operations

are

performed

for

non-NULL

column

values.

If

a

failure

occurs,

you

can

restart

the

load

operation;

the

RESTART

option

automatically

restarts

the

load

operation

from

the

last

successful

consistency

point.

The

TERMINATE

option

rolls

back

the

failed

load

operation.

v

Build,

during

which

indexes

are

produced.

During

the

build

phase,

indexes

are

produced

based

on

the

index

keys

collected

during

the

load

phase.

The

index

keys

are

sorted

during

the

load

phase,

and

index

statistics

are

collected

(if

the

STATISTICS

YES

with

INDEXES

option

was

specified).

The

statistics

are

similar

to

those

collected

through

the

RUNSTATS

command.

If

a

failure

occurs

during

the

build

phase,

the

RESTART

option

automatically

restarts

the

load

operation

at

the

appropriate

point.

v

Delete,

during

which

the

rows

that

caused

a

unique

key

violation

or

a

DATALINK

violation

are

removed

from

the

table.

Unique

key

violations

are

placed

into

the

exception

table,

if

one

was

specified,

and

messages

about

rejected

rows

are

written

to

the

message

file.

Following

the

completion

of

the

load

process,

review

these

messages,

resolve

any

problems,

and

insert

corrected

rows

into

the

table.

Do

not

attempt

to

delete

or

to

modify

any

temporary

files

created

by

the

load

utility.

Some

temporary

files

are

critical

to

the

delete

phase.

If

a

failure

occurs

during

the

delete

phase,

the

RESTART

option

automatically

restarts

the

load

operation

at

the

appropriate

point.

Note:

Each

deletion

event

is

logged.

If

you

have

a

large

number

of

records

that

violate

the

uniqueness

condition,

the

log

could

fill

up

during

the

delete

phase.

Load
Phase
Starts

Load
Phase
Ends

Build
Phase
Starts

Delete
Phase
Starts

Build
Phase
Ends

Phase
Ends

Delete Index Copy
Phase
Starts

Index Copy
Phase
Ends

Figure

1.

The

Four

Phases

of

the

Load

Process:

Load,

Build,

Delete,

and

Index

Copy.

While

the

load

operation

is

taking

place,

the

target

table

is

in

the

load

in

progress

state.

If

the

table

has

constraints,

the

table

will

also

be

in

the

check

pending

state.

If

the

ALLOW

READ

ACCESS

option

was

specified,

the

table

will

also

be

in

the

read

access

only

state.

74

Data

Movement

Utilities

v

Index

copy,

during

which

the

index

data

is

copied

from

a

system

temporary

table

space

to

the

original

table

space.

This

will

only

occur

if

a

system

temporary

table

space

was

specified

for

index

creation

during

a

load

operation

with

the

READ

ACCESS

option

specified.

Note:

After

you

invoke

the

load

utility,

you

can

use

the

LIST

UTILITIES

command

to

monitor

the

progress

of

the

load

operation.

For

more

information,

refer

to

LIST

UTILITIES

Command.

The

following

information

is

required

when

loading

data:

v

The

path

and

the

name

of

the

input

file,

named

pipe,

or

device.

v

The

name

or

alias

of

the

target

table.

v

The

format

of

the

input

source.

This

format

can

be

DEL,

ASC,

PC/IXF,

or

CURSOR.

v

Whether

the

input

data

is

to

be

appended

to

the

table,

or

is

to

replace

the

existing

data

in

the

table.

v

A

message

file

name,

if

the

utility

is

invoked

through

the

application

programming

interface

(API),

db2Load.

You

can

also

specify:

v

That

the

data

to

be

loaded

resides

on

the

client,

if

the

load

utility

is

invoked

from

a

remotely

connected

client.

v

The

method

to

use

for

loading

the

data:

column

location,

column

name,

or

relative

column

position.

v

How

often

the

utility

is

to

establish

consistency

points.

Use

the

SAVECOUNT

parameter

to

specify

this

value.

If

this

parameter

is

specified,

a

load

restart

operation

will

start

at

the

last

consistency

point,

instead

of

at

the

beginning.

v

The

names

of

the

table

columns

into

which

the

data

is

to

be

inserted.

v

Whether

or

not

pre-existing

data

in

the

table

can

be

queried

while

the

load

operation

is

in

progress.

Note:

This

can

be

accomplished

by

using

the

READ

ACCESS

option

and

is

not

supported

when

the

load

utility

is

invoked

in

REPLACE

mode.

v

Whether

the

load

operation

should

wait

for

other

utilities

or

applications

to

finish

using

the

table

or

force

the

other

applications

off

before

proceeding.

v

An

alternate

system

temporary

table

space

in

which

to

build

the

index.

Note:

This

is

only

supported

when

the

READ

ACCESS

option

is

specified

with

a

full

index

rebuild.

v

The

paths

and

the

names

of

the

input

files

in

which

LOBs

are

stored.

The

lobsinfile

modifier

tells

the

load

utility

that

all

LOB

data

is

being

loaded

from

files.

v

A

message

file

name.

During

DB2®

operations

such

as

exporting,

importing,

loading,

binding,

or

restoring

data,

you

can

specify

that

message

files

be

created

to

contain

the

error,

warning,

and

informational

messages

associated

with

those

operations.

Specify

the

name

of

these

files

with

the

MESSAGES

parameter.

These

message

files

are

standard

ASCII

text

files.

To

print

them,

use

the

printing

procedure

for

your

operating

system;

to

view

them,

use

any

ASCII

editor.

Chapter

3.

Load

75

|
|
|

Notes:

1.

You

can

only

view

the

contents

of

a

message

file

after

the

operation

is

finished.

2.

Each

message

in

a

message

file

begins

on

a

new

line

and

contains

information

provided

by

the

DB2

message

retrieval

facility.
v

Whether

column

values

being

loaded

have

implied

decimal

points.

The

implieddecimal

modifier

tells

the

load

utility

that

decimal

points

are

to

be

applied

to

the

data

as

it

enters

the

table.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

v

Whether

the

utility

should

modify

the

amount

of

free

space

available

after

a

table

is

loaded.

Additional

free

space

permits

INSERT

and

UPDATE

growth

to

the

table

following

the

completion

of

a

load

operation.

Reduced

free

space

keeps

related

rows

more

closely

together

and

can

enhance

table

performance.

v

Whether

statistics

are

to

be

gathered

during

the

load

process.

This

option

is

only

supported

if

the

load

operation

is

running

in

REPLACE

mode.

If

data

is

appended

to

a

table,

statistics

are

not

collected.

To

collect

current

statistics

on

an

appended

table,

invoke

the

runstats

utility

following

completion

of

the

load

process.

If

gathering

statistics

on

a

table

with

a

unique

index,

and

duplicate

keys

are

deleted

during

the

delete

phase,

statistics

are

not

updated

to

account

for

the

deleted

records.

If

you

expect

to

have

a

significant

number

of

duplicate

records,

do

not

collect

statistics

during

the

load

operation.

Instead,

invoke

the

runstats

utility

following

completion

of

the

load

process.

v

Whether

to

collect

statistics

during

the

load

operation.

Statistics

are

collected

according

to

the

profile

defined

for

the

table.

The

profile

must

be

created

by

the

RUNSTATS

command

before

the

LOAD

command

is

executed.

If

the

profile

does

not

exist

and

the

load

operation

is

instructed

to

collect

statistics

according

to

the

profile,

the

load

will

fail,

and

an

error

message

will

be

returned.

v

Whether

to

keep

a

copy

of

the

changes

made.

This

is

done

to

enable

rollforward

recovery

of

the

database.

This

option

is

not

supported

if

forward

log

recovery

is

disabled

for

the

database;

that

is,

if

the

database

configuration

parameters

logretain

and

userexit

are

disabled.

If

no

copy

is

made,

and

forward

log

recovery

is

enabled,

the

table

space

is

left

in

backup

pending

state

at

the

completion

of

the

load

operation.

Logging

is

required

for

fully

recoverable

databases.

The

load

utility

almost

completely

eliminates

the

logging

associated

with

the

loading

of

data.

In

place

of

logging,

you

have

the

option

of

making

a

copy

of

the

loaded

portion

of

the

table.

If

you

have

a

database

environment

that

allows

for

database

recovery

following

a

failure,

you

can

do

one

of

the

following:

–

Explicitly

request

that

a

copy

of

the

loaded

portion

of

the

table

be

made.

–

Take

a

backup

of

the

table

spaces

in

which

the

table

resides

immediately

after

the

completion

of

the

load

operation.
If

you

are

loading

a

table

that

already

contains

data,

and

the

database

is

non-recoverable,

ensure

that

you

have

a

backed-up

copy

of

the

database,

or

the

table

spaces

for

the

table

being

loaded,

before

invoking

the

load

utility,

so

that

you

can

recover

from

errors.

If

you

want

to

perform

a

sequence

of

multiple

load

operations

on

a

recoverable

database,

the

sequence

of

operations

will

be

faster

if

you

specify

that

each

load

operation

is

non-recoverable,

and

take

a

backup

at

the

end

of

the

load

sequence,

than

if

you

invoke

each

of

the

load

operations

with

the

COPY

YES

option.

You

can

use

the

NONRECOVERABLE

option

to

specify

that

a

load

transaction

is

to

be

marked

as

non-recoverable,

and

that

it

will

not

be

possible

to

recover

it

by

a

subsequent

rollforward

operation.

The

rollforward

utility

will

skip

the

transaction,

and

will

mark

the

table

into

which

data

was

being

loaded

as

76

Data

Movement

Utilities

|
|
|
|
|

"invalid".

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

rollforward

operation

is

completed,

such

a

table

can

only

be

dropped

(see

Figure

2).

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

v

Whether

to

log

all

index

modifications.

If

the

database

configuration

parameter

logindexbuild

is

set,

and

if

the

load

operation

is

invoked

with

the

COPY

YES

recoverability

option

and

the

INCREMENTAL

indexing

option,

the

load

will

log

all

index

modifications.

The

benefit

of

using

these

options

is

that

when

you

roll

forward

through

the

log

records

for

this

load,

you

will

also

recover

the

indexes

(whereas

normally

the

indexes

would

not

be

recovered

unless

the

load

had

used

REBUILD

indexing

mode).

v

The

fully

qualified

path

to

be

used

when

creating

temporary

files

during

a

load

operation.

The

name

is

specified

by

the

TEMPFILES

PATH

parameter

of

the

LOAD

command.

The

default

value

is

the

database

path.

The

path

resides

on

the

server

machine,

and

is

accessed

by

the

DB2

instance

exclusively.

Therefore,

any

path

name

qualification

given

to

this

parameter

must

reflect

the

directory

structure

of

the

server,

not

the

client,

and

the

DB2

instance

owner

must

have

read

and

write

permission

on

the

path.

This

is

true

even

if

you

are

the

instance

owner.

If

you

are

not

the

instance

owner,

you

must

specify

a

location

that

is

writable

by

the

instance

owner.

Changes

to

Previous

Load

Behavior

Introduced

in

Version

6

and

Version

7

The

Version

6

and

the

Version

7

load

utilities

have

full

back-level

compatibility

with

previous

releases;

that

is,

they

will

accept

syntax

from

previous

releases

and

operate

normally.

Following

is

a

summary

of

syntax

changes

and

changes

to

load

behavior

introduced

in

Version

6

and

Version

7:

v

Load

restart

no

longer

uses

a

RESTARTCOUNT

value,

and

the

parameter

is

now

reserved.

When

a

previously

interrupted

load

operation

is

restarted,

the

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

v

The

sorting

of

index

keys

during

index

creation

takes

advantage

of

a

new

sorting

algorithm

used

by

the

DB2

UDB

Version

6

database

engine.

The

amount

of

memory

dedicated

to

sorting

is

controlled

by

the

values

of

the

sort

heap

(sortheap)

database

configuration

parameter,

and

the

sort

heap

threshold

(sheapthres)

database

manager

configuration

parameter.

If

these

options

are

specified

in

Version

6,

an

informational

warning

message

is

returned,

but

the

load

operation

proceeds

normally.

Sort

spills

that

occur

during

load

index

creation

are

now

performed

inside

a

temporary

table

space.

Sort

operations

do

not

spill

directly

to

disk;

rather,

they

spill

to

the

buffer

pool

associated

with

the

temporary

table

space.

Having

a

large

buffer

pool

associated

with

the

temporary

table

space

can

improve

index

full DB
restore

rollforward
begins

load to table X
ignored

transaction to
table X ignored

rollforward
ends

table X
dropped

(recovery time-line)

Figure

2.

Non-recoverable

Processing

During

a

Roll

Forward

Operation

Chapter

3.

Load

77

|
|
|
|
|
|
|

creation

time.

To

achieve

the

same

type

of

I/O

parallelism

that

was

available

in

pre-Version

6

load

sort

operations

(by

specifying

multiple

temporary

sort

directories),

it

is

recommended

that

temporary

table

spaces

be

declared

with

multiple

containers,

each

residing

on

a

different

disk

device.

It

is

also

recommended

that

temporary

table

spaces

be

declared

as

SMS

(System

Managed

Space),

so

that

they

can

grow

to

accommodate

large

volumes

of

data

without

holding

disk

resources

when

those

resources

are

not

being

used.

v

The

REMOTE

FILE

option

has

been

renamed

(although

the

utility

still

accepts

the

REMOTE

FILE

parameter

when

specifying

the

path

to

temporary

files).

This

is

a

purely

syntactical

change

to

better

reflect

the

meaning

and

purpose

of

this

parameter.

The

TEMPFILES

PATH

parameter

refers

to

a

directory,

rather

than

a

file.

v

The

load

utility

now

supports

several

indexing

modes

(full

REBUILD,

INCREMENTAL

extensions,

index

maintenance

DEFERRED

until

after

a

load

operation

completes,

and

an

AUTOSELECTion

mode,

which

chooses

between

full

rebuild

and

incremental

maintenance

at

run

time).

The

full

rebuild

mode

mirrors

the

behavior

of

pre-Version

6

releases.

The

default

behavior

for

Version

6

is

AUTOSELECT

mode.

v

In

Version

6,

the

TERMINATE

option

can

be

used

to

roll

back

a

load

operation.

Previously

this

option

would

put

a

table

space

in

restore

pending

state.

Note,

however,

that

a

TERMINATE

request

after

a

failed

LOAD

REPLACE

operation

will

not

restore

the

table

data.

The

Version

7

load

utility

can

load

data

residing

on

a

remotely

connected

client,

in

fully

qualified

files

or

named

pipes.

(Separate

files

containing

LOB

values,

when

the

lobsinfile

file

type

modifier

is

specified,

should

be

located

on

the

server.)

Changes

to

Previous

Load

Behavior

Introduced

in

Version

8

Following

is

a

summary

of

syntax

changes

and

changes

to

load

behavior

introduced

in

Version

8:

v

Prior

to

Version

8,

load

required

exclusive

access

to

table

spaces

that

contained

objects

belonging

to

the

table

being

loaded.

In

Version

8,

load

operates

at

the

table

level

and

no

longer

requires

exclusive

access

to

the

table

space.

Load

will

place

a

lock

only

on

the

table

objects

associated

with

the

load

operation

taking

place.

Concurrent

access

to

other

table

objects

in

the

same

table

spaces

is

permitted.

Note:

Prior

to

Version

8,

when

the

COPY

NO

option

was

specified

on

a

recoverable

database,

the

table

space

was

put

in

backup

pending

state

only

after

the

load

operation

was

committed.

In

Version

8,

the

table

space

will

be

placed

in

backup

pending

state

when

the

load

operation

begins

and

will

remain

in

that

state

even

if

the

load

operation

fails

and

is

rolled

back.

As

in

previous

releases,

when

the

COPY

NO

option

is

specified

and

load

operation

completes

successfully,

the

rollforward

utility

will

put

dependent

table

spaces

in

restore

pending

state

during

a

rollforward

operation.

v

You

can

also

specify

that

users

have

read

access

to

the

data

that

existed

in

the

table

prior

to

the

load.

This

means

that

after

the

load

operation

has

completed,

you

will

not

be

able

to

view

the

new

data

if

there

are

constraints

on

the

table

and

integrity

checking

has

not

been

completed.

You

can

also

specify

that

the

index

be

rebuilt

in

a

separate

table

space

during

a

load

operation

by

specifying

the

READ

ACCESS

and

INDEXING

MODE

REBUILD

options.

The

index

will

be

copied

back

to

the

original

table

space

during

the

index

copy

phase

which

occurs

after

the

other

phases

of

the

load

operation.

78

Data

Movement

Utilities

v

The

functionality

of

the

LOAD

QUERY

command

has

been

expanded

and

it

now

returns

the

table

state

of

the

target

into

which

data

is

being

loaded

in

addition

to

the

status

information

it

previously

included

on

a

load

operation

in

progress.

The

LOAD

QUERY

command

might

also

be

used

to

query

the

table

state

whether

or

not

a

load

operation

is

in

progress

on

that

table.

v

Extent

allocations

in

DMS

table

spaces

are

now

logged.

The

LOAD

command

will

now

write

two

log

records

for

every

extent

it

allocates

in

a

DMS

table

space.

Also,

when

the

READ

ACCESS

and

INDEXING

MODE

INCREMENTAL

options

are

specified,

some

log

records

will

be

written

while

data

is

being

incrementally

inserted

into

the

index.

v

Dependent

table

spaces

will

no

longer

be

quiesced

prior

to

a

load

operation.

When

the

COPY

NO

option

is

specified,

the

new

table

space

state

load

in

progress

will

be

used.

The

load

in

progress

table

space

state

prevents

the

backup

of

dependent

tables

during

a

load

operation.

The

load

in

progress

table

space

state

is

different

from

the

load

in

progress

table

state

in

that

all

load

operations

use

the

load

in

progress

table

state,

but

load

operations

with

the

COPY

NO

option

specified

also

use

the

load

in

progress

table

space

state.

v

When

executing

a

load

operation

with

the

ALLOW

READ

ACCESS

and

INDEXING

MODE

REBUILD

options,

a

new

copy

of

the

indexes

is

created

in

addition

to

the

original

indexes.

This

means

that

the

space

requirement

for

the

index

table

space

might

have

to

be

doubled.

To

avoid

this,

the

USE

TABLESPACE

option

can

be

used

to

specify

a

temporary

table

space

for

the

storage

of

new

indexes.

After

the

new

indexes

are

built

in

the

temporary

table

space,

the

target

table

is

taken

offline

before

the

new

indexes

are

copied

into

the

target

table

space.

v

Calls

to

quiesce

table

spaces

from

the

LOAD

command

have

been

removed.

If

you

quiesce

table

spaces

in

exclusive

mode

prior

to

a

load

operation,

you

will

now

have

to

explicitly

remove

the

table

spaces

from

the

quiesced

exclusive

state.

In

previous

releases,

after

issuing

the

following

commands

LOAD

would

have

implicitly

reset

the

quiesced

table

spaces

and

made

them

accessible

to

other

applications:

quiesce

tablespaces

for

table

t1

exclusive

load

from

data.del

of

del

insert

into

t1

In

Version

8,

you

must

issue

the

following

command

to

remove

the

table

space

from

the

quiesced

exclusive

state:

quiesce

tablespaces

for

table

t1

reset

v

A

LOCK

WITH

FORCE

option

has

been

added

to

the

LOAD

command.

It

allows

you

to

force

other

applications

to

release

locks

they

have

on

a

table

and

to

allow

the

load

operation

to

proceed

and

acquire

the

locks

it

needs.

v

The

load

utility

now

has

the

ability

to

load

from

an

SQL

statement,

using

the

new

CURSOR

file

type.

v

Loading

data

that

resides

on

a

remotely

connected

client

is

now

supported

under

the

following

conditions:

–

The

database

that

the

client

is

connected

to

is

in

a

partitioned

database

environment.

–

The

database

that

the

client

is

connected

to

is

cataloged

against

an

already

cataloged

database.
v

Loading

data

into

multi-dimensional

clustering

(MDC)

tables

is

supported.

v

Prior

to

Version

8,

following

a

load

operation

the

target

table

remained

in

check

pending

state

if

it

contained

generated

columns.

The

load

utility

will

now

Chapter

3.

Load

79

generate

column

values,

and

you

are

no

longer

required

issue

the

SET

INTEGRITY

statement

after

a

load

operation.

v

Tables

can

now

be

loaded

in

a

partitioned

database

environment.

The

AutoLoader

utility

(db2atld)

is

no

longer

required

to

accomplish

this.

The

load

API

(db2Load)

has

also

been

enhanced

to

support

the

partitioned

database

load

options.

Related

concepts:

v

“Rollforward

recovery”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“LOAD

QUERY”

on

page

121

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

v

“LIST

UTILITIES

Command”

in

the

Command

Reference

Parallelism

and

loading

The

load

utility

takes

advantage

of

a

hardware

configuration

in

which

multiple

processors

or

multiple

storage

devices

are

used,

such

as

in

a

symmetric

multiprocessor

(SMP)

environment.

There

are

several

ways

in

which

parallel

processing

of

large

amounts

of

data

can

take

place

using

the

load

utility.

One

way

is

through

the

use

of

multiple

storage

devices,

which

allows

for

I/O

parallelism

during

the

load

operation

(see

Figure

3).

Another

way

involves

the

use

of

multiple

processors

in

an

SMP

environment,

which

allows

for

intra-partition

parallelism

(see

Figure

4

on

page

81).

Both

can

be

used

together

to

provide

even

faster

loading

of

data.

Disk Disk Disk

I/O
Subagent

I/O
Subagent

I/O
Subagent

Figure

3.

Taking

Advantage

of

I/O

Parallelism

When

Loading

Data

80

Data

Movement

Utilities

Related

concepts:

v

“Optimizing

load

performance”

on

page

166

Privileges,

authorities,

and

authorizations

required

to

use

Load

To

load

data

into

a

table,

you

must

have

one

of

the

following:

v

SYSADM

authority

v

DBADM

authority

v

LOAD

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Since

all

load

processes

(and

all

DB2®

server

processes,

in

general),

are

owned

by

the

instance

owner,

and

all

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files,

the

instance

owner

must

have

read

access

to

input

data

files.

These

input

data

files

must

be

readable

by

the

instance

owner,

regardless

of

who

invokes

the

command.

On

Windows®

NT,

Windows

2000

and

Windows.NET

operating

systems

where

DB2

is

running

as

a

Windows

service,

if

you

are

loading

data

from

files

that

reside

on

a

network

drive,

you

must

configure

the

DB2

service

to

run

under

a

user

account

that

has

read

access

to

these

files.

Related

reference:

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

Using

Load

Prerequisites:

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Source data (DEL, ASC, IXF, CURSOR)

Database

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Figure

4.

Taking

Advantage

of

Intra-partition

Parallelism

When

Loading

Data

Chapter

3.

Load

81

Before

invoking

the

load

utility,

you

must

be

connected

to

(or

be

able

to

implicitly

connect

to)

the

database

into

which

the

data

will

be

loaded.

Since

the

utility

will

issue

a

COMMIT

statement,

you

should

complete

all

transactions

and

release

all

locks

by

performing

either

a

COMMIT

or

a

ROLLBACK

before

invoking

load.

Since

data

is

loaded

in

the

sequence

that

appears

in

the

input

file

(except

when

using

multi-dimensional

clustering

(MDC)

tables),

if

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

operation

is

attempted.

If

clustering

is

required,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

When

loading

data

into

MDC

tables,

sorting

is

not

required

prior

to

the

load

operation,

and

data

will

be

clustered

according

to

the

MDC

table

definition.

Restrictions:

The

following

restrictions

apply

to

the

load

utility:

v

Loading

data

into

nicknames

is

not

supported.

v

Loading

data

into

typed

tables,

or

tables

with

structured

type

columns,

is

not

supported.

v

Loading

data

into

declared

temporary

tables

is

not

supported.

v

Attempts

to

create

or

drop

tables

in

a

table

space

that

is

in

backup

pending

state

will

fail.

v

You

cannot

load

data

into

a

database

accessed

through

DB2

Connect

or

a

down-level

server

prior

to

DB2

Version

2.

Options

that

are

only

available

with

this

release

of

DB2

cannot

be

used

with

a

server

from

the

previous

release.

v

If

an

error

occurs

during

a

LOAD

REPLACE

operation,

the

original

data

in

the

table

is

lost.

Retain

a

copy

of

the

input

data

to

allow

the

load

operation

to

be

restarted.

v

Triggers

are

not

activated

on

newly

loaded

rows.

Business

rules

associated

with

triggers

are

not

enforced

by

the

load

utility.

Procedure:

The

load

utility

can

be

invoked

through

the

command

line

processor

(CLP),

the

Load

notebook

in

the

Control

Centre,

or

an

application

programming

interface

(API),

db2Load.

Following

is

an

example

of

the

LOAD

command

issued

through

the

CLP:

db2

load

from

stafftab.ixf

of

ixf

messages

staff.msgs

insert

into

userid.staff

copy

yes

use

tsm

data

buffer

4000

In

this

example:

v

Any

warning

or

error

messages

are

placed

in

the

staff.msgs

file.

v

A

copy

of

the

changes

made

is

stored

in

Tivoli

Storage

Manager

(TSM,

formerly

ADSM).

v

Four

thousand

pages

of

buffer

space

are

to

be

used

during

the

load

operation.

Following

is

another

example

of

the

LOAD

command

issued

through

the

CLP:

db2

load

from

stafftab.ixf

of

ixf

messages

staff.msgs

tempfiles

path

/u/myuser

replace

into

staff

In

this

example:

v

The

table

data

is

being

replaced.

82

Data

Movement

Utilities

v

The

TEMPFILES

PATH

parameter

is

used

to

specify

/u/myuser

as

the

server

path

into

which

temporary

files

will

be

written.

Note:

These

examples

use

relative

path

names

for

the

load

input

file.

Relative

path

names

are

only

allowed

on

calls

from

a

client

on

the

same

node

as

the

database.

The

use

of

fully

qualified

path

names

is

recommended.

To

open

the

Load

notebook:

1.

From

the

Control

Center,

expand

the

object

tree

until

you

find

the

Tables

folder.

2.

Click

on

the

Tables

folder.

Any

existing

tables

are

displayed

in

the

pane

on

the

right

side

of

the

window

(the

contents

pane).

3.

Click

the

right

mouse

button

on

the

table

you

want

in

the

contents

pane,

and

select

Load

from

the

pop-up

menu.

The

Load

notebook

opens.

Detailed

information

about

the

Control

Center

is

provided

through

its

online

help

facility.

After

you

invoke

the

load

utility,

you

can

use

the

LIST

UTILITIES

command

to

monitor

the

progress

of

the

load

operation.

In

the

case

of

a

load

operation

performed

in

either

INSERT

mode,

REPLACE

mode,

or

RESTART

mode,

detailed

progress

monitoring

support

will

be

available.

Issue

the

LIST

UTILITIES

command

with

the

SHOW

DETAILS

option

to

view

detailed

information

about

the

phase

of

load

the

utility

is

in

currently.

In

the

case

of

a

load

operation

performed

in

TERMINATE

mode

however,

details

are

not

available.

The

LIST

UTILITIES

command

will

simply

show

that

a

load

terminate

utility

is

currently

running.

For

more

information,

refer

to

LIST

UTILITIES

Command.

Load

does

not

maintain

any

constraints

other

than

the

UNIQUE

constraints.

Instead,

the

table

will

be

put

into

CHECK

PENDING

state

at

the

beginning

of

Load.

After

the

load

operation

is

completed,

the

SET

INTEGRITY

command

must

be

used

to

take

the

table

out

of

CHECK

PENDING

state.

Related

reference:

v

“LIST

UTILITIES

Command”

in

the

Command

Reference

v

“Tivoli

Storage

Manager”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

Related

samples:

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.out

--

HOW

TO

MOVE

TABLE

DATA

(C++)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

Read

access

load

operations

The

load

utility

provides

two

options

that

control

the

amount

of

access

other

applications

have

to

a

table

being

loaded.

The

ALLOW

NO

ACCESS

option

locks

the

table

exclusively

and

allows

no

access

to

the

table

data

while

the

table

is

being

loaded.

This

is

the

default

behavior.

The

ALLOW

READ

ACCESS

option

prevents

all

write

access

to

the

table

by

other

applications,

but

allows

read

access

to

pre-loaded

data.

This

section

deals

with

the

ALLOW

READ

ACCESS

option.

Chapter

3.

Load

83

|
|
|
|
|
|
|
|
|

|
|
|
|

Table

data

and

index

data

that

exist

prior

to

the

start

of

a

load

operation

are

visible

to

queries

while

the

load

operation

is

in

progress.

Consider

the

following

example:

1.

Create

a

table

with

one

integer

column:

create

table

ED

(ed

int)

2.

Load

three

rows:

load

from

File1

of

del

insert

into

ED

...

Number

of

rows

read

=

3

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

3

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

3

3.

Query

the

table:

select

*

from

ED

ED

1

2

3

3

record(s)

selected.

4.

Perform

a

load

operation

with

the

ALLOW

READ

ACCESS

option

specified

and

load

two

more

rows

of

data:

load

from

File2

of

del

insert

into

ED

allow

read

access

5.

At

the

same

time,

on

another

connection

query

the

table

while

the

load

operation

is

in

progress:

select

*

from

ED

ED

1

2

3

3

record(s)

selected.

6.

Wait

for

the

load

operation

to

finish

and

then

query

the

table:

select

*

from

ED

ED

1

2

3

4

5

5

record(s)

selected.

The

ALLOW

READ

ACCESS

option

is

very

useful

when

loading

large

amounts

of

data

because

it

gives

users

access

to

table

data

at

all

times,

even

when

the

load

operation

is

in

progress

or

after

a

load

operation

has

failed.

The

behavior

of

a

load

operation

in

ALLOW

READ

ACCESS

mode

is

independent

of

the

isolation

level

of

the

application.

That

is,

readers

with

any

isolation

level

can

always

read

the

pre-existing

data,

but

they

will

not

be

able

to

read

the

newly

loaded

data

until

the

load

operation

has

finished.

84

Data

Movement

Utilities

Read

access

is

provided

throughout

the

load

operation

except

at

the

very

end.

Before

data

is

committed

the

load

utility

acquires

an

exclusive

lock

(Z-lock)

on

the

table.

The

load

utility

will

wait

until

all

applications

that

have

locks

on

the

table,

release

them.

This

might

cause

a

delay

before

the

data

can

be

committed.

The

LOCK

WITH

FORCE

option

can

be

used

to

force

off

conflicting

applications,

and

allow

the

load

operation

to

proceed

without

having

to

wait.

Usually,

a

load

operation

in

ALLOW

READ

ACCESS

mode

acquires

an

exclusive

lock

for

a

short

amount

of

time;

however,

if

the

USE

<tablespaceName>

option

is

specified,

the

exclusive

lock

will

last

for

the

entire

period

of

the

index

copy

phase.

Notes:

1.

If

a

load

operation

is

aborted,

it

remains

at

the

same

access

level

that

was

specified

when

the

load

operation

was

issued.

So,

if

a

load

operation

in

ALLOW

NO

ACCESS

mode

aborts,

the

table

data

is

inaccessible

until

a

load

terminate

or

a

load

restart

is

issued.

If

a

load

operation

in

ALLOW

READ

ACCESS

mode

aborts,

the

pre-loaded

table

data

is

still

accessible

for

read

access.

2.

If

the

ALLOW

READ

ACCESS

option

was

specified

for

an

aborted

load

operation,

it

can

also

be

specified

for

the

load

restart

or

load

terminate

operation.

However,

if

the

aborted

load

operation

specified

the

ALLOW

NO

ACCESS

option,

the

ALLOW

READ

ACCESS

option

cannot

be

specified

for

the

load

restart

or

load

terminate

operation.

The

ALLOW

READ

ACCESS

option

is

not

supported

if:

v

The

REPLACE

option

is

specified.

Since

a

load

replace

operation

truncates

the

existing

table

data

before

loading

the

new

data,

there

is

no

pre-existing

data

to

query

until

after

the

load

operation

is

complete.

v

The

indexes

have

been

marked

invalid

and

are

waiting

to

be

rebuilt.

Indexes

can

be

marked

invalid

in

some

rollforward

scenarios

or

through

the

use

of

the

db2dart

command.

v

The

INDEXING

MODE

DEFERRED

option

is

specified.

This

mode

marks

the

indexes

as

requiring

a

rebuild.

v

An

ALLOW

NO

ACCESS

load

operation

is

being

restarted

or

terminated.

Until

it

is

brought

fully

online,

a

load

operation

in

ALLOW

READ

ACCESS

mode

cannot

take

place

on

the

table.

v

A

load

operation

is

taking

place

to

a

table

that

is

in

check

pending

state

and

is

not

in

read

access

state.

This

is

also

the

case

for

multiple

load

operations

on

tables

with

constraints.

A

table

is

not

brought

online

until

the

SET

INTEGRITY

statement

is

issued.

Generally,

if

table

data

is

taken

offline,

read

access

is

not

available

during

a

load

operation

until

the

table

data

is

back

online.

Related

concepts:

v

“Checking

for

integrity

violations”

on

page

91

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

v

“Building

indexes”

on

page

86

Chapter

3.

Load

85

Building

indexes

Indexes

are

built

during

the

build

phase

of

a

load

operation.

There

are

four

indexing

modes

that

can

be

specified

in

the

LOAD

command:

1.

REBUILD.

All

indexes

will

be

rebuilt.

2.

INCREMENTAL.

Indexes

will

be

extended

with

new

data.

3.

AUTOSELECT.

The

load

utility

will

automatically

decide

between

REBUILD

or

INCREMENTAL

mode.

This

is

the

default.

Note:

You

might

decide

to

explicitly

choose

an

indexing

mode

because

the

behavior

of

the

REBUILD

and

INCREMENTAL

modes

are

quite

different.

4.

DEFERRED.

The

load

utility

will

not

attempt

index

creation

if

this

mode

is

specified.

Indexes

will

be

marked

as

needing

a

refresh,

and

a

rebuild

might

be

forced

the

first

time

they

are

accessed.

This

option

is

not

compatible

with

the

ALLOW

READ

ACCESS

option

because

it

does

not

maintain

the

indexes

and

index

scanners

require

a

valid

index.

Load

operations

that

specify

the

ALLOW

READ

ACCESS

option

require

special

consideration

in

terms

of

space

usage

and

logging

depending

on

the

type

of

indexing

mode

chosen.

When

the

ALLOW

READ

ACCESS

option

is

specified,

the

load

utility

keeps

indexes

available

for

queries

even

while

they

are

being

rebuilt.

When

a

load

operation

in

ALLOW

READ

ACCESS

mode

specifies

the

INDEXING

MODE

INCREMENTAL

option,

the

load

utility

will

write

some

log

records

that

protect

the

integrity

of

the

index

tree.

The

number

of

log

records

written

is

a

fraction

of

the

number

of

inserted

keys

and

is

a

number

considerably

less

than

would

be

needed

by

a

similar

SQL

insert

operation.

A

load

operation

in

ALLOW

NO

ACCESS

mode

with

the

INDEXING

MODE

INCREMENTAL

option

specified

writes

only

a

small

log

record

beyond

the

normal

space

allocation

logs.

When

a

load

operation

in

ALLOW

READ

ACCESS

mode

specifies

the

INDEXING

MODE

REBUILD

option,

new

indexes

are

built

as

a

shadow

either

in

the

same

table

space

as

the

original

index

or

in

a

system

temporary

table

space.

The

original

indexes

remain

intact

and

are

available

during

the

load

operation

and

are

only

replaced

by

the

new

indexes

at

the

end

of

the

load

operation

while

the

table

is

exclusively

locked.

If

the

load

operation

fails

and

the

transaction

is

rolled

back,

the

original

indexes

will

remain

intact.

Building

New

Indexes

in

the

Same

Table

Space

as

the

Original

By

default,

the

shadow

index

is

built

in

the

same

table

space

as

the

original

index.

Since

both

the

original

index

and

the

new

index

are

maintained

simultaneously,

there

must

be

sufficient

table

space

to

hold

both

indexes

at

the

same

time.

If

the

load

operation

is

aborted,

the

extra

space

used

to

build

the

new

index

is

released.

If

the

load

operation

commits,

the

space

used

for

the

original

index

is

released

and

the

new

index

becomes

the

current

index.

When

the

new

indexes

are

built

in

the

same

table

space

as

the

original

indexes,

replacing

the

original

indexes

will

take

place

almost

instantaneously.

If

the

indexes

are

built

in

a

DMS

table

space,

the

new

shadow

index

cannot

be

seen

by

the

user.

If

the

indexes

are

built

within

an

SMS

table

space,

the

user

can

see

86

Data

Movement

Utilities

index

files

in

the

table

space

directory

with

the

.IN1

suffix

and

the

.INX

suffix.

These

suffixes

do

not

indicate

which

is

the

original

index

and

which

is

the

shadow

index.

Building

New

Indexes

in

a

System

Temporary

Table

Space

The

new

index

can

be

built

in

a

system

temporary

table

space

to

avoid

running

out

of

space

in

the

original

table

space.

The

USE

<tablespaceName>

option

allows

the

indexes

to

be

rebuilt

in

a

system

temporary

table

space

when

using

INDEXING

MODE

REBUILD

and

ALLOW

READ

ACCESS

options.

The

system

temporary

table

can

be

an

SMS

or

a

DMS

table

space,

but

the

page

size

of

the

system

temporary

table

space

must

match

the

page

size

of

the

original

index

table

space.

The

USE

<tablespaceName>

option

is

ignored

if

the

load

operation

is

not

in

ALLOW

READ

ACCESS

mode,

or

if

the

indexing

mode

is

incompatible.

The

USE

<tablespaceName>

option

is

only

supported

for

the

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT

options.

If

the

INDEXING

MODE

AUTOSELECT

option

is

specified

and

the

load

utility

selects

incremental

maintenance

of

the

indexes,

the

USE

<tablespaceName>

option

will

be

ignored.

A

load

restart

operation

can

use

an

alternate

table

space

for

building

an

index

even

if

the

original

load

operation

did

not

use

an

alternate

table

space.

A

load

restart

operation

cannot

be

issued

in

ALLOW

READ

ACCESS

mode

if

the

original

load

operation

was

not

issued

in

ALLOW

READ

ACCESS

mode.

Load

terminate

operations

do

not

rebuild

indexes,

so

the

USE

<tablespaceName>

option

will

be

ignored.

During

the

build

phase

of

the

load

operation,

the

indexes

are

built

in

the

system

temporary

table

space.

Then,

during

the

index

copy

phase,

the

index

is

copied

from

the

system

temporary

table

space

to

the

original

index

table

space.

To

make

sure

that

there

is

sufficient

space

in

the

original

index

table

space

for

the

new

index,

space

is

allocated

in

the

original

table

space

during

the

build

phase.

So,

if

the

load

operation

is

going

to

run

out

of

index

space,

it

will

do

it

during

the

build

phase.

If

this

happens,

the

original

index

will

not

be

lost.

The

index

copy

phase

occurs

after

the

build

and

delete

phases.

Before

the

index

copy

phase

begins,

the

table

is

locked

exclusively.

That

is,

it

is

unavailable

for

read

access

throughout

the

index

copy

phase.

Since

the

index

copy

phase

is

a

physical

copy,

the

table

might

be

unavailable

for

a

significant

amount

of

time.

Note:

If

either

the

system

temporary

table

space

or

the

index

table

space

are

DMS

table

spaces,

the

read

from

the

system

temporary

table

space

can

cause

random

I/O

on

the

system

temporary

table

space

and

can

cause

a

delay.

The

write

to

the

index

table

space

is

still

optimized

and

the

DISK_PARALLELISM

values

will

be

used.

Related

concepts:

v

“Load

Overview”

on

page

74

v

“Read

access

load

operations”

on

page

83

Using

load

with

identity

columns

The

load

utility

can

be

used

to

load

data

into

a

table

containing

an

identity

column.

If

no

identity-related

file

type

modifiers

are

used,

the

utility

works

according

to

the

following

rules:

Chapter

3.

Load

87

v

If

the

identity

column

is

GENERATED

ALWAYS,

an

identity

value

is

generated

for

a

table

row

whenever

the

corresponding

row

in

the

input

file

is

missing

a

value

for

the

identity

column,

or

a

NULL

value

is

explicitly

given.

If

a

non-NULL

value

is

specified

for

the

identity

column,

the

row

is

rejected

(SQL3550W).

v

If

the

identity

column

is

GENERATED

BY

DEFAULT,

the

load

utility

makes

use

of

user-supplied

values,

if

they

are

provided;

if

the

data

is

missing

or

explicitly

NULL,

a

value

is

generated.

The

load

utility

does

not

perform

any

extra

validation

of

user-supplied

identity

values

beyond

what

is

normally

done

for

values

of

the

identity

column’s

data

type

(that

is,

SMALLINT,

INT,

BIGINT,

or

DECIMAL).

Duplicate

values

will

not

be

reported.

For

a

partitioned

database,

when

an

identity

column

is

in

the

partitioning

key

for

a

table,

or

the

identity

column

is

referenced

in

a

generated

column

that

is

part

of

the

partitioning

key,

and

the

identityoverride

modifier

is

not

specified,

then

a

load

RESTART

operation

is

not

permitted

when

all

of

the

loading

partitions

are

not

restarting

from

the

″load″

phase.

Such

a

load

is

not

allowed

because

hashing

of

rows

during

the

restarted

load

might

be

different

from

the

hashing

in

the

initial

load,

due

to

the

dependence

on

the

identity

column.

In

this

case,

you

usually

need

to

use

the

TERMINATE

option

of

load

to

terminate

the

load.

Three

(mutually

exclusive)

file

type

modifiers

are

supported

by

the

load

utility

to

simplify

its

use

with

tables

that

contain

an

identity

column:

v

The

identitymissing

modifier

makes

loading

a

table

with

an

identity

column

more

convenient

if

the

input

data

file

does

not

contain

any

values

(not

even

NULLS)

for

the

identity

column.

For

example,

consider

a

table

defined

with

the

following

SQL

statement:

create

table

table1

(c1

varchar(30),

c2

int

generated

by

default

as

identity,

c3

decimal(7,2),

c4

char(1))

A

user

might

want

to

load

TABLE1

with

data

from

a

file

(load.del)

that

has

been

exported

from

a

table

that

does

not

have

an

identity

column.

The

following

is

an

example

of

such

a

file:

Robert,

45.2,

J

Mike,

76.9,

K

Leo,

23.4,

I

One

way

to

load

this

file

would

be

to

explicitly

list

the

columns

to

be

loaded

through

the

LOAD

command

as

follows:

db2

load

from

load.del

of

del

replace

into

table1

(c1,

c3,

c4)

For

a

table

with

many

columns,

however,

this

syntax

might

be

cumbersome

and

prone

to

error.

An

alternate

method

of

loading

the

file

is

to

use

the

identitymissing

file

type

modifier

as

follows:

db2

load

from

load.del

of

del

modified

by

identitymissing

replace

into

table1

v

The

identityignore

modifier

is

in

some

ways

the

opposite

of

the

identitymissing

modifier:

it

indicates

to

the

load

utility

that

even

though

the

input

data

file

contains

data

for

the

identity

column,

the

data

should

be

ignored,

and

an

identity

value

should

be

generated

for

each

row.

For

example,

a

user

might

want

to

load

TABLE1,

as

defined

above,

from

a

data

file

(load.del)

containing

the

following

data:

88

Data

Movement

Utilities

|
|
|
|
|
|
|
|

Robert,

1,

45.2,

J

Mike,

2,

76.9,

K

Leo,

3,

23.4,

I

If

the

user-supplied

values

of

1,

2,

and

3

are

not

to

be

used

for

the

identity

column,

the

user

could

issue

the

following

LOAD

command:

db2

load

from

load.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

Again,

this

approach

might

be

cumbersome

and

prone

to

error

if

the

table

has

many

columns.

The

identityignore

modifier

simplifies

the

syntax

as

follows:

db2

load

from

load.del

of

del

modified

by

identityignore

replace

into

table1

v

The

identityoverride

modifier

is

used

for

loading

user-supplied

values

into

a

table

with

a

GENERATED

ALWAYS

identity

column.

This

can

be

quite

useful

when

migrating

data

from

another

database

system,

and

the

table

must

be

defined

as

GENERATED

ALWAYS,

or

when

loading

a

table

from

data

that

was

recovered

using

the

DROPPED

TABLE

RECOVERY

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

(or

NULL

data)

for

the

identity

column

are

rejected

(SQL3116W).

Note:

When

using

this

modifier,

it

is

possible

to

violate

the

uniqueness

property

of

GENERATED

ALWAYS

columns.

Related

concepts:

v

“Identity

columns”

in

the

Administration

Guide:

Planning

Using

load

with

generated

columns

The

load

utility

can

be

used

to

load

data

into

a

table

containing

(non-identity)

generated

columns.

The

column

values

will

be

generated

by

this

utility.

Note:

If

you

initiate

a

load

operation

between

a

Version

7

or

earlier

client

and

a

Version

8

or

later

server,

the

load

utility

will

place

tables

with

generated

columns

in

check

pending

state.

If

a

table

has

been

placed

in

check

pending

state

because

a

Version

7

or

earlier

client

was

used

to

load

data

into

a

table

with

generated

columns,

the

following

statement

will

take

the

table

out

of

check

pending

state

and

force

the

generation

of

values:

SET

INTEGRITY

FOR

tablename

IMMEDIATE

CHECKED

FORCE

GENERATED;

If

no

generated

column-related

file

type

modifiers

are

used,

the

load

utility

works

according

to

the

following

rules:

v

Values

will

be

created

for

generated

columns

when

the

corresponding

row

of

the

data

file

is

missing

a

value

for

the

column

or

a

NULL

value

is

supplied.

If

a

non-NULL

value

is

supplied

for

a

generated

column,

the

row

is

rejected

(SQL3550W).

v

If

a

NULL

value

is

created

for

a

generated

column

that

is

not

nullable,

the

entire

row

of

data

will

be

rejected

(SQL0407N).

This

could

occur

if,

for

example,

a

non-nullable

generated

column

is

defined

as

the

sum

of

two

table

columns

that

include

NULL

values

in

the

data

file.

Three

(mutually

exclusive)

file

type

modifiers

are

supported

by

the

load

utility

to

simplify

its

use

with

tables

that

contain

generated

columns:

Chapter

3.

Load

89

|
|

v

The

generatedmissing

modifier

makes

loading

a

table

with

generated

columns

more

convenient

if

the

input

data

file

does

not

contain

any

values

(not

even

NULLS)

for

all

generated

columns

present

in

the

table.

For

example,

consider

a

table

defined

with

the

following

SQL

statement:

create

table

table1

(c1

int,

c2

int,

g1

int

generated

always

as

(c1

+

c2),

g2

int

generated

always

as

(2

*

c1),

c3

char(1))

A

user

might

want

to

load

TABLE1

with

data

from

a

file

(load.del)

that

has

been

exported

from

a

table

that

does

not

have

any

generated

columns.

The

following

is

an

example

of

such

a

file:

1,

5,

J

2,

6,

K

3,

7,

I

One

way

to

load

this

file

would

be

to

explicitly

list

the

columns

to

be

loaded

through

the

LOAD

command

as

follows:

db2

load

from

load.del

of

del

replace

into

table1

(c1,

c2,

c3)

For

a

table

with

many

columns,

however,

this

syntax

might

be

cumbersome

and

prone

to

error.

An

alternate

method

of

loading

the

file

is

to

use

the

generatedmissing

file

type

modifier

as

follows:

db2

load

from

load.del

of

del

modified

by

generatedmissing

replace

into

table1

v

The

generatedignore

modifier

is

in

some

ways

the

opposite

of

the

generatedmissing

modifier:

it

indicates

to

the

load

utility

that

even

though

the

input

data

file

contains

data

for

all

generated

columns

present

in

the

target

table,

the

data

should

be

ignored,

and

the

computed

values

should

be

loaded

into

each

generated

column.

For

example,

a

user

might

want

to

load

TABLE1,

as

defined

above,

from

a

data

file

(load.del)

containing

the

following

data:

1,

5,

10,

15,

J

2,

6,

11,

16,

K

3,

7,

12,

17,

I

The

user-supplied,

non-NULL

values

of

10,

11,

and

12

(for

g1),

and

15,

16,

and

17

(for

g2)

result

in

the

row

being

rejected

(SQL3550W).

To

avoid

this,

the

user

could

issue

the

following

LOAD

command:

db2

load

from

load.del

of

del

method

P(1,

2,

5)

replace

into

table1

(c1,

c2,

c3)

Again,

this

approach

might

be

cumbersome

and

prone

to

error

if

the

table

has

many

columns.

The

generatedignore

modifier

simplifies

the

syntax

as

follows:

db2

load

from

load.del

of

del

modified

by

generatedignore

replace

into

table1

v

The

generatedoverride

modifier

is

used

for

loading

user-supplied

values

into

a

table

with

generated

columns.

This

can

be

useful

when

migrating

data

from

another

database

system,

or

when

loading

a

table

from

data

that

was

recovered

using

the

RECOVER

DROPPED

TABLE

option

of

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

(or

NULL

data)

for

non-nullable

generated

columns

are

rejected

(SQL3116W).

When

this

modifier

is

used,

the

table

will

be

placed

in

check

pending

state

after

the

load

operation.

To

take

the

table

out

of

check

pending

state

without

verifying

the

user-supplied

values,

issue

the

following

command:

SET

INTEGRITY

FOR

table-name

GENERATED

COLUMN

IMMEDIATE

UNCHECKED

To

take

the

table

out

of

check

pending

state

and

force

verification

of

the

user-supplied

values,

issue

the

following

command:

90

Data

Movement

Utilities

|
|
|

|
|

|
|

SET

INTEGRITY

FOR

table-name

IMMEDIATE

CHECKED.

The

load

utility

supports

loading

tables

with

generated

columns

in

the

partitioning

key.

For

these

generated

columns,

the

data

for

the

dependent

columns

must

appear

within

the

first

32KB

of

data

for

each

row

being

loaded.

For

example,

consider

a

table

created

with

the

following

SQL

statement:

create

table

table1

(c1

int,

c2

int,

g1

int

generated

always

as

(c1

+

c2))

partitioning

key

(g1)

In

order

to

successfully

load

data

into

this

table,

all

of

the

data

for

columns

c1

and

c2

must

be

located

within

the

first

32KB

of

each

row

being

loaded.

Any

row

that

does

not

satisfy

this

restriction

will

be

rejected.

Note:

There

is

one

case

where

load

does

NOT

support

generating

column

values:

that

is

when

one

of

the

generated

column

expressions

contains

a

user-defined

function

that

is

FENCED.

If

you

attempt

to

load

into

such

a

table

the

utility

will

fail.

However,

you

can

provide

your

own

values

for

these

types

of

generated

columns

by

using

the

generatedoverride

file

type

modifier

of

load.

Related

concepts:

v

“Generated

Columns”

in

the

Application

Development

Guide:

Programming

Client

Applications

Checking

for

integrity

violations

Following

a

load

operation,

the

loaded

table

might

be

in

check

pending

state

in

either

READ

or

NO

ACCESS

mode

if

any

of

the

following

conditions

exist:

v

The

table

has

table

check

constraints

or

referential

integrity

constraints

defined

on

it.

v

The

table

has

datalink

columns

defined

on

it.

v

The

table

has

generated

columns

and

a

Version

7

or

earlier

client

was

used

to

initiate

the

load

operation.

v

The

table

has

descendent

immediate

materialized

query

tables

or

descendent

immediate

staging

tables

referencing

it.

v

The

table

is

a

staging

table

or

a

materialized

query

table.

The

STATUS

flag

of

the

SYSCAT.TABLES

entry

corresponding

to

the

loaded

table

indicates

the

check

pending

state

of

the

table.

For

the

loaded

table

to

be

fully

usable,

the

STATUS

must

have

a

value

of

N

and

the

ACCESS

MODE

must

have

a

value

of

F,

indicating

that

the

table

is

fully

accessible

and

in

normal

state.

If

the

loaded

table

has

descendent

tables,

the

CHECK

PENDING

CASCADE

parameter

can

be

specified

to

indicate

whether

or

not

the

check

pending

state

of

the

loaded

table

should

be

immediately

cascaded

to

the

descendent

tables.

If

the

loaded

table

has

constraints

as

well

as

descendent

foreign

key

tables,

dependent

materialized

query

tables

and

dependent

staging

tables,

and

if

all

of

the

tables

are

in

normal

state

prior

to

the

load

operation,

the

following

will

result

based

on

the

load

parameters

specified:

Chapter

3.

Load

91

|

|
|
|

|
|
|
|
|
|

INSERT,

ALLOW

READ

ACCESS,

and

CHECK

PENDING

CASCADE

IMMEDIATE

The

loaded

table,

its

dependent

materialized

query

tables

and

dependent

staging

tables

will

be

placed

in

check

pending

state

with

read

access.

INSERT,

ALLOW

READ

ACCESS,

and

CHECK

PENDING

CASCADE

DEFERRED

Only

the

loaded

table

will

be

placed

in

check

pending

with

read

access.

Descendent

foreign

key

tables,

descendent

materialized

query

tables

and

descendent

staging

tables

will

remain

in

their

original

states.

INSERT,

ALLOW

NO

ACCESS,

and

CHECK

PENDING

CASCADE

IMMEDIATE

The

loaded

table,

its

dependent

materialized

query

tables

and

dependent

staging

tables

will

be

placed

in

check

pending

state

with

no

access.

INSERT

or

REPLACE,

ALLOW

NO

ACCESS,

and

CHECK

PENDING

CASCADE

DEFERRED

Only

the

loaded

table

will

be

placed

in

check

pending

state

with

no

access.

Descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

remain

in

their

original

states.

REPLACE,

ALLOW

NO

ACCESS,

and

CHECK

PENDING

CASCADE

IMMEDIATE

The

table

and

all

its

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables,

and

descendent

immediate

staging

tables

will

be

placed

in

check

pending

state

with

no

access.

Note:

Specifying

the

ALLOW

READ

ACCESS

option

in

a

load

replace

operation

will

result

in

an

error.

To

remove

the

check

pending

state,

use

the

SET

INTEGRITY

statement.

The

SET

INTEGRITY

statement

checks

a

table

for

constraints

violations,

and

takes

the

table

out

of

check

pending

state.

If

all

the

load

operations

are

performed

in

INSERT

mode,

the

SET

INTEGRITY

statement

can

be

used

to

incrementally

process

the

constraints

(that

is,

it

will

check

only

the

appended

portion

of

the

table

for

constraints

violations).

For

example:

db2

load

from

infile1.ixf

of

ixf

insert

into

table1

db2

set

integrity

for

table1

immediate

checked

Only

the

appended

portion

of

TABLE1

is

checked

for

constraint

violations.

Checking

only

the

appended

portion

for

constraints

violations

is

faster

than

checking

the

entire

table,

especially

in

the

case

of

a

large

table

with

small

amounts

of

appended

data.

If

a

table

is

loaded

with

the

CHECK

PENDING

CASCADE

DEFERRED

option

specified,

and

the

SET

INTEGRITY

statement

is

used

to

check

for

integrity

violations,

the

descendent

tables

will

be

placed

in

check

pending

state

with

no

access.

To

take

the

tables

out

of

this

state,

you

must

issue

an

explicit

request.

If

a

table

with

dependent

materialized

query

tables

or

dependent

staging

tables

is

loaded

using

the

INSERT

option,

and

the

SET

INTEGRITY

statement

is

used

to

check

for

integrity

violations,

the

table

will

be

taken

out

of

check

pending

state

and

placed

in

NO

DATA

MOVEMENT

mode.

This

is

done

to

facilitate

the

subsequent

incremental

refreshes

of

the

dependent

materialized

query

tables

and

92

Data

Movement

Utilities

the

incremental

propagation

of

the

dependent

staging

tables.

In

the

NO

DATA

MOVEMENT,

operations

that

might

cause

the

movement

of

rows

within

the

table

are

not

allowed.

You

can

override

the

NO

DATA

MOVEMENT

mode

by

specifying

the

FULL

ACCESS

option

when

you

issue

the

SET

INTEGRITY

statement.

The

table

will

be

fully

accessible,

however

a

full

recomputation

of

the

dependent

materialized

query

tables

will

take

place

in

subsequent

REFRESH

TABLE

statements

and

the

dependent

staging

tables

will

be

forced

into

an

incomplete

state.

If

the

ALLOW

READ

ACCESS

option

is

specified

for

a

load

operation,

the

table

will

remain

in

read

access

state

until

the

SET

INTEGRITY

statement

is

used

to

check

for

constraints

violations.

Applications

will

be

able

to

query

the

table

for

data

that

existed

prior

to

the

load

operation

once

it

has

been

committed,

but

will

not

be

able

to

view

the

newly

loaded

data

until

the

SET

INTEGRITY

statement

has

been

issued.

Several

load

operations

can

take

place

on

a

table

before

checking

for

constraints

violations.

If

all

of

the

load

operations

are

completed

in

ALLOW

READ

ACCESS

mode,

only

the

data

that

it

existed

in

the

table

prior

to

the

first

load

operation

will

be

available

for

queries.

One

or

more

tables

can

be

checked

in

a

single

invocation

of

this

statement.

If

a

dependent

table

is

to

be

checked

on

its

own,

the

parent

table

can

not

be

in

check

pending

state.

Otherwise,

both

the

parent

table

and

the

dependent

table

must

be

checked

at

the

same

time.

In

the

case

of

a

referential

integrity

cycle,

all

the

tables

involved

in

the

cycle

must

be

included

in

a

single

invocation

of

the

SET

INTEGRITY

statement.

It

might

be

convenient

to

check

the

parent

table

for

constraints

violations

while

a

dependent

table

is

being

loaded.

This

can

only

occur

if

the

two

tables

are

not

in

the

same

table

space.

When

issuing

the

SET

INTEGRITY

statement,

you

can

specify

the

INCREMENTAL

option

to

explicitly

request

incremental

processing.

In

most

cases,

this

option

is

not

needed,

because

DB2®

will

select

incremental

processing.

If

incremental

processing

is

not

possible,

full

processing

is

used

automatically.

When

the

INCREMENTAL

option

is

specified,

but

incremental

processing

is

not

possible,

an

error

is

returned

if:

v

New

constraints

were

added

to

the

table

while

it

was

in

check

pending

state.

v

A

load

replace

operation

has

taken

place,

or

the

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

option

was

activated,

after

the

last

integrity

check

on

the

table.

v

A

parent

table

has

been

load

replaced

or

checked

for

integrity

non-incrementally.

v

The

table

was

in

check

pending

state

before

migration.

Full

processing

is

required

the

first

time

the

table

is

checked

for

integrity

after

migration.

v

The

table

space

containing

the

table

or

its

parent

has

been

rolled

forward

to

a

point

in

time

and

the

table

and

its

parent

reside

in

different

table

spaces.

If

a

table

has

one

or

more

W

values

in

the

CONST_CHECKED

column

of

the

SYSCAT.TABLES

catalog,

and

if

the

NOT

INCREMENTAL

option

is

not

specified

in

the

SET

INTEGRITY

statement,

the

table

will

be

incrementally

processed

and

the

CONST_CHECKED

column

of

SYSCAT.TABLES

will

be

marked

as

U

to

indicate

that

not

all

data

has

been

verified

by

the

system.

Use

the

load

exception

table

option

to

capture

information

about

rows

with

constraints

violations.

Chapter

3.

Load

93

The

SET

INTEGRITY

statement

does

not

activate

any

DELETE

triggers

as

a

result

of

deleting

rows

that

violate

constraints,

but

once

the

table

is

removed

from

check

pending

state,

triggers

are

active.

Thus,

if

we

correct

data

and

insert

rows

from

the

exception

table

into

the

loaded

table,

any

INSERT

triggers

defined

on

the

table

will

be

activated.

The

implications

of

this

should

be

considered.

One

option

is

to

drop

the

INSERT

trigger,

insert

rows

from

the

exception

table,

and

then

recreate

the

INSERT

trigger.

Related

concepts:

v

“Pending

states

after

a

load

operation”

on

page

165

v

“Read

access

load

operations”

on

page

83

Related

reference:

v

“SET

INTEGRITY

statement”

in

the

SQL

Reference,

Volume

2

Refreshing

dependent

immediate

materialized

query

tables

If

the

underlying

table

of

an

immediate

refresh

materialized

query

table

is

loaded

using

the

INSERT

option,

executing

the

SET

INTEGRITY

statement

on

the

dependent

materialized

query

tables

defined

with

REFRESH

IMMEDIATE

will

result

in

an

incremental

refresh

of

the

materialized

query

table.

During

an

incremental

refresh,

the

rows

corresponding

to

the

appended

rows

in

the

underlying

tables

are

updated

and

inserted

into

the

materialized

query

tables.

Incremental

refresh

is

faster

in

the

case

of

large

underlying

tables

with

small

amounts

of

appended

data.

There

are

cases

in

which

incremental

refresh

is

not

allowed,

and

full

refresh

(that

is,

recomputation

of

the

materialized

query

table

definition

query)

will

be

used.

When

the

INCREMENTAL

option

is

specified,

but

incremental

processing

of

the

materialized

query

table

is

not

possible,

an

error

is

returned

if:

v

A

load

replace

operation

has

taken

place

into

an

underlying

table

of

the

materialized

query

table

or

the

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

option

has

been

activated

since

the

last

integrity

check

on

the

underlying

table.

v

The

materialized

query

table

has

been

loaded

(in

either

REPLACE

or

INSERT

mode).

v

An

underlying

table

has

been

taken

out

of

check

pending

state

before

the

materialized

query

table

is

refreshed

by

using

the

FULL

ACCESS

option

during

integrity

checking.

v

An

underlying

table

of

the

materialized

query

table

has

been

checked

for

integrity

non-incrementally.

v

The

materialized

query

table

was

in

check

pending

state

before

migration.

v

The

table

space

containing

the

materialized

query

table

or

its

underlying

table

has

been

rolled

forward

to

a

point

in

time,

and

the

materialized

query

table

and

its

underlying

table

reside

in

different

table

spaces.

If

the

materialized

query

table

has

one

or

more

W

values

in

the

CONST_CHECKED

column

of

the

SYSCAT.TABLES

catalog,

and

if

the

NOT

INCREMENTAL

option

is

not

specified

in

the

SET

INTEGRITY

statement,

the

table

will

be

incrementally

refreshed

and

the

CONST_CHECKED

column

of

SYSCAT.TABLES

will

be

marked

U

to

indicate

that

not

all

data

has

been

verified

by

the

system.

94

Data

Movement

Utilities

The

following

example

illustrates

a

load

insert

operation

into

the

underlying

table

UTI

of

the

materialized

query

table

AST1.

UT1

will

be

checked

for

data

integrity

and

will

be

placed

in

no

data

movement

mode.

UT1

will

be

put

back

into

full

access

state

once

the

incremental

refresh

of

AST1

is

complete.

In

this

scenario,

both

the

integrity

checking

for

UT1

and

the

refreshing

of

AST1

will

be

processed

incrementally.

LOAD

FROM

IMTFILE1.IXF

of

IXF

INSERT

INTO

UT1;

LOAD

FROM

IMTFILE2.IXF

of

IXF

INSERT

INTO

UT1;

SET

INTEGRITY

FOR

UT1

IMMEDIATE

CHECKED;

REFRESH

TABLE

AST1;

Related

concepts:

v

“Checking

for

integrity

violations”

on

page

91

Propagating

dependent

immediate

staging

tables

If

the

table

being

loaded

is

an

underlying

table

of

a

staging

table

with

the

immediate

propagate

attribute,

and

if

the

load

operation

is

done

in

insert

mode,

the

subsequent

propagation

into

the

dependent

immediate

staging

tables

will

be

incremental.

During

incremental

propagation,

the

rows

corresponding

to

the

appended

rows

in

the

underlying

tables

are

appended

into

the

staging

tables.

Incremental

propagation

is

faster

in

the

case

of

large

underlying

tables

with

small

amounts

of

appended

data.

Performance

will

also

be

improved

if

the

staging

table

is

used

to

refresh

its

dependent

deferred

materialized

query

table.

There

are

cases

in

which

incremental

propagation

is

not

allowed,

and

the

staging

table

will

be

marked

incomplete.

That

is,

the

staging

byte

of

the

CONST_CHECKED

column

will

have

a

value

of

F.

In

this

state,

the

staging

table

can

not

be

used

to

refresh

its

dependent

deferred

materialized

query

table,

and

a

full

refresh

will

be

required

in

the

materialized

query

table

maintenance

process.

If

a

table

is

in

incomplete

state

and

the

INCREMENTAL

option

has

been

specified,

but

incremental

propagation

of

the

table

is

not

possible,

an

error

is

returned.

If

any

of

the

following

have

taken

place,

the

system

will

turn

off

immediate

data

propagation

and

set

the

table

state

to

incomplete:

v

A

load

replace

operation

has

taken

place

on

an

underlying

table

of

the

staging

table,

or

the

NOT

LOGGED

INITIALLY

WITH

EMPTY

TABLE

option

has

been

activated

after

the

last

integrity

check

on

the

underlying

table.

v

The

dependent

materialized

query

table

of

the

staging

table,

or

the

staging

table

has

been

loaded

in

REPLACE

or

INSERT

mode.

v

An

underlying

table

has

been

taken

out

of

check

pending

state

before

the

staging

table

has

been

propagated

by

using

the

FULL

ACCESS

option

during

integrity

checking.

v

An

underlying

table

of

the

staging

table

has

been

checked

for

integrity

non-incrementally.

v

The

table

space

containing

the

staging

table

or

its

underlying

table

has

been

rolled

forward

to

a

point

in

time,

and

the

staging

table

and

its

underlying

table

reside

in

different

table

spaces.

If

the

staging

table

has

a

W

value

in

the

CONST_CHECKED

column

of

the

SYSCAT.TABLES

catalog,

and

the

NOT

INCREMENTAL

option

is

not

specified,

incremental

propagation

to

the

staging

table

takes

place

and

the

Chapter

3.

Load

95

CONST_CHECKED

column

of

SYSCAT.TABLES

will

be

marked

as

U

to

indicate

that

not

all

data

has

been

verified

by

the

system.

The

following

example

illustrates

a

load

insert

operation

into

the

underlying

table

UT1

of

staging

table

G1

and

its

dependent

deferred

materialized

query

table

AST1.

In

this

scenario,

both

the

integrity

checking

for

UT1

and

the

refreshing

of

AST1

will

be

processed

incrementally:

LOAD

FROM

IMTFILE1.IXF

of

IXF

INSERT

INTO

UT1;

LOAD

FROM

IMTFILE2.IXF

of

IXF

INSERT

INTO

UT1;

SET

INTEGRITY

FOR

UT1,G1

IMMEDIATE

CHECKED;

REFRESH

TABLE

AST1

INCREMENTAL;

Related

concepts:

v

“Checking

for

integrity

violations”

on

page

91

Multidimensional

clustering

considerations

The

following

restrictions

apply

to

multi-dimensional

clustering

(MDC)

tables:

v

The

SAVECOUNT

option

of

the

LOAD

command

is

not

supported.

v

The

TOTALFREESPACE

file

type

modifier

is

not

supported

since

these

tables

manage

their

own

free

space.

v

The

ANYORDER

modifier

is

required

for

MDC

tables.

If

a

load

is

executed

into

an

MDC

table

without

the

ANYORDER

modifier,

it

will

be

explicitly

enabled

by

the

utility.

When

using

the

LOAD

command

with

MDC,

violations

of

unique

constraints

will

be

handled

as

follows:

v

If

the

table

included

a

unique

key

prior

to

the

load

operation

and

duplicate

records

are

loaded

into

the

table,

the

original

record

will

remain

and

the

new

records

will

be

deleted

during

the

delete

phase.

v

If

the

table

did

not

include

a

unique

key

prior

to

the

load

operation

and

both

a

unique

key

and

duplicate

records

are

loaded

into

the

table,

only

one

of

the

records

with

the

unique

key

will

be

loaded

and

the

others

will

be

deleted

during

the

delete

phase.

Note:

There

is

no

explicit

technique

for

determining

which

record

will

be

loaded

and

which

will

be

deleted.

Performance

Considerations

To

improve

the

performance

of

the

load

utility

when

loading

MDC

tables,

the

UTIL_HEAP_SZ

database

configuration

parameter

value

should

be

increased.

The

mdc-load

algorithm

will

perform

significantly

better

when

more

memory

is

available

to

the

utility..

This

will

reduce

disk

I/O

during

the

clustering

of

data

that

is

performed

during

the

load

phase.

When

the

DATA

BUFFER

option

of

LOAD

command

is

specified,

its

value

should

also

be

increased.

If

the

LOAD

command

is

being

used

to

load

several

MDC

tables

concurrently,

the

UTIL_HEAP_SZ

configuration

parameter

should

be

increased

accordingly.

MDC

load

operations

will

always

have

a

build

phase

since

all

MDC

tables

have

block

indexes.

96

Data

Movement

Utilities

|
|
|
|
|
|
|
|

During

the

load

phase,

extra

logging

for

the

maintenance

of

the

block

map

will

be

performed.

There

are

approximately

two

extra

log

records

per

extent

allocated.

To

ensure

good

performance,

the

LOGBUFSZ

database

configuration

parameter

should

be

set

to

a

value

that

takes

this

into

account.

A

system

temporary

table

with

an

index

is

used

to

load

data

into

MDC

tables.

The

size

of

the

table

is

proportional

to

the

number

of

distinct

cells

loaded.

The

size

of

each

row

in

the

table

is

proportional

to

the

size

of

the

MDC

dimension

key.

To

minimize

disk

I/O

caused

by

the

manipulation

of

this

table

during

a

load

operation,

ensure

that

the

buffer

pool

for

the

temporary

table

space

is

large

enough.

Related

concepts:

v

“Optimizing

load

performance”

on

page

166

v

“Multidimensional

clustering

tables”

in

the

Administration

Guide:

Planning

Restarting

an

interrupted

load

operation

If

the

load

utility

cannot

start

because

of

a

user

error,

such

as

a

nonexistent

data

file

or

invalid

column

names,

it

will

terminate

and

leave

the

table

in

a

normal

state.

If

a

failure

occurs

while

loading

data,

you

can

restart

the

load

operation

from

the

last

consistency

point

(using

the

RESTART

option),

or

reload

the

entire

table

(using

the

REPLACE

option).

Specify

the

same

parameters

as

in

the

previous

invocation,

so

that

the

utility

can

find

the

necessary

temporary

files.

Because

the

SAVECOUNT

parameter

is

not

supported

for

multi-dimensional

clustering

(MDC)

tables,

a

load

restart

will

only

take

place

at

the

beginning

of

the

load,

build,

or

delete

phase.

Note:

A

load

operation

that

specified

the

ALLOW

READ

ACCESS

option

can

be

restarted

using

either

the

ALLOW

READ

ACCESS

option

or

the

ALLOW

NO

ACCESS

option.

Conversely,

a

load

operation

that

specified

the

ALLOW

NO

ACCESS

option

can

not

be

restarted

using

the

ALLOW

READ

ACCESS

option.

Restarting

or

Terminating

an

Allow

Read

Access

Load

Operation

A

aborted

load

operation

that

specified

the

ALLOW

READ

ACCESS

option

might

also

be

restarted

or

terminated

using

the

ALLOW

READ

ACCESS

option.

This

will

allow

other

applications

to

query

the

table

data

while

the

terminate

or

restart

operation

is

in

progress.

As

with

a

load

operation

in

ALLOW

READ

ACCESS

mode,

the

table

is

locked

exclusively

prior

to

the

data

being

committed.

If

the

index

object

is

unavailable

or

marked

invalid,

a

load

restart

or

terminate

operation

in

ALLOW

READ

ACCESS

mode

will

not

be

permitted.

If

the

original

load

operation

was

aborted

in

the

index

copy

phase,

a

restart

operation

in

the

ALLOW

READ

ACCESS

mode

is

not

permitted

because

the

index

might

be

corrupted.

If

a

load

operation

in

ALLOW

READ

ACCESS

mode

was

aborted

in

the

load

phase,

it

will

restart

in

the

load

phase.

If

it

was

aborted

in

any

phase

other

than

the

load

phase,

it

will

restart

in

the

build

phase.

If

the

original

load

operation

was

in

ALLOW

NO

ACCESS

mode,

a

restart

operation

might

occur

in

the

delete

phase

Chapter

3.

Load

97

if

the

original

load

operation

reached

that

point

and

the

index

is

valid.

If

the

index

is

marked

invalid,

the

load

utility

will

restart

the

load

operation

from

the

build

phase.

Note:

All

load

restart

operations

will

choose

the

REBUILD

indexing

mode

even

if

the

INDEXING

MODE

INCREMENTAL

option

is

specified.

Issuing

a

LOAD

TERMINATE

command

will

generally

cause

the

aborted

load

operation

to

be

rolled

back

with

minimal

delay.

However,

when

issuing

a

LOAD

TERMINATE

command

for

a

load

operation

where

ALLOW

READ

ACCESS

and

INDEXING

MODE

INCREMENTAL

are

specified,

there

might

be

a

delay

while

the

load

utility

scans

the

indexes

and

corrects

any

inconsistencies.

The

length

of

this

delay

will

depend

on

the

size

of

the

indexes

and

will

occur

whether

or

not

the

ALLOW

READ

ACCESS

option

is

specified

for

the

load

terminate

operation.

The

delay

will

not

occur

if

the

original

load

operation

failed

prior

to

the

build

phase.

Note:

The

delay

resulting

from

corrections

to

inconsistencies

in

the

index

will

be

considerably

less

than

the

delay

caused

by

marking

the

indexes

as

invalid

and

rebuilding

them.

A

load

restart

operation

cannot

be

undertaken

on

a

table

that

is

in

the

not

load

restartable

table

state.

The

table

can

be

placed

in

the

not

load

restartable

table

state

during

a

rollforward

operation.

This

can

occur

if

you

roll

forward

to

a

point

in

time

that

is

prior

to

the

end

of

a

load

operation,

or

if

you

roll

forward

through

an

aborted

load

operation

but

do

not

roll

forward

to

the

end

of

the

load

terminate

or

load

restart

operation.

Related

concepts:

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

v

“Restarting

or

terminating

a

load

operation

in

a

partitioned

database

environment”

on

page

186

Related

reference:

v

“Partitioned

database

load

configuration

options”

on

page

187

Recovering

data

with

the

load

copy

location

file

The

DB2LOADREC

registry

variable

is

used

to

identify

the

file

with

the

load

copy

location

information.

This

file

is

used

during

rollforward

recovery

to

locate

the

load

copy.

It

has

information

about:

v

Media

type

v

Number

of

media

devices

to

be

used

v

Location

of

the

load

copy

generated

during

a

table

load

operation

v

File

name

of

the

load

copy,

if

applicable

If

the

location

file

does

not

exist,

or

no

matching

entry

is

found

in

the

file,

the

information

from

the

log

record

is

used.

The

information

in

the

file

might

be

overwritten

before

rollforward

recovery

takes

place.

Notes:

1.

In

a

partitioned

database

environment,

the

DB2LOADREC

registry

variable

must

be

set

for

all

the

database

partition

servers

using

the

db2set

command.

98

Data

Movement

Utilities

2.

In

a

partitioned

database

environment,

the

load

copy

file

must

exist

at

each

database

partition

server,

and

the

file

name

(including

the

path)

must

be

the

same.

3.

If

an

entry

in

the

file

identified

by

the

DB2LOADREC

registry

variable

is

not

valid,

the

old

load

copy

location

file

is

used

to

provide

information

to

replace

the

invalid

entry.

The

following

information

is

provided

in

the

location

file.

The

first

five

parameters

must

have

valid

values,

and

are

used

to

identify

the

load

copy.

The

entire

structure

is

repeated

for

each

load

copy

recorded.

For

example:

TIMestamp

19950725182542

*

Time

stamp

generated

at

load

time

SCHema

PAYROLL

*

Schema

of

table

loaded

TABlename

EMPLOYEES

*

Table

name

DATabasename

DBT

*

Database

name

DB2instance

toronto

*

DB2INSTANCE

BUFfernumber

NULL

*

Number

of

buffers

to

be

used

for

recovery

SESsionnumber

NULL

*

Number

of

sessions

to

be

used

for

recovery

TYPeofmedia

L

*

Type

of

media

-

L

for

local

device

A

for

TSM

O

for

other

vendors

LOCationnumber

3

*

Number

of

locations

ENTry

/u/toronto/dbt.payroll.employes.001

ENT

/u/toronto/dbt.payroll.employes.002

ENT

/dev/rmt0

TIM

19950725192054

SCH

PAYROLL

TAB

DEPT

DAT

DBT

DB2®

toronto

BUF

NULL

SES

NULL

TYP

A

TIM

19940325192054

SCH

PAYROLL

TAB

DEPT

DAT

DBT

DB2

toronto

BUF

NULL

SES

NULL

TYP

O

SHRlib

/@sys/lib/backup_vendor.a

Notes:

1.

The

first

three

characters

in

each

keyword

are

significant.

All

keywords

are

required

in

the

specified

order.

Blank

lines

are

not

accepted.

2.

The

time

stamp

is

in

the

form

yyyymmddhhmmss.

3.

All

fields

are

mandatory,

except

for

BUF

and

SES,

which

can

be

NULL.

If

SES

is

NULL,

the

value

specified

by

the

numloadrecses

configuration

parameter

is

used.

If

BUF

is

NULL,

the

default

value

is

SES+2.

4.

If

even

one

of

the

entries

in

the

location

file

is

invalid,

the

previous

load

copy

location

file

is

used

to

provide

those

values.

5.

The

media

type

can

be

local

device

(L

for

tape,

disk

or

diskettes),

TSM

(A),

or

other

vendor

(O).

If

the

type

is

L,

the

number

of

locations,

followed

by

the

location

entries,

is

required.

If

the

type

is

A,

no

further

input

is

required.

If

the

type

is

O,

the

shared

library

name

is

required.

6.

The

SHRlib

parameter

points

to

a

library

that

has

a

function

to

store

the

load

copy

data.

Chapter

3.

Load

99

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7.

If

you

invoke

a

load

operation,

specifying

the

COPY

NO

or

the

NONRECOVERABLE

option,

and

do

not

take

a

backup

copy

of

the

database

or

affected

table

spaces

after

the

operation

completes,

you

cannot

restore

the

database

or

table

spaces

to

a

point

in

time

that

follows

the

load

operation.

That

is,

you

cannot

use

rollforward

recovery

to

rebuild

the

database

or

table

spaces

to

the

state

they

were

in

following

the

load

operation.

You

can

only

restore

the

database

or

table

spaces

to

a

point

in

time

that

precedes

the

load

operation.

If

you

want

to

use

a

particular

load

copy,

you

can

use

the

recovery

history

file

for

the

database

to

determine

the

time

stamp

for

that

specific

load

operation.

In

a

partitioned

database

environment,

the

recovery

history

file

is

local

to

each

database

partition.

Related

reference:

v

“Tivoli

Storage

Manager”

in

the

Data

Recovery

and

High

Availability

Guide

and

Reference

LOAD

Loads

data

into

a

DB2

table.

Data

residing

on

the

server

may

be

in

the

form

of

a

file,

tape,

or

named

pipe.

Data

residing

on

a

remotely

connected

client

may

be

in

the

form

of

a

fully

qualified

file

or

named

pipe.

Data

can

also

be

loaded

from

a

user-defined

cursor.

Restrictions:

The

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

The

load

utility

is

not

compatible

with

range-clustered

tables.

Scope:

This

command

may

be

issued

against

multiple

database

partitions

in

a

single

request.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

v

load

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Since

all

load

processes

(and

all

DB2

server

processes,

in

general)

are

owned

by

the

instance

owner,

and

all

of

these

processes

use

the

identification

of

the

instance

owner

to

access

needed

files,

the

instance

owner

must

have

read

access

to

input

data

files.

These

input

data

files

must

be

readable

by

the

instance

owner,

regardless

of

who

invokes

the

command.

100

Data

Movement

Utilities

4
4

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Instance.

An

explicit

attachment

is

not

required.

If

a

connection

to

the

database

has

been

established,

an

implicit

attachment

to

the

local

instance

is

attempted.

Command

syntax:

��

LOAD

CLIENT

FROM

�

,

filename

pipename

device

cursorname

OF

filetype

�

,

LOBS

FROM

lob-path

�

�

�

MODIFIED

BY

filetype-mod

�

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL

INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

�

�

SAVECOUNT

n

ROWCOUNT

n

WARNINGCOUNT

n

MESSAGES

message-file

�

�

TEMPFILES

PATH

temp-pathname

INSERT

REPLACE

RESTART

TERMINATE

�

INTO

table-name

,

(

insert-column

)

�

�

DATALINK

SPECIFICATION

datalink-spec

FOR

EXCEPTION

table-name

STATISTICS

USE

PROFILE

NO

�

�

�

NO

COPY

YES

USE

TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

WITHOUT

PROMPTING

�

�

DATA

BUFFER

buffer-size

SORT

BUFFER

buffer-size

CPU_PARALLELISM

n

DISK_PARALLELISM

n

�

�

INDEXING

MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

ALLOW

NO

ACCESS

ALLOW

READ

ACCESS

USE

tablespace-name

�

LOAD

Chapter

3.

