
IBM

DB2

Information

Integrator

Wrapper

Developer’s

Guide

Version

8.2

SC18-9174-00

���

IBM

DB2

Information

Integrator

Wrapper

Developer’s

Guide

Version

8.2

SC18-9174-00

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

139.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

copyright

law

protects

it.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative:

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. vii

Who

should

read

this

book?

.

.

.

.

.

.

.

.

. vii

Conventions

and

terminology

used

in

this

book

.

. vii

Part

1.

Overview

of

federated

concepts

and

developing

wrappers

. 1

Chapter

1.

Overview

of

federated

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Why

develop

a

wrapper?

.

.

.

.

.

.

.

.

.

. 3

The

problem:

No

easy

way

to

access

or

integrate

heterogeneous

data

.

.

.

.

.

.

.

.

.

.

. 3

The

solution:

Federated

systems

.

.

.

.

.

.

. 3

Wrapper

module

.

.

.

.

.

.

.

.

.

.

.

.

. 5

How

users

add

data

sources

to

federated

systems

.

. 7

Query

processing

for

federated

systems

.

.

.

.

. 9

Request-reply-compensate

protocol

.

.

.

.

.

. 10

Manipulating

requests

and

replies

with

handles

11

Example

of

Request-Reply-Compensate

protocol

11

Default

cost

model

for

federated

queries

.

.

.

.

. 12

Query

execution

for

federated

systems

.

.

.

.

. 16

Using

passthrough

with

wrappers

.

.

.

.

.

.

. 17

Chapter

2.

Overview

of

developing

wrappers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Wrapper

development

process

.

.

.

.

.

.

.

. 19

Wrapper

development

kit

.

.

.

.

.

.

.

.

.

. 20

Sample

C++

wrapper

.

.

.

.

.

.

.

.

.

. 20

Sample

Java

wrapper

.

.

.

.

.

.

.

.

.

. 20

Tools

and

samples

for

adding

wrappers

to

the

DB2

Control

Center

.

.

.

.

.

.

.

.

.

.

. 21

Part

2.

Designing

wrappers

for

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Chapter

3.

Determining

data

source

characteristics

.

.

.

.

.

.

.

.

.

.

. 25

Selection

of

APIs

for

the

data

source

.

.

.

.

.

. 25

Operations

that

are

supported

by

the

interface

of

the

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Metadata

at

the

data

source

.

.

.

.

.

.

.

.

. 26

Relative

cost

of

queries

for

the

data

source

.

.

.

. 26

Multiple

instances

of

the

data

source

.

.

.

.

.

. 27

Client-server

communication

for

the

data

source

.

. 27

Transaction

models

and

distributed

commit

protocol

for

the

data

source

.

.

.

.

.

.

.

.

.

.

.

. 27

User

authentication

from

the

data

source

.

.

.

. 28

Large

object

support

from

the

data

source

.

.

.

. 28

Chapter

4.

Mapping

data

sources

to

federated

constructs

.

.

.

.

.

.

.

.

. 29

Designing

for

nicknames

.

.

.

.

.

.

.

.

.

. 29

Deciding

on

nickname

and

column

options

.

.

. 29

Mapping

queryable

collections

of

source

data

to

nicknames

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Mapping

hierarchical

data

structures

to

nicknames

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Mapping

data

types

from

data

sources

to

DB2

Universal

Database

.

.

.

.

.

.

.

.

.

.

.

. 30

Modeling

data

source

capabilities

with

function

templates

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Modeling

data

source

capabilities

using

pseudo

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Designing

for

wrappers

.

.

.

.

.

.

.

.

.

. 32

How

wrappers

work

with

options

.

.

.

.

.

. 32

Deciding

on

wrapper

options

.

.

.

.

.

.

. 33

Defining

the

CREATE

WRAPPER

statement

for

the

data

source

.

.

.

.

.

.

.

.

.

.

.

. 34

Designing

for

servers

.

.

.

.

.

.

.

.

.

.

. 34

Deciding

on

server

options

.

.

.

.

.

.

.

. 34

Defining

the

CREATE

SERVER

statement

for

the

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Designing

for

user

mappings

.

.

.

.

.

.

.

. 35

Deciding

on

user

mapping

options

.

.

.

.

. 35

Defining

the

CREATE

USER

MAPPING

statement

for

the

data

source

.

.

.

.

.

.

. 36

Chapter

5.

Determining

the

SQL

constructs

that

the

data

source

can

accept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Determining

the

head

expressions

that

the

data

source

can

accept

.

.

.

.

.

.

.

.

.

.

.

. 37

Determining

the

predicates

that

the

data

source

can

accept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Determining

the

joins

that

the

data

source

can

accept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Determining

the

functions

that

the

data

source

can

accept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Chapter

6.

Designing

for

error

handling

39

Part

3.

Developing

and

documenting

wrappers

.

.

.

.

.

. 45

Chapter

7.

Overview

of

data

flows

.

.

. 47

Federated

query

processing

and

the

objects

that

are

involved

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Typical

flow

of

a

federated

query

.

.

.

.

.

. 47

Life

cycles

of

objects

that

are

involved

in

federated

queries

.

.

.

.

.

.

.

.

.

.

. 49

Control

flows

for

processes

.

.

.

.

.

.

.

.

. 49

Control

flow

for

registration

.

.

.

.

.

.

.

. 49

Control

flow

for

initialization

.

.

.

.

.

.

. 55

Control

flow

for

query

planning

.

.

.

.

.

. 55

Control

flow

for

query

execution

.

.

.

.

.

. 57

©

Copyright

IBM

Corp.

2003,

2004

iii

||
||
||
|
||

||

Communication

between

wrappers

and

foreign

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Chapter

8.

Developing

with

wrapper

classes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Typical

procedure

for

developing

a

wrapper

.

.

. 61

Implementations

of

subclasses

and

methods

.

.

. 63

Tips

for

developing

wrappers

.

.

.

.

.

.

.

. 63

Trusted

and

fenced

mode

process

environments

.

. 64

C++

Processing

Environment

.

.

.

.

.

.

. 64

Java

Processing

Environment

.

.