Load

101

�

CHECK

PENDING

CASCADE

IMMEDIATE

DEFERRED

LOCK

WITH

FORCE

�

�

�

PARTITIONED

DB

CONFIG

partitioned-db-option

��

datalink-spec:

�

,

(

)

DL_LINKTYPE

URL

DL_URL_REPLACE_PREFIX

″prefix″

DL_URL_SUFFIX

″suffix″

DL_URL_DEFAULT_PREFIX

″prefix″

Command

parameters:

ALLOW

NO

ACCESS

Load

will

lock

the

target

table

for

exclusive

access

during

the

load.

The

table

state

will

be

set

to

LOAD

IN

PROGRESS

during

the

load.

ALLOW

NO

ACCESS

is

the

default

behavior.

It

is

the

only

valid

option

for

LOAD

REPLACE.

When

there

are

constraints

on

the

table,

the

table

state

will

be

set

to

CHECK

PENDING

as

well

as

LOAD

IN

PROGRESS.

The

SET

INTEGRITY

statement

must

be

used

to

take

the

table

out

of

CHECK

PENDING.

ALLOW

READ

ACCESS

Load

will

lock

the

target

table

in

a

share

mode.

The

table

state

will

be

set

to

both

LOAD

IN

PROGRESS

and

READ

ACCESS.

Readers

may

access

the

non-delta

portion

of

the

data

while

the

table

is

being

load.

In

other

words,

data

that

existed

before

the

start

of

the

load

will

be

accessible

by

readers

to

the

table,

data

that

is

being

loaded

is

not

available

until

the

load

is

complete.

LOAD

TERMINATE

or

LOAD

RESTART

of

an

ALLOW

READ

ACCESS

load

may

use

this

option;

LOAD

TERMINATE

or

LOAD

RESTART

of

an

ALLOW

NO

ACCESS

load

may

not

use

this

option.

Furthermore,

this

option

is

not

valid

if

the

indexes

on

the

target

table

are

marked

as

requiring

a

rebuild.

When

there

are

constraints

on

the

table,

the

table

state

will

be

set

to

CHECK

PENDING

as

well

as

LOAD

IN

PROGRESS,

and

READ

ACCESS.

At

the

end

of

the

load

the

table

state

LOAD

IN

PROGRESS

state

will

be

removed

but

the

table

states

CHECK

PENDING

and

READ

ACCESS

will

remain.

The

SET

INTEGRITY

statement

must

be

used

to

take

the

table

out

of

CHECK

PENDING.

While

the

table

is

in

CHECK

PENDING

and

READ

ACCESS,

the

non-delta

portion

of

the

data

is

still

accessible

to

readers,

the

new

(delta)

portion

of

the

data

will

remain

inaccessible

until

the

SET

INTEGRITY

statement

has

completed.

A

user

may

perform

multiple

loads

on

the

same

table

without

issuing

a

SET

INTEGRITY

statement.

Only

the

original

(checked)

data

will

remain

visible,

however,

until

the

SET

INTEGRITY

statement

is

issued.

ALLOW

READ

ACCESS

also

supports

the

following

modifiers:

USE

tablespace-name

If

the

indexes

are

being

rebuilt,

a

shadow

copy

of

the

index

is

built

in

table

space

tablespace-name

and

copied

over

to

the

original

table

space

at

the

end

of

the

load

during

an

INDEX

COPY

PHASE.

Only

system

temporary

table

spaces

can

be

used

with

this

option.

If

not

LOAD

102

Data

Movement

Utilities

specified

then

the

shadow

index

will

be

created

in

the

same

table

space

as

the

index

object.

If

the

shadow

copy

is

created

in

the

same

table

space

as

the

index

object,

the

copy

of

the

shadow

index

object

over

the

old

index

object

is

instantaneous.

If

the

shadow

copy

is

in

a

different

table

space

from

the

index

object

a

physical

copy

is

performed.

This

could

involve

considerable

I/O

and

time.

The

copy

happens

while

the

table

is

offline

at

the

end

of

a

load

during

the

INDEX

COPY

PHASE.

Without

this

option

the

shadow

index

is

built

in

the

same

table

space

as

the

original.

Since

both

the

original

index

and

shadow

index

by

default

reside

in

the

same

table

space

simultaneously,

there

may

be

insufficient

space

to

hold

both

indexes

within

one

table

space.

Using

this

option

ensures

that

you

retain

enough

table

space

for

the

indexes.

This

option

is

ignored

if

the

user

does

not

specify

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT.

This

option

will

also

be

ignored

if

INDEXING

MODE

AUTOSELECT

is

chosen

and

load

chooses

to

incrementally

update

the

index.

CHECK

PENDING

CASCADE

If

LOAD

puts

the

table

into

a

check

pending

state,

the

CHECK

PENDING

CASCADE

option

allows

the

user

to

specify

whether

or

not

the

check

pending

state

of

the

loaded

table

is

immediately

cascaded

to

all

descendents

(including

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables).

IMMEDIATE

Indicates

that

the

check

pending

state

(read

or

no

access

mode)

for

foreign

key

constraints

is

immediately

extended

to

all

descendent

foreign

key

tables.

If

the

table

has

descendent

immediate

materialized

query

tables

or

descendent

immediate

staging

tables,

the

check

pending

state

is

extended

immediately

to

the

materialized

query

tables

and

the

staging

tables.

Note

that

for

a

LOAD

INSERT

operation,

the

check

pending

state

is

not

extended

to

descendent

foreign

key

tables

even

if

the

IMMEDIATE

option

is

specified.

When

the

loaded

table

is

later

checked

for

constraint

violations

(using

the

IMMEDIATE

CHECKED

option

of

the

SET

INTEGRITY

statement),

descendent

foreign

key

tables

that

were

placed

in

check

pending

read

state

will

be

put

into

check

pending

no

access

state.

DEFERRED

Indicates

that

only

the

loaded

table

will

be

placed

in

the

check

pending

state

(read

or

no

access

mode).

The

states

of

the

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

remain

unchanged.

Descendent

foreign

key

tables

may

later

be

implicitly

placed

in

the

check

pending

no

access

state

when

their

parent

tables

are

checked

for

constraint

violations

(using

the

IMMEDIATE

CHECKED

option

of

the

SET

INTEGRITY

statement).

Descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

be

implicitly

placed

in

the

check

pending

no

access

state

when

one

of

its

underlying

tables

is

checked

for

integrity

violations.

A

LOAD

Chapter

3.

Load

103

warning

(SQLSTATE

01586)

will

be

issued

to

indicate

that

dependent

tables

have

been

placed

in

the

check

pending

state.

See

the

Notes

section

of

the

SET

INTEGRITY

statement

in

the

SQL

Reference

for

when

these

descendent

tables

will

be

put

into

the

check

pending

state.

If

the

CHECK

PENDING

CASCADE

option

is

not

specified:

v

Only

the

loaded

table

will

be

placed

in

the

check

pending

state.

The

state

of

descendent

foreign

key

tables,

descendent

immediate

materialized

query

tables

and

descendent

immediate

staging

tables

will

remain

unchanged,

and

may

later

be

implicitly

put

into

the

check

pending

state

when

the

loaded

table

is

checked

for

constraint

violations.

If

LOAD

does

not

put

the

target

table

into

check

pending

state,

the

CHECK

PENDING

CASCADE

option

is

ignored.

CLIENT

Specifies

that

the

data

to

be

loaded

resides

on

a

remotely

connected

client.

This

option

is

ignored

if

the

load

operation

is

not

being

invoked

from

a

remote

client.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

Notes:

1.

The

dumpfile

and

lobsinfile

modifiers

refer

to

files

on

the

server

even

when

the

CLIENT

keyword

is

specified.

2.

Code

page

conversion

is

not

performed

during

a

remote

load

operation.

If

the

code

page

of

the

data

is

different

from

that

of

the

server,

the

data

code

page

should

be

specified

using

the

codepage

modifier.

In

the

following

example,

a

data

file

(/u/user/data.del)

residing

on

a

remotely

connected

client

is

to

be

loaded

into

MYTABLE

on

the

server

database:

db2

load

client

from

/u/user/data.del

of

del

modified

by

codepage=850

insert

into

mytable

COPY

NO

Specifies

that

the

table

space

in

which

the

table

resides

will

be

placed

in

backup

pending

state

if

forward

recovery

is

enabled

(that

is,

logretain

or

userexit

is

on).

The

COPY

NO

option

will

also

put

the

table

space

state

into

the

Load

in

Progress

table

space

state.

This

is

a

transient

state

that

will

disappear

when

the

load

completes

or

aborts.

The

data

in

any

table

in

the

table

space

cannot

be

updated

or

deleted

until

a

table

space

backup

or

a

full

database

backup

is

made.

However,

it

is

possible

to

access

the

data

in

any

table

by

using

the

SELECT

statement.

LOAD

with

COPY

NO

on

a

recoverable

database

leaves

the

table

spaces

in

a

backup

pending

state.

For

example,

performing

a

LOAD

with

COPY

NO

and

INDEXING

MODE

DEFERRED

will

leave

indexes

needing

a

refresh.

Certain

queries

on

the

table

may

require

an

index

scan

and

will

not

succeed

until

the

indexes

are

refreshed.

The

index

cannot

be

refreshed

if

it

resides

in

a

table

space

which

is

in

the

backup

pending

state.

In

that

case,

access

to

the

table

will

not

be

allowed

until

a

backup

is

taken.

Note:

Index

refresh

is

done

automatically

by

the

database

when

the

index

is

accessed

by

a

query.

COPY

YES

Specifies

that

a

copy

of

the

loaded

data

will

be

saved.

This

option

is

LOAD

104

Data

Movement

Utilities

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

invalid

if

forward

recovery

is

disabled

(both

logretain

and

userexit

are

off).

The

option

is

not

supported

for

tables

with

DATALINK

columns.

USE

TSM

Specifies

that

the

copy

will

be

stored

using

Tivoli

Storage

Manager

(TSM).

OPEN

num-sess

SESSIONS

The

number

of

I/O

sessions

to

be

used

with

TSM

or

the

vendor

product.

The

default

value

is

1.

TO

device/directory

Specifies

the

device

or

directory

on

which

the

copy

image

will

be

created.

LOAD

lib-name

The

name

of

the

shared

library

(DLL

on

Windows

operating

systems)

containing

the

vendor

backup

and

restore

I/O

functions

to

be

used.

It

may

contain

the

full

path.

If

the

full

path

is

not

given,

it

will

default

to

the

path

where

the

user

exit

programs

reside.

CPU_PARALLELISM

n

Specifies

the

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

parsing,

converting,

and

formatting

records

when

building

table

objects.

This

parameter

is

designed

to

exploit

intra-partition

parallelism.

It

is

particularly

useful

when

loading

presorted

data,

because

record

order

in

the

source

data

is

preserved.

If

the

value

of

this

parameter

is

zero,

or

has

not

been

specified,

the

load

utility

uses

an

intelligent

default

value

(usually

based

on

the

number

of

CPUs

available)

at

run

time.

Notes:

1.

If

this

parameter

is

used

with

tables

containing

either

LOB

or

LONG

VARCHAR

fields,

its

value

becomes

one,

regardless

of

the

number

of

system

CPUs

or

the

value

specified

by

the

user.

2.

Specifying

a

small

value

for

the

SAVECOUNT

parameter

causes

the

loader

to

perform

many

more

I/O

operations

to

flush

both

data

and

table

metadata.

When

CPU_PARALLELISM

is

greater

than

one,

the

flushing

operations

are

asynchronous,

permitting

the

loader

to

exploit

the

CPU.

When

CPU_PARALLELISM

is

set

to

one,

the

loader

waits

on

I/O

during

consistency

points.

A

load

operation

with

CPU_PARALLELISM

set

to

two,

and

SAVECOUNT

set

to

10

000,

completes

faster

than

the

same

operation

with

CPU_PARALLELISM

set

to

one,

even

though

there

is

only

one

CPU.

DATA

BUFFER

buffer-size

Specifies

the

number

of

4KB

pages

(regardless

of

the

degree

of

parallelism)

to

use

as

buffered

space

for

transferring

data

within

the

utility.

If

the

value

specified

is

less

than

the

algorithmic

minimum,

the

minimum

required

resource

is

used,

and

no

warning

is

returned.

This

memory

is

allocated

directly

from

the

utility

heap,

whose

size

can

be

modified

through

the

util_heap_sz

database

configuration

parameter.

If

a

value

is

not

specified,

an

intelligent

default

is

calculated

by

the

utility

at

run

time.

The

default

is

based

on

a

percentage

of

the

free

space

available

in

the

utility

heap

at

the

instantiation

time

of

the

loader,

as

well

as

some

characteristics

of

the

table.

LOAD

Chapter

3.

Load

105

DATALINK

SPECIFICATION

For

each

DATALINK

column,

there

can

be

one

column

specification

enclosed

by

parentheses.

Each

column

specification

consists

of

one

or

more

DL_LINKTYPE,

prefix,

and

a

DL_URL_SUFFIX

specification.

The

prefix

specification

can

be

either

DL_URL_REPLACE_PREFIX

or

DL_URL_DEFAULT_PREFIX.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

found

within

the

insert-column

list,

or

within

the

table

definition

(if

an

insert-column

list

is

not

specified).

DISK_PARALLELISM

n

Specifies

the

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

writing

data

to

the

table

space

containers.

If

a

value

is

not

specified,

the

utility

selects

an

intelligent

default

based

on

the

number

of

table

space

containers

and

the

characteristics

of

the

table.

DL_LINKTYPE

If

specified,

it

should

match

the

LINKTYPE

of

the

column

definition.

Thus,

DL_LINKTYPE

URL

is

acceptable

if

the

column

definition

specifies

LINKTYPE

URL.

DL_URL_DEFAULT_PREFIX

″prefix″

If

specified,

it

should

act

as

the

default

prefix

for

all

DATALINK

values

within

the

same

column.

In

this

context,

prefix

refers

to

the

″scheme

host

port″

part

of

the

URL

specification.

Examples

of

prefix

are:

"http://server"

"file://server"

"file:"

"http://server:80"

If

no

prefix

is

found

in

the

column

data,

and

a

default

prefix

is

specified

with

DL_URL_DEFAULT_PREFIX,

the

default

prefix

is

prefixed

to

the

column

value

(if

not

NULL).

For

example,

if

DL_URL_DEFAULT_PREFIX

specifies

the

default

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://coyote/a/b/c″.

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_REPLACE_PREFIX

″prefix″

This

clause

is

useful

when

loading

or

importing

data

previously

generated

by

the

export

utility,

if

the

user

wants

to

globally

replace

the

host

name

in

the

data

with

another

host

name.

If

specified,

it

becomes

the

prefix

for

all

non-NULL

column

values.

If

a

column

value

has

a

prefix,

this

will

replace

it.

If

a

column

value

has

no

prefix,

the

prefix

specified

by

DL_URL_REPLACE_PREFIX

is

prefixed

to

the

column

value.

For

example,

if

DL_URL_REPLACE_PREFIX

specifies

the

prefix

"http://toronto":

v

The

column

input

value

″/x/y/z″

is

stored

as

″http://toronto/x/y/z″.

v

The

column

input

value

″http://coyote/a/b/c″

is

stored

as

″http://toronto/a/b/c″.

Note

that

″toronto″

replaces

″coyote″.

LOAD

106

Data

Movement

Utilities

|
|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|

v

The

column

input

value

NULL

is

stored

as

NULL.

DL_URL_SUFFIX

″suffix″

If

specified,

it

is

appended

to

every

non-NULL

column

value

for

the

column.

It

is,

in

fact,

appended

to

the

″path″

component

of

the

data

location

part

of

the

DATALINK

value.

FOR

EXCEPTION

table-name

Specifies

the

exception

table

into

which

rows

in

error

will

be

copied.

Any

row

that

is

in

violation

of

a

unique

index

or

a

primary

key

index

is

copied.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

Information

that

is

written

to

the

exception

table

is

not

written

to

the

dump

file.

In

a

partitioned

database

environment,

an

exception

table

must

be

defined

for

those

partitions

on

which

the

loading

table

is

defined.

The

dump

file,

on

the

other

hand,

contains

rows

that

cannot

be

loaded

because

they

are

invalid

or

have

syntax

errors.

FROM

filename/pipename/device/cursorname

Specifies

the

file,

pipe,

device,

or

cursor

referring

to

an

SQL

statement

that

contains

the

data

being

loaded.

If

the

input

source

is

a

file,

pipe,

or

device,

it

must

reside

on

the

database

partition

where

the

database

resides,

unless

the

CLIENT

option

is

specified.

If

several

names

are

specified,

they

will

be

processed

in

sequence.

If

the

last

item

specified

is

a

tape

device,

the

user

is

prompted

for

another

tape.

Valid

response

options

are:

c

Continue.

Continue

using

the

device

that

generated

the

warning

message

(for

example,

when

a

new

tape

has

been

mounted).

d

Device

terminate.

Stop

using

the

device

that

generated

the

warning

message

(for

example,

when

there

are

no

more

tapes).

t

Terminate.

Terminate

all

devices.

Notes:

1.

It

is

recommended

that

the

fully

qualified

file

name

be

used.

If

the

server

is

remote,

the

fully

qualified

file

name

must

be

used.

If

the

database

resides

on

the

same

database

partition

as

the

caller,

relative

paths

may

be

used.

2.

Loading

data

from

multiple

IXF

files

is

supported

if

the

files

are

physically

separate,

but

logically

one

file.

It

is

not

supported

if

the

files

are

both

logically

and

physically

separate.

(Multiple

physical

files

would

be

considered

logically

one

if

they

were

all

created

with

one

invocation

of

the

EXPORT

command.)

3.

If

loading

data

that

resides

on

a

client

machine,

the

data

must

be

in

the

form

of

either

a

fully

qualified

file

or

a

named

pipe.

INDEXING

MODE

Specifies

whether

the

load

utility

is

to

rebuild

indexes

or

to

extend

them

incrementally.

Valid

values

are:

AUTOSELECT

The

load

utility

will

automatically

decide

between

REBUILD

or

INCREMENTAL

mode.

REBUILD

All

indexes

will

be

rebuilt.

The

utility

must

have

sufficient

resources

to

sort

all

index

key

parts

for

both

old

and

appended

table

data.

LOAD

Chapter

3.

Load

107

|

INCREMENTAL

Indexes

will

be

extended

with

new

data.

This

approach

consumes

index

free

space.

It

only

requires

enough

sort

space

to

append

index

keys

for

the

inserted

records.

This

method

is

only

supported

in

cases

where

the

index

object

is

valid

and

accessible

at

the

start

of

a

load

operation

(it

is,

for

example,

not

valid

immediately

following

a

load

operation

in

which

the

DEFERRED

mode

was

specified).

If

this

mode

is

specified,

but

not

supported

due

to

the

state

of

the

index,

a

warning

is

returned,

and

the

load

operation

continues

in

REBUILD

mode.

Similarly,

if

a

load

restart

operation

is

begun

in

the

load

build

phase,

INCREMENTAL

mode

is

not

supported.

Incremental

indexing

is

not

supported

when

all

of

the

following

conditions

are

true:

v

The

LOAD

COPY

option

is

specified

(logretain

or

userexit

is

enabled).

v

The

table

resides

in

a

DMS

table

space.

v

The

index

object

resides

in

a

table

space

that

is

shared

by

other

table

objects

belonging

to

the

table

being

loaded.

To

bypass

this

restriction,

it

is

recommended

that

indexes

be

placed

in

a

separate

table

space.

DEFERRED

The

load

utility

will

not

attempt

index

creation

if

this

mode

is

specified.

Indexes

will

be

marked

as

needing

a

refresh.

The

first

access

to

such

indexes

that

is

unrelated

to

a

load

operation

may

force

a

rebuild,

or

indexes

may

be

rebuilt

when

the

database

is

restarted.

This

approach

requires

enough

sort

space

for

all

key

parts

for

the

largest

index.

The

total

time

subsequently

taken

for

index

construction

is

longer

than

that

required

in

REBUILD

mode.

Therefore,

when

performing

multiple

load

operations

with

deferred

indexing,

it

is

advisable

(from

a

performance

viewpoint)

to

let

the

last

load

operation

in

the

sequence

perform

an

index

rebuild,

rather

than

allow

indexes

to

be

rebuilt

at

first

non-load

access.

Deferred

indexing

is

only

supported

for

tables

with

non-unique

indexes,

so

that

duplicate

keys

inserted

during

the

load

phase

are

not

persistent

after

the

load

operation.

Note:

Deferred

indexing

is

not

supported

for

tables

that

have

DATALINK

columns.

INSERT

One

of

four

modes

under

which

the

load

utility

can

execute.

Adds

the

loaded

data

to

the

table

without

changing

the

existing

table

data.

insert-column

Specifies

the

table

column

into

which

the

data

is

to

be

inserted.

The

load

utility

cannot

parse

columns

whose

names

contain

one

or

more

spaces.

For

example,

db2

load

from

delfile1

of

del

modified

by

noeofchar

noheader

method

P

(1,

2,

3,

4,

5,

6,

7,

8,

9)

insert

into

table1

(BLOB1,

S2,

I3,

Int

4,

I5,

I6,

DT7,

I8,

TM9)

will

fail

because

of

the

Int

4

column.

The

solution

is

to

enclose

such

column

names

with

double

quotation

marks:

LOAD

108

Data

Movement

Utilities

db2

load

from

delfile1

of

del

modified

by

noeofchar

noheader

method

P

(1,

2,

3,

4,

5,

6,

7,

8,

9)

insert

into

table1

(BLOB1,

S2,

I3,

"Int

4",

I5,

I6,

DT7,

I8,

TM9)

INTO

table-name

Specifies

the

database

table

into

which

the

data

is

to

be

loaded.

This

table

cannot

be

a

system

table

or

a

declared

temporary

table.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

LOBS

FROM

lob-path

The

path

to

the

data

files

containing

LOB

values

to

be

loaded.

The

path

must

end

with

a

slash

(/).

If

the

CLIENT

option

is

specified,

the

path

must

be

fully

qualified.

The

names

of

the

LOB

data

files

are

stored

in

the

main

data

file

(ASC,

DEL,

or

IXF),

in

the

column

that

will

be

loaded

into

the

LOB

column.

This

option

is

ignored

if

lobsinfile

is

not

specified

within

the

filetype-mod

string.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

LOCK

WITH

FORCE

The

utility

acquires

various

locks

including

table

locks

in

the

process

of

loading.

Rather

than

wait,

and

possibly

timeout,

when

acquiring

a

lock,

this

option

allows

load

to

force

off

other

applications

that

hold

conflicting

locks

on

the

target

table.

Applications

holding

conflicting

locks

on

the

system

catalog

tables

will

not

be

forced

off

by

the

load

utility.

Forced

applications

will

roll

back

and

release

the

locks

the

load

utility

needs.

The

load

utility

can

then

proceed.

This

option

requires

the

same

authority

as

the

FORCE

APPLICATIONS

command

(SYSADM

or

SYSCTRL).

ALLOW

NO

ACCESS

loads

may

force

applications

holding

conflicting

locks

at

the

start

of

the

load

operation.

At

the

start

of

the

load

the

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

ALLOW

READ

ACCESS

loads

may

force

applications

holding

conflicting

locks

at

the

start

or

end

of

the

load

operation.

At

the

start

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

modify

the

table.

At

the

end

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

MESSAGES

message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

the

load

operation.

If

a

message

file

is

not

specified,

messages

are

written

to

standard

output.

If

the

complete

path

to

the

file

is

not

specified,

the

load

utility

uses

the

current

directory

and

the

default

drive

as

the

destination.

If

the

name

of

a

file

that

already

exists

is

specified,

the

utility

appends

the

information.

The

message

file

is

usually

populated

with

messages

at

the

end

of

the

load

operation

and,

as

such,

is

not

suitable

for

monitoring

the

progress

of

the

operation.

METHOD

L

Specifies

the

start

and

end

column

numbers

from

which

to

load

data.

A

column

number

is

a

byte

offset

from

the

beginning

of

a

row

of

data.

It

is

numbered

starting

from

1.

LOAD

Chapter

3.

Load

109

2
2
2
2
2
2
2
2

2
2
2
2

2
2
2
2
2

Note:

This

method

can

only

be

used

with

ASC

files,

and

is

the

only

valid

method

for

that

file

type.

N

Specifies

the

names

of

the

columns

in

the

data

file

to

be

loaded.

The

case

of

these

column

names

must

match

the

case

of

the

corresponding

names

in

the

system

catalogs.

Each

table

column

that

is

not

nullable

should

have

a

corresponding

entry

in

the

METHOD

N

list.

For

example,

given

data

fields

F1,

F2,

F3,

F4,

F5,

and

F6,

and

table

columns

C1

INT,

C2

INT

NOT

NULL,

C3

INT

NOT

NULL,

and

C4

INT,

method

N

(F2,

F1,

F4,

F3)

is

a

valid

request,

while

method

N

(F2,

F1)

is

not

valid.

Note:

This

method

can

only

be

used

with

file

types

IXF

or

CURSOR.

P

Specifies

the

field

numbers

(numbered

from

1)

of

the

input

data

fields

to

be

loaded.

Each

table

column

that

is

not

nullable

should

have

a

corresponding

entry

in

the

METHOD

P

list.

For

example,

given

data

fields

F1,

F2,

F3,

F4,

F5,

and

F6,

and

table

columns

C1

INT,

C2

INT

NOT

NULL,

C3

INT

NOT

NULL,

and

C4

INT,

method

P

(2,

1,

4,

3)

is

a

valid

request,

while

method

P

(2,

1)

is

not

valid.

Note:

This

method

can

only

be

used

with

file

types

IXF,

DEL,

or

CURSOR,

and

is

the

only

valid

method

for

the

DEL

file

type.

MODIFIED

BY

filetype-mod

Specifies

file

type

modifier

options.

See

File

type

modifiers

for

load.

NONRECOVERABLE

Specifies

that

the

load

transaction

is

to

be

marked

as

non-recoverable

and

that

it

will

not

be

possible

to

recover

it

by

a

subsequent

roll

forward

action.

The

roll

forward

utility

will

skip

the

transaction

and

will

mark

the

table

into

which

data

was

being

loaded

as

"invalid".

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

roll

forward

operation

is

completed,

such

a

table

can

only

be

dropped

or

restored

from

a

backup

(full

or

table

space)

taken

after

a

commit

point

following

the

completion

of

the

non-recoverable

load

operation.

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

This

option

should

not

be

used

when

DATALINK

columns

with

the

FILE

LINK

CONTROL

attribute

are

present

in,

or

being

added

to,

the

table.

NULL

INDICATORS

null-indicator-list

This

option

can

only

be

used

when

the

METHOD

L

parameter

is

specified;

that

is,

the

input

file

is

an

ASC

file).

The

null

indicator

list

is

a

comma-separated

list

of

positive

integers

specifying

the

column

number

of

each

null

indicator

field.

The

column

number

is

the

byte

offset

of

the

null

indicator

field

from

the

beginning

of

a

row

of

data.

There

must

be

one

entry

in

the

null

indicator

list

for

each

data

field

defined

in

the

METHOD

L

parameter.

A

column

number

of

zero

indicates

that

the

corresponding

data

field

always

contains

data.

A

value

of

Y

in

the

NULL

indicator

column

specifies

that

the

column

data

is

NULL.

Any

character

other

than

Y

in

the

NULL

indicator

column

LOAD

110

Data

Movement

Utilities

specifies

that

the

column

data

is

not

NULL,

and

that

column

data

specified

by

the

METHOD

L

option

will

be

loaded.

The

NULL

indicator

character

can

be

changed

using

the

MODIFIED

BY

option.

OF

filetype

Specifies

the

format

of

the

data:

v

ASC

(non-delimited

ASCII

format)

v

DEL

(delimited

ASCII

format)

v

IXF

(integrated

exchange

format,

PC

version),

exported

from

the

same

or

from

another

DB2

table

v

CURSOR

(a

cursor

declared

against

a

SELECT

or

VALUES

statement).

PARTITIONED

DB

CONFIG

Allows

you

to

execute

a

load

into

a

partitioned

table.

The

PARTITIONED

DB

CONFIG

parameter

allows

you

to

specify

partitioned

database-specific

configuration

options.

The

partitioned-db-option

values

may

be

any

of

the

following:

HOSTNAME

x

FILE_TRANSFER_CMD

x

PART_FILE_LOCATION

x

OUTPUT_DBPARTNUMS

x

PARTITIONING_DBPARTNUMS

x

MODE

x

MAX_NUM_PART_AGENTS

x

ISOLATE_PART_ERRS

x

STATUS_INTERVAL

x

PORT_RANGE

x

CHECK_TRUNCATION

MAP_FILE_INPUT

x

MAP_FILE_OUTPUT

x

TRACE

x

NEWLINE

DISTFILE

x

OMIT_HEADER

RUN_STAT_DBPARTNUM

x

Detailed

descriptions

of

these

options

are

provided

in

Partitioned

database

load

configuration

options.

REPLACE

One

of

four

modes

under

which

the

load

utility

can

execute.

Deletes

all

existing

data

from

the

table,

and

inserts

the

loaded

data.

The

table

definition

and

index

definitions

are

not

changed.

If

this

option

is

used

when

moving

data

between

hierarchies,

only

the

data

for

an

entire

hierarchy,

not

individual

subtables,

can

be

replaced.

This

option

is

not

supported

for

tables

with

DATALINK

columns.

RESTART

One

of

four

modes

under

which

the

load

utility

can

execute.

Restarts

a

previously

interrupted

load

operation.

The

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

RESTARTCOUNT

Reserved.

ROWCOUNT

n

Specifies

the

number

of

n

physical

records

in

the

file

to

be

loaded.

Allows

a

user

to

load

only

the

first

n

rows

in

a

file.

LOAD

Chapter

3.

Load

111

SAVECOUNT

n

Specifies

that

the

load

utility

is

to

establish

consistency

points

after

every

n

rows.

This

value

is

converted

to

a

page

count,

and

rounded

up

to

intervals

of

the

extent

size.

Since

a

message

is

issued

at

each

consistency

point,

this

option

should

be

selected

if

the

load

operation

will

be

monitored

using

LOAD

QUERY.

If

the

value

of

n

is

not

sufficiently

high,

the

synchronization

of

activities

performed

at

each

consistency

point

will

impact

performance.

The

default

value

is

zero,

meaning

that

no

consistency

points

will

be

established,

unless

necessary.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

SORT

BUFFER

buffer-size

This

option

specifies

a

value

that

overrides

the

SORTHEAP

database

configuration

parameter

during

a

load

operation.

It

is

relevant

only

when

loading

tables

with

indexes

and

only

when

the

INDEXING

MODE

parameter

is

not

specified

as

DEFERRED.

The

value

that

is

specified

cannot

exceed

the

value

of

SORTHEAP.

This

parameter

is

useful

for

throttling

the

sort

memory

that

is

used

when

loading

tables

with

many

indexes

without

changing

the

value

of

SORTHEAP,

which

would

also

affect

general

query

processing.

STATISTICS

USE

PROFILE

Instructs

load

to

collect

statistics

during

the

load

according

to

the

profile

defined

for

this

table.

This

profile

must

be

created

before

load

is

executed.

The

profile

is

created

by

the

RUNSTATS

command.

If

the

profile

does

not

exist

and

load

is

instructed

to

collect

statistics

according

to

the

profile,

a

warning

is

returned

and

no

statistics

are

collected.

STATISTICS

NO

Specifies

that

no

statistics

are

to

be

collected,

and

that

the

statistics

in

the

catalogs

are

not

to

be

altered.

This

is

the

default.

TEMPFILES

PATH

temp-pathname

Specifies

the

name

of

the

path

to

be

used

when

creating

temporary

files

during

a

load

operation,

and

should

be

fully

qualified

according

to

the

server

database

partition.

Temporary

files

take

up

file

system

space.

Sometimes,

this

space

requirement

is

quite

substantial.

Following

is

an

estimate

of

how

much

file

system

space

should

be

allocated

for

all

temporary

files:

v

4

bytes

for

each

duplicate

or

rejected

row

containing

DATALINK

values

v

136

bytes

for

each

message

that

the

load

utility

generates

v

15KB

overhead

if

the

data

file

contains

long

field

data

or

LOBs.

This

quantity

can

grow

significantly

if

the

INSERT

option

is

specified,

and

there

is

a

large

amount

of

long

field

or

LOB

data

already

in

the

table.

TERMINATE

One

of

four

modes

under

which

the

load

utility

can

execute.

Terminates

a

previously

interrupted

load

operation,

and

rolls

back

the

operation

to

the

point

in

time

at

which

it

started,

even

if

consistency

points

were

passed.

The

states

of

any

table

spaces

involved

in

the

operation

return

to

normal,

and

all

table

objects

are

made

consistent

(index

objects

may

be

marked

as

invalid,

in

which

case

index

rebuild

will

automatically

take

place

at

next

access).

If

the

load

operation

being

terminated

is

a

load

REPLACE,

the

table

will

be

truncated

to

an

empty

table

after

the

load

TERMINATE

LOAD

112

Data

Movement

Utilities

|
|
|
|
|
|

operation.

If

the

load

operation

being

terminated

is

a

load

INSERT,

the

table

will

retain

all

of

its

original

records

after

the

load

TERMINATE

operation.

The

load

terminate

option

will

not

remove

a

backup

pending

state

from

table

spaces.

Note:

This

option

is

not

supported

for

tables

with

DATALINK

columns.

USING

directory

Reserved.

WARNINGCOUNT

n

Stops

the

load

operation

after

n

warnings.

Set

this

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

load

file

or

the

target

table

is

specified

incorrectly,

the

load

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

load,

which

will

cause

the

load

to

fail.

If

n

is

zero,

or

this

option

is

not

specified,

the

load

operation

will

continue

regardless

of

the

number

of

warnings

issued.

If

the

load

operation

is

stopped

because

the

threshold

of

warnings

was

encountered,

another

load

operation

can

be

started

in

RESTART

mode.

The

load

operation

will

automatically

continue

from

the

last

consistency

point.

Alternatively,

another

load

operation

can

be

initiated

in

REPLACE

mode,

starting

at

the

beginning

of

the

input

file.

WITHOUT

PROMPTING

Specifies

that

the

list

of

data

files

contains

all

the

files

that

are

to

be

loaded,

and

that

the

devices

or

directories

listed

are

sufficient

for

the

entire

load

operation.

If

a

continuation

input

file

is

not

found,

or

the

copy

targets

are

filled

before

the

load

operation

finishes,

the

load

operation

will

fail,

and

the

table

will

remain

in

load

pending

state.

If

this

option

is

not

specified,

and

the

tape

device

encounters

an

end

of

tape

for

the

copy

image,

or

the

last

item

listed

is

a

tape

device,

the

user

is

prompted

for

a

new

tape

on

that

device.

Examples:

Example

1

TABLE1

has

5

columns:

v

COL1

VARCHAR

20

NOT

NULL

WITH

DEFAULT

v

COL2

SMALLINT

v

COL3

CHAR

4

v

COL4

CHAR

2

NOT

NULL

WITH

DEFAULT

v

COL5

CHAR

2

NOT

NULL

ASCFILE1

has

6

elements:

v

ELE1

positions

01

to

20

v

ELE2

positions

21

to

22

v

ELE5

positions

23

to

23

v

ELE3

positions

24

to

27

v

ELE4

positions

28

to

31

v

ELE6

positions

32

to

32

v

ELE6

positions

33

to

40

LOAD

Chapter

3.

Load

113

Data

Records:

1...5....10...15...20...25...30...35...40

Test

data

1

XXN

123abcdN

Test

data

2

and

3

QQY

wxyzN

Test

data

4,5

and

6

WWN6789

Y

The

following

command

loads

the

table

from

the

file:

db2

load

from

ascfile1

of

asc

modified

by

striptblanks

reclen=40

method

L

(1

20,

21

22,

24

27,

28

31)

null

indicators

(0,0,23,32)

insert

into

table1

(col1,

col5,

col2,

col3)

Notes:

1.

The

specification

of

striptblanks

in

the

MODIFIED

BY

parameter

forces

the

truncation

of

blanks

in

VARCHAR

columns

(COL1,

for

example,

which

is

11,

17

and

19

bytes

long,

in

rows

1,

2

and

3,

respectively).

2.

The

specification

of

reclen=40

in

the

MODIFIED

BY

parameter

indicates

that

there

is

no

new-line

character

at

the

end

of

each

input

record,

and

that

each

record

is

40

bytes

long.

The

last

8

bytes

are

not

used

to

load

the

table.

3.

Since

COL4

is

not

provided

in

the

input

file,

it

will

be

inserted

into

TABLE1

with

its

default

value

(it

is

defined

NOT

NULL

WITH

DEFAULT).

4.

Positions

23

and

32

are

used

to

indicate

whether

COL2

and

COL3

of

TABLE1

will

be

loaded

NULL

for

a

given

row.

If

there

is

a

Y

in

the

column’s

null

indicator

position

for

a

given

record,

the

column

will

be

NULL.

If

there

is

an

N,

the

data

values

in

the

column’s

data

positions

of

the

input

record

(as

defined

in

L(........))

are

used

as

the

source

of

column

data

for

the

row.

In

this

example,

neither

column

in

row

1

is

NULL;

COL2

in

row

2

is

NULL;

and

COL3

in

row

3

is

NULL.

5.

In

this

example,

the

NULL

INDICATORS

for

COL1

and

COL5

are

specified

as

0

(zero),

indicating

that

the

data

is

not

nullable.

6.

The

NULL

INDICATOR

for

a

given

column

can

be

anywhere

in

the

input

record,

but

the

position

must

be

specified,

and

the

Y

or

N

values

must

be

supplied.

Example

2

(Loading

LOBs

from

Files)

TABLE1

has

3

columns:

v

COL1

CHAR

4

NOT

NULL

WITH

DEFAULT

v

LOB1

LOB

v

LOB2

LOB

ASCFILE1

has

3

elements:

v

ELE1

positions

01

to

04

v

ELE2

positions

06

to

13

v

ELE3

positions

15

to

22

The

following

files

reside

in

either

/u/user1

or

/u/user1/bin:

v

ASCFILE2

has

LOB

data

v

ASCFILE3

has

LOB

data

v

ASCFILE4

has

LOB

data

v

ASCFILE5

has

LOB

data

v

ASCFILE6

has

LOB

data

v

ASCFILE7

has

LOB

data

LOAD

114

Data

Movement

Utilities

Data

Records

in

ASCFILE1:

1...5....10...15...20...25...30.

REC1

ASCFILE2

ASCFILE3

REC2

ASCFILE4

ASCFILE5

REC3

ASCFILE6

ASCFILE7

The

following

command

loads

the

table

from

the

file:

db2

load

from

ascfile1

of

asc

lobs

from

/u/user1,

/u/user1/bin

modified

by

lobsinfile

reclen=22

method

L

(1

4,

6

13,

15

22)

insert

into

table1

Notes:

1.

The

specification

of

lobsinfile

in

the

MODIFIED

BY

parameter

tells

the

loader

that

all

LOB

data

is

to

be

loaded

from

files.

2.

The

specification

of

reclen=22

in

the

MODIFIED

BY

parameter

indicates

that

there

is

no

new-line

character

at

the

end

of

each

input

record,

and

that

each

record

is

22

bytes

long.

3.

LOB

data

is

contained

in

6

files,

ASCFILE2

through

ASCFILE7.

Each

file

contains

the

data

that

will

be

used

to

load

a

LOB

column

for

a

specific

row.

The

relationship

between

LOBs

and

other

data

is

specified

in

ASCFILE1.

The

first

record

of

this

file

tells

the

loader

to

place

REC1

in

COL1

of

row

1.

The

contents

of

ASCFILE2

will

be

used

to

load

LOB1

of

row

1,

and

the

contents

of

ASCFILE3

will

be

used

to

load

LOB2

of

row

1.

Similarly,

ASCFILE4

and

ASCFILE5

will

be

used

to

load

LOB1

and

LOB2

of

row

2,

and

ASCFILE6

and

ASCFILE7

will

be

used

to

load

the

LOBs

of

row

3.

4.

The

LOBS

FROM

parameter

contains

2

paths

that

will

be

searched

for

the

named

LOB

files

when

those

files

are

required

by

the

loader.

5.

To

load

LOBs

directly

from

ASCFILE1

(a

non-delimited

ASCII

file),

without

the

lobsinfile

modifier,

the

following

rules

must

be

observed:

v

The

total

length

of

any

record,

including

LOBs,

cannot

exceed

32KB.

v

LOB

fields

in

the

input

records

must

be

of

fixed

length,

and

LOB

data

padded

with

blanks

as

necessary.

v

The

striptblanks

modifier

must

be

specified,

so

that

the

trailing

blanks

used

to

pad

LOBs

can

be

removed

as

the

LOBs

are

inserted

into

the

database.

Example

3

(Using

Dump

Files)

Table

FRIENDS

is

defined

as:

table

friends

"(

c1

INT

NOT

NULL,

c2

INT,

c3

CHAR(8)

)"

If

an

attempt

is

made

to

load

the

following

data

records

into

this

table,

23,

24,

bobby

,

45,

john

4,,

mary

the

second

row

is

rejected

because

the

first

INT

is

NULL,

and

the

column

definition

specifies

NOT

NULL.

Columns

which

contain

initial

characters

that

are

not

consistent

with

the

DEL

format

will

generate

an

error,

and

the

record

will

be

rejected.

Such

records

can

be

written

to

a

dump

file.

DEL

data

appearing

in

a

column

outside

of

character

delimiters

is

ignored,

but

does

generate

a

warning.

For

example:

LOAD

Chapter

3.

Load

115

22,34,"bob"

24,55,"sam"

sdf

The

utility

will

load

″sam″

in

the

third

column

of

the

table,

and

the

characters

″sdf″

will

be

flagged

in

a

warning.

The

record

is

not

rejected.

Another

example:

22

3,

34,"bob"

The

utility

will

load

22,34,"bob",

and

generate

a

warning

that

some

data

in

column

one

following

the

22

was

ignored.

The

record

is

not

rejected.

Example

4

(Loading

DATALINK

Data)

The

following

command

loads

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

load

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

for

exception

excptab

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

6.

If

any

unique

index

or

DATALINK

exception

occurs

while

loading

the

table,

the

affected

records

are

deleted

from

the

table

and

put

into

the

exception

table

excptab.

Example

5

(Loading

a

Table

with

an

Identity

Column)

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

LOAD

116

Data

Movement

Utilities

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

Notes:

1.

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

load

from

datafile1.del

of

del

replace

into

table1

2.

To

load

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

load

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2load

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

3.

To

load

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

load

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

load

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

4.

To

load

DATAFILE1

into

TABLE2

so

that

the

identity

values

of

100

and

101

are

assigned

to

rows

3

and

4,

issue

the

following

command:

db2

load

from

datafile1.del

of

del

modified

by

identityoverride

replace

into

table2

In

this

case,

rows

1

and

2

will

be

rejected,

because

the

utility

has

been

instructed

to

override

system-generated

identity

values

in

favor

of

user-supplied

values.

If

user-supplied

values

are

not

present,

however,

the

row

must

be

rejected,

because

identity

columns

are

implicitly

not

NULL.

5.

If

DATAFILE1

is

loaded

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

loaded,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Example

6

(Loading

using

the

CURSOR

filetype)

Table

ABC.TABLE1

has

3

columns:

ONE

INT

TWO

CHAR(10)

THREE

DATE

Table

ABC.TABLE2

has

3

columns:

ONE

VARCHAR

TWO

INT

THREE

DATE

Executing

the

following

commands

will

load

all

the

data

from

ABC.TABLE1

into

ABC.TABLE2:

LOAD

Chapter

3.

Load

117

db2

declare

mycurs

cursor

for

select

two,one,three

from

abc.table1

db2

load

from

mycurs

of

cursor

insert

into

abc.table2

Usage

notes:

Data

is

loaded

in

the

sequence

that

appears

in

the

input

file.

If

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

is

attempted.

The

load

utility

builds

indexes

based

on

existing

definitions.

The

exception

tables

are

used

to

handle

duplicates

on

unique

keys.

The

utility

does

not

enforce

referential

integrity,

perform

constraints

checking,

or

update

summary

tables

that

are

dependent

on

the

tables

being

loaded.

Tables

that

include

referential

or

check

constraints

are

placed

in

check

pending

state.

Summary

tables

that

are

defined

with

REFRESH

IMMEDIATE,

and

that

are

dependent

on

tables

being

loaded,

are

also

placed

in

check

pending

state.

Issue

the

SET

INTEGRITY

statement

to

take

the

tables

out

of

check

pending

state.

Load

operations

cannot

be

carried

out

on

replicated

summary

tables.

If

a

clustering

index

exists

on

the

table,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

Data

does

not

need

to

be

sorted

prior

to

loading

into

a

multidimensional

clustering

(MDC)

table,

however.

DB2

Data

Links

Manager

considerations:

For

each

DATALINK

column,

there

can

be

one

column

specification

within

parentheses.

Each

column

specification

consists

of

one

or

more

of

DL_LINKTYPE,

prefix

and

a

DL_URL_SUFFIX

specification.

The

prefix

information

can

be

either

DL_URL_REPLACE_PREFIX,

or

the

DL_URL_DEFAULT_PREFIX

specification.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

as

found

within

the

insert-column

list

(if

specified

by

INSERT

INTO

(insert-column,

...)),

or

within

the

table

definition

(if

insert-column

is

not

specified).

For

example,

if

a

table

has

columns

C1,

C2,

C3,

C4,

and

C5,

and

among

them

only

columns

C2

and

C5

are

of

type

DATALINK,

and

the

insert-column

list

is

(C1,

C5,

C3,

C2),

there

should

be

two

DATALINK

column

specifications.

The

first

column

specification

will

be

for

C5,

and

the

second

column

specification

will

be

for

C2.

If

an

insert-column

list

is

not

specified,

the

first

column

specification

will

be

for

C2,

and

the

second

column

specification

will

be

for

C5.

If

there

are

multiple

DATALINK

columns,

and

some

columns

do

not

need

any

particular

specification,

the

column

specification

should

have

at

least

the

parentheses

to

unambiguously

identify

the

order

of

specifications.

If

there

are

no

specifications

for

any

of

the

columns,

the

entire

list

of

empty

parentheses

can

be

dropped.

Thus,

in

cases

where

the

defaults

are

satisfactory,

there

need

not

be

any

DATALINK

specification.

If

data

is

being

loaded

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary).

1.

Ensure

that

the

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

LOAD

118

Data

Movement

Utilities

|
|

3.

Copy

to

the

appropriate

Data

Links

servers,

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

The

connection

between

DB2

and

the

Data

Links

server

may

fail

while

running

the

load

utility,

causing

the

load

operation

to

fail.

If

this

occurs:

1.

Start

the

Data

Links

server

and

the

DB2

Data

Links

Manager.

2.

Invoke

a

load

restart

operation.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Representation

of

DATALINK

information

in

an

input

file

The

LINKTYPE

(currently

only

URL

is

supported)

is

not

specified

as

part

of

DATALINK

information.

The

LINKTYPE

is

specified

in

the

LOAD

or

the

IMPORT

command,

and

for

input

files

of

type

PC/IXF,

in

the

appropriate

column

descriptor

records.

The

syntax

of

DATALINK

information

for

a

URL

LINKTYPE

is

as

follows:

��

urlname

dl_delimiter

comment

��

Note

that

both

urlname

and

comment

are

optional.

If

neither

is

provided,

the

NULL

value

is

assigned.

urlname

The

URL

name

must

conform

to

valid

URL

syntax.

Notes:

1.

Currently

″http″,

″file″,

and

″unc″

are

permitted

as

a

schema

name.

2.

The

prefix

(schema,

host,

and

port)

of

the

URL

name

is

optional.

If

a

prefix

is

not

present,

it

is

taken

from

the

DL_URL_DEFAULT_PREFIX

or

the

DL_URL_REPLACE_PREFIX

specification

of

the

load

or

the

import

utility.

If

none

of

these

is

specified,

the

prefix

defaults

to

″file://localhost″.

Thus,

in

the

case

of

local

files,

the

file

name

with

full

path

name

can

be

entered

as

the

URL

name,

without

the

need

for

a

DATALINK

column

specification

within

the

LOAD

or

the

IMPORT

command.

3.

Prefixes,

even

if

present

in

URL

names,

are

overridden

by

a

different

prefix

name

on

the

DL_URL_REPLACE_PREFIX

specification

during

a

load

or

import

operation.

4.

The

″path″

(after

appending

DL_URL_SUFFIX,

if

specified)

is

the

full

path

name

of

the

remote

file

in

the

remote

server.

Relative

path

names

are

not

allowed.

The

http

server

default

path-prefix

is

not

taken

into

account.

LOAD

Chapter

3.

Load

119

|
|

|

|
|
|
|
|
|
|
|

dl_delimiter

For

the

delimited

ASCII

(DEL)

file

format,

a

character

specified

via

the

dldel

modifier,

or

defaulted

to

on

the

LOAD

or

the

IMPORT

command.

For

the

non-delimited

ASCII

(ASC)

file

format,

this

should

correspond

to

the

character

sequence

\;

(a

backslash

followed

by

a

semicolon).

Whitespace

characters

(blanks,

tabs,

and

so

on)

are

permitted

before

and

after

the

value

specified

for

this

parameter.

comment

The

comment

portion

of

a

DATALINK

value.

If

specified

for

the

delimited

ASCII

(DEL)

file

format,

the

comment

text

must

be

enclosed

by

the

character

string

delimiter,

which

is

double

quotation

marks

(″)

by

default.

This

character

string

delimiter

can

be

overridden

by

the

MODIFIED

BY

filetype-mod

specification

of

the

LOAD

or

the

IMPORT

command.

If

no

comment

is

specified,

the

comment

defaults

to

a

string

of

length

zero.

Following

are

DATALINK

data

examples

for

the

delimited

ASCII

(DEL)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg;

"Intro

Movie"

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang;

"InderPal’s

Home

Page"

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

for

the

non-delimited

ASCII

(ASC)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro

Movie

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang\;

InderPal’s

Home

Page

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

in

which

the

load

or

import

specification

for

the

column

is

assumed

to

be

DL_URL_REPLACE_PREFIX

(″http://qso″):

v

http://www.almaden.ibm.com/mrep/intro.mpeg

This

is

stored

with

the

following

parts:

LOAD

120

Data

Movement

Utilities

–

schema

=

http

–

server

=

qso

–

path

=

/mrep/intro.mpeg

–

comment

=

NULL

string
v

/u/me/myfile.ps

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/u/me/myfile.ps

–

comment

=

NULL

string

Related

concepts:

v

“Load

Overview”

on

page

74

v

“Privileges,

authorities,

and

authorizations

required

to

use

Load”

on

page

81

Related

tasks:

v

“Using

Load”

on

page

81

Related

reference:

v

“QUIESCE

TABLESPACES

FOR

TABLE

Command”

in

the

Command

Reference

v

“db2atld

-

Autoloader

Command”

in

the

Command

Reference

v

“Load

-

CLP

Examples”

on

page

171

v

“Partitioned

database

load

configuration

options”

on

page

187

v

“db2Load

-

Load”

on

page

123

v

“File

type

modifiers

for

load”

on

page

149

LOAD

QUERY

Checks

the

status

of

a

load

operation

during

processing

and

returns

the

table

state.

If

a

load

is

not

processing,

then

the

table

state

alone

is

returned.

A

connection

to

the

same

database,

and

a

separate

CLP

session

are

also

required

to

successfully

invoke

this

command.

It

can

be

used

either

by

local

or

remote

users.

Authorization:

None

Required

connection:

Database

Command

syntax:

��

LOAD

QUERY

TABLE

table-name

TO

local-message-file

NOSUMMARY

SUMMARYONLY

�

�

SHOWDELTA

��

Command

parameters:

LOAD

Chapter

3.

Load

121

NOSUMMARY

Specifies

that

no

load

summary

information

(rows

read,

rows

skipped,

rows

loaded,

rows

rejected,

rows

deleted,

rows

committed,

and

number

of

warnings)

is

to

be

reported.

SHOWDELTA

Specifies

that

only

new

information

(pertaining

to

load

events

that

have

occurred

since

the

last

invocation

of

the

LOAD

QUERY

command)

is

to

be

reported.

SUMMARYONLY

Specifies

that

only

load

summary

information

is

to

be

reported.

TABLE

table-name

Specifies

the

name

of

the

table

into

which

data

is

currently

being

loaded.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

TO

local-message-file

Specifies

the

destination

for

warning

and

error

messages

that

occur

during

the

load

operation.

This

file

cannot

be

the

message-file

specified

for

the

LOAD

command.

If

the

file

already

exists,

all

messages

that

the

load

utility

has

generated

are

appended

to

it.

Examples:

A

user

loading

a

large

amount

of

data

into

the

STAFF

table

wants

to

check

the

status

of

the

load

operation.

The

user

can

specify:

db2

connect

to

<database>

db2

load

query

table

staff

to

/u/mydir/staff.tempmsg

The

output

file

/u/mydir/staff.tempmsg

might

look

like

the

following:

SQL3501W

The

table

space(s)

in

which

the

table

resides

will

not

be

placed

in

backup

pending

state

since

forward

recovery

is

disabled

for

the

database.

SQL3109N

The

utility

is

beginning

to

load

data

from

file

"/u/mydir/data/staffbig.del"

SQL3500W

The

utility

is

beginning

the

"LOAD"

phase

at

time

"03-21-2002

11:31:16.597045".

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"0".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"104416".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"205757".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"307098".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3519W

Begin

Load

Consistency

Point.

Input

record

count

=

"408439".

SQL3520W

Load

Consistency

Point

was

successful.

SQL3532I

The

Load

utility

is

currently

in

the

"LOAD"

phase.

LOAD

QUERY

122

Data

Movement

Utilities

Number

of

rows

read

=

453376

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

453376

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

408439

Number

of

warnings

=

0

Tablestate:

Load

in

Progress

Usage

Notes:

In

addition

to

locks,

the

load

utility

uses

table

states

to

control

access

to

the

table.

The

LOAD

QUERY

command

can

be

used

to

determine

the

table

state;

LOAD

QUERY

may

be

used

on

tables

that

are

not

currently

being

loaded.

The

table

states

described

by

LOAD

QUERY

are

described

in

Table

locking,

table

states

and

table

space

states.

The

progress

of

a

load

operation

can

also

be

monitored

with

the

LIST

UTILITIES

command.

Related

concepts:

v

“Load

Overview”

on

page

74

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

Related

reference:

v

“LOAD”

on

page

100

v

“LIST

UTILITIES

Command”

in

the

Command

Reference

db2Load

-

Load

Loads

data

into

a

DB2

table.

Data

residing

on

the

server

may

be

in

the

form

of

a

file,

cursor,

tape,

or

named

pipe.

Data

residing

on

a

remotely

connected

client

may

be

in

the

form

of

a

fully

qualified

file,

a

cursor,

or

named

pipe.

The

load

utility

does

not

support

loading

data

at

the

hierarchy

level.

Authorization:

One

of

the

following:

v

sysadm

v

dbadm

v

load

authority

on

the

database

and

–

INSERT

privilege

on

the

table

when

the

load

utility

is

invoked

in

INSERT

mode,

TERMINATE

mode

(to

terminate

a

previous

load

insert

operation),

or

RESTART

mode

(to

restart

a

previous

load

insert

operation)

–

INSERT

and

DELETE

privilege

on

the

table

when

the

load

utility

is

invoked

in

REPLACE

mode,

TERMINATE

mode

(to

terminate

a

previous

load

replace

operation),

or

RESTART

mode

(to

restart

a

previous

load

replace

operation)

–

INSERT

privilege

on

the

exception

table,

if

such

a

table

is

used

as

part

of

the

load

operation.

Note:

In

general,

all

load

processes

and

all

DB2

server

processes

are

owned

by

the

instance

owner.

All

of

these

processes

use

the

identification

of

the

instance

LOAD

QUERY

Chapter

3.

Load

123

|
|

owner

to

access

needed

files.

Therefore,

the

instance

owner

must

have

read

access

to

the

input

files,

regardless

of

who

invokes

the

command.

Required

connection:

Database.

If

implicit

connect

is

enabled,

a

connection

to

the

default

database

is

established.

Instance.

An

explicit

attachment

is

not

required.

If

a

connection

to

the

database

has

been

established,

an

implicit

attachment

to

the

local

instance

is

attempted.

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2Load

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2LoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2LoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2PartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

}

db2LoadStruct;

typedef

SQL_STRUCTURE

db2LoadIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

db2Load

-

Load

124

Data

Movement

Utilities

}

db2LoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2PartLoadIn

{

char

*piHostname;

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

}

db2PartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

Generic

API

syntax:

db2Load

-

Load

Chapter

3.

Load

125

/*

File:

db2ApiDf.h

*/

/*

API:

Load

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gLoad

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

SQL_STRUCTURE

db2gLoadStruct

{

struct

sqlu_media_list

*piSourceList;

struct

sqlu_media_list

*piLobPathList;

struct

sqldcol

*piDataDescriptor;

struct

sqlchar

*piActionString;

char

*piFileType;

struct

sqlchar

*piFileTypeMod;

char

*piLocalMsgFileName;

char

*piTempFilesPath;

struct

sqlu_media_list

*piVendorSortWorkPaths;

struct

sqlu_media_list

*piCopyTargetList;

db2int32

*piNullIndicators;

struct

db2gLoadIn

*piLoadInfoIn;

struct

db2LoadOut

*poLoadInfoOut;

struct

db2gPartLoadIn

*piPartLoadInfoIn;

struct

db2PartLoadOut

*poPartLoadInfoOut;

db2int16

iCallerAction;

db2Uint16

iFileTypeLen;

db2Uint16

iLocalMsgFileLen;

db2Uint16

iTempFilesPathLen;

}

db2gLoadStruct;

typedef

SQL_STRUCTURE

db2gLoadIn

{

db2Uint64

iRowcount;

db2Uint64

iRestartcount;

char

*piUseTablespace;

db2Uint32

iSavecount;

db2Uint32

iDataBufferSize;

db2Uint32

iSortBufferSize;

db2Uint32

iWarningcount;

db2Uint16

iHoldQuiesce;

db2Uint16

iCpuParallelism;

db2Uint16

iDiskParallelism;

db2Uint16

iNonrecoverable;

db2Uint16

iIndexingMode;

db2Uint16

iAccessLevel;

db2Uint16

iLockWithForce;

db2Uint16

iCheckPending;

char

iRestartphase;

char

iStatsOpt;

db2Uint16

iUseTablespaceLen;

}

db2gLoadIn;

typedef

SQL_STRUCTURE

db2LoadOut

{

db2Uint64

oRowsRead;

db2Uint64

oRowsSkipped;

db2Uint64

oRowsLoaded;

db2Uint64

oRowsRejected;

db2Uint64

oRowsDeleted;

db2Uint64

oRowsCommitted;

}

db2LoadOut;

typedef

SQL_STRUCTURE

db2gPartLoadIn

{

char

*piHostname;

db2Load

-

Load

126

Data

Movement

Utilities

char

*piFileTransferCmd;

char

*piPartFileLocation;

struct

db2LoadNodeList

*piOutputNodes;

struct

db2LoadNodeList

*piPartitioningNodes;

db2Uint16

*piMode;

db2Uint16

*piMaxNumPartAgents;

db2Uint16

*piIsolatePartErrs;

db2Uint16

*piStatusInterval;

struct

db2LoadPortRange

*piPortRange;

db2Uint16

*piCheckTruncation;

char

*piMapFileInput;

char

*piMapFileOutput;

db2Uint16

*piTrace;

db2Uint16

*piNewline;

char

*piDistfile;

db2Uint16

*piOmitHeader;

SQL_PDB_NODE_TYPE

*piRunStatDBPartNum;

db2Uint16

iHostnameLen;

db2Uint16

iFileTransferLen;

db2Uint16

iPartFileLocLen;

db2Uint16

iMapFileInputLen;

db2Uint16

iMapFileOutputLen;

db2Uint16

iDistfileLen;

}

db2gPartLoadIn;

typedef

SQL_STRUCTURE

db2LoadNodeList

{

SQL_PDB_NODE_TYPE

*piNodeList;

db2Uint16

iNumNodes;

}

db2LoadNodeList;

typedef

SQL_STRUCTURE

db2LoadPortRange

{

db2Uint16

iPortMin;

db2Uint16

iPortMax;

}

db2LoadPortRange;

typedef

SQL_STRUCTURE

db2PartLoadOut

{

db2Uint64

oRowsRdPartAgents;

db2Uint64

oRowsRejPartAgents;

db2Uint64

oRowsPartitioned;

struct

db2LoadAgentInfo

*poAgentInfoList;

db2Uint32

iMaxAgentInfoEntries;

db2Uint32

oNumAgentInfoEntries;

}

db2PartLoadOut;

typedef

SQL_STRUCTURE

db2LoadAgentInfo

{

db2int32

oSqlcode;

db2Uint32

oTableState;

SQL_PDB_NODE_TYPE

oNodeNum;

db2Uint16

oAgentType;

}

db2LoadAgentInfo;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

as

the

second

parameter

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LoadStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

db2Load

-

Load

Chapter

3.

Load

127

piSourceList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

to

provide

a

list

of

source

files,

devices,

vendors,

pipes,

or

SQL

statements.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

SQLU_SQL_STMT

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

an

SQL

query

through

the

pStatement

field

of

the

target

field.

The

pStatement

field

is

of

type

sqlu_statement_entry.

The

sessions

field

must

be

set

to

the

value

of

1,

since

the

load

utility

only

accepts

a

single

SQL

query

per

load.

SQLU_SERVER_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

files,

devices,

and

named

pipes.

SQLU_CLIENT_LOCATION

If

the

media_type

field

is

set

to

this

value,

the

caller

provides

information

through

sqlu_location_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_location_entry

structures

provided.

This

is

used

for

fully

qualified

files

and

named

pipes.

Note

that

this

media_type

is

only

valid

if

the

API

is

being

called

via

a

remotely

connected

client.

SQLU_TSM_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

the

media_type

field

is

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piLobPathList

Input.

A

pointer

to

an

sqlu_media_list

structure.

For

IXF,

ASC,

and

DEL

file

types,

a

list

of

fully

qualified

paths

or

devices

to

identify

the

location

of

the

individual

LOB

files

to

be

loaded.

The

file

names

are

found

in

the

IXF,

ASC,

or

DEL

files,

and

are

appended

to

the

paths

provided.

The

information

provided

in

this

structure

depends

on

the

value

of

the

media_type

field.

Valid

values

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

set

to

this

value,

the

caller

provides

information

through

sqlu_media_entry

structures.

The

sessions

field

indicates

the

number

of

sqlu_media_entry

structures

provided.

db2Load

-

Load

128

Data

Movement

Utilities

SQLU_TSM_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

TSM

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If

set

to

this

value,

the

sqlu_vendor

structure

is

used,

where

shr_lib

is

the

shared

library

name,

and

filename

is

the

unique

identifier

for

the

data

to

be

loaded.

There

should

only

be

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

indicates

the

number

of

other

vendor

sessions

to

initiate.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

in

the

one

sqlu_vendor

entry.

piDataDescriptor

Input.

Pointer

to

an

sqldcol

structure

containing

information

about

the

columns

being

selected

for

loading

from

the

external

file.

If

the

pFileType

parameter

is

set

to

SQL_ASC,

the

dcolmeth

field

of

this

structure

must

either

be

set

to

SQL_METH_L

or

be

set

to

SQL_METH_D

and

specifies

a

file

name

with

POSITIONSFILE

pFileTypeMod

modifier

which

contains

starting

and

ending

pairs

and

null

indicator

positions.

The

user

specifies

the

start

and

end

locations

for

each

column

to

be

loaded.

If

the

file

type

is

SQL_DEL,

dcolmeth

can

be

either

SQL_METH_P

or

SQL_METH_D.

If

it

is

SQL_METH_P,

the

user

must

provide

the

source

column

position.

If

it

is

SQL_METH_D,

the

first

column

in

the

file

is

loaded

into

the

first

column

of

the

table,

and

so

on.

If

the

file

type

is

SQL_IXF,

dcolmeth

can

be

one

of

SQL_METH_P,

SQL_METH_D,

or

SQL_METH_N.

The

rules

for

DEL

files

apply

here,

except

that

SQL_METH_N

indicates

that

file

column

names

are

to

be

provided

in

the

sqldcol

structure.

piActionString

Input.

Pointer

to

an

sqlchar

structure,

followed

by

an

array

of

characters

specifying

an

action

that

affects

the

table.

The

character

array

is

of

the

form:

"INSERT|REPLACE|RESTART|TERMINATE

INTO

tbname

[(column_list)]

[DATALINK

SPECIFICATION

datalink-spec]

[FOR

EXCEPTION

e_tbname]"

INSERT

Adds

the

loaded

data

to

the

table

without

changing

the

existing

table

data.

REPLACE

Deletes

all

existing

data

from

the

table,

and

inserts

the

loaded

data.

The

table

definition

and

the

index

definitions

are

not

changed.

RESTART

Restarts

a

previously

interrupted

load

operation.

The

load

operation

will

automatically

continue

from

the

last

consistency

point

in

the

load,

build,

or

delete

phase.

TERMINATE

Terminates

a

previously

interrupted

load

operation,

and

rolls

back

the

operation

to

the

point

in

time

at

which

it

started,

even

if

db2Load

-

Load

Chapter

3.

Load

129

consistency

points

were

passed.

The

states

of

any

table

spaces

involved

in

the

operation

return

to

normal,

and

all

table

objects

are

made

consistent

(index

objects

may

be

marked

as

invalid,

in

which

case

index

rebuild

will

automatically

take

place

at

next

access).

If

the

table

spaces

in

which

the

table

resides

are

not

in

load

pending

state,

this

option

does

not

affect

the

state

of

the

table

spaces.

The

load

terminate

option

will

not

remove

a

backup

pending

state

from

table

spaces.

tbname

The

name

of

the

table

into

which

the

data

is

to

be

loaded.

The

table

cannot

be

a

system

table

or

a

declared

temporary

table.

An

alias,

or

the

fully

qualified

or

unqualified

table

name

can

be

specified.

A

qualified

table

name

is

in

the

form

schema.tablename.

If

an

unqualified

table

name

is

specified,

the

table

will

be

qualified

with

the

CURRENT

SCHEMA.

(column_list)

A

list

of

table

column

names

into

which

the

data

is

to

be

inserted.

The

column

names

must

be

separated

by

commas.

If

a

name

contains

spaces

or

lowercase

characters,

it

must

be

enclosed

by

quotation

marks.

DATALINK

SPECIFICATION

datalink-spec

Specifies

parameters

pertaining

to

DB2

Data

Links.

These

parameters

can

be

specified

using

the

same

syntax

as

in

the

LOAD

command.

FOR

EXCEPTION

e_tbname

Specifies

the

exception

table

into

which

rows

in

error

will

be

copied.

Any

row

that

is

in

violation

of

a

unique

index

or

a

primary

key

index

is

copied.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

piFileType

Input.

A

string

that

indicates

the

format

of

the

input

data

source.

Supported

external

formats

(defined

in

sqlutil)

are:

SQL_ASC

Non-delimited

ASCII.

SQL_DEL

Delimited

ASCII,

for

exchange

with

dBase,

BASIC,

and

the

IBM

Personal

Decision

Series

programs,

and

many

other

database

managers

and

file

managers.

SQL_IXF

PC

version

of

the

Integrated

Exchange

Format,

the

preferred

method

for

exporting

data

from

a

table

so

that

it

can

be

loaded

later

into

the

same

table

or

into

another

database

manager

table.

SQL_CURSOR

An

SQL

query.

The

sqlu_media_list

structure

passed

in

through

the

piSourceList

parameter

is

of

type

SQLU_SQL_STMT,

and

refers

to

an

actual

SQL

query

and

not

a

cursor

declared

against

one.

piFileTypeMod

Input.

A

pointer

to

the

sqlchar

structure,

followed

by

an

array

of

characters

that

specify

one

or

more

processing

options.

If

this

pointer

is

NULL,

or

the

structure

pointed

to

has

zero

characters,

this

action

is

interpreted

as

selection

of

a

default

specification.

db2Load

-

Load

130

Data

Movement

Utilities

Not

all

options

can

be

used

with

all

of

the

supported

file

types.

See

File

type

modifiers

for

load.

piLocalMsgFileName

Input.

A

string

containing

the

name

of

a

local

file

to

which

output

messages

are

to

be

written.

piTempFilesPath

Input.

A

string

containing

the

path

name

to

be

used

on

the

server

for

temporary

files.

Temporary

files

are

created

to

store

messages,

consistency

points,

and

delete

phase

information.

piVendorSortWorkPaths

Input.

A

pointer

to

the

sqlu_media_list

structure

which

specifies

the

Vendor

Sort

work

directories.

piCopyTargetList

Input.

A

pointer

to

an

sqlu_media_list

structure

used

(if

a

copy

image

is

to

be

created)

to

provide

a

list

of

target

paths,

devices,

or

a

shared

library

to

which

the

copy

image

is

to

be

written.

The

values

provided

in

this

structure

depend

on

the

value

of

the

media_type

field.

Valid

values

for

this

field

(defined

in

sqlutil)

are:

SQLU_LOCAL_MEDIA

If

the

copy

is

to

be

written

to

local

media,

set

the

media_type

to

this

value

and

provide

information

about

the

targets

in

sqlu_media_entry

structures.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

SQLU_TSM_MEDIA

If

the

copy

is

to

be

written

to

TSM,

use

this

value.

No

further

information

is

required.

SQLU_OTHER_MEDIA

If

a

vendor

product

is

to

be

used,

use

this

value

and

provide

further

information

via

an

sqlu_vendor

structure.

Set

the

shr_lib

field

of

this

structure

to

the

shared

library

name

of

the

vendor

product.

Provide

only

one

sqlu_vendor

entry,

regardless

of

the

value

of

sessions.

The

sessions

field

specifies

the

number

of

sqlu_media_entry

structures

provided.

The

load

utility

will

start

the

sessions

with

different

sequence

numbers,

but

with

the

same

data

provided

in

the

one

sqlu_vendor

entry.

piNullIndicators

Input.

For

ASC

files

only.

An

array

of

integers

that

indicate

whether

or

not

the

column

data

is

nullable.

There

is

a

one-to-one

ordered

correspondence

between

the

elements

of

this

array

and

the

columns

being

loaded

from

the

data

file.

That

is,

the

number

of

elements

must

equal

the

dcolnum

field

of

the

pDataDescriptor

parameter.

Each

element

of

the

array

contains

a

number

identifying

a

location

in

the

data

file

that

is

to

be

used

as

a

NULL

indicator

field,

or

a

zero

indicating

that

the

table

column

is

not

nullable.

If

the

element

is

not

zero,

the

identified

location

in

the

data

file

must

contain

a

Y

or

an

N.

A

Y

indicates

that

the

table

column

data

is

NULL,

and

N

indicates

that

the

table

column

data

is

not

NULL.

piLoadInfoIn

Input.

A

pointer

to

the

db2LoadIn

structure.

poLoadInfoOut

Input.

A

pointer

to

the

db2LoadOut

structure.

db2Load

-

Load

Chapter

3.

Load

131

piPartLoadInfoIn

Input.

A

pointer

to

the

db2PartLoadIn

structure.

poPartLoadInfoOut

Output.

A

pointer

to

the

db2PartLoadOut

structure.

iCallerAction

Input.

An

action

requested

by

the

caller.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INITIAL

Initial

call.

This

value

(or

SQLU_NOINTERRUPT)

must

be

used

on

the

first

call

to

the

API.

SQLU_NOINTERRUPT

Initial

call.

Do

not

suspend

processing.

This

value

(or

SQLU_INITIAL)

must

be

used

on

the

first

call

to

the

API.

If

the

initial

call

or

any

subsequent

call

returns

and

requires

the

calling

application

to

perform

some

action

prior

to

completing

the

requested

load

operation,

the

caller

action

must

be

set

to

one

of

the

following:

SQLU_CONTINUE

Continue

processing.

This

value

can

only

be

used

on

subsequent

calls

to

the

API,

after

the

initial

call

has

returned

with

the

utility

requesting

user

input

(for

example,

to

respond

to

an

end

of

tape

condition).

It

specifies

that

the

user

action

requested

by

the

utility

has

completed,

and

the

utility

can

continue

processing

the

initial

request.

SQLU_TERMINATE

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_ABORT

Terminate

processing.

Causes

the

load

utility

to

exit

prematurely,

leaving

the

table

spaces

being

loaded

in

LOAD_PENDING

state.

This

option

should

be

specified

if

further

processing

of

the

data

is

not

to

be

done.

SQLU_RESTART

Restart

processing.

SQLU_DEVICE_TERMINATE

Terminate

a

single

device.

This

option

should

be

specified

if

the

utility

is

to

stop

reading

data

from

the

device,

but

further

processing

of

the

data

is

to

be

done.

iFileTypeLen

Input.

Specifies

the

length

in

bytes

of

iFileType.

iLocalMsgFileLen

Input.

Specifies

the

length

in

bytes

of

iLocalMsgFileName.

iTempFilesPathLen

Input.

Specifies

the

length

in

bytes

of

iTempFilesPath.

iRowcount

Input.

The

number

of

physical

records

to

be

loaded.

Allows

a

user

to

load

only

the

first

rowcnt

rows

in

a

file.

db2Load

-

Load

132

Data

Movement

Utilities

iRestartcount

Input.

Reserved

for

future

use.

piUseTablespace

Input.

If

the

indexes

are

being

rebuilt,

a

shadow

copy

of

the

index

is

built

in

tablespace

iUseTablespaceName

and

copied

over

to

the

original

tablespace

at

the

end

of

the

load.

Only

system

temporary

table

spaces

can

be

used

with

this

option.

If

not

specified

then

the

shadow

index

will

be

created

in

the

same

tablespace

as

the

index

object.

If

the

shadow

copy

is

created

in

the

same

tablespace

as

the

index

object,

the

copy

of

the

shadow

index

object

over

the

old

index

object

is

instantaneous.

If

the

shadow

copy

is

in

a

different

tablespace

from

the

index

object

a

physical

copy

is

performed.

This

could

involve

considerable

I/O

and

time.

The

copy

happens

while

the

table

is

offline

at

the

end

of

a

load.

This

field

is

ignored

if

iAccessLevel

is

SQLU_ALLOW_NO_ACCESS.

This

option

is

ignored

if

the

user

does

not

specify

INDEXING

MODE

REBUILD

or

INDEXING

MODE

AUTOSELECT.

This

option

will

also

be

ignored

if

INDEXING

MODE

AUTOSELECT

is

chosen

and

load

chooses

to

incrementally

update

the

index.

iSavecount

The

number

of

records

to

load

before

establishing

a

consistency

point.

This

value

is

converted

to

a

page

count,

and

rounded

up

to

intervals

of

the

extent

size.

Since

a

message

is

issued

at

each

consistency

point,

this

option

should

be

selected

if

the

load

operation

will

be

monitored

using

db2LoadQuery

-

Load

Query.

If

the

value

of

savecnt

is

not

sufficiently

high,

the

synchronization

of

activities

performed

at

each

consistency

point

will

impact

performance.

The

default

value

is

0,

meaning

that

no

consistency

points

will

be

established,

unless

necessary.

iDataBufferSize

The

number

of

4KB

pages

(regardless

of

the

degree

of

parallelism)

to

use

as

buffered

space

for

transferring

data

within

the

utility.

If

the

value

specified

is

less

than

the

algorithmic

minimum,

the

required

minimum

is

used,

and

no

warning

is

returned.

This

memory

is

allocated

directly

from

the

utility

heap,

whose

size

can

be

modified

through

the

util_heap_sz

database

configuration

parameter.

If

a

value

is

not

specified,

an

intelligent

default

is

calculated

by

the

utility

at

run

time.

The

default

is

based

on

a

percentage

of

the

free

space

available

in

the

utility

heap

at

the

instantiation

time

of

the

loader,

as

well

as

some

characteristics

of

the

table.

iSortBufferSize

Input.

This

option

specifies

a

value

that

overrides

the

SORTHEAP

database

configuration

parameter

during

a

load

operation.

It

is

relevant

only

when

loading

tables

with

indexes

and

only

when

the

iIndexingMode

parameter

is

not

specified

as

SQLU_INX_DEFERRED.

The

value

that

is

specified

cannot

exceed

the

value

of

SORTHEAP.

This

parameter

is

useful

for

throttling

the

sort

memory

used

by

LOAD

without

changing

the

value

of

SORTHEAP,

which

would

also

affect

general

query

processing.

iWarningcount

Input.

Stops

the

load

operation

after

warningcnt

warnings.

Set

this

db2Load

-

Load

Chapter

3.

Load

133

parameter

if

no

warnings

are

expected,

but

verification

that

the

correct

file

and

table

are

being

used

is

desired.

If

the

load

file

or

the

target

table

is

specified

incorrectly,

the

load

utility

will

generate

a

warning

for

each

row

that

it

attempts

to

load,

which

will

cause

the

load

to

fail.

If

warningcnt

is

0,

or

this

option

is

not

specified,

the

load

operation

will

continue

regardless

of

the

number

of

warnings

issued.

If

the

load

operation

is

stopped

because

the

threshold

of

warnings

was

exceeded,

another

load

operation

can

be

started

in

RESTART

mode.

The

load

operation

will

automatically

continue

from

the

last

consistency

point.

Alternatively,

another

load

operation

can

be

initiated

in

REPLACE

mode,

starting

at

the

beginning

of

the

input

file.

iHoldQuiesce

Input.

A

flag

whose

value

is

set

to

TRUE

if

the

utility

is

to

leave

the

table

in

quiesced

exclusive

state

after

the

load,

and

to

FALSE

if

it

is

not.

iCpuParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

parsing,

converting

and

formatting

records

when

building

table

objects.

This

parameter

is

designed

to

exploit

intra-partition

parallelism.

It

is

particularly

useful

when

loading

presorted

data,

because

record

order

in

the

source

data

is

preserved.

If

the

value

of

this

parameter

is

zero,

the

load

utility

uses

an

intelligent

default

value

at

run

time.

Note:

If

this

parameter

is

used

with

tables

containing

either

LOB

or

LONG

VARCHAR

fields,

its

value

becomes

one,

regardless

of

the

number

of

system

CPUs,

or

the

value

specified

by

the

user.

iDiskParallelism

Input.

The

number

of

processes

or

threads

that

the

load

utility

will

spawn

for

writing

data

to

the

table

space

containers.

If

a

value

is

not

specified,

the

utility

selects

an

intelligent

default

based

on

the

number

of

table

space

containers

and

the

characteristics

of

the

table.

iNonrecoverable

Input.

Set

to

SQLU_NON_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

non-recoverable,

and

it

will

not

be

possible

to

recover

it

by

a

subsequent

roll

forward

action.

The

rollforward

utility

will

skip

the

transaction,

and

will

mark

the

table

into

which

data

was

being

loaded

as

″invalid″.

The

utility

will

also

ignore

any

subsequent

transactions

against

that

table.

After

the

roll

forward

is

completed,

such

a

table

can

only

be

dropped.

With

this

option,

table

spaces

are

not

put

in

backup

pending

state

following

the

load

operation,

and

a

copy

of

the

loaded

data

does

not

have

to

be

made

during

the

load

operation.

Set

to

SQLU_RECOVERABLE_LOAD

if

the

load

transaction

is

to

be

marked

as

recoverable.

iIndexingMode

Input.

Specifies

the

indexing

mode.

Valid

values

(defined

in

sqlutil)

are:

SQLU_INX_AUTOSELECT

LOAD

chooses

between

REBUILD

and

INCREMENTAL

indexing

modes.

SQLU_INX_REBUILD

Rebuild

table

indexes.

SQLU_INX_INCREMENTAL

Extend

existing

indexes.

db2Load

-

Load

134

Data

Movement

Utilities

SQLU_INX_DEFERRED

Do

not

update

table

indexes.

iAccessLevel

Input.

Specifies

the

access

level.

Valid

values

are:

SQLU_ALLOW_NO_ACCESS

Specifies

that

the

load

locks

the

table

exclusively.

SQLU_ALLOW_READ_ACCESS

Specifies

that

the

original

data

in

the

table

(the

non-delta

portion)

should

still

be

visible

to

readers

while

the

load

is

in

progress.

This

option

is

only

valid

for

load

appends,

such

as

a

load

insert,

and

will

be

ignored

for

load

replace.

iLockWithForce

Input.

A

boolean

flag.

If

set

to

TRUE

load

will

force

other

applications

as

necessary

to

ensure

that

it

obtains

table

locks

immediately.

This

option

requires

the

same

authority

as

the

FORCE

APPLICATIONS

command

(SYSADM

or

SYSCTRL).

SQLU_ALLOW_NO_ACCESS

loads

may

force

conflicting

applications

at

the

start

of

the

load

operation.

At

the

start

of

the

load

the

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

SQLU_ALLOW_READ_ACCESS

loads

may

force

conflicting

applications

at

the

start

or

end

of

the

load

operation.

At

the

start

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

modify

the

table.