.

.

.

.

. 66

Mapping

parts

of

a

wrapper

to

classes

.

.

.

.

. 67

Chapter

9.

Classes

for

coding

wrappers

69

Classes

for

communications

between

wrappers

and

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Wrapper

classes

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Unfenced_Generic_Wrapper

class

.

.

.

.

.

. 70

Fenced_Generic_Wrapper

class

.

.

.

.

.

.

. 71

Server

classes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Unfenced_Generic_Server

class

.

.

.

.

.

.

. 73

Fenced_Generic_Server

class

.

.

.

.

.

.

.

. 74

Nickname

classes

.

.

.

.

.

.

.

.

.

.

.

. 76

Unfenced_Generic_Nickname

class

.

.

.

.

. 76

Fenced_Generic_Nickname

class

.

.

.

.

.

. 78

User

classes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Unfenced_Generic_User

class

.

.

.

.

.

.

. 80

Fenced_Generic_User

class

.

.

.

.

.

.

.

. 81

Request

class

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Reply

class

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Advanced

customization

.

.

.

.

.

.

.

.

. 83

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Predicate

list

class

.

.

.

.

.

.

.

.

.

.

.

. 86

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Request

expression

class

.

.

.

.

.

.

.

.

.

. 87

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Request

constant

class

.

.

.

.

.

.

.

.

.

.

. 89

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Request

expression

type

class

.

.

.

.

.

.

.

. 90

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Remote

connection

class

.

.

.

.

.

.

.

.

.

. 90

Required

customization

for

all

wrappers

.

.

.

. 91

Additional

customization

.

.

.

.

.

.

.

.

. 91

Remote

query

class

.

.

.

.

.

.

.

.

.

.

.

. 92

Runtime

data

classes

.

.

.

.

.

.

.

.

.

.

. 94

Runtime

data

class

.

.

.

.

.

.

.

.

.

.

. 94

Runtime

data

list

class

.

.

.

.

.

.

.

.

.

. 95

Runtime

data

description

classes

.

.

.

.

.

.

. 96

Runtime

data

description

class

.

.

.

.

.

.

. 96

Runtime

data

description

list

class

.

.

.

.

.

. 97

Remote

passthru

class

.

.

.

.

.

.

.

.

.

.

. 97

Required

customization

for

all

wrappers

.

.

.

. 97

Additional

customization

.

.

.

.

.

.

.

.

. 98

Wrapper

utilities

class

.

.

.

.

.

.

.

.

.

.

. 98

Chapter

10.

Ensuring

wrappers

coexist

with

the

environment

.

.

.

. 101

Using

system

services

with

wrappers

.

.

.

.

. 101

Memory

management

(C++

only)

.

.

.

.

. 101

Tokenization

services

(C++

only)

.

.

.

.

.

. 102

Making

environment

variables

accessible

to

wrappers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

C++

coding

considerations

.

.

.

.

.

.

.

. 103

Wrapper

portablilty

.

.

.

.

.

.

.

.

.

.

. 103

Chapter

11.

Documenting

wrappers

105

Part

4.

Building,

testing,

and

tracing

wrappers

.

.

.

.

.

.

.

.

. 107

Chapter

12.

Compiling

wrappers

.

.

. 109

Compiling

wrappers

(C++)

.

.

.

.

.

.

.

.

. 109

Compiling

wrappers

(Java)

.

.

.

.

.

.

.

.

. 110

Chapter

13.

Linking

wrappers

(C++

only)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Chapter

14.

Installing

wrappers

.

.

.

. 117

Installing

C++

wrappers

.

.

.

.

.

.

.

.

.

. 117

Installing

Java

wrappers

.

.

.

.

.

.

.

.

.

. 117

Chapter

15.

Adding

data

sources

to

the

Control

Center

.

.

.

.

.

.

.

.

. 119

Adding

data

sources

to

the

DB2

Control

Center

119

Installing

the

Develop

XML

Configuration

File

wizard

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Creating

XML

configuration

files

.

.

.

.

.

.

. 120

Installing

XML

configuration

files

.

.

.

.

.

. 122

Supporting

discovery

in

the

DB2

Control

Center

123

Chapter

16.

Testing

wrappers

.

.

.

. 127

Using

registration

DLL

statements

to

test

wrappers

127

Testing

wrappers

with

valid

and

invalid

options

127

Chapter

17.

Tracing

wrappers

.

.

.

. 129

Wrapper

trace

facility

.

.

.

.

.

.

.

.

.

.

. 129

Creating

trace

information

from

wrappers

.

.

.

. 130

Example

of

wrapper

trace

facility

.

.

.

.

.

.

. 131

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Accessibility

.

.

.

.

.

.

.

.

.

.

.

. 137

Keyboard

input

and

navigation

.

.

.

.

.

.

. 137

Keyboard

input

.

.

.

.

.

.

.

.

.

.

.

. 137

Keyboard

navigation

.

.

.

.

.

.

.

.

.

. 137

Keyboard

focus

.

.

.

.

.

.

.

.

.

.

.

. 137

Accessible

display

.

.

.

.

.

.

.

.

.

.

.

. 137

Font

settings

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Non-dependence

on

color

.

.

.

.

.

.

.

. 138

Compatibility

with

assistive

technologies

.

.

.

. 138

Accessible

documentation

.

.

.

.

.

.

.

.

. 138

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

iv

Wrapper

Developer’s

Guide

||

||

|

|

|

|

|

|

|

|

|

|

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 149

Product

information

.

.

.

.

.

.

.

.

.

.

. 149

Comments

on

the

documentation

.

.

.

.

.

.

. 149

Contents

v

vi

Wrapper

Developer’s

Guide

About

this

book

This

books

helps

you

develop

wrappers

to

access

custom

data

sources

or

data

sources

not

covered

by

the

standard

set

of

wrappers

that

IBM

offers.

Who

should

read

this

book?

Data

administrators,

information

analysts,

system

integrators,

Web

integrators,

data

librarians,

data

architects,

and

application

developers

who

are

developing

wrappers

to

access

custom

data

sources

for

IBM

DB2

Information

Integrator.

Conventions

and

terminology

used

in

this

book

IBM

DB2

Information

Integrator

uses

standard

terminology

for

concepts

about

database,

connectivity,

Structured

Query

Language

(SQL),

and

local

area

network

(LAN).

All

the

DB2

Information

Integrator

concepts

that

are

used

in

this

book

are

defined

in

the

glossary.

Unless

otherwise

specified,

assume

the

following

meanings:

Data

A

raw

fact.

It

can

be

structured,

unstructured,

or

semi-structured.

Data

is

usually

organized

for

analysis.

Data

also

helps

you

to

make

decisions.

Information

Data

in

a

usable

form,

usually

processed

or

interpreted

in

some

way.

©

Copyright

IBM

Corp.

2003,

2004

vii

|
|

|
|
|

viii

Wrapper

Developer’s

Guide

Part

1.

Overview

of

federated

concepts

and

developing

wrappers

This

part

of

the

book

provides

an

overview

of

the

main

federated

concepts

that

you

need

to

be

familiar

with

before

developing

wrappers

and

provides

an

overview

of

the

overall

wrapper

development

process.

©

Copyright

IBM

Corp.

2003,

2004

1

2

Wrapper

Developer’s

Guide

Chapter

1.

Overview

of

federated

concepts

The

following

topics

provide

an

overview

of

the

main

federated

concepts

that

you

need

to

be

familiar

with

before

developing

wrappers.

Why

develop

a

wrapper?

The

problem:

No

easy

way

to

access

or

integrate

heterogeneous

data

Enterprises

store

data

in

different

brands

of

relational

data

management

systems

(RDBMSs),

nonrelational

servers,

and

specialized

application

systems.

This

proliferation

of

servers

came

about

through

normal

changes

in

the

information

technology

(IT)

industry.

These

changes

include

the

merging

of

IT

shops,

gradual

upgrades

to

products

and

solutions,

and

the

need

for

applications

to

handle

specialized

data.

Of

course,

there

are

benefits

to

consolidating

data

from

different

data

sources

and

thereby

providing

a

new

view

of

this

data.

For

example,

you

might

join

customer

data

in

the

federated

server

with

information

that

is

stored

in

a

customized

geographical

information

systems

(GISs).

This

would

enable

you

to

map

where

customers

live

who

have

specific

preferences.

Or,

perhaps

as

the

result

of

a

merge

of

divisions

of

a

company,

you

might

need

to

retrieve

data

stored

in

different

servers

from

both

divisions.

Unfortunately,

one

result

of

data

storage

heterogeneity

is

user

and

application

interfaces

designed

to

access

a

limited

subset

of

servers.

So

if

most

of

your

data

is

accessible

through

one

interface

you

will

still

have

some

critical

data

that

this

interface

cannot

access.

You

would

then

require

a

second

interface

to

access

the

critical

data.

To

do

this,

you

might

need

to

write

special

applications

to

integrate

both

sets

of

data

into

the

same

result

set.

The

solution:

Federated

systems

DB2®

Information

Integrator’s

solution

is

to

enable

you

to

set

up

a

distributed

computing

system,

called

a

federated

system.

Through

a

federated

system

clients

can

query

data

sources

of

all

kinds

from

a

single

interface.

A

federated

server

instance

called

the

federated

server

manages

the

system.

The

data

sources

are

sometimes

referred

to

as

foreign

servers.

To

DB2

UDB

clients

(end

users

and

applications),

the

data

sources

in

a

federated

system

appear

as

a

single

collective

database.

Actually,

the

clients

interface

with

a

DB2

UDB

database,

called

the

federated

database.

The

federated

database

is

managed

by

the

federated

server.

To

retrieve

data

from

data

sources,

a

client

submits

a

query

in

DB2

UDB’s

SQL

dialect

to

the

federated

database.

This

query

references

tables

or

other

data

stores

within

the

data

sources.

It

can

request

results

in

the

form

of

tables

or

views

that

combine

output

from

any

number

of

these

data

sources.

Example:

Accessing

and

integrating

data

Suppose

that

two

nonrelational

data

sources

in

a

federated

system

contain

life

sciences

information.

In

one

a

table

contains

data

about

biochemical

experiments

and

their

results.

In

the

other

a

data

set

contains

information

about

molecules

that

©

Copyright

IBM

Corp.

2003,

2004

3

are

candidates

for

new

drugs.

The

federated

server

has

its

own

identifiers

for

the

table

and

data

set—EXP

and

MOLECULES,

respectively.

Such

identifiers—names

by

which

the

federated

server

refers

to

tables,

data

sets,

and

other

kinds

of

data

stores

in

a

foreign

server—are

called

nicknames.

Suppose

that

a

user

wants

to

find

molecules

with

a

structure

similar

to

the

structure

of

molecules

that

yielded

specific

results

in

a

stomach

experiment.

To

do

this,

the

user

writes

a

query

that

references

the

table

and

data

set

by

their

nicknames.

Figure

1

shows

this

query.

The

client

submits

this

query

to

the

federated

database.

The

federated

server

consults

its

system

catalog

and

finds

that

EXP

is

a

nickname

for

a

table

in

the

first

server.

It

finds

that

MOLECULES

is

a

nickname

for

a

data

set

in

the

other

server.

The

federated

server

learns

from

the

catalog

that

the

wrapper

designated

to

retrieve

data

from

the

first

server

is

called

EXPERIMENTS.

It

also

learns

from

the

catalog

that

the

wrapper

designated

to

retrieve

data

from

the

second

server

is

called

MYMOL.

The

federated

server

and

the

wrappers

cooperatively

develop

an

execution

plan

for

the

query.

On

the

basis

of

this

plan,

the

federated

server

decomposes

the

query

into

fragments.

The

wrappers

then

use

the

servers’

respective

application

programming

interfaces

(APIs)

to

push

the

fragments

down

to

the

servers.

The

servers

return

results.

The

wrappers

retrieve

the

results

from

the

APIs

and

pass

them

to

the

federated

server.

The

federated

server

then

consolidates

the

results

and

returns

them

to

the

client.