At

the

end

of

the

load

the

load

utility

may

force

applications

that

are

attempting

to

either

query

or

modify

the

table.

iCheckPending

Input.

Specifies

to

put

the

table

into

check

pending

state.

If

SQLU_CHECK_PENDING_CASCADE_IMMEDIATE

is

specified,

check

pending

state

will

be

immediately

cascaded

to

all

dependent

and

descendent

tables.

If

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

specified,

the

cascade

of

check

pending

state

to

dependent

tables

will

be

deferred

until

the

target

table

is

checked

for

integrity

violations.

SQLU_CHECK_PENDING_CASCADE_DEFERRED

is

the

default

if

the

option

is

not

specified.

iRestartphase

Input.

Reserved.

Valid

value

is

a

single

space

character

’

’.

iStatsOpt

Input.

Granularity

of

statistics

to

collect.

Valid

values

are:

SQLU_STATS_NONE

No

statistics

to

be

gathered.

SQLU_STATS_USE_PROFILE

Statistics

are

collected

based

on

the

profile

defined

for

the

current

table.

This

profile

must

be

created

using

the

RUNSTATS

command.

If

no

profile

exists

for

the

current

table,

a

warning

is

returned

and

no

statistics

are

collected.

iUseTablespaceLen

Input.

The

length

in

bytes

of

piUseTablespace.

oRowsRead

Output.

Number

of

records

read

during

the

load

operation.

db2Load

-

Load

Chapter

3.

Load

135

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

oRowsSkipped

Output.

Number

of

records

skipped

before

the

load

operation

begins.

oRowsLoaded

Output.

Number

of

rows

loaded

into

the

target

table.

oRowsRejected

Output.

Number

of

records

that

could

not

be

loaded.

oRowsDeleted

Output.

Number

of

duplicate

rows

deleted.

oRowsCommitted

Output.

The

total

number

of

processed

records:

the

number

of

records

loaded

successfully

and

committed

to

the

database,

plus

the

number

of

skipped

and

rejected

records.

piHostname

Input.

The

hostname

for

the

iFileTransferCmd

parameter.

If

NULL,

the

hostname

will

default

to

″nohost″.

piFileTransferCmd

Input.

File

transfer

command

parameter.

If

not

required,

it

must

be

set

to

NULL.

See

the

Data

Movement

Guide

for

a

full

description

of

this

parameter.

piPartFileLocation

Input.

In

PARTITION_ONLY,

LOAD_ONLY,

and

LOAD_ONLY_VERIFY_PART

modes,

this

parameter

can

be

used

to

specify

the

location

of

the

partitioned

files.

This

location

must

exist

on

each

partition

specified

by

the

piOutputNodes

option.

For

the

SQL_CURSOR

file

type,

this

parameter

cannot

be

NULL

and

the

location

does

not

refer

to

a

path,

but

to

a

fully

qualified

file

name.

This

will

be

the

fully

qualified

base

file

name

of

the

partitioned

files

that

are

created

on

each

output

partition

for

PARTITION_ONLY

mode,

or

the

location

of

the

files

to

be

read

from

each

partition

for

LOAD_ONLY

mode.

For

PARTITION_ONLY

mode,

multiple

files

may

be

created

with

the

specified

base

name

if

there

are

LOB

columns

in

the

target

table.

For

file

types

other

than

SQL_CURSOR,

if

the

value

of

this

parameter

is

NULL,

it

will

default

to

the

current

directory.

piOutputNodes

Input.

The

list

of

Load

output

partitions.

A

NULL

indicates

that

all

nodes

on

which

the

target

table

is

defined.

piPartitioningNodes

Input.

The

list

of

partitioning

nodes.

A

NULL

indicates

the

default.

Refer

to

the

Load

command

in

the

Data

Movement

Guide

and

Reference

for

a

description

of

how

the

default

is

determined.

piMode

Input.

Specifies

the

load

mode

for

partitioned

databases.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_PARTITION_AND_LOAD

Data

is

partitioned

(perhaps

in

parallel)

and

loaded

simultaneously

on

the

corresponding

database

partitions.

DB2LOAD_PARTITION_ONLY

Data

is

partitioned

(perhaps

in

parallel)

and

the

output

is

written

to

files

in

a

specified

location

on

each

loading

partition.

For

file

db2Load

-

Load

136

Data

Movement

Utilities

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

types

other

than

SQL_CURSOR,

the

name

of

the

output

file

on

each

partition

will

have

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

input

file

specified

by

piSourceList

and

xxx

is

the

partition

number.For

the

SQL_CURSOR

file

type,

the

name

of

the

output

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

Note:

This

mode

cannot

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY

Data

is

assumed

to

be

already

partitioned;

the

partition

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

For

file

types

other

than

SQL_CURSOR,

the

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

For

the

SQL_CURSOR

file

type,

the

name

of

the

input

file

on

each

partition

will

be

determined

by

the

piPartFileLocation

parameter.

Refer

to

the

piPartFileLocation

parameter

for

information

about

how

to

specify

the

location

of

the

partition

file

on

each

partition.

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART

Data

is

assumed

to

be

already

partitioned,

but

the

data

file

does

not

contain

a

partition

header.

The

partitioning

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

During

the

load

operation,

each

row

is

checked

to

verify

that

it

is

on

the

correct

partition.

Rows

containing

partition

violations

are

placed

in

a

dumpfile

if

the

dumpfile

file

type

modifier

is

specified.

Otherwise,

the

rows

are

discarded.

If

partition

violations

exist

on

a

particular

loading

partition,

a

single

warning

will

be

written

to

the

load

message

file

for

that

partition.

The

input

file

name

on

each

partition

is

expected

to

be

of

the

form

filename.xxx,

where

filename

is

the

name

of

the

first

file

specified

by

piSourceList

and

xxx

is

the

3-digit

partition

number.

Note:

This

mode

cannot

be

used

when

loading

a

data

file

located

on

a

remote

client,

nor

can

it

be

used

for

a

CLI

LOAD.

DB2LOAD_ANALYZE

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

generated.

piMaxNumPartAgents

Input.

The

maximum

number

of

partitioning

agents.

A

NULL

value

indicates

the

default,

which

is

25.

piIsolatePartErrs

Input.

Indicates

how

the

load

operation

will

react

to

errors

that

occur

on

individual

partitions.

Valid

values

(defined

in

db2ApiDf)

are:

DB2LOAD_SETUP_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup,

such

as

problems

accessing

a

partition

or

problems

accessing

a

table

space

db2Load

-

Load

Chapter

3.

Load

137

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

or

table

on

a

partition,

will

cause

the

load

operation

to

stop

on

the

failing

partitions

but

to

continue

on

the

remaining

partitions.

Errors

that

occur

on

a

partition

while

data

is

being

loaded

will

cause

the

entire

operation

to

fail

and

rollback

to

the

last

point

of

consistency

on

each

partition.

DB2LOAD_LOAD_ERRS_ONLY

In

this

mode,

errors

that

occur

on

a

partition

during

setup

will

cause

the

entire

load

operation

to

fail.

When

an

error

occurs

while

data

is

being

loaded,

the

partitions

with

errors

will

be

rolled

back

to

their

last

point

of

consistency.

The

load

operation

will

continue

on

the

remaining

partitions

until

a

failure

occurs

or

until

all

the

data

is

loaded.

On

the

partitions

where

all

of

the

data

was

loaded,

the

data

will

not

be

visible

following

the

load

operation.

Because

of

the

errors

in

the

other

partitions

the

transaction

will

be

aborted.

Data

on

all

of

the

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

This

will

make

the

newly

loaded

data

visible

on

the

partitions

where

the

load

operation

completed

and

resume

the

load

operation

on

partitions

that

experienced

an

error.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

DB2LOAD_SETUP_AND_LOAD_ERRS

In

this

mode,

partition-level

errors

during

setup

or

loading

data

cause

processing

to

stop

only

on

the

affected

partitions.

As

with

the

DB2LOAD_LOAD_ERRS_ONLY

mode,

when

partition

errors

do

occur

while

data

is

being

loaded,

the

data

on

all

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

Note:

This

mode

cannot

be

used

when

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified.

DB2LOAD_NO_ISOLATION

Any

error

during

the

Load

operation

causes

the

transaction

to

be

aborted.

If

this

parameter

is

NULL,

it

will

default

to

DB2LOAD_LOAD_ERRS_ONLY,

unless

iAccessLevel

is

set

to

SQLU_ALLOW_READ_ACCESS

and

a

copy

target

is

also

specified,

in

which

case

the

default

is

DB2LOAD_NO_ISOLATION.

piStatusInterval

Input.

Specifies

the

number

of

megabytes

(MB)

of

data

to

load

before

generating

a

progress

message.

Valid

values

are

whole

numbers

in

the

range

of

1

to

4000.

If

NULL

is

specified,

a

default

value

of

100

will

be

used.

piPortRange

Input.

The

TCP

port

range

for

internal

communication.

If

NULL,

the

port

range

used

will

be

6000-6063.

piCheckTruncation

Input.

Causes

Load

to

check

for

record

truncation

at

Input/Output.

Valid

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

db2Load

-

Load

138

Data

Movement

Utilities

|
|
|

|
|
|

|
|
|
|

piMapFileInput

Input.

Partition

map

input

filename.

If

the

mode

is

not

ANALYZE,

this

parameter

should

be

set

to

NULL.

If

the

mode

is

ANALYZE,

this

parameter

must

be

specified.

piMapFileOutput

Input.

Partition

map

output

filename.

The

rules

for

piMapFileInput

apply

here

as

well.

piTrace

Input.

Specifies

the

number

of

records

to

trace

when

you

need

to

review

a

dump

of

all

the

data

conversion

process

and

the

output

of

hashing

values.

If

NULL,

the

number

of

records

defaults

to

0.

piNewline

Input.

Forces

Load

to

check

for

newline

characters

at

end

of

ASC

data

records

if

RECLEN

file

type

modifier

is

also

specified.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

value

defaults

to

FALSE.

piDistfile

Input.

Name

of

the

partition

distribution

file.

If

a

NULL

is

specified,

the

value

defaults

to

″DISTFILE″.

piOmitHeader

Input.

Indicates

that

a

partition

map

header

should

not

be

included

in

the

partition

file

when

using

DB2LOAD_PARTITION_ONLY

mode.

Possible

values

are

TRUE

and

FALSE.

If

NULL,

the

default

is

FALSE.

piRunStatDBPartNum

Specifies

the

database

partition

on

which

to

collect

statistics.

The

default

value

is

the

first

database

partition

in

the

output

partition

list.

iHostnameLen

Input.

The

length

in

bytes

of

piHostname.

iFileTransferLen

Input.

The

length

in

bytes

of

piFileTransferCmd.

iPartFileLocLen

Input.

The

length

in

bytes

of

piPartFileLocation.

iMapFileInputLen

Input.

The

length

in

bytes

of

piMapFileInput.

iMapFileOutputLen

Input.

The

length

in

bytes

of

piMapFileOutput.

iDistfileLen

Input.

The

length

in

bytes

of

piDistfile.

piNodeList

Input.

An

array

of

node

numbers.

iNumNodes

Input.

The

number

of

nodes

in

the

piNodeList

array.

A

0

indicates

the

default,

which

is

all

nodes

on

which

the

target

table

is

defined.

iPortMin

Input.

Lower

port

number.

iPortMax

Input.

Higher

port

number.

db2Load

-

Load

Chapter

3.

Load

139

oRowsRdPartAgents

Output.

Total

number

of

rows

read

by

all

partitioning

agents.

oRowsRejPartAgents

Output.

Total

number

of

rows

rejected

by

all

partitioning

agents.

oRowsPartitioned

Output.

Total

number

of

rows

partitioned

by

all

partitioning

agents.

poAgentInfoList

Output.

During

a

load

operation

into

a

partitioned

database,

the

following

load

processing

entities

may

be

involved:

load

agents,

partitioning

agents,

pre-partitioing

agents,

file

transfer

command

agents

and

load-to-file

agents

(these

are

described

in

the

Data

Movement

Guide).

The

purpose

of

the

poAgentInfoList

output

parameter

is

to

return

to

the

caller

information

about

each

load

agent

that

participated

in

a

load

operation.

Each

entry

in

the

list

contains

the

following

information:

v

oAgentType.

A

tag

indicating

what

kind

of

load

agent

the

entry

describes.

v

oNodeNum.

The

number

of

the

partition

on

which

the

agent

executed.

v

oSqlcode.

The

final

sqlcode

resulting

from

the

agent’s

processing.

v

oTableState.

The

final

status

of

the

table

on

the

partition

on

which

the

agent

executed

(relevant

only

for

load

agents).

It

is

up

to

the

caller

of

the

API

to

allocate

memory

for

this

list

prior

to

calling

the

API.

The

caller

should

also

indicate

the

number

of

entries

for

which

they

allocated

memory

in

the

iMaxAgentInfoEntries

parameter.

If

the

caller

sets

poAgentInfoList

to

NULL

or

sets

iMaxAgentInfoEntries

to

0,

then

no

information

will

be

returned

about

the

load

agents.

iMaxAgentInfoEntries

Input.

The

maximum

number

of

agent

information

entries

allocated

by

the

user

for

poAgentInfoList.

In

general,

setting

this

parameter

to

3

times

the

number

of

partitions

involved

in

the

load

operation

should

be

sufficient.

oNumAgentInfoEntries

Output.

The

actual

number

of

agent

information

entries

produced

by

the

load

operation.

This

number

of

entries

will

be

returned

to

the

user

in

the

poAgentInfoList

parameter

as

long

as

iMaxAgentInfoEntries

is

greater

than

or

equal

to

oNumAgentInfoEntries.

If

iMaxAgentInfoEntries

is

less

than

oNumAgentInfoEntries,

then

the

number

of

entries

returned

in

poAgentInfoList

is

equal

to

iMaxAgentInfoEntries.

oSqlcode

Output.

The

final

sqlcode

resulting

from

the

agent’s

processing.

oTableState

Output.

The

purpose

of

this

output

parameter

is

not

to

report

every

possible

state

of

the

table

after

the

load

operation.

Rather,

its

purpose

is

to

report

only

a

small

subset

of

possible

tablestates

in

order

to

give

the

caller

a

general

idea

of

what

happened

to

the

table

during

load

processing.

This

value

is

relevant

for

load

agents

only.

The

possible

values

are:

DB2LOADQUERY_NORMAL

Indicates

that

the

load

completed

successfully

on

the

partition

and

the

table

was

taken

out

of

the

LOAD

IN

PROGRESS

(or

LOAD

PENDING)

state.

In

this

case,

the

table

still

could

be

in

CHECK

PENDING

state

due

to

the

need

for

further

constraints

processing,

but

this

will

not

reported

as

this

is

normal.

db2Load

-

Load

140

Data

Movement

Utilities

DB2LOADQUERY_UNCHANGED

Indicates

that

the

load

job

aborted

processing

due

to

an

error

but

did

not

yet

change

the

state

of

the

table

on

the

partition

from

whatever

state

it

was

in

prior

to

calling

db2Load.

It

is

not

necessary

to

perform

a

load

restart

or

terminate

operation

on

such

partitions.

DB2LOADQUERY_LOADPENDING

Indicates

that

the

load

job

aborted

during

processing

but

left

the

table

on

the

partition

in

the

LOAD

PENDING

state,

indicating

that

the

load

job

on

that

partition

must

be

either

terminated

or

restarted.

oNodeNum

Output.

The

number

of

the

partition

on

which

the

agent

executed.

oAgentType

Output.

The

agent

type.

Valid

values

(defined

in

db2ApiDf)

are

:

DB2LOAD_LOAD_AGENT

DB2LOAD_PARTITIONING_AGENT

DB2LOAD_PRE_PARTITIONING_AGENT

DB2LOAD_FILE_TRANSFER_AGENT

DB2LOAD_LOAD_TO_FILE_AGENT

Usage

notes:

Data

is

loaded

in

the

sequence

that

appears

in

the

input

file.

If

a

particular

sequence

is

desired,

the

data

should

be

sorted

before

a

load

is

attempted.

The

load

utility

builds

indexes

based

on

existing

definitions.

The

exception

tables

are

used

to

handle

duplicates

on

unique

keys.

The

utility

does

not

enforce

referential

integrity,

perform

constraints

checking,

or

update

summary

tables

that

are

dependent

on

the

tables

being

loaded.

Tables

that

include

referential

or

check

constraints

are

placed

in

check

pending

state.

Summary

tables

that

are

defined

with

REFRESH

IMMEDIATE,

and

that

are

dependent

on

tables

being

loaded,

are

also

placed

in

check

pending

state.

Issue

the

SET

INTEGRITY

statement

to

take

the

tables

out

of

check

pending

state.

Load

operations

cannot

be

carried

out

on

replicated

summary

tables.

For

clustering

indexes,

the

data

should

be

sorted

on

the

clustering

index

prior

to

loading.

The

data

need

not

be

sorted

when

loading

into

an

multi-dimensionally

clustered

(MDC)

table.

DB2

Data

Links

Manager

Considerations

For

each

DATALINK

column,

there

can

be

one

column

specification

within

parentheses.

Each

column

specification

consists

of

one

or

more

of

DL_LINKTYPE,

prefix

and

a

DL_URL_SUFFIX

specification.

The

prefix

information

can

be

either

DL_URL_REPLACE_PREFIX,

or

the

DL_URL_DEFAULT_PREFIX

specification.

There

can

be

as

many

DATALINK

column

specifications

as

the

number

of

DATALINK

columns

defined

in

the

table.

The

order

of

specifications

follows

the

order

of

DATALINK

columns

as

found

within

the

insert-column

list

(if

specified

by

INSERT

INTO

(insert-column,

...)),

or

within

the

table

definition

(if

insert-column

is

not

specified).

db2Load

-

Load

Chapter

3.

Load

141

For

example,

if

a

table

has

columns

C1,

C2,

C3,

C4,

and

C5,

and

among

them

only

columns

C2

and

C5

are

of

type

DATALINK,

and

the

insert-column

list

is

(C1,

C5,

C3,

C2),

there

should

be

two

DATALINK

column

specifications.

The

first

column

specification

will

be

for

C5,

and

the

second

column

specification

will

be

for

C2.

If

an

insert-column

list

is

not

specified,

the

first

column

specification

will

be

for

C2,

and

the

second

column

specification

will

be

for

C5.

If

there

are

multiple

DATALINK

columns,

and

some

columns

do

not

need

any

particular

specification,

the

column

specification

should

have

at

least

the

parentheses

to

unambiguously

identify

the

order

of

specifications.

If

there

are

no

specifications

for

any

of

the

columns,

the

entire

list

of

empty

parentheses

can

be

dropped.

Thus,

in

cases

where

the

defaults

are

satisfactory,

there

need

not

be

any

DATALINK

specification.

If

data

is

being

loaded

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary).

1.

Ensure

that

the

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

3.

Copy

to

the

appropriate

Data

Links

servers,

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

The

connection

between

DB2

and

the

Data

Links

server

may

fail

while

running

the

load

utility,

causing

the

load

operation

to

fail.

If

this

occurs:

1.

Start

the

Data

Links

server

and

the

DB2

Data

Links

Manager.

2.

Invoke

a

load

restart

operation.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Representation

of

DATALINK

Information

in

an

Input

File

The

LINKTYPE

(currently

only

URL

is

supported)

is

not

specified

as

part

of

DATALINK

information.

The

LINKTYPE

is

specified

in

the

LOAD

or

the

IMPORT

command,

and

for

input

files

of

type

PC/IXF,

in

the

appropriate

column

descriptor

records.

The

syntax

of

DATALINK

information

for

a

URL

LINKTYPE

is

as

follows:

��

urlname

dl_delimiter

comment

��

Note

that

both

urlname

and

comment

are

optional.

If

neither

is

provided,

the

NULL

value

is

assigned.

db2Load

-

Load

142

Data

Movement

Utilities

urlname

The

URL

name

must

conform

to

valid

URL

syntax.

Notes:

1.

Currently

″http″,

″file″,

and

″unc″

are

permitted

as

a

schema

name.

2.

The

prefix

(schema,

host,

and

port)

of

the

URL

name

is

optional.

If

a

prefix

is

not

present,

it

is

taken

from

the

DL_URL_DEFAULT_PREFIX

or

the

DL_URL_REPLACE_PREFIX

specification

of

the

load

or

the

import

utility.

If

none

of

these

is

specified,

the

prefix

defaults

to

″file://localhost″.

Thus,

in

the

case

of

local

files,

the

file

name

with

full

path

name

can

be

entered

as

the

URL

name,

without

the

need

for

a

DATALINK

column

specification

within

the

LOAD

or

the

IMPORT

command.

3.

Prefixes,

even

if

present

in

URL

names,

are

overridden

by

a

different

prefix

name

on

the

DL_URL_REPLACE_PREFIX

specification

during

a

load

or

import

operation.

4.

The

″path″

(after

appending

DL_URL_SUFFIX,

if

specified)

is

the

full

path

name

of

the

remote

file

in

the

remote

server.

Relative

path

names

are

not

allowed.

The

http

server

default

path-prefix

is

not

taken

into

account.

dl_delimiter

For

the

delimited

ASCII

(DEL)

file

format,

a

character

specified

via

the

dldel

modifier,

or

defaulted

to

on

the

LOAD

or

the

IMPORT

command.

For

the

non-delimited

ASCII

(ASC)

file

format,

this

should

correspond

to

the

character

sequence

\;

(a

backslash

followed

by

a

semicolon).

Whitespace

characters

(blanks,

tabs,

and

so

on)

are

permitted

before

and

after

the

value

specified

for

this

parameter.

comment

The

comment

portion

of

a

DATALINK

value.

If

specified

for

the

delimited

ASCII

(DEL)

file

format,

the

comment

text

must

be

enclosed

by

the

character

string

delimiter,

which

is

double

quotation

marks

(″)

by

default.

This

character

string

delimiter

can

be

overridden

by

the

MODIFIED

BY

filetype-mod

specification

of

the

LOAD

or

the

IMPORT

command.

If

no

comment

is

specified,

the

comment

defaults

to

a

string

of

length

zero.

Following

are

DATALINK

data

examples

for

the

delimited

ASCII

(DEL)

file

format:

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg;

"Intro

Movie"

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang;

"InderPal’s

Home

Page"

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

for

the

non-delimited

ASCII

(ASC)

file

format:

db2Load

-

Load

Chapter

3.

Load

143

v

http://www.almaden.ibm.com:80/mrep/intro.mpeg\;Intro

Movie

This

is

stored

with

the

following

parts:

–

scheme

=

http

–

server

=

www.almaden.ibm.com

–

path

=

/mrep/intro.mpeg

–

comment

=

″Intro

Movie″

v

file://narang/u/narang\;

InderPal’s

Home

Page

This

is

stored

with

the

following

parts:

–

scheme

=

file

–

server

=

narang

–

path

=

/u/narang

–

comment

=

″InderPal’s

Home

Page″

Following

are

DATALINK

data

examples

in

which

the

load

or

import

specification

for

the

column

is

assumed

to

be

DL_URL_REPLACE_PREFIX

(″http://qso″):

v

http://www.almaden.ibm.com/mrep/intro.mpeg

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/mrep/intro.mpeg

–

comment

=

NULL

string
v

/u/me/myfile.ps

This

is

stored

with

the

following

parts:

–

schema

=

http

–

server

=

qso

–

path

=

/u/me/myfile.ps

–

comment

=

NULL

string

Related

reference:

v

“sqluvqdp

-

Quiesce

Table

Spaces

for

Table”

in

the

Administrative

API

Reference

v

“db2LoadQuery

-

Load

Query”

on

page

145

v

“SQLDCOL”

in

the

Administrative

API

Reference

v

“SQLU-MEDIA-LIST”

in

the

Administrative

API

Reference

v

“db2Export

-

Export”

on

page

12

v

“db2Import

-

Import”

on

page

48

v

“db2DatabaseQuiesce

-

Database

Quiesce”

in

the

Administrative

API

Reference

v

“db2InstanceQuiesce

-

Instance

Quiesce”

in

the

Administrative

API

Reference

v

“File

type

modifiers

for

load”

on

page

149

v

“Delimiter

restrictions

for

moving

data”

on

page

217

Related

samples:

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

v

“tbload.sqc

--

How

to

load

into

a

partitioned

database

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

db2Load

-

Load

144

Data

Movement

Utilities

db2LoadQuery

-

Load

Query

Checks

the

status

of

a

load

operation

during

processing.

Authorization:

None

Required

connection:

Database

API

include

file:

db2ApiDf.h

C

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2LoadQuery

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2LoadQuery

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

typedef

struct

{

db2Uint32

iStringType;

char

*piString;

db2Uint32

iShowLoadMessages;

db2LoadQueryOutputStruct

*poOutputStruct;

char

*piLocalMessageFile;

}

db2LoadQueryStruct;

typedef

struct

{

db2Uint32

oRowsRead;

db2Uint32

oRowsSkipped;

db2Uint32

oRowsCommitted;

db2Uint32

oRowsLoaded;

db2Uint32

oRowsRejected;

db2Uint32

oRowsDeleted;

db2Uint32

oCurrentIndex;

db2Uint32

oNumTotalIndexes;

db2Uint32

oCurrentMPPNode;

db2Uint32

oLoadRestarted;

db2Uint32

oWhichPhase;

db2Uint32

oWarningCount;

db2Uint32

oTableState;

}

db2LoadQueryOutputStruct;

/*

...

*/

Generic

API

syntax:

/*

File:

db2ApiDf.h

*/

/*

API:

db2gLoadQuery

*/

/*

...

*/

SQL_API_RC

SQL_API_FN

db2gLoadQuery

(

db2Uint32

versionNumber,

void

*pParmStruct,

struct

sqlca

*pSqlca);

db2LoadQuery

-

Load

Query

Chapter

3.

Load

145

typedef

struct

{

db2Uint32

iStringType;

db2Uint32

iStringLen;

char

*piString;

db2Uint32

iShowLoadMessages;

db2LoadQueryOutputStruct

*poOutputStruct;

db2Uint32

iLocalMessageFileLen;

char

*piLocalMessageFile

}

db2gLoadQueryStruct;

typedef

struct

{

db2Uint32

oRowsRead;

db2Uint32

oRowsSkipped;

db2Uint32

oRowsCommitted;

db2Uint32

oRowsLoaded;

db2Uint32

oRowsRejected;

db2Uint32

oRowsDeleted;

db2Uint32

oCurrentIndex;

db2Uint32

oNumTotalIndexes;

db2Uint32

oCurrentMPPNode;

db2Uint32

oLoadRestarted;

db2Uint32

oWhichPhase;

db2Uint32

oWarningCount;

db2Uint32

oTableState;

}

db2LoadQueryOutputStruct;

/*

...

*/

API

parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2LoadQueryStruct

structure.

pSqlca

Output.

A

pointer

to

the

sqlca

structure.

iStringType

Input.

Specifies

a

type

for

piString.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_TABLENAME

Specifies

a

table

name

for

use

by

the

db2LoadQuery

API.

iStringLen

Input.

Specifies

the

length

in

bytes

of

piString.

piString

Input.

Specifies

a

temporary

files

path

name

or

a

table

name,

depending

on

the

value

of

iStringType.

iShowLoadMessages

Input.

Specifies

the

level

of

messages

that

are

to

be

returned

by

the

load

utility.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_SHOW_ALL_MSGS

Return

all

load

messages.

DB2LOADQUERY_SHOW_NO_MSGS

Return

no

load

messages.

db2LoadQuery

-

Load

Query

146

Data

Movement

Utilities

DB2LOADQUERY_SHOW_NEW_MSGS

Return

only

messages

that

have

been

generated

since

the

last

call

to

this

API.

poOutputStruct

Output.

A

pointer

to

the

db2LoadQueryOutputStruct

structure,

which

contains

load

summary

information.

Set

to

NULL

if

a

summary

is

not

required.

iLocalMessageFileLen

Input.

Specifies

the

length

in

bytes

of

piLocalMessageFile.

piLocalMessageFile

Input.

Specifies

the

name

of

a

local

file

to

be

used

for

output

messages.

oRowsRead

Output.

Number

of

records

read

so

far

by

the

load

utility.

oRowsSkipped

Output.

Number

of

records

skipped

before

the

load

operation

began.

oRowsCommitted

Output.

Number

of

rows

committed

to

the

target

table

so

far.

oRowsLoaded

Output.

Number

of

rows

loaded

into

the

target

table

so

far.

oRowsRejected

Output.

Number

of

rows

rejected

from

the

target

table

so

far.

oRowsDeleted

Output.

Number

of

rows

deleted

from

the

target

table

so

far

(during

the

delete

phase).

oCurrentIndex

Output.

Index

currently

being

built

(during

the

build

phase).

oCurrentMPPNode

Output.

Indicates

which

database

partition

server

is

being

queried

(for

partitioned

database

environment

mode

only).

oLoadRestarted

Output.

A

flag

whose

value

is

TRUE

if

the

load

operation

being

queried

is

a

load

restart

operation.

oWhichPhase

Output.

Indicates

the

current

phase

of

the

load

operation

being

queried.

Valid

values

(defined

in

db2ApiDf.h)

are:

DB2LOADQUERY_LOAD_PHASE

Load

phase.

DB2LOADQUERY_BUILD_PHASE

Build

phase.

DB2LOADQUERY_DELETE_PHASE

Delete

phase.

oNumTotalIndexes

Output.

Total

number

of

indexes

to

be

built

(during

the

build

phase).

oWarningCount

Output.

Total

number

of

warnings

returned

so

far.

db2LoadQuery

-

Load

Query

Chapter

3.

Load

147

oTableState

Output.

The

table

states.

Valid

values

(as

defined

in

db2ApiDf)

are:

DB2LOADQUERY_NORMAL

No

table

states

affect

the

table.

DB2LOADQUERY_CHECK_PENDING

The

table

has

constraints

and

the

constraints

have

yet

to

be

verified.

Use

the

SET

INTEGRITY

command

to

take

the

table

out

of

the

DB2LOADQUERY_CHECK_PENDING

state.

The

load

utility

puts

a

table

into

the

DB2LOADQUERY_CHECK_PENDING

state

when

it

begins

a

load

on

a

table

with

constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS

There

is

a

load

actively

in

progress

on

this

table.

DB2LOADQUERY_LOAD_PENDING

A

load

has

been

active

on

this

table

but

has

been

aborted

before

the

load

could

commit.

Issue

a

load

terminate,

a

load

restart,

or

a

load

replace

to

bring

the

table

out

of

the

DB2LOADQUERY_LOAD_PENDING

state.

DB2LOADQUERY_READ_ACCESS

The

table

data

is

available

for

read

access

queries.

Loads

using

the

DB2LOADQUERY_READ_ACCESS

option

put

the

table

into

Read

Access

Only

state.

DB2LOADQUERY_NOTAVAILABLE

The

table

is

unavailable.

The

table

may

only

be

dropped

or

it

may

be

restored

from

a

backup.

Rollforward

through

a

non-recoverable

load

will

put

a

table

into

the

unavailable

state.

DB2LOADQUERY_NO_LOAD_RESTART

The

table

is

in

a

partially

loaded

state

that

will

not

allow

a

load

restart.

The

table

will

also

be

in

the

Load

Pending

state.

Issue

a

load

terminate

or

a

load

replace

to

bring

the

table

out

of

the

No

Load

Restartable

state.

The

table

can

be

placed

in

the

DB2LOADQUERY_NO_LOAD_RESTART

state

during

a

rollforward

operation.

This

can

occur

if

you

rollforward

to

a

point

in

time

that

is

prior

to

the

end

of

a

load

operation,

or

if

you

roll

forward

through

an

aborted

load

operation

but

do

not

roll

forward

to

the

end

of

the

load

terminate

or

load

restart

operation.

DB2LOADQUERY_TYPE1_INDEXES

The

table

currently

uses

type-1

indexes.

The

indexes

can

be

converted

to

type-2

using

the

CONVERT

option

when

using

the

REORG

utility

on

the

indexes.

Usage

notes:

This

API

reads

the

status

of

the

load

operation

on

the

table

specified

by

piString,

and

writes

the

status

to

the

file

specified

by

pLocalMsgFileName.

Related

concepts:

v

“Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command”

on

page

184

Related

reference:

v

“SQLCA”

in

the

Administrative

API

Reference

db2LoadQuery

-

Load

Query

148

Data

Movement

Utilities

2
2
2
2

Related

samples:

v

“loadqry.sqb

--

Query

the

current

status

of

a

load

(MF

COBOL)”

v

“tbload.sqc

--

How

to

load

into

a

partitioned

database

(C)”

v

“tbmove.sqc

--

How

to

move

table

data

(C)”

v

“tbmove.sqC

--

How

to

move

table

data

(C++)”

File

type

modifiers

for

load

Table

10.

Valid

file

type

modifiers

for

load:

All

file

formats

Modifier

Description

anyorder

This

modifier

is

used

in

conjunction

with

the

cpu_parallelism

parameter.

Specifies

that

the

preservation

of

source

data

order

is

not

required,

yielding

significant

additional

performance

benefit

on

SMP

systems.

If

the

value

of

cpu_parallelism

is

1,

this

option

is

ignored.

This

option

is

not

supported

if

SAVECOUNT

>

0,

since

crash

recovery

after

a

consistency

point

requires

that

data

be

loaded

in

sequence.

generatedignore

This

modifier

informs

the

load

utility

that

data

for

all

generated

columns

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedoverride

modifier.

generatedmissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

generated

column

(not

even

NULLs).

This

results

in

all

generated

column

values

being

generated

by

the

utility.

This

modifier

cannot

be

used

with

either

the

generatedignore

or

the

generatedoverride

modifier.

generatedoverride

This

modifier

instructs

the

load

utility

to

accept

user-supplied

data

for

all

generated

columns

in

the

table

(contrary

to

the

normal

rules

for

these

types

of

columns).

This

is

useful

when

migrating

data

from

another

database

system,

or

when

loading

a

table

from

data

that

was

recovered

using

the

RECOVER

DROPPED

TABLE

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

a

non-nullable

generated

column

will

be

rejected

(SQL3116W).

Note:

When

this

modifier

is

used,

the

table

will

be

placed

in

CHECK

PENDING

state.

To

take

the

table

out

of

CHECK

PENDING

state

without

verifying

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

GENERATED

COLUMN

IMMEDIATED

UNCHECKED

To

take

the

table

out

of

CHECK

PENDING

state

and

force

verification

of

the

user-supplied

values,

issue

the

following

command

after

the

load

operation:

SET

INTEGRITY

FOR

<

table-name

>

IMMEDIATE

CHECKED.

This

modifier

cannot

be

used

with

either

the

generatedmissing

or

the

generatedignore

modifier.

identityignore

This

modifier

informs

the

load

utility

that

data

for

the

identity

column

is

present

in

the

data

file

but

should

be

ignored.

This

results

in

all

identity

values

being

generated

by

the

utility.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

means

that

for

GENERATED

ALWAYS

columns,

no

rows

will

be

rejected.

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityoverride

modifier.

identitymissing

If

this

modifier

is

specified,

the

utility

assumes

that

the

input

data

file

contains

no

data

for

the

identity

column

(not

even

NULLs),

and

will

therefore

generate

a

value

for

each

row.

The

behavior

will

be

the

same

for

both

GENERATED

ALWAYS

and

GENERATED

BY

DEFAULT

identity

columns.

This

modifier

cannot

be

used

with

either

the

identityignore

or

the

identityoverride

modifier.

db2LoadQuery

-

Load

Query

Chapter

3.

Load

149

Table

10.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

identityoverride

This

modifier

should

be

used

only

when

an

identity

column

defined

as

GENERATED

ALWAYS

is

present

in

the

table

to

be

loaded.

It

instructs

the

utility

to

accept

explicit,

non-NULL

data

for

such

a

column

(contrary

to

the

normal

rules

for

these

types

of

identity

columns).

This

is

useful

when

migrating

data

from

another

database

system

when

the

table

must

be

defined

as

GENERATED

ALWAYS,

or

when

loading

a

table

from

data

that

was

recovered

using

the

DROPPED

TABLE

RECOVERY

option

on

the

ROLLFORWARD

DATABASE

command.

When

this

modifier

is

used,

any

rows

with

no

data

or

NULL

data

for

the

identity

column

will

be

rejected

(SQL3116W).

This

modifier

cannot

be

used

with

either

the

identitymissing

or

the

identityignore

modifier.

Note:

The

load

utility

will

not

attempt

to

maintain

or

verify

the

uniqueness

of

values

in

the

table’s

identity

column

when

this

option

is

used.

indexfreespace=x

x

is

an

integer

between

0

and

99

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

index

page

that

is

to

be

left

as

free

space

when

load

rebuilds

the

index.

Load

with

INDEXING

MODE

INCREMENTAL

ignores

this

option.

The

first

entry

in

a

page

is

added

without

restriction;

subsequent

entries

are

added

the

percent

free

space

threshold

can

be

maintained.

The

default

value

is

the

one

used

at

CREATE

INDEX

time.

This

value

takes

precedence

over

the

PCTFREE

value

specified

in

the

CREATE

INDEX

statement;

the

registry

variable

DB2

INDEX

FREE

takes

precedence

over

indexfreespace.

The

indexfreespace

option

affects

index

leaf

pages

only.

lobsinfile

lob-path

specifies

the

path

to

the

files

containing

LOB

data.

The

ASC,

DEL,

or

IXF

load

input

files

contain

the

names

of

the

files

having

LOB

data

in

the

LOB

column.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

The

LOBS

FROM

clause

specifies

where

the

LOB

files

are

located

when

the

“lobsinfile”

modifier

is

used.

The

LOBS

FROM

clause

means

nothing

outside

the

context

of

the

“lobsinfile”

modifier.

The

LOBS

FROM

clause

conveys

to

the

LOAD

utility

the

list

of

paths

to

search

for

the

LOB

files

while

loading

the

data.

Each

path

contains

at

least

one

file

that

contains

at

least

one

LOB

pointed

to

by

a

Lob

Location

Specifier

(LLS)

in

the

data

file.

The

LLS

is

a

string

representation

of

the

location

of

a

LOB

in

a

file

stored

in

the

LOB

file

path.

The

format

of

an

LLS

is

filename.ext.nnn.mmm/,

where

filename.ext

is

the

name

of

the

file

that

contains

the

LOB,

nnn

is

the

offset

in

bytes

of

the

LOB

within

the

file,

and

mmm

is

the

length

of

the

LOB

in

bytes.

For

example,

if

the

string

db2exp.001.123.456/

is

stored

in

the

data

file,

the

LOB

is

located

at

offset

123

in

the

file

db2exp.001,

and

is

456

bytes

long.

To

indicate

a

null

LOB

,

enter

the

size

as

-1.

If

the

size

is

specified

as

0,

it

is

treated

as

a

0

length

LOB.

For

null

LOBS

with

length

of

-1,

the

offset

and

the

file

name

are

ignored.

For

example,

the

LLS

of

a

null

LOB

might

be

db2exp.001.7.-1/.

noheader

Skips

the

header

verification

code

(applicable

only

to

load

operations

into

tables

that

reside

in

a

single-partition

database

partition

group).

The

AutoLoader

utility

writes

a

header

to

each

file

contributing

data

to

a

table

in

a

multiple-partition

database

partition

group.

If

the

default

MPP

load

(mode

PARTITION_AND_LOAD)

is

used

against

a

table

residing

in

a

single-partition

database

partition

group,

the

file

is

not

expected

to

have

a

header.

Thus

the

noheader

modifier

is

not

needed.

If

the

LOAD_ONLY

mode

is

used,

the

file

is

expected

to

have

a

header.

The

only

circumstance

in

which

you

should

need

to

use

the

noheader

modifier

is

if

you

wanted

to

perform

LOAD_ONLY

operation

using

a

file

that

does

not

have

a

header.

norowwarnings

Suppresses

all

warnings

about

rejected

rows.

db2LoadQuery

-

Load

Query

150

Data

Movement

Utilities

|
|
|
|

Table

10.

Valid

file

type

modifiers

for

load:

All

file

formats

(continued)

Modifier

Description

pagefreespace=x

x

is

an

integer

between

0

and

100

inclusive.

The

value

is

interpreted

as

the

percentage

of

each

data

page

that

is

to

be

left

as

free

space.

If

the

specified

value

is

invalid

because

of

the

minimum

row

size,

(for

example,

a

row

that

is

at

least

3

000

bytes

long,

and

an

x

value

of

50),

the

row

will

be

placed

on

a

new

page.

If

a

value

of

100

is

specified,

each

row

will

reside

on

a

new

page.

Note:

The

PCTFREE

value

of

a

table

determines

the

amount

of

free

space

designated

per

page.

If

a

pagefreespace

value

on

the

load

operation

or

a

PCTFREE

value

on

a

table

have

not

been

set,

the

utility

will

fill

up

as

much

space

as

possible

on

each

page.

The

value

set

by

pagefreespace

overrides

the

PCTFREE

value

specified

for

the

table.

subtableconvert

Valid

only

when

loading

into

a

single

sub-table.

Typical

usage

is

to

export

data

from

a

regular

table,

and

then

to

invoke

a

load

operation

(using

this

modifier)

to

convert

the

data

into

a

single

sub-table.

totalfreespace=x

x

is

an

integer

greater

than

or

equal

to

0

.

The

value

is

interpreted

as

the

percentage

of

the

total

pages

in

the

table

that

is

to

be

appended

to

the

end

of

the

table

as

free

space.

For

example,

if

x

is

20,

and

the

table

has

100

data

pages

after

the

data

has

been

loaded,

20

additional

empty

pages

will

be

appended.

The

total

number

of

data

pages

for

the

table

will

be

120.

The

data

pages

total

does

not

factor

in

the

number

of

index

pages

in

the

table.

This

option

does

not

affect

the

index

object.

Note:

If

two

loads

are

done

with

this

option

specified,

the

second

load

will

not

reuse

the

extra

space

appended

to

the

end

by

the

first

load.

usedefaults

If

a

source

column

for

a

target

table

column

has

been

specified,

but

it

contains

no

data

for

one

or

more

row

instances,

default

values

are

loaded.

Examples

of

missing

data

are:

v

For

DEL

files:

",,"

is

specified

for

the

column

v

For

DEL/ASC/WSF

files:

A

row

that

does

not

have

enough

columns,

or

is

not

long

enough

for

the

original

specification.

Without

this

option,

if

a

source

column

contains

no

data

for

a

row

instance,

one

of

the

following

occurs:

v

If

the

column

is

nullable,

a

NULL

is

loaded

v

If

the

column

is

not

nullable,

the

utility

rejects

the

row.

Table

11.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

Modifier

Description

codepage=x

x

is

an

ASCII

character

string.

The

value

is

interpreted

as

the

code

page

of

the

data

in

the

input

data

set.

Converts

character

data

(and

numeric

data

specified

in

characters)

from

this

code

page

to

the

database

code

page

during

the

load

operation.

The

following

rules

apply:

v

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

v

For

DEL

data

specified

in

an

EBCDIC

code

page,

the

delimiters

may

not

coincide

with

the

shift-in

and

shift-out

DBCS

characters.

v

nullindchar

must

specify

symbols

included

in

the

standard

ASCII

set

between

code

points

x20

and

x7F,

inclusive.

This

refers

to

ASCII

symbols

and

code

points.

EBCDIC

data

can

use

the

corresponding

symbols,

even

though

the

code

points

will

be

different.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

filetype.

db2LoadQuery

-

Load

Query

Chapter

3.

Load

151

Table

11.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

dateformat=″x″

x

is

the

format

of

the

date

in

the

source

file.1

Valid

date

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

1

-

12;

mutually

exclusive

with

M)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

A

default

value

of

1

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

date

formats

are:

"D-M-YYYY"

"MM.DD.YYYY"

"YYYYDDD"

dumpfile

=

x

x

is

the

fully

qualified

(according

to

the

server

database

partition)

name

of

an

exception

file

to

which

rejected

rows

are

written.

A

maximum

of

32

KB

of

data

is

written

per

record.

Following

is

an

example

that

shows

how

to

specify

a

dump

file:

db2

load

from

data

of

del

modified

by

dumpfile

=

/u/user/filename

insert

into

table_name

The

file

will

be

created

and

owned

by

the

instance

owner.

To

override

the

default

file

permissions,

use

the

dumpfileaccessall

file

type

modifier.

Notes:

1.

In

a

partitioned

database

environment,

the

path

should

be

local

to

the

loading

database

partition,

so

that

concurrently

running

load

operations

do

not

attempt

to

write

to

the

same

file.

2.

The

contents

of

the

file

are

written

to

disk

in

an

asynchronous

buffered

mode.

In

the

event

of

a

failed

or

an

interrupted

load

operation,

the

number

of

records

committed

to

disk

cannot

be

known

with

certainty,

and

consistency

cannot

be

guaranteed

after

a

LOAD

RESTART.

The

file

can

only

be

assumed

to

be

complete

for

a

load

operation

that

starts

and

completes

in

a

single

pass.

3.

This

modifier

does

not

support

file

names

with

multiple

file

extensions.

For

example,

dumpfile

=

/home/svtdbm6/DUMP.FILE

is

acceptable

to

the

load

utility,

but

dumpfile

=

/home/svtdbm6/DUMP.LOAD.FILE

is

not.

dumpfileaccessall

=

x

Grants

read

access

to

’OTHERS’

when

a

dump

file

is

created.

This

file

type

modifier

is

only

valid

when:

1.

it

is

used

in

conjunction

with

dumpfile

file

type

modifier

2.

the

user

has

SELECT

privilege

on

the

load

target

table

3.

it

is

issued

on

a

DB2

server

database

partition

that

resides

on

a

UNIX-based

operating

system

db2LoadQuery

-

Load

Query

152

Data

Movement

Utilities

|
|

||

|

|

|

|
|

Table

11.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

fastparse

Reduced

syntax

checking

is

done

on

user-supplied

column

values,

and

performance

is

enhanced.

Tables

loaded

under

this

option

are

guaranteed

to

be

architecturally

correct,

and

the

utility

is

guaranteed

to

perform

sufficient

data

checking

to

prevent

a

segmentation

violation

or

trap.

Data

that

is

in

correct

form

will

be

loaded

correctly.

For

example,

if

a

value

of

123qwr4

were

to

be

encountered

as

a

field

entry

for

an

integer

column

in

an

ASC

file,

the

load

utility

would

ordinarily

flag

a

syntax

error,

since

the

value

does

not

represent

a

valid

number.

With

fastparse,

a

syntax

error

is

not

detected,

and

an

arbitrary

number

is

loaded

into

the

integer

field.

Care

must

be

taken

to

use

this

modifier

with

clean

data

only.

Performance

improvements

using

this

option

with

ASCII

data

can

be

quite

substantial.

This

option

is

not

supported

in

conjunction

with

the

CURSOR

or

IXF

file

types.

implieddecimal

The

location

of

an

implied

decimal

point

is

determined

by

the

column

definition;

it

is

no

longer

assumed

to

be

at

the

end

of

the

value.

For

example,

the

value

12345

is

loaded

into

a

DECIMAL(8,2)

column

as

123.45,

not

12345.00.

This

modifier

cannot

be

used

with

the

packeddecimal

modifier.

timeformat=″x″

x

is

the

format

of

the

time

in

the

source

file.1

Valid

time

elements

are:

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

0

is

assigned

for

each

element

that

is

not

specified.

Some

examples

of

time

formats

are:

"HH:MM:SS"

"HH.MM

TT"

"SSSSS"

db2LoadQuery

-

Load

Query

Chapter

3.

Load

153

4

Table

11.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

timestampformat=″x″

x

is

the

format

of

the

time

stamp

in

the

source

file.1

Valid

time

stamp

elements

are:

YYYY

-

Year

(four

digits

ranging

from

0000

-

9999)

M

-

Month

(one

or

two

digits

ranging

from

1

-

12)

MM

-

Month

(two

digits

ranging

from

01

-

12;

mutually

exclusive

with

M

and

MMM)

MMM

-

Month

(three-letter

case-insensitive

abbreviation

for

the

month

name;

mutually

exclusive

with

M

and

MM)

D

-

Day

(one

or

two

digits

ranging

from

1

-

31)

DD

-

Day

(two

digits

ranging

from

1

-

31;

mutually

exclusive

with

D)

DDD

-

Day

of

the

year

(three

digits

ranging

from

001

-

366;

mutually

exclusive

with

other

day

or

month

elements)

H

-

Hour

(one

or

two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system)

HH

-

Hour

(two

digits

ranging

from

0

-

12

for

a

12

hour

system,

and

0

-

24

for

a

24

hour

system;

mutually

exclusive

with

H)

M

-

Minute

(one

or

two

digits

ranging

from

0

-

59)

MM

-

Minute

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

M,

minute)

S

-

Second

(one

or

two

digits

ranging

from

0

-

59)

SS

-

Second

(two

digits

ranging

from

0

-

59;

mutually

exclusive

with

S)

SSSSS

-

Second

of

the

day

after

midnight

(5

digits

ranging

from

00000

-

86399;

mutually

exclusive

with

other

time

elements)

UUUUUU

-

Microsecond

(6

digits

ranging

from

000000

-

999999;

mutually

exclusive

with

all

other

microsecond

elements)

UUUUU

-

Microsecond

(5

digits

ranging

from

00000

-

99999,

maps

to

range

from

000000

-

999990;

mutually

exclusive

with

all

other

microseond

elements)

UUUU

-

Microsecond

(4

digits

ranging

from

0000

-

9999,

maps

to

range

from

000000

-

999900;

mutually

exclusive

with

all

other

microseond

elements)

UUU

-

Microsecond

(3

digits

ranging

from

000

-

999,

maps

to

range

from

000000

-

999000;

mutually

exclusive

with

all

other

microseond

elements)

UU

-

Microsecond

(2

digits

ranging

from

00

-

99,

maps

to

range

from

000000

-

990000;

mutually

exclusive

with

all

other

microseond

elements)

U

-

Microsecond

(1

digit

ranging

from

0

-

9,

maps

to

range

from

000000

-

900000;

mutually

exclusive

with

all

other

microseond

elements)

TT

-

Meridian

indicator

(AM

or

PM)

A

default

value

of

1

is

assigned

for

unspecified

YYYY,

M,

MM,

D,

DD,

or

DDD

elements.

A

default

value

of

’Jan’

is

assigned

to

an

unspecified

MMM

element.

A

default

value

of

0

is

assigned

for

all

other

unspecified

elements.

Following

is

an

example

of

a

time

stamp

format:

"YYYY/MM/DD

HH:MM:SS.UUUUUU"

The

valid

values

for

the

MMM

element

include:

’jan’,

’feb’,

’mar’,

’apr’,

’may’,

’jun’,

’jul’,

’aug’,

’sep’,

’oct’,

’nov’

and

’dec’.

These

values

are

case

insensitive.

The

following

example

illustrates

how

to

import

data

containing

user

defined

date

and

time

formats

into

a

table

called

schedule:

db2

import

from

delfile2

of

del

modified

by

timestampformat="yyyy.mm.dd

hh:mm

tt"

insert

into

schedule

noeofchar

The

optional

end-of-file

character

x’1A’

is

not

recognized

as

the

end

of

file.

Processing

continues

as

if

it

were

a

normal

character.

db2LoadQuery

-

Load

Query

154

Data

Movement

Utilities

2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2

2

2
2

2
2

2
2
2

Table

11.

Valid

file

type

modifiers

for

load:

ASCII

file

formats

(ASC/DEL)

(continued)

Modifier

Description

usegraphiccodepage

If

usegraphiccodepage

is

given,

the

assumption

is

made

that

data

being

loaded

into

graphic

or

double-byte

character

large

object

(DBCLOB)

data

field(s)

is

in

the

graphic

code

page.

The

rest

of

the

data

is

assumed

to

be

in

the

character

code

page.

The

graphic

codepage

is

associated

with

the

character

code

page.

LOAD

determines

the

character

code

page

through

either

the

codepage

modifier,

if

it

is

specified,

or

through

the

code

page

of

the

database

if

the

codepage

modifier

is

not

specified.

This

modifier

should

be

used

in

conjunction

with

the

delimited

data

file

generated

by

drop

table

recovery

only

if

the

table

being

recovered

has

graphic

data.

Restrictions

The

usegraphiccodepage

modifier

MUST

NOT

be

specified

with

DEL

or

ASC

files

created

by

the

EXPORT

utility,

as

these

files

contain

data

encoded

in

only

one

code

page.

The

usegraphiccodepage

modifier

is

also

ignored

by

the

double-byte

character

large

objects

(DBCLOBs)

in

files.

Table

12.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

Modifier

Description

binarynumerics

Numeric

(but

not

DECIMAL)

data

must

be

in

binary

form,

not

the

character

representation.

This

avoids

costly

conversions.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

The

following

rules

apply:

v

No

conversion

between

data

types

is

performed,

with

the

exception

of

BIGINT,

INTEGER,

and

SMALLINT.

v

Data

lengths

must

match

their

target

column

definitions.

v

FLOATs

must

be

in

IEEE

Floating

Point

format.

v

Binary

data

in

the

load

source

file

is

assumed

to

be

big-endian,

regardless

of

the

platform

on

which

the

load

operation

is

running.

Note:

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

nullindchar=x

x

is

a

single

character.

Changes

the

character

denoting

a

NULL

value

to

x.

The

default

value

of

x

is

Y.2

This

modifier

is

case

sensitive

for

EBCDIC

data

files,

except

when

the

character

is

an

English

letter.

For

example,

if

the

NULL

indicator

character

is

specified

to

be

the

letter

N,

then

n

is

also

recognized

as

a

NULL

indicator.

db2LoadQuery

-

Load

Query

Chapter

3.

Load

155

||
|
|
|
|
|
|

|
|
|

|

|
|
|
|

Table

12.

Valid

file

type

modifiers

for

load:

ASC

file

formats

(Non-delimited

ASCII)

(continued)

Modifier

Description

packeddecimal

Loads

packed-decimal

data

directly,

since

the

binarynumerics

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

reclen

option.

The

noeofchar

option

is

assumed.

Supported

values

for

the

sign

nibble

are:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

NULLs

cannot

be

present

in

the

data

for

columns

affected

by

this

modifier.

Blanks

(normally

interpreted

as

NULL)

are

interpreted

as

a

binary

value

when

this

modifier

is

used.

Regardless

of

the

server

platform,

the

byte

order

of

binary

data

in

the

load

source

file

is

assumed

to

be

big-endian;

that

is,

when

using

this

modifier

on

Windows

operating

systems,

the

byte

order

must

not

be

reversed.

This

modifier

cannot

be

used

with

the

implieddecimal

modifier.

reclen=x

x

is

an

integer

with

a

maximum

value

of

32

767.

x

characters

are

read

for

each

row,

and

a

new-line

character

is

not

used

to

indicate

the

end

of

the

row.

striptblanks

Truncates

any

trailing

blank

spaces

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

blank

spaces

are

kept.

This

option

cannot

be

specified

together

with

striptnulls.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

t

option,

which

is

supported

for

back-level

compatibility

only.

striptnulls

Truncates

any

trailing

NULLs

(0x00

characters)

when

loading

data

into

a

variable-length

field.

If

this

option

is

not

specified,

NULLs

are

kept.

This

option

cannot

be

specified

together

with

striptblanks.

These

are

mutually

exclusive

options.

Note:

This

option

replaces

the

obsolete

padwithzero

option,

which

is

supported

for

back-level

compatibility

only.

zoneddecimal

Loads

zoned

decimal

data,

since

the

BINARYNUMERICS

modifier

does

not

include

the

DECIMAL

field

type.

This

option

is

supported

only

with

positional

ASC,

using

fixed

length

records

specified

by

the

RECLEN

option.

The

NOEOFCHAR

option

is

assumed.

Half-byte

sign

values

can

be

one

of

the

following:

+

=

0xC

0xA

0xE

0xF

-

=

0xD

0xB

Supported

values

for

digits

are

0x0

to

0x9.

Supported

values

for

zones

are

0x3

and

0xF.

db2LoadQuery

-

Load

Query

156

Data

Movement

Utilities

Table

13.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

Modifier

Description

chardelx

x

is

a

single

character

string

delimiter.

The

default

value

is

a

double

quotation

mark

(").

The

specified

character

is

used

in

place

of

double

quotation

marks

to

enclose

a

character

string.23

If

you

wish

to

explicitly

specify

the

double

quotation

mark(″)

as

the

character

string

delimiter,

you

should

specify

it

as

follows:

modified

by

chardel""

The

single

quotation

mark

(')

can

also

be

specified

as

a

character

string

delimiter

as

follows:

modified

by

chardel''

coldelx

x

is

a

single

character

column

delimiter.

The

default

value

is

a

comma

(,).

The

specified

character

is

used

in

place

of

a

comma

to

signal

the

end

of

a

column.23

datesiso

Date

format.

Causes

all

date

data

values

to

be

loaded

in

ISO

format.

decplusblank

Plus

sign

character.

Causes

positive

decimal

values

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

The

default

action

is

to

prefix

positive

decimal

values

with

a

plus

sign.

decptx

x

is

a

single

character

substitute

for

the

period

as

a

decimal

point

character.

The

default

value

is

a

period

(.).

The

specified

character

is

used

in

place

of

a

period

as

a

decimal

point

character.23

delprioritychar

The

current

default

priority

for

delimiters

is:

record

delimiter,

character

delimiter,

column

delimiter.

This

modifier

protects

existing

applications

that

depend

on

the

older

priority

by

reverting

the

delimiter

priorities

to:

character

delimiter,

record

delimiter,

column

delimiter.

Syntax:

db2

load

...

modified

by

delprioritychar

...

For

example,

given

the

following

DEL

data

file:

"Smith,

Joshua",4000,34.98<row

delimiter>

"Vincent,<row

delimiter>,

is

a

manager",

...

...

4005,44.37<row

delimiter>

With

the

delprioritychar

modifier

specified,

there

will

be

only

two

rows

in

this

data

file.

The

second

<row

delimiter>

will

be

interpreted

as

part

of

the

first

data

column

of

the

second

row,

while

the

first

and

the

third

<row

delimiter>

are

interpreted

as

actual

record

delimiters.

If

this

modifier

is

not

specified,

there

will

be

three

rows

in

this

data

file,

each

delimited

by

a

<row

delimiter>.

dldelx

x

is

a

single

character

DATALINK

delimiter.

The

default

value

is

a

semicolon

(;).

The

specified

character

is

used

in

place

of

a

semicolon

as

the

inter-field

separator

for

a

DATALINK

value.

It

is

needed

because

a

DATALINK

value

may

have

more

than

one

sub-value.

234

Note:

x

must

not

be

the

same

character

specified

as

the

row,

column,

or

character

string

delimiter.

keepblanks

Preserves

the

leading

and

trailing

blanks

in

each

field

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB.

Without

this

option,

all

leading

and

tailing

blanks

that

are

not

inside

character

delimiters

are

removed,

and

a

NULL

is

inserted

into

the

table

for

all

blank

fields.

The

following

example

illustrates

how

to

load

data

into

a

table

called

TABLE1,

while

preserving

all

leading

and

trailing

spaces

in

the

data

file:

db2

load

from

delfile3

of

del

modified

by

keepblanks

insert

into

table1

db2LoadQuery

-

Load

Query

Chapter

3.

Load

157

Table

13.

Valid

file

type

modifiers

for

load:

DEL

file

formats

(Delimited

ASCII)

(continued)

Modifier

Description

nochardel

The

load

utility

will

assume

all

bytes

found

between

the

column

delimiters

to

be

part

of

the

column’s

data.

Character

delimiters

will

be

parsed

as

part

of

column

data.

This

option

should

not

be

specified

if

the

data

was

exported

using

DB2

(unless

nochardel

was

specified

at

export

time).

It

is

provided

to

support

vendor

data

files

that

do

not

have

character

delimiters.

Improper

usage

may

result

in

data

loss

or

corruption.

This

option

cannot

be

specified

with

chardelx,

delprioritychar

or

nodoubledel.

These

are

mutually

exclusive

options.

nodoubledel

Suppresses

recognition

of

double

character

delimiters.

Table

14.

Valid

file

type

modifiers

for

load:

IXF

file

format

Modifier

Description

forcein

Directs

the

utility

to

accept

data

despite

code

page

mismatches,

and

to

suppress

translation

between

code

pages.

Fixed

length

target

fields

are

checked

to

verify

that

they

are

large

enough

for

the

data.

If

nochecklengths

is

specified,

no

checking

is

done,

and

an

attempt

is

made

to

load

each

row.

nochecklengths

If

nochecklengths

is

specified,

an

attempt

is

made

to

load

each

row,

even

if

the

source

data

has

a

column

definition

that

exceeds

the

size

of

the

target

table

column.

Such

rows

can

be

successfully

loaded

if

code

page

conversion

causes

the

source

data

to

shrink;

for

example,

4-byte

EUC

data

in

the

source

could

shrink

to

2-byte

DBCS

data

in

the

target,

and

require

half

the

space.

This

option

is

particularly

useful

if

it

is

known

that

the

source

data

will

fit

in

all

cases

despite

mismatched

column

definitions.

Notes:

1.

Double

quotation

marks

around

the

date

format

string

are

mandatory.

Field

separators

cannot

contain

any

of

the

following:

a-z,

A-Z,

and

0-9.

The

field

separator

should

not

be

the

same

as

the

character

delimiter

or

field

delimiter

in

the

DEL

file

format.

A

field

separator

is

optional

if

the

start

and

end

positions

of

an

element

are

unambiguous.

Ambiguity

can

exist

if

(depending

on

the

modifier)

elements

such

as

D,

H,

M,

or

S

are

used,

because

of

the

variable

length

of

the

entries.

For

time

stamp

formats,

care

must

be

taken

to

avoid

ambiguity

between

the

month

and

the

minute

descriptors,

since

they

both

use

the

letter

M.

A

month

field

must

be

adjacent

to

other

date

fields.

A

minute

field

must

be

adjacent

to

other

time

fields.

Following

are

some

ambiguous

time

stamp

formats:

"M"

(could

be

a

month,

or

a

minute)

"M:M"

(Which

is

which?)

"M:YYYY:M"

(Both

are

interpreted

as

month.)

"S:M:YYYY"

(adjacent

to

both

a

time

value

and

a

date

value)

In

ambiguous

cases,

the

utility

will

report

an

error

message,

and

the

operation

will

fail.

Following

are

some

unambiguous

time

stamp

formats:

"M:YYYY"

(Month)

"S:M"

(Minute)

"M:YYYY:S:M"

(Month....Minute)

"M:H:YYYY:M:D"

(Minute....Month)

Some

characters,

such

as

double

quotation

marks

and

back

slashes,

must

be

preceded

by

an

escape

character

(for

example,

\).

db2LoadQuery

-

Load

Query

158

Data

Movement

Utilities

22
2
2
2
2
2

2
2

2.

The

character

must

be

specified

in

the

code

page

of

the

source

data.

The

character

code

point

(instead

of

the

character

symbol),

can

be

specified

using

the

syntax

xJJ

or

0xJJ,

where

JJ

is

the

hexadecimal

representation

of

the

code

point.

For

example,

to

specify

the

#

character

as

a

column

delimiter,

use

one

of

the

following:

...

modified

by

coldel#

...

...

modified

by

coldel0x23

...

...

modified

by

coldelX23

...

3.

Delimiter

restrictions

for

moving

data

lists

restrictions

that

apply

to

the

characters

that

can

be

used

as

delimiter

overrides.

4.

Even

if

the

DATALINK

delimiter

character

is

a

valid

character

within

the

URL

syntax,

it

will

lose

its

special

meaning

within

the

scope

of

the

load

operation.

5.

The

load

utility

does

not

issue

a

warning

if

an

attempt

is

made

to

use

unsupported

file

types

with

the

MODIFIED

BY

option.

If

this

is

attempted,

the

load

operation

fails,

and

an

error

code

is

returned.

Table

15.

LOAD

behavior

when

using

codepage

and

usegraphiccodepage

codepage=N

usegraphiccodepage

LOAD

behavior

Absent

Absent

All

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

not

the

application

code

page,

even

if

the

CLIENT

option

is

specified.

Present

Absent

All

data

in

the

file

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Absent

Present

Character

data

in

the

file

is

assumed

to

be

in

the

database

code

page,

even

if

the

CLIENT

option

is

specified.

Graphic

data

is

assumed

to

be

in

the

code

page

of

the

database

graphic

data,

even

if

the

CLIENT

option

is

specified.

If

the

database

code

page

is

single-byte,

then

all

data

is

assumed

to

be

in

the

database

code

page.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

a

single-byte

database.

Present

Present

Character

data

is

assumed

to

be

in

code

page

N.

Graphic

data

is

assumed

to

be

in

the

graphic

code

page

of

N.

If

N

is

a

single-byte

or

double-byte

code

page,

then

all

data

is

assumed

to

be

in

code

page

N.

Warning:

Graphic

data

will

be

corrupted

when

loaded

into

the

database

if

N

is

a

single-byte

code

page.

Related

reference:

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

v

“Delimiter

restrictions

for

moving

data”

on

page

217

db2LoadQuery

-

Load

Query

Chapter

3.

Load

159

||

|||

|||
|
|

|||

|
|

|||
|
|
|
|

|
|

|
|

|||
|

|
|

|
|
|

Load

exception

table

The

exception

table

is

a

user-created

table

that

reflects

the

definition

of

the

table

being

loaded,

and

includes

some

additional

columns.

It

is

specified

by

the

FOR

EXCEPTION

clause

on

the

LOAD

command.

An

exception

table

might

not

contain

an

identity

column

or

any

other

type

of

generated

column.

If

an

identity

column

is

present

in

the

primary

table,

the

corresponding

column

in

the

exception

table

should

only

contain

the

column’s

type,

length,

and

nullability

attributes.

The

exception

table

is

used

to

store

copies

of

rows

that

violate

unique

index

rules;

the

utility

will

not

check

for

constraints

or

foreign

key

violations

other

than

violations

of

uniqueness.

DATALINK

exceptions

are

also

captured

in

the

exception

table.

A

load

exception

table

can

be

assigned

to

the

table

space

where

the

table

being

loaded

resides,

or

to

another

table

space.

In

either

case,

the

load

exception

table

should

be

assigned

to

the

same

database

partition

group

and

have

the

same

partitioning

key

as

the

table

being

loaded.

A

unique

key

is

a

key

for

which

no

two

values

are

equal.

The

mechanism

used

to

enforce

this

constraint

is

called

a

unique

index.

A

primary

key

is

a

special

case

of

a

unique

key.

A

table

cannot

have

more

than

one

primary

key.

Note:

Any

rows

rejected

because

of

invalid

data

before

the

building

of

an

index

are

not

inserted

into

the

exception

table.

Rows

are

appended

to

existing

information

in

the

exception

table;

this

can

include

invalid

rows

from

previous

load

operations.

If

you

want

only

the

invalid

rows

from

the

current

load

operation,

you

must

remove

the

existing

rows

before

invoking

the

utility.

The

exception

table

used

with

the

load

utility

is

identical

to

the

exception

tables

used

by

the

SET

INTEGRITY

statement.

An

exception

table

should

be

used

when

loading

data

which

has

a

unique

index

and

the

possibility

of

duplicate

records.

If

an

exception

table

is

not

specified,

and

duplicate

records

are

found,

the

load

operation

continues,

and

only

a

warning

message

is

issued

about

the

deleted

duplicate

records.

The

records

themselves

are

not

logged.

After

the

load

operation

completes,

information

in

the

exception

table

can

be

used

to

correct

data

that

is

in

error.

The

corrected

data

can

then

be

inserted

into

the

table.

Related

reference:

v

“Exception

tables”

in

the

SQL

Reference,

Volume

1

Load

dump

file

Specifying

the

dumpfile

modifier

tells

the

load

utility

the

name

and

the

location

of

the

exception

file

to

which

rejected

rows

are

written.

When

running

in

a

partitioned

database

environment,

rows

can

be

rejected

either

by

the

Partitioning

Subagents

or

by

the

Loading

Subagents.

Because

of

this,

the

dumpfile

name

is

given

an

extension

that

identifies

the

subagent

type,

as

well

as

the

partition

number

where

the

exceptions

were

generated.

For

example,

if

you

specified

the

following

dumpfile

value:

160

Data

Movement

Utilities

|
|
|
|
|
|
|

dumpfile

=

"/u/usrname/dumpit"

Then

rows

that

were

rejected

by

the

Load

Subagent

on

partition

five

will

be

stored

in

a

file

named

/u/usrname/dumpit.load.005,

rows

that

were

rejected

by

the

Load

Subagent

on

partition

two

will

be

stored

in

a

file

named

/u/usrname/dumpit.load.002,

and

rows

that

were

rejected

by

the

Partitioning

Subagent

on

partition

two

will

be

stored

in

a

file

named

/u/usrname/dumpit.part.002,

and

so

on.

For

rows

rejected

by

the

Load

Subagent,

if

the

row

is

less

than

32

768

bytes

in

length,

the

record

is

copied

to

the

dump

file

in

its

entirety;

if

it

is

longer,

a

row

fragment

(including

the

final

bytes

of

the

record)

is

written

to

the

file.

For

rows

rejected

by

the

Partitioning

Subagent,

the

entire

row

is

copied

to

the

dump

file

regardless

of

the

record

size.

Related

reference:

v

“LOAD”

on

page

100

Load

temporary

files

DB2®

creates

temporary

binary

files

during

load

processing.

These

files

are

used

for

load

crash

recovery,

load

terminate

operations,

warning

and

error

messages,

and

runtime

control

data.

The

temporary

files

are

removed

when

the

load

operation

completes

without

error.

The

temporary

files

are

written

to

a

path

that

can

be

specified

through

the

temp-pathname

parameter

of

the

LOAD

command,

or

in

the

piTempFilesPath

parameter

of

the

db2Load

API.

The

default

path

is

a

subdirectory

of

the

database

directory.

The

temporary

files

path

resides

on

the

server

machine

and

is

accessed

by

the

DB2

instance

exclusively.

Therefore,

it

is

imperative

that

any

path

name

qualification

given

to

the

temp-pathname

parameter

reflects

the

directory

structure

of

the

server,

not

the

client,

and

that

the

DB2

instance

owner

has

read

and

write

permission

on

the

path.

Note:

In

an

MPP

system,

the

temporary

files

path

should

reside

on

a

local

disk,

not

on

an

NFS

mount.

If

the

path

is

on

an

NFS

mount,

there

will

be

significant

performance

degradation

during

the

load

operation.

Attention:

The

temporary

files

written

to

this

path

must

not

be

tampered

with

under

any

circumstances.

Doing

so

will

cause

the

load

operation

to

malfunction,

and

will

place

your

database

in

jeopardy.

Related

reference:

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

Chapter

3.

Load

161

|

|
|
|
|
|
|

|
|
|

|
|

Load

utility

log

records

The

utility

manager

produces

log

records

associated

with

a

number

of

DB2®

utilities,

including

the

load

utility.

The

following

log

records

mark

the

beginning

or

end

of

a

specific

activity

during

a

load

operation:

v

Load

Start.

This

log

record

is

associated

with

the

beginning

of

a

load

operation.

v

Load

Delete

Start.

This

log

record

is

associated

with

the

beginning

of

the

delete

phase

in

a

load

operation.

The

delete

phase

is

started

only

if

there

are

duplicate

primary

key

values.

During

the

delete

phase,

each

delete

operation

on

a

table

record,

or

an

index

key,

is

logged.

v

Load

Delete

End.

This

log

record

is

associated

with

the

end

of

the

delete

phase

in

a

load

operation.

This

delete

phase

will

be

repeated

during

the

rollforward

recovery

of

a

successful

load

operation.

v

Load

Pending

List.

This

log

record

is

written

when

a

load

transaction

commits

and

is

used

instead

of

a

normal

transaction

commit

log

record.

The

following

list

outlines

the

log

records

that

the

load

utility

will

create

depending

on

the

size

of

the

input

data:

v

Two

log

records

will

be

created

for

every

table

space

extent

allocated

or

deleted

by

the

utility

in

a

DMS

table

space.

v

One

log

record

will

be

created

for

every

chunk

of

identity

values

consumed.

v

Log

records

will

be

created

for

every

data

row

or

index

key

deleted

during

the

delete

phase

of

a

load

operation.

v

Log

records

will

be

created

that

maintain

the

integrity

of

the

index

tree

when

performing

a

load

operation

with

the

ALLOW

READ

ACCESS

and

INDEXING

MODE

INCREMENTAL

options

specified.

The

number

of

records

logged

is

considerably

less

than

a

fully

logged

insertion

into

the

index.

Related

reference:

v

“LOAD”

on

page

100

v

“db2Load

-

Load”

on

page

123

Table

locking,

table

states

and

table

space

states

In

most

cases,

the

load

utility

uses

table

level

locking

to

restrict

access

to

tables.

The

load

utility

does

not

quiesce

the

table

spaces

involved

in

the

load

operation,

and

uses

table

space

states

only

for

load

operations

with

the

COPY

NO

option

specified.

The

level

of

locking

depends

on

whether

or

not

the

load

operation

allows

read

access.

A

load

operation

in

ALLOW

NO

ACCESS

mode

will

use

an

exclusive

lock

(Z-lock)

on

the

table

for

the

duration

of

the

load.

An

load

operation

in

ALLOW

READ

ACCESS

mode

acquires

and

maintains

a

share

lock

(S-lock)

for

the

duration

of

the

load

operation,

and

upgrades

the

lock

to

an

exclusive

lock

(Z-lock)

when

data

is

being

committed.

Before

a

load

operation

in

ALLOW

READ

ACCESS

mode

begins,

the

load

utility

will

wait

for

all

applications

that

began

before

the

load

operation

to

release

locks

on

the

target

table.

Since

locks

are

not

persistent,

they

are

supplemented

by

table

states

that

will

remain

even

if

a

load

operation

is

aborted.

These

states

can

be

checked

by

using

the

LOAD

QUERY

command.

By

using

the

LOCK

WITH

FORCE

option,

the

load

utility

will

force

applications

holding

conflicting

locks

off

the

table

that

it

is

trying

to

load

into.

162

Data

Movement

Utilities

Locking

Behavior

For

Load

Operations

in

ALLOW

READ

ACCESS

Mode

At

the

beginning

of

a

load

operation,

the

load

utility

acquires

a

share

lock

(S-lock)

on

the

table.

It

holds

this

lock

until

the

data

is

being

committed.

The

share

lock

allows

applications

with

compatible

locks

to

access

the

table

during

the

load

operation.

For

example,

applications

that

use

read

only

queries

will

be

able

to

access

the

table,

while

applications

that

try

to

insert

data

into

the

table

will

be

denied.

When

the

load

utility

acquires

the

share

lock

on

the

table,

it

will

wait

for

all

applications

that

hold

locks

on

the

table

prior

to

the

start

of

the

load

operation

to

release

them,

even

if

they

have

compatible

locks.

Since

the

load

utility

upgrades

the

share

lock

to

an

exclusive

(Z-lock)

when

the

data

is

being

committed,

there

can

be

some

delay

in

commit

time

while

the

load

utility

waits

for

applications

with

conflicting

locks

to

finish.

Note:

The

load

operation

will

not

timeout

while

it

waits

for

the

applications

to

release

their

locks

on

the

table.

LOCK

WITH

FORCE

Option

The

LOCK

WITH

FORCE

option

can

be

used

to

force

off

applications

holding

conflicting

locks

on

the

target

table

so

that

the

load

operation

can

proceed.

Applications

holding

conflicting

locks

on

the

system

catalog

tables

will

not

be

forced

off

by

load.

If

an

application

is

forced

off

the

system

by

the

load

utility,

it

will

lose

its

database

connection

and

an

error

will

be

returned

(SQL1224N).

For

a

load

operation

in

ALLOW

NO

ACCESS

mode,

all

applications

holding

table

locks

that

exist

at

the

start

of

the

load

operation

will

be

forced.

For

a

load

operation

in

ALLOW

READ

ACCESS

mode

applications

holding

the

following

locks

will

be

forced:

v

Table

locks

that

conflict

with

a

table

share

lock

(for

example,

import

or

insert).

v

All

table

locks

that

exist

at

the

commit

phase

of

the

load

operation.

When

the

COPY

NO

option

is

specified

for

a

load

operation

on

a

recoverable

database,

all

objects

in

the

target

table

space

will

be

locked

in

share

mode

before

the

table

space

is

placed

in

backup

pending

state.

This

will

occur

regardless

of

the

access

mode.

If

the

LOCK

WITH

FORCE

option

is

specified,

all

applications

holding

locks

on

objects

in

the

table

space

that

conflict

with

a

share

lock

will

be

forced

off.

Table

States

In

addition

to

locks,

the

load

utility

uses

table

states

to

control

access

to

tables.

A

table

state

can

be

checked

by

using

the

LOAD

QUERY

command.

The

states

returned

by

the

LOAD

QUERY

command

are

as

follows:

Normal

No

table

states

affect

the

table.

Check

Pending

The

table

has

constraints

which

have

not

yet

been

verified.

Use

the

SET

INTEGRITY

statement

to

take

the

table

out

of

check

pending

state.

The

load

utility

places

a

table

in

the

check

pending

state

when

it

begins

a

load

operation

on

a

table

with

constraints.

Load

in

Progress

There

is

a

load

operation

in

progress

on

this

table.

Chapter

3.

Load

163

2
2
2
2
2

|
|
|

Load

Pending

A

load

operation

has

been

active

on

this

table

but

has

been

aborted

before

the

data

could

be

committed.

Issue

a

LOAD

TERMINATE,

LOAD

RESTART,

or

LOAD

REPLACE

command

to

bring

the

table

out

of

this

state.

Read

Access

Only

The

table

data

is

available

for

read

access

queries.

Load

operations

using

the

ALLOW

READ

ACCESS

option

place

the

table

in

read

access

only

state.

Unavailable

The

table

is

unavailable.

The

table

can

only

be

dropped

or

restored

from

a

backup.

Rolling

forward

through

a

non-recoverable

load

operation

will

place

a

table

in

the

unavailable

state.

Not

Load

Restartable

The

table

is

in

a

partially

loaded

state

that

will

not

allow

a

load

restart

operation.

The

table

will

also

be

in

load

pending

state.

Issue

a

LOAD

TERMINATE

or

a

LOAD

REPLACE

command

to

bring

the

table

out

of

the

not

load

restartable

state.

A

table

is

placed

in

not

load

restartable

state

when

a

rollforward

operation

is

performed

after

a

failed

load

operation

that

has

not

been

successfully

restarted

or

terminated,

or

when

a

restore

operation

is

performed

from

an

online

backup

that

was

taken

while

the

table

was

in

load

in

progress

or

load

pending

state.

In

either

case,

the

information

required

for

a

load

restart

operation

is

unreliable,

and

the

not

load

restartable

state

prevents

a

load

restart

operation

from

taking

place.

Type-1

Indexes

The

table

currently

uses

type-1

indexes.

The

indexes

can

be

converted

to

type-2

using

the

CONVERT

option

when

using

the

REORG

utility

on

the

indexes.

Unknown

The

LOAD

QUERY

command

is

unable

determine

the

table

state.

A

table

can

be

in

several

states

at

the

same

time.

For

example,

if

data

is

loaded

into

a

table

with

constraints

and

the

ALLOW

READ

ACCESS

option

is

specified,

table

state

would

be:

Tablestate:

Check

Pending

Load

in

Progress

Read

Access

Only

After

the

load

operation

but

before

issuing

the

SET

INTEGRITY

statement,

the

table

state

would

be:

Tablestate:

Check

Pending

Read

Access

Only

After

the

SET

INTEGRITY

statement

has

been

issued

the

table

state

would

be:

Tablestate:

Normal

Table

Space

States

when

COPY

NO

is

Specified

If

a

load

operation

with

the

COPY

NO

option

is

executed

in

a

recoverable

database,

the

table

spaces

associated

with

the

load

operation

are

placed

in

the

backup

table

space

state

and

the

load

in

progress

table

space

state.

This

takes

place

164

Data

Movement

Utilities

|
|
|
|

at

the

beginning

of

the

load

operation.

The

load

operation

can

be

delayed

at

this

point

while

locks

are

acquired

on

the

tables

within

the

table

space.

When

a

table

space

is

in

backup

pending

state,

it

is

still

available

for

read

access.

The

table

space

can

only

be

taken

out

of

backup

pending

state

by

taking

a

backup

of

the

table

space.

Even

if

the

load

operation

is

aborted,

the

table

space

will

remain

in

backup

pending

state

because

the

table

space

state

is

changed

at

the

beginning

of

the

load

operation,

and

cannot

be

rolled

back

if

it

fails.

The

load

in

progress

table

space

state

prevents

online

backups

of

a

load

operation

with

the

COPY

NO

option

specified

while

data

is

being

loaded.

The

load

in

progress

state

is

removed

when

the

load

operation

is

completed

or

aborts.

During

a

rollforward

operation

through

a

LOAD

command

with

the

COPY

NO

option

specified,

the

associated

table

spaces

are

placed

in

restore

pending

state.

To

remove

the

table

spaces

from

restore

pending

state,

a

restore

operation

must

be

performed.

A

rollforward

operation

will

only

place

a

table

space

in

the

restore

pending

state

if

the

load

operation

completed

successfully.