A

walk

through

a

basic

federated

query

At

a

high

level,

the

basic

steps

in

a

federated

query

are:

1.

User

or

application

submits

a

query.

2.

The

federated

server

decomposes

the

query

by

source.

3.

The

federated

server

and

wrappers

collaborate

on

a

query

plan.

4.

The

federated

server

implements

the

plan

through

query

execution.

5.

Wrappers

take

sources

through

each

source’s

API.

6.

Sources

return

data

to

the

wrappers.

7.

Wrappers

return

the

data

to

the

federated

server.

8.

The

federated

server

compensates

for

work

that

the

data

sources

are

unable

to

do

and

combines

data

from

different

sources.

9.

The

federated

server

returns

data

to

the

user

or

application.

After

a

query

is

submitted,

The

federated

server

consults

its

system

catalog.

It

is

looking

for

information

such

as

what

tables

or

other

data

stores

contain

the

information

to

be

retrieved

and

what

wrappers

have

been

designated

to

initiate

the

retrieval.

SELECT

M.ID,

E.MOLECULE_ID,

E.RESULTS

FROM

MOLECULES

M,

EXP

E

WHERE

E.EXP_TYPE

=

"STOMACH"

AND

E.RESULTS

>

0.8

AND

SIMILAR_TO(E.MOLE_ID,

M.ID)

>

.85

Figure

1.

Query

to

request

IDs

of

molecules

similar

to

molecules

with

a

result

>

0.8

in

a

stomach

experiment.

4

Wrapper

Developer’s

Guide

The

federated

server

devises

alternative

strategies,

called

access

plans,

for

evaluating

the

query.

Such

a

plan

might

call

for

parts

of

the

query

to

be

processed

by

the

data

sources,

by

the

federated

server,

or

partly

by

the

sources

and

partly

by

the

federated

server.

The

federated

server

chooses

among

the

plans

primarily

on

the

basis

of

cost.

The

optimizer

generates

sub-pieces

of

the

original

query

submitted

by

the

user’s

application

called

query

fragments.

The

federated

server

submits

each

query

fragment

to

a

wrapper

in

a

request.

The

wrapper

responds

with

a

reply.

The

reply

lets

the

optimizer

know

which

sub-fragments

(such

as

select-list

elements

and

predicates)

of

that

specific

query

fragment

the

wrapper

can

execute.

This

set

of

sub-fragments

is

called

the

accepted

fragment.

In

the

reply,

the

wrapper

also

gives

an

estimate

of

the

cost

(in

time)

and

number

of

rows

that

will

be

produced

if

it

is

asked

to

evaluate

the

accepted

fragment.

The

optimizer

then

compensates

for

those

sub-fragments

that

the

data

source

can

not

handle

by

adding

them

to

the

federated

server’s

portion

of

the

query

plan.

Overall,

the

whole

process

by

which

the

wrapper

and

the

federated

server

interact

during

query

planning

is

called

the

Request-Reply-Compensate

(RRC)

protocol

.

The

federated

server

analyzes

combinations

of

the

plans

for

individual

fragments

to

determine

the

best

overall

plan.

Related

concepts:

v

“Query

processing

for

federated

systems”

on

page

9

v

“Wrapper

module”

on

page

5

Wrapper

module

In

C++,

the

wrapper

module

is

a

shared

library

with

specific

entry

points

that

provide

access

to

a

class

of

data

sources.

A

Java™

wrapper

is

a

set

of

Java

classes.

DB2®

UDB

loads

both

the

C++

and

Java

wrapper

module

on

demand

dynamically.

The

wrapper

module

is

what

you

will

be

coding

using

specific

classes

that

are

derived

from

base

classes

that

are

supplied

with

the

federated

server.

It

will

contain

specific

building

blocks

that

allow

it

to

act

as

a

translator

between

your

data

source

and

your

federated

system.

Figure

2

on

page

6

illustrates

the

parts

of

a

wrapper

module.

Chapter

1.

Overview

of

federated

concepts

5

|
|

|

|

Figure

2

shows

that

the

wrapper

module

contains

the

following

building

blocks:

v

Wrapper

v

Server

v

Remote

User

v

Nickname

v

Remote_Connection

v

Remote_Operation

All

the

building

blocks,

except

the

remote

connection

and

remote

operation

classes,

represent

persistent

entities

that

are

registered

and

described

in

the

federated

server

catalogs.

Table

1.

Descriptions,

services,

and

DDL

associated

with

the

basic

building

blocks

of

a

wrapper

module

Building

block

name

Description

Services

Provided

Associated

DDL

Wrapper

The

code

module.

It

is

a

shared

library

with

specific

entry

points

that

represents

a

class

of

data

sources.

v

Bootstrapping

and

initialization

v

Access

to

servers

supported

by

the

wrapper.

CREATE

WRAPPER

Server

Represents

a

specific

data

source

supported

by

the

wrapper.

v

Access

to

a

set

of

nicknames

v

Query

planning

using

the

Request-Reply-
Compensate

protocol.

CREATE

SERVER

Nickname

Represents

a

specific

collection

of

data

at

a

server.

Describes

the

nickname

schema

to

the

federated

server

at

nickname

registration

or

via

DDL.

CREATE

NICKNAME

User

Nickame

Server

Wrapper

Operation

Connection

Figure

2.

Parts

of

a

wrapper

module

6

Wrapper

Developer’s

Guide

|
|
|

Table

1.

Descriptions,

services,

and

DDL

associated

with

the

basic

building

blocks

of

a

wrapper

module

(continued)

Building

block

name

Description

Services

Provided

Associated

DDL

User

Provides

the

information

required

to

authenticate

the

end

user

to

a

particular

server.

Maps

the

federated

server

user

information

to

source

information.

For

example,

user

id

and

password.

CREATE

USER

MAPPING

Remote_Connection

Represents

the

federated

server’s

connection

to

a

source

Transient:

no

persistent

catalog

information.

v

Connect

and

disconnect

to/from

source

v

Transaction

management.

n/a

Remote_Operation

Represents

an

active

operation

at

a

source

(for

example

query,

insert,

update,

delete).

Transient:

no

persistent

catalog

information.