Related

concepts:

v

“Pending

states

after

a

load

operation”

on

page

165

Character

set

and

national

language

support

The

DB2®

UDB

data

movement

utilities

offer

the

following

National

Language

Support

(NLS):

v

The

import

and

the

export

utilities

provide

automatic

code

page

conversion

from

a

client

code

page

to

the

server

code

page.

v

For

the

load

utility,

data

can

be

converted

from

any

code

page

to

the

server

code

page

by

using

the

codepage

modifier

with

DEL

and

ASC

files.

v

For

all

utilities,

IXF

data

is

automatically

converted

from

its

original

code

page

(as

stored

in

the

IXF

file)

to

the

server

code

page.

Unequal

code

page

situations,

involving

expansion

or

contraction

of

the

character

data,

can

sometimes

occur.

For

example,

Japanese

or

Traditional-Chinese

Extended

UNIX®

Code

(EUC)

and

double-byte

character

sets

(DBCS)

might

encode

different

lengths

for

the

same

character.

Normally,

comparison

of

input

data

length

to

target

column

length

is

performed

before

reading

in

any

data.

If

the

input

length

is

greater

than

the

target

length,

NULLs

are

inserted

into

that

column

if

it

is

nullable.

Otherwise,

the

request

is

rejected.

If

the

nochecklengths

modifier

is

specified,

no

initial

comparison

is

performed,

and

an

attempt

is

made

to

load

the

data.

If

the

data

is

too

long

after

translation

is

complete,

the

row

is

rejected.

Otherwise,

the

data

is

loaded.

Related

reference:

v

“LOAD”

on

page

100

Pending

states

after

a

load

operation

The

load

utility

uses

table

states

to

preserve

database

consistency

during

a

load

operation.

These

states

can

be

checked

by

using

the

LOAD

QUERY

command.

The

load

and

build

phases

of

the

load

process

place

the

target

table

in

the

load

in

progress

table

state.

The

load

utility

also

places

table

spaces

in

the

load

in

progress

Chapter

3.

Load

165

state

when

the

COPY

NO

option

is

specified

on

a

recoverable

database.

The

table

spaces

remain

in

this

state

for

the

duration

of

the

load

operation

and

are

returned

to

normal

state

if

the

transaction

is

committed

or

rolled

back.

If

the

NO

ACCESS

option

has

been

specified,

the

table

cannot

be

accessed

while

the

load

is

in

progress.

If

the

ALLOW

READ

ACCESS

option

has

been

specified,

the

data

in

the

table

that

existed

prior

to

the

invocation

of

the

load

command

will

be

available

in

read

only

mode

during

the

load

operation.

If

the

ALLOW

READ

ACCESS

option

is

specified

and

the

load

operation

fails,

the

data

that

existed

in

the

table

prior

to

the

load

operation

will

continue

to

be

available

in

read

only

mode

after

the

failure.

To

remove

the

load

in

progress

table

state

(if

the

load

operation

has

failed,

or

was

interrupted),

do

one

of

the

following:

v

Restart

the

load

operation.

First,

address

the

cause

of

the

failure;

for

example,

if

the

load

utility

ran

out

of

disk

space,

add

containers

to

the

table

space

before

attempting

a

load

restart

operation.

v

Terminate

the

load

operation.

v

Invoke

a

LOAD

REPLACE

operation

against

the

same

table

on

which

a

load

operation

has

failed.

v

Recover

table

spaces

for

the

loading

table

by

using

the

RESTORE

DATABASE

command

with

the

most

recent

table

space

or

database

backup,

and

then

carry

out

further

recovery

actions.

Table

spaces

are

placed

in

backup

pending

state

if

the

load

process

completes,

and:

v

The

database

configuration

parameter

logretain

is

set

to

recovery,

or

userexit

is

enabled,

and

v

The

load

option

COPY

YES

is

not

specified,

and

v

The

load

option

NONRECOVERABLE

is

not

specified.

The

fourth

possible

state

associated

with

the

load

process

(check

pending

state)

pertains

to

referential

and

check

constraints,

DATALINKS

constraints,

generated

column

constraints,

materialized

query

computation,

or

staging

table

propagation.

For

example,

if

an

existing

table

is

a

parent

table

containing

a

primary

key

referenced

by

a

foreign

key

in

a

dependent

table,

replacing

data

in

the

parent

table

places

both

tables

(not

the

table

space)

in

check

pending

state.

To

validate

a

table

for

referential

integrity

and

check

constraints,

issue

the

SET

INTEGRITY

statement

after

the

load

process

completes,

if

the

table

has

been

left

in

check

pending

state.

Related

concepts:

v

“Checking

for

integrity

violations”

on

page

91

v

“Table

locking,

table

states

and

table

space

states”

on

page

162

Related

reference:

v

“LIST

TABLESPACES

Command”

in

the

Command

Reference

Optimizing

load

performance

The

performance

of

the

load

utility

depends

on

the

nature

and

the

quantity

of

the

data,

the

number

of

indexes,

and

the

load

options

specified.

Unique

indexes

reduce

load

performance

if

duplicates

are

encountered.

In

most

cases,

it

is

still

more

efficient

to

create

indexes

during

the

load

operation

than

to

166

Data

Movement

Utilities

invoke

the

CREATE

INDEX

statement

for

each

index

after

the

load

operation

completes

(see

Figure

5).

When

tuning

index

creation

performance,

the

amount

of

memory

dedicated

to

the

sorting

of

index

keys

during

a

load

operation

is

controlled

by

the

sortheap

database

configuration

parameter.

For

example,

to

direct

the

load

utility

to

use

4000

pages

of

main

memory

per

index

for

key

sorting,

set

the

sortheap

database

configuration

parameter

to

be

4000

pages,

disconnect

all

applications

from

the

database,

and

then

issue

the

LOAD

command.

If

an

index

is

so

large

that

it

cannot

be

sorted

in

memory,

a

sort

spill

occurs.

That

is,

the

data

is

divided

among

several

″sort

runs″

and

stored

in

a

temporary

table

space

that

will

be

merged

later.

If

there

is

no

way

to

avoid

a

sort

spill

by

increasing

the

size

of

the

sortheap

parameter,

it

is

important

that

the

buffer

pool

for

temporary

table

spaces

be

large

enough

to

minimize

the

amount

of

disk

I/O

that

spilling

causes.

Furthermore,

to

achieve

I/O

parallelism

during

the

merging

of

sort

runs,

it

is

recommended

that

temporary

table

spaces

be

declared

with

multiple

containers,

each

residing

on

a

different

disk

device.

Load

performance

can

be

improved

by

installing

high

performance

sorting

libraries

from

third

party

vendors

to

create

indexes

during

the

load

operation.

An

example

of

a

third

party

sort

product

is

SyncSort.

Use

the

DB2SORT

environment

variable

(registry

value)

to

specify

the

location

of

the

sorting

library

that

is

to

be

loaded

at

run

time.

Use

of

the

SET

INTEGRITY

statement

might

lengthen

the

total

time

needed

to

load

a

table

and

make

it

usable

again.

If

all

the

load

operations

are

performed

in

INSERT

mode,

the

SET

INTEGRITY

statement

will

check

the

table

for

constraints

violations

incrementally

(by

checking

only

the

appended

portion

of

the

table).

If

a

table

cannot

be

checked

for

constraints

violations

incrementally,

the

entire

table

is

checked,

and

it

might

be

some

time

before

the

table

is

usable

again.

Similarly,

if

a

load

operation

is

performed

on

the

underlying

tables

of

a

materialized

query

table,

use

of

the

REFRESH

TABLE

statement

might

lengthen

the

time

needed

to

make

both

the

underlying

tables

and

the

materialized

query

table

fully

usable

again.

If

several

sequential

load

operations

are

performed

in

INSERT

mode

into

the

underlying

tables

of

a

REFRESH

IMMEDIATE

materialized

query

table,

the

SET

INTEGRITY

statement

will

incrementally

refresh

the

materialized

query

table

in

most

cases.

If

the

system

determines

that

a

full

refresh

is

required,

the

materialized

query

table

definition

query

will

be

recomputed,

and

it

might

be

some

time

before

the

table

is

usable

again.

The

load

utility

performs

equally

well

in

INSERT

mode

and

in

REPLACE

mode.

create
table

load
table

create
index A

create
index B

collect
stats

table available
for queries

Time

create
table

create
index A
(empty)

create
index B
(empty)

load, with
indexing

and statistics

table available
for queries

Time

Figure

5.

Increasing

Load

Performance

through

Concurrent

Indexing

and

Statistics

Collection.

Tables

are

normally

built

in

three

steps:

data

loading,

index

building,

and

statistics

collection.

This

causes

multiple

data

I/O

during

the

load

operation,

during

index

creation

(there

can

be

several

indexes

for

each

table),

and

during

statistics

collection

(which

causes

I/O

on

the

table

data

and

on

all

of

the

indexes).

A

much

faster

alternative

is

to

let

the

load

utility

complete

all

of

these

tasks

in

one

pass

through

the

data.

Chapter

3.

Load

167

The

utility

attempts

to

deliver

the

best

performance

possible

by

determining

optimal

values

for

DISK_PARALLELISM,

CPU_PARALLELISM,

and

DATA

BUFFER,

if

these

parameters

have

not

be

specified

by

the

user.

Optimization

is

done

based

on

the

size

and

the

free

space

available

in

the

utility

heap.

Consider

allowing

the

load

utility

to

choose

values

for

these

parameters

before

attempting

to

tune

them

for

your

particular

needs.

Following

is

information

about

the

performance

implications

of

various

options

available

through

the

load

utility:

ANYORDER

Specify

this

file

type

modifier

to

suspend

the

preservation

of

order

in

the

data

being

loaded,

and

improve

performance.

If

the

data

to

be

loaded

is

presorted,

anyorder

might

corrupt

the

presorted

order,

and

the

benefits

of

presorting

will

be

lost

for

subsequent

queries.

BINARY

NUMERICS

and

PACKED

DECIMAL

Use

these

file

type

modifiers

to

improve

performance

when

loading

positional

numeric

ASC

data

into

fixed-length

records.

COPY

YES

or

NO

Use

this

parameter

to

specify

whether

a

copy

of

the

input

data

is

to

be

made

during

a

load

operation.

COPY

YES

reduces

load

performance,

because

all

of

the

loading

data

is

copied

during

the

load

operation

(forward

recovery

must

be

enabled);

the

increased

I/O

activity

might

increase

the

load

time

on

an

I/O-bound

system.

Specifying

multiple

devices

or

directories

(on

different

disks)

can

offset

some

of

the

performance

penalty

resulting

from

this

operation.

COPY

NO

might

reduce

overall

performance,

because

if

forward

recovery

is

enabled,

the

table

space

is

placed

in

backup

pending

state,

and

the

database,

or

selected

table

spaces,

must

be

backed

up

before

the

table

can

be

accessed.

CPU_PARALLELISM

Use

this

parameter

to

exploit

intra-partition

parallelism

(if

this

is

part

of

your

machine’s

capability),

and

significantly

improve

load

performance.

The

parameter

specifies

the

number

of

processes

or

threads

used

by

the

load

utility

to

parse,

convert,

and

format

data

records.

The

maximum

number

allowed

is

30.

If

there

is

insufficient

memory

to

support

the

specified

value,

the

utility

adjusts

the

value.

If

this

parameter

is

not

specified,

the

load

utility

selects

a

default

value

that

is

based

on

the

number

of

CPUs

on

the

system.

Record

order

in

the

source

data

is

preserved

(see

Figure

6

on

page

169)

regardless

of

the

value

of

this

parameter.

If

tables

include

either

LOB

or

LONG

VARCHAR

data,

CPU_PARALLELISM

is

set

to

one.

Parallelism

is

not

supported

in

this

case.

Although

use

of

this

parameter

is

not

restricted

to

symmetric

multiprocessor

(SMP)

hardware,

you

might

not

obtain

any

discernible

performance

benefit

from

using

it

in

non-SMP

environments.

168

Data

Movement

Utilities

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

DATA

BUFFER

The

DATA

BUFFER

parameter

specifies

the

total

amount

of

memory

allocated

to

the

load

utility

as

a

buffer.

It

is

recommended

that

this

buffer

be

several

extents

in

size.

An

extent

is

the

unit

of

movement

for

data

within

DB2®,

and

the

extent

size

can

be

one

or

more

4KB

pages.

The

DATA

BUFFER

parameter

is

useful

when

working

with

large

objects

(LOBs);

it

reduces

I/O

waiting

time.

The

data

buffer

is

allocated

from

the

utility

heap.

Depending

on

the

amount

of

storage

available

on

your

system,

you

should

consider

allocating

more

memory

for

use

by

the

DB2

utilities.

The

database

configuration

parameter

util_heap_sz

can

be

modified

accordingly.

The

default

value

for

the

Utility

Heap

Size

configuration

parameter

is

5

000

4KB

pages.

Because

load

is

only

one

of

several

utilities

that

use

memory

from

the

utility

heap,

it

is

recommended

that

no

more

than

fifty

percent

of

the

pages

defined

by

this

parameter

be

available

for

the

load

utility,

and

that

the

utility

heap

be

defined

large

enough.

DISK_PARALLELISM

The

DISK_PARALLELISM

parameter

specifies

the

number

of

processes

or

threads

used

by

the

load

utility

to

write

data

records

to

disk.

Use

this

parameter

to

exploit

available

containers

when

loading

data,

and

significantly

improve

load

performance.

The

maximum

number

allowed

is

the

greater

of

four

times

the

CPU_PARALLELISM

value

(actually

used

by

the

load

utility),

or

50.

By

default,

DISK_PARALLELISM

is

equal

to

the

sum

of

the

table

space

containers

on

all

table

spaces

containing

objects

for

the

table

being

loaded,

except

where

this

value

exceeds

the

maximum

number

allowed.

FASTPARSE

Use

the

fastparse

file

type

modifier

to

reduce

the

data

checking

that

is

performed

on

user-supplied

column

values,

and

enhance

performance.

This

option

should

only

be

used

when

the

data

being

loaded

is

known

to

be

valid.

It

can

improve

performance

by

about

10

or

20

percent.

NONRECOVERABLE

Use

this

parameter

if

you

do

not

need

to

be

able

to

recover

load

transactions

against

a

table.

Load

performance

is

enhanced,

because

no

additional

activity

beyond

the

movement

of

data

into

the

table

is

required,

and

the

load

operation

completes

without

leaving

the

table

spaces

in

backup

pending

state.

Note:

When

these

load

transactions

are

encountered

during

subsequent

restore

and

rollforward

recovery

operations,

the

table

is

not

updated,

and

is

marked

″invalid″.

Further

actions

against

this

table

are

ignored.

After

the

rollforward

operation

is

complete,

the

table

can

either

be

dropped

or

a

LOAD

TERMINATE

command

can

be

issued

to

bring

it

back

online.

User
records:
A,B,C,D

DB2 LOAD
(with SMP exploitation)

Table
records:
A,B,C,D

Figure

6.

Record

Order

in

the

Source

Data

is

Preserved

When

Intra-partition

Parallelism

is

Exploited

During

a

Load

Operation

Chapter

3.

Load

169

NOROWWARNINGS

Use

the

norowwarnings

file

type

modifier

to

suppress

the

recording

of

warnings

about

rejected

rows,

and

enhance

performance,

if

you

anticipate

a

large

number

of

warnings.

ALLOW

READ

ACCESS

This

option

allows

users

to

query

a

table

while

a

load

operation

is

in

progress.

The

user

will

only

be

able

to

view

data

that

existed

in

the

table

prior

to

the

load

operation.

If

the

INDEXING

MODE

INCREMENTAL

option

is

also

specified,

and

the

load

operation

fails,

the

subsequent

load

terminate

operation

might

have

to

correct

inconsistencies

in

the

index.

This

requires

an

index

scan

which

involves

considerable

I/O.

If

the

ALLOW

READ

ACCESS

option

is

also

specified

for

the

load

terminate

operation,

the

buffer

pool

will

be

used

for

I/O.

SAVECOUNT

Use

this

parameter

to

set

an

interval

for

the

establishment

of

consistency

points

during

a

load

operation.

The

synchronization

of

activities

performed

to

establish

a

consistency

point

takes

time.

If

done

too

frequently,

there

will

be

a

noticeable

reduction

in

load

performance.

If

a

very

large

number

of

rows

is

to

be

loaded,

it

is

recommended

that

a

large

SAVECOUNT

value

be

specified

(for

example,

a

value

of

ten

million

in

the

case

of

a

load

operation

involving

100

million

records).

A

LOAD

RESTART

operation

will

automatically

continue

from

the

last

consistency

point.

STATISTICS

YES

Use

this

parameter

to

collect

data

distribution

and

index

statistics

more

efficiently

than

through

invocation

of

the

runstats

utility

following

completion

of

the

load

operation,

even

though

performance

of

the

load

operation

itself

will

decrease

(particularly

when

DETAILED

INDEXES

ALL

is

specified).

For

optimal

performance,

applications

require

the

best

data

distribution

and

index

statistics

possible.

Once

the

statistics

are

updated,

applications

can

use

new

access

paths

to

the

table

data

based

on

the

latest

statistics.

New

access

paths

to

a

table

can

be

created

by

rebinding

the

application

packages

using

the

DB2

BIND

command.

When

loading

data

into

large

tables,

it

is

recommended

that

a

larger

value

for

the

stat_heap_sz

(Statistics

Heap

Size)

database

configuration

parameter

be

specified.

USE

<tablespaceName>

This

parameter

allows

an

index

to

be

rebuilt

in

a

system

temporary

table

space

and

copied

back

to

the

index

table

space

during

the

index

copy

phase

of

a

load

operation.

When

a

load

operation

in

ALLOW

READ

ACCESS

mode

fully

rebuilds

the

indexes,

the

new

indexes

are

built

as

a

shadow.

The

original

indexes

are

replaced

by

the

new

indexes

at

the

end

of

the

load

operation.

By

default,

the

shadow

index

is

built

in

the

same

table

space

as

the

original

index.

This

might

cause

resource

problems

as

both

the

original

and

the

shadow

index

will

reside

in

the

same

table

space

simultaneously.

If

the

shadow

index

is

built

in

the

same

table

space

as

the

original

index,

the

original

index

will

be

instantaneously

replaced

by

the

shadow.

However,

if

the

shadow

index

is

built

in

a

system

temporary

table

space,

the

load

operation

will

require

an

index

copy

phase

which

will

copy

the

index

from

a

system

temporary

table

space

to

the

index

table

space.

There

will

be

170

Data

Movement

Utilities

considerable

I/O

involved

in

the

copy.

If

either

of

the

table

spaces

is

a

DMS

table

space,

the

I/O

on

the

system

temporary

table

space

might

not

be

sequential.

The

values

specified

by

the

DISK_PARALLELISM

option

will

be

respected

during

the

index

copy

phase.

WARNINGCOUNT

Use

this

parameter

to

specify

the

number

of

warnings

that

can

be

returned

by

the

utility

before

a

load

operation

is

forced

to

terminate.

If

you

are

expecting

only

a

few

warnings

or

no

warnings,

set

the

WARNINGCOUNT

parameter

to

approximately

the

number

you

are

expecting,

or

to

twenty

if

you

are

expecting

no

warnings.

The

load

operation

will

stop

after

the

WARNINGCOUNT

number

is

reached.

This

gives

you

the

opportunity

to

correct

data

(or

to

drop

and

then

recreate

the

table

being

loaded)

before

attempting

to

complete

the

load

operation.

Although

not

having

a

direct

effect

on

the

performance

of

the

load

operation,

the

establishment

of

a

WARNINGCOUNT

threshold

prevents

you

from

having

to

wait

until

the

entire

load

operation

completes

before

determining

that

there

is

a

problem.

Related

concepts:

v

“Multidimensional

clustering

considerations”

on

page

96

v

“DB2

registry

and

environment

variables”

in

the

Administration

Guide:

Performance

Related

reference:

v

“util_heap_sz

-

Utility

heap

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“stat_heap_sz

-

Statistics

heap

size

configuration

parameter”

in

the

Administration

Guide:

Performance

v

“SET

INTEGRITY

statement”

in

the

SQL

Reference,

Volume

2

v

“BIND

Command”

in

the

Command

Reference

v

“UPDATE

DATABASE

CONFIGURATION

Command”

in

the

Command

Reference

Load

-

CLP

Examples

Example

1

TABLE1

has

5

columns:

v

COL1

VARCHAR

20

NOT

NULL

WITH

DEFAULT

v

COL2

SMALLINT

v

COL3

CHAR

4

v

COL4

CHAR

2

NOT

NULL

WITH

DEFAULT

v

COL5

CHAR

2

NOT

NULL

ASCFILE1

has

6

elements:

v

ELE1

positions

01

to

20

v

ELE2

positions

21

to

22

v

ELE3

positions

23

to

23

v

ELE4

positions

24

to

27

v

ELE5

positions

28

to

31

v

ELE6

positions

32

to

32

v

ELE7

positions

33

to

40

Chapter

3.

Load

171

Data

Records:

1...5...10...15...20...25...30...35...40

Test

data

1

XXN

123abcdN

Test

data

2

and

3

QQY

XXN

Test

data

4,5

and

6

WWN6789

Y

The

following

command

loads

the

table

from

the

file:

db2

load

from

ascfile1

of

asc

modified

by

striptblanks

reclen=40

method

L

(1

20,

21

22,

24

27,

28

31)

null

indicators

(0,0,23,32)

insert

into

table1

(col1,

col5,

col2,

col3)

Notes:

1.

The

specification

of

striptblanks

in

the

MODIFIED

BY

parameter

forces

the

truncation

of

blanks

in

VARCHAR

columns

(COL1,

for

example,

which

is

11,

17

and

19

bytes

long,

in

rows

1,

2

and

3,

respectively).

2.

The

specification

of

reclen=40

in

the

MODIFIED

BY

parameter

indicates

that

there

is

no

new-line

character

at

the

end

of

each

input

record,

and

that

each

record

is

40

bytes

long.

The

last

8

bytes

are

not

used

to

load

the

table.

3.

Since

COL4

is

not

provided

in

the

input

file,

it

will

be

inserted

into

TABLE1

with

its

default

value

(it

is

defined

NOT

NULL

WITH

DEFAULT).

4.

Positions

23

and

32

are

used

to

indicate

whether

COL2

and

COL3

of

TABLE1

will

be

loaded

NULL

for

a

given

row.

If

there

is

a

Y

in

the

column’s

null

indicator

position

for

a

given

record,

the

column

will

be

NULL.

If

there

is

an

N,

the

data

values

in

the

column’s

data

positions

of

the

input

record

(as

defined

in

L(........))

are

used

as

the

source

of

column

data

for

the

row.

In

this

example,

neither

column

in

row

1

is

NULL;

COL2

in

row

2

is

NULL;

and

COL3

in

row

3

is

NULL.

5.

In

this

example,

the

NULL

INDICATORS

for

COL1

and

COL5

are

specified

as

0

(zero),

indicating

that

the

data

is

not

nullable.

6.

The

NULL

INDICATOR

for

a

given

column

can

be

anywhere

in

the

input

record,

but

the

position

must

be

specified,

and

the

Y

or

N

values

must

be

supplied.

Example

2

(Using

Dump

Files)

Table

FRIENDS

is

defined

as:

table

friends

"(

c1

INT

NOT

NULL,

c2

INT,

c3

CHAR(8)

)"

If

an

attempt

is

made

to

load

the

following

data

records

into

this

table,

23,

24,

bobby

,

45,

john

4,,

mary

the

second

row

is

rejected

because

the

first

INT

is

NULL,

and

the

column

definition

specifies

NOT

NULL.

Columns

which

contain

initial

characters

that

are

not

consistent

with

the

DEL

format

will

generate

an

error,

and

the

record

will

be

rejected.

Such

records

can

be

written

to

a

dump

file.

DEL

data

appearing

in

a

column

outside

of

character

delimiters

is

ignored,

but

does

generate

a

warning.

For

example:

22,34,"bob"

24,55,"sam"

sdf

The

utility

will

load

″sam″

in

the

third

column

of

the

table,

and

the

characters

″sdf″

will

be

flagged

in

a

warning.

The

record

is

not

rejected.

Another

example:

172

Data

Movement

Utilities

22

3,

34,"bob"

The

utility

will

load

22,34,"bob",

and

generate

a

warning

that

some

data

in

column

one

following

the

22

was

ignored.

The

record

is

not

rejected.

Example

3

(Loading

DATALINK

Data)

The

following

command

loads

the

table

MOVIETABLE

from

the

input

file

delfile1,

which

has

data

in

the

DEL

format:

db2

load

from

delfile1

of

del

modified

by

dldel|

insert

into

movietable

(actorname,

description,

url_making_of,

url_movie)

datalink

specification

(dl_url_default_prefix

"http://narang"),

(dl_url_replace_prefix

"http://bomdel"

dl_url_suffix

".mpeg")

for

exception

excptab

Notes:

1.

The

table

has

four

columns:

actorname

VARCHAR(n)

description

VARCHAR(m)

url_making_of

DATALINK

(with

LINKTYPE

URL)

url_movie

DATALINK

(with

LINKTYPE

URL)

2.

The

DATALINK

data

in

the

input

file

has

the

vertical

bar

(|)

character

as

the

sub-field

delimiter.

3.

If

any

column

value

for

url_making_of

does

not

have

the

prefix

character

sequence,

″http://narang″

is

used.

4.

Each

non-NULL

column

value

for

url_movie

will

get

″http://bomdel″

as

its

prefix.

Existing

values

are

replaced.

5.

Each

non-NULL

column

value

for

url_movie

will

get

″.mpeg″

appended

to

the

path.

For

example,

if

a

column

value

of

url_movie

is

″http://server1/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″;

if

the

value

is

″/x/y/z″,

it

will

be

stored

as

″http://bomdel/x/y/z.mpeg″.

6.

If

any

unique

index

or

DATALINK

exception

occurs

while

loading

the

table,

the

affected

records

are

deleted

from

the

table

and

put

into

the

exception

table

excptab.

Example

4

(Loading

a

Table

with

an

Identity

Column)

TABLE1

has

4

columns:

v

C1

VARCHAR(30)

v

C2

INT

GENERATED

BY

DEFAULT

AS

IDENTITY

v

C3

DECIMAL(7,2)

v

C4

CHAR(1)

TABLE2

is

the

same

as

TABLE1,

except

that

C2

is

a

GENERATED

ALWAYS

identity

column.

Data

records

in

DATAFILE1

(DEL

format):

"Liszt"

"Hummel",,187.43,

H

"Grieg",100,

66.34,

G

"Satie",101,

818.23,

I

Data

records

in

DATAFILE2

(DEL

format):

Chapter

3.

Load

173

"Liszt",

74.49,

A

"Hummel",

0.01,

H

"Grieg",

66.34,

G

"Satie",

818.23,

I

Notes:

1.

The

following

command

generates

identity

values

for

rows

1

and

2,

since

no

identity

values

are

supplied

in

DATAFILE1

for

those

rows.

Rows

3

and

4,

however,

are

assigned

the

user-supplied

identity

values

of

100

and

101,

respectively.

db2

load

from

datafile1.del

of

del

replace

into

table1

2.

To

load

DATAFILE1

into

TABLE1

so

that

identity

values

are

generated

for

all

rows,

issue

one

of

the

following

commands:

db2

load

from

datafile1.del

of

del

method

P(1,

3,

4)

replace

into

table1

(c1,

c3,

c4)

db2load

from

datafile1.del

of

del

modified

by

identityignore

replace

into

table1

3.

To

load

DATAFILE2

into

TABLE1

so

that

identity

values

are

generated

for

each

row,

issue

one

of

the

following

commands:

db2

load

from

datafile2.del

of

del

replace

into

table1

(c1,

c3,

c4)

db2

load

from

datafile2.del

of

del

modified

by

identitymissing

replace

into

table1

4.

To

load

DATAFILE1

into

TABLE2

so

that

the

identity

values

of

100

and

101

are

assigned

to

rows

3

and

4,

issue

the

following

command:

db2

load

from

datafile1.del

of

del

modified

by

identityoverride

replace

into

table2

In

this

case,

rows

1

and

2

will

be

rejected,

because

the

utility

has

been

instructed

to

override

system-generated

identity

values

in

favor

of

user-supplied

values.

If

user-supplied

values

are

not

present,

however,

the

row

must

be

rejected,

because

identity

columns

are

implicitly

not

NULL.

5.

If

DATAFILE1

is

loaded

into

TABLE2

without

using

any

of

the

identity-related

file

type

modifiers,

rows

1

and

2

will

be

loaded,

but

rows

3

and

4

will

be

rejected,

because

they

supply

their

own

non-NULL

values,

and

the

identity

column

is

GENERATED

ALWAYS.

Example

5

(Loading

from

CURSOR)

MY.TABLE1

has

3

columns:

v

ONE

INT

v

TWO

CHAR(10)

v

THREE

DATE

MY.TABLE2

has

3

columns:

v

ONE

INT

v

TWO

CHAR(10)

v

THREE

DATE

Cursor

MYCURSOR

is

defined

as

follows:

declare

mycursor

cursor

for

select

*

from

my.table1

The

following

command

loads

all

the

data

from

MY.TABLE1

into

MY.TABLE2:

load

from

mycursor

of

cursor

method

P(1,2,3)

insert

into

my.table2(one,two,three)

174

Data

Movement

Utilities

Notes:

1.

Only

one

cursor

name

can

be

specified

in

a

single

LOAD

command.

That

is,

load

from

mycurs1,

mycurs2

of

cursor...

is

not

allowed.

2.

P

and

N

are

the

only

valid

METHOD

values

for

loading

from

a

cursor.

3.

In

this

example,

METHOD

P

and

the

insert

column

list

(one,two,three)

could

have

been

omitted

since

they

represent

default

values.

4.

MY.TABLE1

can

be

a

table,

view,

alias,

or

nickname.

Related

concepts:

v

“Load

Overview”

on

page

74

Related

reference:

v

“LOAD

QUERY”

on

page

121

v

“Example

partitioned

database

load

sessions”

on

page

192

v

“LOAD”

on

page

100

Chapter

3.

Load

175

176

Data

Movement

Utilities

Chapter

4.

Loading

data

in

a

partitioned

database

environment

This

chapter

describes

loading

data

in

a

partitioned

database

environment.

The

following

topics

are

covered:

v

“Partitioned

database

load

-

overview”

v

“Using

load

in

a

partitioned

database

environment”

on

page

179

v

“Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command”

on

page

184

v

“Restarting

or

terminating

a

load

operation

in

a

partitioned

database

environment”

on

page

186

v

“Partitioned

database

load

configuration

options”

on

page

187

v

“Example

partitioned

database

load

sessions”

on

page

192

v

“Migration

and

back-level

compatibility”

on

page

195

v

“Loading

data

in

a

partitioned

database

environment

-

hints

and

tips”

on

page

197

Partitioned

database

load

-

overview

In

a

partitioned

database,

large

amounts

of

data

are

located

across

many

partitions.

Partitioning

keys

are

used

to

determine

on

which

database

partition

each

portion

of

the

data

resides.

The

data

must

be

partitioned

before

it

can

be

loaded

at

the

correct

database

partition.

When

loading

tables

in

a

partitioned

database

environment,

the

load

utility

can:

v

Partition

input

data

in

parallel.

v

Load

data

simultaneously

on

corresponding

database

partitions.

v

Transfer

data

from

one

system

to

another

system.

Partitioned

database

load

operations

take

place

in

2

phases:

A

setup

phase,

where

partition

resources

such

as

table

locks

are

acquired,

and

a

load

phase

where

the

data

is

loaded

into

the

partitions.

You

can

use

the

ISOLATE_PART_ERRS

option

of

the

LOAD

command

to

select

how

errors

will

be

handled

during

either

of

these

phases,

and

how

errors

on

one

or

more

of

the

partitions

will

affect

the

load

operation

on

the

partitions

that

are

not

experiencing

errors.

When

loading

data

into

a

partitioned

database

you

can

use

one

of

the

following

modes:

v

PARTITION_AND_LOAD.

Data

is

partitioned

(perhaps

in

parallel)

and

loaded

simultaneously

on

the

corresponding

database

partitions.

v

PARTITION_ONLY.

Data

is

partitioned

(perhaps

in

parallel)

and

the

output

is

written

to

files

in

a

specified

location

on

each

loading

partition.

Each

file

includes

a

partition

header

that

specifies

how

the

data

was

partitioned,

and

that

the

file

can

be

loaded

into

the

database

using

the

LOAD_ONLY

mode.

v

LOAD_ONLY.

Data

is

assumed

to

be

already

partitioned;

the

partition

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

©

Copyright

IBM

Corp.

1999

-

2004

177

v

LOAD_ONLY_VERIFY_PART.

Data

is

assumed

to

be

already

partitioned,

but

the

data

file

does

not

contain

a

partition

header.

The

partitioning

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

During

the

load

operation,

each

row

is

checked

to

verify

that

it

is

on

the

correct

partition.

Rows

containing

partition

violations

are

placed

in

a

dumpfile

if

the

dumpfile

file

type

modifier

is

specified.

Otherwise,

the

rows

are

discarded.

If

partition

violations

exist

on

a

particular

loading

partition,

a

single

warning

will

be

written

to

the

load

message

file

for

that

partition.

v

ANALYZE.

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

generated.

Concepts

and

Terminology

The

following

terminology

will

be

used

when

discussing

the

behavior

and

operation

of

the

load

utility

in

a

partitioned

database

environment:

v

The

coordinator

partition

is

the

database

partition

to

which

the

user

connects

to

perform

the

load

operation.

In

the

PARTITION_AND_LOAD,

PARTITION_ONLY,

and

ANALYZE

modes,

it

is

assumed

that

the

data

file

resides

on

this

partition

unless

the

CLIENT

option

of

the

load

command

is

specified.

Specifying

the

CLIENT

option

of

the

load

command

indicates

that

the

data

to

be

loaded

resides

on

a

remotely

connected

client.

v

In

the

PARTITION_AND_LOAD,

PARTITION_ONLY,

and

ANALYZE

modes,

the

pre-partitioning

agent

reads

the

user

data

and

distributes

it

in

round-robin

fashion

to

the

partitioning

agents

which

will

partition

the

data.

This

process

is

always

performed

on

the

coordinator

partition.

A

maximum

of

one

partitioning

agent

is

allowed

per

partition

for

any

load

operation.

v

In

the

PARTITION_AND_LOAD,

LOAD_ONLY

and

LOAD_ONLY_VERIFY_PART

modes,

load

agents

run

on

each

output

partition

and

coordinate

the

loading

of

data

to

that

partition.

v

Load

to

file

agents

run

on

each

output

partition

during

a

PARTITION_ONLY

load

operation.

They

receive

data

from

partitioning

agents

and

write

it

to

a

file

on

their

partition.

v

A

file

transfer

command

agent

runs

on

the

coordinator

partition

and

is

responsible

for

executing

a

file

transfer

command.

178

Data

Movement

Utilities

Related

concepts:

v

“Loading

data

in

a

partitioned

database

environment

-

hints

and

tips”

on

page

197

v

“Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command”

on

page

184

v

“Restarting

or

terminating

a

load

operation

in

a

partitioned

database

environment”

on

page

186

Related

reference:

v

“Partitioned

database

load

configuration

options”

on

page

187

Using

load

in

a

partitioned

database

environment

Prerequisites:

Before

loading

a

table

in

a

partitioned

database

environment:

1.

Ensure

that

the

svcename

database

manager

configuration

parameter

and

the

DB2COMM

profile

registry

variable

are

set

correctly.

This

is

important

because

the

load

utility

uses

TCP/IP

to

transfer

data

from

the

pre-partitioning

agent

to

the

partitioning

agents,

and

from

the

partitioning

agents

to

the

loading

partitions.

2.

Before

invoking

the

load

utility,

you

must

be

connected

to

(or

be

able

to

implicitly

connect

to)

the

database

into

which

the

data

will

be

loaded.

Since

the

load

utility

will

issue

a

COMMIT

statement,

you

should

complete

all

transactions

and

release

any

locks

by

issuing

either

a

COMMIT

or

a

ROLLBACK

statement

before

beginning

the

load

operation.

If

the

PARTITION_AND_LOAD,

PARTITION_ONLY,

or

ANALYZE

mode

is

being

used,

the

data

file

that

is

being

loaded

must

reside

on

this

partition

unless:

a.

the

CLIENT

option

has

been

specified,

in

which

case

the

data

must

reside

on

the

client

machine;

b.

the

input

source

type

is

CURSOR,

in

which

case

there

is

no

input

file.

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure

7.

Partitioned

Database

Load

Overview.

The

source

data

is

read

by

the

pre-partitioning

agent,

approximately

half

of

the

data

is

sent

to

each

of

two

partitioning

agents

which

partition

the

data

and

send

it

to

one

of

three

database

partitions.

The

load

agent

at

each

partition

loads

the

data.

Chapter

4.

Loading

data

in

a

partitioned

database

environment

179

3.

You

might

want

to

run

the

Design

Advisor

to

determine

the

best

partition

for

each

table.

For

more

information,

see

The

Design

Advisor.

Restrictions:

The

following

restrictions

apply

when

using

the

load

utility

to

load

data

in

a

partitioned

database

environment:

v

The

location

of

the

input

files

to

the

load

operation

cannot

be

a

tape

device.

v

The

ROWCOUNT

option

is

not

supported

unless

the

ANALYZE

mode

is

being

used.

v

If

the

target

table

has

an

identity

column

that

is

needed

for

partitioning

and

the

identityoverride

modifier

is

not

specified,

or

if

you

are

using

multiple

database

partitions

to

partition

and

then

load

the

data,

the

use

of

a

SAVECOUNT

greater

than

zero

on

the

LOAD

command

is

not

supported.

v

If

an

identity

column

forms

part

of

the

partitioning

key,

only

PARTITION_AND_LOAD

mode

will

be

supported.

v

The

LOAD_ONLY

and

LOAD_ONLY_VERIFY_PART

modes

cannot

be

used

with

the

CLIENT

option

of

the

LOAD

command.

v

The

LOAD_ONLY_VERIFY_PART

mode

cannot

be

used

with

the

CURSOR

input

source

type.

v

The

partition

error

isolation

modes

LOAD_ERRS_ONLY

and

SETUP_AND_LOAD_ERRS

cannot

be

used

with

the

ALLOW

READ

ACCESS

and

COPY

YES

options

of

the

LOAD

command.

v

Multiple

load

operations

can

load

data

into

the

same

table

concurrently

if

the

partitions

specified

by

the

OUTPUT_DBPARTNUMS

and

PARTITIONING_DBPARTNUMS

options

do

not

overlap.

For

example,

if

a

table

is

defined

on

partitions

0

through

3,

one

load

operation

can

load

data

into

partitions

0

and

1

while

a

second

load

operation

can

load

data

into

partitions

2

and

3.

v

Only

Non-delimited

ASCII

(ASC)

and

Delimited

ASCII

(DEL)

files

can

be

partitioned.

PC/IXF

files

cannot

be

partitioned.

To

load

a

PC/IXF

file

into

a

multiple

partition

table,

you

can

first

load

it

into

a

single-partition

table,

and

then

perform

a

load

operation

using

the

CURSOR

file

type

to

move

the

data

into

a

multiple

partition

table.

You

can

also

load

a

PC/IXF

file

into

a

multiple

partition

table

using

load

in

LOAD_ONLY_VERIFY_PART

mode.

Procedure:

The

following

examples

illustrate

how

to

use

the

LOAD

command

to

initiate

various

types

of

load

operations.

The

database

used

in

the

following

examples

has

five

partitions:

0,

1,

2,

3

and

4.

Each

partition

has

a

local

directory

/udb/data/.

Two

tables,

TABLE1

and

TABLE2,

are

defined

on

partitions

0,

1,

3

and

4.

When

loading

from

a

client,

the

user

has

access

to

a

remote

client

that

is

not

one

of

the

database

partitions.

Loading

from

a

Server

Partition

Partition

and

Load

Example

In

this

scenario

you

are

connected

to

a

partition

that

may

or

may

not

be

a

partition

where

TABLE1

is

defined.

The

data

file

load.del

resides

in

the

current

working

directory

of

this

partition.

To

load

the

data

from

load.del

into

all

of

the

partitions

where

TABLE1

is

defined,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

of

DEL

REPLACE

INTO

TABLE1

180

Data

Movement

Utilities

|
|

2

2
2

2
2
2
2

2
2

2
2

2
2

2
2
2

2
2
2
2
2
2

2
2
2
2
2
2

Note:

In

this

example,

default

values

will

be

used

for

all

of

the

partitioned

database

configuration

parameters:

The

MODE

parameter

will

default

to

PARTITION_AND_LOAD,

the

OUTPUT_DBPARTNUMS

options

will

default

to

all

nodes

on

which

TABLE1

is

defined,

and

the

PARTITIONING_DBPARTNUMS

will

default

to

the

set

of

nodes

selected

according

to

the

LOAD

command

rules

for

choosing

partitioning

nodes

when

none

are

specified.

To

perform

a

load

operation

using

nodes

3

and

4

as

partitioning

nodes,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

of

DEL

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

PARTITIONING_DBPARTNUMS

(3,4)

Partition

Only

Example

In

this

scenario

you

are

connected

to

a

partition

that

may

or

may

not

be

a

partition

where

TABLE1

is

defined.

The

data

file

load.del

resides

in

the

current

working

directory

of

this

partition.

To

partition

(but

not

load)

load.del

to

all

the

database

partitions

on

which

TABLE1

is

defined,

using

partitions

3

and

4

as

partitioning

nodes,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

of

DEL

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

PARTITION_ONLY

PART_FILE_LOCATION

/udb/data

PARTITIONING_DBPARTNUMS

(3,4)

Load Agent Load Agent

Server
Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Load Agent Load Agent

Pre-Partition
Agent

Partition
Agent

Partition
Agent

Load
Coordinator

Raw Data File:
LOAD.DEL

Load Client

Firewall

Figure

8.

.

This

diagram

illustrates

the

behavior

that

will

result

when

the

above

command

is

issued.

Data

is

loaded

into

partitions

3

and

4.

Chapter

4.

Loading

data

in

a

partitioned

database

environment

181

This

will

result

in

a

file

load.del.xxx

being

stored

in

the

/udb/data

directory

on

each

partition,

where

xxx

is

a

three-digit

representation

of

the

partition

number.

To

partition

the

load.del

file

to

partitions

1

and

3,

using

only

1

partitioning

agent

running

on

partition

0

(which

is

the

default

for

PARTITIONING_DBPARTNUMS),

issue

the

following

command:

LOAD

FROM

LOAD.DEL

OF

DEL

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

PARTITION_ONLY

PART_FILE_LOCATION

/udb/data

OUTPUT_DBPARTNUMS

(1,3)

Load

Only

Example

If

you

have

already

performed

a

load

operation

in

the

PARTITION_ONLY

mode

and

want

to

load

the

partitioned

files

in

the

/udb/data

directory

of

each

loading

partition

to

all

the

partitions

on

which

TABLE1

is

defined,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

OF

DEL

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

LOAD_ONLY

PART_FILE_LOCATION

/udb/data

Partition
Agent

Server
Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Load-to-File
Agent

Load-to-File
Agent

Pre-Partition
Agent

Load
Coordinator

Raw Data File:
LOAD.DEL

Load Client

Firewall

Partitioned
Data File:

Partitioned
Data File:

/udb/data/
LOAD.DEL.003

/udb/data/
LOAD.DEL.001

Figure

9.

.

This

diagram

illustrates

the

behavior

that

will

result

when

the

above

command

is

issued.

Data

is

loaded

into

partitions

1

and

3,

using

1

partitioning

agent

running

on

partition

0.

182

Data

Movement

Utilities

To

load

into

partition

4

only,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

OF

DEL

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

LOAD_ONLY

PART_FILE_LOCATION

/udb/data

OUTPUT_DBPARTNUMS

(4)

Loading

Pre-partitioned

Files

Without

Partition

Map

Headers

The

LOAD

command

can

be

used

to

load

data

files

without

partition

headers

directly

into

several

database

partitions.

If

the

data

files

exist

in

the

/udb/data

directory

on

each

partition

where

TABLE1

is

defined

and

have

the

name

load.del.xxx,

where

xxx

is

the

partition

number,

the

files

can

be

loaded

by

issuing

the

following

command:

LOAD

FROM

LOAD.DEL

OF

DEL

modified

by

dumpfile=rejected.rows

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

LOAD_ONLY_VERIFY_PART

PART_FILE_LOCATION

/udb/data

To

load

the

data

into

partition

1

only,

issue

the

following

command:

LOAD

FROM

LOAD.DEL

OF

DEL

modified

by

dumpfile=rejected.rows

REPLACE

INTO

TABLE1

PARTITIONED

DB

CONFIG

MODE

LOAD_ONLY_VERIFY_PART

PART_FILE_LOCATION

/udb/data

OUTPUT_DBPARTNUMS

(1)

Note:

Rows

that

do

not

belong

on

the

partition

from

which

they

were

loaded

will

be

rejected

and

put

into

the

dumpfile,

if

one

has

been

specified.

Loading

from

a

Remote

Client

to

a

Partitioned

Database

Load Client

Firewall

Load Agent Load Agent

Server
Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Load Agent Load Agent

Load
Coordinator

Partitioned
Data File:

Partitioned
Data File:

Partitioned
Data File:

Partitioned
Data File:

/udb/data/
LOAD.DEL.003

/udb/data/
LOAD.DEL.004

/udb/data/
LOAD.DEL.001

/udb/data/
LOAD.DEL.000

Figure

10.

.

This

diagram

illustrates

the

behavior

that

will

result

when

the

above

command

is

issued.

Partitioned

data

is

loaded

to

all

partitions

where

TABLE1

is

defined.

Chapter

4.

Loading

data

in

a

partitioned

database

environment

183

To

load

data

into

a

partitioned

database

from

a

file

that

is

on

a

remote

client,

you

must

specify

the

CLIENT

option

of

the

LOAD

command

to

indicate

that

the

data

file

is

not

on

a

server

partition.

For

example:

LOAD

CLIENT

FROM

LOAD.DEL

OF

DEL

REPLACE

INTO

TABLE1

Note:

You

cannot

use

the

LOAD_ONLY

or

LOAD_ONLY_VERIFY_PART

modes

with

the

CLIENT

option.

Loading

from

a

Cursor

As

in

single

partition

databases,

you

can

load

from

a

cursor

into

a

multi-partition

database.

In

this

example,

for

the

PARTITION_ONLY

and

LOAD_ONLY

modes,

the

PART_FILE_LOCATION

option

must

specify

a

fully

qualified

file

name.

This

name

will

be

the

fully

qualified

base

file

name

of

the

partitioned

files

that

are

created

or

loaded

on

each

output

partition.

Multiple

files

may

be

created

with

the

specified

base

name

if

there

are

LOB

columns

in

the

target

table.

To

partition

all

the

rows

in

the

answer

set

of

the

statement

SELECT

*

FROM

TABLE1

to

a

file

on

each

partition

named

/udb/data/select.out.xxx

(where

xxx

is

the

node

number),

for

future

loading

into

TABLE2,

issue

the

following

commands

from

the

DB2

Command

Line

Processor:

DECLARE

C1

CURSOR

FOR

SELECT

*

FROM

TABLE1

LOAD

FROM

C1

OF

CURSOR

REPLACE

INTO

TABLE2

PARTITIONED

DB

CONFIG

MODE

PARTITION_ONLY

PART_FILE_LOCATION

/udb/data/select.out

The

data

files

produced

by

the

above

operation

can

then

be

loaded

by

issuing

the

following

LOAD

command:

LOAD

FROM

C1

OF

CURSOR

REPLACE

INTO

TABLE2

PARTITIONED

CB

CONFIG

MODE

LOAD_ONLY

PART_FILE_LOCATION

/udb/data/select.out

Related

concepts:

v

“The

Design

Advisor”

in

the

Administration

Guide:

Performance

v

“Moving

data

using

the

cursor

file

type”

on

page

226

Related

reference:

v

“db2Load

-

Load”

on

page

123

Monitoring

a

partitioned

database

load

using

the

LOAD

QUERY

command

Message

Files

Produced

During

a

Partitioned

Database

Load

During

a

load

operation,

message

files

are

created

by

some

of

the

load

processes

on

the

partitions

where

they

are

being

executed.

These

files

store

all

information,

warning

and

error

messages

produced

during

the

execution

of

the

process.

The

load

processes

that

produce

message

files

that

can

be

viewed

by

the

user

are

the

load

agent,

pre-partitioning

agent

and

partitioning

agent.

Users

can

connect

to

individual

partitions

during

a

load

operation

and

issue

the

LOAD

QUERY

command

against

the

target

table.

When

issued

from

the

CLP,

this

command

will

display

the

contents

of

all

the

message

files

that

currently

reside

on

that

partition

for

the

table

that

is

specified

in

the

LOAD

QUERY

command.

184

Data

Movement

Utilities

For

example,

table

TABLE1

is

defined

on

partitions

0

through

3

in

database

WSDB.

A

user

is

connected

to

partition

0

and

issues

the

following

LOAD

command:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

partitioning_dbpartnums

(1)

This

command

will

initiate

a

load

operation

that

includes

load

agents

running

on

partitions

0,

1,

2

and

3;

a

partitioning

agent

running

on

partition

1;

and

a

pre-partitioning

agent

running

on

partition

0.

Partition

0

will

contain

one

message

file

for

the

pre-partitioning

agent

and

one

for

the

load

agent

on

that

partition.

To

view

the

contents

of

these

files

at

the

same

time,

start

a

new

session

and

issue

the

following

commands

from

the

CLP:

set

client

connect_node

0

connect

to

wsdb

load

query

table

table1

Partition

1

will

contain

one

file

for

the

load

agent

and

one

for

the

partitioning

agent.

To

view

the

contents

of

these

files,

start

a

new

session

and

issue

the

following

commands

from

the

CLP:

set

client

connect_node

1

connect

to

wsdb

load

query

table

table1

Note:

The

messages

generated

by

the

STATUS_INTERVAL

load

configuration

option

will

appear

in

the

pre-partitioning

agent

message

file.

To

view

these

message

during

a

load

operation,

you

must

connect

to

the

coordinator

partition

and

issue

the

LOAD

QUERY

command.

Saving

the

Contents

of

Message

Files

If

a

load

operation

is

initiated

through

the

load

API

(db2Load),

the

messages

option

(piLocalMsgFileName)

must

be

specified

and

the

message

files

will

be

brought

from

the

server

to

the

client

and

stored

for

the

user

to

view.

For

partitioned

database

load

operations

initiated

from

the

CLP,

the

message

files

will

not

be

displayed

to

the

console

or

retained.

To

save

or

view

the

contents

of

these

files

after

a

partitioned

database

load

has

completed,

the

MESSAGES

option

of

the

LOAD

command

must

be

specified.

If

this

option

is

used,

once

the

load

operation

has

completed

the

message

files

on

each

partition

will

be

transferred

to

the

client

machine

and

stored

in

files

using

the

base

name

indicated

by

the

MESSAGES

option.

For

partitioned

database

load

operations,

the

name

of

the

file

corresponding

to

the

load

process

that

produced

it

is

listed

below:

Process

Type

File

Name

Load

Agent

<message-file-name>.LOAD.<partition-
number>

Partitioning

Agent

<message-file-name>.PART.<partition-
number>

Pre-partitioning

Agent

<message-file-name>.PREP.<partition-
number>

For

example,

if

the

MESSAGES

option

specifies

/wsdb/messages/load,

the

load

agent

message

file

for

partition

2

will

be

/wsdb/messages/load.LOAD.002.

Chapter

4.

Loading

data

in

a

partitioned

database

environment

185

Note:

It

is

strongly

recommended

that

the

MESSAGES

option

be

used

for

partitioned

database

load

operations

initiated

from

the

CLP.

Related

reference:

v

“db2LoadQuery

-

Load

Query”

on

page

145

Restarting

or

terminating

a

load

operation

in

a

partitioned

database

environment

The

load

process

in

a

partitioned

database

environment

consists

of

two

stages:

the

setup

stage

where

partition-level

resources

such

as

table

locks

on

output

partitions

are

acquired,

and

the

load

stage

where

data

is

formatted

and

loaded

into

tables

on

the

partitions.

The

four

partition

error

isolation

modes

(LOAD_ERRS_ONLY,

SETUP_ERRS_ONLY,

SETUP_AND_LOAD_ERRS,

and

NO_ISOLATION)

affect

the

behavior

of

load

restart

and

terminate

operations

when

there

are

errors

during

one

or

both

of

these

stages.

In

general,

if

a

failure

occurs

during

the

setup

stage,

restart

and

terminate

operations

are

not

necessary.

However,

a

failure

during

the

load

stage

will

require

a

LOAD

RESTART

or

a

LOAD

TERMINATE

on

all

partitions

involved

in

the

load

operation.

Failures

During

the

Setup

Stage

When

a

load

operation

fails

on

at

least

one

partition

during

the

setup

stage

and

the

setup

stage

errors

are

not

being

isolated

(that

is,

the

error

isolation

mode

is

either

LOAD_ERRS_ONLY

or

NO_ISOLATION),

the

entire

load

operation

will

be

aborted

and

the

state

of

the

table

on

each

partition

will

be

rolled

back

to

the

state

it

was

in

prior

to

the

load

operation.

In

this

case,

there

is

no

need

to

issue

a

LOAD

RESTART

or

LOAD

TERMINATE

command.

When

a

load

operation

fails

on

at

least

one

partition

during

the

initial

setup

stage

and

setup

stage

errors

are

being

isolated

(that

is,

the

error

isolation

mode

is

either

SETUP_ERRS_ONLY

or

SETUP_AND_LOAD_ERRS),

the

load

operation

will

continue

on

the

partitions

where

the

setup

stage

was

successful,

but

the

table

on

each

of

the

failing

partitions

is

rolled

back

to

the

state

it

was

in

prior

to

the

load

operation.

In

this

case,

there

is

no

need

to

perform

a

load

restart

or

terminate

operation,

unless

there

is

also

a

failure

during

the

load

stage.

To

complete

the

load

process

on

the

partitions

where

the

load

operation

failed

during

the

setup

stage,

issue

a

LOAD

REPLACE

or

LOAD

INSERT

command

and

use

the

OUTPUT_DBPARTNUMS

option

to

specify

only

the

partition

numbers

of

the

partitions

that

failed

during

the

original

load

operation.

For

example,

table

TABLE1

is

defined

on

partitions

0

through

3

in

database

WSDB.

The

following

command

is

issued:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

isolate_part_errs

setup_and_load_errs

During

the

set

up

stage

of

the

load

operation

there

is

a

failure

on

partitions

1

and

3.

Since

setup

stage

errors

are

being

isolated,

the

load

operation

will

complete

successfully

and

data

will

be

loaded

on

partitions

0

and

2.

To

complete

the

load

operation

by

loading

data

on

partitions

1

and

3,

issue

the

following

command:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

output_dbpartnums

(1,

3)

Failures

During

the

Load

Stage

186

Data

Movement

Utilities

If

a

load

operation

fails

on

at

least

one

partition

during

the

load

stage

of

a

partitioned

database

load

operation,

a

LOAD

RESTART

or

LOAD

TERMINATE

command

must

be

issued

on

all

partitions

involved

in

the

load

operation

whether

or

not

they

encountered

an

error

while

loading

data.

This

is

necessary

because

loading

data

in

a

partitioned

database

environment

is

done

through

a

single

transaction.

If

a

load

restart

operation

is

initiated,

loading

will

continue

where

it

left

off

on

all

partitions.

For

example,

table

TABLE1

is

defined

on

partitions

0

through

3

in

database

WSDB.

The

following

command

is

issued:

load

from

load1.del

of

del

replace

into

table1

partitioned

db

config

isolate_part_errs

no_isolation

During

the

load

stage

of

the

load

operation

there

is

a

failure

on

partitions

1

and

3.

To

resume

the

load

operation,

the

LOAD

RESTART

command

must

specify

the

same

set

of

output

partitions

as

the

original

command

since

the

load

operation

must

be

restarted

on

all

partitions:

load

from

load.del

of

del

restart

into

table1

partitioned

db

config

isolate_part_errs

no_isolation

Note:

For

load

restart

operations,

the

options

specified

in

the

LOAD

RESTART

command

will

be

honored,

so

it

is

important

that

they

are

identical

to

the

ones

specified

in

the

original

LOAD

command.

If

a

LOAD

TERMINATE

command

is

used

when

a

partitioned

database

load

operation

fails

during

the

load

stage,

all

work

done

in

the

previous

load

operation

will

be

lost

and

the

table

on

each

partition

will

be

returned

to

the

state

it

was

in

prior

to

the

initial

load

operation.

For

example,

table

TABLE1

is

defined

on

partitions

0

through

3

in

database

WSDB.

The

following

command

is

issued:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

isolate_part_errs

no_isolation

If

a

failure

occurs

during

the

load

stage,

the

load

operation

can

be

terminated

by

issuing

a

LOAD

TERMINATE

command

that

specifies

the

same

output

parameters

as

the

original

command:

load

from

load.del

of

del

terminate

into

table1

partitioned

db

config

isolate_part_errs

no_isolation

Related

concepts:

v

“Restarting

an

interrupted

load

operation”

on

page

97

v

“Partitioned

database

load

-

overview”

on

page

177

Partitioned

database

load

configuration

options

HOSTNAME

X

This

option

is

only

relevant

when

used

with

the

FILE_TRANSFER_CMD

option.

X

is

the

name

of

the

remote

machine

where

the

data

file

resides.

This

can

be

a

z/OS

host

or

another

workstation.

If

this

option

is

not

specified,

and

the

FILE_TRANSFER_CMD

option

is

specified,

the

hostname

nohost

will

be

used.

FILE_TRANSFER_CMD

X

Specifies

a

file

executable,

batch

file,

or

script

that

will

be

called

before

data

is

loaded

onto

any

partitions.

The

value

specified

must

be

a

fully

Chapter

4.

Loading

data

in

a

partitioned

database

environment

187

qualified

path.

The

full

path,

including

the

execution

file

name,

must

not

exceed

254

characters.

The

command

will

be

invoked

with

the

following

syntax:

<COMMAND>

<logpath>

<hostname>

<basepipename>

<nummedia>

<source

media

list>

Where:

<COMMAND>

Is

the

command

specified

by

the

FILE:TRANSFER:CMD

modifier.

<logpath>

Is

the

log

path

for

the

file

from

which

the

data

is

being

loaded.

Diagnostic

or

temporary

data

can

be

written

to

this

path.

<hostname>

Is

the

value

of

the

HOSTNAME

option.

<basepipename>

Is

the

base

name

for

named

pipes

that

the

load

operation

will

create

and

expect

to

receive

data

from.

One

pipe

is

created

for

every

source

file

on

the

LOAD

command.

Each

of

these

files

ends

with

.xxx,

where

xxx

is

the

index

of

the

source

file

for

the

LOAD

command.

For

example,

if

there

are

2

source

files

for

the

LOAD

command,

and

the

<basepipename>

is

pipe123,

two

named

pipes

would

be

created:

pipe123.000

and

pipe123.001.

The

<COMMAND>

file

will

populate

these

named

pipes

with

user

data.

<nummedia>

Specifies

the

number

of

media

arguments

which

follow.

<source

media

lst>

Is

the

list

of

source

files

specified

in

the

LOAD

command.

Each

source

file

must

be

placed

inside

double

quotation

marks.

PART_FILE_LOCATION

X

In

the

PARTITION_ONLY,

LOAD_ONLY,

and

LOAD_ONLY_VERIFY_PART

modes,

this

parameter

can

be

used

to

specify

the

location

of

the

partitioned

files.

This

location

must

exist

on

each

partition

specified

by

the

OUTPUT_DBPARTNUMS

option.

If

the

location

specified

is

a

relative

path

name,

the

path

will

be

appended

to

the

current

directory

to

create

the

location

for

the

partitioned

files.

For

the

CURSOR

file

type,

this

option

must

be

specified,

and

the

location

must

refer

to

a

fully

qualified

file

name.

This

name

will

be

the

fully

qualified

base

file

name

of

the

partitioned

files

that

are

created

on

each

output

partition

in

the

PARTITION_ONLY

mode,

or

the

location

of

the

files

to

be

read

from

for

each

partition

in

the

LOAD_ONLY

mode.

When

using

the

PARTITION_ONLY

mode,

multiple

files

can

be

created

with

the

specified

base

name

if

the

target

table

contains

LOB

columns.

For

file

types

other

than

CURSOR,

if

this

option

is

not

specified,

the

current

directory

will

be

used

for

the

partitioned

files.

OUTPUT_DBPARTNUMS

X

X

represents

a

list

of

partition

numbers.

The

partition

numbers

represent

the

database

partitions

on

which

the

load

operation

is

to

be

performed.

The

partition

numbers

must

be

a

subset

of

the

database

partitions

on

which

the

table

is

defined.

The

default

is

that

all

database

partitions

will

188

Data

Movement

Utilities

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

be

selected.

The

list

must

be

enclosed

in

parentheses

and

the

items

in

the

list

must

be

separated

by

commas.

Ranges

are

permitted

(for

example,

(0,

2

to

10,

15)).

PARTITIONING_DBPARTNUMS

X

X

represents

a

list

of

partition

numbers

that

will

be

used

in

the

partitioning

process.

The

list

must

be

enclosed

in

parentheses

and

the

items

in

the

list

must

be

separated

by

commas.

Ranges

are

permitted

(for

example,

(0,

2

to

10,

15)).

The

partitioning

nodes

specified

can

be

different

from

the

database

partitions

being

loaded.

If

not

specified,

the

LOAD

command

will

determine

how

many

partitions

are

needed

and

which

partitions

to

use

in

order

to

achieve

optimal

performance.

If

the

ANYORDER

modifier

is

not

specified

in

the

LOAD

command,

only

one

partition

agent

will

be

used

in

the

load

session.

Further,

if

there

is

only

one

partition

specified

for

the

OUTPUT_DBPARTNUMS

option,

or

the

coordinator

node

of

the

load

operation

is

not

an

element

of

OUTPUT:DBPARTNUMS,

the

coordinator

node

of

the

load

operation

is

used

as

the

partitioning

partition.

Otherwise,

the

first

partition

(not

the

coordinator

node)

in

OUTPUT_DBPARTNUMS

is

used

as

the

partitioning

partition.

If

the

ANYORDER

modifier

is

specified,

the

number

of

partitioning

nodes

is

determined

as

follows:

(number

of

partitions

in

OUTPUT_DBPARTNUMS)/4

+

1.

Then,

the

number

of

partitioning

nodes

is

chosen

from

the

OUTPUT_DBPARTNUMS,

excluding

the

partition

being

used

to

load

the

data.

MODE

X

Specifies

the

mode

in

which

the

load

operation

will

take

place

when

loading

a

partitioned

database.

PARTITION_AND_LOAD

is

the

default.

Valid

values

are:

v

PARTITION_AND_LOAD.

Data

is

partitioned

(perhaps

in

parallel)

and

loaded

simultaneously

on

the

corresponding

database

partitions.

v

PARTITION_ONLY.

Data

is

partitioned

(perhaps

in

parallel)

and

the

output

is

written

to

files

in

a

specified

location

on

each

loading

partition.

For

file

types

other

than

CURSOR,

the

format

of

the

output

file

name

on

each

partition

will

be

filename.xxx,

where

filename

is

the

input

file

name

specified

in

the

LOAD

command

and

xxx

is

the

3-digit

partition

number.

For

the

CURSOR

file

type,

the

name

of

the

output

file

on

each

partition

will

be

determined

by

the

PART_FILE_LOCATION

option.

See

the

PART_FILE_LOCATION

option

for

details

on

how

to

specify

the

location

of

the

partition

file

for

each

partition.

Notes:

1.

This

mode

cannot

be

used

for

a

CLI

load

operation.

2.

If

the

table

contains

an

identity

column

that

is

needed

for

partitioning,

then

this

mode

is

not

supported,

unless

the

identityoverride

modifier

is

specified.
v

LOAD_ONLY.

Data

is

assumed

to

be

already

partitioned;

the

partition

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

For

file

types

other

than

CURSOR,

the

format

of

the

input

file

name

for

each

partition

should

be

filename.xxx,

where

filename

is

the

name

of

the

file

specified

in

the

LOAD

command

and

xxx

is

the

3-digit

partition

number.

For

the

CURSOR

file

type,

the

name

of

the

input

file

on

each

partition

will

be

determined

by

the

PART_FILE_LOCATION

option.

See

the

Chapter

4.

Loading

data

in

a

partitioned

database

environment

189

2
2
2

2
2

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|

PART_FILE_LOCATION

option

for

details

on

how

to

specify

the

location

of

the

partition

file

for

each

partition.

Notes:

1.

This

mode

cannot

be

used

for

a

CLI

load

operation,

or

when

the

CLIENT

option

of

LOAD

command

is

specified.

2.

If

the

table

contains

an

identity

column

that

is

needed

for

partitioning,

then

this

mode

is

not

supported,

unless

the

identityoverride

modifier

is

specified.
v

LOAD_ONLY_VERIFY_PART.

Data

is

assumed

to

be

already

partitioned,

but

the

data

file

does

not

contain

a

partition

header.

The

partitioning

process

is

skipped,

and

the

data

is

loaded

simultaneously

on

the

corresponding

database

partitions.

During

the

load

operation,

each

row

is

checked

to

verify

that

it

is

on

the

correct

partition.

Rows

containing

partition

violations

are

placed

in

a

dumpfile

if

the

dumpfile

file

type

modifier

is

specified.

Otherwise,

the

rows

are

discarded.

If

partition

violations

exist

on

a

particular

loading

partition,

a

single

warning

will

be

written

to

the

load

message

file

for

that

partition.

The

format

of

the

input

file

name

for

each

partition

should

be

filename.xxx,

where

filename

is

the

name

of

the

file

specified

in

the

LOAD

command

and

xxx

is

the

3-digit

partition

number.

See

the

PART_FILE_LOCATION

option

for

details

on

how

to

specify

the

location

of

the

partition

file

for

each

partition.

Notes:

1.

This

mode

cannot

be

used

for

a

CLI

load

operation,

or

when

the

CLIENT

option

of

LOAD

command

is

specified.

2.

If

the

table

contains

an

identity

column

that

is

needed

for

partitioning,

then

this

mode

is

not

supported,

unless

the

identityoverride

modifier

is

specified.
v

ANALYZE.

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

generated.

MAX_NUM_PART_AGENTS

X

Specifies

the

maximum

numbers

of

partitioning

agents

to

be

used

in

a

load

session.

The

default

25.

ISOLATE_PART_ERRS

X

Indicates

how

the

load

operation

will

react

to

errors

that

occur

on

individual

partitions.

The

default

is

LOAD_ERRS_ONLY,

unless

both

the

ALLOW

READ

ACCESS

and

COPY

YES

options

of

the

LOAD

command

are

specified,

in

which

case

the

default

is

NO_ISOLATION.

Valid

values

are:

v

SETUP_ERRS_ONLY.

Errors

that

occur

on

a

partition

during

setup,

such

as

problems

accessing

a

partition,

or

problems

accessing

a

table

space

or

table

on

a

partition,

will

cause

the

load

operation

to

stop

on

the

failing

partitions

but

to

continue

on

the

remaining

partitions.

Errors

that

occur

on

a

partition

while

data

is

being

loaded

will

cause

the

entire

operation

to

fail

and

roll

back

to

the

last

point

of

consistency

on

each

partition.

v

LOAD_ERRS_ONLY.

Errors

that

occur

on

a

partition

during

setup

will

cause

the

entire

load

operation

to

fail.

When

an

error

occurs

while

data

is

being

loaded

the

partitions

with

errors

will

be

rolled

back

to

their

last

point

of

consistency.

The

load

operation

will

continue

on

the

remaining

partitions

until

a

failure

occurs

or

until

all

the

data

is

loaded.

On

the

partitions

where

all

of

the

data

was

loaded,

the

data

will

not

be

visible

following

the

load

operation.

Because

of

the

errors

in

the

other

partitions

190

Data

Movement

Utilities

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

2
2

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

the

transaction

will

be

aborted.

Data

on

all

of

the

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

This

will

make

the

newly

loaded

data

visible

on

the

partitions

where

load

operation

completed

and

resume

the

load

operation

on

partitions

that

experienced

an

error.

Note:

This

mode

cannot

be

used

when

both

the

ALLOW

READ

ACCESS

and

the

COPY

YES

options

of

the

LOAD

command

are

specified.

v

SETUP_AND_LOAD_ERRS.

In

this

mode,

partition-level

errors

during

setup

or

loading

data

cause

processing

to

stop

only

on

the

affected

partitions.

As

with

the

LOAD_ERRS_ONLY

mode,

when

partition

errors

do

occur

while

data

is

being

loaded,

the

data

on

all

partitions

will

remain

invisible

until

a

load

restart

operation

is

performed.

Note:

This

mode

cannot

be

used

when

both

the

ALLOW

READ

ACCESS

and

the

COPY

YES

options

of

the

LOAD

command

are

specified.

v

NO_ISOLATION.

Any

error

during

the

load

operation

causes

the

transaction

to

fail.

STATUS_INTERVAL

X

X

represents

how

often

you

will

be

notified

of

the

volume

of

data

that

has

been

read.

The

unit

of

measurement

is

megabytes

(MB).

The

default

is

100

MB.

Valid

values

are

whole

numbers

from

1

to

4000.

PORT_RANGE

X

X

represents

the

range

of

TCP

ports

used

to

create

sockets

for

internal

communications.

The

default

range

is

from

6000

to

6063.

If

defined

at

the

time

of

invocation,

the

value

of

the

DB2ATLD_PORTS

DB2

registry

variable

will

replace

the

value

of

the

PORT_RANGE

load

configuration

option.

For

the

DB2ATLD_PORTS

registry

variable,

the

range

should

be

provided

in

the

following

format:

<lower-port-number>:<higher-port-number>

From

the

CLP,

the

format

is:

(

lower-port-number,

higher-port-number

)

CHECK_TRUNCATION

Specifies

that

the

program

should

check

for

truncation

of

data

records

at

input/output.

The

default

behavior

is

that

data

will

not

be

checked

for

truncation

at

input/output.

MAP_FILE_INPUT

X

X

specifies

the

input

file

name

for

the

partitioning

map.

This

parameter

must

be

specified

if

the

partitioning

map

is

customized,

as

it

points

to

the

file

containing

the

customized

partitioning

map.

A

customized

partitioning

map

can

be

created

by

using

the

db2gpmap

program

to

extract

the

map

from

the

database

system

catalog

table,

or

by

using

the

ANALYZE

mode

of

the

LOAD

command

to

generate

an

optimal

map.

The

map

generated

by

using

the

ANALYZE

mode

must

be

moved

to

each

database

partition

in

your

database

before

the

load

operation

can

proceed.

MAP_FILE_OUTPUT

X

X

represents

the

output

filename

for

the

partitioning

map.

This

parameter

should

be

used

when

the

ANALYZE

mode

is

specified.

An

optimal

partitioning

map

with

even

distribution

across

all

database

partitions

is

Chapter

4.

Loading

data

in

a

partitioned

database

environment

191

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|

|

generated.

If

this

modifier

is

not

specified

and

the

ANALYZE

mode

is

specified,

the

program

exits

with

an

error.

TRACE

X

Specifies

the

number

of

records

to

trace

when

you

require

a

review

of

a

dump

of

the

data

conversion

process

and

the

output

of

the

hashing

values.

The

default

is

0.

NEWLINE

Used

when

the

input

data

file

is

an

ASC

file

with

each

record

delimited

by

a

new

line

character

and

the

RecLen

parameter

of

the

LOAD

command

is

specified.

When

this

option

is

specified,

each

record

will

be

checked

for

a

new

line

character.

The

record

length,

as

specified

in

the

RecLen

parameter,

will

also

be

checked.

DISTFILE

X

If

this

option

is

specified,

the

LOAD

utility

will

generate

a

partition

distribution

file

with

the

given

name.

The

partition

distribution

file

contains

4096

integers:

one

for

each

entry

in

the

target

table’s

partition

map.

Each

integer

in

the

file

represents

the

number

of

rows

in

the

input

files

being

loaded

that

hashed

to

the

corresponding

partition

map

entry.

This

information

can

help

you

identify

skew

in

your

data

and

also

help

you

decide

whether

a

new

partition

map

should

be

generated

for

the

table

using

the

ANALYZE

mode

of

the

utility.

If

this

option

is

not

specified,

the

default

behaviour

of

the

Load

utility

is

to

not

generate

the

distribution

file.

Note:

When

this

option

is

specified,

a

maximum

of

one

partitioning

agent

will

be

used

for

the

load

operation.

If

multiple

partitioning

agents

are

explicitly

requested

by

the

user,

only

one

will

be

used.

OMIT_HEADER

Specifies

that

a

partition

map

header

should

not

be

included

in

the

partition

file.

If

not

specified,

a

header

will

be

generated.

RUN_STAT_DBPARTNUM

X

If

the

STATISTICS

YES

parameter

has

been

specified

in

the

LOAD

command,

statistics

will

be

collected

only

on

one

database

partition.

This

parameter

specifies

on

which

database

partition

to

collect

statistics.

If

the

value

is

-1

or

not

specified

at

all,

statistics

will

be

collected

on

the

first

database

partition

in

output

partition

list.

Related

tasks:

v

“Using

load

in

a

partitioned

database

environment”

on

page

179

Related

reference:

v

“REDISTRIBUTE

DATABASE

PARTITION

GROUP

Command”

in

the

Command

Reference

v

“LOAD”

on

page

100

Example

partitioned

database

load

sessions

In

the

following

examples,

the

database

has

4

partitions

numbered

0

through

4.

Database

WSDB

is

defined

on

all

of

the

partitions,

and

table

TABLE1

resides

in

the

default

node

group

which

is

also

defined

on

all

of

the

partitions.

Example

1

192

Data

Movement

Utilities

2
2
2
2
2
2
2
2
2

2
2
2

To

load

data

into

TABLE1

from

the

user

data

file

load.del

which

resides

on

partition

0,

connect

to

partition

0

and

then

issue

the

following

command:

load

from

load.del

of

del

replace

into

table1

If

the

load

operation

is

successful,

the

output

will

be

as

follows:

Agent

Type

Node

SQL

Code

Result

LOAD

000

+00000000

Success.

LOAD

001

+00000000

Success.

LOAD

002

+00000000

Success.

LOAD

003

+00000000

Success.

PARTITION

001

+00000000

Success.

PRE_PARTITION

000

+00000000

Success.

RESULTS:

4

of

4

LOADs

completed

successfully.

Summary

of

Partitioning

Agents:

Rows

Read

=

100000

Rows

Rejected

=

0

Rows

Partitioned

=

100000

Summary

of

LOAD

Agents:

Number

of

rows

read

=

100000

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

100000

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

100000

The

output

indicates

that

there

was

one

load

agent

on

each

partition

and

each

ran

successfully.

It

also

shows

that

there

was

one

pre-partitioning

agent

running

on

the

coordinator

partition

and

one

partitioning

agent

running

on

partition

1.

These

processes

completed

successfully

with

a

normal

SQL

return

code

of

0.

The

statistical

summary

shows

that

the

pre-partitioning

agent

read

100,000

rows,

the

partitioning

agent

partitioned

100,000

rows,

and

the

sum

of

all

rows

loaded

by

the

load

agents

is

100,000.

Example

2

In

the

following

example,

data

is

loaded

into

TABLE1

in

the

PARTITION_ONLY

mode.

The

partitioned

output

files

will

be

stored

on

each

of

the

output

partitions

in

the

directory

/udb/data:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

mode

partition_only

part_file_location

/udb/data

The

output

from

the

load

command

will

be

as

follows:

Agent

Type

Node

SQL

Code

Result

LOAD_TO_FILE

000

+00000000

Success.

LOAD_TO_FILE

001

+00000000

Success.

LOAD_TO_FILE

002

+00000000

Success.

LOAD_TO_FILE

003

+00000000

Success.

Chapter

4.

Loading

data

in

a

partitioned

database

environment

193

PARTITION

001

+00000000

Success.

PRE_PARTITION

000

+00000000

Success.

Summary

of

Partitioning

Agents:

Rows

Read

=

100000

Rows

Rejected

=

0

Rows

Partitioned

=

100000

The

output

indicates

that

there

was

a

load-to-file

agent

running

on

each

output

node,

and

these

agents

ran

successfully.

There

was

a

pre-partitioning

agent

on

the

coordinator

partition,

and

a

partitioning

agent

running

on

node

1.

The

statistical

summary

indicates

that

100,000

rows

were

successfully

read

by

the

pre-partitioning

agent

and

100,000

rows

were

successfully

partitioned

by

the

partitioning

agent.

Since

no

rows

were

loaded

into

the

table,

no

summary

of

the

number

of

rows

loaded

appears.

Example

3

To

load

the

files

that

were

generated

during

the

PARTITION_ONLY

load

operation

above,

issue

the

following

command:

load

from

load.del

of

del

replace

into

table1

partitioned

db

config

mode

load_only

part_file_location

/udb/data

The

output

from

the

load

command

will

be

as

follows::

Agent

Type

Node

SQL

Code

Result

LOAD

000

+00000000

Success.

LOAD

001

+00000000

Success.

LOAD

002

+00000000

Success.

LOAD

003

+00000000

Success.

RESULTS:

4

of

4

LOADs

completed

successfully.

Summary

of

LOAD

Agents:

Number

of

rows

read

=

100000

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

100000

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

100000

The

output

indicates

that

the

load

agents

on

each

output

partition

ran

successfully

and

that

the

sum

of

the

number

of

rows

loaded

by

all

load

agents

is

100,000.

No

summary

of

rows

partitioned

is

indicated

since

partitioning

was

not

performed.

Example

4

-

Failed

Load

Operation

If

the

following

LOAD

command

is

issued:

load

from

load.del

of

del

replace

into

table1

and

one

of

the

loading

partitions

runs

out

of

space

in

the

table

space

during

the

load

operation,

the

following

output

will

be

returned:

194

Data

Movement

Utilities

SQL0289N

Unable

to

allocate

new

pages

in

table

space

"DMS4KT".

SQLSTATE=57011

Agent

Type

Node

SQL

Code

Result

__

LOAD

000

+00000000

Success.

__

LOAD

001

-00000289

Error.

May

require

RESTART.

__

LOAD

002

+00000000

Success.

__

LOAD

003

+00000000

Success.

__

PARTITION

001

+00000000

Success.

__

PRE_PARTITION

000

+00000000

Success.

__

RESULTS:

3

of

4

LOADs

completed

successfully.

__

Summary

of

Partitioning

Agents:

Rows

Read

=

0

Rows

Rejected

=

0

Rows

Partitioned

=

0

Summary

of

LOAD

Agents:

Number

of

rows

read

=

0

Number

of

rows

skipped

=

0

Number

of

rows

loaded

=

0

Number

of

rows

rejected

=

0

Number

of

rows

deleted

=

0

Number

of

rows

committed

=

0

The

output

indicates

that

the

load

operation

returned

error

SQL0289.

The

partition

summary

indicates

that

partition

1

ran

out

of

space.

Since

the

default

error

isolation

mode

is

NO_ISOLATION.

the

load

operation

will

be

aborted

on

all

partitions

and

a

load

restart

or

load

terminate

operation

must

be

invoked.

If

additional

space

is

added

to

the

containers

of

the

table

space

on

partition

1,

the

load

operation

can

be

restarted

as

follows:

load

from

load.del

of

del

restart

into

table1

Related

tasks:

v

“Using

load

in

a

partitioned

database

environment”

on

page

179

Related

reference:

v

“LOAD”

on

page

100

Migration

and

back-level

compatibility

Using

the

LOAD

Command

in

a

Partitioned

Database

Environment

In

Version

8

changes

have

been

made

to

the

LOAD

command

that

will

replace

the

functionality

of

the

db2atld

utility.

As

a

result,

you

will

notice

some

differences

in

the

terminology

being

used.

The

db2atld

utility

referred

to

a

splitter

and

a

split

file

(the

output

of

the

splitter).

The

equivalent

when

using

the

LOAD

command

is

the

partitioning

agent

and

the

partition

file.

Also,

when

using

the

LOAD

command

we

refer

to

the

data

file

being

partitioned

not

split.

The

load

modes

and

configuration

options

are

named

to

reflect

this

change.

For

example,

where

the

AutoLoader

had

the

SPLIT_ONLY

mode

and

Chapter

4.

Loading

data

in

a

partitioned

database

environment

195

the

SPLIT_NODES

option,

the

LOAD

command

now

has

the

PARTITION_ONLY

mode

and

the

PARTITIONING_DBPARTNUMS

option.

The

equivalent

of

the

FORCE

option

of

the

AutoLoader

is

the

ISOLATE_PART_ERRS

load

configuration

option.

This

option

allows

users

to

specify

four

types

of

partition

error

isolation.

One

of

them

(SETUP_AND_LOAD_ERRS)

is

similar

to

the

error

isolation

offered

by

the

FORCE

YES

option.

Using

db2atld

The

db2atld

utility

is

still

available

and

it

accepts

a

configuration

file

with

the

same

syntax

it

did

prior

to

Version

8.