Multiple

operations

can

be

in

progress.

v

Remote

query:

read-only

query

of

data

v

Passthru:

direct

session

with

data

source

(Source’s

language

using

source’s

names).

n/a

Related

concepts:

v

“Query

processing

for

federated

systems”

on

page

9

v

“Wrappers

and

wrapper

modules”

in

the

Federated

Systems

Guide

v

“Why

develop

a

wrapper?”

on

page

3

How

users

add

data

sources

to

federated

systems

From

the

user

or

application’s

perspective,

adding

a

data

source

involves:

v

Telling

the

federated

server

how

the

external

data

will

be

represented

as

rows

and

columns

in

the

relational

model

v

Configuring

the

wrapper

for

the

data

source

so

that

it

can

communicate

with

the

source

to

retrieve

its

data

The

registration

process

is

done

through

a

series

of

DDL

statements

your

end

user

or

application

program

issues.

When

your

user

submits

a

DDL

statement

to

the

federated

server,

the

associated

wrapper

code

verifies

the

correctness

of

the

statement.

The

wrapper

can

augment

the

DDL

information

with

information

from

the

data

source

or

through

hardcoded

information.

The

data

source

can

provide

the

wrapper

with

information

such

as

configuration

parameters

and

statistics.

Parameters

can

also

be

called

host

variables,

input

variables,

or

input

data.

After

the

wrapper

verifies

the

information

Chapter

1.

Overview

of

federated

concepts

7

from

the

DDL

statement

is

valid,

and

possibly

augments

the

information,

the

federated

server

stores

the

information

in

the

appropriate

catalogs.

Options

on

each

DDL

statement

allow

you

to

use

a

wrapper

across

several

different

variations

of

the

same

data

source.

For

example,

a

wrapper

for

flat

files

could

have

an

option

that

specified

the

path

to

the

flat

file.

In

that

way,

one

wrapper

can

deal

with

flat

files

in

various

paths.

The

steps

that

your

user

or

an

application

has

to

complete

to

add

a

new

data

source

are:

1.

Register

the

wrapper

using

the

CREATE

WRAPPER

DDL

statement.

a.

Determine

what

wrapper

options

this

wrapper

supports.

b.

Determine

values

for

wrapper

options.

c.

Issue

the

CREATE

WRAPPER

DDL

statement

For

example,

CREATE

WRAPPER

Dctm_Wrapper

LIBRARY

’libdb2lsdctm.a’;

2.

Register

a

server

a.

Determine

what

server

options

this

wrapper

supports.

b.

Determine

values

for

server

options.

c.

Issue

the

CREATE

SERVER

DDL

statement

For

example,

CREATE

SERVER

Dctm_Server1

TYPE

DCTM

VERSION

3

WRAPPER

Dctm_Wrapper

OPTIONS(NODE

’Dctm_Docbase’,

OS_TYPE

’AIX’,

RDBMS_TYPE

’ORACLE’);

3.

If

needed,

define

remote

users

for

that

server

using

the

CREATE

USER

MAPPING

DDL

statement

For

example,

CREATE

USER

MAPPING

FOR

Chuck

SERVER

Dctm_Server1

OPTIONS(REMOTE_AUTHID

’Charles’,REMOTE_PASSWORD

’Charles_pw’);

4.

Register

any

specialized

functions

of

that

server:

a.

Create

a

local

template

function

using

the

CREATE

FUNCTION...

AS

TEMPLATE

DDL

statement

For

example,

CREATE

FUNCTION

DCTM.ANY_EQ

(CHAR(),CHAR())RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

5.

Create

nicknames

for

data

sets

a.

Determine

what

column

names

and

column

types

you

will

specify

on

the

CREATE

NICKNAME

statement.

b.

Determine

what

nickname

options

and

column

options

this

wrapper

supports.

c.

Determine

values

for

the

nickname

options

and

column

options.

d.

Issue

the

CREATE

NICKNAME

DDL

statement

For

example,

CREATE

NICKNAME

std_doc

(

object_name

varchar(255)not

null,

object_id

char(16)not

null

OPTIONS(REMOTE_NAME

’r_object_id’),

object_type

varchar(32)not

null

OPTIONS(REMOTE_NAME

’r_object_type’),

8

Wrapper

Developer’s

Guide

title

varchar(255)not

null,

subject

varchar(128)not

null,

author

varchar(32)OPTIONS(REMOTE_NAME

’authors’,IS_REPEATING

’Y’),

keyword

varchar(32)OPTIONS(REMOTE_NAME

’keywords’,IS_REPEATING

’Y’),

creation_date

timestamp

OPTIONS(REMOTE_NAME

’r_creation_date’),

modifed_date

timestamp

OPTIONS(REMOTE_NAME

’r_modify_date’),

status

varchar(16)not

null

OPTIONS(REMOTE_NAME

’a_status’),

content_type

varchar(32)not

null

OPTIONS(REMOTE_NAME

’a_content_type’),

content_size

integer

not

null

OPTIONS(REMOTE_NAME

’r_content_size’),

owner_name

varchar(32))

FOR

SERVER

Dctm_Server2

OPTIONS

(REMOTE_OBJECT

’dm_document’,

IS_REG_TABLE

’N’)

6.

Query

data

by

using

standard

SQL

statements.

For

example,

SELECT

object_name

FROM

std_doc

WHERE

DCTM.ANY_EQ(author,’Joe

Doe’)=1

When

writing

the

wrapper

code,

you

are

responsible

for

defining

what

these

DDL

statements

look

like

within

a

set

of

constraints.

You

are

responsible

for

determining

what

existing

options

to

use

and

creating

any

new

ones

that

are

needed

for

your

data

source.

Related

concepts:

v

“Why

develop

a

wrapper?”

on

page

3

Related

tasks:

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

Query

processing

for

federated

systems

There

are

two

phases

of

query

processing:

query

planning

and

query

execution.

The

query

planning

phase

occurs

during

compile-time.

The

query

execution

phase

occurs

during

runtime.

Figure

3

on

page

10

shows

the

flow

of

query

processing

in

a

federated

system

during

compile-time

and

runtime.

Chapter

1.