Consider

the

following

when

using

db2atld:

1.

db2atld

will

now

only

establish

one

connection

when

loading

into

multi-partition

databases.

Prior

to

Version

8,

the

db2atld

established

one

connection

per

output

partition.

2.

db2atld

will

use

the

same,

single

transaction

model

as

the

load

utility

when

used

in

a

partitioned

database

environment.

3.

The

LOAD_ONLY_VERIFY_PART

mode

and

any

other

new

features

provided

in

the

enhanced

load

utility

are

not

available

when

initiating

a

partitioned

database

load

via

the

db2atld

executable.

4.

All

previously

supported

AutoLoader

configuration

parameters

are

recognized.

5.

Information

displayed

on

the

console

by

db2atld

is

now

slightly

different.

For

example,

in

SPLIT_AND_LOAD

mode

the

partitioning

statistics

and

loading

statistics

are

now

always

displayed.

Previously,

they

were

only

displayed

when

there

was

a

discrepancy

between

the

statistics.

Further,

status

interval

information

is

not

dumped

to

the

console

during

the

load

operation

but

is

instead

dumped

to

the

pre-partitioning

agent

message

file,

which

is

called

″<messagefile>.PREP.<nodenum>.″

Status

information

regarding

the

spawning

of

the

splitter

processes

and

loading

processes

is

no

longer

available.

6.

It

is

no

longer

necessary

to

launch

the

db2atld

executable

from

a

path

that

is

cross

mounted.

7.

When

loading

data

in

a

partitioned

database

environment,

the

maximum

number

of

input

sources

is

999.

8.

Prior

to

Version

8,

when

the

LOAD_ONLY

mode

of

the

db2atld

utility

was

used,

the

names

of

the

split

file

for

each

partition

could

have

the

extension

.00xxx

or

.xxx,

where

xxx

is

the

partition

number.

In

Version

8

or

later,

the

.00xxx

extension

is

no

longer

supported.

You

can

only

specify

a

3-digit

extension

(.xxx).

Reverting

to

pre-Version

8

Load

behavior

Using

the

DB2®_PARTITIONEDLOAD_DEFAULT

registry

variable

Prior

to

Version

8,

you

could

load

a

single

partition

of

a

multi-partition

database

using

the

load

utility

as

long

as

the

input

data

file

contained

partition

header

information

that

was

valid

for

the

partition

being

loaded.

This

header

was

usually

created

in

the

SPLIT_ONLY

mode

of

the

AutoLoader

or

through

the

db2split

utility.

The

partition

header

would

be

verified

by

the

load

utility

before

the

remaining

data

was

loaded.

For

tables

residing

in

a

single

partition

database

partition

group

in

a

EEE

environment,

a

data

file

with

no

partition

header

information

could

be

loaded

as

long

as

the

noheader

file

type

modifier

was

specified.

196

Data

Movement

Utilities

|
|

|
|
|
|
|

The

behavior

of

the

LOAD

command

has

since

changed.

In

a

partitioned

database

environment,

when

no

partitioned

database

load

configuration

options

are

specified,

it

is

now

assumed

that

the

load

operation

will

take

place

on

all

partitions

on

which

the

table

is

defined.

The

input

file

does

not

require

a

partition

header,

and

the

MODE

option

defaults

to

PARTITION_AND_LOAD.

To

load

a

single

partition,

the

OUTPUT_DBPARTNUMS

option

must

be

specified.

It

is

possible

to

maintain

the

pre-Version

8

behavior

of

the

LOAD

command

in

a

partitioned

database

environment.

This

would

allow

you

to

load

a

file

with

a

valid

partition

header

into

a

single

database

partition

without

specifying

any

extra

partitioned

database

configuration

options.

You

can

do

this

by

setting

the

value

of

the

DB2_PARTITIONEDLOAD_DEFAULT

registry

variable

to

NO.

You

may

want

to

use

this

option

if

you

want

to

avoid

modifying

existing

scripts

that

issue

the

LOAD

command

against

single

database

partitions.

For

example,

to

load

a

partitioned

file

into

partition

3

of

a

table

that

resides

in

a

4

partition

nodegroup,

issue

the

following

command:

db2set

DB2_PARTITIONEDLOAD_DEFAULT=NO

Then

issue

the

following

commands

from

the

DB2

Command

Line

Processor:

CONNECT

RESET

SET

CLIENT

CONNECT_NODE

3

CONNECT

TO

DB

MYDB

LOAD

FROM

LOAD.DEL

OF

DEL

REPLACE

INTO

TABLE1

Related

reference:

v

“LOAD”

on

page

100

Loading

data

in

a

partitioned

database

environment

-

hints

and

tips

Following

is

some

information

to

consider

before

loading

a

table

in

a

partitioned

database

environment:

v

Familiarize

yourself

with

the

partitioned

load

configuration

options

by

using

the

utility

with

small

amounts

of

data.

v

If

the

input

data

is

already

sorted,

or

in

some

chosen

order,

and

you

wish

to

maintain

that

order

during

the

loading

process,

only

one

database

partition

should

be

used

for

partitioning.

Parallel

partitioning

cannot

guarantee

that

the

data

will

be

loaded

in

the

same

order

it

was

received.

The

load

utility

will

choose

a

single

partitioning

agent

by

default

if

the

anyorder

modifier

is

not

specified

on

the

LOAD

command.

v

If

large

objects

(LOBs)

are

being

loaded

from

separate

files

(that

is,

if

you

are

using

the

lobsinfile

modifier

through

the

load

utility),

all

directories

containing

the

LOB

files

must

be

read-accessible

to

all

the

database

partitions

where

loading

is

taking

place.

The

LOAD

lob-path

parameter

must

be

fully

qualified

when

working

with

LOBs.

v

You

can

force

a

partitioned

database

job

to

continue

even

if

the

load

operation

detects

(at

startup

time)

that

some

loading

partitions

or

associated

table

spaces

or

tables

are

offline,

by

setting

the

ISOLATE_PART_ERRS

option

to

SETUP_ERRS_ONLY

or

SETUP_AND_LOAD_ERRS.

v

Use

the

STATUS_INTERVAL

partitioned

load

configuration

option

to

monitor

the

progress

of

a

partitioned

database

load

job.

The

load

operation

produces

messages

at

specified

intervals

indicating

how

many

megabytes

of

data

have

Chapter

4.

Loading

data

in

a

partitioned

database

environment

197

been

read

by

the

pre-partitioning

agent.

These

messages

are

dumped

to

the

pre-partitioning

agent

message

file.

To

view

the

contents

of

this

file

during

the

load

operation,

connect

to

the

coordinator

partition

and

issue

a

LOAD

QUERY

command

against

the

target

table.

v

Better

performance

can

be

expected

if

the

partitioning

nodes

(as

defined

by

the

PARTITIONING_DBPARTNUMS

option)

are

different

from

the

loading

partitions

(as

defined

by

the

OUTPUT_DBPARTNUMS

option),

since

there

is

less

contention

for

CPU

cycles.

When

loading

data

into

a

partitioned

database,

the

load

utility

itself

should

be

invoked

on

a

database

partition

that

is

not

participating

in

either

the

partitioning

or

the

loading

operation.

v

Specifying

the

MESSAGES

parameter

in

the

LOAD

command

will

save

the

messages

files

from

the

pre-partitioning,

partitioning,

and

load

agents

for

reference

at

the

end

of

the

load

operation.

To

view

the

contents

of

these

files

during

a

load

operation,

connect

to

the

desired

partition

and

issue

a

LOAD

QUERY

command

against

the

target

table.

v

The

load

utility

chooses

only

one

output

database

partition

on

which

to

collect

statistics.

The

RUN_STAT_DBPARTNUM

partitioned

load

database

configuration

option

can

be

used

to

specify

that

partition.

v

Before

loading

data

in

a

partitioned

database

environment,

you

might

want

to

run

the

Design

Advisor

to

determine

the

best

partition

for

each

table.

For

more

information,

see

The

Design

Advisor.

Troubleshooting

If

the

load

utility

is

hanging,

you

can:

v

Use

the

STATUS_INTERVAL

parameter

to

monitor

the

progress

of

a

partitioned

database

load

operation.

The

status

interval

information

is

dumped

to

the

pre-partitioning

agent

message

file

on

the

coordinator

partition.

v

Check

the

partitioning

agent

messages

file

to

see

the

status

of

the

partitioning

agent

processes

on

each

partitioning

database

partition.

If

the

load

is

proceeding

with

no

errors,

and

the

TRACE

option

has

been

set,

there

should

be

trace

messages

for

a

number

of

records

in

these

message

files.

v

Check

the

load

messages

file

to

see

if

there

are

any

load

error

messages.

Note:

You

must

specify

the

MESSAGES

option

of

the

LOAD

command

in

order

for

these

files

to

exist.

v

Interrupt

the

current

load

operation

if

you

find

errors

suggesting

that

one

of

the

load

processes

encountered

errors.

Related

reference:

v

“LOAD

QUERY”

on

page

121

v

“LOAD”

on

page

100

198

Data

Movement

Utilities

|
|
|

Chapter

5.

Moving

DB2

Data

Links

Manager

Data

This

chapter

describes

how

to

use

the

DB2

export,

import,

and

load

utilities

to

move

DB2

Data

Links

Manager

data.

For

information

about

the

file

formats

that

you

can

use

with

these

utilities,

see

“Export/Import/Load

Utility

File

Formats”

on

page

243.

The

following

topics

are

covered:

v

“Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts”

v

“Using

export

to

move

DB2

Data

Links

Manager

data”

on

page

201

v

“Using

import

to

move

DB2

Data

Links

Manager

data”

on

page

202

v

“Using

load

to

move

DB2

Data

Links

Manager

data”

on

page

203.

Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts

Since

table

data

resides

in

the

database,

and

the

files

referred

to

by

DATALINK

columns

reside

on

Data

Links

servers,

the

export

utility

must

move

both

the

database

data,

and

the

data

files

on

the

corresponding

Data

Links

servers.

To

do

this,

the

export

utility

produces

one

control

file

per

Data

Links

server.

The

name

of

the

control

file

is

the

same

as

the

name

of

the

Data

Links

server.

The

control

files

are

created

in

a

new

directory

that

has

the

name

dlfm/YYYYMMDD/HHMMSS,

where

YYYYMMDD

represents

YearMonthDay,

and

HHMMSS

represents

HourMinuteSecond.

This

directory

is

created

under

the

same

directory

in

which

the

export

data

file

is

created.

A

control

file

lists

the

names

of

the

corresponding

DB2

Data

Links

Manager

files

that

are

referenced

by

the

DATALINK

columns

of

the

rows

that

are

exported.

On

Windows®

operating

systems,

the

export

utility

produces

only

one

control

file

for

all

Data

Links

servers.

The

name

of

this

control

file

is

ctrlfile.lst.

It

is

created

in

a

new

directory

that

has

the

name

dlfm\YYYYMMDD\HHMMSS.

This

directory

is

created

under

the

same

directory

in

which

the

export

data

file

is

created.

The

control

file

lists

the

URLs

of

all

DB2

Data

Links

Manager

files

that

are

referenced

by

the

DATALINK

columns

of

the

rows

that

are

exported.

Tables

DB2 UDB
Database Server (DBMS)

DB2 Data Links
Server

Linked
Files

DB2 client running Import,
Export, or Load

Figure

11.

Moving

DB2

Data

Links

Manager

Data.

Since

table

data

resides

in

the

database,

and

the

files

referred

to

by

DATALINK

columns

reside

on

Data

Links

servers,

the

export,

import,

and

load

utilities

must

move

both

the

database

data,

and

the

data

files

on

the

corresponding

Data

Links

servers.

©

Copyright

IBM

Corp.

1999

-

2004

199

DATALINK

values

that

have

the

NO

LINK

CONTROL

property

are

not

placed

in

the

control

file.

The

control

files

must

be

transported

to

their

respective

Data

Links

servers.

On

Windows

operating

systems,

the

single

control

file

must

be

transported

to

all

referenced

Data

Links

servers.

The

dlfm_export

utility

should

be

run

at

each

Data

Links

server,

specifying

the

control

file

name.

This

utility

produces

an

archive

of

the

files

listed

in

the

control

file

for

that

Data

Links

server.

Set

the

DLFM_FS_ENVIRONMENT

registry

variable

appropriately

before

running

the

dlfm_export

utility.

The

export

utility

executes

as

an

SQL

application.

The

rows

and

columns

that

satisfy

the

conditions

of

the

SELECT

statement

are

extracted

from

the

database.

For

DATALINK

columns,

the

SELECT

statement

should

not

specify

any

scalar

functions.

The

export

utility

generates

the

following

files:

v

The

export

data

file.

A

DATALINK

column

value

in

this

file

has

the

same

format

as

that

used

by

the

import

and

the

load

utilities.

If

the

DATALINK

column

value

is

NULL,

it

is

treated

in

the

same

way

as

are

other

NULL

columns.

v

Control

files

for

each

Data

Links

server.

The

control

file

lists

the

complete

path

and

the

names

of

all

the

files

that

are

to

be

exported

from

that

Data

Links

server.

On

Windows

operating

systems,

there

is

only

one

control

file

for

all

Data

Links

servers

referenced

by

DATALINK

column

values.

Use

the

dlfm_export

utility

to

export

files

from

one

or

more

Data

Links

servers

as

follows:

dlfm_export

control-file-name

archive-file-name

where

control-file-name

is

the

name

of

the

control

file

generated

by

running

the

export

utility

on

the

DB2®

client,

and

archive-file-name

is

the

name

of

the

archive

file

that

will

be

generated.

The

default

archive-file-name

is

export.tar,

located

in

the

current

working

directory.

A

complementary

utility

called

dlfm_import

is

provided

to

retrieve

and

restore

files

from

the

archive

that

dlfm_export

generates.

This

utility

must

be

used

whether

the

archived

files

are

being

restored

on

the

same,

or

a

different,

Data

Links

server.

Use

the

dlfm_import

utility

to

retrieve

files

from

the

archive

as

follows:

dlfm_import

archive-file-name

[LISTFILES]

where

archive-file-name

is

the

name

of

the

archive

file

that

will

be

used

to

restore

the

files.

The

default

archive-file-name

is

export.tar.

LISTFILES

is

an

optional

keyword

that,

when

specified,

causes

the

utility

to

return

a

list

of

the

files

contained

within

the

archive.

Run

the

dlfm_import

utility

with

root

authority

at

each

Data

Links

server,

because

you

may

want

to

restore

the

archived

files

on

a

different

Data

Links

server,

which

may

not

have

the

same

directory

structure

and

user

IDs

as

the

Data

Links

server

on

which

the

dlfm_export

utility

was

run.

Set

the

DLFM_FS_ENVIRONMENT

registry

variable

appropriately

before

running

the

dlfm_import

utility.

Note:

When

running

the

dlfm_import

utility

on

a

Data

Links

server

other

than

the

one

on

which

the

dlfm_export

utility

was

run,

the

files

will

be

restored

in

the

correct

paths.

The

files

will

be

owned

by

root

in

case

some

of

the

user

200

Data

Movement

Utilities

IDs

do

not

exist

on

the

importing

machine.

Before

inserting

these

files

into

a

database,

ensure

that

all

files

have

the

correct

permissions

and

belong

to

the

correct

user

IDs.

The

following

table

shows

how

to

export

the

DB2

data

and

the

files

that

are

referenced

by

the

database

called

SystemA

to

the

database

called

SystemB.

SystemA

uses

the

Data

Links

servers

DLFM1

and

DLFM2.

SystemB

uses

the

Data

Links

servers

DLFMX

and

DLFMY.

The

files

on

DLFM1

will

be

exported

to

DLFMX,

and

the

files

on

DLFM2

will

be

exported

to

DLFMY.

Database

SystemA

with

Data

Links

Servers

DLFM1

and

DLFM2

Step

DB2

data

on

File

File1

with

file

names

for

DLFM1

File2

with

file

names

for

DLFM2

1)

Run

the

dlfm_export

command

(as

root)

on

both

Data

Links

servers.

This

will

produce

an

archive

on

both

Data

Links

servers.

Database

SystemB

with

Data

Links

Servers

DLFMX

and

DLFMY

On

DLFMX,

restore

from

archive

On

DLFMY,

restore

from

archive

2)

Run

dlfm_import

(as

root)

on

both

Data

Links

servers.

3)

Run

the

IMPORT

command

on

SystemB,

using

the

parameter

DL_URL_REPLACE_

PREFIX

to

specify

the

appropriate

Data

Links

server

for

each

exported

file.

When

you

run

the

IMPORT

command

on

SystemB,

the

SystemA

data

and

all

files

referenced

by

DATALINK

columns

are

imported.

Related

tasks:

v

“Using

Export”

on

page

3

v

“Using

export

to

move

DB2

Data

Links

Manager

data”

on

page

201

Related

reference:

v

“db2Export

-

Export”

on

page

12

Using

export

to

move

DB2

Data

Links

Manager

data

Procedure:

To

ensure

that

a

consistent

copy

of

the

table

and

the

corresponding

files

that

are

referenced

by

the

DATALINK

columns

are

copied,

perform

the

following

steps:

1.

Ensure

that

no

update

transactions

are

in

progress

when

the

export

operation

is

running

by

issuing

the

following

command:

db2

quiesce

tablespaces

for

table

tablename

share

2.

Invoke

the

export

utility.

3.

Run

the

dlfm_export

utility

with

root

authority

at

each

Data

Links

server;

this

will

successfully

archive

files

to

which

the

Data

Links

File

Manager

administrator

may

not

have

access.

The

utility

does

not

capture

the

ACLs

Chapter

5.

Moving

DB2

Data

Links

Manager

Data

201

information

of

the

files

that

are

archived.

As

input

to

dlfm_export,

specify

the

name

of

the

control

file

that

was

generated

by

the

export

utility.

4.

Make

the

table

available

for

updates

by

issuing

the

following

command:

db2

quiesce

tablespaces

for

table

tablename

reset

Related

concepts:

v

“Export

Overview”

on

page

1

v

“Moving

DB2

Data

Links

Manager

Data

Using

Export

-

Concepts”

on

page

199

Related

tasks:

v

“Using

import

to

move

DB2

Data

Links

Manager

data”

on

page

202

v

“Using

load

to

move

DB2

Data

Links

Manager

data”

on

page

203

Using

import

to

move

DB2

Data

Links

Manager

data

Since

table

data

resides

in

the

database,

and

the

files

referred

to

by

DATALINK

columns

reside

on

Data

Links

servers,

the

import

utility

must

move

both

the

database

data,

and

the

data

files

on

the

corresponding

Data

Links

servers.

Procedure:

Before

running

the

import

utility

against

the

target

database:

1.

Copy

the

files

that

will

be

referenced

to

the

appropriate

Data

Links

servers.

The

dlfm_import

utility

can

be

used

to

extract

files

from

an

archive

that

is

generated

by

the

dlfm_export

utility.

2.

Define

the

prefix

name

(or

names)

to

the

Data

Links

File

Managers

on

the

Data

Links

servers.

(You

may

want

to

perform

other

administrative

tasks,

such

as

registering

the

database.)

3.

Update

the

Data

Links

server

information

in

the

URLs

(of

the

DATALINK

columns)

from

the

exported

data

for

the

SQL

table,

if

required.

(If

the

Data

Links

servers

of

the

original

configuration

are

the

same

as

those

at

the

target

location,

the

Data

Links

server

names

need

not

be

updated).

4.

Define

the

Data

Links

servers

at

the

target

configuration

in

the

DB2

Data

Links

Manager

configuration

file.

When

the

import

utility

runs

against

the

target

database,

files

referred

to

by

DATALINK

column

data

are

linked

on

the

appropriate

Data

Links

servers.

Tables

DB2 UDB
Database Server (DBMS)

DB2 Data Links
Server

Linked
Files

DB2 client running Import,
Export, or Load

Figure

12.

Moving

DB2

Data

Links

Manager

Data.

Since

table

data

resides

in

the

database,

and

the

files

referred

to

by

DATALINK

columns

reside

on

Data

Links

servers,

the

export,

import,

and

load

utilities

must

move

both

the

database

data,

and

the

data

files

on

the

corresponding

Data

Links

servers.

202

Data

Movement

Utilities

Related

concepts:

v

“Import

Overview”

on

page

25

Related

tasks:

v

“Using

export

to

move

DB2

Data

Links

Manager

data”

on

page

201

v

“Using

load

to

move

DB2

Data

Links

Manager

data”

on

page

203

Using

load

to

move

DB2

Data

Links

Manager

data

Procedure:

If

you

are

loading

data

into

a

table

with

a

DATALINK

column

that

is

defined

with

FILE

LINK

CONTROL,

perform

the

following

steps

before

invoking

the

load

utility.

(If

all

the

DATALINK

columns

are

defined

with

NO

LINK

CONTROL,

these

steps

are

not

necessary.)

1.

Ensure

that

DB2

Data

Links

Manager

is

installed

on

the

Data

Links

servers

that

will

be

referred

to

by

the

DATALINK

column

values.

2.

Ensure

that

the

database

is

registered

with

the

DB2

Data

Links

Manager.

3.

Copy

to

the

appropriate

Data

Links

servers

all

files

that

will

be

inserted

as

DATALINK

values.

4.

Define

the

prefix

name

(or

names)

to

the

DB2

Data

Links

Managers

on

the

Data

Links

servers.

5.

Register

the

Data

Links

servers

referred

to

by

DATALINK

data

(to

be

loaded)

in

the

DB2

Data

Links

Manager

configuration

file.

Links

that

fail

during

the

load

operation

are

considered

to

be

data

integrity

violations,

and

are

handled

in

much

the

same

way

as

unique

index

violations.

Consequently,

a

special

exception

has

been

defined

for

loading

tables

that

have

one

or

more

DATALINK

columns.

Following

are

load

utility

features

that

are

not

supported

when

loading

tables

with

DATALINK

columns:

v

CPU_PARALLELISM

(the

value

is

forced

to

1)

v

LOAD

REPLACE

v

LOAD

TERMINATE

v

LOAD

COPY

Related

reference:

v

“LOAD”

on

page

100

Chapter

5.

Moving

DB2

Data

Links

Manager

Data

203

204

Data

Movement

Utilities

Chapter

6.

Moving

Data

Between

Systems

This

chapter

describes

how

to

use

the

DB2

export,

import,

and

load

utilities

to

transfer

data

across

platforms,

and

to

and

from

iSeries

host

databases.

DB2

DataPropagator,

another

method

for

moving

data

between

databases

in

an

enterprise,

is

also

described.

The

chapter

also

introduces

the

Data

Warehouse

Center

(DWC),

which

you

can

use

to

move

data

from

operational

databases

to

a

warehouse

database.

The

following

topics

are

covered:

v

“Moving

data

across

platforms

-

file

format

considerations”

v

“Moving

Data

With

DB2

Connect”

on

page

206

v

“db2move

-

Database

Movement

Tool”

on

page

209

v

“db2relocatedb

-

Relocate

Database”

on

page

213

v

“Moving

data

between

typed

tables”

on

page

218

v

“Using

replication

to

move

data”

on

page

222

v

“Using

the

Data

Warehouse

Center

to

Move

Data”

on

page

224.

v

“Moving

data

using

the

cursor

file

type”

on

page

226.

Moving

data

across

platforms

-

file

format

considerations

Compatibility

is

important

when

exporting,

importing,

or

loading

data

across

platforms.

The

following

sections

describe

PC/IXF,

delimited

ASCII

(DEL),

and

WSF

file

format

considerations

when

moving

data

between

different

operating

systems.

PC/IXF

File

Format

PC/IXF

is

the

recommended

file

format

for

transferring

data

across

platforms.

PC/IXF

files

allow

the

load

utility

or

the

import

utility

to

process

(normally

machine

dependent)

numeric

data

in

a

machine-independent

fashion.

For

example,

numeric

data

is

stored

and

handled

differently

by

Intel

and

other

hardware

architectures.

To

provide

compatibility

of

PC/IXF

files

among

all

products

in

the

DB2®

family,

the

export

utility

creates

files

with

numeric

data

in

Intel

format,

and

the

import

utility

expects

it

in

this

format.

Depending

on

the

hardware

platform,

DB2

products

convert

numeric

values

between

Intel

and

non-Intel

formats

(using

byte

reversal)

during

both

export

and

import

operations.

UNIX®

based

implementations

of

DB2

do

not

create

multiple-part

PC/IXF

files

during

export.

However,

they

will

allow

you

to

import

a

multiple-part

PC/IXF

file

that

was

created

by

DB2.

When

importing

this

type

of

file,

all

parts

should

be

in

the

same

directory,

otherwise

an

error

is

returned.

Single-part

PC/IXF

files

created

by

UNIX

based

implementations

of

the

DB2

export

utility

can

be

imported

by

DB2

for

Windows®.

©

Copyright

IBM

Corp.

1999

-

2004

205

Delimited

ASCII

(DEL)

File

Format

DEL

files

have

differences

based

on

the

operating

system

on

which

they

were

created.

The

differences

are:

v

Row

separator

characters

–

UNIX

based

text

files

use

a

line

feed

(LF)

character.

–

Non-UNIX

based

text

files

use

a

carriage

return/line

feed

(CRLF)

sequence.
v

End-of-file

character

–

UNIX

based

text

files

do

not

have

an

end-of-file

character.

–

Non-UNIX

based

text

files

have

an

end-of-file

character

(X’1A’).

Since

DEL

export

files

are

text

files,

they

can

be

transferred

from

one

operating

system

to

another.

File

transfer

programs

can

handle

operating

system-dependant

differences

if

you

transfer

the

files

in

text

mode;

the

conversion

of

row

separator

and

end-of-file

characters

is

not

performed

in

binary

mode.

Note:

If

character

data

fields

contain

row

separator

characters,

these

will

also

be

converted

during

file

transfer.

This

conversion

causes

unexpected

changes

to

the

data

and,

for

this

reason,

it

is

recommended

that

you

do

not

use

DEL

export

files

to

move

data

across

platforms.

Use

the

PC/IXF

file

format

instead.

WSF

File

Format

Numeric™

data

in

WSF

format

files

is

stored

using

Intel

machine

format.

This

format

allows

Lotus®

WSF

files

to

be

transferred

and

used

in

different

Lotus

operating

environments

(for

example,

in

Intel

based

and

UNIX

based

systems).

As

a

result

of

this

consistency

in

internal

formats,

exported

WSF

files

from

DB2

products

can

be

used

by

Lotus

1-2-3®

or

Symphony

running

on

a

different

platform.

DB2

products

can

also

import

WSF

files

that

were

created

on

different

platforms.

Transfer

WSF

files

between

operating

systems

in

binary

(not

text)

mode.

Note:

Do

not

use

the

WSF

file

format

to

transfer

data

between

DB2

databases

on

different

platforms,

because

a

loss

of

data

can

occur.

Use

the

PC/IXF

file

format

instead.

Related

reference:

v

“Export/Import/Load

Utility

File

Formats”

on

page

243

Moving

Data

With

DB2

Connect

If

you

are

working

in

a

complex

environment

in

which

you

need

to

move

data

between

a

host

database

system

and

a

workstation,

you

can

use

DB2

Connect,

the

gateway

for

data

transfer

between

the

host

and

the

workstation

(see

Figure

13

on

page

207).

206

Data

Movement

Utilities

The

DB2

export

and

import

utilities

allow

you

to

move

data

from

a

host

or

iSeries

server

database

to

a

file

on

the

DB2

Connect

workstation,

and

the

reverse.

You

can

then

use

the

data

with

any

other

application

or

relational

database

management

system

that

supports

this

export

or

import

format.

For

example,

you

can

export

data

from

a

host

or

iSeries

server

database

into

a

PC/IXF

file,

and

then

import

it

into

a

DB2

for

Windows

database.

You

can

perform

export

and

import

operations

from

a

database

client

or

from

the

DB2

Connect

workstation.

Notes:

1.

The

data

to

be

exported

or

imported

must

comply

with

the

size

and

data

type

restrictions

that

are

applicable

to

both

databases.

2.

To

improve

import

performance,

you

can

use

compound

SQL.

Specify

the

compound

file

type

modifier

in

the

import

utility

to

group

a

specified

number

of

SQL

statements

into

a

block.

This

may

reduce

network

overhead

and

improve

response

time.

Restrictions:

With

DB2

Connect,

export

and

import

operations

must

meet

the

following

conditions:

v

The

file

type

must

be

PC/IXF.

v

A

target

table

with

attributes

that

are

compatible

with

the

data

must

be

created

on

the

target

server

before

you

can

import

to

it.

The

db2look

utility

can

be

used

to

get

the

attributes

of

the

source

table.

Import

through

DB2

Connect

cannot

create

a

table,

because

INSERT

is

the

only

supported

option.

If

any

of

these

conditions

is

not

met,

the

operation

fails,

and

an

error

message

is

returned.

Note:

Index

definitions

are

not

stored

on

export

or

used

on

import.

If

you

export

or

import

mixed

data

(columns

containing

both

single-byte

and

double-byte

data),

consider

the

following:

DB2 for z/OS
Database Server
(DBMS)

DB2 UDB client
executing Import/Export

Database
table

DB2 Connect

Figure

13.

Import/Export

through

DB2

Connect

Chapter

6.

Moving

Data

Between

Systems

207

|

v

On

systems

that

store

data

in

EBCDIC

(MVS,

OS/390,

OS/400,

VM,

and

VSE),

shift-out

and

shift-in

characters

mark

the

start

and

the

end

of

double-byte

data.

When

you

define

column

lengths

for

your

database

tables,

be

sure

to

allow

enough

room

for

these

characters.

v

Variable-length

character

columns

are

recommended,

unless

the

column

data

has

a

consistent

pattern.

Moving

Data

from

a

workstation

to

a

host

server:

To

move

data

to

a

host

or

AS/400

and

iSeries

server

database:

1.

Export

the

data

from

a

DB2

table

to

a

PC/IXF

file.

2.

Using

the

INSERT

option,

import

the

PC/IXF

file

into

a

compatible

table

in

the

host

server

database.

To

move

data

from

a

host

server

database

to

a

workstation:

1.

Export

the

data

from

the

host

server

database

table

to

a

PC/IXF

file.

2.

Import

the

PC/IXF

file

into

a

DB2

table.

Example

The

following

example

illustrates

how

to

move

data

from

a

workstation

to

a

host

or

AS/400

and

iSeries

server

database.

1.

Export

the

data

into

an

external

IXF

format

by

issuing

the

following

command:

db2

export

to

staff.ixf

of

ixf

select

*

from

userid.staff

2.

Issue

the

following

command

to

establish

a

DRDA

connection

to

the

target

DB2

UDB

server:

db2

connect

to

cbc664

user

admin

using

xxx

3.

If

it

doesn’t

already

exit,

create

the

target

table

on

target

DB2

UDB

server_

CREATE

TABLE

mydb.staff

(ID

SMALLINT

NOT

NULL,

NAME

VARCHAR(9),

DEPT

SMALLINT,

JOB

CHAR(5),

YEARS

SMALLINT,

SALARY

DECIMAL(7,2),

COMM

DECIMAL(7,2))

4.

To

import

the

data

issue

the

following

command:

db2

import

from

staff.ixf

of

ixf

insert

into

mydb.staff

Each

row

of

data

will

be

read

from

the

file

in

IXF

format,

and

an

SQL

INSERT

statement

will

be

issued

to

insert

the

row

into

table

mydb.staff.

Single

rows

will

continue

to

be

inserted

until

all

of

the

data

has

been

moved

to

the

target

table.

Detailed

information

is

available

in

the

following

IBM

Redbook:

Moving

Data

Across

the

DB2

Family.

This

Redbook

can

be

found

at

the

following

URL:

http://www.redbooks.ibm.com/redbooks/SG246905.html.

Related

concepts:

v

“Moving

data

across

platforms

-

file

format

considerations”

on

page

205

Related

reference:

v

“EXPORT”

on

page

8

v

“IMPORT”

on

page

35

208

Data

Movement

Utilities

|
|
|

db2move

-

Database

Movement

Tool

This

tool

facilitates

the

movement

of

large

numbers

of

tables

between

DB2

databases

located

on

workstations.

The

tool

queries

the

system

catalog

tables

for

a

particular

database

and

compiles

a

list

of

all

user

tables.

It

then

exports

these

tables

in

PC/IXF

format.

The

PC/IXF

files

can

be

imported

or

loaded

to

another

local

DB2

database

on

the

same

system,

or

can

be

transferred

to

another

workstation

platform

and

imported

or

loaded

to

a

DB2

database

on

that

platform.

Note:

Tables

with

structured

type

columns

are

not

moved

when

this

tool

is

used.

Authorization:

This

tool

calls

the

DB2

export,

import,

and

load

APIs,

depending

on

the

action

requested

by

the

user.

Therefore,

the

requesting

user

ID

must

have

the

correct

authorization

required

by

those

APIs,

or

the

request

will

fail.

Command

syntax:

��

db2move

dbname

action

�

-tc

table-creators

-tn

table-names

-sn

schema-names

-ts

tablespace-names

-tf

filename

-io

import-option

-lo

load-option

-l

lobpaths

-u

userid

-p

password

-aw

��

Command

parameters:

dbname

Name

of

the

database.

action

Must

be

one

of:

EXPORT,

IMPORT,

or

LOAD.

-tc

table-creators.

The

default

is

all

creators.

This

is

an

EXPORT

action

only.

If

specified,

only

those

tables

created

by

the

creators

listed

with

this

option

are

exported.

If

not

specified,

the

default

is

to

use

all

creators.

When

specifying

multiple

creators,

they

must

be

separated

by

commas;

no

blanks

are

allowed

between

creator

IDs.

The

maximum

number

of

creators

that

can

be

specified

is

10.

This

option

can

be

used

with

the

“-tn”

table-names

option

to

select

the

tables

for

export.

An

asterisk

(*)

can

be

used

as

a

wildcard

character

that

can

be

placed

anywhere

in

the

string.

-tn

table-names.

The

default

is

all

user

tables.

This

is

an

EXPORT

action

only.

If

specified,

only

those

tables

whose

names

match

exactly

those

in

the

specified

string

are

exported.

If

not

specified,

the

default

is

to

use

all

user

tables.

When

specifying

multiple

table

names,

they

must

be

separated

by

commas;

no

blanks

are

allowed

between

table

names.

The

maximum

number

of

table

names

that

can

be

specified

is

10.

db2move

-

Database

Movement

Tool

Chapter

6.

Moving

Data

Between

Systems

209

This

option

can

be

used

with

the

“-tc”

table-creators

option

to

select

the

tables

for

export.

db2move

will

only

export

those

tables

whose

names

match

the

specified

table

names

and

whose

creators

match

the

specified

table

creators.

An

asterisk

(*)

can

be

used

as

a

wildcard

character

that

can

be

placed

anywhere

in

the

string.

-sn

schema-names.

The

default

is

all

schemas.

If

specified,

only

those

tables

whose

schema

names

match

exactly

will

be

exported.

If

the

asterisk

wildcard

character

(*)

is

used

in

the

schema

names,

it

will

be

changed

to

a

percent

sign

(%)

and

the

table

name

(with

percent

sign)

will

be

used

in

the

LIKE

predicate

of

the

WHERE

clause.

If

not

specified,

the

default

is

to

use

all

schemas.

If

multiple

schema

names

are

specified,

they

must

be

separated

by

commas;

no

blanks

are

allowed

between

schema

names.

The

maximum

number

of

schema

names

that

can

be

specified

is

10.

If

used

with

the

-tn

or

-tc

option,

db2move

will

export

only

those

tables

whose

schemas

match

the

specified

schema

names

and

whose

creators

match

the

specified

creators.

Note:

Schema

names

of

less

than

8

character

are

padded

to

8

characters

in

length.

For

example,

a

schema

name

’fred’

has

to

be

specified

″-sn

fr*d*″

instead

of

″-sn

fr*d″

when

using

an

asterisk.

-ts

tablespace-names.

The

default

is

all

table

spaces.

This

is

an

EXPORT

action

only.

If

this

option

is

specified,

only

those

tables

that

reside

in

the

specified

table

space

will

be

exported.

If

the

asterisk

wildcard

character

(*)

is

used

in

the

table

space

name,

it

will

be

changed

to

a

percent

sign

(%)

and

the

table

name

(with

percent

sign)

will

be

used

in

the

LIKE

predicate

in

the

WHERE

clause.

If

the

-ts

option

is

not

specified,

the

default

is

to

use

all

table

spaces.

If

multiple

table

space

names

are

specified,

they

must

be

separated

by

commas;

no

blanks

are

allowed

between

table

space

names.

The

maximum

number

of

table

space

names

that

can

be

specified

is

10.

Note:

Table

space

names

less

than

8

characters

are

padded

to

8

characters

in

length.

For

example,

a

table

space

name

’mytb’

has

to

be

specified

″-ts

my*b*″

instead

of

″-sn

my*b″

when

using

the

asterisk.

-tf

filename

This

is

an

EXPORT

action

only.

If

specified,

only

the

tables

listed

in

the

given

file

will

be

exported.

The

tables

should

be

listed

one

per

line,

and

each

table

should

be

fully

qualified.

Here

is

an

example

of

the

contents

of

a

file:

"SCHEMA1"."TABLE

NAME1"

"SCHEMA

NAME77"."TABLE155"

-io

import-option.

The

default

is

REPLACE_CREATE.

Valid

options

are:

INSERT,

INSERT_UPDATE,

REPLACE,

CREATE,

and

REPLACE_CREATE.

-lo

load-option.

The

default

is

INSERT.

Valid

options

are:

INSERT

and

REPLACE.

-l

lobpaths.

The

default

is

the

current

directory.

db2move

-

Database

Movement

Tool

210

Data

Movement

Utilities

22

2
2
2
2
2
2
2
2
2

2
2
2

22

2
2
2
2

2
2

This

option

specifies

the

absolute

path

names

where

LOB

files

are

created

(as

part

of

EXPORT)

or

searched

for

(as

part

of

IMPORT

or

LOAD).

When

specifying

multiple

LOB

paths,

each

must

be

separated

by

commas;

no

blanks

are

allowed

between

LOB

paths.

If

the

first

path

runs

out

of

space

(during

EXPORT),

or

the

files

are

not

found

in

the

path

(during

IMPORT

or

LOAD),

the

second

path

will

be

used,

and

so

on.

If

the

action

is

EXPORT,

and

LOB

paths

are

specified,

all

files

in

the

LOB

path

directories

are

deleted,

the

directories

are

removed,

and

new

directories

are

created.

If

not

specified,

the

current

directory

is

used

for

the

LOB

path.

-u

userid.

The

default

is

the

logged

on

user

ID.

Both

user

ID

and

password

are

optional.

However,

if

one

is

specified,

the

other

must

be

specified.

If

the

command

is

run

on

a

client

connecting

to

a

remote

server,

user

ID

and

password

should

be

specified.

-p

password.

The

default

is

the

logged

on

password.

Both

user

ID

and

password

are

optional.

However,

if

one

is

specified,

the

other

must

be

specified.

If

the

command

is

run

on

a

client

connecting

to

a

remote

server,

user

ID

and

password

should

be

specified.

-aw

Allow

Warnings.

When

’-aw’

is

not

specified,

tables

that

experience

warnings

during

export

are

not

included

in

the

db2move.lst

file

(although

that

table’s

.ixf

file

and

.msg

file

are

still

generated).

In

some

scenarios

(such

as

data

truncation)

the

user

may

wish

to

allow

such

tables

to

be

included

in

the

db2move.lst

file.

Specifing

this

option

allows

tables

which

receive

warnings

during

export

to

be

included

in

the

.lst

file.

Examples:

v

db2move

sample

export

This

will

export

all

tables

in

the

SAMPLE

database;

default

values

are

used

for

all

options.

v

db2move

sample

export

-tc

userid1,us*rid2

-tn

tbname1,*tbname2

This

will

export

all

tables

created

by

“userid1”

or

user

IDs

LIKE

“us%rid2”,

and

with

the

name

“tbname1”

or

table

names

LIKE

“%tbname2”.

v

db2move

sample

import

-l

D:\LOBPATH1,C:\LOBPATH2

This

example

is

applicable

to

the

Windows

operating

system

only.

The

command

will

import

all

tables

in

the

SAMPLE

database;

LOB

paths

“D:\LOBPATH1”

and

“C:\LOBPATH2”

are

to

be

searched

for

LOB

files.

v

db2move

sample

load

-l

/home/userid/lobpath,/tmp

This

example

is

applicable

to

UNIX

based

systems

only.

The

command

will

load

all

tables

in

the

SAMPLE

database;

both

the

/home/userid/lobpath

subdirectory

and

the

tmp

subdirectory

are

to

be

searched

for

LOB

files.

v

db2move

sample

import

-io

replace

-u

userid

-p

password

This

will

import

all

tables

in

the

SAMPLE

database

in

REPLACE

mode;

the

specified

user

ID

and

password

will

be

used.

Usage

notes:

This

tool

exports,

imports,

or

loads

user-created

tables.

If

a

database

is

to

be

duplicated

from

one

operating

system

to

another

operating

system,

db2move

facilitates

the

movement

of

the

tables.

It

is

also

necessary

to

move

all

other

objects

associated

with

the

tables,

such

as

aliases,

views,

triggers,

user-defined

functions,

db2move

-

Database

Movement

Tool

Chapter

6.

Moving

Data

Between

Systems

211

|
|
|
|

and

so

on.

If

the

import

utility

with

the

REPLACE_CREATE

option

is

used

to

create

the

tables

on

the

target

database,

then

the

limitations

outlined

in

Using

import

to

recreate

an

exported

table

are

imposed.

If

unexpected

errors

are

encountered

during

the

db2move

import

phase

when

the

REPLACE_CREATE

option

is

used,

examine

the

appropriate

tabnnn.msg

message

file

and

consider

that

the

errors

may

be

the

result

of

the

limitations

on

table

creation.

When

export,

import,

or

load

APIs

are

called

by

db2move,

the

FileTypeMod

parameter

is

set

to

lobsinfile.

That

is,

LOB

data

is

kept

in

separate

files

from

PC/IXF

files.

There

are

26

000

file

names

available

for

LOB

files.

The

LOAD

action

must

be

run

locally

on

the

machine

where

the

database

and

the

data

file

reside.

When

the

load

API

is

called

by

db2move,

the

CopyTargetList

parameter

is

set

to

NULL;

that

is,

no

copying

is

done.

If

logretain

is

on,

the

load

operation

cannot

be

rolled

forward

later.

The

table

space

where

the

loaded

tables

reside

is

placed

in

backup

pending

state,

and

is

not

accessible.

A

full

database

backup,

or

a

table

space

backup,

is

required

to

take

the

table

space

out

of

backup

pending

state.

Note:

’db2move

import’

performance

may

be

improved

by

altering

default

buffer

pool,

IBMDEFAULTBP;

and

by

updating

the

configuration

parameters

sortheap,

util_heap_sz,

logfilsz,

and

logprimary.

Files

Required/Generated

When

Using

EXPORT:

v

Input:

None.

v

Output:

EXPORT.out

The

summarized

result

of

the

EXPORT

action.

db2move.lst

The

list

of

original

table

names,

their

corresponding

PC/IXF

file

names

(tabnnn.ixf),

and

message

file

names

(tabnnn.msg).

This

list,

the

exported

PC/IXF

files,

and

LOB

files

(tabnnnc.yyy)

are

used

as

input

to

the

db2move

IMPORT

or

LOAD

action.

tabnnn.ixf

The

exported

PC/IXF

file

of

a

specific

table.

tabnnn.msg

The

export

message

file

of

the

corresponding

table.

tabnnnc.yyy

The

exported

LOB

files

of

a

specific

table.

“nnn”

is

the

table

number.

“c”

is

a

letter

of

the

alphabet.

“yyy”

is

a

number

ranging

from

001

to

999.

These

files

are

created

only

if

the

table

being

exported

contains

LOB

data.

If

created,

these

LOB

files

are

placed

in

the

“lobpath”

directories.

There

are

a

total

of

26

000

possible

names

for

the

LOB

files.

system.msg

The

message

file

containing

system

messages

for

creating

or

deleting

file

or

directory

commands.

This

is

only

used

if

the

action

is

EXPORT,

and

a

LOB

path

is

specified.

Files

Required/Generated

When

Using

IMPORT:

v

Input:

db2move.lst

An

output

file

from

the

EXPORT

action.

tabnnn.ixf

An

output

file

from

the

EXPORT

action.

tabnnnc.yyy

An

output

file

from

the

EXPORT

action.

db2move

-

Database

Movement

Tool

212

Data

Movement

Utilities

|
|
|
|
|
|

v

Output:

IMPORT.out

The

summarized

result

of

the

IMPORT

action.

tabnnn.msg

The

import

message

file

of

the

corresponding

table.

Files

Required/Generated

When

Using

LOAD:

v

Input:

db2move.lst

An

output

file

from

the

EXPORT

action.

tabnnn.ixf

An

output

file

from

the

EXPORT

action.

tabnnnc.yyy

An

output

file

from

the

EXPORT

action.
v

Output:

LOAD.out

The

summarized

result

of

the

LOAD

action.

tabnnn.msg

The

LOAD

message

file

of

the

corresponding

table.

Related

reference:

v

“db2look

-

DB2

Statistics

and

DDL

Extraction

Tool

Command”

in

the

Command

Reference

db2relocatedb

-

Relocate

Database

Renames

a

database,

or

relocates

a

database

or

part

of

a

database

(for

example,

the

container

and

the

log

directory)

as

specified

in

the

configuration

file

provided

by

the

user.

This

tool

makes

the

necessary

changes

to

the

DB2

instance

and

database

support

files.

Authorization:

None

Command

syntax:

��

db2relocatedb

-f

configFilename

��

Command

parameters:

-f

configFilename

Specifies

the

name

of

the

file

containing

configuration

information

necessary

for

relocating

the

database.

This

can

be

a

relative

or

absolute

filename.

The

format

of

the

configuration

file

is:

DB_NAME=oldName,newName

DB_PATH=oldPath,newPath

INSTANCE=oldInst,newInst

NODENUM=nodeNumber

LOG_DIR=oldDirPath,newDirPath

CONT_PATH=oldContPath1,newContPath1

CONT_PATH=oldContPath2,newContPath2

...

Where:

DB_NAME

Specifies

the

name

of

the

database

being

relocated.

If

the

database

name

is

being

changed,

both

the

old

name

and

the

new

name

must

be

specified.

This

is

a

required

field.

db2move

-

Database

Movement

Tool

Chapter

6.

Moving

Data

Between

Systems

213

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

DB_PATH

Specifies

the

path

of

the

database

being

relocated.

This

is

the

path

where

the

database

was

originally

created.

If

the

database

path

is

changing,

both

the

old

path

and

new

path

must

be

specified.

This

is

a

required

field.

INSTANCE

Specifies

the

instance

where

the

database

exists.

If

the

database

is

being

moved

to

a

new

instance,

both

the

old

instance

and

new

instance

must

be

specified.

This

is

a

required

field.

NODENUM

Specifies

the

node

number

for

the

database

node

being

changed.

The

default

is

0.

LOG_DIR

Specifies

a

change

in

the

location

of

the

log

path.

If

the

log

path

is

being

changed,

then

both

the

old

path

and

new

path

must

be

specified.

This

specification

is

optional

if

the

log

path

resides

under

the

database

path,

in

which

case

the

path

is

updated

automatically.

CONT_PATH

Specifies

a

change

in

the

location

of

table

space

containers.

Both

the

old

and

new

container

path

must

be

specified.

Multiple

CONT_PATH

lines

can

be

provided

if

there

are

multiple

container

path

changes

to

be

made.

This

specification

is

optional

if

the

container

paths

reside

under

the

database

path,

in

which

case

the

paths

are

updated

automatically.

If

you

are

making

changes

to

more

than

one

container

where

the

same

old

path

is

being

replaced

by

a

common

new

path,

a

single

CONT_PATH

entry

can

be

used.

In

such

a

case,

an

asterisk

(*)

could

be

used

both

in

the

old

and

new

paths

as

a

wildcard.

Note:

Blank

lines

or

lines

beginning

with

a

comment

character

(#)

will

be

ignored.

Usage

notes:

If

the

instance

that

a

database

belongs

to

is

changing,

the

following

must

be

done

before

running

this

command

to

ensure

that

changes

to

the

instance

and

database

support

files

will

be

made:

v

If

a

database

is

being

moved

to

another

instance,

create

the

new

instance.

v

Copy

the

files/devices

belonging

to

the

databases

being

copied

onto

the

system

where

the

new

instance

resides.

The

path

names

must

be

changed

as

necessary.

However,

if

there

are

already

databases

in

the

directory

where

the

database

files

are

moved

to,

you

can

mistakenly

overwrite

the

existing

sqldbdir

file,

thereby

removing

the

references

to

the

existing

databases.

In

this

scenario,

the

db2relocatedb

utility

cannot

be

used.

Instead

of

db2relocatedb,

an

alternative

is

a

redirected

restore.

v

Change

the

permission

of

the

files/devices

that

were

copied

so

that

they

are

owned

by

the

instance

owner.

If

the

instance

is

changing,

the

tool

must

be

run

by

the

new

instance

owner.

In

a

partitioned

database

environment,

this

tool

must

be

run

against

every

partition

that

requires

changes.

A

separate

configuration

file

must

be

supplied

for

each

partition,

that

includes

the

NODENUM

value

of

the

partition

being

changed.

db2relocatedb

-

Relocate

Database

214

Data

Movement

Utilities

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|

For

example,

if

the

name

of

a

database

is

being

changed,

every

partition

will

be

affected

and

the

db2relocatedb

command

must

be

run

with

a

separate

configuration

file

on

each

partition.

If

containers

belonging

to

a

single

database

partition

are

being

moved,

the

db2relocatedb

command

only

needs

to

be

run

once

on

that

partition.

Examples:

Example

1

To

change

the

name

of

the

database

TESTDB

to

PRODDB

in

the

instance

db2inst1

that

resides

on

the

path

/home/db2inst1,

create

the

following

configuration

file:

DB_NAME=TESTDB,PRODDB

DB_PATH=/home/db2inst1

INSTANCE=db2inst1

NODENUM=0

Save

the

configuration

file

as

relocate.cfg

and

use

the

following

command

to

make

the

changes

to

the

database

files:

db2relocatedb

-f

relocate.cfg

Example

2

To

move

the

database

DATAB1

from

the

instance

jsmith

on

the

path

/dbpath

to

the

instance

prodinst

do

the

following:

1.

Move

the

files

in

the

directory

/dbpath/jsmith

to

/dbpath/prodinst.

2.

Use

the

following

configuration

file

with

the

db2relocatedb

command

to

make

the

changes

to

the

database

files:

DB_NAME=DATAB1

DB_PATH=/dbpath

INSTANCE=jsmith,prodinst

NODENUM=0

Example

3

The

database

PRODDB

exists

in

the

instance

inst1

on

the

path

/databases/PRODDB.

The

location

of

two

table

space

containers

needs

to

be

changed

as

follows:

v

SMS

container

/data/SMS1

needs

to

be

moved

to

/DATA/NewSMS1.

v

DMS

container

/data/DMS1

needs

to

be

moved

to

/DATA/DMS1.

After

the

physical

directories

and

files

have

been

moved

to

the

new

locations,

the

following

configuration

file

can

be

used

with

the

db2relocatedb

command

to

make

changes

to

the

database

files

so

that

they

recognize

the

new

locations:

DB_NAME=PRODDB

DB_PATH=/databases/PRODDB

INSTANCE=inst1

NODENUM=0

CONT_PATH=/data/SMS1,/DATA/NewSMS1

CONT_PATH=/data/DMS1,/DATA/DMS1

Example

4

The

database

TESTDB

exists

in

the

instance

db2inst1

and

was

created

on

the

path

/databases/TESTDB.

Table

spaces

were

then

created

with

the

following

containers:

db2relocatedb

-

Relocate

Database

Chapter

6.

Moving

Data

Between

Systems

215

|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|

|

|

|
|

|

|
|

|
|
|
|

|

|
|

|

|

|
|
|

|
|
|
|
|
|

|

|
|

TS1

TS2_Cont0

TS2_Cont1

/databases/TESTDB/TS3_Cont0

/databases/TESTDB/TS4/Cont0

/Data/TS5_Cont0

/dev/rTS5_Cont1

TESTDB

is

to

be

moved

to

a

new

system.

The

instance

on

the

new

system

will

be

newinst

and

the

location

of

the

database

will

be

/DB2.

When

moving

the

database,

all

of

the

files

that

exist

in

the

/databases/TESTDB/db2inst1

directory

must

be

moved

to

the

/DB2/newinst

directory.

This

means

that

the

first

5

containers

will

be

relocated

as

part

of

this

move.

(The

first

3

are

relative

to

the

database

directory

and

the

next

2

are

relative

to

the

database

path.)

Since

these

containers

are

located

within

the

database

directory

or

database

path,

they

do

not

need

to

be

listed

in

the

configuration

file.

If

the

2

remaining

containers

are

to

be

moved

to

different

locations

on

the

new

system,

they

must

be

listed

in

the

configuration

file.

After

the

physical

directories

and

files

have

been

moved

to

their

new

locations,

the

following

configuration

file

can

be

used

with

db2relocatedb

to

make

changes

to

the

database

files

so

that

they

recognize

the

new

locations:

DB_NAME=TESTDB

DB_PATH=/databases/TESTDB,/DB2

INSTANCE=db2inst1,newinst

NODENUM=0

CONT_PATH=/Data/TS5_Cont0,/DB2/TESTDB/TS5_Cont0

CONT_PATH=/dev/rTS5_Cont1,/dev/rTESTDB_TS5_Cont1

Example

5

The

database

TESTDB

has

two

partitions

on

database

partition

servers

10

and

20.

The

instance

is

servinst

and

the

database

path

is

/home/servinst

on

both

database

partition

servers.

The

name

of

the

database

is

being

changed

to

SERVDB

and

the

database

path

is

being

changed

to

/databases

on

both

database

partition

servers.

In

addition,

the

log

directory

is

being

changed

on

database

partition

server

20

from

/testdb_logdir

to

/servdb_logdir.

Since

changes

are

being

made

to

both

database

partitions,

a

configuration

file

must

be

created

for

each

database

partition

and

db2relocatedb

must

be

run

on

each

database

partition

server

with

the

corresponding

configuration

file.

On

database

partition

server

10,

the

following

configuration

file

will

be

used:

DB_NAME=TESTDB,SERVDB

DB_PATH=/home/servinst,/databases

INSTANCE=servinst

NODE_NUM=10

On

database

partition

server

20,

the

following

configuration

file

will

be

used:

DB_NAME=TESTDB,SERVDB

DB_PATH=/home/servinst,/databases

INSTANCE=servinst

NODE_NUM=20

LOG_DIR=/testdb_logdir,/servdb_logdir

Example

6

db2relocatedb

-

Relocate

Database

216

Data

Movement

Utilities

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

The

database

MAINDB

exists

in

the

instance

maininst

on

the

path

/home/maininst.

The

location

of

four

table

space

containers

needs

to

be

changed

as

follows:

/maininst_files/allconts/C0

needs

to

be

moved

to

/MAINDB/C0

/maininst_files/allconts/C1

needs

to

be

moved

to

/MAINDB/C1

/maininst_files/allconts/C2

needs

to

be

moved

to

/MAINDB/C2

/maininst_files/allconts/C3

needs

to

be

moved

to

/MAINDB/C3

After

the

physical

directories

and

files

are

moved

to

the

new

locations,

the

following

configuration

file

can

be

used

with

the

db2relocatedb

command

to

make

changes

to

the

database

files

so

that

they

recognize

the

new

locations.

Note:

A

similar

change

is

being

made

to

all

of

the

containters;

that

is,

/maininst_files/allconts/

is

being

replaced

by

/MAINDB/

so

that

a

single

entry

with

the

wildcard

character

can

be

used:

DB_NAME=MAINDB

DB_PATH=/home/maininst

INSTANCE=maininst

NODE_NUM=0

CONT_PATH=/maininst_files/allconts/*,

/MAINDB/*

Related

reference:

v

“db2inidb

-

Initialize

a

Mirrored

Database

Command”

in

the

Command

Reference

Delimiter

restrictions

for

moving

data

Delimiter

restrictions:

It

is

the

user’s

responsibility

to

ensure

that

the

chosen

delimiter

character

is

not

part

of

the

data

to

be

moved.

If

it

is,

unexpected

errors

may

occur.

The

following

restrictions

apply

to

column,

string,

DATALINK,

and

decimal

point

delimiters

when

moving

data:

v

Delimiters

are

mutually

exclusive.

v

A

delimiter

cannot

be

binary

zero,

a

line-feed

character,

a

carriage-return,

or

a

blank

space.

v

The

default

decimal

point

(.)

cannot

be

a

string

delimiter.

v

The

following

characters

are

specified

differently

by

an

ASCII-family

code

page

and

an

EBCDIC-family

code

page:

–

The

Shift-In

(0x0F)

and

the

Shift-Out

(0x0E)

character

cannot

be

delimiters

for

an

EBCDIC

MBCS

data

file.

–

Delimiters

for

MBCS,

EUC,

or

DBCS

code

pages

cannot

be

greater

than

0x40,

except

the

default

decimal

point

for

EBCDIC

MBCS

data,

which

is

0x4b.

–

Default

delimiters

for

data

files

in

ASCII

code

pages

or

EBCDIC

MBCS

code

pages

are:

"

(0x22,

double

quotation

mark;

string

delimiter)

,

(0x2c,

comma;

column

delimiter)

–

Default

delimiters

for

data

files

in

EBCDIC

SBCS

code

pages

are:

"

(0x7F,

double

quotation

mark;

string

delimiter)

,

(0x6B,

comma;

column

delimiter)

–

The

default

decimal

point

for

ASCII

data

files

is

0x2e

(period).

–

The

default

decimal

point

for

EBCDIC

data

files

is

0x4B

(period).

db2relocatedb

-

Relocate

Database

Chapter

6.

Moving

Data

Between

Systems

217

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

–

If

the

code

page

of

the

server

is

different

from

the

code

page

of

the

client,

it

is

recommended

that

the

hex

representation

of

non-default

delimiters

be

specified.

For

example,

db2

load

from

...

modified

by

chardel0x0C

coldelX1e

...

The

following

information

about

support

for

double

character

delimiter

recognition

in

DEL

files

applies

to

the

export,

import,

and

load

utilities:

v

Character

delimiters

are

permitted

within

the

character-based

fields

of

a

DEL

file.

This

applies

to

fields

of

type

CHAR,

VARCHAR,

LONG

VARCHAR,

or

CLOB

(except

when

lobsinfile

is

specified).

Any

pair

of

character

delimiters

found

between

the

enclosing

character

delimiters

is

imported

or

loaded

into

the

database.

For

example,

"What

a

""nice""

day!"

will

be

imported

as:

What

a

"nice"

day!

In

the

case

of

export,

the

rule

applies

in

reverse.

For

example,

I

am

6"

tall.

will

be

exported

to

a

DEL

file

as:

"I

am

6""

tall."

v

In

a

DBCS

environment,

the

pipe

(|)

character

delimiter

is

not

supported.

Moving

data

between

typed

tables

The

DB2®

export

and

import

utilities

can

be

used

to

move

data

out

of,

and

into,

typed

tables.

Typed

tables

may

be

in

a

hierarchy.

Data

movement

across

hierarchies

can

include:

v

Movement

from

one

hierarchy

to

an

identical

hierarchy.

v

Movement

from

one

hierarchy

to

a

sub-section

of

a

larger

hierarchy.

v

Movement

from

a

sub-section

of

a

large

hierarchy

to

a

separate

hierarchy.

The

IMPORT

CREATE

option

allows

you

to

create

both

the

table

hierarchy

and

the

type

hierarchy.

Identification

of

types

in

a

hierarchy

is

database

dependent.

This

means

that

in

different

databases,

the

same

type

has

a

different

identifier.

Therefore,

when

moving

data

between

these

databases,

a

mapping

of

the

same

types

must

be

done

to

ensure

that

the

data

is

moved

correctly.

Before

each

typed

row

is

written

out

during

an

export

operation,

an

identifier

is

translated

into

an

index

value.

This

index

value

can

be

any

number

from

one

to

the

number

of

relevant

types

in

the

hierarchy.

Index

values

are

generated

by

numbering

each

type

when

moving

through

the

hierarchy

in

a

specific

order.

This

order

is

called

the

traverse

order.

It

is

the

order

of

proceeding

top-to-bottom,

left-to-right

through

all

of

the

supertables

and

subtables

in

the

hierarchy.

The

traverse

order

is

important

when

moving

data

between

table

hierarchies,

because

it

determines

where

the

data

is

moved

in

relation

to

other

data.

One

method

is

to

proceed

from

the

top

of

the

hierarchy

(or

the

root

table),

down

the

hierarchy

(subtables)

to

the

bottom

subtable,

then

back

up

to

its

supertable,

down

to

the

next

“right-most”

subtable(s),

then

back

up

to

next

higher

supertable,

down

to

its

subtables,

and

so

on.

db2relocatedb

-

Relocate

Database

218

Data

Movement

Utilities

The

following

figure

shows

a

hierarchy

with

four

valid

traverse

orders:

v

Person,

Employee,

Manager,

Architect,

Student.

v

Person,

Student,

Employee,

Manager,

Architect

(this

traverse

order

is

marked

with

the

dotted

line).

v

Person,

Employee,

Architect,

Manager,

Student.

v

Person,

Student,

Employee,

Architect,

Manager.

Related

concepts:

v

“Export

Overview”

on

page

1

v

“Import

Overview”

on

page

25

Moving

Data

Between

Typed

Tables

-

Details

Traverse

Order

There

is

a

default

traverse

order,

in

which

all

relevant

types

refer

to

all

reachable

types

in

the

hierarchy

from

a

given

starting

point

in

the

hierarchy.

The

default

order

includes

all

tables

in

the

hierarchy,

and

each

table

is

ordered

by

the

scheme

used

in

the

OUTER

order

predicate.

There

is

also

a

user-specified

traverse

order,

in

which

the

user

defines

(in

a

traverse

order

list)

the

relevant

types

to

be

used.

The

same

traverse

order

must

be

used

when

invoking

the

export

utility

and

the

import

utility.

If

you

are

specifying

the

traverse

order,

remember

that

the

subtables

must

be

traversed

in

PRE-ORDER

fashion

(that

is,

each

branch

in

the

hierarchy

must

be

traversed

to

the

bottom

before

a

new

branch

is

started).

Default

Traverse

Order

The

default

traverse

order

behaves

differently

when

used

with

different

file

formats.

Assume

identical

table

hierarchy

and

type

relationships

in

the

following:

Exporting

data

to

the

PC/IXF

file

format

creates

a

record

of

all

relevant

types,

their

definitions,

and

relevant

tables.

Export

also

completes

the

mapping

of

an

index

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure

14.

Chapter

6.

Moving

Data

Between

Systems

219

value

to

each

table.

During

import,

this

mapping

is

used

to

ensure

accurate

movement

of

the

data

to

the

target

database.

When

working

with

the

PC/IXF

file

format,

you

should

use

the

default

traverse

order.

With

the

ASC,

DEL,

or

WSF

file

format,

the

order

in

which

the

typed

rows

and

the

typed

tables

were

created

could

be

different,

even

though

the

source

and

target

hierarchies

might

be

structurally

identical.

This

results

in

time

differences

that

the

default

traverse

order

will

identify

when

proceeding

through

the

hierarchies.

The

creation

time

of

each

type

determines

the

order

taken

through

the

hierarchy

at

both

the

source

and

the

target

when

using

the

default

traverse

order.

Ensure

that

the

creation

order

of

each

type

in

both

the

source

and

the

target

hierarchies

is

identical,

and

that

there

is

structural

identity

between

the

source

and

the

target.

If

these

conditions

cannot

be

met,

select

a

user-specified

traverse

order.

User-Specified

Traverse

Order

If

you

want

to

control

the

traverse

order

through

the

hierarchies,

ensure

that

the

same

traverse

order

is

used

for

both

the

export

and

the

import

utilities.

Given:

v

An

identical

definition

of

subtables

in

both

the

source

and

the

target

databases

v

An

identical

hierarchical

relationship

among

the

subtables

in

both

the

source

and

target

databases

v

An

identical

traverse

order

the

import

utility

guarantees

the

accurate

movement

of

data

to

the

target

database.

Although

you

determine

the

starting

point

and

the

path

down

the

hierarchy

when

defining

the

traverse

order,

each

branch

must

be

traversed

to

the

end

before

the

next

branch

in

the

hierarchy

can

be

started.

The

export

and

import

utilities

look

for

violations

of

this

condition

within

the

specified

traverse

order.

Related

reference:

v

“Delimited

ASCII

(DEL)

File

Format”

on

page

244

v

“Non-delimited

ASCII

(ASC)

File

Format”

on

page

249

v

“PC

Version

of

IXF

File

Format”

on

page

252

v

“Worksheet

File

Format

(WSF)”

on

page

290

Selection

During

Data

Movement

The

movement

of

data

from

one

hierarchical

structure

of

typed

tables

to

another

is

done

through

a

specific

traverse

order

and

the

creation

of

an

intermediate

flat

file.

The

export

utility

(in

conjunction

with

the

traverse

order)

controls

what

is

placed

in

that

file.

You

only

need

to

specify

the

target

table

name

and

the

WHERE

clause.

The

export

utility

uses

these

selection

criteria

to

create

an

appropriate

intermediate

file.

The

import

utility

controls

what

is

placed

in

the

target

database.

You

can

specify

an

attributes

list

at

the

end

of

each

subtable

name

to

restrict

the

attributes

that

are

moved

to

the

target

database.

If

no

attributes

list

is

used,

all

of

the

columns

in

each

subtable

are

moved.

The

import

utility

controls

the

size

and

the

placement

of

the

hierarchy

being

moved

through

the

CREATE,

INTO

table-name,

UNDER,

and

AS

ROOT

TABLE

parameters.

Related

reference:

220

Data

Movement

Utilities

v

“IMPORT”

on

page

35

Examples

of

Moving

Data

Between

Typed

Tables

Examples

in

this

section

are

based

on

the

following

hierarchical

structure:

Example

1

To

export

an

entire

hierarchy

and

then

recreate

it

through

an

import

operation:

DB2®

CONNECT

TO

Source_db

DB2

EXPORT

TO

entire_hierarchy.ixf

OF

IXF

HIERARCHY

STARTING

Person

DB2

CONNECT

TO

Target_db

DB2

IMPORT

FROM

entire_hierarchy.ixf

OF

IXF

CREATE

INTO

HIERARCHY

STARTING

Person

AS

ROOT

TABLE

Each

type

in

the

hierarchy

is

created

if

it

does

not

exist.

If

these

types

already

exist,

they

must

have

the

same

definition

in

the

target

database

as

in

the

source

database.

An

SQL

error

(SQL20013N)

is

returned

if

they

are

not

the

same.

Since

new

hierarchy

is

being

created,

none

of

the

subtables

defined

in

the

data

file

being

moved

to

the

target

database

(Target_db)

can

exist.

Each

of

the

tables

in

the

source

database

hierarchy

is

created.

Data

from

the

source

database

is

imported

into

the

correct

subtables

of

the

target

database.

Example

2

A

more

complex

example

shows

how

to

export

the

entire

hierarchy

of

the

source

database

and

import

it

to

the

target

database.

Although

all

of

the

data

for

those

people

over

the

age

of

20

will

be

exported,

only

selected

data

will

be

imported

to

the

target

database:

DB2

CONNECT

TO

Source_db

DB2

EXPORT

TO

entire_hierarchy.del

OF

DEL

HIERARCHY

(Person,

Employee,

Manager,

Architect,

Student)

WHERE

Age>=20

DB2

CONNECT

TO

Target_db

DB2

IMPORT

FROM

entire_hierarchy.del

OF

DEL

INSERT

INTO

(Person,

Employee(Salary),

Architect)

IN

HIERARCHY

(Person,

Employee,

Manager,

Architect,

Student)

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

Figure

15.

Chapter

6.

Moving

Data

Between

Systems

221

The

target

tables

Person,

Employee,

and

Architect

must

all

exist.

Data

is

imported

into

the

Person,

Employee,

and

Architect

subtables.

That

is,

the

following

will

be

imported:

v

All

columns

in

Person

into

Person.

v

All

columns

in

Person

plus

Salary

in

Employee

into

Employee.

v

All

columns

in

Person

plus

Salary

in

Employee,

plus

all

columns

in

Architect

into

Architect.

Columns

SerialNum

and

REF(Employee_t)

will

not

be

imported

into

Employee

or

its

subtables

(that

is,

Architect,

which

is

the

only

subtable

having

data

imported

into

it).

Note:

Because

Architect

is

a

subtable

of

Employee,

and

the

only

import

column

specified

for

Employee

is

Salary,

Salary

will

also

be

the

only

Employee-specific

column

imported

into

Architect.

That

is,

neither

SerialNum

nor

REF(Employee_t)

columns

are

imported

into

either

Employee

or

Architect

rows.

Data

for

the

Manager

and

the

Student

tables

is

not

imported.

Example

3

This

example

shows

how

to

export

from

a

regular

table,

and

import

as

a

single

subtable

in

a

hierarchy.

The

EXPORT

command

operates

on

regular

(non-typed)

tables,

so

there

is

no

Type_id

column

in

the

data

file.

The

modifier

no_type_id

is

used

to

indicate

this,

so

that

the

import

utility

does

not

expect

the

first

column

to

be

the

Type_id

column.

DB2

CONNECT

TO

Source_db

DB2

EXPORT

TO

Student_sub_table.del

OF

DEL

SELECT

*

FROM

Regular_Student

DB2

CONNECT

TO

Target_db

DB2

IMPORT

FROM

Student_sub_table.del

OF

DEL

METHOD

P(1,2,3,5,4)

MODIFIED

BY

NO_TYPE_ID

INSERT

INTO

HIERARCHY

(Student)

In

this

example,

the

target

table

Student

must

exist.

Since

Student

is

a

subtable,

the

modifier

no_type_id

is

used

to

indicate

that

there

is

no

Type_id

in

the

first

column.

However,

you

must

ensure

that

there

is

an

existing

Object_id

column,

in

addition

to

all

of

the

other

attributes

that

exist

in

the

Student

table.

Object-id

is

expected

to

be

the

first

column

in

each

row

imported

into

the

Student

table.

The

METHOD

clause

reverses

the

order

of

the

last

two

attributes.

Related

concepts:

v

“Moving

data

between

typed

tables”

on

page

218

Using

replication

to

move

data

Replication

allows

you

to

copy

data

on

a

regular

basis

to

multiple

remote

databases.

If

you

need

to

have

updates

to

a

master

database

automatically

copied

to

other

databases,

you

can

use

the

replication

features

of

DB2®

to

specify

what

data

should

be

copied,

which

database

tables

the

data

should

be

copied

to,

and

how

often

the

updates

should

be

copied.

The

replication

features

in

DB2

are

part

of

a

larger

IBM®

solution

for

replicating

data

in

small

and

large

enterprises.

222

Data

Movement

Utilities

The

IBM

Replication

tools

are

a

set

of

DB2

DataPropagator™

programs

and

DB2

Universal

Database™

tools

that

copy

data

between

distributed

relational

database

management

systems:

v

Between

DB2

Universal

Database

platforms.

v

Between

DB2

Universal

Database

platforms

and

host

databases

supporting

Distributed

Relational

Database

Architecture™

(DRDA)

connectivity.

v

Between

host

databases

that

support

DRDA®

connectivity.

Data

can

also

be

replicated

to

non-IBM

relational

database

management

systems

by

way

of

DB2

DataJoiner®.

You

can

use

the

IBM

Replication

tools

to

define,

synchronize,

automate,

and

manage

copy

operations

from

a

single

control

point

for

data

across

your

enterprise.

The

replication

tools

in

DB2

Universal

Database

offer

replication

between

relational

databases.

They

also

work

in

conjunction

with

IMS™

DataPropagator

(formerly

DPropNR)

to

replicate

IMS

and

VSAM

data,

and

with

Lotus®

NotesPump

to

replicate

to

and

from

Lotus

Notes®

databases.

Replication

allows

you

to

give

end

users

and

applications

access

to

production

data

without

putting

extra

load

on

the

production

database.

You

can

copy

the

data

to

a

database

that

is

local

to

a

user

or

an

application,

rather

than

have

them

access

the

data

remotely.

A

typical

replication

scenario

involves

a

source

table

with

copies

in

one

or

more

remote

databases;

for

example,

a

central

bank

and

its

local

branches.

At

predetermined

times,

automatic

updates

of

the

DB2

databases

takes

place,

and

all

changes

to

the

source

database

are

copied

to

the

target

database

tables.

The

replication

tools

allow

you

to

customize

the

copy

table

structure.

You

can

use

SQL

when

copying

to

the

target

database

to

enhance

the

data

being

copied.

You

can

produce

read-only

copies

that

duplicate

the

source

table,

capture

data

at

a

specified

point

in

time,

provide

a

history

of

changes,

or

stage

data

to

be

copied

to

additional

target

tables.

Moreover,

you

can

create

read-write

copies

that

can

be

updated

by

end

users

or

applications,

and

then

have

the

changes

replicated

back

to

the

master

table.

You

can

replicate

views

of

source

tables,

or

views

of

copies.

Event-driven

replication

is

also

possible.

You

can

replicate

data

between

DB2

databases

on

the

following

platforms:

AIX®,

AS/400®,

HP-UX,

Linux,

Windows®,

OS/390®,

SCO

UnixWare,

Solaris™

Operating

Environment,

Sequent®,

VM,

and

VSE.

You

can

also

replicate

data

between

DB2

and

the

following

non-DB2

databases

(with

DB2

DataJoiner):

Informix®,

Microsoft®

Jet,

Microsoft

SQL

Server,

Oracle®,

Sybase,

and

Sybase

SQLAnywhere.

In

conjunction

with

other

IBM

products,

you

can

replicate

DB2

data

to

and

from

IMS,

VSAM,

or

Lotus

Notes.

Finally,

you

can

also

replicate

data

to

DB2

Everywhere

on

Windows

CE,

or

Palm

OS

devices.

Related

concepts:

v

“The

IBM

Replication

Tools

by

Component”

on

page

224

Chapter

6.

Moving

Data

Between

Systems

223

IBM

Replication

Tools

The

IBM

Replication

Tools

by

Component

There

are

two

components

of

the

IBM®

Replication

tools

solution:

the

Capture

program

and

the

Apply

program.

You

can

set

up

these

components

using

the

DB2®

Control

Center.

The

operation

and

monitoring

of

these

components

happens

outside

of

the

Control

Center.

The

Capture

program

captures

changes

to

the

source

tables.

A

source

table

can

be:

v

An

external

table

containing

SQL

data

from

a

file

system

or

a

nonrelational

database

manager

loaded

outside

DB2

DataPropagator™.

v

An

existing

table

in

the

database.

v

A

table

that

has

previously

been

updated

by

the

Apply

program,

which

allows

changes

to

be

copied

back

to

the

source,

or

to

other

target

tables.

The

changes

are

copied

into

a

change

data

table,

where

they

are

stored

until

the

target

system

is

ready

to

copy

them.

The

Apply

program

then

takes

the

changes

from

the

change

data

table,

and

copies

them

to

the

target

tables.

Use

the

Control

Center

to:

v

Set

up

the

replication

environment.

v

Define

source

and

target

tables.

v

Specify

the

timing

of

automated

copying.

v

Specify

SQL

enhancements

to

the

data.

v

Define

relationships

between

the

source

and

the

target

tables.

Related

tasks:

v

“Planning

for

SQL

replication”

in

the

IBM

DB2

Information

Integrator

SQL

Replication

Guide

and

Reference

Using

the

Data

Warehouse

Center

to

Move

Data

You

can

use

the

Data

Warehouse

Center

(DWC)

to

move

data

from

operational

databases

to

a

warehouse

database,

which

users

can

query

for

decision

support.

You

can

also

use

the

DWC

to

define

the

structure

of

the

operational

databases,

called

sources.

You

can

then

specify

how

the

operational

data

is

to

be

moved

and

transformed

for

the

warehouse.

You

can

model

the

structure

of

the

tables

in

the

warehouse

database,

called

targets,

or

build

the

tables

automatically

as

part

of

the

process

of

defining

the

data

movement

operations.

The

Data

Warehouse

Center

uses

the

following

DB2®

functions

to

move

and

transform

data:

v

SQL

You

can

use

SQL

to

select

data

from

sources

and

insert

the

data

into

targets.

You

also

can

use

SQL

to

transform

the

data

into

its

warehouse

format.

You

can

use

the

Data

Warehouse

Center

to

generate

the

SQL,

or

you

can

write

your

own

SQL.

v

Load

and

export

utilities

224

Data

Movement

Utilities

You

can

use

these

DB2

utilities

to

export

data

from

a

source,

and

then

load

the

data

into

a

target.

These

utilities

are

useful

if

you

need

to

move

large

quantities

of

data.

The

Data

Warehouse

Center

supports

the

following

types

of

load

and

export

operations:

DB2

data

export

Exports

data

from

a

local

DB2

database

into

a

delimited

file.

ODBC

data

export

Selects

data

from

a

table

in

a

database

that

is

registered

to

ODBC,

and

then

writes

the

data

to

a

delimited

file.

DB2

load

Loads

data

from

a

delimited

file

into

a

DB2

table.

DB2

load

into

a

DB2

UDB

ESE

database

(AIX

only)

Loads

data

from

a

delimited

file

into

a

DB2

Universal

Database™

Enterprise

Server

Edition

database,

replacing

existing

data

in

a

table

with

new

data.

This

operation

acquires

the

target

partitioning

map

for

the

database,

partitions

the

input

file

so

that

each

file

can

be

loaded

on

a

database

partition,

and

then

runs

a

remote

load

operation

on

all

partitions.
v

Replication

You

also

can

use

replication

to

copy

large

quantities

of

data

from

warehouse

sources

into

a

warehouse

target,

and

then

capture

any

subsequent

changes

to

the

source

data.

The

Data

Warehouse

Center

supports

the

following

types

of

replication:

Base

aggregate

Creates

a

target

table

that

contains

aggregated

data

for

a

user

table,

and

that

is

appended

at

specified

intervals.

Change

aggregate

Creates

a

target

table

that

contains

aggregated

data,

and

that

is

based

on

changes

that

are

recorded

for

a

source

table.

Point-in-time

Creates

a

target

table

that

matches

the

source

table,

and

adds

a

time

stamp

column

to

the

target

table.

Staging

table

Creates

a

″consistent-change-data″

table

that

can

be

used

as

the

source

for

updated

data

to

multiple

target

tables.

User

copy

Creates

a

target

table

that

matches

the

source

table

at

the

time

that

the

copy

is

made.
These

operations

are

supported

on

all

of

the

DB2

Universal

Database

workstation

operating

environments,

DB2

Universal

Database

for

OS/390®,

DB2

for

AS/400®,

and

DataJoiner®.

v

Transformer

stored

procedures

You

can

use

the

Data

Warehouse

Center

to

move

data

into

an

OLAP

(Online

Analytical

Processing)

database.

After

the

data

is

in

the

warehouse,

you

can

use

transformer

stored

procedures

to

clean

up

the

data

and

then

aggregate

it

into

fact

and

dimension

tables.

You

can

also

use

the

transformers

to

generate

statistical

data.

Once

the

data

is

cleaned

up

and

transformed,

you

can

load

it

into

OLAP

cubes,

or

replicate

it

to

departmental

servers,

which

are

sometimes

called

datamarts.

The

transformers

are

included

in

only

some

of

the

DB2

offerings.

See

your

IBM®

representative

for

more

information.

Chapter

6.

Moving

Data

Between

Systems

225

Related

concepts:

v

“What

solutions

does

data

warehousing

provide?”

in

the

Data

Warehouse

Center

Administration

Guide

Moving

data

using

the

cursor

file

type

By

specifying

the

CURSOR

file

type

when

using

the

LOAD

command,

you

can

load

the

results

of

an

SQL

query

directly

into

a

target

table

without

creating

an

intermediate

exported

file.

By

referencing

a

nickname

within

the

SQL

query,

the

load

utility

can

also

load

data

from

another

database

in

a

single

step.

To

execute

a

load

from

cursor

operation

from

the

CLP,

a

cursor

must

first

be

declared

against

an

SQL

query.

Once

this

is

done,

you

can

issue

the

LOAD

command

using

the

declared

cursor’s

name

as

the

cursorname

and

CURSOR

as

the

file

type.

For

example:

Table

ABC.TABLE1

has

3

columns:

v

ONE

INT

v

TWO

CHAR(10)

v

THREE

DATE

Table

ABC.TABLE2

has

3

columns:

v

ONE

VARCHAR

v

TWO

INT

v

THREE

DATE

Executing

the

following

CLP

commands

will

load

all

the

data

from

ABC.TABLE1

into

ABC.TABLE2:

DECLARE

mycurs

CURSOR

FOR

SELECT

TWO,ONE,THREE

FROM

abc.table1

LOAD

FROM

mycurs

OF

cursor

INSERT

INTO

abc.table2

Notes:

1.