Overview

of

federated

concepts

9

Related

concepts:

v

“Query

execution

for

federated

systems”

on

page

16

v

“Wrapper

module”

on

page

5

Request-reply-compensate

protocol

During

query

planning,

the

optimizer

generates

sub-pieces

of

the

original

query

submitted

by

the

user’s

application

called

query

fragments.

A

query

fragment

can

contain

tables,

predicates,

and

head

expressions.

Head

expressions

are

expressions

found

in

the

SELECT

clause

of

a

query.

The

optimizer

then

submits

each

query

fragment

to

a

wrapper

in

a

request.

By

definition,

all

the

data

needed

to

evaluate

a

fragment

comes

from

one

data

source.

However,

the

processing

of

this

data

can

be

done

by

the

foreign

server,

by

the

federated

server,

or

some

by

each.

The

wrapper

indicates

which

sub-pieces

of

the

fragment,

called

sub-fragments,

it

can

evaluate,

and

puts

this

information

in

the

reply

to

the

request.

The

wrapper

must

either

accept

or

reject

an

entire

sub-fragment.

The

reply

contains:

v

accepted

nicknames,

predicates

and

head

expressions

v

cost

and

cardinality

estimates

for

the

accepted

fragment

v

ordering

properties,

if

any,

for

the

results

that

will

be

returned

v

Wrapper

Execution

Descriptor

(described

in

the

following

text)

For

the

purposes

of

this

document,

″quantifier″

and

″nickname″

are

interchangeable.

Structured
and
non-structured
data

Structured
and
non-structured
data

Data Source

Query

DB2 Database

Request

DB2 Catalog

DB2 Runtime

Query Plan

Wrapper Plan

WrapperWrapper Plan

Wrapper
Reply

Wrapper Plan

DB2 Optimizer

C
om

pi
le

T
im

e
R

un
T

im
e

Figure

3.

Federated

query

processing

flow

10

Wrapper

Developer’s

Guide

For

a

single

query,

the

optimizer

typically

generates

many

requests

for

each

wrapper,

each

request

representing

a

different

fragment

of

the

original

query.

For

each

such

request,

the

wrapper

generates

zero,

one,

or

more

replies.

Each

reply

represents

a

different

accepted

fragment.

An

accepted

fragment

is

a

fragment

the

wrapper

or

data

source

can

evaluate

itself.

Each

reply

contains

the

associated

cost

and

cardinality

estimates

for

the

accepted

fragment.

By

the

end

of

query

planning,

the

optimizer

will

have

made

a

cost-based

decision.

It

will

have

come

up

with

a

plan

incorporating

some

set

of

the

accepted

fragments

offered

up

by

the

wrapper

in

response

to

requests.

It

is

this

particular

set

of

accepted

fragments

that

the

wrapper

will

eventually

be

asked

to

execute.

The

optimizer

will

ensure

that

any

sub-fragments

that

are

not

part

of

the

accepted

fragments

in

the

plan

it

has

chosen

will

be

evaluated

by

the

federated

server.

Examples

of

this

include

a

complex

predicate

or

a

sort

that

is

beyond

the

capability

of

the

data

source

in

question.

This

includes

all

cross-source

joins

as

well

as

any

other

expressions

(such

as

function

invocations)

that

mix

data

from

multiple

sources

since

a

fragment

is

single-source.

This

is

called

compensation.

Overall,

the

whole

process

by

which

the

wrapper

and

the

federated

server

interact

during

compilation

is

called

the

Request-Reply-Compensate

(RRC)

protocol.

The

wrapper

can

determine

the

cost

and

cardinality

estimates

to

put

in

the

replies

on

its

own

or

it

can

reuse

a

default

cost

model

provided

by

the

federated

server.

It

can

also

selectively

replace

parts

of

the

default

cost

model

so

as

to

improve

its

accuracy

without

building

a

new

model

from

scratch.

The

default

model

uses

statistics

that

the

wrapper

can

calculate

from

the

data,

or

they

can

be

supplied

via

DDL.

As

part

of

the

reply,

wrappers

also

have

to

provide

a

Wrapper

Execution

Descriptor.

This

is

a

black

box

whose

content

is

up

to

the

wrapper.

The

wrapper

must

be

able

to

submit

the

accepted

fragment

that

the

reply

represents

to

the

data

source.

If

the

optimizer

uses

the

accepted

fragment

in

the

execution

plan

it

ultimately

selects,

the

Wrapper

Execution

Descriptor

will

be

returned

to

the

wrapper

when

it

is

time

to

run

the

query.

In

between,

the

Wrapper

Execution

Descriptor

resides

in

the

federated

server

catalogs,

as

part

of

the

access

plan

for

a

precompiled

query.

The

wrapper

for

the

source

has

complete

control

over

the

persistent

representation

of

the

remote

query

in

the

Wrapper

Execution

Descriptor.

Manipulating

requests

and

replies

with

handles

DB2

UDB

provides

a

functional

interface

to

manipulate

requests

and

replies.

A

request

corresponds

to

an

SQL

query,

but

the

query

is

not

represented

in

SQL

because

the

data

sources

do

not

understand

SQL.

Instead,

integer

handles

are

used

to

identify

and

navigate

query

expressions.

Predicates

and

head

expressions

are

represented

as

operator

trees.

Functions

are

provided

to

describe

each

kind

of

node

and

navigate

to

any

of

the

node’s

children.

Methods

are

provided

to

move

terms

from

request

to

reply.

Example

of

Request-Reply-Compensate

protocol

For

example,

consider

the

example

in

Figure

4

on

page

12.

Chapter

1.

Overview

of

federated

concepts

11

The

figure

shows

the

RRC

protocol

in

action.

In

this

scenario,

you

want

to

access

a

data

source

that

is

a

Web

site

that

only

allows

you

to

specify

one

predicate

in

a

request

to

the

web

server.

The

figure

shows

a

query

fragment

of

a

single-table

access

query.

Note

that

the

SELECT

list

contains

an

expression:

rate

+

tax.

In

the

request,

note

that

the

federated

server

can

request

the

columns

contained

in

predicates

and

expressions

individually

in

the

list

of

head

expressions:

rate,

tax,

stars.