The

above

example

shows

how

to

load

from

an

SQL

query

through

the

CLP.

However,

loading

from

an

SQL

query

can

also

be

done

through

the

db2Load

API,

by

properly

defining

the

piSourceList

and

piFileType

values

of

the

db2LoadStruct

structure.

2.

As

demonstrated

above,

the

source

column

types

of

the

SQL

query

do

not

need

to

be

identical

to

their

target

column

types,

although

they

do

have

to

be

compatible.

Related

concepts:

v

“Nicknames

and

data

source

objects”

in

the

Federated

Systems

Guide

Related

reference:

v

“LOAD”

on

page

100

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

226

Data

Movement

Utilities

Appendix

A.

How

to

read

the

syntax

diagrams

A

syntax

diagram

shows

how

a

command

should

be

specified

so

that

the

operating

system

can

correctly

interpret

what

is

typed.

Read

a

syntax

diagram

from

left

to

right,

and

from

top

to

bottom,

following

the

horizontal

line

(the

main

path).

If

the

line

ends

with

an

arrowhead,

the

command

syntax

is

continued,

and

the

next

line

starts

with

an

arrowhead.

A

vertical

bar

marks

the

end

of

the

command

syntax.

When

typing

information

from

a

syntax

diagram,

be

sure

to

include

punctuation,

such

as

quotation

marks

and

equal

signs.

Parameters

are

classified

as

keywords

or

variables:

v

Keywords

represent

constants,

and

are

shown

in

uppercase

letters;

at

the

command

prompt,

however,

keywords

can

be

entered

in

upper,

lower,

or

mixed

case.

A

command

name

is

an

example

of

a

keyword.

v

Variables

represent

names

or

values

that

are

supplied

by

the

user,

and

are

shown

in

lowercase

letters;

at

the

command

prompt,

however,

variables

can

be

entered

in

upper,

lower,

or

mixed

case,

unless

case

restrictions

are

explicitly

stated.

A

file

name

is

an

example

of

a

variable.

A

parameter

can

be

a

combination

of

a

keyword

and

a

variable.

Required

parameters

are

displayed

on

the

main

path:

��

COMMAND

required

parameter

��

Optional

parameters

are

displayed

below

the

main

path:

��

COMMAND

optional

parameter

��

©

Copyright

IBM

Corp.

1999

-

2004

227

A

parameter’s

default

value

is

displayed

above

the

path:

��

COMMAND

VALUE1

OPTPARM

VALUE2

VALUE3

VALUE4

��

A

stack

of

parameters,

with

the

first

parameter

displayed

on

the

main

path,

indicates

that

one

of

the

parameters

must

be

selected:

��

COMMAND

required

choice1

required

choice2

��

A

stack

of

parameters,

with

the

first

parameter

displayed

below

the

main

path,

indicates

that

one

of

the

parameters

can

be

selected:

��

COMMAND

optional_choice1

optional_choice2

��

An

arrow

returning

to

the

left,

above

the

path,

indicates

that

items

can

be

repeated

in

accordance

with

the

following

conventions:

v

If

the

arrow

is

uninterrupted,

the

item

can

be

repeated

in

a

list

with

the

items

separated

by

blank

spaces:

��

COMMAND

�

repeatable

parameter

��

v

If

the

arrow

contains

a

comma,

the

item

can

be

repeated

in

a

list

with

the

items

separated

by

commas:

��

COMMAND

�

,

repeatable_parameter

��

Items

from

parameter

stacks

can

be

repeated

in

accordance

with

the

stack

conventions

for

required

and

optional

parameters

discussed

previously.

Some

syntax

diagrams

contain

parameter

stacks

within

other

parameter

stacks.

Items

from

stacks

can

only

be

repeated

in

accordance

with

the

conventions

discussed

previously.

That

is,

if

an

inner

stack

does

not

have

a

repeat

arrow

above

it,

but

an

outer

stack

does,

only

one

parameter

from

the

inner

stack

can

be

chosen

and

combined

with

any

parameter

from

the

outer

stack,

and

that

combination

can

be

repeated.

For

example,

the

following

diagram

shows

that

one

could

combine

parameter

choice2a

with

parameter

choice2,

and

then

repeat

that

combination

again

(choice2

plus

choice2a):

How

to

read

the

syntax

diagrams

228

Data

Movement

Utilities

��

COMMAND

�

parameter

choice3

parameter

choice1

parameter

choice2

parameter

choice2a

parameter

choice2b

parameter

choice2c

��

Some

commands

are

preceded

by

an

optional

path

parameter:

��

COMMAND

path

��

If

this

parameter

is

not

supplied,

the

system

searches

the

current

directory

for

the

command.

If

it

cannot

find

the

command,

the

system

continues

searching

for

the

command

in

all

the

directories

on

the

paths

listed

in

the

.profile.

Some

commands

have

syntactical

variants

that

are

functionally

equivalent:

��

COMMAND

FORM1

COMMAND

FORM2

��

How

to

read

the

syntax

diagrams

Appendix

A.

How

to

read

the

syntax

diagrams

229

How

to

read

the

syntax

diagrams

230

Data

Movement

Utilities

Appendix

B.

Differences

Between

the

Import

and

Load

Utility

The

following

table

summarizes

the

important

differences

between

the

DB2

load

and

import

utilities.

Import

Utility

Load

Utility

Slow

when

moving

large

amounts

of

data.

Faster

than

the

import

utility

when

moving

large

amounts

of

data,

because

the

load

utility

writes

formatted

pages

directly

into

the

database.

Limited

exploitation

of

intra-partition

parallelism.

Exploitation

of

intra-partition

parallelism.

Typically,

this

requires

symmetric

multiprocessor

(SMP)

machines.

No

FASTPARSE

support.

FASTPARSE

support,

providing

reduced

data

checking

of

user-supplied

data.

Supports

hierarchical

data.

Does

not

support

hierarchical

data.

Creation

of

tables,

hierarchies,

and

indexes

supported

with

PC/IXF

format.

Tables

and

indexes

must

exist.

No

support

for

importing

into

materialized

query

tables.

Support

for

loading

into

materialized

query

tables.

WSF

format

is

supported.

WSF

format

is

not

supported.

No

BINARYNUMERICS

support.

BINARYNUMERICS

support.

No

PACKEDDECIMAL

support.

PACKEDDECIMAL

support.

No

ZONEDDECIMAL

support.

ZONEDDECIMAL

support.

Cannot

override

columns

defined

as

GENERATED

ALWAYS.

Can

override

GENERATED

ALWAYS

columns,

by

using

the

GENERATEDOVERRIDE

and

IDENTITYOVERRIDE

file

type

modifiers.

Supports

import

into

tables

and

views.

Supports

loading

into

tables

only.

All

rows

are

logged.

Minimal

logging

is

performed.

Trigger

support.

No

trigger

support.

If

an

import

operation

is

interrupted,

and

a

commitcount

was

specified,

the

table

is

usable

and

will

contain

the

rows

that

were

loaded

up

to

the

last

COMMIT.

The

user

can

restart

the

import

operation,

or

accept

the

table

as

is.

If

a

load

operation

is

interrupted,

and

a

savecount

was

specified,

the

table

remains

in

load

pending

state

and

cannot

be

used

until

the

load

operation

is

restarted,

a

load

terminate

operation

is

invoked,

or

until

the

table

space

is

restored

from

a

backup

image

created

some

time

before

the

attempted

load

operation.

Space

required

is

approximately

equivalent

to

the

size

of

the

largest

index

plus

10%.

This

space

is

obtained

from

the

temporary

table

spaces

within

the

database.

Space

required

is

approximately

equivalent

to

the

sum

of

the

size

of

all

indexes

defined

on

the

table,

and

can

be

as

much

as

twice

this

size.

This

space

is

obtained

from

temporary

space

within

the

database.

All

constraints

are

validated

during

an

import

operation.

The

load

utility

checks

for

uniqueness

and

computes

generated

column

values,

but

all

other

constraints

must

be

checked

using

SET

INTEGRITY.

©

Copyright

IBM

Corp.

1999

-

2004

231

|
|
|
|
|
|

Import

Utility

Load

Utility

The

key

values

are

inserted

into

the

index

one

at

a

time

during

an

import

operation.

The

key

values

are

sorted

and

the

index

is

built

after

the

data

has

been

loaded.

If

updated

statistics

are

required,

the

runstats

utility

must

be

run

after

an

import

operation.

Statistics

can

be

gathered

during

the

load

operation

if

all

the

data

in

the

table

is

being

replaced.

You

can

import

into

a

host

database

through

DB2

Connect.

You

cannot

load

into

a

host

database.

Import

files

must

reside

on

the

node

from

which

the

import

utility

is

invoked.

In

a

partitioned

database

environment,

load

files

or

pipes

must

reside

on

the

node

that

contains

the

database.

In

a

non-partitioned

database

environment,

load

files

or

pipes

can

reside

on

the

node

that

contains

the

database,

or

on

the

remotely

connected

client

from

which

the

load

utility

is

invoked.

A

backup

image

is

not

required.

Because

the

import

utility

uses

SQL

inserts,

DB2

logs

the

activity,

and

no

backups

are

required

to

recover

these

operations

in

case

of

failure.

A

backup

image

can

be

created

during

the

load

operation.

Related

concepts:

v

“Import

Overview”

on

page

25

v

“Load

Overview”

on

page

74

Related

reference:

v

“IMPORT”

on

page

35

v

“LOAD”

on

page

100

232

Data

Movement

Utilities

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

The

following

sample

program

shows

how

to:

v

Export

data

to

a

file

v

Import

data

to

a

table

v

Load

data

into

a

table

v

Check

the

status

of

a

load

operation

The

source

file

for

this

sample

program

(tbmove.sqc)

can

be

found

in

the

\sqllib\samples\c

directory.

It

contains

both

DB2

APIs

and

embedded

SQL

calls.

The

script

file

bldapp.cmd,

located

in

the

same

directory,

contains

the

commands

to

build

this

and

other

sample

programs.

To

run

the

sample

program

(executable

file),

enter

tbmove.

You

might

find

it

useful

to

examine

some

of

the

generated

files,

such

as

the

message

file,

and

the

delimited

ASCII

data

file.

/**

**

Licensed

Materials

-

Property

of

IBM

**

**

Governed

under

the

terms

of

the

International

**

License

Agreement

for

Non-Warranted

Sample

Code.

**

**

(C)

COPYRIGHT

International

Business

Machines

Corp.

1996

-

2002

**

All

Rights

Reserved.

**

**

US

Government

Users

Restricted

Rights

-

Use,

duplication

or

**

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

**

**

SOURCE

FILE

NAME:

tbmove.sqc

**

**

SAMPLE:

How

to

move

table

data

**

**

DB2

APIs

USED:

**

db2Export

--

Export

**

db2Import

--

Import

**

sqluvqdp

--

Quiesce

Table

Spaces

for

Table

**

db2Load

--

Load

**

db2LoadQuery

--

Load

Query

**

**

SQL

STATEMENTS

USED:

**

PREPARE

**

DECLARE

CURSOR

**

OPEN

**

FETCH

**

CLOSE

**

CREATE

TABLE

**

DROP

**

**

OUTPUT

FILE:

tbmove.out

(available

in

the

online

documentation)

**

**

For

more

information

on

the

sample

programs,

see

the

README

file.

**

**

For

information

on

developing

C

applications,

see

the

Application

**

Development

Guide.

©

Copyright

IBM

Corp.

1999

-

2004

233

**

**

For

information

on

using

SQL

statements,

see

the

SQL

Reference.

**

**

For

information

on

DB2

APIs,

see

the

Administrative

API

Reference.

**

**

For

the

latest

information

on

programming,

building,

and

running

DB2

**

applications,

visit

the

DB2

application

development

website:

**

http://www.software.ibm.com/data/db2/udb/ad

**/

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

#include

<sqlenv.h>

#include

<sqlutil.h>

#include

<db2ApiDf.h>

#include

"utilemb.h"

int

DataExport(char

*);

int

TbImport(char

*);

int

TbLoad(char

*);

int

TbLoadQuery(void);

/*

support

function

*/

int

ExportedDataDisplay(char

*);

int

NewTableDisplay(void);

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

strStmt[256];

short

deptnumb;

char

deptname[15];

EXEC

SQL

END

DECLARE

SECTION;

int

main(int

argc,

char

*argv[])

{

int

rc

=

0;

char

dbAlias[SQL_ALIAS_SZ

+

1];

char

user[USERID_SZ

+

1];

char

pswd[PSWD_SZ

+

1];

char

dataFileName[256];

/*

check

the

command

line

arguments

*/

rc

=

CmdLineArgsCheck1(argc,

argv,

dbAlias,

user,

pswd);

if

(rc

!=

0)

{

return

rc;

}

printf("\nTHIS

SAMPLE

SHOWS

HOW

TO

MOVE

TABLE

DATA.\n");

/*

connect

to

database

*/

rc

=

DbConn(dbAlias,

user,

pswd);

if

(rc

!=

0)

{

return

rc;

}

#if(defined(DB2NT))

sprintf(dataFileName,

"%s%stbmove.DEL",

getenv("DB2PATH"),

PATH_SEP);

#else

/*

UNIX

*/

sprintf(dataFileName,

"%s%stbmove.DEL",

getenv("HOME"),

PATH_SEP);

#endif

rc

=

DataExport(dataFileName);

rc

=

TbImport(dataFileName);

rc

=

TbLoad(dataFileName);

rc

=

TbLoadQuery();

234

Data

Movement

Utilities

/*

disconnect

from

the

database

*/

rc

=

DbDisconn(dbAlias);

if

(rc

!=

0)

{

return

rc;

}

return

0;

}

/*

main

*/

int

ExportedDataDisplay(char

*dataFileName)

{

struct

sqlca

sqlca;

FILE

*fp;

char

buffer[100];

int

maxChars

=

100;

int

numChars;

int

charNb;

fp

=

fopen(dataFileName,

"r");

if

(fp

==

NULL)

{

return

1;

}

printf("\n

The

content

of

the

file

’%s’

is:\n",

dataFileName);

printf("

");

numChars

=

fread(buffer,

1,

maxChars,

fp);

while

(numChars

>

0)

{

for

(charNb

=

0;

charNb

<

numChars;

charNb++)

{

if

(buffer[charNb]

==

’\n’)

{

printf("\n");

if

(charNb

<

numChars

-

1)

{

printf("

");

}

}

else

{

printf("%c",

buffer[charNb]);

}

}

numChars

=

fread(buffer,

1,

maxChars,

fp);

}

if

(ferror(fp))

{

fclose(fp);

return

1;

}

else

{

fclose(fp);

}

return

0;

}

/*

ExportedDataDisplay

*/

int

NewTableDisplay(void)

{

struct

sqlca

sqlca;

printf("\n

SELECT

*

FROM

newtable\n");

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

235

printf("

DEPTNUMB

DEPTNAME

\n");

printf("

--------------\n");

strcpy(strStmt,

"SELECT

*

FROM

newtable");

EXEC

SQL

PREPARE

stmt

FROM

:strStmt;

EMB_SQL_CHECK("statement

--

prepare");

EXEC

SQL

DECLARE

c0

CURSOR

FOR

stmt;

EXEC

SQL

OPEN

c0;

EMB_SQL_CHECK("cursor

--

open");

EXEC

SQL

FETCH

c0

INTO

:deptnumb,

:deptname;

EMB_SQL_CHECK("cursor

--

fetch");

while

(sqlca.sqlcode

!=

100)

{

printf("

%8d

%-s\n",

deptnumb,

deptname);

EXEC

SQL

FETCH

c0

INTO

:deptnumb,

:deptname;

EMB_SQL_CHECK("cursor

--

fetch");

}

EXEC

SQL

CLOSE

c0;

return

0;

}

/*

NewTableDisplay

*/

int

DataExport(char

*dataFileName)

{

int

rc

=

0;

struct

sqlca

sqlca;

struct

sqldcol

dataDescriptor;

char

actionString[256];

struct

sqllob

*pAction;

char

msgFileName[128];

struct

db2ExportOut

outputInfo;

struct

db2ExportStruct

exportParmStruct;

printf("\n---");

printf("\nUSE

THE

DB2

API:\n");

printf("

db2Export

--

Export\n");

printf("TO

EXPORT

DATA

TO

A

FILE.\n");

printf("\n

Be

sure

to

complete

all

table

operations

and

release\n");

printf("

all

locks

before

starting

an

export

operation.

This\n");

printf("

can

be

done

by

issuing

a

COMMIT

after

closing

all\n");

printf("

cursors

opened

WITH

HOLD,

or

by

issuing

a

ROLLBACK.\n");

printf("

Please

refer

to

the

’Administrative

API

Reference’\n");

printf("

for

the

details.\n");

/*

export

data

*/

dataDescriptor.dcolmeth

=

SQL_METH_D;

strcpy(actionString,

"SELECT

deptnumb,

deptname

FROM

org");

pAction

=

(struct

sqllob

*)malloc(sizeof(sqluint32)

+

sizeof(actionString)

+

1);

pAction->length

=

strlen(actionString);

strcpy(pAction->data,

actionString);

strcpy(msgFileName,

"tbexport.MSG");

exportParmStruct.piDataFileName

=

dataFileName;

exportParmStruct.piLobPathList

=

NULL;

exportParmStruct.piLobFileList

=

NULL;

exportParmStruct.piDataDescriptor

=

&dataDescriptor;

exportParmStruct.piActionString

=

pAction;

exportParmStruct.piFileType

=

SQL_DEL;

236

Data

Movement

Utilities

exportParmStruct.piFileTypeMod

=

NULL;

exportParmStruct.piMsgFileName

=

msgFileName;

exportParmStruct.iCallerAction

=

SQLU_INITIAL;

exportParmStruct.poExportInfoOut

=

&outputInfo;

printf("\n

Export

data.\n");

printf("

client

destination

file

name:

%s\n",

dataFileName);

printf("

action

:

%s\n",

actionString);

printf("

client

message

file

name

:

%s\n",

msgFileName);

/*

export

data

*/

db2Export(db2Version820,

&exportParmStruct,

&sqlca);

DB2_API_CHECK("data

--

export");

/*

free

memory

allocated

*/

free(pAction);

/*

display

exported

data

*/

rc

=

ExportedDataDisplay(dataFileName);

return

0;

}

/*

DataExport

*/

int

TbImport(char

*dataFileName)

{

int

rc

=

0;

struct

sqlca

sqlca;

struct

sqldcol

dataDescriptor;

char

actionString[256];

struct

sqlchar

*pAction;

char

msgFileName[128];

struct

db2ImportIn

inputInfo;

struct

db2ImportOut

outputInfo;

struct

db2ImportStruct

importParmStruct;

long

commitcount

=

10;

printf("\n---");

printf("\nUSE

THE

DB2

API:\n");

printf("

db2Import

--

Import\n");

printf("TO

IMPORT

DATA

TO

A

TABLE.\n");

/*

create

new

table

*/

printf("\n

CREATE

TABLE

newtable(deptnumb

SMALLINT

NOT

NULL,");

printf("\n

deptname

VARCHAR(14))\n");

EXEC

SQL

CREATE

TABLE

newtable(deptnumb

SMALLINT

NOT

NULL,

deptname

VARCHAR(14));

EMB_SQL_CHECK("new

table

--

create");

/*

import

table

*/

dataDescriptor.dcolmeth

=

SQL_METH_D;

strcpy(actionString,

"INSERT

INTO

newtable");

pAction

=

(struct

sqlchar

*)malloc(sizeof(short)

+

sizeof(actionString)

+

1);

pAction->length

=

strlen(actionString);

strcpy(pAction->data,

actionString);

strcpy(msgFileName,

"tbimport.MSG");

/*

Setup

db2ImportIn

structure

*/

inputInfo.iRowcount

=

inputInfo.iRestartcount

=

0;

inputInfo.iSkipcount

=

inputInfo.iWarningcount

=

0;

inputInfo.iNoTimeout

=

0;

inputInfo.iAccessLevel

=

SQLU_ALLOW_NO_ACCESS;

inputInfo.piCommitcount

=

&commitcount;

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

237

printf("\n

Import

table.\n");

printf("

client

source

file

name

:

%s\n",

dataFileName);

printf("

action

:

%s\n",

actionString);

printf("

client

message

file

name:

%s\n",

msgFileName);

ImportparmStruct.piDataFileName

=

dataFileName;

importParmStruct.piLobPathList

=

NULL;

importParmStruct.piDataDescriptor

=

&dataDescriptor;

importParmStruct.piActionString

=

pAction;

importParmStruct.piFileType

=

SQL_DEL;

importParmStruct.piFileTypeMod

=

NULL;

importParmStruct.piMsgFileName

=

msgFileName;

importParmStruct.piImportInfoIn

=

&inputInfo;

importParmStruct.poImportInfoOut

=

&outputInfo;

importParmStruct.piNullIndicators

=

NULL;

importParmStruct.iCallerAction

=

SQLU_INITIAL;

/*

import

table

*/

db2Import(db2Version820,

&importParmStruct,

&sqlca);

DB2_API_CHECK("table

--

import");

/*

free

memory

allocated

*/

free(pAction);

/*

display

import

info

*/

printf("\n

Import

info.\n");

printf("

rows

read

:

%ld\n",

(int)outputInfo.oRowsRead);

printf("

rows

skipped

:

%ld\n",

(int)outputInfo.oRowsSkipped);

printf("

rows

inserted

:

%ld\n",

(int)outputInfo.oRowsInserted);

printf("

rows

updated

:

%ld\n",

(int)outputInfo.oRowsUpdated);

printf("

rows

rejected

:

%ld\n",

(int)outputInfo.oRowsRejected);

printf("

rows

committed:

%ld\n",

(int)outputInfo.oRowsCommitted);

/*

display

content

of

the

new

table

*/

rc

=

NewTableDisplay();

/*

drop

new

table

*/

printf("\n

DROP

TABLE

newtable\n");

EXEC

SQL

DROP

TABLE

newtable;

EMB_SQL_CHECK("new

table

--

drop");

return

0;

}

/*

TbImport

*/

int

TbLoad(char

*dataFileName)

{

int

rc

=

0;

struct

sqlca

sqlca;

struct

db2LoadStruct

paramStruct;

struct

db2LoadIn

inputInfoStruct;

struct

db2LoadOut

outputInfoStruct;

struct

sqlu_media_list

mediaList;

struct

sqldcol

dataDescriptor;

char

actionString[256];

struct

sqlchar

*pAction;

char

localMsgFileName[128];

printf("\n---");

printf("\nUSE

THE

DB2

API:\n");

printf("

sqluvqdp

--

Quiesce

Table

Spaces

for

Table\n");

238

Data

Movement

Utilities

printf("

db2Load

--

Load\n");

printf("TO

LOAD

DATA

INTO

A

TABLE.\n");

/*

create

new

table

*/

printf("\n

CREATE

TABLE

newtable(deptnumb

SMALLINT

NOT

NULL,");

printf("\n

deptname

VARCHAR(14))\n");

EXEC

SQL

CREATE

TABLE

newtable(deptnumb

SMALLINT

NOT

NULL,

deptname

VARCHAR(14));

EMB_SQL_CHECK("new

table

--

create");

/*

quiesce

table

spaces

for

table

*/

printf("\n

Quiesce

the

table

spaces

for

’newtable’.\n");

EXEC

SQL

COMMIT;

EMB_SQL_CHECK("transaction

--

commit");

/*

quiesce

table

spaces

for

table

*/

sqluvqdp("newtable",

SQLU_QUIESCEMODE_RESET_OWNED,

NULL,

&sqlca);

DB2_API_CHECK("tablespaces

for

table

--

quiesce");

/*

load

table

*/

mediaList.media_type

=

SQLU_CLIENT_LOCATION;

mediaList.sessions

=

1;

mediaList.target.location

=

(struct

sqlu_location_entry

*)malloc(sizeof(struct

sqlu_location_entry)

*

mediaList.sessions);

strcpy(mediaList.target.location->location_entry,

dataFileName);

dataDescriptor.dcolmeth

=

SQL_METH_D;

strcpy(actionString,

"INSERT

INTO

newtable");

pAction

=

(struct

sqlchar

*)malloc(sizeof(short)

+

sizeof(actionString)

+

1);

pAction->length

=

strlen(actionString);

strcpy(pAction->data,

actionString);

strcpy(localMsgFileName,

"tbload.MSG");

/*

Setup

the

input

information

structure

*/

inputInfoStruct.piUseTablespace

=

NULL;

inputInfoStruct.iSavecount

=

0;

/*

consistency

points

*/

/*

as

infrequently

as

possible

*/

inputInfoStruct.iRestartcount

=

0;

/*

start

at

row

1

*/

inputInfoStruct.iRowcount

=

0;

/*

load

all

rows

*/

inputInfoStruct.iWarningcount

=

0;

/*

don’t

stop

for

warnings

*/

inputInfoStruct.iDataBufferSize

=

0;

/*

default

data

buffer

size

*/

inputInfoStruct.iSortBufferSize

=

0;

/*

def.

warning

buffer

size

*/

inputInfoStruct.iHoldQuiesce

=

0;

/*

don’t

hold

the

quiesce

*/

inputInfoStruct.iRestartphase

=

’

’;

/*

ignored

anyway

*/

inputInfoStruct.iStatsOpt

=

SQLU_STATS_NONE;

/*

don’t

bother

with

them

*/

inputInfoStruct.iIndexingMode

=

SQLU_INX_AUTOSELECT;/*

let

load

choose

*/

/*

indexing

mode

*/

inputInfoStruct.iCpuParallelism

=

0;

inputInfoStruct.iNonrecoverable

=

SQLU_NON_RECOVERABLE_LOAD;

inputInfoStruct.iAccessLevel

=

SQLU_ALLOW_NO_ACCESS;

inputInfoStruct.iLockWithForce

=

SQLU_NO_FORCE;

inputInfoStruct.iCheckPending

=

SQLU_CHECK_PENDING_CASCADE_DEFERRED;

/*

Setup

the

parameter

structure

*/

paramStruct.piSourceList

=

&mediaList;

paramStruct.piLobPathList

=

NULL;

paramStruct.piDataDescriptor

=

&dataDescriptor;

paramStruct.piActionString

=

pAction;

paramStruct.piFileType

=

SQL_DEL;

paramStruct.piFileTypeMod

=

NULL;

paramStruct.piLocalMsgFileName

=

localMsgFileName;

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

239

paramStruct.piTempFilesPath

=

NULL;

paramStruct.piVendorSortWorkPaths

=

NULL;

paramStruct.piCopyTargetList

=

NULL;

paramStruct.piNullIndicators

=

NULL;

paramStruct.piLoadInfoIn

=

&inputInfoStruct;

paramStruct.poLoadInfoOut

=

&outputInfoStruct;

paramStruct.piPartLoadInfoIn

=

NULL;

paramStruct.poPartLoadInfoOut

=

NULL;

paramStruct.iCallerAction

=

SQLU_INITIAL;

printf("\n

Load

table.\n");

printf("

client

source

file

name

:

%s\n",

dataFileName);

printf("

action

:

%s\n",

actionString);

printf("

client

message

file

name:

%s\n",

localMsgFileName);

/*

load

table

*/

db2Load

(db2Version810,

/*

Database

version

number

*/

¶mStruct,

/*

In/out

parameters

*/

&sqlca);

/*

SQLCA

*/

DB2_API_CHECK("table

--

load");

/*

free

memory

allocated

*/

free(pAction);

/*

display

load

info

*/

printf("\n

Load

info.\n");

printf("

rows

read

:

%d\n",

(int)outputInfoStruct.oRowsRead);

printf("

rows

skipped

:

%d\n",

(int)outputInfoStruct.oRowsSkipped);

printf("

rows

loaded

:

%d\n",

(int)outputInfoStruct.oRowsLoaded);

printf("

rows

deleted

:

%d\n",

(int)outputInfoStruct.oRowsDeleted);

printf("

rows

rejected

:

%d\n",

(int)outputInfoStruct.oRowsRejected);

printf("

rows

committed:

%d\n",

(int)outputInfoStruct.oRowsCommitted);

/*

display

content

of

the

new

table

*/

rc

=

NewTableDisplay();

/*

drop

new

table

*/

printf("\n

DROP

TABLE

newtable\n");

EXEC

SQL

DROP

TABLE

newtable;

EMB_SQL_CHECK("new

table

--

drop");

return

0;

}

/*

TbLoad

*/

int

TbLoadQuery(void)

{

int

rc

=

0;

struct

sqlca

sqlca;

char

tableName[128];

char

loadMsgFileName[128];

db2LoadQueryStruct

loadQueryParameters;

db2LoadQueryOutputStruct

loadQueryOutputStructure;

printf("\n---");

printf("\nUSE

THE

DB2

API:\n");

printf("

db2LoadQuery

--

Load

Query\n");

printf("TO

CHECK

THE

STATUS

OF

A

LOAD

OPERATION.\n");

/*

Initialize

structures

*/

memset(&loadQueryParameters,

0,

sizeof(db2LoadQueryStruct));

memset(&loadQueryOutputStructure,

0,

sizeof(db2LoadQueryOutputStruct));

/*

Set

up

the

tablename

to

query.

*/

loadQueryParameters.iStringType

=

DB2LOADQUERY_TABLENAME;

loadQueryParameters.piString

=

tableName;

240

Data

Movement

Utilities

/*

Specify

that

we

want

all

LOAD

messages

to

be

reported.

*/

loadQueryParameters.iShowLoadMessages

=

DB2LOADQUERY_SHOW_ALL_MSGS;

/*

LOAD

summary

information

goes

here.

*/

loadQueryParameters.poOutputStruct

=

&loadQueryOutputStructure;

/*

Set

up

the

local

message

file.

*/

loadQueryParameters.piLocalMessageFile

=

loadMsgFileName;

/*

call

the

DB2

API

*/

strcpy(tableName,

"ORG");

strcpy(loadMsgFileName,

"tbldqry.MSG");

/*

load

query

*/

db2LoadQuery(db2Version810,

&loadQueryParameters,

&sqlca);

printf("\n

Note:

the

table

load

for

’%s’

is

NOT

in

progress.\n",

tableName);

printf("

So

an

empty

message

file

’%s’

will

be

created,\n",

loadMsgFileName);

printf("

and

the

following

values

will

be

zero.\n");

DB2_API_CHECK("status

of

load

operation

--

check");

printf("\n

Load

status

has

been

written

to

local

file

%s.\n",

loadMsgFileName);

printf("

Number

of

rows

read

=

%d\n",

loadQueryOutputStructure.oRowsRead);

printf("

Number

of

rows

skipped

=

%d\n",

loadQueryOutputStructure.oRowsSkipped);

printf("

Number

of

rows

loaded

=

%d\n",

loadQueryOutputStructure.oRowsLoaded);

printf("

Number

of

rows

rejected

=

%d\n",

loadQueryOutputStructure.oRowsRejected);

printf("

Number

of

rows

deleted

=

%d\n",

loadQueryOutputStructure.oRowsDeleted);

printf("

Number

of

rows

committed

=

%d\n",

loadQueryOutputStructure.oRowsCommitted);

printf("

Number

of

warnings

=

%d\n",

loadQueryOutputStructure.oWarningCount);

return

0;

}

/*

TbLoadQuery

*/

Appendix

C.

Export/Import/Load

Sessions

-

API

Sample

Program

241

242

Data

Movement

Utilities

Appendix

D.

File

Formats

Export/Import/Load

Utility

File

Formats

Five

operating

system

file

formats

supported

by

the

DB2®

export,

import,

and

load

utilities

are

described:

DEL

Delimited

ASCII,

for

data

exchange

among

a

wide

variety

of

database

managers

and

file

managers.

This

common

approach

to

storing

data

uses

special

character

delimiters

to

separate

column

values.

ASC

Non-delimited

ASCII,

for

importing

or

loading

data

from

other

applications

that

create

flat

text

files

with

aligned

column

data.

PC/IXF

PC

version

of

the

Integrated

Exchange

Format

(IXF),

the

preferred

method

for

data

exchange

within

the

database

manager.

PC/IXF

is

a

structured

description

of

a

database

table

that

contains

an

external

representation

of

the

internal

table.

WSF

Work-sheet

format,

for

data

exchange

with

products

such

as

Lotus®

1-2-3®

and

Symphony.

The

load

utility

does

not

support

this

file

format.

CURSOR

A

cursor

declared

against

an

SQL

query.

This

file

type

is

only

supported

by

the

load

utility.

When

using

DEL,

WSF,

or

ASC

data

file

formats,

define

the

table,

including

its

column

names

and

data

types,

before

importing

the

file.

The

data

types

in

the

operating

system

file

fields

are

converted

into

the

corresponding

type

of

data

in

the

database

table.

The

import

utility

accepts

data

with

minor

incompatibility

problems,

including

character

data

imported

with

possible

padding

or

truncation,

and

numeric

data

imported

into

different

types

of

numeric

fields.

When

using

the

PC/IXF

data

file

format,

the

table

does

not

need

to

exist

before

beginning

the

import

operation.

User-defined

distinct

types

(UDTs)

are

not

made

part

of

the

new

table

column

types;

instead,

the

base

type

is

used.

Similarly,

when

exporting

to

the

PC/IXF

data

file

format,

UDTs

are

stored

as

base

data

types

in

the

PC/IXF

file.

When

using

the

CURSOR

file

type,

the

table,

including

its

column

names

and

data

types,

must

be

defined

before

beginning

the

load

operation.

The

column

types

of

the

SQL

query

must

be

compatible

with

the

corresponding

column

types

in

the

target

table.

It

is

not

necessary

for

the

specified

cursor

to

be

open

before

starting

the

load

operation.

The

load

utility

will

process

the

entire

result

of

the

query

associated

with

the

specified

cursor

whether

or

not

the

cursor

has

been

used

to

fetch

rows.

Related

concepts:

v

“Queries

and

table

expressions”

in

the

SQL

Reference,

Volume

1

Related

reference:

v

“Delimited

ASCII

(DEL)

File

Format”

on

page

244

v

“Non-delimited

ASCII

(ASC)

File

Format”

on

page

249

©

Copyright

IBM

Corp.

1999

-

2004

243

v

“PC

Version

of

IXF

File

Format”

on

page

252

v

“Casting

between

data

types”

in

the

SQL

Reference,

Volume

1

v

“Assignments

and

comparisons”

in

the

SQL

Reference,

Volume

1

Related

samples:

v

“dtformat.out

--

HOW

TO

LOAD

AND

IMPORT

DATA

FORMAT

EXTENSIONS

(C)”

v

“dtformat.sqc

--

Load

and

import

data

format

extensions

(C)”

Delimited

ASCII

(DEL)

File

Format

A

Delimited

ASCII

(DEL)

file

is

a

sequential

ASCII

file

with

row

and

column

delimiters.

Each

DEL

file

is

a

stream

of

ASCII

characters

consisting

of

cell

values

ordered

by

row,

and

then

by

column.

Rows

in

the

data

stream

are

separated

by

row

delimiters;

within

each

row,

individual

cell

values

are

separated

by

column

delimiters.

The

following

table

describes

the

format

of

DEL

files

that

can

be

imported,

or

that

can

be

generated

as

the

result

of

an

export

action.

DEL

file

::=

Row

1

data

||

Row

delimiter

||

Row

2

data

||

Row

delimiter

||

.

.

.

Row

n

data

||

Optional

row

delimiter

Row

i

data

::=

Cell

value(i,1)

||

Column

delimiter

||

Cell

value(i,2)

||

Column

delimiter

||

.

.

.

Cell

value(i,m)

Row

delimiter

::=

ASCII

line

feed

sequencea

Column

delimiter

::=

Default

value

ASCII

comma

(,)b

Cell

value(i,j)

::=

Leading

spaces

||

ASCII

representation

of

a

numeric

value

(integer,

decimal,

or

float)

||

Delimited

character

string

||

Non-delimited

character

string

||

Trailing

spaces

Non-delimited

character

string

::=

A

set

of

any

characters

except

a

row

delimiter

or

a

column

delimiter

Delimited

character

string

::=

A

character

string

delimiter

||

An

extended

character

string

||

A

character

string

delimiter

||

Trailing

garbage

Trailing

garbage

::=

A

set

of

any

characters

except

a

row

delimiter

or

a

column

delimiter

Character

string

delimiter

::=

Default

value

ASCII

double

quotation

marks

(")c

extended

character

string

::=

||

A

set

of

any

characters

except

a

row

delimiter

or

a

character

string

delimiter

if

the

NODOUBLEDEL

244

Data

Movement

Utilities

modifier

is

specified

||

A

set

of

any

characters

except

a

row

delimiter

or

a

character

string

delimiter

if

the

character

string

is

not

part

of

two

consecutive

character

string

delimiters

||

A

set

of

any

characters

except

a

character

string

delimiter

if

the

character

string

delimiter

is

not

part

of

two

consecutive

character

string

delimiters,

and

the

DELPRIORITYCHAR

modifier

is

specified

End-of-file

character

::=

Hex

’1A’

(Windows

operating

system

only)

ASCII

representation

of

a

numeric

valued

::=

Optional

sign

’+’

or

’−’

||

1

to

31

decimal

digits

with

an

optional

decimal

point

before,

after,

or

between

two

digits

||

Optional

exponent

Exponent

::=

Character

’E’

or

’e’

||

Optional

sign

’+’

or

’−’

||

1

to

3

decimal

digits

with

no

decimal

point

Decimal

digit

::=

Any

one

of

the

characters

’0’,

’1’,

...

’9’

Decimal

point

::=

Default

value

ASCII

period

(.)e

v

a

The

record

delimiter

is

assumed

to

be

a

new

line

character,

ASCII

x0A.

Data

generated

on

the

Windows

operating

system

can

use

the

carriage

return/line

feed

2-byte

standard

of

0x0D0A.

Data

in

EBCDIC

code

pages

should

use

the

EBCDIC

LF

character

(0x25)

as

the

record

delimiter

(EBCDIC

data

can

be

loaded

using

the

CODEPAGE

option

on

the

LOAD

command).

v

b

The

column

delimiter

can

be

specified

with

the

COLDEL

option.

v

c

The

character

string

delimiter

can

be

specified

with

the

CHARDEL

option.

Note:

The

default

priority

of

delimiters

is:

1.

Record

delimiter

2.

Character

delimiter

3.

Column

delimiter
v

d

If

the

ASCII

representation

of

a

numeric

value

contains

an

exponent,

it

is

a

FLOAT

constant.

If

it

has

a

decimal

point

but

no

exponent,

it

is

a

DECIMAL

constant.

If

it

has

no

decimal

point

and

no

exponent,

it

is

an

INTEGER

constant.

v

e

The

decimal

point

character

can

be

specified

with

the

DECPT

option.

Related

reference:

v

“DEL

Data

Type

Descriptions”

on

page

246

Example

and

Data

Type

Descriptions

Example

DEL

File

Following

is

an

example

of

a

DEL

file.

Each

line

ends

with

a

line

feed

sequence

(on

the

Windows

operating

system,

each

line

ends

with

a

carriage

return/line

feed

sequence).

Appendix

D.

File

Formats

245

The

following

example

illustrates

the

use

of

non-delimited

character

strings.

The

column

delimiter

has

been

changed

to

a

semicolon,

because

the

character

data

contains

a

comma.

Notes:

1.

A

space

(X'20')

is

never

a

valid

delimiter.

2.

Spaces

that

precede

the

first

character,

or

that

follow

the

last

character

of

a

cell

value,

are

discarded

during

import.

Spaces

that

are

embedded

in

a

cell

value

are

not

discarded.

3.

A

period

(.)

is

not

a

valid

character

string

delimiter,

because

it

conflicts

with

periods

in

time

stamp

values.

4.

For

pure

DBCS

(graphic),

mixed

DBCS,

and

EUC,

delimiters

are

restricted

to

the

range

of

x00

to

x3F,

inclusive.

5.

For

DEL

data

specified

in

an

EBCDIC

code

page,

the

delimiters

may

not

coincide

with

the

shift-in

and

shift-out

DBCS

characters.

6.

On

the

Windows

operating

system,

the

first

occurrence

of

an

end-of-file

character

(X'1A')

that

is

not

within

character

delimiters

indicates

the

end-of-file.

Any

subsequent

data

is

not

imported.

7.

A

null

value

is

indicated

by

the

absence

of

a

cell

value

where

one

would

normally

occur,

or

by

a

string

of

spaces.

8.

Since

some

products

restrict

character

fields

to

254

or

255

bytes,

the

export

utility

generates

a

warning

message

whenever

a

character

column

of

maximum

length

greater

than

254

bytes

is

selected

for

export.

The

import

utility

accommodates

fields

that

are

as

long

as

the

longest

LONG

VARCHAR

and

LONG

VARGRAPHIC

columns.

DEL

Data

Type

Descriptions

Table

16.

Acceptable

Data

Type

Forms

for

the

DEL

File

Format

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

BIGINT

An

INTEGER

constant

in

the

range

-9

223

372

036

854

775

808

to

9

223

372

036

854

775

807.

ASCII

representation

of

a

numeric

value

in

the

range

-9

223

372

036

854

775

808

to

9

223

372

036

854

775

807.

Decimal

and

float

numbers

are

truncated

to

integer

values.

BLOB,

CLOB

Character

data

enclosed

by

character

delimiters

(for

example,

double

quotation

marks).

A

delimited

or

non-delimited

character

string.

The

character

string

is

used

as

the

database

column

value.

"Smith,

Bob",4973,15.46

"Jones,

Bill",12345,16.34

"Williams,

Sam",452,193.78

Smith,

Bob;4973;15.46

Jones,

Bill;12345;16.34

Williams,

Sam;452;193.78

246

Data

Movement

Utilities

Table

16.

Acceptable

Data

Type

Forms

for

the

DEL

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

BLOB_FILE,

CLOB_FILE

The

character

data

for

each

BLOB/CLOB

column

is

stored

in

individual

files,

and

the

file

name

is

enclosed

by

character

delimiters.

The

delimited

or

non-delimited

name

of

the

file

that

holds

the

data.

CHAR

Character

data

enclosed

by

character

delimiters

(for

example,

double

quotation

marks).

A

delimited

or

non-delimited

character

string.

The

character

string

is

truncated

or

padded

with

spaces

(X'20'),

if

necessary,

to

match

the

width

of

the

database

column.

DATE

yyyymmdd

(year

month

day)

with

no

character

delimiters.

For

example:

19931029

Alternatively,

the

DATESISO

option

can

be

used

to

specify

that

all

date

values

are

to

be

exported

in

ISO

format.

A

delimited

or

non-delimited

character

string

containing

a

date

value

in

an

ISO

format

consistent

with

the

territory

code

of

the

target

database,

or

a

non-delimited

character

string

of

the

form

yyyymmdd.

DBCLOB

(DBCS

only)

Graphic

data

is

exported

as

a

delimited

character

string.

A

delimited

or

non-delimited

character

string,

an

even

number

of

bytes

in

length.

The

character

string

is

used

as

the

database

column

value.

DBCLOB_FILE

(DBCS

only)

The

character

data

for

each

DBCLOB

column

is

stored

in

individual

files,

and

the

file

name

is

enclosed

by

character

delimiters.

The

delimited

or

non-delimited

name

of

the

file

that

holds

the

data.

DECIMAL

A

DECIMAL

constant

with

the

precision

and

scale

of

the

field

being

exported.

The

DECPLUSBLANK

option

can

be

used

to

specify

that

positive

decimal

values

are

to

be

prefixed

with

a

blank

space

instead

of

a

plus

sign

(+).

ASCII

representation

of

a

numeric

value

that

does

not

overflow

the

range

of

the

database

column

into

which

the

field

is

being

imported.

If

the

input

value

has

more

digits

after

the

decimal

point

than

can

be

accommodated

by

the

database

column,

the

excess

digits

are

truncated.

FLOAT(long)

A

FLOAT

constant

in

the

range

-10E307

to

10E307.

ASCII

representation

of

a

numeric

value

in

the

range

-10E307

to

10E307.

GRAPHIC

(DBCS

only)

Graphic

data

is

exported

as

a

delimited

character

string.

A

delimited

or

non-delimited

character

string,

an

even

number

of

bytes

in

length.

The

character

string

is

truncated

or

padded

with

double-byte

spaces

(for

example,

X'8140'),

if

necessary,

to

match

the

width

of

the

database

column.

Appendix

D.

File

Formats

247

Table

16.

Acceptable

Data

Type

Forms

for

the

DEL

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

INTEGER

An

INTEGER

constant

in

the

range

-2

147

483

648

to

2

147

483

647.

ASCII

representation

of

a

numeric

value

in

the

range

-2

147

483

648

to

2

147

483

647.

Decimal

and

float

numbers

are

truncated

to

integer

values.

LONG

VARCHAR

Character

data

enclosed

by

character

delimiters

(for

example,

double

quotation

marks).

A

delimited

or

non-delimited

character

string.

The

character

string

is

used

as

the

database

column

value.

LONG

VARGRAPHIC

(DBCS

only)

Graphic

data

is

exported

as

a

delimited

character

string.

A

delimited

or

non-delimited

character

string,

an

even

number

of

bytes

in

length.

The

character

string

is

used

as

the

database

column

value.

SMALLINT

An

INTEGER

constant

in

the

range

-32

768

to

32

767.

ASCII

representation

of

a

numeric

value

in

the

range

-32

768

to

32

767.

Decimal

and

float

numbers

are

truncated

to

integer

values.

TIME

hh.mm.ss

(hour

minutes

seconds).

A

time

value

in

ISO

format

enclosed

by

character

delimiters.

For

example:

“09.39.43”

A

delimited

or

non-delimited

character

string

containing

a

time

value

in

a

format

consistent

with

the

territory

code

of

the

target

database.

TIMESTAMP

yyyy-mm-dd-hh.mm.ss.nnnnnn

(year

month

day

hour

minutes

seconds

microseconds).

A

character

string

representing

a

date

and

time

enclosed

by

character

delimiters.

A

delimited

or

non-delimited

character

string

containing

a

time

stamp

value

acceptable

for

storage

in

a

database.

VARCHAR

Character

data

enclosed

by

character

delimiters

(for

example,

double

quotation

marks).

A

delimited

or

non-delimited

character

string.

The

character

string

is

truncated,

if

necessary,

to

match

the

maximum

width

of

the

database

column.

VARGRAPHIC

(DBCS

only)

Graphic

data

is

exported

as

a

delimited

character

string.

A

delimited

or

non-delimited

character

string,

an

even

number

of

bytes

in

length.

The

character

string

is

truncated,

if

necessary,

to

match

the

maximum

width

of

the

database

column.

248

Data

Movement

Utilities

Non-delimited

ASCII

(ASC)

File

Format

A

non-delimited

ASCII

(ASC)

file

is

a

sequential

ASCII

file

with

row

delimiters.

It

can

be

used

for

data

exchange

with

any

ASCII

product

that

has

a

columnar

format

for

data,

including

word

processors.

Each

ASC

file

is

a

stream

of

ASCII

characters

consisting

of

data

values

ordered

by

row

and

column.

Rows

in

the

data

stream

are

separated

by

row

delimiters.

Each

column

within

a

row

is

defined

by

a

beginning-ending

location

pair

(specified

by

IMPORT

parameters).

Each

pair

represents

locations

within

a

row

specified

as

byte

positions.

The

first

position

within

a

row

is

byte

position

1.

The

first

element

of

each

location

pair

is

the

byte

on

which

the

column

begins,

and

the

second

element

of

each

location

pair

is

the

byte

on

which

the

column

ends.

The

columns

might

overlap.

Every

row

in

an

ASC

file

has

the

same

column

definition.

An

ASC

file

is

defined

by:

ASC

file

::=

Row

1

data

||

Row

delimiter

||

Row

2

data

||

Row

delimiter

||

.

.

.

Row

n

data

Row

i

data

::=

ASCII

characters

||

Row

delimiter

Row

Delimiter

::=

ASCII

line

feed

sequencea

v

a

The

record

delimiter

is

assumed

to

be

a

new

line

character,

ASCII

x0A.

Data

generated

on

the

Windows

operating

system

can

use

the

carriage

return/line

feed

2-byte

standard

of

0x0D0A.

Data

in

EBCDIC

code

pages

should

use

the

EBCDIC

LF

character

(0x25)

as

the

record

delimiter

(EBCDIC

data

can

be

loaded

using

the

CODEPAGE

option

on

the

LOAD

command).

The

record

delimiter

is

never

interpreted

to

be

part

of

a

field

of

data.

Related

reference:

v

“ASC

Data

Type

Descriptions”

on

page

250

Example

and

Data

Type

Descriptions

Example

ASC

File

Following

is

an

example

of

an

ASC

file.

Each

line

ends

with

a

line

feed

sequence

(on

the

Windows

operating

system,

each

line

ends

with

a

carriage

return/line

feed

sequence).

Smith,

Bob

4973

15.46

Jones,

Suzanne

12345

16.34

Williams,

Sam

452123

193.78

Notes:

1.

ASC

files

are

assumed

not

to

contain

column

names.

2.

Character

strings

are

not

enclosed

by

delimiters.

The

data

type

of

a

column

in

the

ASC

file

is

determined

by

the

data

type

of

the

target

column

in

the

database

table.

3.

A

NULL

is

imported

into

a

nullable

database

column

if:

v

A

field

of

blanks

is

targeted

for

a

numeric,

DATE,

TIME,

or

TIMESTAMP

database

column

v

A

field

with

no

beginning

and

ending

location

pairs

is

specified

Appendix

D.

File

Formats

249

v

A

location

pair

with

beginning

and

ending

locations

equal

to

zero

is

specified

v

A

row

of

data

is

too

short

to

contain

a

valid

value

for

the

target

column

v

The

NULL

INDICATORS

load

option

is

used,

and

an

N

(or

other

value

specified

by

the

user)

is

found

in

the

null

indicator

column.
4.

If

the

target

column

is

not

nullable,

an

attempt

to

import

a

field

of

blanks

into

a

numeric,

DATE,

TIME,

or

TIMESTAMP

column

causes

the

row

to

be

rejected.

5.

If

the

input

data

is

not

compatible

with

the

target

column,

and

that

column

is

nullable,

a

null

is

imported

or

the

row

is

rejected,

depending

on

where

the

error

is

detected.

If

the

column

is

not

nullable,

the

row

is

rejected.

Messages

are

written

to

the

message

file,

specifying

incompatibilities

that

are

found.

ASC

Data

Type

Descriptions

Table

17.

Acceptable

Data

Type

Forms

for

the

ASC

File

Format

Data

Type

Form

Acceptable

to

the

Import

Utility

BIGINT

A

constant

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-9

223

372

036

854

775

808

to

9

223

372

036

854

775

807.

Decimal

numbers

are

truncated

to

integer

values.

A

comma,

period,

or

colon

is

considered

to

be

a

decimal

point.

Thousands

separators

are

not

allowed.

The

beginning

and

ending

locations

should

specify

a

field

whose

width

does

not

exceed

50

bytes.

Integers,

decimal

numbers,

and

the

mantissas

of

floating

point

numbers

can

have

no

more

than

31

digits.

Exponents

of

floating

point

numbers

can

have

no

more

than

3

digits.

BLOB/CLOB

A

string

of

characters.

The

character

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

If

the

ASC

truncate

blanks

option

is

in

effect,

trailing

blanks

are

stripped

from

the

original

or

the

truncated

string.

BLOB_FILE,

CLOB_FILE,

DBCLOB_FILE

(DBCS

only)

A

delimited

or

non-delimited

name

of

the

file

that

holds

the

data.

CHAR

A

string

of

characters.

The

character

string

is

truncated

or

padded

with

spaces

on

the

right,

if

necessary,

to

match

the

width

of

the

target

column.

DATE

A

character

string

representing

a

date

value

in

a

format

consistent

with

the

territory

code

of

the

target

database.

The

beginning

and

ending

locations

should

specify

a

field

width

that

is

within

the

range

for

the

external

representation

of

a

date.

DBCLOB

(DBCS

only)

A

string

of

an

even

number

of

bytes.

A

string

of

an

odd

number

of

bytes

is

invalid

and

is

not

accepted.

A

valid

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

250

Data

Movement

Utilities

Table

17.

Acceptable

Data

Type

Forms

for

the

ASC

File

Format

(continued)

Data

Type

Form

Acceptable

to

the

Import

Utility

DECIMAL

A

constant

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

of

the

database

column

into

which

they

are

being

imported.

If

the

input

value

has

more

digits

after

the

decimal

point

than

the

scale

of

the

database

column,

the

excess

digits

are

truncated.

A

comma,

period,

or

colon

is

considered

to

be

a

decimal

point.

Thousands

separators

are

not

allowed.

The

beginning

and

ending

locations

should

specify

a

field

whose

width

does

not

exceed

50

bytes.

Integers,

decimal

numbers,

and

the

mantissas

of

floating

point

numbers

can

have

no

more

than

31

digits.

Exponents

of

floating

point

numbers

can

have

no

more

than

3

digits.

FLOAT(long)

A

constant

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

All

values

are

valid.

A

comma,

period,

or

colon

is

considered

to

be

a

decimal

point.

An

uppercase

or

lowercase

E

is

accepted

as

the

beginning

of

the

exponent

of

a

FLOAT

constant.

The

beginning

and

ending

locations

should

specify

a

field

whose

width

does

not

exceed

50

bytes.

Integers,

decimal

numbers,

and

the

mantissas

of

floating

point

numbers

can

have

no

more

than

31

digits.

Exponents

of

floating

point

numbers

can

have

no

more

than

3

digits.

GRAPHIC

(DBCS

only)

A

string

of

an

even

number

of

bytes.

A

string

of

an

odd

number

of

bytes

is

invalid

and

is

not

accepted.

A

valid

string

is

truncated

or

padded

with

double-byte

spaces

(0x8140)

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

INTEGER

A

constant

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-2

147

483

648

to

2

147

483

647.

Decimal

numbers

are

truncated

to

integer

values.

A

comma,

period,

or

colon

is

considered

to

be

a

decimal

point.

Thousands

separators

are

not

allowed.

The

beginning

and

ending

locations

should

specify

a

field

whose

width

does

not

exceed

50

bytes.

Integers,

decimal

numbers,

and

the

mantissas

of

floating

point

numbers

can

have

no

more

than

31

digits.

Exponents

of

floating

point

numbers

can

have

no

more

than

3

digits.

LONG

VARCHAR

A

string

of

characters.

The

character

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

If

the

ASC

truncate

blanks

option

is

in

effect,

trailing

blanks

are

stripped

from

the

original

or

the

truncated

string.

LONG

VARGRAPHIC

(DBCS

only)

A

string

of

an

even

number

of

bytes.

A

string

of

an

odd

number

of

bytes

is

invalid

and

is

not

accepted.

A

valid

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

Appendix

D.

File

Formats

251

Table

17.

Acceptable

Data

Type

Forms

for

the

ASC

File

Format

(continued)

Data

Type

Form

Acceptable

to

the

Import

Utility

SMALLINT

A

constant

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-32

768

to

32

767.

Decimal

numbers

are

truncated

to

integer

values.

A

comma,

period,

or

colon

is

considered

to

be

a

decimal

point.

Thousands

separators

are

not

allowed.

The

beginning

and

ending

locations

should

specify

a

field

whose

width

does

not

exceed

50

bytes.

Integers,

decimal

numbers,

and

the

mantissas

of

floating

point

numbers

can

have

no

more

than

31

digits.

Exponents

of

floating

point

numbers

can

have

no

more

than

3

digits.

TIME

A

character

string

representing

a

time

value

in

a

format

consistent

with

the

territory

code

of

the

target

database.

The

beginning

and

ending

locations

should

specify

a

field

width

that

is

within

the

range

for

the

external

representation

of

a

time.

TIMESTAMP

A

character

string

representing

a

time

stamp

value

acceptable

for

storage

in

a

database.

The

beginning

and

ending

locations

should

specify

a

field

width

that

is

within

the

range

for

the

external

representation

of

a

time

stamp.

VARCHAR

A

string

of

characters.

The

character

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

If

the

ASC

truncate

blanks

option

is

in

effect,

trailing

blanks

are

stripped

from

the

original

or

the

truncated

string.

VARGRAPHIC

(DBCS

only)

A

string

of

an

even

number

of

bytes.

A

string

of

an

odd

number

of

bytes

is

invalid

and

is

not

accepted.

A

valid

string

is

truncated

on

the

right,

if

necessary,

to

match

the

maximum

length

of

the

target

column.

PC

Version

of

IXF

File

Format

The

PC

version

of

IXF

(PC/IXF)

file

format

is

a

database

manager

adaptation

of

the

Integration

Exchange

Format

(IXF)

data

interchange

architecture.

The

IXF

architecture

was

specifically

designed

to

enable

the

exchange

of

relational

database

structures

and

data.

The

PC/IXF

architecture

allows

the

database

manager

to

export

a

database

without

having

to

anticipate

the

requirements

and

idiosyncrasies

of

a

receiving

product.

Similarly,

a

product

importing

a

PC/IXF

file

need

only

understand

the

PC/IXF

architecture;

the

characteristics

of

the

product

which

exported

the

file

are

not

relevant.

The

PC/IXF

file

architecture

maintains

the

independence

of

both

the

exporting

and

the

importing

database

systems.

The

IXF

architecture

is

a

generic

relational

database

exchange

format

that

supports

a

rich

set

of

relational

data

types,

including

some

types

that

might

not

be

supported

by

specific

relational

database

products.

The

PC/IXF

file

format

preserves

this

flexibility;

for

example,

the

PC/IXF

architecture

supports

both

single-byte

character

string

(SBCS)

and

double-byte

character

string

(DBCS)

data

types.

Not

all

implementations

support

all

PC/IXF

data

types;

however,

even

restricted

implementations

provide

for

the

detection

and

disposition

of

unsupported

data

types

during

import.

252

Data

Movement

Utilities

In

general,

a

PC/IXF

file

consists

of

an

unbroken

sequence

of

variable-length

records.

The

file

contains

the

following

record

types

in

the

order

shown:

v

One

header

record

of

record

type

H

v

One

table

record

of

record

type

T

v

Multiple

column

descriptor

records

of

record

type

C

(one

record

for

each

column

in

the

table)

v

Multiple

data

records

of

record

type

D

(each

row

in

the

table

is

represented

by

one

or

more

D

records).

A

PC/IXF

file

might

also

contain

application

records

of

record

type

A,

anywhere

after

the

H

record.

These

records

are

permitted

in

PC/IXF

files

to

enable

an

application

to

include

additional

data,

not

defined

by

the

PC/IXF

format,

in

a

PC/IXF

file.

A

records

are

ignored

by

any

program

reading

a

PC/IXF

file

that

does

not

have

particular

knowledge

about

the

data

format

and

content

implied

by

the

application

identifier

in

the

A

record.

Every

record

in

a

PC/IXF

file

begins

with

a

record

length

indicator.

This

is

a

6-byte

right

justified

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Programs

reading

PC/IXF

files

should

use

these

record

lengths

to

locate

the

end

of

the

current

record

and

the

beginning

of

the

next

record.

H,

T,

and

C

records

must

be

sufficiently

large

to

include

all

of

their

defined

fields,

and,

of

course,

their

record

length

fields

must

agree

with

their

actual

lengths.

However,

if

extra

data

(for

example,

a

new

field),

is

added

to

the

end

of

one

of

these

records,

pre-existing

programs

reading

PC/IXF

files

should

ignore

the

extra

data,

and

generate

no

more

than

a

warning

message.

Programs

writing

PC/IXF

files,

however,

should

write

H,

T

and

C

records

that

are

the

precise

length

needed

to

contain

all

of

the

defined

fields.

If

a

PC/IXF

file

contains

LOB

Location

Specifier

(LLS)

columns,

each

LLS

column

must

have

its

own

D

record.

D

records

are

automatically

created

by

the

export

utility,

but

you

will

need

to

create

them

manually

if

you

are

using

a

third

party

tool

to

generate

the

PC/IXF

files.

Further,

an

LLS

is

required

for

each

LOB

column

in

a

table,

including

those

with

a

null

value.

If

a

LOB

column

is

null,

you

will

need

to

create

an

LLS

representing

a

null

LOB.

PC/IXF

file

records

are

composed

of

fields

which

contain

character

data.

The

import

and

export

utilities

interpret

this

character

data

using

the

CPGID

of

the

target

database,

with

two

exceptions:

v

The

IXFADATA

field

of

A

records.

The

code

page

environment

of

character

data

contained

in

an

IXFADATA

field

is

established

by

the

application

which

creates

and

processes

a

particular

A

record;

that

is,

the

environment

varies

by

implementation.

v

The

IXFDCOLS

field

of

D

records.

The

code

page

environment

of

character

data

contained

in

an

IXFDCOLS

field

is

a

function

of

information

contained

in

the

C

record

which

defines

a

particular

column

and

its

data.

Numeric

fields

in

H,

T,

and

C

records,

and

in

the

prefix

portion

of

D

and

A

records

should

be

right

justified

single-byte

character

representations

of

integer

values,

filled

with

leading

zeros

or

blanks.

A

value

of

zero

should

be

indicated

with

at

least

one

(right

justified)

zero

character,

not

blanks.

Whenever

one

of

these

numeric

Appendix

D.

File

Formats

253

fields

is

not

used,

for

example

IXFCLENG,

where

the

length

is

implied

by

the

data

type,

it

should

be

filled

with

blanks.

These

numeric

fields

are:

Note:

The

database

manager

PC/IXF

file

format

is

not

identical

to

the

System/370.

Related

reference:

v

“PC/IXF

Record

Types”

on

page

254

v

“PC/IXF

Data

Types”

on

page

270

v

“General

Rules

Governing

PC/IXF

File

Import

into

Databases”

on

page

279

v

“Data

Type-Specific

Rules

Governing

PC/IXF

File

Import

into

Databases”

on

page

281

v

“FORCEIN

Option”

on

page

283

v

“Differences

Between

PC/IXF

and

Version

0

System/370

IXF”

on

page

290

v

“PC/IXF

Data

Type

Descriptions”

on

page

275

PC

Version

of

IXF

File

Format

-

Details

PC/IXF

Record

Types

There

are

five

basic

PC/IXF

record

types:

v

header

v

table

v

column

descriptor

v

data

v

application

and

six

application

subtypes

that

DB2

UDB

uses:

v

index

v

hierarchy

v

subtable

v

continuation

v

terminate

v

identity

Each

PC/IXF

record

type

is

defined

as

a

sequence

of

fields;

these

fields

are

required,

and

must

appear

in

the

order

shown.

HEADER

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFHRECL

06-BYTE

CHARACTER

record

length

IXFHRECT

01-BYTE

CHARACTER

record

type

=

’H’

IXFHID

03-BYTE

CHARACTER

IXF

identifier

IXFHVERS

04-BYTE

CHARACTER

IXF

version

IXFHPROD

12-BYTE

CHARACTER

product

IXFHDATE

08-BYTE

CHARACTER

date

written

IXFHTIME

06-BYTE

CHARACTER

time

written

IXFHHCNT

05-BYTE

CHARACTER

heading

record

count

IXFHRECL,

IXFTRECL,

IXFCRECL,

IXFDRECL,

IXFARECL,

IXFHHCNT,

IXFHSBCP,

IXFHDBCP,

IXFTCCNT,

IXFTNAML,

IXFCLENG,

IXFCDRID,

IXFCPOSN,

IXFCNAML,

IXFCTYPE,

IXFCSBCP,

IXFCDBCP,

IXFCNDIM,

IXFCDSIZ,

IXFDRID

254

Data

Movement

Utilities

IXFHSBCP

05-BYTE

CHARACTER

single

byte

code

page

IXFHDBCP

05-BYTE

CHARACTER

double

byte

code

page

IXFHFIL1

02-BYTE

CHARACTER

reserved

The

following

fields

are

contained

in

the

header

record:

IXFHRECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

The

H

record

must

be

sufficiently

long

to

include

all

of

its

defined

fields.

IXFHRECT

The

IXF

record

type,

which

is

set

to

H

for

this

record.

IXFHID

The

file

format

identifier,

which

is

set

to

IXF

for

this

file.

IXFHVERS

The

PC/IXF

format

level

used

when

the

file

was

created,

which

is

set

to

’0002’.

IXFHPROD

A

field

that

can

be

used

by

the

program

creating

the

file

to

identify

itself.

If

this

field

is

filled

in,

the

first

six

bytes

are

used

to

identify

the

product

creating

the

file,

and

the

last

six

bytes

are

used

to

indicate

the

version

or

release

of

the

creating

product.

The

database

manager

uses

this

field

to

signal

the

existence

of

database

manager-specific

data.

IXFHDATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

IXFHTIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

is

optional

and

can

be

left

blank.

IXFHHCNT

The

number

of

H,

T,

and

C

records

in

this

file

that

precede

the

first

data

record.

A

records

are

not

included

in

this

count.

IXFHSBCP

Single-byte

code

page

field,

containing

a

single-byte

character

representation

of

a

SBCS

CPGID

or

’00000’.

The

export

utility

sets

this

field

equal

to

the

SBCS

CPGID

of

the

exported

database

table.

For

example,

if

the

table

SBCS

CPGID

is

850,

this

field

contains

’00850’.

IXFHDBCP

Double-byte

code

page

field,

containing

a

single-byte

character

representation

of

a

DBCS

CPGID

or

’00000’.

The

export

utility

sets

this

field

equal

to

the

DBCS

CPGID

of

the

exported

database

table.

For

example,

if

the

table

DBCS

CPGID

is

301,

this

field

contains

’00301’.

IXFHFIL1

Spare

field

set

to

two

blanks

to

match

a

reserved

field

in

host

IXF

files.
TABLE

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

Appendix

D.

File

Formats

255

IXFTRECL

006-BYTE

CHARACTER

record

length

IXFTRECT

001-BYTE

CHARACTER

record

type

=

’T’

IXFTNAML

003-BYTE

CHARACTER

name

length

IXFTNAME

256-BYTE

CHARACTER

name

of

data

IXFTQULL

003-BYTE

CHARACTER

qualifier

length

IXFTQUAL

256-BYTE

CHARACTER

qualifier

IXFTSRC

012-BYTE

CHARACTER

data

source

IXFTDATA

001-BYTE

CHARACTER

data

convention

=

’C’

IXFTFORM

001-BYTE

CHARACTER

data

format

=

’M’

IXFTMFRM

005-BYTE

CHARACTER

machine

format

=

’PC’

IXFTLOC

001-BYTE

CHARACTER

data

location

=

’I’

IXFTCCNT

005-BYTE

CHARACTER

’C’

record

count

IXFTFIL1

002-BYTE

CHARACTER

reserved

IXFTDESC

030-BYTE

CHARACTER

data

description

IXFTPKNM

257-BYTE

CHARACTER

primary

key

name

IXFTDSPC

257-BYTE

CHARACTER

reserved

IXFTISPC

257-BYTE

CHARACTER

reserved

IXFTLSPC

257-BYTE

CHARACTER

reserved

The

following

fields

are

contained

in

the

table

record:

IXFTRECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

The

T

record

must

be

sufficiently

long

to

include

all

of

its

defined

fields.

IXFTRECT

The

IXF

record

type,

which

is

set

to

T

for

this

record.

IXFTNAML

The

length,

in

bytes,

of

the

table

name

in

the

IXFTNAME

field.

IXFTNAME

The

name

of

the

table.

If

each

file

has

only

one

table,

this

is

an

informational

field

only.

The

database

manager

does

not

use

this

field

when

importing

data.

When

writing

a

PC/IXF

file,

the

database

manager

writes

the

DOS

file

name

(and

possibly

path

information)

to

this

field.

IXFTQULL

The

length,

in

bytes,

of

the

table

name

qualifier

in

the

IXFTQUAL

field.

IXFTQUAL

Table

name

qualifier,

which

identifies

the

creator

of

a

table

in

a

relational

system.

This

is

an

informational

field

only.

If

a

program

writing

a

file

has

no

data

to

write

to

this

field,

the

preferred

fill

value

is

blanks.

Programs

reading

a

file

might

print

or

display

this

field,

or

store

it

in

an

informational

field,

but

no

computations

should

depend

on

the

content

of

this

field.

IXFTSRC

Used

to

indicate

the

original

source

of

the

data.

This

is

an

informational

field

only.

If

a

program

writing

a

file

has

no

data

to

write

to

this

field,

the

preferred

fill

value

is

blanks.

Programs

reading

a

file

might

print

or

display

this

field,

or

store

it

in

an

informational

field,

but

no

computations

should

depend

on

the

content

of

this

field.

IXFTDATA

Convention

used

to

describe

the

data.

This

field

must

be

set

to

C

for

256

Data

Movement

Utilities

import

and

export,

indicating

that

individual

column

attributes

are

described

in

the

following

column

descriptor

(C)

records,

and

that

data

follows

PC/IXF

conventions.

IXFTFORM

Convention

used

to

store

numeric

data.

This

field

must

be

set

to

M,

indicating

that

numeric

data

in

the

data

(D)

records

is

stored

in

the

machine

(internal)

format

specified

by

the

IXFTMFRM

field.

IXFTMFRM

The

format

of

any

machine

data

in

the

PC/IXF

file.

The

database

manager

will

only

read

or

write

files

if

this

field

is

set

to

PCbbb,

where

b

represents

a

blank,

and

PC

specifies

that

data

in

the

PC/IXF

file

is

in

IBM

PC

machine

format.

IXFTLOC

The

location

of

the

data.

The

database

manager

only

supports

a

value

of

I,

meaning

the

data

is

internal

to

this

file.

IXFTCCNT

The

number

of

C

records

in

this

table.

It

is

a

right-justified

character

representation

of

an

integer

value.

IXFTFIL1

Spare

field

set

to

two

blanks

to

match

a

reserved

field

in

host

IXF

files.

IXFTDESC

Descriptive

data

about

the

table.

This

is

an

informational

field

only.

If

a

program

writing

a

file

has

no

data

to

write

to

this

field,

the

preferred

fill

value

is

blanks.

Programs

reading

a

file

might

print

or

display

this

field,

or

store

it

in

an

informational

field,

but

no

computations

should

depend

on

the

content

of

this

field.

This

field

contains

NOT

NULL

WITH

DEFAULT

if

the

column

was

not

null

with

default,

and

the

table

name

came

from

a

workstation

database.

IXFTPKNM

The

name

of

the

primary

key

defined

on

the

table

(if

any).

The

name

is

stored

as

a

null-terminated

string.

IXFTDSPC

This

field

is

reserved

for

future

use.

IXFTISPC

This

field

is

reserved

for

future

use.

IXFTLSPC

This

field

is

reserved

for

future

use.
COLUMN

DESCRIPTOR

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFCRECL

006-BYTE

CHARACTER

record

length

IXFCRECT

001-BYTE

CHARACTER

record

type

=

’C’

IXFCNAML

003-BYTE

CHARACTER

column

name

length

IXFCNAME

256-BYTE

CHARACTER

column

name

IXFCNULL

001-BYTE

CHARACTER

column

allows

nulls

IXFCDEF

001-BYTE

CHARACTER

column

has

defaults

IXFCSLCT

001-BYTE

CHARACTER

column

selected

flag

IXFCKPOS

002-BYTE

CHARACTER

position

in

primary

key

IXFCCLAS

001-BYTE

CHARACTER

data

class

IXFCTYPE

003-BYTE

CHARACTER

data

type

IXFCSBCP

005-BYTE

CHARACTER

single

byte

code

page

IXFCDBCP

005-BYTE

CHARACTER

double

byte

code

page

Appendix

D.

File

Formats

257

IXFCLENG

005-BYTE

CHARACTER

column

data

length

IXFCDRID

003-BYTE

CHARACTER

’D’

record

identifier

IXFCPOSN

006-BYTE

CHARACTER

column

position

IXFCDESC

030-BYTE

CHARACTER

column

description

IXFCLOBL

020-BYTE

CHARACTER

lob

column

length

IXFCUDTL

003-BYTE

CHARACTER

UDT

name

length

IXFCUDTN

256-BYTE

CHARACTER

UDT

name

IXFCDEFL

003-BYTE

CHARACTER

default

value

length

IXFCDEFV

254-BYTE

CHARACTER

default

value

IXFCDLPR

010-BYTE

CHARACTER

datalink

properties

IXFCREF

001-BYTE

CHARACTER

reference

type

IXFCNDIM

002-BYTE

CHARACTER

number

of

dimensions

IXFCDSIZ

varying

CHARACTER

size

of

each

dimension

The

following

fields

are

contained

in

column

descriptor

records:

IXFCRECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

The

C

record

must

be

sufficiently

long

to

include

all

of

its

defined

fields.

IXFCRECT

The

IXF

record

type,

which

is

set

to

C

for

this

record.

IXFCNAML

The

length,

in

bytes,

of

the

column

name

in

the

IXFCNAME

field.

IXFCNAME

The

name

of

the

column.

IXFCNULL

Specifies

if

nulls

are

permitted

in

this

column.

Valid

settings

are

Y

or

N.

IXFCDEF

Specifies

if

a

default

value

is

defined

for

this

field.

Valid

settings

are

Y

or

N.

IXFCSLCT

An

obsolete

field

whose

intended

purpose

was

to

allow

selection

of

a

subset

of

columns

in

the

data.

Programs

writing

PC/IXF

files

should

always

store

a

Y

in

this

field.

Programs

reading

PC/IXF

files

should

ignore

the

field.

IXFCKPOS

The

position

of

the

column

as

part

of

the

primary

key.

Valid

values

range

from

01

to

16,

or

N

if

the

column

is

not

part

of

the

primary

key.

IXFCCLAS

The

class

of

data

types

to

be

used

in

the

IXFCTYPE

field.

The

database

manager

only

supports

relational

types

(R).

IXFCTYPE

The

data

type

for

the

column.

IXFCSBCP

Contains

a

single-byte

character

representation

of

a

SBCS

CPGID.

This

field

specifies

the

CPGID

for

single-byte

character

data,

which

occurs

with

the

IXFDCOLS

field

of

the

D

records

for

this

column.

The

semantics

of

this

field

vary

with

the

data

type

for

the

column

(specified

in

the

IXFCTYPE

field).

v

For

a

character

string

column,

this

field

should

normally

contain

a

non-zero

value

equal

to

that

of

the

IXFHSBCP

field

in

the

H

record;

258

Data

Movement

Utilities

however,

other

values

are

permitted.

If

this

value

is

zero,

the

column

is

interpreted

to

contain

bit

string

data.

v

For

a

numeric

column,

this

field

is

not

meaningful.

It

is

set

to

zero

by

the

export

utility,

and

ignored

by

the

import

utility.

v

For

a

date

or

time

column,

this

field

is

not

meaningful.

It

is

set

to

the

value

of

the

IXFHSBCP

field

by

the

export

utility,

and

ignored

by

the

import

utility.

v

For

a

graphic

column,

this

field

must

be

zero.

IXFCDBCP

Contains

a

single-byte

character

representation

of

a

DBCS

CPGID.

This

field

specifies

the

CPGID

for

double-byte

character

data,

which

occurs

with

the

IXFDCOLS

field

of

the

D

records

for

this

column.

The

semantics

of

this

field

vary

with

the

data

type

for

the

column

(specified

in

the

IXFCTYPE

field).

v

For

a

character

string

column,

this

field

should

either

be

zero,

or

contain

a

value

equal

to

that

of

the

IXFHDBCP

field

in

the

H

record;

however,

other

values

are

permitted.

If

the

value

in

the

IXFCSBCP

field

is

zero,

the

value

in

this

field

must

be

zero.

v

For

a

numeric

column,

this

field

is

not

meaningful.

It

is

set

to

zero

by

the

export

utility,

and

ignored

by

the

import

utility.

v

For

a

date

or

time

column,

this

field

is

not

meaningful.

It

is

set

to

zero

by

the

export

utility,

and

ignored

by

the

import

utility.

v

For

a

graphic

column,

this

field

must

have

a

value

equal

to

the

value

of

the

IXFHDBCP

field.

IXFCLENG

Provides

information

about

the

size

of

the

column

being

described.

For

some

data

types,

this

field

is

unused,

and

should

contain

blanks.

For

other

data

types,

this

field

contains

the

right-justified

character

representation

of

an

integer

specifying

the

column

length.

For

yet

other

data

types,

this

field

is

divided

into

two

subfields:

3

bytes

for

precision,

and

2

bytes

for

scale;

both

of

these

subfields

are

right-justified

character

representations

of

integers.

IXFCDRID

The

D

record

identifier.

This

field

contains

the

right-justified

character

representation

of

an

integer

value.

Several

D

records

can

be

used

to

contain

each

row

of

data

in

the

PC/IXF

file.

This

field

specifies

which

D

record

(of

the

several

D

records

contributing

to

a

row

of

data)

contains

the

data

for

the

column.

A

value

of

one

(for

example,

001)

indicates

that

the

data

for

a

column

is

in

the

first

D

record

in

a

row

of

data.

The

first

C

record

must

have

an

IXFCDRID

value

of

one.

All

subsequent

C

records

must

have

an

IXFCDRID

value

equal

to

the

value

in

the

preceding

C

record,

or

one

higher.

IXFCPOSN

The

value

in

this

field

is

used

to

locate

the

data

for

the

column

within

one

of

the

D

records

representing

a

row

of

table

data.

It

is

the

starting

position

of

the

data

for

this

column

within

the

IXFDCOLS

field

of

the

D

record.

If

the

column

is

nullable,

IXFCPOSN

points

to

the

null

indicator;

otherwise,

it

points

to

the

data

itself.

If

a

column

contains

varying

length

data,

the

data

itself

begins

with

the

current

length

indicator.

The

IXFCPOSN

value

for

the

first

byte

in

the

IXFDCOLS

field

of

the

D

record

is

one

(not

zero).

If

a

column

is

in

a

new

D

record,

the

value

of

IXFCPOSN

should

be

one;

Appendix

D.

File

Formats

259

otherwise,

IXFCPOSN

values

should

increase

from

column

to

column

to

such

a

degree

that

the

data

values

do

not

overlap.

IXFCDESC

Descriptive

information

about

the

column.

This

is

an

informational

field

only.

If

a

program

writing

to

a

file

has

no

data

to

write

to

this

field,

the

preferred

fill

value

is

blanks.

Programs

reading

a

file

might

print

or

display

this

field,

or

store

it

in

an

informational

field,

but

no

computations

should

depend

on

the

content

of

this

field.

IXFCLOBL

The

length,

in

bytes,

of

the

long

or

the

LOB

defined

in

this

column.

If

this

column

is

not

a

long

or

a

LOB,

the

value

in

this

field

is

000.

IXFCUDTL

The

length,

in

bytes,

of

the

user

defined

type

(UDT)

name

in

the

IXFCUDTN

field.

If

the

type

of

this

column

is

not

a

UDT,

the

value

in

this

field

is

000.

IXFCUDTN

The

name

of

the

user

defined

type

that

is

used

as

the

data

type

for

this

column.

IXFCDEFL

The

length,

in

bytes,

of

the

default

value

in

the

IXFCDEFV

field.

If

this

column

does

not

have

a

default

value,

the

value

in

this

field

is

000.

IXFCDEFV

Specifies

the

default

value

for

this

column,

if

one

has

been

defined.

IXFCDLPR

If

the

column

is

a

DATALINK

column,

this

field

describes

the

following

properties:

v

The

first

character

represents

the

link

type,

and

has

a

value

of

U.

v

The

second

character

represents

the

link

control

type.

Valid

values

are

N

for

no

control,

and

F

for

file

control.

v

The

third

character

represents

the

level

of

integrity,

and

has

a

value

of

A

(for

database

manager

controlling

all

DATALINK

values).

v

The

fourth

character

represents

read

permission.

Valid

values

are

D

for

database

determined

permissions,

and

F

for

file

system

determined

permissions.

v

The

fifth

character

represents

write

permission.

Valid

values

are

B

for

blocked

access,

and

F

for

file

system

determined

permissions.

v

The

sixth

character

represents

recovery

options.

Valid

values

are

Y

(DB2

will

support

point-in-time

recovery

of

files

referenced

in

this

column),

and

N

(no

support).

v

The

seventh

character

represents

the

action

that

is

to

be

taken

when

the

data

file

is

unlinked.

Valid

values

are

R

for

restore,

and

D

for

delete

the

file.

IXFCREF

If

the

column

is

part

of

a

hierarchy,

this

field

specifies

whether

the

column

is

a

data

column

(D),

or

a

reference

column

(R).

IXFCNDIM

The

number

of

dimensions

in

the

column.

Arrays

are

not

supported

in

this

version

of

PC/IXF.

This

field

must

therefore

contain

a

character

representation

of

a

zero

integer

value.

260

Data

Movement

Utilities

IXFCDSIZ

The

size

or

range

of

each

dimension.

The

length

of

this

field

is

five

bytes

per

dimension.

Since

arrays

are

not

supported

(that

is,

the

number

of

dimensions

must

be

zero),

this

field

has

zero

length,

and

does

not

actually

exist.
DATA

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFDRECL

06-BYTE

CHARACTER

record

length

IXFDRECT

01-BYTE

CHARACTER

record

type

=

’D’

IXFDRID

03-BYTE

CHARACTER

’D’

record

identifier

IXFDFIL1

04-BYTE

CHARACTER

reserved

IXFDCOLS

varying

variable

columnar

data

The

following

fields

are

contained

in

the

data

records:

IXFDRECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

D

record

must

be

sufficiently

long

to

include

all

significant

data

for

the

current

occurrence

of

the

last

data

column

stored

in

the

record.

IXFDRECT

The

IXF

record

type,

which

is

set

to

D

for

this

record,

indicating

that

it

contains

data

values

for

the

table.

IXFDRID

The

record

identifier,

which

identifies

a

particular

D

record

within

the

sequence

of

several

D

records

contributing

to

a

row

of

data.

For

the

first

D

record

in

a

row

of

data,

this

field

has

a

value

of

one;

for

the

second

D

record

in

a

row

of

data,

this

field

has

a

value

of

two,

and

so

on.

In

each

row

of

data,

all

the

D

record

identifiers

called

out

in

the

C

records

must

actually

exist.

IXFDFIL1

Spare

field

set

to

four

blanks

to

match

reserved

fields,

and

hold

a

place

for

a

possible

shift-out

character,

in

host

IXF

files.

IXFDCOLS

The

area

for

columnar

data.

The

data

area

of

a

data

record

(D

record)

is

composed

of

one

or

more

column

entries.

There

is

one

column

entry

for

each

column

descriptor

record,

which

has

the

same

D

record

identifier

as

the

D

record.

In

the

D

record,

the

starting

position

of

the

column

entries

is

indicated

by

the

IXFCPOSN

value

in

the

C

records.

The

format

of

the

column

entry

data

depends

on

whether

or

not

the

column

is

nullable:

v

If

the

column

is

nullable

(the

IXFCNULL

field

is

set

to

Y),

the

column

entry

data

includes

a

null

indicator.

If

the

column

is

not

null,

the

indicator

is

followed

by

data

type-specific

information,

including

the

actual

database

value.

The

null

indicator

is

a

two-byte

value

set

to

x’0000’

for

not

null,

and

x’FFFF’

for

null.

v

If

the

column

is

not

nullable,

the

column

entry

data

includes

only

data

type-specific

information,

including

the

actual

database

value.

For

varying-length

data

types,

the

data

type-specific

information

includes

a

current

length

indicator.

The

current

length

indicators

are

2-byte

integers

in

a

form

specified

by

the

IXFTMFRM

field.

Appendix

D.

File

Formats

261

The

length

of

the

data

area

of

a

D

record

cannot

exceed

32

771

bytes.
APPLICATION

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

06-BYTE

CHARACTER

record

length

IXFARECT

01-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

12-BYTE

CHARACTER

application

identifier

IXFADATA

varying

variable

application-specific

data

The

following

fields

are

contained

in

application

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

the

application

creating

the

A

record.

PC/IXF

files

created

by

the

database

manager

can

have

A

records

with

the

first

6

characters

of

this

field

set

to

a

constant

identifying

the

database

manager,

and

the

last

6

characters

identifying

the

release

or

version

of

the

database

manager

or

another

application

writing

the

A

record.

IXFADATA

This

field

contains

application

dependent

supplemental

data,

whose

form

and

content

are

known

only

to

the

program

creating

the

A

record,

and

to

other

applications

which

are

likely

to

process

the

A

record.
DB2

INDEX

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

006-BYTE

CHARACTER

record

length

IXFARECT

001-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

012-BYTE

CHARACTER

application

identifier

=

’DB2

02.00’

IXFAITYP

001-BYTE

CHARACTER

application

specific

data

type

=

’I’

IXFADATE

008-BYTE

CHARACTER

date

written

from

the

’H’

record

IXFATIME

006-BYTE

CHARACTER

time

written

from

the

’H’

record

IXFANDXL

002-BYTE

SHORT

INT

length

of

name

of

the

index

IXFANDXN

256-BYTE

CHARACTER

name

of

the

index

IXFANCL

002-BYTE

SHORT

INT

length

of

name

of

the

index

creator

IXFANCN

256-BYTE

CHARACTER

name

of

the

index

creator

IXFATABL

002-BYTE

SHORT

INT

length

of

name

of

the

table

IXFATABN

256-BYTE

CHARACTER

name

of

the

table

IXFATCL

002-BYTE

SHORT

INT

length

of

name

of

the

table

creator

IXFATCN

256-BYTE

CHARACTER

name

of

the

table

creator

IXFAUNIQ

001-BYTE

CHARACTER

unique

rule

IXFACCNT

002-BYTE

CHARACTER

column

count

IXFAREVS

001-BYTE

CHARACTER

allow

reverse

scan

flag

IXFAPCTF

002-BYTE

CHARACTER

amount

of

pct

free

IXFAPCTU

002-BYTE

CHARACTER

amount

of

minpctused

262

Data

Movement

Utilities

IXFAEXTI

001-BYTE

CHARACTER

reserved

IXFACNML

002-BYTE

SHORT

INT

length

of

name

of

the

columns

IXFACOLN

varying

CHARACTER

name

of

the

columns

in

the

index

One

record

of

this

type

is

specified

for

each

user

defined

index.

This

record

is

located

after

all

of

the

C

records

for

the

table.

The

following

fields

are

contained

in

DB2

index

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

IXFAITYP

Specifies

that

this

is

subtype

″I″

of

DB2

application

records.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.

IXFANDXL

The

length,

in

bytes,

of

the

index

name

in

the

IXFANDXN

field.

IXFANDXN

The

name

of

the

index.

IXFANCL

The

length,

in

bytes,

of

the

index

creator

name

in

the

IXFANCN

field.

IXFANCN

The

name

of

the

index

creator.

IXFATABL

The

length,

in

bytes,

of

the

table

name

in

the

IXFATABN

field.

IXFATABN

The

name

of

the

table.

IXFATCL

The

length,

in

bytes,

of

the

table

creator

name

in

the

IXFATCN

field.

IXFATCN

The

name

of

the

table

creator.

IXFAUNIQ

Specifies

the

type

of

index.

Valid

values

are

P

for

a

primary

key,

U

for

a

unique

index,

and

D

for

a

non

unique

index.

Appendix

D.

File

Formats

263

IXFACCNT

Specifies

the

number

of

columns

in

the

index

definition.

IXFAREVS

Specifies

whether

reverse

scan

is

allowed

on

this

index.

Valid

values

are

Y

for

reverse

scan,

and

N

for

no

reverse

scan.

IXFAPCTF

Specifies

the

percentage

of

index

pages

to

leave

as

free.

Valid

values

range

from

-1

to

99.

If

a

value

of

-1

or

zero

is

specified,

the

system

default

value

is

used.

IXFAPCTU

Specifies

the

minimum

percentage

of

index

pages

that

must

be

free

before

two

index

pages

can

be

merged.

Valid

values

range

from

00

to

99.

IXFAEXTI

Reserved

for

future

use.

IXFACNML

The

length,

in

bytes,

of

the

column

names

in

the

IXFACOLN

field.

IXFACOLN

The

names

of

the

columns

that

are

part

of

this

index.

Valid

values

are

in

the

form

+name−name...,

where

+

specifies

an

ascending

sort

on

the

column,

and

−

specifies

a

descending

sort

on

the

column.
DB2

HIERARCHY

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

006-BYTE

CHARACTER

record

length

IXFARECT

001-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

012-BYTE

CHARACTER

application

identifier

=

’DB2

02.00’

IXFAXTYP

001-BYTE

CHARACTER

application

specific

data

type

=

’X’

IXFADATE

008-BYTE

CHARACTER

date

written

from

the

’H’

record

IXFATIME

006-BYTE

CHARACTER

time

written

from

the

’H’

record

IXFAYCNT

010-BYTE

CHARACTER

’Y’

record

count

for

this

hierarchy

IXFAYSTR

010-BYTE

CHARACTER

starting

column

of

this

hierarchy

One

record

of

this

type

is

used

to

describe

a

hierarchy.

All

subtable

records

(see

below)

must

be

located

immediately

after

the

hierarchy

record,

and

hierarchy

records

are

located

after

all

of

the

C

records

for

the

table.

The

following

fields

are

contained

in

DB2

hierarchy

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

264

Data

Movement

Utilities

IXFAXTYP

Specifies

that

this

is

subtype

″X″

of

DB2

application

records.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.

IXFAYCNT

Specifies

the

number

of

subtable

records

that

are

expected

after

this

hierarchy

record.

IXFAYSTR

Specifies

the

index

of

the

subtable

records

at

the

beginning

of

the

exported

data.

If

export

of

a

hierarchy

was

started

from

a

non-root

subtable,

all

parent

tables

of

this

subtable

are

exported.

The

position

of

this

subtable

inside

of

the

IXF

file

is

also

stored

in

this

field.

The

first

X

record

represents

the

column

with

an

index

of

zero.
DB2

SUBTABLE

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

006-BYTE

CHARACTER

record

length

IXFARECT

001-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

012-BYTE

CHARACTER

application

identifier

=

’DB2

02.00’

IXFAYTYP

001-BYTE

CHARACTER

application

specific

data

type

=

’Y’

IXFADATE

008-BYTE

CHARACTER

date

written

from

the

’H’

record

IXFATIME

006-BYTE

CHARACTER

time

written

from

the

’H’

record

IXFASCHL

003-BYTE

CHARACTER

type

schema

name

length

IXFASCHN

256-BYTE

CHARACTER

type

schema

name

IXFATYPL

003-BYTE

CHARACTER

type

name

length

IXFATYPN

256-BYTE

CHARACTER

type

name

IXFATABL

003-BYTE

CHARACTER

table

name

length

IXFATABN

256-BYTE

CHARACTER

table

name

IXFAPNDX

010-BYTE

CHARACTER

subtable

index

of

parent

table

IXFASNDX

005-BYTE

CHARACTER

starting

column

index

of

current

table

IXFAENDX

005-BYTE

CHARACTER

ending

column

index

of

current

table

One

record

of

this

type

is

used

to

describe

a

subtable

as

part

of

a

hierarchy.

All

subtable

records

belonging

to

a

hierarchy

must

be

stored

together,

and

immediately

after

the

corresponding

hierarchy

record.

A

subtable

is

composed

of

one

or

more

columns,

and

each

column

is

described

in

a

column

record.

Each

column

in

a

subtable

must

be

described

in

a

consecutive

set

of

C

records.

The

following

fields

are

contained

in

DB2

subtable

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

Appendix

D.

File

Formats

265

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

IXFAYTYP

Specifies

that

this

is

subtype

″Y″

of

DB2

application

records.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.

IXFASCHL

The

length,

in

bytes,

of

the

subtable

schema

name

in

the

IXFASCHN

field.

IXFASCHN

The

name

of

the

subtable

schema.

IXFATYPL

The

length,

in

bytes,

of

the

subtable

name

in

the

IXFATYPN

field.

IXFATYPN

The

name

of

the

subtable.

IXFATABL

The

length,

in

bytes,

of

the

table

name

in

the

IXFATABN

field.

IXFATABN

The

name

of

the

table.

IXFAPNDX

Subtable

record

index

of

the

parent

subtable.

If

this

subtable

is

the

root

of

a

hierarchy,

this

field

contains

the

value

-1.

IXFASNDX

Starting

index

of

the

column

records

that

made

up

this

subtable.

IXFAENDX

Ending

index

of

the

column

records

that

made

up

this

subtable.
DB2

CONTINUATION

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

006-BYTE

CHARACTER

record

length

IXFARECT

001-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

012-BYTE

CHARACTER

application

identifier

=

’DB2

02.00’

IXFACTYP

001-BYTE

CHARACTER

application

specific

data

type

=

’C’

IXFADATE

008-BYTE

CHARACTER

date

written

from

the

’H’

record

IXFATIME

006-BYTE

CHARACTER

time

written

from

the

’H’

record

IXFALAST

002-BYTE

SHORT

INT

last

diskette

volume

number

IXFATHIS

002-BYTE

SHORT

INT

this

diskette

volume

number

IXFANEXT

002-BYTE

SHORT

INT

next

diskette

volume

number

This

record

is

found

at

the

end

of

each

file

that

is

part

of

a

multi-volume

IXF

file,

unless

that

file

is

the

final

volume;

it

can

also

be

found

at

the

beginning

of

each

266

Data

Movement

Utilities

file

that

is

part

of

a

multi-volume

IXF

file,

unless

that

file

is

the

first

volume.

The

purpose

of

this

record

is

to

keep

track

of

file

order.

The

following

fields

are

contained

in

DB2

continuation

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

IXFACTYP

Specifies

that

this

is

subtype

″C″

of

DB2

application

records.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.

IXFALAST

This

field

is

a

binary

field,

in

little-endian

format.

The

value

should

be

one

less

than

the

value

in

IXFATHIS.

IXFATHIS

This

field

is

a

binary

field,

in

little-endian

format.

The

value

in

this

field

on

consecutive

volumes

should

also

be

consecutive.

The

first

volume

has

a

value

of

1.

IXFANEXT

This

field

is

a

binary

field,

in

little-endian

format.

The

value

should

be

one

more

than

the

value

in

IXFATHIS,

unless

the

record

is

at

the

beginning

of

the

file,

in

which

case

the

value

should

be

zero.
DB2

TERMINATE

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

006-BYTE

CHARACTER

record

length

IXFARECT

001-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

012-BYTE

CHARACTER

application

identifier

=

’DB2

02.00’

IXFAETYP

001-BYTE

CHARACTER

application

specific

data

type

=

’E’

IXFADATE

008-BYTE

CHARACTER

date

written

from

the

’H’

record

IXFATIME

006-BYTE

CHARACTER

time

written

from

the

’H’

record

This

record

is

the

end-of-file

marker

found

at

the

end

of

an

IXF

file.

The

following

fields

are

contained

in

DB2

terminate

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

Appendix

D.

File

Formats

267

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

IXFAETYP

Specifies

that

this

is

subtype

″E″

of

DB2

application

records.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.
DB2

IDENTITY

RECORD

FIELD

NAME

LENGTH

TYPE

COMMENTS

IXFARECL

06-BYTE

CHARACTER

record

length

IXFARECT

01-BYTE

CHARACTER

record

type

=

’A’

IXFAPPID

12-BYTE

CHARACTER

application

identifier

IXFATYPE

01-BYTE

CHARACTER

application

specific

record

type

=

’S’

IXFADATE

08-BYTE

CHARACTER

application

record

creation

date

IXFATIME

06-BYTE

CHARACTER

application

record

creation

time

IXFACOLN

06-BYTE

CHARACTER

column

number

of

the

identity

column

IXFAITYP

01-BYTE

CHARACTER

generated

always

(’Y’

or

’N’)

IXFASTRT

33-BYTE

CHARACTER

identity

START

AT

value

IXFAINCR

33-BYTE

CHARACTER

identity

INCREMENT

BY

value

IXFACACH

10-BYTE

CHARACTER

identity

CACHE

value

IXFAMINV

33-BYTE

CHARACTER

identity

MINVALUE

IXFAMAXV

33-BYTE

CHARACTER

identity

MAXVALUE

IXFACYCL

01-BYTE

CHARACTER

identity

CYCLE

(’Y’

or

’N’)

IXFAORDR

01-BYTE

CHARACTER

identity

ORDER

(’Y’

or

’N’)

IXFARMRL

03-BYTE

CHARACTER

identity

Remark

length

IXFARMRK

254-BYTE

CHARACTER

identity

Remark

value

The

following

fields

are

contained

in

DB2

identity

records:

IXFARECL

The

record

length

indicator.

A

6-byte

character

representation

of

an

integer

value

specifying

the

length,

in

bytes,

of

the

portion

of

the

PC/IXF

record

that

follows

the

record

length

indicator;

that

is,

the

total

record

size

minus

6

bytes.

Each

A

record

must

be

sufficiently

long

to

include

at

least

the

entire

IXFAPPID

field.

IXFARECT

The

IXF

record

type,

which

is

set

to

A

for

this

record,

indicating

that

this

is

an

application

record.

These

records

are

ignored

by

programs

which

do

not

have

particular

knowledge

about

the

content

and

the

format

of

the

data

implied

by

the

application

identifier.

268

Data

Movement

Utilities

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

IXFAPPID

The

application

identifier,

which

identifies

DB2

as

the

application

creating

this

A

record.

IXFATYPE

Application

specific

record

type.

This

field

should

always

have

a

value

of

″S″.

IXFADATE

The

date

on

which

the

file

was

written,

in

the

form

yyyymmdd.

This

field

must

have

the

same

value

as

IXFHDATE.

IXFATIME

The

time

at

which

the

file

was

written,

in

the

form

hhmmss.

This

field

must

have

the

same

value

as

IXFHTIME.

IXFACOLN

Column

number

of

the

identity

column

in

the

table.

IXFAITYP

The

type

of

the

identity

column.

A

value

of

″Y″

indicates

that

the

identity

column

is

always

GENERATED.

All

other

values

are

interpreted

to

mean

that

the

column

is

of

type

GENERATED

BY

DEFAULT.

IXFASTRT

The

START

AT

value

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

IXFAINCR

The

INCREMENT

BY

value

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

IXFACACH

The

CACHE

value

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

A

value

of

″1″

corresponds

to

the

NO

CACHE

option.

IXFAMINV

The

MINVALUE

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

IXFAMAXV

The

MAXVALUE

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

IXFACYCL

The

CYCLE

value

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

A

value

of

″Y″

corresponds

to

the

CYCLE

option,

any

other

value

corresponds

to

NO

CYCLE.

IXFAORDR

The

ORDER

value

for

the

identity

column

that

was

supplied

to

the

CREATE

TABLE

statement

at

the

time

of

table

creation.

A

value

of

″Y″

corresponds

to

the

ORDER

option,

any

other

value

corresponds

to

NO

ORDER.

IXFARMRL

The

length,

in

bytes,

of

the

remark

in

IXFARMRK

field.

Appendix

D.

File

Formats

269

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

IXFARMRK

This

is

the

user-entered

remark

associated

with

the

identity

column.

This

is

an

informational

field

only.

The

database

manager

does

not

use

this

field

when

importing

data.

Related

reference:

v

“PC/IXF

Data

Types”

on

page

270

v

“PC/IXF

Data

Type

Descriptions”

on

page

275

PC/IXF

Data

Types

Table

18.

PC/IXF

Data

Types

Name

IXFCTYPE

Value

Description

BIGINT

492

An

8-byte

integer

in

the

form

specified

by

IXFTMFRM.

It

represents

a

whole

number

between

-9

223

372

036

854

775

808

and

9

223

372

036

854

775

807.

IXFCSBCP

and

IXFCDBCP

are

not

significant

,

and

should

be

zero.

IXFCLENG

is

not

used,

and

should

contain

blanks.

BLOB,

CLOB

404,

408

A

variable-length

character

string.

The

maximum

length

of

the

string

is

contained

in

the

IXFCLENG

field

of

the

column

descriptor

record,

and

cannot

exceed

32

767

bytes.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

4-byte

integer

specifying

the

length

of

the

string,

in

bytes.

The

string

is

in

the

code

page

indicated

by

IXFCSBCP.

The

following

applies

to

BLOBs

only:

If

IXFCSBCP

is

zero,

the

string

is

bit

data,

and

should

not

be

translated

by

any

transformation

program.

The

following

applies

to

CLOBs

only:

If

IXFCDBCP

is

non-zero,

the

string

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

BLOB_LOCATION_

SPECIFIER,

BLOB_LOCATION_

SPECIFIER,

and

DBCLOB_

LOCATION_

SPECIFIER

960,

964,

968

A

fixed-length

field,

which

cannot

exceed

255

bytes.

The

LOB

Location

Specifier

(LLS)is

located

in

the

code

page

indicated

by

IXFCSBCP.

If

IXFCSBCP

is

zero,

the

LLS

is

bit

data

and

should

not

be

translated

by

any

transformation

program.

If

IXFCDBCP

is

non-zero,

the

string

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

Since

the

length

of

the

LLS

is

stored

in

IXFCLENG,

the

actual

length

of

the

original

LOB

is

lost.

PC/IXF

files

with

columns

of

this

type

should

not

be

used

to

recreate

the

LOB

field

since

the

LOB

will

be

created

with

the

length

of

the

LLS.

270

Data

Movement

Utilities

|
|
|
|

Table

18.

PC/IXF

Data

Types

(continued)

Name

IXFCTYPE

Value

Description

BLOB_FILE,

CLOB_FILE,

DBCLOB_FILE

916,

920,

924

A

fixed-length

field

containing

an

SQLFILE

structure

with

the

name_length

and

the

name

fields

filled

in.

The

length

of

the

structure

is

contained

in

the

IXFCLENG

field

of

the

column

descriptor

record,

and

cannot

exceed

255

bytes.

The

file

name

is

in

the

code

page

indicated

by

IXFCSBCP.

If

IXFCDBCP

is

non-zero,

the

file

name

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

If

IXFCSBCP

is

zero,

the

file

name

is

bit

data

and

should

not

be

translated

by

any

transformation

program.

Since

the

length

of

the

structure

is

stored

in

IXFCLENG,

the

actual

length

of

the

original

LOB

is

lost.

IXF

files

with

columns

of

type

BLOB_FILE,

CLOB_FILE,

or

DBCLOB_FILE

should

not

be

used

to

recreate

the

LOB

field,

since

the

LOB

will

be

created

with

a

length

of

sql_lobfile_len.

CHAR

452

A

fixed-length

character

string.

The

string

length

is

contained

in

the

IXFCLENG

field

of

the

column

descriptor

record,

and

cannot

exceed

254

bytes.

The

string

is

in

the

code

page

indicated

by

IXFCSBCP.

If

IXFCDBCP

is

non-zero,

the

string

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

If

IXFCSBCP

is

zero,

the

string

is

bit

data

and

should

not

be

translated

by

any

transformation

program.

DATE

384

A

point

in

time

in

accordance

with

the

Gregorian

calendar.

Each

date

is

a

10-byte

character

string

in

International

Standards

Organization

(ISO)

format:

yyyy-mm-dd.

The

range

of

the

year

part

is

0001

to

9999.

The

range

of

the

month

part

is

01

to

12.

The

range

of

the

day

part

is

01

to

n,

where

n

depends

on

the

month,

using

the

usual

rules

for

days

of

the

month

and

leap

year.

Leading

zeros

cannot

be

omitted

from

any

part.

IXFCLENG

is

not

used,

and

should

contain

blanks.

Valid

characters

within

DATE

are

invariant

in

all

PC

ASCII

code

pages;

therefore,

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

Appendix

D.

File

Formats

271

Table

18.

PC/IXF

Data

Types

(continued)

Name

IXFCTYPE

Value

Description

DBCLOB

412

A

variable-length

string

of

double-byte

characters.

The

IXFCLENG

field

in

the

column

descriptor

record

specifies

the

maximum

number

of

double-byte

characters

in

the

string,

and

cannot

exceed

16

383.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

4-byte

integer

specifying

the

length

of

the

string

in

double-byte

characters

(that

is,

the

value

of

this

integer

is

one

half

the

length

of

the

string,

in

bytes).

The

string

is

in

the

DBCS

code

page,

as

specified

by

IXFCDBCP

in

the

C

record.

Since

the

string

consists

of

double-byte

character

data

only,

IXFCSBCP

should

be

zero.

There

are

no

surrounding

shift-in

or

shift-out

characters.

DECIMAL

484

A

packed

decimal

number

with

precision

P

(as

specified

by

the

first

three

bytes

of

IXFCLENG

in

the

column

descriptor

record)

and

scale

S

(as

specified

by

the

last

two

bytes

of

IXFCLENG).

The

length,

in

bytes,

of

a

packed

decimal

number

is

(P+2)/2.

The

precision

must

be

an

odd

number

between

1

and

31,

inclusive.

The

packed

decimal

number

is

in

the

internal

format

specified

by

IXFTMFRM,

where

packed

decimal

for

the

PC

is

defined

to

be

the

same

as

packed

decimal

for

the

System/370.

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

FLOATING

POINT

480

Either

a

long

(8-byte)

or

short

(4-byte)

floating

point

number,

depending

on

whether

IXFCLENG

is

set

to

eight

or

to

four.

The

data

is

in

the

internal

machine

form,

as

specified

by

IXFTMFRM.

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

Four-byte

floating

point

is

not

supported

by

the

database

manager.

GRAPHIC

468

A

fixed-length

string

of

double-byte

characters.

The

IXFCLENG

field

in

the

column

descriptor

record

specifies

the

number

of

double-byte

characters

in

the

string,

and

cannot

exceed

127.

The

actual

length

of

the

string

is

twice

the

value

of

the

IXFCLENG

field,

in

bytes.

The

string

is

in

the

DBCS

code

page,

as

specified

by

IXFCDBCP

in

the

C

record.

Since

the

string

consists

of

double-byte

character

data

only,

IXFCSBCP

should

be

zero.

There

are

no

surrounding

shift-in

or

shift-out

characters.

272

Data

Movement

Utilities

Table

18.

PC/IXF

Data

Types

(continued)

Name

IXFCTYPE

Value

Description

INTEGER

496

A

4-byte

integer

in

the

form

specified

by

IXFTMFRM.

It

represents

a

whole

number

between

-2

147

483

648

and

+2

147

483

647.

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

IXFCLENG

is

not

used,

and

should

contain

blanks.

LONGVARCHAR

456

A

variable-length

character

string.

The

maximum

length

of

the

string

is

contained

in

the

IXFCLENG

field

of

the

column

descriptor

record,

and

cannot

exceed

32

767

bytes.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

2-byte

integer

specifying

the

length

of

the

string,

in

bytes.

The

string

is

in

the

code

page

indicated

by

IXFCSBCP.

If

IXFCDBCP

is

non-zero,

the

string

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

If

IXFCSBCP

is

zero,

the

string

is

bit

data

and

should

not

be

translated

by

any

transformation

program.

LONG

VARGRAPHIC

472

A

variable-length

string

of

double-byte

characters.

The

IXFCLENG

field

in

the

column

descriptor

record

specifies

the

maximum

number

of

double-byte

characters

for

the

string,

and

cannot

exceed

16

383.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

2-byte

integer

specifying

the

length

of

the

string

in

double-byte

characters

(that

is,

the

value

of

this

integer

is

one

half

the

length

of

the

string,

in

bytes).

The

string

is

in

the

DBCS

code

page,

as

specified

by

IXFCDBCP

in

the

C

record.

Since

the

string

consists

of

double-byte

character

data

only,

IXFCSBCP

should

be

zero.

There

are

no

surrounding

shift-in

or

shift-out

characters.

SMALLINT

500

A

2-byte

integer

in

the

form

specified

by

IXFTMFRM.

It

represents

a

whole

number

between

−32

768

and

+32

767.

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

IXFCLENG

is

not

used,

and

should

contain

blanks.

Appendix

D.

File

Formats

273

Table

18.

PC/IXF

Data

Types

(continued)

Name

IXFCTYPE

Value

Description

TIME

388

A

point

in

time

in

accordance

with

the

24-hour

clock.

Each

time

is

an

8-byte

character

string

in

ISO

format:

hh.mm.ss.

The

range

of

the

hour

part

is

00

to

24,

and

the

range

of

the

other

parts

is

00

to

59.

If

the

hour

is

24,

the

other

parts

are

00.

The

smallest

time

is

00.00.00,

and

the

largest

is

24.00.00.

Leading

zeros

cannot

be

omitted

from

any

part.

IXFCLENG

is

not

used,

and

should

contain

blanks.

Valid

characters

within

TIME

are

invariant

in

all

PC

ASCII

code

pages;

therefore,

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

TIMESTAMP

392

The

date

and

time

with

microsecond

precision.

Each

time

stamp

is

a

character

string

of

the

form

yyyy-mm-dd-
hh.mm.ss.nnnnnn

(year

month

day

hour

minutes

seconds

microseconds).

IXFCLENG

is

not

used,

and

should

contain

blanks.

Valid

characters

within

TIMESTAMP

are

invariant

in

all

PC

ASCII

code

pages;

therefore,

IXFCSBCP

and

IXFCDBCP

are

not

significant,

and

should

be

zero.

VARCHAR

448

A

variable-length

character

string.

The

maximum

length

of

the

string,

in

bytes,

is

contained

in

the

IXFCLENG

field

of

the

column

descriptor

record,

and

cannot

exceed

254

bytes.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

two-byte

integer

specifying

the

length

of

the

string,

in

bytes.

The

string

is

in

the

code

page

indicated

by

IXFCSBCP.

If

IXFCDBCP

is

non-zero,

the

string

can

also

contain

double-byte

characters

in

the

code

page

indicated

by

IXFCDBCP.

If

IXFCSBCP

is

zero,

the

string

is

bit

data

and

should

not

be

translated

by

any

transformation

program.

VARGRAPHIC

464

A

variable-length

string

of

double-byte

characters.

The

IXFCLENG

field

in

the

column

descriptor

record

specifies

the

maximum

number

of

double-byte

characters

in

the

string,

and

cannot

exceed

127.

The

string

itself

is

preceded

by

a

current

length

indicator,

which

is

a

2-byte

integer

specifying

the

length

of

the

string

in

double-byte

characters

(that

is,

the

value

of

this

integer

is

one

half

the

length

of

the

string,

in

bytes).

The

string

is

in

the

DBCS

code

page,

as

specified

by

IXFCDBCP

in

the

C

record.

Since

the

string

consists

of

double-byte

character

data

only,

IXFCSBCP

should

be

zero.

There

are

no

surrounding

shift-in

or

shift-out

characters.

274

Data

Movement

Utilities

Not

all

combinations

of

IXFCSBCP

and

IXFCDBCP

values

for

PC/IXF

character

or

graphic

columns

are

valid.

A

PC/IXF

character

or

graphic

column

with

an

invalid

(IXFCSBCP,IXFCDBCP)

combination

is

an

invalid

data

type.

Table

19.

Valid

PC/IXF

Data

Types

PC/IXF

Data

Type

Valid

(IXFCSBCP,IXFCDBCP)

Pairs

Invalid

(IXFCSBCP,IXFCDBCP)

Pairs

CHAR,

VARCHAR,

or

LONG

VARCHAR

(0,0),

(x,0),

or

(x,y)

(0,y)

BLOB

(0,0)

(x,0),

(0,y),

or

(x,y)

CLOB

(x,0),

(x,y)

(0,0),

(0,y)

GRAPHIC,

VARGRAPHIC,

LONG

VARGRAPHIC,

or

DBCLOB

(0,y)

(0,0),

(x,0),

or

(x,y)

Note:

x

and

y

are

not

0.

Related

reference:

v

“PC/IXF

Record

Types”

on

page

254

v

“FORCEIN

Option”

on

page

283

v

“PC/IXF

Data

Type

Descriptions”

on

page

275

PC/IXF

Data

Type

Descriptions

Table

20.

Acceptable

Data

Type

Forms

for

the

PC/IXF

File

Format

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

BIGINT

A

BIGINT

column,

identical

to

the

database

column,

is

created.

A

column

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-9

223

372

036

854

775

808

to

9

223

372

036

854

775

807.

BLOB

A

PC/IXF

BLOB

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

CHAR,

VARCHAR,

LONG

VARCHAR,

BLOB,

BLOB_FILE,

or

BLOB_LOCATION_SPECIFIER

column

is

acceptable

if:

v

The

database

column

is

marked

FOR

BIT

DATA

v

The

PC/IXF

column

single-byte

code

page

value

equals

the

SBCS

CPGID

of

the

database

column,

and

the

PC/IXF

column

double-byte

code

page

value

equals

zero,

or

the

DBCS

CPGID

of

the

database

column.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

BLOB

column

is

also

acceptable.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

Appendix

D.

File

Formats

275

Table

20.

Acceptable

Data

Type

Forms

for

the

PC/IXF

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

CHAR

A

PC/IXF

CHAR

column

is

created.

The

database

column

length,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

PC/IXF

column

descriptor

record.

A

PC/IXF

CHAR,

VARCHAR,

or

LONG

VARCHAR

column

is

acceptable

if:

v

The

database

column

is

marked

FOR

BIT

DATA

v

The

PC/IXF

column

single-byte

code

page

value

equals

the

SBCS

CPGID

of

the

database

column,

and

the

PC/IXF

column

double-byte

code

page

value

equals

zero,

or

the

DBCS

CPGID

of

the

database

column.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

also

acceptable

if

the

database

column

is

marked

FOR

BIT

DATA.

In

any

case,

if

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

length

of

the

database

column.

The

data

is

padded

on

the

right

with

single-byte

spaces

(x’20’),

if

necessary.

CLOB

A

PC/IXF

CLOB

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

CHAR,

VARCHAR,

LONG

VARCHAR,

CLOB,

CLOB_FILE,

or

CLOB_LOCATION_SPECIFIER

column

is

acceptable

if

the

PC/IXF

column

single-byte

code

page

value

equals

the

SBCS

CPGID

of

the

database

column,

and

the

PC/IXF

column

double-byte

code

page

value

equals

zero,

or

the

DBCS

CPGID

of

the

database

column.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

DATE

A

DATE

column,

identical

to

the

database

column,

is

created.

A

PC/IXF

column

of

type

DATE

is

the

usual

input.

The

import

utility

also

attempts

to

accept

columns

in

any

of

the

character

types,

except

those

with

incompatible

lengths.

The

character

column

in

the

PC/IXF

file

must

contain

dates

in

a

format

consistent

with

the

territory

code

of

the

target

database.

DBCLOB

A

PC/IXF

DBCLOB

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

LONG

VARGRAPHIC,

DBCLOB,

DBCLOB_FILE,

or

DBCLOB_LOCATION_SPECIFIER

column

is

acceptable

if

the

PC/IXF

column

double-byte

code

page

value

equals

that

of

the

database

column.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

276

Data

Movement

Utilities

Table

20.

Acceptable

Data

Type

Forms

for

the

PC/IXF

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

DECIMAL

A

DECIMAL

column,

identical

to

the

database

column,

is

created.

The

precision

and

scale

of

the

column

is

stored

in

the

column

descriptor

record.

A

column

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

of

the

DECIMAL

column

into

which

they

are

being

imported.

FLOAT

A

FLOAT

column,

identical

to

the

database

column,

is

created.

A

column

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

All

values

are

within

range.

GRAPHIC

(DBCS

only)

A

PC/IXF

GRAPHIC

column

is

created.

The

database

column

length,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

acceptable

if

the

PC/IXF

column

double-byte

code

page

value

equals

that

of

the

database

column.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

database

column

length.

The

data

is

padded

on

the

right

with

double-byte

spaces

(x’8140’),

if

necessary.

INTEGER

An

INTEGER

column,

identical

to

the

database

column,

is

created.

A

column

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-2

147

483

648

to

2

147

483

647.

LONG

VARCHAR

A

PC/IXF

LONG

VARCHAR

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

CHAR,

VARCHAR,

or

LONG

VARCHAR

column

is

acceptable

if:

v

The

database

column

is

marked

FOR

BIT

DATA

v

The

PC/IXF

column

single-byte

code

page

value

equals

the

SBCS

CPGID

of

the

database

column,

and

the

PC/IXF

column

double-byte

code

page

value

equals

zero,

or

the

DBCS

CPGID

of

the

database

column.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

also

acceptable

if

the

database

column

is

marked

FOR

BIT

DATA.

In

any

case,

if

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

Appendix

D.

File

Formats

277

Table

20.

Acceptable

Data

Type

Forms

for

the

PC/IXF

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

LONG

VARGRAPHIC

(DBCS

only)

A

PC/IXF

LONG

VARGRAPHIC

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

acceptable

if

the

PC/IXF

column

double-byte

code

page

value

equals

that

of

the

database

column.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

SMALLINT

A

SMALLINT

column,

identical

to

the

database

column,

is

created.

A

column

in

any

numeric

type

(SMALLINT,

INTEGER,

BIGINT,

DECIMAL,

or

FLOAT)

is

accepted.

Individual

values

are

rejected

if

they

are

not

in

the

range

-32

768

to

32

767.

TIME

A

TIME

column,

identical

to

the

database

column,

is

created.

A

PC/IXF

column

of

type

TIME

is

the

usual

input.

The

import

utility

also

attempts

to

accept

columns

in

any

of

the

character

types,

except

those

with

incompatible

lengths.

The

character

column

in

the

PC/IXF

file

must

contain

time

data

in

a

format

consistent

with

the

territory

code

of

the

target

database.

TIMESTAMP

A

TIMESTAMP

column,

identical

to

the

database

column,

is

created.

A

PC/IXF

column

of

type

TIMESTAMP

is

the

usual

input.

The

import

utility

also

attempts

to

accept

columns

in

any

of

the

character

types,

except

those

with

incompatible

lengths.

The

character

column

in

the

PC/IXF

file

must

contain

data

in

the

input

format

for

time

stamps.

VARCHAR

If

the

maximum

length

of

the

database

column

is

<=

254,

a

PC/IXF

VARCHAR

column

is

created.

If

the

maximum

length

of

the

database

column

is

>

254,

a

PC/IXF

LONG

VARCHAR

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

CHAR,

VARCHAR,

or

LONG

VARCHAR

column

is

acceptable

if:

v

The

database

column

is

marked

FOR

BIT

DATA

v

The

PC/IXF

column

single-byte

code

page

value

equals

the

SBCS

CPGID

of

the

database

column,

and

the

PC/IXF

column

double-byte

code

page

value

equals

zero,

or

the

DBCS

CPGID

of

the

database

column.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

also

acceptable

if

the

database

column

is

marked

FOR

BIT

DATA.

In

any

case,

if

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

278

Data

Movement

Utilities

Table

20.

Acceptable

Data

Type

Forms

for

the

PC/IXF

File

Format

(continued)

Data

Type

Form

in

Files

Created

by

the

Export

Utility

Form

Acceptable

to

the

Import

Utility

VARGRAPHIC

(DBCS

only)

If

the

maximum

length

of

the

database

column

is

<=

127,

a

PC/IXF

VARGRAPHIC

column

is

created.

If

the

maximum

length

of

the

database

column

is

>

127,

a

PC/IXF

LONG

VARGRAPHIC

column

is

created.

The

maximum

length

of

the

database

column,

the

SBCS

CPGID

value,

and

the

DBCS

CPGID

value

are

copied

to

the

column

descriptor

record.

A

PC/IXF

GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC

column

is

acceptable

if

the

PC/IXF

column

double-byte

code

page

value

equals

that

of

the

database

column.

If

the

PC/IXF

column

is

of

fixed

length,

its

length

must

be

compatible

with

the

maximum

length

of

the

database

column.

Related

reference:

v

“PC/IXF

Record

Types”

on

page

254

v

“PC/IXF

Data

Types”

on

page

270

General

Rules

Governing

PC/IXF

File

Import

into

Databases

The

database

manager

import

utility

applies

the

following

general

rules

when

importing

a

PC/IXF

file

in

either

an

SBCS

or

a

DBCS

environment:

v

The

import

utility

accepts

PC/IXF

format

files

only

(IXFHID

=

’IXF’).

IXF

files

of

other

formats

cannot

be

imported.

v

The

import

utility

rejects

a

PC/IXF

file

with

more

than

1024

columns.

v

The

value

of

IXFHSBCP

in

the

PC/IXF

H

record

must

equal

the

SBCS

CPGID,

or

there

must

be

a

conversion

table

between

the

IXFHSBCP/IXFHDBCP

and

the

SBCS/DBCS

CPGID

of

the

target

database.

The

value

of

IXFHDBCP

must

equal

either

’00000’,

or

the

DBCS

CPGID

of

the

target

database.

If

either

of

these

conditions

is

not

satisfied,

the

import

utility

rejects

the

PC/IXF

file,

unless

the

FORCEIN

option

is

specified.

v

Invalid

Data

Types

—

New

Table

Import

of

a

PC/IXF

file

into

a

new

table

is

specified

by

the

CREATE

or

the

REPLACE_CREATE

keywords

in

the

IMPORT

command.

If

a

PC/IXF

column

of

an

invalid

data

type

is

selected

for

import

into

a

new

table,

the

import

utility

terminates.

The

entire

PC/IXF

file

is

rejected,

no

table

is

created,

and

no

data

is

imported.

v

Invalid

Data

Types

—

Existing

Table

Import

of

a

PC/IXF

file

into

an

existing

table

is

specified

by

the

INSERT,

the

INSERT_UPDATE,

or

the

REPLACE_CREATE

keywords

in

the

IMPORT

command.

If

a

PC/IXF

column

of

an

invalid

data

type

is

selected

for

import

into

an

existing

table,

one

of

two

actions

is

possible:

Appendix

D.

File

Formats

279

–

If

the

target

table

column

is

nullable,

all

values

for

the

invalid

PC/IXF

column

are

ignored,

and

the

table

column

values

are

set

to

NULL

–

If

the

target

table

column

is

not

nullable,

the

import

utility

terminates.

The

entire

PC/IXF

file

is

rejected,

and

no

data

is

imported.

The

existing

table

remains

unaltered.
v

When

importing

into

a

new

table,

nullable

PC/IXF

columns

generate

nullable

database

columns,

and

not

nullable

PC/IXF

columns

generate

not

nullable

database

columns.

v

A

not

nullable

PC/IXF

column

can

be

imported

into

a

nullable

database

column.

v

A

nullable

PC/IXF

column

can

be

imported

into

a

not

nullable

database

column.

If

a

NULL

value

is

encountered

in

the

PC/IXF

column,

the

import

utility

rejects

the

values

of

all

columns

in

the

PC/IXF

row

that

contains

the

NULL

value

(the

entire

row

is

rejected),

and

processing

continues

with

the

next

PC/IXF

row.

That

is,

no

data

is

imported

from

a

PC/IXF

row

that

contains

a

NULL

value

if

a

target

table

column

(for

the

NULL)

is

not

nullable.

v

Incompatible

Columns

—

New

Table

If,

during

import

to

a

new

database

table,

a

PC/IXF

column

is

selected

that

is

incompatible

with

the

target

database

column,

the

import

utility

terminates.

The

entire

PC/IXF

file

is

rejected,

no

table

is

created,

and

no

data

is

imported.

Note:

The

IMPORT

FORCEIN

option

extends

the

scope

of

compatible

columns.

v

Incompatible

Columns

—

Existing

Table

If,

during

import

to

an

existing

database

table,

a

PC/IXF

column

is

selected

that

is

incompatible

with

the

target

database

column,

one

of

two

actions

is

possible:

–

If

the

target

table

column

is

nullable,

all

values

for

the

PC/IXF

column

are

ignored,

and

the

table

column

values

are

set

to

NULL

–

If

the

target

table

column

is

not

nullable,

the

import

utility

terminates.

The

entire

PC/IXF

file

is

rejected,

and

no

data

is

imported.

The

existing

table

remains

unaltered.

Note:

The

IMPORT

FORCEIN

option

extends

the

scope

of

compatible

columns.

v

Invalid

Values

If,

during

import,

a

PC/IXF

column

value

is

encountered

that

is

not

valid

for

the

target

database

column,

the

import

utility

rejects

the

values

of

all

columns

in

the

PC/IXF

row

that

contains

the

invalid

value

(the

entire

row

is

rejected),

and

processing

continues

with

the

next

PC/IXF

row.

v

Importing

or

loading

PC/IXF

files

containing

DBCS

data

requires

that

the

corresponding

conversion

files

(located

in

sqllib\conv)

be

installed

on

the

client

machine.

The

names

of

these

conversion

files

contain

both

the

source

and

the

target

code

page

numbers;

the

extension

is

always

.cnv.

For

example,

file

09320943.cnv

contains

the

conversion

table

for

converting

code

page

932

to

943.

If

the

client

machine

does

not

have

the

appropriate

conversion

files,

they

can

be

copied

from

a

server

machine

to

the

sqllib\conv

directory

on

the

client

machine.

Be

sure

to

copy

the

files

from

a

compatible

platform;

for

example,

if

the

client

is

running

on

a

UNIX

based

operating

system,

copy

the

files

from

a

server

that

is

also

running

on

a

UNIX

based

operating

system.

Related

reference:

v

“PC/IXF

Data

Types”

on

page

270

v

“FORCEIN

Option”

on

page

283

280

Data

Movement

Utilities

Data

Type-Specific

Rules

Governing

PC/IXF

File

Import

into

Databases

v

A

valid

PC/IXF

numeric

column

can

be

imported

into

any

compatible

numeric

database

column.

PC/IXF

columns

containing

4-byte

floating

point

data

are

not

imported,

because

this

is

an

invalid

data

type.

v

Database

date/time

columns

can

accept

values

from

matching

PC/IXF

date/time

columns

(DATE,

TIME,

and

TIMESTAMP),

as

well

as

from

PC/IXF

character

columns

(CHAR,

VARCHAR,

and

LONG

VARCHAR),

subject

to

column

length

and

value

compatibility

restrictions.

v

A

valid

PC/IXF

character

column

(CHAR,

VARCHAR,

or

LONG

VARCHAR)

can

always

be

imported

into

an

existing

database

character

column

marked

FOR

BIT

DATA;

otherwise:

–

IXFCSBCP

and

the

SBCS

CPGID

must

agree

–

There

must

be

a

conversion

table

for

the

IXFCSBCP/IXFCDBCP

and

the

SBCS/DBCS

–

One

set

must

be

all

zeros

(FOR

BIT

DATA).

If

IXFCSBCP

is

not

zero,

the

value

of

IXFCDBCP

must

equal

either

zero

or

the

DBCS

CPGID

of

the

target

database

column.

If

either

of

these

conditions

is

not

satisfied,

the

PC/IXF

and

database

columns

are

incompatible.

When

importing

a

valid

PC/IXF

character

column

into

a

new

database

table,

the

value

of

IXFCSBCP

must

equal

either

zero

or

the

SBCS

CPGID

of

the

database,

or

there

must

be

a

conversion

table.

If

IXFCSBCP

is

zero,

IXFCDBCP

must

also

be

zero

(otherwise

the

PC/IXF

column

is

an

invalid

data

type);

IMPORT

creates

a

character

column

marked

FOR

BIT

DATA

in

the

new

table.

If

IXFCSBCP

is

not

zero,

and

equals

the

SBCS

CPGID

of

the

database,

the

value

of

IXFCDBCP

must

equal

either

zero

or

the

DBCS

CPGID

of

the

database;

in

this

case,

the

utility

creates

a

character

column

in

the

new

table

with

SBCS

and

DBCS

CPGID

values

equal

to

those

of

the

database.

If

these

conditions

are

not

satisfied,

the

PC/IXF

and

database

columns

are

incompatible.

The

FORCEIN

option

can

be

used

to

override

code

page

equality

checks.

However,

a

PC/IXF

character

column

with

IXFCSBCP

equal

to

zero

and

IXFCDBCP

not

equal

to

zero

is

an

invalid

data

type,

and

cannot

be

imported,

even

if

FORCEIN

is

specified.

v

A

valid

PC/IXF

graphic

column

(GRAPHIC,

VARGRAPHIC,

or

LONG

VARGRAPHIC)

can

always

be

imported

into

an

existing

database

character

column

marked

FOR

BIT

DATA,

but

is

incompatible

with

all

other

database

columns.

The

FORCEIN

option

can

be

used

to

relax

this

restriction.

However,

a

PC/IXF

graphic

column

with

IXFCSBCP

not

equal

to

zero,

or

IXFCDBCP

equal

to

zero,

is

an

invalid

data

type,

and

cannot

be

imported,

even

if

FORCEIN

is

specified.

When

importing

a

valid

PC/IXF

graphic

column

into

a

database

graphic

column,

the

value

of

IXFCDBCP

must

equal

the

DBCS

CPGID

of

the

target

database

column

(that

is,

the

double-byte

code

pages

of

the

two

columns

must

agree).

v

If,

during

import

of

a

PC/IXF

file

into

an

existing

database

table,

a

fixed-length

string

column

(CHAR

or

GRAPHIC)

is

selected

whose

length

is

greater

than

the

maximum

length

of

the

target

column,

the

columns

are

incompatible.

v

If,

during

import

of

a

PC/IXF

file

into

an

existing

database

table,

a

variable-length

string

column

(VARCHAR,

LONG

VARCHAR,

VARGRAPHIC,

or

LONG

VARGRAPHIC)

is

selected

whose

length

is

greater

than

the

maximum

length

of

the

target

column,

the

columns

are

compatible.

Individual

values

are

Appendix

D.

File

Formats

281

processed

according

to

the

compatibility

rules

governing

the

database

manager

INSERT

statement,

and

PC/IXF

values

which

are

too

long

for

the

target

database

column

are

invalid.

v

PC/IXF

values

imported

into

a

fixed-length

database

character

column

(that

is,

a

CHAR

column)

are

padded

on

the

right

with

single-byte

spaces

(0x20),

if

necessary,

to

obtain

values

whose

length

equals

that

of

the

database

column.

PC/IXF

values

imported

into

a

fixed-length

database

graphic

column

(that

is,

a

GRAPHIC

column)

are

padded

on

the

right

with

double-byte

spaces

(0x8140),

if

necessary,

to

obtain

values

whose

length

equals

that

of

the

database

column.

v

Since

PC/IXF

VARCHAR

columns

have

a

maximum

length

of

254

bytes,

a

database

VARCHAR

column

of

maximum

length

n,

with

254

<

n

<

4001,

must

be

exported

into

a

PC/IXF

LONG

VARCHAR

column

of

maximum

length

n.

v

Although

PC/IXF

LONG

VARCHAR

columns

have

a

maximum

length

of

32

767

bytes,

and

database

LONG

VARCHAR

columns

have

a

maximum

length

restriction

of

32

700

bytes,

PC/IXF

LONG

VARCHAR

columns

of

length

greater

than

32

700

bytes

(but

less

than

32

768

bytes)

are

still

valid,

and

can

be

imported

into

database

LONG

VARCHAR

columns,

but

data

might

be

lost.

v

Since

PC/IXF

VARGRAPHIC

columns

have

a

maximum

length

of

127

bytes,

a

database

VARGRAPHIC

column

of

maximum

length

n,

with

127

<

n

<

2001,

must

be

exported

into

a

PC/IXF

LONG

VARGRAPHIC

column

of

maximum

length

n.

v

Although

PC/IXF

LONG

VARGRAPHIC

columns

have

a

maximum

length

of

16

383

bytes,

and

database

LONG

VARGRAPHIC

columns

have

a

maximum

length

restriction

of

16

350,

PC/IXF

LONG

VARGRAPHIC

columns

of

length

greater

than

16

350

bytes

(but

less

than

16

384

bytes)

are

still

valid,

and

can

be

imported

into

database

LONG

VARGRAPHIC

columns,

but

data

might

be

lost.

Table

21

summarizes

PC/IXF

file

import

into

new

or

existing

database

tables

without

the

FORCEIN

option.

Table

21.

Summary

of

PC/IXF

File

Import

without

FORCEIN

Option

PC/IXF

COLUMN

DATA

TYPE

DATABASE

COLUMN

DATA

TYPE

NUMERIC

CHARACTER

GRAPH

DATETIME

SMALL

INT

INT

BIGINT

DEC

FLT

(0,0)

(SBCS,

0)d

(SBCS,

DBCS)b

b

DATE

TIME

TIME

STAMP

Numeric

-SMALLINT

N

E

E

E

Ea

E

-INTEGER

N

Ea

E

E

Ea

E

-BIGINT

N

Ea

Ea

E

Ea

E

-DECIMAL

N

Ea

Ea

Ea

Ea

E

-FLOAT

N

Ea

Ea

Ea

Ea

E

Character

-(0,0)

N

E

Ec

Ec

Ec

-(SBCS,0)

N

N

E

E

E

Ec

Ec

Ec

-(SBCS,

DBCS)

N

Ec

Ec

Ec

282

Data

Movement

Utilities

Table

21.

Summary

of

PC/IXF

File

Import

without

FORCEIN

Option

(continued)

PC/IXF

COLUMN

DATA

TYPE

DATABASE

COLUMN

DATA

TYPE

NUMERIC

CHARACTER

GRAPH

DATETIME

SMALL

INT

INT

BIGINT

DEC

FLT

(0,0)

(SBCS,

0)d

(SBCS,

DBCS)b

b

DATE

TIME

TIME

STAMP

E

E

Graphic

N

E

E

Datetime

-DATE

N

E

-TIME

N

E

-TIME

STAMP

N

E

Notes:

1.

The

table

is

a

matrix

of

all

valid

PC/IXF

and

database

manager

data

types.

If

a

PC/IXF

column

can

be

imported

into

a

database

column,

a

letter

is

displayed

in

the

matrix

cell

at

the

intersection

of

the

PC/IXF

data

type

matrix

row

and

the

database

manager

data

type

matrix

column.

An

’N’

indicates

that

the

utility

is

creating

a

new

database

table

(a

database

column

of

the

indicated

data

type

is

created).

An

’E’

indicates

that

the

utility

is

importing

data

to

an

existing

database

table

(a

database

column

of

the

indicated

data

type

is

a

valid

target).

2.

Character

string

data

types

are

distinguished

by

code

page

attributes.

These

attributes

are

shown

as

an

ordered

pair

(SBCS,DBCS),

where:

v

SBCS

is

either

zero

or

denotes

a

non-zero

value

of

the

single-byte

code

page

attribute

of

the

character

data

type

v

DBCS

is

either

zero

or

denotes

a

non-zero

value

of

the

double-byte

code

page

attribute

of

the

character

data

type.

3.

If

the

table

indicates

that

a

PC/IXF

character

column

can

be

imported

into

a

database

character

column,

the

values

of

their

respective

code

page

attribute

pairs

satisfy

the

rules

governing

code

page

equality.

a

Individual

values

are

rejected

if

they

are

out

of

range

for

the

target

numeric

data

type.

b

Data

type

is

available

only

in

DBCS

environments.

c

Individual

values

are

rejected

if

they

are

not

valid

date

or

time

values.

d

Data

type

is

not

available

in

DBCS

environments.

FORCEIN

Option

The

FORCEIN

option

permits

import

of

a

PC/IXF

file

despite

code

page

differences

between

data

in

the

PC/IXF

file

and

the

target

database.

It

offers

additional

flexibility

in

the

definition

of

compatible

columns.

FORCEIN

General

Semantics

The

following

general

semantics

apply

when

using

the

FORCEIN

option

in

either

an

SBCS

or

a

DBCS

environment:

v

The

FORCEIN

option

should

be

used

with

caution.

It

is

usually

advisable

to

attempt

an

import

without

this

option

enabled.

However,

because

of

the

generic

nature

of

the

PC/IXF

data

interchange

architecture,

some

PC/IXF

files

might

contain

data

types

or

values

that

cannot

be

imported

without

intervention.

v

Import

with

FORCEIN

to

a

new

table

might

yield

a

different

result

than

import

to

an

existing

table.

An

existing

table

has

predefined

target

data

types

for

each

PC/IXF

data

type.

v

When

LOB

data

is

exported

with

the

LOBSINFILE

option,

and

the

files

move

to

another

client

with

a

different

code

page,

then,

unlike

other

data,

the

CLOBS

Appendix

D.

File

Formats

283

and

DBCLOBS

in

the

separate

files

are

not

converted

to

the

client

code

page

when

imported

or

loaded

into

a

database.

FORCEIN

Code

Page

Semantics

The

following

code

page

semantics

apply

when

using

the

FORCEIN

option

in

either

an

SBCS

or

a

DBCS

environment:

v

The

FORCEIN

option

disables

all

import

utility

code

page

comparisons.

This

rule

applies

to

code

page

comparisons

at

the

column

level

and

at

the

file

level

as

well,

when

importing

to

a

new

or

an

existing

database

table.

At

the

column

(for

example,

data

type)

level,

this

rule

applies

only

to

the

following

database

manager

and

PC/IXF

data

types:

character

(CHAR,

VARCHAR,

and

LONG

VARCHAR),

and

graphic

(GRAPHIC,

VARGRAPHIC,

and

LONG

VARGRAPHIC).

The

restriction

follows

from

the

fact

that

code

page

attributes

of

other

data

types

are

not

relevant

to

the

interpretation

of

data

type

values.

v

The

FORCEIN

option

does

not

disable

inspection

of

code

page

attributes

to

determine

data

types.

For

example,

the

database

manager

allows

a

CHAR

column

to

be

declared

with

the

FOR

BIT

DATA

attribute.

Such

a

declaration

sets

both

the

SBCS

CPGID

and

the

DBCS

CPGID

of

the

column

to

zero;

it

is

the

zero

value

of

these

CPGIDs

that

identifies

the

column

values

as

bit

strings

(rather

than

character

strings).

v

The

FORCEIN

option

does

not

imply

code

page

translation.

Values

of

data

types

that

are

sensitive

to

the

FORCEIN

option

are

copied

"as

is".

No

code

point

mappings

are

employed

to

account

for

a

change

of

code

page

environments.

Padding

of

the

imported

value

with

spaces

might

be

necessary

in

the

case

of

fixed

length

target

columns.

v

When

data

is

imported

to

an

existing

table

using

the

FORCEIN

option:

–

The

code

page

value

of

the

target

database

table

and

columns

always

prevails.

–

The

code

page

value

of

the

PC/IXF

file

and

columns

is

ignored.

This

rule

applies

whether

or

not

the

FORCEIN

option

is

used.

The

database

manager

does

not

permit

changes

to

a

database

or

a

column

code

page

value

once

a

database

is

created.

v

When

importing

to

a

new

table

using

the

FORCEIN

option:

–

The

code

page

value

of

the

target

database

prevails.

–

PC/IXF

character

columns

with

IXFCSBCP

=

IXFCDBCP

=

0

generate

table

columns

marked

FOR

BIT

DATA.

–

All

other

PC/IXF

character

columns

generate

table

character

columns

with

SBCS

and

DBCS

CPGID

values

equal

to

those

of

the

database.

–

PC/IXF

graphic

columns

generate

table

graphic

columns

with

an

SBCS

CPGID

of

"undefined",

and

a

DBCS

CPGID

equal

to

that

of

the

database

(DBCS

environment

only).

FORCEIN

Example

Consider

a

PC/IXF

CHAR

column

with

IXFCSBCP

=

’00897’

and

IXFCDBCP

=

’00301’.

This

column

is

to

be

imported

into

a

database

CHAR

column

whose

SBCS

CPGID

=

’00850’

and

DBCS

CPGID

=

’00000’.

Without

FORCEIN,

the

utility

terminates,

and

no

data

is

imported,

or

the

PC/IXF

column

values

are

ignored,

and

the

database

column

contains

NULLs

(if

the

database

column

is

nullable).

With

FORCEIN,

the

utility

proceeds,

ignoring

code

page

incompatibilities.

If

there

are

no

other

data

type

incompatibilities

(such

as

length,

for

example),

the

values

of

284

Data

Movement

Utilities

the

PC/IXF

column

are

imported

"as

is",

and

become

available

for

interpretation

under

the

database

column

code

page

environment.

The

following

table

shows:

v

The

code

page

attributes

of

a

column

created

in

a

new

database

table

when

a

PC/IXF

file

data

type

with

specified

code

page

attributes

is

imported

v

That

the

import

utility

rejects

PC/IXF

data

types

if

they

invalid

or

incompatible.

Table

22.

Summary

of

Import

Utility

Code

Page

Semantics

(New

Table).

This

table

assumes

there

is

no

conversion

table

between

a

and

x.

If

there

were,

items

3

and

4

would

work

successfully

without

the

FORCEIN

option.

CODE

PAGE

ATTRIBUTES

of

PC/IXF

DATA

TYPE

CODE

PAGE

ATTRIBUTES

OF

DATABASE

TABLE

COLUMN

Without

FORCEIN

With

FORCEIN

SBCS

(0,0)

(0,0)

(0,0)

(a,0)

(a,0)

(a,0)

(x,0)

reject

(a,0)

(x,y)

reject

(a,0)

(a,y)

reject

(a,0)

(0,y)

reject

(0,0)

DBCS

(0,0)

(0,0)

(0,0)

(a,0)

(a,b)

(a,b)

(x,0)

reject

(a,b)

(a,b)

(a,b)

(a,b)

(x,y)

reject

(a,b)

(a,y)

reject

(a,b)

(x,b)

reject

(a,b)

(0,b)

(-,b)

(-,b)

(0,y)

reject

(-,b)

Appendix

D.

File

Formats

285

Table

22.

Summary

of

Import

Utility

Code

Page

Semantics

(New

Table)

(continued).

This

table

assumes

there

is

no

conversion

table

between

a

and

x.

If

there

were,

items

3

and

4

would

work

successfully

without

the

FORCEIN

option.

CODE

PAGE

ATTRIBUTES

of

PC/IXF

DATA

TYPE

CODE

PAGE

ATTRIBUTES

OF

DATABASE

TABLE

COLUMN

Without

FORCEIN

With

FORCEIN

Notes:

1.

Code

page

attributes

of

a

PC/IXF

data

type

are

shown

as

an

ordered

pair,

where

x

represents

a

non-zero

single-byte

code

page

value,

and

y

represents

a

non-zero

double-byte

code

page

value.

A

’-’

represents

an

undefined

code

page

value.

2.

The

use

of

different

letters

in

various

code

page

attribute

pairs

is

deliberate.

Different

letters

imply

different

values.

For

example,

if

a

PC/IXF

data

type

is

shown

as

(x,y),

and

the

database

column

as

(a,y),

x

does

not

equal

a,

but

the

PC/IXF

file

and

the

database

have

the

same

double-byte

code

page

value

y.

3.

Only

character

and

graphic

data

types

are

affected

by

the

FORCEIN

code

page

semantics.

4.

It

is

assumed

that

the

database

containing

the

new

table

has

code

page

attributes

of

(a,0);

therefore,

all

character

columns

in

the

new

table

must

have

code

page

attributes

of

either

(0,0)

or

(a,0).

In

a

DBCS

environment,

it

is

assumed

that

the

database

containing

the

new

table

has

code

page

attributes

of

(a,b);

therefore,

all

graphic

columns

in

the

new

table

must

have

code

page

attributes

of

(-,b),

and

all

character

columns

must

have

code

page

attributes

of

(a,b).

The

SBCS

CPGID

is

shown

as

’-',

because

it

is

undefined

for

graphic

data

types.

5.

The

data

type

of

the

result

is

determined

by

the

rules

described

in

“FORCEIN

Data

Type

Semantics”

on

page

288.

6.

The

reject

result

is

a

reflection

of

the

rules

for

invalid

or

incompatible

data

types.

The

following

table

shows:

v

That

the

import

utility

accepts

PC/IXF

data

types

with

various

code

page

attributes

into

an

existing

table

column

(the

target

column)

having

the

specified

code

page

attributes

v

That

the

import

utility

does

not

permit

a

PC/IXF

data

type

with

certain

code

page

attributes

to

be

imported

into

an

existing

table

column

having

the

code

page

attributes

shown.

The

utility

rejects

PC/IXF

data

types

if

they

are

invalid

or

incompatible.

Table

23.

Summary

of

Import

Utility

Code

Page

Semantics

(Existing

Table).

This

table

assumes

there

is

no

conversion

table

between

a

and

x.

CODE

PAGE

ATTRIBUTES

OF

PC/IXF

DATA

TYPE

CODE

PAGE

ATTRIBUTES

OF

TARGET

DATABASE

COLUMN

RESULTS

OF

IMPORT

Without

FORCEIN

With

FORCEIN

SBCS

(0,0)

(0,0)

accept

accept

(a,0)

(0,0)

accept

accept

(x,0)

(0,0)

accept

accept

(x,y)

(0,0)

accept

accept

(a,y)

(0,0)

accept

accept

(0,y)

(0,0)

accept

accept

286

Data

Movement

Utilities

Table

23.

Summary

of

Import

Utility

Code

Page

Semantics

(Existing

Table)

(continued).

This

table

assumes

there

is

no

conversion

table

between

a

and

x.

CODE

PAGE

ATTRIBUTES

OF

PC/IXF

DATA

TYPE

CODE

PAGE

ATTRIBUTES

OF

TARGET

DATABASE

COLUMN

RESULTS

OF

IMPORT

Without

FORCEIN

With

FORCEIN

(0,0)

(a,0)

null

or

reject

accept

(a,0)

(a,0)

accept

accept

(x,0)

(a,0)

null

or

reject

accept

(x,y)

(a,0)

null

or

reject

accept

(a,y)

(a,0)

null

or

reject

accept

(0,y)

(a,0)

null

or

reject

null

or

reject

DBCS

(0,0)

(0,0)

accept

accept

(a,0)

(0,0)

accept

accept

(x,0)

(0,0)

accept

accept

(a,b)

(0,0)

accept

accept

(x,y)

(0,0)

accept

accept

(a,y)

(0,0)

accept

accept

(x,b)

(0,0)

accept

accept

(0,b)

(0,0)

accept

accept

(0,y)

(0,0)

accept

accept

(0,0)

(a,b)

null

or

reject

accept

(a,0)

(a,b)

accept

accept

(x,0)

(a,b)

null

or

reject

accept

(a,b)

(a,b)

accept

accept

(x,y)

(a,b)

null

or

reject

accept

(a,y)

(a,b)

null

or

reject

accept

(x,b)

(a,b)

null

or

reject

accept

(0,b)

(a,b)

null

or

reject

null

or

reject

(0,y)

(a,b)

null

or

reject

null

or

reject

(0,0)

(-,b)

null

or

reject

accept

(a,0)

(-,b)

null

or

reject

null

or

reject

(x,0)

(-,b)

null

or

reject

null

or

reject

(a,b)

(-,b)

null

or

reject

null

or

reject

(x,y)

(-,b)

null

or

reject

null

or

reject

(a,y)

(-,b)

null

or

reject

null

or

reject

(x,b)

(-,b)

null

or

reject

null

or

reject

(0,b)

(-,b)

accept

accept

Appendix

D.

File

Formats

287

Table

23.

Summary

of

Import

Utility

Code

Page

Semantics

(Existing

Table)

(continued).

This

table

assumes

there

is

no

conversion

table

between

a

and

x.

CODE

PAGE

ATTRIBUTES

OF

PC/IXF

DATA

TYPE

CODE

PAGE

ATTRIBUTES

OF

TARGET

DATABASE

COLUMN

RESULTS

OF

IMPORT

Without

FORCEIN

With

FORCEIN

(0,y)

(-,b)

null

or

reject

accept

Notes:

1.

See

the

notes

for

Table

22

on

page

285.

2.

The

null

or

reject

result

is

a

reflection

of

the

rules

for

invalid

or

incompatible

data

types.

FORCEIN

Data

Type

Semantics

The

FORCEIN

option

permits

import

of

certain

PC/IXF

columns

into

target

database

columns

of

unequal

and

otherwise

incompatible

data

types.

The

following

data

type

semantics

apply

when

using

the

FORCEIN

option

in

either

an

SBCS

or

a

DBCS

environment

(except

where

noted):

v

In

SBCS

environments,

the

FORCEIN

option

permits

import

of:

–

A

PC/IXF

BIT

data

type

(IXFCSBCP

=

0

=

IXFCDBCP

for

a

PC/IXF

character

column)

into

a

database

character

column

(non-zero

SBCS

CPGID,

and

DBCS

CPGID

=

0);

existing

tables

only

–

A

PC/IXF

MIXED

data

type

(non-zero

IXFCSBCP

and

IXFCDBCP)

into

a

database

character

column;

both

new

and

existing

tables

–

A

PC/IXF

GRAPHIC

data

type

into

a

database

FOR

BIT

DATA

column

(SBCS

CPGID

=

0

=

DBCS

CPGID);

new

tables

only

(this

is

always

permitted

for

existing

tables).
v

The

FORCEIN

option

does

not

extend

the

scope

of

valid

PC/IXF

data

types.

PC/IXF

columns

with

data

types

not

defined

as

valid

PC/IXF

data

types

are

invalid

for

import

with

or

without

the

FORCEIN

option.

v

In

DBCS

environments,

the

FORCEIN

option

permits

import

of:

–

A

PC/IXF

BIT

data

type

into

a

database

character

column

–

A

PC/IXF

BIT

data

type

into

a

database

graphic

column;

however,

if

the

PC/IXF

BIT

column

is

of

fixed

length,

that

length

must

be

even.

A

fixed

length

PC/IXF

BIT

column

of

odd

length

is

not

compatible

with

a

database

graphic

column.

A

varying-length

PC/IXF

BIT

column

is

compatible

whether

its

length

is

odd

or

even,

although

an

odd-length

value

from

a

varying-length

column

is

an

invalid

value

for

import

into

a

database

graphic

column

–

A

PC/IXF

MIXED

data

type

into

a

database

character

column.

Table

24

summarizes

PC/IXF

file

import

into

new

or

existing

database

tables

with

the

FORCEIN

option.

Table

24.

Summary

of

PC/IXF

File

Import

with

FORCEIN

Option

PC/IXF

COLUMN

DATA

TYPE

DATABASE

COLUMN

DATA

TYPE

NUMERIC

CHARACTER

GRAPH

DATETIME

SMALL

INT

INT

BIGINT

DEC

FLT

(0,0)

(SBCS,

0)e

(SBCS,

DBCS)b

b

DATE

TIME

TIME

STAMP

Numeric

-SMALLINT

N

288

Data

Movement

Utilities

Table

24.

Summary

of

PC/IXF

File

Import

with

FORCEIN

Option

(continued)

PC/IXF

COLUMN

DATA

TYPE

DATABASE

COLUMN

DATA

TYPE

NUMERIC

CHARACTER

GRAPH

DATETIME

SMALL

INT

INT

BIGINT

DEC

FLT

(0,0)

(SBCS,

0)e

(SBCS,

DBCS)b

b

DATE

TIME

TIME

STAMP

E

E

E

Ea

E

-INTEGER

N

Ea

E

E

Ea

E

-BIGINT

N

Ea

Ea

E

Ea

E

-DECIMAL

N

Ea

Ea

Ea

Ea

E

-FLOAT

N

Ea

Ea

Ea

Ea

E

Character

-(0,0)

N

E

E

w/F

E

w/F

E

w/F

Ec

Ec

Ec

-(SBCS,0)

N

N

E

E

E

Ec

Ec

Ec

-(SBCS,

DBCS)

N

w/Fd

N

Ec

Ec

Ec

E

E

w/F

E

Graphic

N

w/Fd

N

E

E

Datetime

-DATE

N

E

-TIME

N

E

-TIME

STAMP

N

E

Note:

If

a

PC/IXF

column

can

be

imported

into

a

database

column

only

with

the

FORCEIN

option,

the

string

’w/F’

is

displayed

together

with

an

’N’

or

an

’E’.

An

’N’

indicates

that

the

utility

is

creating

a

new

database

table;

an

’E’

indicates

that

the

utility

is

importing

data

to

an

existing

database

table.

The

FORCEIN

option

affects

compatibility

of

character

and

graphic

data

types

only.

a

Individual

values

are

rejected

if

they

are

out

of

range

for

the

target

numeric

data

type.

b

Data

type

is

available

only

in

DBCS

environments.

c

Individual

values

are

rejected

if

they

are

not

valid

date

or

time

values.

d

Applies

only

if

the

source

PC/IXF

data

type

is

not

supported

by

the

target

database.

e

Data

type

is

not

available

in

DBCS

environments.

Related

reference:

v

“PC/IXF

Data

Types”

on

page

270

v

“General

Rules

Governing

PC/IXF

File

Import

into

Databases”

on

page

279

Appendix

D.

File

Formats

289

Differences

Between

PC/IXF

and

Version

0

System/370

IXF

The

following

describes

differences

between

PC/IXF,

used

by

the

database

manager,

and

Version

0

System/370

IXF,

used

by

several

host

database

products:

v

PC/IXF

files

are

ASCII,

rather

than

EBCDIC

oriented.

PC/IXF

files

have

significantly

expanded

code

page

identification,

including

new

code

page

identifiers

in

the

H

record,

and

the

use

of

actual

code

page

values

in

the

column

descriptor

records.

There

is

also

a

mechanism

for

marking

columns

of

character

data

as

FOR

BIT

DATA.

FOR

BIT

DATA

columns

are

of

special

significance,

because

transforms

which

convert

a

PC/IXF

file

format

to

or

from

any

other

IXF

or

database

file

format

cannot

perform

any

code

page

translation

on

the

values

contained

in

FOR

BIT

DATA

columns.

v

Only

the

machine

data

form

is

permitted;

that

is,

the

IXFTFORM

field

must

always

contain

the

value

M.

Furthermore,

the

machine

data

must

be

in

PC

forms;

that

is,

the

IXFTMFRM

field

must

contain

the

value

PC.

This

means

that

integers,

floating

point

numbers,

and

decimal

numbers

in

data

portions

of

PC/IXF

data

records

must

be

in

PC

forms.

v

Application

(A)

records

are

permitted

anywhere

after

the

H

record

in

a

PC/IXF

file.

They

are

not

counted

when

the

value

of

the

IXFHHCNT

field

is

computed.

v

Every

PC/IXF

record

begins

with

a

record

length

indicator.

This

is

a

6-byte

character

representation

of

an

integer

value

containing

the

length,

in

bytes,

of

the

PC/IXF

record

not

including

the

record

length

indicator

itself;

that

is,

the

total

record

length

minus

6

bytes.

The

purpose

of

the

record

length

field

is

to

enable

PC

programs

to

identify

record

boundaries.

v

To

facilitate

the

compact

storage

of

variable-length

data,

and

to

avoid

complex

processing

when

a

field

is

split

into

multiple

records,

PC/IXF

does

not

support

Version

0

IXF

X

records,

but

does

support

D

record

identifiers.

Whenever

a

variable-length

field

or

a

nullable

field

is

the

last

field

in

a

data

D

record,

it

is

not

necessary

to

write

the

entire

maximum

length

of

the

field

to

the

PC/IXF

file.

Worksheet

File

Format

(WSF)

Lotus

1-2-3

and

Symphony

products

use

the

same

basic

format,

with

additional

functions

added

at

each

new

release.

The

database

manager

supports

the

subset

of

the

worksheet

records

that

are

the

same

for

all

the

Lotus

products.

That

is,

for

the

releases

of

Lotus

1-2-3

and

Symphony

products

supported

by

the

database

manager,

all

file

names

with

any

three-character

extension

are

accepted;

for

example:

WKS,

WK1,

WRK,

WR1,

WJ2.

Each

WSF

file

represents

one

worksheet.

The

database

manager

uses

the

following

conventions

to

interpret

worksheets

and

to

provide

consistency

in

worksheets

generated

by

its

export

operations:

v

Cells

in

the

first

row

(ROW

value

0)

are

reserved

for

descriptive

information

about

the

entire

worksheet.

All

data

within

this

row

is

optional.

It

is

ignored

during

import.

v

Cells

in

the

second

row

(ROW

value

1)

are

used

for

column

labels.

v

The

remaining

rows

are

data

rows

(records,

or

rows

of

data

from

the

table).

v

Cell

values

under

any

column

heading

are

values

for

that

particular

column

or

field.

v

A

NULL

value

is

indicated

by

the

absence

of

a

real

cell

content

record

(for

example,

no

integer,

number,

label,

or

formula

record)

for

a

particular

column

within

a

row

of

cell

content

records.

290

Data

Movement

Utilities

Note:

A

row

of

NULLs

will

be

neither

imported

nor

exported.

To

create

a

file

that

is

compliant

with

the

WSF

format

during

an

export

operation,

some

loss

of

data

may

occur.

WSF

files

use

a

Lotus

code

point

mapping

that

is

not

necessarily

the

same

as

existing

code

pages

supported

by

DB2.

As

a

result,

when

importing

or

exporting

a

WSF

file,

data

is

converted

from

the

Lotus

code

points

to

or

from

the

code

points

used

by

the

application

code

page.

DB2

supports

conversion

between

the

Lotus

code

points

and

code

points

defined

by

code

pages

437,

819,

850,

860,

863,

and

865.

Note:

For

multi-byte

character

set

users,

no

conversions

are

performed.

Appendix

D.

File

Formats

291

292

Data

Movement

Utilities

Appendix

E.

Export/Import/Load

Utility

Unicode

Considerations

The

export,

import,

and

load

utilities

are

not

supported

when

they

are

used

with

a

Unicode

client

connected

to

a

non-Unicode

database.

Unicode

client

files

are

only

supported

when

the

Unicode

client

is

connected

to

a

Unicode

database.

The

DEL,

ASC,

and

PC/IXF

file

formats

are

supported

for

a

UCS-2

database,

as

described

in

this

section.

The

WSF

format

is

not

supported.

When

exporting

from

a

UCS-2

database

to

an

ASCII

delimited

(DEL)

file,

all

character

data

is

converted

to

the

application

code

page.

Both

character

string

and

graphic

string

data

are

converted

to

the

same

SBCS

or

MBCS

code

page

of

the

client.

This

is

expected

behavior

for

the

export

of

any

database,

and

cannot

be

changed,

because

the

entire

delimited

ASCII

file

can

have

only

one

code

page.

Therefore,

if

you

export

to

a

delimited

ASCII

file,

only

those

UCS-2

characters

that

exist

in

your

application

code

page

will

be

saved.

Other

characters

are

replaced

with

the

default

substitution

character

for

the

application

code

page.

For

UTF-8

clients

(code

page

1208),

there

is

no

data

loss,

because

all

UCS-2

characters

are

supported

by

UTF-8

clients.

When

importing

from

an

ASCII

file

(DEL

or

ASC)

to

a

UCS-2

database,

character

string

data

is

converted

from

the

application

code

page

to

UTF-8,

and

graphic

string

data

is

converted

from

the

application

code

page

to

UCS-2.

There

is

no

data

loss.

If

you

want

to

import

ASCII

data

that

has

been

saved

under

a

different

code

page,

you

should

change

the

data

file

code

page

before

issuing

the

IMPORT

command.

One

way

to

accomplish

this

is

to

set

DB2CODEPAGE

to

the

code

page

of

the

ASCII

data

file.

The

range

of

valid

ASCII

delimiters

for

SBCS

and

MBCS

clients

is

identical

to

what

is

currently

supported

by

DB2®

UDB

for

those

clients.

The

range

of

valid

delimiters

for

UTF-8

clients

is

X’01’

to

X’7F’,

with

the

usual

restrictions.

When

exporting

from

a

UCS-2

database

to

a

PC/IXF

file,

character

string

data

is

converted

to

the

SBCS/MBCS

code

page

of

the

client.

Graphic

string

data

is

not

converted,

and

is

stored

in

UCS-2

(code

page

1200).

There

is

no

data

loss.

When

importing

from

a

PC/IXF

file

to

a

UCS-2

database,

character

string

data

is

assumed

to

be

in

the

SBCS/MBCS

code

page

stored

in

the

PC/IXF

header,

and

graphic

string

data

is

assumed

to

be

in

the

DBCS

code

page

stored

in

the

PC/IXF

header.

Character

string

data

is

converted

by

the

import

utility

from

the

code

page

specified

in

the

PC/IXF

header

to

the

code

page

of

the

client,

and

then

from

the

client

code

page

to

UTF-8

(by

the

INSERT

statement).

graphic

string

data

is

converted

by

the

import

utility

from

the

DBCS

code

page

specified

in

the

PC/IXF

header

directly

to

UCS-2

(code

page

1200).

The

load

utility

places

the

data

directly

into

the

database

and,

by

default,

assumes

data

in

ASC

or

DEL

files

to

be

in

the

code

page

of

the

database.

Therefore,

by

default,

no

code

page

conversion

takes

place

for

ASCII

files.

When

the

code

page

for

the

data

file

has

been

explicitly

specified

(using

the

codepage

modifier),

the

load

utility

uses

this

information

to

convert

from

the

specified

code

page

to

the

database

code

page

before

loading

the

data.

For

PC/IXF

files,

the

load

utility

©

Copyright

IBM

Corp.

1999

-

2004

293

always

converts

from

the

code

pages

specified

in

the

IXF

header

to

the

database

code

page

(1208

for

CHAR,

and

1200

for

GRAPHIC).

The

code

page

for

DBCLOB

files

is

always

1200

for

UCS-2.

The

code

page

for

CLOB

files

is

the

same

as

the

code

page

for

the

data

files

being

imported,

loaded

or

exported.

For

example,

when

loading

or

importing

data

using

the

PC/IXF

format,

the

CLOB

file

is

assumed

to

be

in

the

code

page

specified

by

the

PC/IXF

header.

If

the

DBCLOB

file

is

in

ASC

or

DEL

format,

the

load

utility

assumes

that

CLOB

data

is

in

the

code

page

of

the

database

(unless

explicitly

specified

otherwise

using

the

codepage

modifier),

while

the

import

utility

assumes

it

to

be

in

the

code

page

of

the

client

application.

The

nochecklengths

modifier

is

always

specified

for

a

UCS-2

database,

because:

v

Any

SBCS

can

be

connected

to

a

database

for

which

there

is

no

DBCS

code

page

v

Character

strings

in

UTF-8

format

usually

have

different

lengths

than

those

in

client

code

pages.

Restrictions

for

Code

Pages

1394,

1392

and

5488

The

import,

export

and

load

utilities

can

now

be

used

to

transfer

data

from

the

new

Chinese

code

page

GB

18030

(code

page

identifier

1392

and

5488)

and

the

new

Japanese

code

page

ShiftJISX

0213

(code

page

identifier

1394)

to

DB2

UDB

Unicode

databases.

In

addition,

the

export

utility

can

be

used

to

transfer

data

from

DB2

UDB

Unicode

databases

to

GB

18030

or

ShiftJIS

X0213

code

page

data.