There

are

two

replies

with

different

predicates

accepted,

costs

and

cardinalities,

and

wrapper

plans

(aka

wrapper

execution

descriptors).

Neither

plan

accepts

the

head

expression,

rate

+

tax.

Since

the

wrapper

and

data

source

are

not

able

to

handle

this

head

expression,

the

federated

server

will

compute

its

value

from

the

individual

column

values

for

rate

and

tax.

Related

concepts:

v

“Query

processing

for

federated

systems”

on

page

9

v

“Query

execution

for

federated

systems”

on

page

16

v

“Control

flow

for

query

execution”

on

page

57

Default

cost

model

for

federated

queries

This

section

describes

how

wrappers

use

a

cost

model

to

provide

costing

information

to

the

federated

server

optimizer.

Query

costs

and

query

planning

Through

the

Reply

class,

the

wrapper

provides

information

to

the

federated

server.

The

federated

server

uses

this

information

when

determining

the

most

appropriate

plan

to

process

a

particular

query.

The

Reply

class

provides

methods

that

calculate

the

following

four

pieces

of

information:

1.

The

cardinality

of

the

query

fragment

represented

by

the

reply.

This

is

an

estimation

of

the

number

of

rows

that

the

query

fragment

will

return.

HXPs: Name, Rate, Tax, Stars
Table: Hotels
Predicates: Stars = 3
20000 rows, 123 ms.

Query Fragment

Request

Replies

Wrapper Plan 1

HXPs: Name, Rate, Tax, Stars
Table: Hotels
Predicates: Rate < 120
10 rows, 187 ms.

Wrapper Plan 2

SELECT Name, Rate +Tax
FROM Hotels
WHERE Stars = 3 AND Rate < 120

HXPs: Name, Rate, Tax, Stars, Rate +
Tax
Table: Hotels
Predicates: Stars = 3, Rate < 120

Figure

4.

Request-Reply-Compensate

protocol

example

12

Wrapper

Developer’s

Guide

2.

An

estimate

of

the

time,

in

milliseconds,

to

retrieve

the

first

tuple

selected

by

the

query

fragment.

This

estimate

is

for

the

first

invocation

of

the

query

fragment.

It

is

referred

to

as

the

fragment’s

first-tuple

cost.

3.

An

estimate

of

the

time,

in

milliseconds,

to

retrieve

an

entire

answer

set

selected

by

the

query

fragment.

This

estimate

is

for

the

first

invocation

of

the

query

fragment.

4.

An

estimate

of

the

time,

in

milliseconds,

to

retrieve

an

entire

answer

set

selected

by

the

query

fragment.

This

estimate

is

for

the

second

or

subsequent

invocation

of

the

query

fragment,

possibly

with

new

parameters

bound

in.

It

is

referred

to

as

the

fragment’s

re-execution

cost.

The

re-execution

cost

will

differ

from

the

first-tuple

cost

if

there

is

preprocessing

a

wrapper

needs

to

do

the

first

time

it

submits

a

query

fragment

to

a

remote

source.

If

the

wrapper

submits

the

same

fragment,

it

will

not

need

to

repeat

the

preprocessing.

A

wrapper

can

sub-class

the

Reply

class

and

provide

its

own

mechanism

for

calculating

these

costs,

or

it

can

use

the

default

cost

model

the

Reply

class

provides.

The

following

section

describes

the

default

cost

model.

The

default

cost

model

The

cost

model

the

default

Reply

class

implements

calculates

the

four

pieces

of

information

that

were

listed

previously

using

a

default

set

of

cost

equations

driven

by

statistical

information

for

each

nickname

involved

in

the

query

fragment.

A

wrapper

using

the

default

cost

model

must

provide

four

statistics,

listed

in

the

following

section,

for

each

nickname.

Statistics

for

the

default

cost

model

By

default,

the

federated

server

stores

these

statistics

in

the

system

catalog.

By

overriding

the

appropriate

methods,

a

wrapper

can

provide

these

in

a

different

manner.

The

wrapper

can

override

these

methods

while

retaining

the

rest

of

the

default

cost

model.

The

four

statistics

are:

1.

The

cardinality

of

a

nickname.

This

is

defined

as

the

number

of

rows

contained

in

the

nickname.

The

federated

server

stores

the

cardinality

for

an

individual

nickname

in

the

system

table

SYSCAT.TABLES

or

SYSSTAT.TABLES

(the

″CARD″

column

in

either

table.)

If

cardinality

is

not

available

for

a

nickname,

the

cost

model

uses

a

default

value

of

1000

rows.

2.

The

setup

cost

for

a

nickname.

Setup

cost

represents

the

typical

time,

in

milliseconds,

that

it

takes

a

wrapper

to

get

a

query

fragment

ready

to

submit

to

the

remote

source.

Setup

begins

when

a

wrapper

receives

the

wrapper

Execution

Descriptor

it

produced

during

query

planning,

and

ends

when

the

wrapper

is

ready

to

submit

the

corresponding

operation

to

the

remote

source.

Setup

cost

should

only

include

work

that

the

wrapper

does

not

need

to

repeat

if

the

wrapper

is

asked

to

perform

the

same

query

fragment

again,

perhaps

with

a

different

parameter

value.

For

example,

if

a

wrapper

submits

query

fragment

to

a

remote

source

in

the

form

of

a

URL,

setup

cost

includes

the

time

required

to

generate

that

URL

from

the

information

stored

by

the

wrapper

in

the

Execution

Descriptor.

The

federated

server

stores

this

statistic

in

the

SETUP_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

25

milliseconds.

3.

The

submission

cost

for

a

nickname.

Submission

cost

represents

the

typical

time,

in

milliseconds,

that

it

takes

a

wrapper

to

submit

a

query

fragment

to

the

remote

source.

Submission

begins

at

the

end

of

setup,

as

defined

above,

and

Chapter

1.

Overview

of

federated

concepts

13

ends

when

the

wrapper

is

ready

to

request

the

first

row

or

block

of

result

data

from

the

source.