For

example,

the

following

command

will

load

the

Shift_JISX0213

data

file

u/jp/user/x0213/data.del

residing

on

a

remotely

connected

client

into

MYTABLE:

db2

load

client

from

/u/jp/user/x0213/data.del

of

del

modified

by

codepage=1394

insert

into

mytable

where

MYTABLE

is

located

on

a

DB2

UDB

Unicode

database.

Since

only

connections

between

a

Unicode

client

and

a

Unicode

server

are

supported,

so

you

need

to

use

either

a

Unicode

client

or

set

the

DB2

registry

variable

DB2CODEPAGE

to

1208

prior

to

using

the

load,

import,

or

export

utilities.

Conversion

from

code

page

1394,

1392,

or

5488

to

Unicode

may

result

in

expansion.

For

example,

a

2-byte

character

may

be

stored

as

two

16-bit

Unicode

characters

in

the

GRAPHIC

columns.

You

need

to

ensure

the

target

columns

in

the

Unicode

database

are

wide

enough

to

contain

any

expanded

Unicode

byte.

Incompatibilities

For

applications

connected

to

a

UCS-2

database,

graphic

string

data

is

always

in

UCS-2

(code

page

1200).

For

applications

connected

to

non-UCS-2

databases,

the

graphic

string

data

is

in

the

DBCS

code

page

of

the

application,

or

not

allowed

if

the

application

code

page

is

SBCS.

For

example,

when

a

932

client

is

connected

to

a

Japanese

non-UCS-2

database,

the

graphic

string

data

is

in

code

page

301.

For

the

932

client

applications

connected

to

a

UCS-2

database,

the

graphic

string

data

is

in

UCS-2.

Related

reference:

v

“DEL

Data

Type

Descriptions”

on

page

246

v

“Non-delimited

ASCII

(ASC)

File

Format”

on

page

249

294

Data

Movement

Utilities

v

“PC

Version

of

IXF

File

Format”

on

page

252

Appendix

E.

Export/Import/Load

Utility

Unicode

Considerations

295

296

Data

Movement

Utilities

Appendix

F.

Bind

Files

Used

by

the

Export,

Import

and

Load

Utilities

The

following

table

lists

bind

files

with

their

default

isolation

levels,

as

well

as

which

utilities

use

them

and

for

what

purpose.

Bind

File

(Default

Isolation

Level)

Utility/Purpose

db2ueiwi.bnd

(CS)

Import/Export.

Used

to

query

information

about

table

columns

and

indexes.

db2uexpm.bnd

(CS)

Export.

Used

to

fetch

from

the

SQL

query

specified

for

the

export

operation.

db2uimpm.bnd

(RS)

Import.

Used

to

insert

data

from

the

source

data

file

into

the

target

table.

db2uipkg.bnd

(CS)

Import.

Used

to

check

bind

options.

db2uiici.bnd

(RR)

Import.

Used

to

create

indexes

when

the

IXF

CREATE

option

is

specified.

db2ucktb.bnd

(CS)

Load.

Used

to

perform

general

initialization

processes

for

a

load

operation.

db2ulxld.bnd

(CS)

Load.

Used

to

process

the

SQL

query

provided

during

a

load

from

cursor

operation.

db2uigsi.bnd

(RS

on

UNIX

based

systems,

RR

on

all

other

platforms)

Import/Export.

Used

to

drop

indexes

and

check

for

referential

constraints

for

an

import

replace

operation.

Also

used

to

retrieve

identity

column

information

for

exporting

IXF

files.

db2uiict.bnd

(RR)

Import.

Used

to

create

tables

when

the

IXF

CREATE

option

is

specified.

db2uqtpd.bnd

(RR)

Import/Export.

Used

to

perform

processing

for

hierarchical

tables.

db2uqtnm.bnd

(RR)

Import.

Used

to

perform

processing

for

hierarchical

tables

when

the

IXF

CREATE

option

is

specified.

db2uimtb.bnd

(RS)

Import.

Used

to

perform

general

initialization

processes

for

an

import

operation.

©

Copyright

IBM

Corp.

1999

-

2004

297

||
|

||
|
|

298

Data

Movement

Utilities

Appendix

G.

Warning,

error

and

completion

messages

Messages

generated

by

the

various

utilities

are

included

among

the

SQL

messages.

These

messages

are

generated

by

the

database

manager

when

a

warning

or

error

condition

has

been

detected.

Each

message

has

a

message

identifier

that

consists

of

a

prefix

(SQL)

and

a

four-

or

five-digit

message

number.

There

are

three

message

types:

notification,

warning,

and

critical.

Message

identifiers

ending

with

an

N

are

error

messages.

Those

ending

with

a

W

indicate

warning

or

informational

messages.

Message

identifiers

ending

with

a

C

indicate

critical

system

errors.

The

message

number

is

also

referred

to

as

the

SQLCODE.

The

SQLCODE

is

passed

to

the

application

as

a

positive

or

negative

number,

depending

on

its

message

type

(N,

W,

or

C).

N

and

C

yield

negative

values,

whereas

W

yields

a

positive

value.

DB2

returns

the

SQLCODE

to

the

application,

and

the

application

can

get

the

message

associated

with

the

SQLCODE.

DB2

also

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

Some

SQLCODE

values

have

associated

SQLSTATE

values.

You

can

use

the

information

contained

in

this

book

to

identify

an

error

or

problem,

and

to

resolve

the

problem

by

using

the

appropriate

recovery

action.

This

information

can

also

be

used

to

understand

where

messages

are

generated

and

logged.

SQL

messages,

and

the

message

text

associated

with

SQLSTATE

values,

are

also

accessible

from

the

operating

system

command

line.

To

access

help

for

these

error

messages,

enter

the

following

at

the

operating

system

command

prompt:

db2

?

SQLnnnnn

where

nnnnn

represents

the

message

number.

On

UNIX

based

systems,

the

use

of

double

quotation

mark

delimiters

is

recommended;

this

will

avoid

problems

if

there

are

single

character

file

names

in

the

directory:

db2

"?

SQLnnnnn"

The

message

identifier

accepted

as

a

parameter

for

the

db2

command

is

not

case

sensitive,

and

the

terminating

letter

is

not

required.

Therefore,

the

following

commands

will

produce

the

same

result:

db2

?

SQL0000N

db2

?

sql0000

db2

?

SQL0000n

If

the

message

text

is

too

long

for

your

screen,

use

the

following

command

(on

UNIX

based

operating

systems

and

others

that

support

the

″more″

pipe):

db2

?

SQLnnnnn

|

more

You

can

also

redirect

the

output

to

a

file

which

can

then

be

browsed.

Help

can

also

be

invoked

from

interactive

input

mode.

To

access

this

mode,

enter

the

following

at

the

operating

system

command

prompt:

db2

To

get

DB2

message

help

in

this

mode,

type

the

following

at

the

command

prompt

(db2

=>):

©

Copyright

IBM

Corp.

1999

-

2004

299

?

SQLnnnnn

The

message

text

associated

with

SQLSTATEs

can

be

retrieved

by

issuing:

db2

?

nnnnn

or

db2

?

nn

where

nnnnn

is

a

five-character

SQLSTATE

value

(alphanumeric),

and

nn

is

a

two-digit

SQLSTATE

class

code

(the

first

two

digits

of

the

SQLSTATE

value).

300

Data

Movement

Utilities

Appendix

H.

DB2

Universal

Database

technical

information

DB2

documentation

and

help

DB2®

technical

information

is

available

through

the

following

tools

and

methods:

v

DB2

Information

Center

–

Topics

–

Help

for

DB2

tools

–

Sample

programs

–

Tutorials
v

Downloadable

PDF

files,

PDF

files

on

CD,

and

printed

books

–

Guides

–

Reference

manuals
v

Command

line

help

–

Command

help

–

Message

help

–

SQL

state

help
v

Installed

source

code

–

Sample

programs

You

can

access

additional

DB2

Universal

Database™

technical

information

such

as

technotes,

white

papers,

and

Redbooks™

online

at

ibm.com®.

Access

the

DB2

Information

Management

software

library

site

at

www.ibm.com/software/data/pubs/.

DB2

documentation

updates

IBM®

may

periodically

make

documentation

FixPaks

and

other

documentation

updates

to

the

DB2

Information

Center

available.

If

you

access

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/,

you

will

always

be

viewing

the

most

up-to-date

information.

If

you

have

installed

the

DB2

Information

Center

locally,

then

you

need

to

install

any

updates

manually

before

you

can

view

them.

Documentation

updates

allow

you

to

update

the

information

that

you

installed

from

the

DB2

Information

Center

CD

when

new

information

becomes

available.

The

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books.

To

get

the

most

current

DB2

technical

information,

install

the

documentation

updates

as

they

become

available

or

go

to

the

DB2

Information

Center

at

the

www.ibm.com

site.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

318

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

312

©

Copyright

IBM

Corp.

1999

-

2004

301

|

|
|
|
|
|
|
|
|

|
|
|
|

http://www.ibm.com/software/data/pubs/
http://publib.boulder.ibm.com/infocenter/db2help/

DB2

Information

Center

The

DB2®

Information

Center

gives

you

access

to

all

of

the

information

you

need

to

take

full

advantage

of

DB2

family

products,

including

DB2

Universal

Database™,

DB2

Connect™,

DB2

Information

Integrator

and

DB2

Query

Patroller™.

The

DB2

Information

Center

also

contains

information

for

major

DB2

features

and

components

including

replication,

data

warehousing,

and

the

DB2

extenders.

The

DB2

Information

Center

has

the

following

features

if

you

view

it

in

Mozilla

1.0

or

later

or

Microsoft®

Internet

Explorer

5.5

or

later.

Some

features

require

you

to

enable

support

for

JavaScript™:

Flexible

installation

options

You

can

choose

to

view

the

DB2

documentation

using

the

option

that

best

meets

your

needs:

v

To

effortlessly

ensure

that

your

documentation

is

always

up

to

date,

you

can

access

all

of

your

documentation

directly

from

the

DB2

Information

Center

hosted

on

the

IBM®

Web

site

at

http://publib.boulder.ibm.com/infocenter/db2help/

v

To

minimize

your

update

efforts

and

keep

your

network

traffic

within

your

intranet,

you

can

install

the

DB2

documentation

on

a

single

server

on

your

intranet

v

To

maximize

your

flexibility

and

reduce

your

dependence

on

network

connections,

you

can

install

the

DB2

documentation

on

your

own

computer

Search

You

can

search

all

of

the

topics

in

the

DB2

Information

Center

by

entering

a

search

term

in

the

Search

text

field.

You

can

retrieve

exact

matches

by

enclosing

terms

in

quotation

marks,

and

you

can

refine

your

search

with

wildcard

operators

(*,

?)

and

Boolean

operators

(AND,

NOT,

OR).

Task-oriented

table

of

contents

You

can

locate

topics

in

the

DB2

documentation

from

a

single

table

of

contents.

The

table

of

contents

is

organized

primarily

by

the

kind

of

tasks

you

may

want

to

perform,

but

also

includes

entries

for

product

overviews,

goals,

reference

information,

an

index,

and

a

glossary.

v

Product

overviews

describe

the

relationship

between

the

available

products

in

the

DB2

family,

the

features

offered

by

each

of

those

products,

and

up

to

date

release

information

for

each

of

these

products.

v

Goal

categories

such

as

installing,

administering,

and

developing

include

topics

that

enable

you

to

quickly

complete

tasks

and

develop

a

deeper

understanding

of

the

background

information

for

completing

those

tasks.

v

Reference

topics

provide

detailed

information

about

a

subject,

including

statement

and

command

syntax,

message

help,

and

configuration

parameters.

Show

current

topic

in

table

of

contents

You

can

show

where

the

current

topic

fits

into

the

table

of

contents

by

clicking

the

Refresh

/

Show

Current

Topic

button

in

the

table

of

contents

frame

or

by

clicking

the

Show

in

Table

of

Contents

button

in

the

content

frame.

This

feature

is

helpful

if

you

have

followed

several

links

to

related

topics

in

several

files

or

arrived

at

a

topic

from

search

results.

302

Data

Movement

Utilities

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/db2help/

Index

You

can

access

all

of

the

documentation

from

the

index.

The

index

is

organized

in

alphabetical

order

by

index

term.

Glossary

You

can

use

the

glossary

to

look

up

definitions

of

terms

used

in

the

DB2

documentation.

The

glossary

is

organized

in

alphabetical

order

by

glossary

term.

Integrated

localized

information

The

DB2

Information

Center

displays

information

in

the

preferred

language

set

in

your

browser

preferences.

If

a

topic

is

not

available

in

your

preferred

language,

the

DB2

Information

Center

displays

the

English

version

of

that

topic.

For

iSeries™

technical

information,

refer

to

the

IBM

eServer™

iSeries

information

center

at

www.ibm.com/eserver/iseries/infocenter/.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

303

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

311

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

311

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

305

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

308

DB2

Information

Center

installation

scenarios

Different

working

environments

can

pose

different

requirements

for

how

to

access

DB2®

information.

The

DB2

Information

Center

can

be

accessed

on

the

IBM®

Web

site,

on

a

server

on

your

organization’s

network,

or

on

a

version

installed

on

your

computer.

In

all

three

cases,

the

documentation

is

contained

in

the

DB2

Information

Center,

which

is

an

architected

web

of

topic-based

information

that

you

view

with

a

browser.

By

default,

DB2

products

access

the

DB2

Information

Center

on

the

IBM

Web

site.

However,

if

you

want

to

access

the

DB2

Information

Center

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

Information

Center

using

the

DB2

Information

Center

CD

found

in

your

product

Media

Pack.

Refer

to

the

summary

of

options

for

accessing

DB2

documentation

which

follows,

along

with

the

three

installation

scenarios,

to

help

determine

which

method

of

accessing

the

DB2

Information

Center

works

best

for

you

and

your

work

environment,

and

what

installation

issues

you

might

need

to

consider.

Summary

of

options

for

accessing

DB2

documentation:

The

following

table

provides

recommendations

on

which

options

are

possible

in

your

work

environment

for

accessing

the

DB2

product

documentation

in

the

DB2

Information

Center.

Appendix

H.

DB2

Universal

Database

technical

information

303

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

http://www.ibm.com/eserver/iseries/infocenter/

Internet

access

Intranet

access

Recommendation

Yes

Yes

Access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

access

the

DB2

Information

Center

installed

on

an

intranet

server.

Yes

No

Access

the

DB2

Information

Center

on

the

IBM

Web

site.

No

Yes

Access

the

DB2

Information

Center

installed

on

an

intranet

server.

No

No

Access

the

DB2

Information

Center

on

a

local

computer.

Scenario:

Accessing

the

DB2

Information

Center

on

your

computer:

Tsu-Chen

owns

a

factory

in

a

small

town

that

does

not

have

a

local

ISP

to

provide

him

with

Internet

access.

He

purchased

DB2

Universal

Database™

to

manage

his

inventory,

his

product

orders,

his

banking

account

information,

and

his

business

expenses.

Never

having

used

a

DB2

product

before,

Tsu-Chen

needs

to

learn

how

to

do

so

from

the

DB2

product

documentation.

After

installing

DB2

Universal

Database

on

his

computer

using

the

typical

installation

option,

Tsu-Chen

tries

to

access

the

DB2

documentation.

However,

his

browser

gives

him

an

error

message

that

the

page

he

tried

to

open

cannot

be

found.

Tsu-Chen

checks

the

installation

manual

for

his

DB2

product

and

discovers

that

he

has

to

install

the

DB2

Information

Center

if

he

wants

to

access

DB2

documentation

on

his

computer.

He

finds

the

DB2

Information

Center

CD

in

the

media

pack

and

installs

it.

From

the

application

launcher

for

his

operating

system,

Tsu-Chen

now

has

access

to

the

DB2

Information

Center

and

can

learn

how

to

use

his

DB2

product

to

increase

the

success

of

his

business.

Scenario:

Accessing

the

DB2

Information

Center

on

the

IBM

Web

site:

Colin

is

an

information

technology

consultant

with

a

training

firm.

He

specializes

in

database

technology

and

SQL

and

gives

seminars

on

these

subjects

to

businesses

all

over

North

America

using

DB2

Universal

Database.

Part

of

Colin’s

seminars

includes

using

DB2

documentation

as

a

teaching

tool.

For

example,

while

teaching

courses

on

SQL,

Colin

uses

the

DB2

documentation

on

SQL

as

a

way

to

teach

basic

and

advanced

syntax

for

database

queries.

Most

of

the

businesses

at

which

Colin

teaches

have

Internet

access.

This

situation

influenced

Colin’s

decision

to

configure

his

mobile

computer

to

access

the

DB2

Information

Center

on

the

IBM

Web

site

when

he

installed

the

latest

version

of

DB2

Universal

Database.

This

configuration

allows

Colin

to

have

online

access

to

the

latest

DB2

documentation

during

his

seminars.

However,

sometimes

while

travelling

Colin

does

not

have

Internet

access.

This

posed

a

problem

for

him,

especially

when

he

needed

to

access

to

DB2

documentation

to

prepare

for

seminars.

To

avoid

situations

like

this,

Colin

installed

a

copy

of

the

DB2

Information

Center

on

his

mobile

computer.

Colin

enjoys

the

flexibility

of

always

having

a

copy

of

DB2

documentation

at

his

disposal.

Using

the

db2set

command,

he

can

easily

configure

the

registry

variables

304

Data

Movement

Utilities

||||

|||
|
|

|||
|

|||
|

|||
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

on

his

mobile

computer

to

access

the

DB2

Information

Center

on

either

the

IBM

Web

site,

or

his

mobile

computer,

depending

on

his

situation.

Scenario:

Accessing

the

DB2

Information

Center

on

an

intranet

server:

Eva

works

as

a

senior

database

administrator

for

a

life

insurance

company.

Her

administration

responsibilities

include

installing

and

configuring

the

latest

version

of

DB2

Universal

Database

on

the

company’s

UNIX®

database

servers.

Her

company

recently

informed

its

employees

that,

for

security

reasons,

it

would

not

provide

them

with

Internet

access

at

work.

Because

her

company

has

a

networked

environment,

Eva

decides

to

install

a

copy

of

the

DB2

Information

Center

on

an

intranet

server

so

that

all

employees

in

the

company

who

use

the

company’s

data

warehouse

on

a

regular

basis

(sales

representatives,

sales

managers,

and

business

analysts)

have

access

to

DB2

documentation.

Eva

instructs

her

database

team

to

install

the

latest

version

of

DB2

Universal

Database

on

all

of

the

employee’s

computers

using

a

response

file,

to

ensure

that

each

computer

is

configured

to

access

the

DB2

Information

Center

using

the

host

name

and

the

port

number

of

the

intranet

server.

However,

through

a

misunderstanding

Migual,

a

junior

database

administrator

on

Eva’s

team,

installs

a

copy

of

the

DB2

Information

Center

on

several

of

the

employee

computers,

rather

than

configuring

DB2

Universal

Database

to

access

the

DB2

Information

Center

on

the

intranet

server.

To

correct

this

situation

Eva

tells

Migual

to

use

the

db2set

command

to

change

the

DB2

Information

Center

registry

variables

(DB2_DOCHOST

for

the

host

name,

and

DB2_DOCPORT

for

the

port

number)

on

each

of

these

computers.

Now

all

of

the

appropriate

computers

on

the

network

have

access

to

the

DB2

Information

Center,

and

employees

can

find

answers

to

their

DB2

questions

in

the

DB2

documentation.

Related

concepts:

v

“DB2

Information

Center”

on

page

302

Related

tasks:

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

311

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

305

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

308

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

UNIX

operating

system.

Appendix

H.

DB2

Universal

Database

technical

information

305

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

UNIX

computers.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

PowerPC

(AIX)

–

HP

9000

(HP-UX)

–

Intel

32–bit

(Linux)

–

Solaris

UltraSPARC

computers

(Solaris

Operating

Environment)
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

IBM

AIX

5.1

(on

PowerPC)

–

HP-UX

11i

(on

HP

9000)

–

Red

Hat

Linux

8.0

(on

Intel

32–bit)

–

SuSE

Linux

8.1

(on

Intel

32–bit)

–

Sun

Solaris

Version

8

(on

Solaris

Operating

Environment

UltraSPARC

computers)

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

UNIX

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

from

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browser

is

supported:

-

Mozilla

Version

1.0

or

greater
v

The

DB2

Setup

wizard

is

a

graphical

installer.

You

must

have

an

implementation

of

the

X

Window

System

software

capable

of

rendering

a

graphical

user

interface

for

the

DB2

Setup

wizard

to

run

on

your

computer.

Before

you

can

run

the

DB2

Setup

wizard

you

must

ensure

that

you

have

properly

exported

your

display.

For

example,

enter

the

following

command

at

the

command

prompt:

export

DISPLAY=9.26.163.144:0.

v

Communication

requirements

–

TCP/IP

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system.

2.

Insert

and

mount

the

DB2

Information

Center

product

CD

on

your

system.

3.

Change

to

the

directory

where

the

CD

is

mounted

by

entering

the

following

command:

cd

/cd

where

/cd

represents

the

mount

point

of

the

CD.

4.

Enter

the

./db2setup

command

to

start

the

DB2

Setup

wizard.

5.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

306

Data

Movement

Utilities

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

6.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

7.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

8.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

9.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

10.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

11.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

12.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

also

install

the

DB2

Information

Center

using

a

response

file.

The

installation

logs

db2setup.his,

db2setup.log,

and

db2setup.err

are

located,

by

default,

in

the

/tmp

directory.

The

db2setup.log

file

captures

all

DB2

product

installation

information,

including

errors.

The

db2setup.his

file

records

all

DB2

product

installations

on

your

computer.

DB2

appends

the

db2setup.log

file

to

the

db2setup.his

file.

The

db2setup.err

file

captures

any

error

output

that

is

returned

by

Java,

for

example,

exceptions

and

trap

information.

When

the

installation

is

complete,

the

DB2

Information

Center

will

be

installed

in

one

of

the

following

directories,

depending

upon

your

UNIX

operating

system:

v

AIX:

/usr/opt/db2_08_01

v

HP-UX:

/opt/IBM/db2/V8.1

v

Linux:

/opt/IBM/db2/V8.1

v

Solaris

Operating

Environment:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

303

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

311

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

308

Appendix

H.

DB2

Universal

Database

technical

information

307

|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|
|

Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)

DB2

product

documentation

can

be

accessed

in

three

ways:

on

the

IBM

Web

site,

on

an

intranet

server,

or

on

a

version

installed

on

your

computer.

By

default,

DB2

products

access

DB2

documentation

on

the

IBM

Web

site.

If

you

want

to

access

the

DB2

documentation

on

an

intranet

server

or

on

your

own

computer,

you

must

install

the

DB2

documentation

from

the

DB2

Information

Center

CD.

Using

the

DB2

Setup

wizard,

you

can

define

your

installation

preferences

and

install

the

DB2

Information

Center

on

a

computer

that

uses

a

Windows

operating

system.

Prerequisites:

This

section

lists

the

hardware,

operating

system,

software,

and

communication

requirements

for

installing

the

DB2

Information

Center

on

Windows.

v

Hardware

requirements

You

require

one

of

the

following

processors:

–

32-bit

computers:

a

Pentium

or

Pentium

compatible

CPU
v

Operating

system

requirements

You

require

one

of

the

following

operating

systems:

–

Windows

2000

–

Windows

XP

Note:

The

DB2

Information

Center

runs

on

a

subset

of

the

Windows

operating

systems

on

which

DB2

clients

are

supported.

It

is

therefore

recommended

that

you

either

access

the

DB2

Information

Center

on

the

IBM

Web

site,

or

that

you

install

and

access

the

DB2

Information

Center

on

an

intranet

server.

v

Software

requirements

–

The

following

browsers

are

supported:

-

Mozilla

1.0

or

greater

-

Internet

Explorer

Version

5.5

or

6.0

(Version

6.0

for

Windows

XP)
v

Communication

requirements

–

TCP/IP

Restrictions:

v

You

require

an

account

with

administrative

privileges

to

install

the

DB2

Information

Center.

Procedure:

To

install

the

DB2

Information

Center

using

the

DB2

Setup

wizard:

1.

Log

on

to

the

system

with

the

account

that

you

have

defined

for

the

DB2

Information

Center

installation.

2.

Insert

the

CD

into

the

drive.

If

enabled,

the

auto-run

feature

starts

the

IBM

DB2

Setup

Launchpad.

3.

The

DB2

Setup

wizard

determines

the

system

language

and

launches

the

setup

program

for

that

language.

If

you

want

to

run

the

setup

program

in

a

language

other

than

English,

or

the

setup

program

fails

to

auto-start,

you

can

start

the

DB2

Setup

wizard

manually.

308

Data

Movement

Utilities

|

|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|
|
|

To

start

the

DB2

Setup

wizard

manually:

a.

Click

Start

and

select

Run.

b.

In

the

Open

field,

type

the

following

command:

x:\setup.exe

/i

2-letter

language

identifier

where

x:

represents

your

CD

drive,

and

2-letter

language

identifier

represents

the

language

in

which

the

setup

program

will

be

run.

c.

Click

OK.

4.

The

IBM

DB2

Setup

Launchpad

opens.

To

proceed

directly

to

the

installation

of

the

DB2

Information

Center,

click

Install

Product.

Online

help

is

available

to

guide

you

through

the

remaining

steps.

To

invoke

the

online

help,

click

Help.

You

can

click

Cancel

at

any

time

to

end

the

installation.

5.

On

the

Select

the

product

you

would

like

to

install

page,

click

Next.

6.

Click

Next

on

the

Welcome

to

the

DB2

Setup

wizard

page.

The

DB2

Setup

wizard

will

guide

you

through

the

program

setup

process.

7.

To

proceed

with

the

installation,

you

must

accept

the

license

agreement.

On

the

License

Agreement

page,

select

I

accept

the

terms

in

the

license

agreement

and

click

Next.

8.

Select

Install

DB2

Information

Center

on

this

computer

on

the

Select

the

installation

action

page.

If

you

want

to

use

a

response

file

to

install

the

DB2

Information

Center

on

this

or

other

computers

at

a

later

time,

select

Save

your

settings

in

a

response

file.

Click

Next.

9.

Select

the

languages

in

which

the

DB2

Information

Center

will

be

installed

on

Select

the

languages

to

install

page.

Click

Next.

10.

Configure

the

DB2

Information

Center

for

incoming

communication

on

the

Specify

the

DB2

Information

Center

port

page.

Click

Next

to

continue

the

installation.

11.

Review

the

installation

choices

you

have

made

in

the

Start

copying

files

page.

To

change

any

settings,

click

Back.

Click

Install

to

copy

the

DB2

Information

Center

files

onto

your

computer.

You

can

install

the

DB2

Information

Center

using

a

response

file.

You

can

also

use

the

db2rspgn

command

to

generate

a

response

file

based

on

an

existing

installation.

For

information

on

errors

encountered

during

installation,

see

the

db2.log

and

db2wi.log

files

located

in

the

’My

Documents’\DB2LOG\

directory.

The

location

of

the

’My

Documents’

directory

will

depend

on

the

settings

on

your

computer.

The

db2wi.log

file

captures

the

most

recent

DB2

installation

information.

The

db2.log

captures

the

history

of

DB2

product

installations.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

303

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

311

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

305

Appendix

H.

DB2

Universal

Database

technical

information

309

|

|

|

|

|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|
|

|
|

Invoking

the

DB2

Information

Center

The

DB2

Information

Center

gives

you

access

to

all

of

the

information

that

you

need

to

use

DB2

products

for

Linux,

UNIX,

and

Windows

operating

systems

such

as

DB2

Universal

Database,

DB2

Connect,

DB2

Information

Integrator,

and

DB2

Query

Patroller.

You

can

invoke

the

DB2

Information

Center

from

one

of

the

following

places:

v

Computers

on

which

a

DB2

UDB

client

or

server

is

installed

v

An

intranet

server

or

local

computer

on

which

the

DB2

Information

Center

installed

v

The

IBM

Web

site

Prerequisites:

Before

you

invoke

the

DB2

Information

Center:

v

Optional:

Configure

your

browser

to

display

topics

in

your

preferred

language

v

Optional:

Configure

your

DB2

client

to

use

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

Procedure:

To

invoke

the

DB2

Information

Center

on

a

computer

on

which

a

DB2

UDB

client

or

server

is

installed:

v

From

the

Start

Menu

(Windows

operating

system):

Click

Start

—�

Programs

—�

IBM

DB2

—�

Information

—�

Information

Center.

v

From

the

command

line

prompt:

–

For

Linux

and

UNIX

operating

systems,

issue

the

db2icdocs

command.

–

For

the

Windows

operating

system,

issue

the

db2icdocs.exe

command.

To

open

the

DB2

Information

Center

installed

on

an

intranet

server

or

local

computer

in

a

Web

browser:

v

Open

the

Web

page

at

http://<host-name>:<port-number>/,

where

<host-name>

represents

the

host

name

and

<port-number>

represents

the

port

number

on

which

the

DB2

Information

Center

is

available.

To

open

the

DB2

Information

Center

on

the

IBM

Web

site

in

a

Web

browser:

v

Open

the

Web

page

at

publib.boulder.ibm.com/infocenter/db2help/.

Related

concepts:

v

“DB2

Information

Center”

on

page

302

Related

tasks:

v

“Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center”

on

page

311

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

318

v

“Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server”

on

page

311

v

“Invoking

message

help

from

the

command

line

processor”

on

page

319

v

“Invoking

command

help

from

the

command

line

processor”

on

page

320

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

320

310

Data

Movement

Utilities

|
|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/db2help/

Updating

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server

The

DB2

Information

Center

available

from

http://publib.boulder.ibm.com/infocenter/db2help/

will

be

periodically

updated

with

new

or

changed

documentation.

IBM

may

also

make

DB2

Information

Center

updates

available

to

download

and

install

on

your

computer

or

intranet

server.

Updating

the

DB2

Information

Center

does

not

update

DB2

client

or

server

products.

Prerequisites:

You

must

have

access

to

a

computer

that

is

connected

to

the

Internet.

Procedure:

To

update

the

DB2

Information

Center

installed

on

your

computer

or

intranet

server:

1.

Open

the

DB2

Information

Center

hosted

on

the

IBM

Web

site

at:

http://publib.boulder.ibm.com/infocenter/db2help/

2.

In

the

Downloads

section

of

the

welcome

page

under

the

Service

and

Support

heading,

click

the

DB2

Universal

Database

documentation

link.

3.

Determine

if

the

version

of

your

DB2

Information

Center

is

out

of

date

by

comparing

the

latest

refreshed

documentation

image

level

to

the

documentation

level

you

have

installed.

The

documentation

level

you

have

installed

is

listed

on

the

DB2

Information

Center

welcome

page.

4.

If

a

more

recent

version

of

the

DB2

Information

Center

is

available,

download

the

latest

refreshed

DB2

Information

Center

image

applicable

to

your

operating

system.

5.

To

install

the

refreshed

DB2

Information

Center

image,

follow

the

instructions

provided

on

the

Web

page.

Related

concepts:

v

“DB2

Information

Center

installation

scenarios”

on

page

303

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(UNIX)”

on

page

305

v

“Installing

the

DB2

Information

Center

using

the

DB2

Setup

wizard

(Windows)”

on

page

308

Displaying

topics

in

your

preferred

language

in

the

DB2

Information

Center

The

DB2

Information

Center

attempts

to

display

topics

in

the

language

specified

in

your

browser

preferences.

If

a

topic

has

not

been

translated

into

your

preferred

language,

the

DB2

Information

Center

displays

the

topic

in

English.

Procedure:

To

display

topics

in

your

preferred

language

in

the

Internet

Explorer

browser:

Appendix

H.

DB2

Universal

Database

technical

information

311

|

|

|
|
|

|

|

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/

1.

In

Internet

Explorer,

click

the

Tools

—>

Internet

Options

—>

Languages...

button.

The

Language

Preferences

window

opens.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button.

Note:

Adding

a

language

does

not

guarantee

that

the

computer

has

the

fonts

required

to

display

the

topics

in

the

preferred

language.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

To

display

topics

in

your

preferred

language

in

the

Mozilla

browser:

1.

In

Mozilla,

select

the

Edit

—>

Preferences

—>

Languages

button.

The

Languages

panel

is

displayed

in

the

Preferences

window.

2.

Ensure

your

preferred

language

is

specified

as

the

first

entry

in

the

list

of

languages.

v

To

add

a

new

language

to

the

list,

click

the

Add...

button

to

select

a

language

from

the

Add

Languages

window.

v

To

move

a

language

to

the

top

of

the

list,

select

the

language

and

click

the

Move

Up

button

until

the

language

is

first

in

the

list

of

languages.
3.

Refresh

the

page

to

display

the

DB2

Information

Center

in

your

preferred

language.

DB2

PDF

and

printed

documentation

The

following

tables

provide

official

book

names,

form

numbers,

and

PDF

file

names.

To

order

hardcopy

books,

you

must

know

the

official

book

name.

To

print

a

PDF

file,

you

must

know

the

PDF

file

name.

The

DB2

documentation

is

categorized

by

the

following

headings:

v

Core

DB2

information

v

Administration

information

v

Application

development

information

v

Business

intelligence

information

v

DB2

Connect

information

v

Getting

started

information

v

Tutorial

information

v

Optional

component

information

v

Release

notes

The

following

tables

describe,

for

each

book

in

the

DB2

library,

the

information

needed

to

order

the

hard

copy,

or

to

print

or

view

the

PDF

for

that

book.

A

full

description

of

each

of

the

books

in

the

DB2

library

is

available

from

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

Core

DB2

information

The

information

in

these

books

is

fundamental

to

all

DB2

users;

you

will

find

this

information

useful

whether

you

are

a

programmer,

a

database

administrator,

or

someone

who

works

with

DB2

Connect,

DB2

Warehouse

Manager,

or

other

DB2

312

Data

Movement

Utilities

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

http://www.ibm.com/shop/publications/order

products.

Table

25.

Core

DB2

information

Name

Form

Number

PDF

File

Name

IBM

DB2

Universal

Database

Command

Reference

SC09-4828

db2n0x81

IBM

DB2

Universal

Database

Glossary

No

form

number

db2t0x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

1

GC09-4840,

not

available

in

hardcopy

db2m1x81

IBM

DB2

Universal

Database

Message

Reference,

Volume

2

GC09-4841,

not

available

in

hardcopy

db2m2x81

IBM

DB2

Universal

Database

What’s

New

SC09-4848

db2q0x81

Administration

information

The

information

in

these

books

covers

those

topics

required

to

effectively

design,

implement,

and

maintain

DB2

databases,

data

warehouses,

and

federated

systems.

Table

26.

Administration

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Administration

Guide:

Planning

SC09-4822

db2d1x81

IBM

DB2

Universal

Database

Administration

Guide:

Implementation

SC09-4820

db2d2x81

IBM

DB2

Universal

Database

Administration

Guide:

Performance

SC09-4821

db2d3x81

IBM

DB2

Universal

Database

Administrative

API

Reference

SC09-4824

db2b0x81

IBM

DB2

Universal

Database

Data

Movement

Utilities

Guide

and

Reference

SC09-4830

db2dmx81

IBM

DB2

Universal

Database

Data

Recovery

and

High

Availability

Guide

and

Reference

SC09-4831

db2hax81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Administration

Guide

SC27-1123

db2ddx81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

1

SC09-4844

db2s1x81

IBM

DB2

Universal

Database

SQL

Reference,

Volume

2

SC09-4845

db2s2x81

IBM

DB2

Universal

Database

System

Monitor

Guide

and

Reference

SC09-4847

db2f0x81

Appendix

H.

DB2

Universal

Database

technical

information

313

|

||

|||

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

|

|

Application

development

information

The

information

in

these

books

is

of

special

interest

to

application

developers

or

programmers

working

with

DB2

Universal

Database

(DB2

UDB).

You

will

find

information

about

supported

languages

and

compilers,

as

well

as

the

documentation

required

to

access

DB2

UDB

using

the

various

supported

programming

interfaces,

such

as

embedded

SQL,

ODBC,

JDBC,

SQLJ,

and

CLI.

If

you

are

using

the

DB2

Information

Center,

you

can

also

access

HTML

versions

of

the

source

code

for

the

sample

programs.

Table

27.

Application

development

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Application

Development

Guide:

Building

and

Running

Applications

SC09-4825

db2axx81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Client

Applications

SC09-4826

db2a1x81

IBM

DB2

Universal

Database

Application

Development

Guide:

Programming

Server

Applications

SC09-4827

db2a2x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

1

SC09-4849

db2l1x81

IBM

DB2

Universal

Database

Call

Level

Interface

Guide

and

Reference,

Volume

2

SC09-4850

db2l2x81

IBM

DB2

Universal

Database

Data

Warehouse

Center

Application

Integration

Guide

SC27-1124

db2adx81

IBM

DB2

XML

Extender

Administration

and

Programming

SC27-1234

db2sxx81

Business

intelligence

information

The

information

in

these

books

describes

how

to

use

components

that

enhance

the

data

warehousing

and

analytical

capabilities

of

DB2

Universal

Database.

Table

28.

Business

intelligence

information

Name

Form

number

PDF

file

name

IBM

DB2

Warehouse

Manager

Standard

Edition

Information

Catalog

Center

Administration

Guide

SC27-1125

db2dix81

IBM

DB2

Warehouse

Manager

Standard

Edition

Installation

Guide

GC27-1122

db2idx81

IBM

DB2

Warehouse

Manager

Standard

Edition

Managing

ETI

Solution

Conversion

Programs

with

DB2

Warehouse

Manager

SC18-7727

iwhe1mstx80

314

Data

Movement

Utilities

DB2

Connect

information

The

information

in

this

category

describes

how

to

access

data

on

mainframe

and

midrange

servers

using

DB2

Connect

Enterprise

Edition

or

DB2

Connect

Personal

Edition.

Table

29.

DB2

Connect

information

Name

Form

number

PDF

file

name

IBM

Connectivity

Supplement

No

form

number

db2h1x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Enterprise

Edition

GC09-4833

db2c6x81

IBM

DB2

Connect

Quick

Beginnings

for

DB2

Connect

Personal

Edition

GC09-4834

db2c1x81

IBM

DB2

Connect

User’s

Guide

SC09-4835

db2c0x81

Getting

started

information

The

information

in

this

category

is

useful

when

you

are

installing

and

configuring

servers,

clients,

and

other

DB2

products.

Table

30.

Getting

started

information

Name

Form

number

PDF

file

name

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Clients

GC09-4832,

not

available

in

hardcopy

db2itx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Servers

GC09-4836

db2isx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Personal

Edition

GC09-4838

db2i1x81

IBM

DB2

Universal

Database

Installation

and

Configuration

Supplement

GC09-4837,

not

available

in

hardcopy

db2iyx81

IBM

DB2

Universal

Database

Quick

Beginnings

for

DB2

Data

Links

Manager

GC09-4829

db2z6x81

Tutorial

information

Tutorial

information

introduces

DB2

features

and

teaches

how

to

perform

various

tasks.

Table

31.

Tutorial

information

Name

Form

number

PDF

file

name

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

No

form

number

db2tux81

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

No

form

number

db2tax81

Appendix

H.

DB2

Universal

Database

technical

information

315

Table

31.

Tutorial

information

(continued)

Name

Form

number

PDF

file

name

Information

Catalog

Center

Tutorial

No

form

number

db2aix81

Video

Central

for

e-business

Tutorial

No

form

number

db2twx81

Visual

Explain

Tutorial

No

form

number

db2tvx81

Optional

component

information

The

information

in

this

category

describes

how

to

work

with

optional

DB2

components.

Table

32.

Optional

component

information

Name

Form

number

PDF

file

name

IBM

DB2

Cube

Views

Guide

and

Reference

SC18–7298

db2aax81

IBM

DB2

Query

Patroller

Guide:

Installation,

Administration

and

Usage

Guide

GC09–7658

db2dwx81

IBM

DB2

Spatial

Extender

and

Geodetic

Extender

User’s

Guide

and

Reference

SC27-1226

db2sbx81

IBM

DB2

Universal

Database

Data

Links

Manager

Administration

Guide

and

Reference

SC27-1221

db2z0x82

DB2

Net

Search

Extender

Administration

and

User’s

Guide

Note:

HTML

for

this

document

is

not

installed

from

the

HTML

documentation

CD.

SH12-6740

N/A

Release

notes

The

release

notes

provide

additional

information

specific

to

your

product’s

release

and

FixPak

level.

The

release

notes

also

provide

summaries

of

the

documentation

updates

incorporated

in

each

release,

update,

and

FixPak.

Table

33.

Release

notes

Name

Form

number

PDF

file

name

DB2

Release

Notes

See

note.

See

note.

DB2

Installation

Notes

Available

on

product

CD-ROM

only.

Not

available.

Note:

The

Release

Notes

are

available

in:

v

XHTML

and

Text

format,

on

the

product

CDs

v

PDF

format,

on

the

PDF

Documentation

CD

316

Data

Movement

Utilities

In

addition

the

portions

of

the

Release

Notes

that

discuss

Known

Problems

and

Workarounds

and

Incompatibilities

Between

Releases

also

appear

in

the

DB2

Information

Center.

To

view

the

Release

Notes

in

text

format

on

UNIX-based

platforms,

see

the

Release.Notes

file.

This

file

is

located

in

the

DB2DIR/Readme/%L

directory,

where

%L

represents

the

locale

name

and

DB2DIR

represents:

v

For

AIX

operating

systems:

/usr/opt/db2_08_01

v

For

all

other

UNIX-based

operating

systems:

/opt/IBM/db2/V8.1

Related

concepts:

v

“DB2

documentation

and

help”

on

page

301

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

317

v

“Ordering

printed

DB2

books”

on

page

318

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

318

Printing

DB2

books

from

PDF

files

You

can

print

DB2

books

from

the

PDF

files

on

the

DB2

PDF

Documentation

CD.

Using

Adobe

Acrobat

Reader,

you

can

print

either

the

entire

book

or

a

specific

range

of

pages.

Prerequisites:

Ensure

that

you

have

Adobe

Acrobat

Reader

installed.

If

you

need

to

install

Adobe

Acrobat

Reader,

it

is

available

from

the

Adobe

Web

site

at

www.adobe.com

Procedure:

To

print

a

DB2

book

from

a

PDF

file:

1.

Insert

the

DB2

PDF

Documentation

CD.

On

UNIX

operating

systems,

mount

the

DB2

PDF

Documentation

CD.

Refer

to

your

Quick

Beginnings

book

for

details

on

how

to

mount

a

CD

on

UNIX

operating

systems.

2.

Open

index.htm.

The

file

opens

in

a

browser

window.

3.

Click

on

the

title

of

the

PDF

you

want

to

see.

The

PDF

will

open

in

Acrobat

Reader.

4.

Select

File

→

Print

to

print

any

portions

of

the

book

that

you

want.

Related

concepts:

v

“DB2

Information

Center”

on

page

302

Related

tasks:

v

“Mounting

the

CD-ROM

(AIX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(HP-UX)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Mounting

the

CD-ROM

(Linux)”

in

the

Quick

Beginnings

for

DB2

Servers

v

“Ordering

printed

DB2

books”

on

page

318

v

“Mounting

the

CD-ROM

(Solaris

Operating

Environment)”

in

the

Quick

Beginnings

for

DB2

Servers

Appendix

H.

DB2

Universal

Database

technical

information

317

http://www.adobe.com/

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

312

Ordering

printed

DB2

books

If

you

prefer

to

use

hardcopy

books,

you

can

order

them

in

one

of

three

ways.

Procedure:

Printed

books

can

be

ordered

in

some

countries

or

regions.

Check

the

IBM

Publications

website

for

your

country

or

region

to

see

if

this

service

is

available

in

your

country

or

region.

When

the

publications

are

available

for

ordering,

you

can:

v

Contact

your

IBM

authorized

dealer

or

marketing

representative.

To

find

a

local

IBM

representative,

check

the

IBM

Worldwide

Directory

of

Contacts

at

www.ibm.com/planetwide

v

Phone

1-800-879-2755

in

the

United

States

or

1-800-IBM-4YOU

in

Canada.

v

Visit

the

IBM

Publications

Center

at

http://www.ibm.com/shop/publications/order.

The

ability

to

order

books

from

the

IBM

Publications

Center

may

not

be

available

in

all

countries.

At

the

time

the

DB2

product

becomes

available,

the

printed

books

are

the

same

as

those

that

are

available

in

PDF

format

on

the

DB2

PDF

Documentation

CD.

Content

in

the

printed

books

that

appears

in

the

DB2

Information

Center

CD

is

also

the

same.

However,

there

is

some

additional

content

available

in

DB2

Information

Center

CD

that

does

not

appear

anywhere

in

the

PDF

books

(for

example,

SQL

Administration

routines

and

HTML

samples).

Not

all

books

available

on

the

DB2

PDF

Documentation

CD

are

available

for

ordering

in

hardcopy.

Note:

The

DB2

Information

Center

is

updated

more

frequently

than

either

the

PDF

or

the

hardcopy

books;

install

documentation

updates

as

they

become

available

or

refer

to

the

DB2

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/

to

get

the

most

current

information.

Related

tasks:

v

“Printing

DB2

books

from

PDF

files”

on

page

317

Related

reference:

v

“DB2

PDF

and

printed

documentation”

on

page

312

Invoking

contextual

help

from

a

DB2

tool

Contextual

help

provides

information

about

the

tasks

or

controls

that

are

associated

with

a

particular

window,

notebook,

wizard,

or

advisor.

Contextual

help

is

available

from

DB2

administration

and

development

tools

that

have

graphical

user

interfaces.

There

are

two

types

of

contextual

help:

v

Help

accessed

through

the

Help

button

that

is

located

on

each

window

or

notebook

v

Infopops,

which

are

pop-up

information

windows

displayed

when

the

mouse

cursor

is

placed

over

a

field

or

control,

or

when

a

field

or

control

is

selected

in

a

window,

notebook,

wizard,

or

advisor

and

F1

is

pressed.

318

Data

Movement

Utilities

|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2help/

The

Help

button

gives

you

access

to

overview,

prerequisite,

and

task

information.

The

infopops

describe

the

individual

fields

and

controls.

Procedure:

To

invoke

contextual

help:

v

For

window

and

notebook

help,

start

one

of

the

DB2

tools,

then

open

any

window

or

notebook.

Click

the

Help

button

at

the

bottom

right

corner

of

the

window

or

notebook

to

invoke

the

contextual

help.

You

can

also

access

the

contextual

help

from

the

Help

menu

item

at

the

top

of

each

of

the

DB2

tools

centers.

Within

wizards

and

advisors,

click

on

the

Task

Overview

link

on

the

first

page

to

view

contextual

help.

v

For

infopop

help

about

individual

controls

on

a

window

or

notebook,

click

the

control,

then

click

F1.

Pop-up

information

containing

details

about

the

control

is

displayed

in

a

yellow

window.

Note:

To

display

infopops

simply

by

holding

the

mouse

cursor

over

a

field

or

control,

select

the

Automatically

display

infopops

check

box

on

the

Documentation

page

of

the

Tool

Settings

notebook.

Similar

to

infopops,

diagnosis

pop-up

information

is

another

form

of

context-sensitive

help;

they

contain

data

entry

rules.

Diagnosis

pop-up

information

is

displayed

in

a

purple

window

that

appears

when

data

that

is

not

valid

or

that

is

insufficient

is

entered.

Diagnosis

pop-up

information

can

appear

for:

–

Compulsory

fields.

–

Fields

whose

data

follows

a

precise

format,

such

as

a

date

field.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Invoking

message

help

from

the

command

line

processor”

on

page

319

v

“Invoking

command

help

from

the

command

line

processor”

on

page

320

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

320

Invoking

message

help

from

the

command

line

processor

Message

help

describes

the

cause

of

a

message

and

describes

any

action

you

should

take

in

response

to

the

error.

Procedure:

To

invoke

message

help,

open

the

command

line

processor

and

enter:

?

XXXnnnnn

where

XXXnnnnn

represents

a

valid

message

identifier.

For

example,

?

SQL30081

displays

help

about

the

SQL30081

message.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

318

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Invoking

command

help

from

the

command

line

processor”

on

page

320

Appendix

H.

DB2

Universal

Database

technical

information

319

|
|

|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

320

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

command

help

from

the

command

line

processor

Command

help

explains

the

syntax

of

commands

in

the

command

line

processor.

Procedure:

To

invoke

command

help,

open

the

command

line

processor

and

enter:

?

command

where

command

represents

a

keyword

or

the

entire

command.

For

example,

?

catalog

displays

help

for

all

of

the

CATALOG

commands,

while

?

catalog

database

displays

help

only

for

the

CATALOG

DATABASE

command.

Related

tasks:

v

“Invoking

contextual

help

from

a

DB2

tool”

on

page

318

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Invoking

message

help

from

the

command

line

processor”

on

page

319

v

“Invoking

SQL

state

help

from

the

command

line

processor”

on

page

320

Related

reference:

v

“db2

-

Command

Line

Processor

Invocation

Command”

in

the

Command

Reference

Invoking

SQL

state

help

from

the

command

line

processor

DB2

Univerrsal

Database

returns

an

SQLSTATE

value

for

conditions

that

could

be

the

result

of

an

SQL

statement.

SQLSTATE

help

explains

the

meanings

of

SQL

states

and

SQL

state

class

codes.

Procedure:

To

invoke

SQL

state

help,

open

the

command

line

processor

and

enter:

?

sqlstate

or

?

class

code

where

sqlstate

represents

a

valid

five-digit

SQL

state

and

class

code

represents

the

first

two

digits

of

the

SQL

state.

For

example,

?

08003

displays

help

for

the

08003

SQL

state,

and

?

08

displays

help

for

the

08

class

code.

Related

tasks:

v

“Invoking

the

DB2

Information

Center”

on

page

310

v

“Invoking

message

help

from

the

command

line

processor”

on

page

319

v

“Invoking

command

help

from

the

command

line

processor”

on

page

320

320

Data

Movement

Utilities

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

DB2

tutorials

The

DB2®

tutorials

help

you

learn

about

various

aspects

of

DB2

Universal

Database.

The

tutorials

provide

lessons

with

step-by-step

instructions

in

the

areas

of

developing

applications,

tuning

SQL

query

performance,

working

with

data

warehouses,

managing

metadata,

and

developing

Web

services

using

DB2.

Before

you

begin:

You

can

view

the

XHTML

versions

of

the

tutorials

from

the

Information

Center

at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some

tutorial

lessons

use

sample

data

or

code.

See

each

tutorial

for

a

description

of

any

prerequisites

for

its

specific

tasks.

DB2

Universal

Database

tutorials:

Click

on

a

tutorial

title

in

the

following

list

to

view

that

tutorial.

Business

Intelligence

Tutorial:

Introduction

to

the

Data

Warehouse

Center

Perform

introductory

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Business

Intelligence

Tutorial:

Extended

Lessons

in

Data

Warehousing

Perform

advanced

data

warehousing

tasks

using

the

Data

Warehouse

Center.

Information

Catalog

Center

Tutorial

Create

and

manage

an

information

catalog

to

locate

and

use

metadata

using

the

Information

Catalog

Center.

Visual

Explain

Tutorial

Analyze,

optimize,

and

tune

SQL

statements

for

better

performance

using

Visual

Explain.

DB2

troubleshooting

information

A

wide

variety

of

troubleshooting

and

problem

determination

information

is

available

to

assist

you

in

using

DB2®

products.

DB2

documentation

Troubleshooting

information

can

be

found

throughout

the

DB2

Information

Center,

as

well

as

throughout

the

PDF

books

that

make

up

the

DB2

library.

You

can

refer

to

the

″Support

and

troubleshooting″

branch

of

the

DB2

Information

Center

navigation

tree

(in

the

left

pane

of

your

browser

window)

to

see

a

complete

listing

of

the

DB2

troubleshooting

documentation.

DB2

Technical

Support

Web

site

Refer

to

the

DB2

Technical

Support

Web

site

if

you

are

experiencing

problems

and

want

help

finding

possible

causes

and

solutions.

The

Technical

Support

site

has

links

to

the

latest

DB2

publications,

TechNotes,

Authorized

Program

Analysis

Reports

(APARs),

FixPaks

and

the

latest

listing

of

internal

DB2

error

codes,

and

other

resources.

You

can

search

through

this

knowledge

base

to

find

possible

solutions

to

your

problems.

Access

the

DB2

Technical

Support

Web

site

at

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Appendix

H.

DB2

Universal

Database

technical

information

321

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html

DB2

Problem

Determination

Tutorial

Series

Refer

to

the

DB2

Problem

Determination

Tutorial

Series

Web

site

to

find

information

on

how

to

quickly

identify

and

resolve

problems

you

might

encounter

while

working

with

DB2

products.

One

tutorial

introduces

you

to

the

DB2

problem

determination

facilities

and

tools

available,

and

helps

you

decide

when

to

use

them.

Other

tutorials

deal

with

related

topics,

such

as

″Database

Engine

Problem

Determination″,

″Performance

Problem

Determination″,

and

″Application

Problem

Determination″.

See

the

full

set

of

DB2

problem

determination

tutorials

on

the

DB2

Technical

Support

site

at

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Related

concepts:

v

“DB2

Information

Center”

on

page

302

v

“Introduction

to

problem

determination

-

DB2

Technical

Support

tutorial”

in

the

Troubleshooting

Guide

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display”

on

page

323.

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

323.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

323.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

322

Data

Movement

Utilities

|
|
|
|

|
|

http://www.ibm.com/software/data/support/pdm/db2tutorials.html

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

on

page

323

Dotted

decimal

syntax

diagrams

Syntax

diagrams

are

provided

in

dotted

decimal

format

for

users

accessing

the

Information

Center

using

a

screen

reader.

In

dotted

decimal

format,

each

syntax

element

is

written

on

a

separate

line.

If

two

or

more

syntax

elements

are

always

present

together

(or

always

absent

together),

they

can

appear

on

the

same

line,

because

they

can

be

considered

as

a

single

compound

syntax

element.

Each

line

starts

with

a

dotted

decimal

number;

for

example,

3

or

3.1

or

3.1.1.

To

hear

these

numbers

correctly,

make

sure

that

your

screen

reader

is

set

to

read

out

punctuation.

All

the

syntax

elements

that

have

the

same

dotted

decimal

number

(for

example,

all

the

syntax

elements

that

have

the

number

3.1)

are

mutually

exclusive

alternatives.

If

you

hear

the

lines

3.1

USERID

and

3.1

SYSTEMID,

you

know

that

your

syntax

can

include

either

USERID

or

SYSTEMID,

but

not

both.

The

dotted

decimal

numbering

level

denotes

the

level

of

nesting.

For

example,

if

a

syntax

element

with

dotted

decimal

number

3

is

followed

by

a

series

of

syntax

elements

with

dotted

decimal

number

3.1,

all

the

syntax

elements

numbered

3.1

are

subordinate

to

the

syntax

element

numbered

3.

Appendix

H.

DB2

Universal

Database

technical

information

323

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Certain

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers

to

add

information

about

the

syntax

elements.

Occasionally,

these

words

and

symbols

might

occur

at

the

beginning

of

the

element

itself.

For

ease

of

identification,

if

the

word

or

symbol

is

a

part

of

the

syntax

element,

it

is

preceded

by

the

backslash

(\)

character.

The

*

symbol

can

be

used

next

to

a

dotted

decimal

number

to

indicate

that

the

syntax

element

repeats.

For

example,

syntax

element

*FILE

with

dotted

decimal

number

3

is

given

the

format

3

*

FILE.

Format

3*

FILE

indicates

that

syntax

element

FILE

repeats.

Format

3*

*

FILE

indicates

that

syntax

element

*

FILE

repeats.

Characters

such

as

commas,

which

are

used

to

separate

a

string

of

syntax

elements,

are

shown

in

the

syntax

just

before

the

items

they

separate.

These

characters

can

appear

on

the

same

line

as

each

item,

or

on

a

separate

line

with

the

same

dotted

decimal

number

as

the

relevant

items.

The

line

can

also

show

another

symbol

giving

information

about

the

syntax

elements.

For

example,

the

lines

5.1*,

5.1

LASTRUN,

and

5.1

DELETE

mean

that

if

you

use

more

than

one

of

the

LASTRUN

and

DELETE

syntax

elements,

the

elements

must

be

separated

by

a

comma.

If

no

separator

is

given,

assume

that

you

use

a

blank

to

separate

each

syntax

element.

If

a

syntax

element

is

preceded

by

the

%

symbol,

this

indicates

a

reference

that

is

defined

elsewhere.

The

string

following

the

%

symbol

is

the

name

of

a

syntax

fragment

rather

than

a

literal.

For

example,

the

line

2.1

%OP1

means

that

you

should

refer

to

separate

syntax

fragment

OP1.

The

following

words

and

symbols

are

used

next

to

the

dotted

decimal

numbers:

v

?

means

an

optional

syntax

element.

A

dotted

decimal

number

followed

by

the

?

symbol

indicates

that

all

the

syntax

elements

with

a

corresponding

dotted

decimal

number,

and

any

subordinate

syntax

elements,

are

optional.

If

there

is

only

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

the

same

line

as

the

syntax

element,

(for

example

5?

NOTIFY).

If

there

is

more

than

one

syntax

element

with

a

dotted

decimal

number,

the

?

symbol

is

displayed

on

a

line

by

itself,

followed

by

the

syntax

elements

that

are

optional.

For

example,

if

you

hear

the

lines

5

?,

5

NOTIFY,

and

5

UPDATE,

you

know

that

syntax

elements

NOTIFY

and

UPDATE

are

optional;

that

is,

you

can

choose

one

or

none

of

them.

The

?

symbol

is

equivalent

to

a

bypass

line

in

a

railroad

diagram.

v

!

means

a

default

syntax

element.

A

dotted

decimal

number

followed

by

the

!

symbol

and

a

syntax

element

indicates

that

the

syntax

element

is

the

default

option

for

all

syntax

elements

that

share

the

same

dotted

decimal

number.

Only

one

of

the

syntax

elements

that

share

the

same

dotted

decimal

number

can

specify

a

!

symbol.

For

example,

if

you

hear

the

lines

2?

FILE,

2.1!

(KEEP),

and

2.1

(DELETE),

you

know

that

(KEEP)

is

the

default

option

for

the

FILE

keyword.

In

this

example,

if

you

include

the

FILE

keyword

but

do

not

specify

an

option,

default

option

KEEP

will

be

applied.

A

default

option

also

applies

to

the

next

higher

dotted

decimal

number.

In

this

example,

if

the

FILE

keyword

is

omitted,

default

FILE(KEEP)

is

used.

However,

if

you

hear

the

lines

2?

FILE,

2.1,

2.1.1!

(KEEP),

and

2.1.1

(DELETE),

the

default

option

KEEP

only

applies

to

the

next

higher

dotted

decimal

number,

2.1

(which

does

not

have

an

associated

keyword),

and

does

not

apply

to

2?

FILE.

Nothing

is

used

if

the

keyword

FILE

is

omitted.

v

*

means

a

syntax

element

that

can

be

repeated

0

or

more

times.

A

dotted

decimal

number

followed

by

the

*

symbol

indicates

that

this

syntax

element

can

be

used

zero

or

more

times;

that

is,

it

is

optional

and

can

be

repeated.

For

example,

if

you

hear

the

line

5.1*

data

area,

you

know

that

you

can

include

one

324

Data

Movement

Utilities

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

data

area,

more

than

one

data

area,

or

no

data

area.

If

you

hear

the

lines

3*,

3

HOST,

and

3

STATE,

you

know

that

you

can

include

HOST,

STATE,

both

together,

or

nothing.

Notes:

1.

If

a

dotted

decimal

number

has

an

asterisk

(*)

next

to

it

and

there

is

only

one

item

with

that

dotted

decimal

number,

you

can

repeat

that

same

item

more

than

once.

2.

If

a

dotted

decimal

number

has

an

asterisk

next

to

it

and

several

items

have

that

dotted

decimal

number,

you

can

use

more

than

one

item

from

the

list,

but

you

cannot

use

the

items

more

than

once

each.

In

the

previous

example,

you

could

write

HOST

STATE,

but

you

could

not

write

HOST

HOST.

3.

The

*

symbol

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.
v

+

means

a

syntax

element

that

must

be

included

one

or

more

times.

A

dotted

decimal

number

followed

by

the

+

symbol

indicates

that

this

syntax

element

must

be

included

one

or

more

times;

that

is,

it

must

be

included

at

least

once

and

can

be

repeated.

For

example,

if

you

hear

the

line

6.1+

data

area,

you

must

include

at

least

one

data

area.

If

you

hear

the

lines

2+,

2

HOST,

and

2

STATE,

you

know

that

you

must

include

HOST,

STATE,

or

both.

Similar

to

the

*

symbol,

the

+

symbol

can

only

repeat

a

particular

item

if

it

is

the

only

item

with

that

dotted

decimal

number.

The

+

symbol,

like

the

*

symbol,

is

equivalent

to

a

loop-back

line

in

a

railroad

syntax

diagram.

Related

reference:

v

“How

to

read

the

syntax

diagrams”

in

the

SQL

Reference,

Volume

2

Common

Criteria

certification

of

DB2

Universal

Database

products

DB2

Universal

Database

is

being

evaluated

for

certification

under

the

Common

Criteria

at

evaluation

assurance

level

4

(EAL4).

For

more

information

about

Common

Criteria,

see

the

Common

Criteria

web

site

at:

http://niap.nist.gov/cc-
scheme/.

Appendix

H.

DB2

Universal

Database

technical

information

325

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|

http://niap.nist.gov/cc-scheme/
http://niap.nist.gov/cc-scheme/

326

Data

Movement

Utilities

Appendix

I.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1999

-

2004

327

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Canada

Limited

Office

of

the

Lab

Director

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

CANADA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

328

Data

Movement

Utilities

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Information

Integrator

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Appendix

I.

Notices

329

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

330

Data

Movement

Utilities

Index

A
accessibility

dotted

decimal

syntax

diagrams

323

features

322

anyorder

file

type

modifier

100,

123

APIs
db2Load

123

db2LoadQuery

145

sqluexpr

12

sqluimpr

48

application

record,

PC/IXF

254

ASC

data

type

descriptions

250

ASC

file
format

249

sample

249

ASC

import

file

type

35

B
binarynumerics

file

type

modifier

100,

123

bind

files
used

by

export,

import,

load

297

buffered

inserts
import

utility

29

building

indexes

86

C
character

strings
delimiter

245

chardel

file

type

modifier
export

8,

12

import

35,

48

load

100,

123

code

page

file

type

modifier

100,

123

code

pages
conversion

files

279

when

importing

or

loading

PC/IXF

data

279

Export

API

12

EXPORT

command

8

Import

API

48

IMPORT

command

35

import

utility

considerations

68

load

utility

considerations

165

coldel

file

type

modifier
export

8,

12

import

35,

48

load

100,

123

column

descriptor

record,

PC/IXF

254

columns
incompatible

279

specifying

for

import

48

values,

invalid

279

command

help
invoking

320

command

syntax
interpreting

227

commands
db2move

209

db2relocatedb

213

EXPORT

8

IMPORT

35

LOAD

100

LOAD

QUERY

121

completion

messages

299

compound

file

type

modifier

35,

48

constraints
checking

after

load

operations

91

continuation

record

type,

PC/IXF

254

CURSOR

file

type
data

movement

226

D
data

moving

across

platforms

205

Data

Links

Manager
moving

data

201

data

record,

PC/IXF

254

data

transfer
across

platforms

205

between

host

and

workstation

206

data

type

descriptions
ASC

250

DEL

file

formats

246

PC/IXF

275

data

types
PC/IXF

270

Data

Warehouse

Center
moving

data

224

overview

224

database

movement

tool

command

209

databases
exporting

table

to

a

file

8,

12

importing

file

to

table

35,

48

loading

file

to

table

100

nonrecoverable

load

options

74

recoverable

load

options

74

warehouse

224

dateformat

file

type

modifier

35,

48,

100,

123

datesiso

file

type

modifier

8,

12,

35,

48,

100,

123

DB2

books
printing

PDF

files

317

DB2

Data

Links

Manager
export

utility

199

exporting

between

instances

199

import

utility

202

load

utility

203

DB2

Information

Center

302

invoking

310

DB2

tutorials

321

db2Load

API

123

db2LoadQuery

API

145

DB2LOADREC

registry

variable

98

db2move

command

209

db2relocatedb

command

213

decplusblank

file

type

modifier

8,

12,

35,

48,

100,

123

decpt

file

type

modifier

8,

12,

35,

48,

100,

123

DEL

data

type

descriptions

246

DEL

file
format

244

sample

245

delimited

ASCII

(DEL)

file

format

244

moving

data

across

platforms

205

delimiter

character

string

245

delprioritychar

file

type

modifier

35,

48,

100,

123

disability

322

dldel

file

type

modifier

8,

12,

35,

48,

100,

123

documentation
displaying

310

dotted

decimal

syntax

diagrams

323

dump

files
load

utility

160

dumpfile

file

type

modifier

100,

123

E
error

messages
overview

299

exception

tables
load

utility

160

Export

API

12

EXPORT

command

8

export

message

files

1,

25,

74

export

operations,

Data

Warehouse

Center

224

EXPORT

utility
authorities

and

privileges

required

to

use

2

DB2

Data

Links

Manager

199

file

formats

243

identity

columns

4

large

objects

(LOBS)

4

overview

1

parallel

export

using

db2batch

5

recreating

an

exported

table

4

restrictions

3

transferring

data

between

host

and

workstation

206

exported

tables
recreating

using

EXPORT

utility

4

recreating

using

import

utility

32

recreating

when

table

attributes

not

stored

in

an

IXF

file

32

recreating

when

table

attributes

stored

in

an

IXF

file

32

exporting
database

tables

files

8,

12

DB2

Data

Links

Manager

considerations

8

file

type

modifiers

for

8,

12

specifying

column

names

12

©

Copyright

IBM

Corp.

1999

-

2004

331

F
fastparse

file

type

modifier

100,

123

file

formats
delimited

ASCII

(DEL)

244

exporting

table

to

file

8

importing

file

to

table

35

nondelimited

ASCII

(ASC)

249

PC

version

of

IXF

(PC/IXF)

252

worksheet

(WSF)

290

file

type

modifiers
Export

API

12

EXPORT

utility

8

Import

API

48

IMPORT

command

35

Load

API

123

LOAD

command

100

forcein

file

type

modifier

35,

48,

100,

123,

283

G
generated

columns
using

import

utility

31

using

load

utility

89

generatedignore

file

type

modifier

35,

48,

100,

123

generatedmissing

file

type

modifier

35,

48,

100,

123

generatedoverride

file

type

modifier

100,

123

H
header

record,

PC/IXF

254

help
displaying

310,

311

for

commands
invoking

320

for

messages
invoking

319

for

SQL

statements
invoking

320

hierarchy

record,

PC/IXF

254

HTML

documentation
updating

311

I
IBM

Relational

Data

Replication

Tools
components

224

overview

222

identity

columns

4

using

import

utility

29

using

load

utility

87

identity

record,

PC/IXF

254

identityignore

35

identityignore

file

type

modifier

48,

100,

123

identitymissing

file

type

modifier

35,

48,

100,

123

identityoverride

file

type

modifier

100,

123

implieddecimal

file

type

modifier

35,

48,

100,

123

Import

API

48

IMPORT

command

35

import

message

files

1,

25,

74

IMPORT

utility
authorities

26

buffered

inserts

29

client/server

28

code

page

considerations

68

compared

to

load

utility

231

DB2

Data

Links

Manager

202

file

formats

243

generated

columns

31

identity

columns

29

large

objects

(LOBS)

33

limitations

27

optimizing

performance

25

overview

25

performance

25

privileges

26

recreating

an

exported

table

32

remote

database

28

restrictions

27

table

locking

34

transferring

data

between

host

and

workstation

206

user-defined

distinct

types

(UDTs)

34

importing
code

page

considerations

48

data

35

database

access

through

DB2

Connect

48

DB2

Data

Links

Manager

considerations

48

file

to

database

table

48

file

type

modifiers

for

48

of

PC/IXF

files,

with

forcein

283

PC/IXF

files,

data

type-specific

rules

281

PC/IXF

files,

general

rules

279

PC/IXF,

multiple-part

files

48

restrictions

48

to

a

remote

database

48

to

a

table

or

hierarchy

that

does

not

exist

48

to

typed

tables

48

incompatible

columns

279

index

record,

PC/IXF

254

indexes
building

86

indexfreespace

file

type

modifier

100,

123

indexixf

file

type

modifier

35,

48

indexschema

file

type

modifier

35,

48

indicator,

record

length

252

Information

Center
installing

303,

305,

308

installing
Information

Center

303,

305,

308

Integration

Exchange

Format

(IXF)

252

integrity

checking

91

invoking
command

help

320

message

help

319

SQL

statement

help

320

K
keepblanks

file

type

modifier

35,

48,

100,

123

keyboard

shortcuts
support

for

322

keywords
syntax

227

L
large

object

(LOB)

data

types
exporting

4

importing

33

Load

API

123

LOAD

command

100

in

a

partitioned

database

environment

179,

195

load

copy

location

file,

using

rollforward

98

load

delete

start

compensation

log

record

162

load

message

files

1,

25,

74

load

operations,

Data

Warehouse

Center

224

load

pending

list

log

record

162

Load

Query

API

145

LOAD

QUERY

command

121

in

a

partitioned

database

environment

184

load

start

log

record

162

load

utility
authorities

and

privileges

required

to

use

81

build

phase

74

changed

syntax

and

behavior

74

code

page

considerations

165

compared

to

import

utility

231

database

recovery

74

DB2

Data

Links

Manager

203

delete

phase

74

dump

file

160

exception

table

160

file

formats

243

file

type

modifiers

for

123

generated

columns

89

identity

columns

87

index

copy

phase

74

limitations

81

load

phase

74

log

records

162

optimizing

performance

166

overview

74

parallelism

80

process

overview

74

recovery

from

failure

97

restrictions

81

table

locking

162

table

states

162

temporary

files

100,

161

loading
data

partitions

177

file

to

database

table

100

file

type

modifiers

for

100

loading

data
partitions

197

332

Data

Movement

Utilities

LOB

(large

object)

data

types
exporting

4

importing

33

LOB

Location

Specifier

(LLS)

252

lobsinfile
Export

API

12

lobsinfile

file

type

modifier

8,

35,

48,

100,

123

locking
import

utility

34

table

level

162

log

records
load

utility

162

M
materialized

query

tables

(MQT)
check

pending

state

94

dependent

immediate

94

refreshing

94

message

files
export,

import,

and

load

1,

25,

74

message

help
invoking

319

messages
overview

299

modifiers
file

type
EXPORT

command

8

IMPORT

command

35

LOAD

command

100

modifiers

file

type
export

utility

12

for

import

utility

48

Load

API

123

moving

data
between

databases

35,

48

multidimensional

clustering

(MDC)
considerations

96

N
nochecklengths

file

type

modifier

35,

48,

100,

123

nodefaults

file

type

modifier

35,

48

nodoubledel

file

type

modifier

8,

12,

35,

48,

100,

123

noeofchar

file

type

modifier

35,

48,

100,

123

noheader

file

type

modifier

100,

123

non-delimited

ASCII

(ASC)

file

format

249

non-identity

generated

columns

31,

89

non-recoverable

database
load

options

74

norowwarnings

file

type

modifier

100,

123

notypeid

file

type

modifier

35,

48

nullindchar

file

type

modifier

35,

48,

100,

123

O
online

help,

accessing

318

options
forcein

283

ordering

DB2

books

318

P
packeddecimal

file

type

modifier

100,

123

pagefreespace

file

type

modifier

100,

123

parallel

export

using

db2batch

5

parallelism
load

utility

80

parameters
syntax

227

partitioned

database

environments
loading

data

195,

197

monitoring

load

operations

184

partitioned

databases
load

restrictions

179

partitioning

data
loading

data

177

partitioning

keys
loading

data

177

PC

version

of

IXF

(PC/IXF)

file

format

252

PC/IXF
code

page

conversion

files

279

column

values,

invalid

279

contrasted

with

System370

IXF

290

data

types

275

valid

270

invalid
column

values

279

data

types

270,

279

record

types

254

PC/IXF

file

format
description

252

moving

data

across

platforms

205

PC/IXF

file

import
data

type-specific

rules

281

rules

279,

281

with

forcein

283

pending

states

165

performance
importing

25

load

utility

166

printed

books,

ordering

318

printing
PDF

files

317

privileges
export

2

import

26

LOAD

81

problem

determination
online

information

321

tutorials

321

R
reclen

file

type

modifier

35

importing

48

Load

API

123

loading

100

record

length

indicator

252

record

type,

PC/IXF
application

254

column

descriptor

254

continuation

254

data

254

header

254

hierarchy

254

identity

254

index

254

list

252

subtable

254

table

254

terminate

254

recoverable

databases
load

options

74

registry

variables
DB2LOADREC

98

Relocate

Database

command

213

replication
Data

Warehouse

Center
types

supported

224

Restarting

a

load

operation
allow

read

access

mode

97

partitioned

database

load

operations

186

rollforward

utility
load

copy

location

file,

using

98

S
samples

files
ASC

249

DEL

245

SELECT

statement
in

EXPORT

command

8

semantics
forcein,

code

page

283

forcein,

data

type

283

forcein,

general

283

SQL

messages

299

SQL

statement

help
invoking

320

SQLCODE
overview

299

SQLSTATE
overview

299

sqluexpr

API

12

sqluimpr

API

48

staging

tables
dependent

immediate

95

propagating

95

states
backup

pending

165

check

pending

165

delete

pending

165

load

pending

165

stored

procedures
transformer

224

striptblanks

file

type

modifier

35,

48,

100,

123

striptnulls

file

type

modifier

35,

48,

100,

123

structure
delimited

ASCII

(DEL)

files

244

non-delimited

ASCII

(ASC)

files

249

Index

333

subtable

record,

PC/IXF
overview

254

subtableconvert

file

type

modifier

100

summary

tables
import

restriction

27

syntax
changes,

LOAD

utility

74

syntax

diagrams
reading

227

System370

IXF
contrasted

with

PC/IXF

290

contrasted

with

System370

290

T
table

load

delete

start

log

record

162

table

record,

PC/IXF

254

table

spaces
states

162

tables
exported,

recreating

32

exporting

to

files

8,

12

importing

files

35,

48

loading

files

to

100

locking

162

states

162

temporary

files
LOAD

command

100

load

utility

161

terminate

record,

PC/IXF

254

termination
load

operations
allow

read

access

mode

97

in

partitioned

databases

186

timeformat

file

type

modifier

35,

48,

100,

123

timestampformat

file

type

modifier

35,

48,

100,

123

totalfreespace

file

type

modifier

100,

123

transformers
stored

procedures

224

traverse

order
default

219

typed

tables

25,

219

user-specified

219

troubleshooting
online

information

321

tutorials

321

tutorials

321

troubleshooting

and

problem

determination

321

typed

tables
data

movement

examples

221

exporting

218

importing

218

moving

data

between

218

selecting

during

data

movement

220

traverse

order

25,

219

U
Unicode

(UCS-2)
data

movement

considerations

293

Updating
HMTL

documentation

311

usedefaults

file

type

modifier

35,

48,

100,

123

user-defined

types

(UDTs)
distinct

types
importing

34

utilities
file

formats

243

V
valid

PC/IXF

data

type

270

variables
syntax

227

W
warning

messages
overview

299

worksheets
file

format

(WSF)

290

WSF

(worksheet)

file

format
description

290

moving

data

across

platforms

205

Z
zoned

decimal

file

type

modifier

100,

123

334

Data

Movement

Utilities

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

http://www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

http://www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

product

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1999

-

2004

335

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

336

Data

Movement

Utilities

����

Printed

in

USA

SC09-4830-01

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

®

D
B

2

U
ni

ve
rs

al

D
at

ab
as

e™

D
at

a

M
ov

em
en

t

U
til

iti
es

Ve
rs

io
n

8.
2

	Contents
	About This Book
	Who Should Use this Book
	How this Book is Structured

	Chapter 1. Export
	Export Overview
	Privileges, authorities and authorization required to use export
	Using Export
	Using export with identity columns
	Recreating an exported table
	Exporting large objects (LOBS)
	Exporting data in parallel
	EXPORT
	db2Export - Export
	File type modifiers for export
	Export Sessions - CLP Examples

	Chapter 2. Import
	Import Overview
	Privileges, authorities, and authorization required to use import
	Using import
	Using import in a client/server environment
	Using import with buffered inserts
	Using import with identity columns
	Using import with generated columns
	Using import to recreate an exported table
	Importing large objects (LOBS)
	Importing user-defined distinct types (UDTs)
	Table locking during import
	IMPORT
	db2Import - Import
	File type modifiers for import
	Character Set and NLS Considerations
	Import Sessions - CLP Examples

	Chapter 3. Load
	Load Overview
	Changes to Previous Load Behavior Introduced in Version 6 and Version 7
	Changes to Previous Load Behavior Introduced in Version 8

	Parallelism and loading
	Privileges, authorities, and authorizations required to use Load
	Using Load
	Read access load operations
	Building indexes
	Using load with identity columns
	Using load with generated columns
	Checking for integrity violations
	Refreshing dependent immediate materialized query tables
	Propagating dependent immediate staging tables
	Multidimensional clustering considerations
	Restarting an interrupted load operation
	Restarting or Terminating an Allow Read Access Load Operation

	Recovering data with the load copy location file
	LOAD
	LOAD QUERY
	db2Load - Load
	db2LoadQuery - Load Query
	File type modifiers for load
	Load exception table
	Load dump file
	Load temporary files
	Load utility log records
	Table locking, table states and table space states
	Character set and national language support
	Pending states after a load operation
	Optimizing load performance
	Load - CLP Examples

	Chapter 4. Loading data in a partitioned database environment
	Partitioned database load - overview
	Using load in a partitioned database environment
	Monitoring a partitioned database load using the LOAD QUERY command
	Restarting or terminating a load operation in a partitioned database environment
	Partitioned database load configuration options
	Example partitioned database load sessions
	Migration and back-level compatibility
	Loading data in a partitioned database environment - hints and tips

	Chapter 5. Moving DB2 Data Links Manager Data
	Moving DB2 Data Links Manager Data Using Export - Concepts
	Using export to move DB2 Data Links Manager data
	Using import to move DB2 Data Links Manager data
	Using load to move DB2 Data Links Manager data

	Chapter 6. Moving Data Between Systems
	Moving data across platforms - file format considerations
	PC/IXF File Format
	Delimited ASCII (DEL) File Format
	WSF File Format

	Moving Data With DB2 Connect
	db2move - Database Movement Tool
	db2relocatedb - Relocate Database
	Delimiter restrictions for moving data
	Moving data between typed tables
	Moving Data Between Typed Tables - Details
	Traverse Order
	Default Traverse Order
	User-Specified Traverse Order

	Selection During Data Movement
	Examples of Moving Data Between Typed Tables

	Using replication to move data
	IBM Replication Tools
	The IBM Replication Tools by Component

	Using the Data Warehouse Center to Move Data
	Moving data using the cursor file type

	Appendix A. How to read the syntax diagrams
	Appendix B. Differences Between the Import and Load Utility
	Appendix C. Export/Import/Load Sessions - API Sample Program
	Appendix D. File Formats
	Export/Import/Load Utility File Formats
	Delimited ASCII (DEL) File Format
	Example and Data Type Descriptions
	Example DEL File
	DEL Data Type Descriptions

	Non-delimited ASCII (ASC) File Format
	Example and Data Type Descriptions
	Example ASC File
	ASC Data Type Descriptions

	PC Version of IXF File Format
	PC Version of IXF File Format - Details
	PC/IXF Record Types
	PC/IXF Data Types
	PC/IXF Data Type Descriptions
	General Rules Governing PC/IXF File Import into Databases
	Data Type-Specific Rules Governing PC/IXF File Import into Databases
	FORCEIN Option
	FORCEIN General Semantics
	FORCEIN Code Page Semantics
	FORCEIN Data Type Semantics

	Differences Between PC/IXF and Version 0 System/370 IXF

	Worksheet File Format (WSF)

	Appendix E. Export/Import/Load Utility Unicode Considerations
	Restrictions for Code Pages 1394, 1392 and 5488
	Incompatibilities

	Appendix F. Bind Files Used by the Export, Import and Load Utilities
	Appendix G. Warning, error and completion messages
	Appendix H. DB2 Universal Database technical information
	DB2 documentation and help
	DB2 documentation updates

	DB2 Information Center
	DB2 Information Center installation scenarios
	Installing the DB2 Information Center using the DB2 Setup wizard (UNIX)
	Installing the DB2 Information Center using the DB2 Setup wizard (Windows)
	Invoking the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Displaying topics in your preferred language in the DB2 Information Center
	DB2 PDF and printed documentation
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Invoking contextual help from a DB2 tool
	Invoking message help from the command line processor
	Invoking command help from the command line processor
	Invoking SQL state help from the command line processor
	DB2 tutorials
	DB2 troubleshooting information
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Dotted decimal syntax diagrams
	Common Criteria certification of DB2 Universal Database products

	Appendix I. Notices
	Trademarks

	Index
	Contacting IBM
	Product information