Submission

cost

should

only

include

work

that

the

wrapper

must

repeat

each

time

a

given

query

fragment

is

submitted.

For

example,

if

a

new

HTTP

connection

is

required

for

each

interaction

with

the

remote

source,

submission

cost

should

include

the

time

necessary

to

create

this

connection.

The

federated

server

stores

this

statistic

in

the

SUBMISSION_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

2000

milliseconds.

4.

The

advance

cost

for

a

nickname.

This

is

the

typical

time,

in

milliseconds,

that

it

takes

to

fetch

a

single

row

for

the

nickname.

It

is

exclusive

of

any

time

necessary

to

start

a

query.

The

federated

server

stores

this

statistic

in

the

ADVANCE_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

50

milliseconds.

If

the

data

source

returns

data

in

blocks,

rather

than

rows,

calculate

the

advance

cost

by

dividing

the

typical

cost

of

fetching

a

block

by

the

typical

number

of

rows

per

block.

Although

you

could

obtain

the

required

statistics

by

instrumenting

your

wrapper

code,

it

is

usually

easier

to

obtain

them

by

external

measurement

of

the

running

time

of

typical

queries

against

the

nickname

in

question.

For

example,

you

can

find

the

advance

cost

by

running

two

queries

that

differ

in

the

number

of

results

each

query

returns,

and

dividing

the

difference

in

execution

time

by

the

difference

in

the

number

of

rows

each

query

returns.

This

applies

especially

to

the

three

cost

statistics.

Frequently,

data

sources

have

direct

methods

of

determining

cardinality.

Default

cost

equations

The

default

cost

model

provides

a

set

of

four

cost

equations

that

derive

the

four

parameters

the

optimizer

requires.

The

following

list

describes

each

equation.

Cardinality

The

cardinality

for

a

query

fragment

is

calculated

in

two

steps.

First,

the

cost

model

obtains

the

cardinality

for

each

of

the

nicknames

and

multiplies

these

values

together.

In

the

second

step,

the

cost

model

multiplies

the

total

number

of

rows

that

are

calculated

in

the

first

step

by

the

selectivity

of

the

predicates

in

the

query

fragment.

The

selectivity

is

a

number

between

0.0

and

1.0

that

reflects

the

degree

to

which

the

predicates

filter

rows

from

the

nicknames

out

of

the

result

set,

with

a

small

value

indicating

a

greater

degree

of

filtering.

The

default

cost

model

provides

a

method

that

uses

algorithms

supplied

by

the

federated

server

to

estimate

predicate

selectivity.

A

wrapper

can

override

this

method

if

it

is

able

to

supply

a

more

accurate

selectivity

estimate.

A

key

contributor

to

errors

in

selectivity

is

correlation

among

predicates

in

a

set,

of

which

the

default

model

is

completely

unaware.

For

example,

although

the

selectivity

of

the

predicate

Make=’Carmaker1_make’

is

0.13,

and

the

selectivity

of

Model=’Carmaker1_model’

is

0.05,

the

combined

selectivity

of

Make=’Car1_make’

AND

Model=’Car1_model’

is

also

0.05,

because

the

values

of

the

attributes

Make

and

Model

are

not

independent:

every

car

model

is

from

the

same

car

maker.

If

your

wrapper

is

aware

of

correlations

between

attributes,

you

could

override

the

default

selectivity

estimation

method.

You

could

also

provide

your

own

selectivity

estimation

method

when

the

distribution

of

values

for

an

attribute

is

highly

skewed.

This

can

be

done

while

keeping

the

rest

of

the

default

cost

model.

Furthermore,

note

that

if

14

Wrapper

Developer’s

Guide

you

do

provide

a

custom

selectivity

estimation

method,

the

federated

server

optimizer

will

also

call

your

custom

selectivity

estimation

method

to

calculate

the

selectivity

of

any

predicates

that

the

wrapper

did

not

accept

in

the

reply.

As

stated

previously,

the

wrapper

could

be

aware

of

skew

or

correlation

among

predicates,

and

can

therefore

provide

a

better

estimate,

even

when

the

predicates

cannot

be

evaluated

by

the

source

as

part

of

the

accepted

query

fragment.

First

tuple

cost

The

first

tuple

cost

is

the

sum

of

three

values.

The

first

is

the

average

of

the

setup

costs

for

all

nicknames

in

the

query

fragment.

The

second

is

the

average

of

the

submission

costs

for

all

the

nicknames

in

the

query

fragment.

The

third

is

the

average

of

the

advance

cost

for

all

nicknames

in

the

query

fragment.

Total

cost

The

total

(first

answer

set)

cost

is

the

sum

of

three

values.

The

first

is

the

average

of

the

setup

costs

for

all

nicknames

in

the

query

fragment.

The

second

is

the

average

of

the

submission

costs.

The

third

is

the

product

of

the

average

of

the

advance

costs

multiplied

by

the

estimated

cardinality

of

the

query

fragment.

Re-execute

cost

The

re-execute

cost

for

a

query

fragment

is

the

sum

of

two

values.

The

first

is

the

average

of

the

submission

costs

for

all

nicknames

in

the

query

fragment.

The

second

is

the

product

of

the

average

of

the

advance

costs

multiplied

by

the

estimated

cardinality

of

the

query

fragment.

Note

that

in

calculating

the

execution-time

estimates,

the

cost

equations

typically

use

the

average

value

of

a

statistic

across

all

the

nicknames

in

the

query

fragment.

If

this

is

unlikely

to

give

reasonable

results

for

your

data

source,

consider

overriding

the

cost

equations

by

subclassing

the

Reply

object.

Costing

and

query

planning

summary

You

have

several

options

when

it

comes

to

calculating

costs

for

query

fragments.

Figure

5

on

page

16

illustrates

these

options.

Chapter

1.

Overview

of

federated

concepts

15

In

approximate

order

of

increasing

complexity

and

increasing

power

and

flexibility,

these

are:

1.

Accept

the

default

cost

model,

as

is;

or

2.

Override

how

the

four

statistics

(cardinality,

average

setup

cost,

average

submission

cost

and

average

advance

cost)

for

a

nickname

are

calculated;

or

3.

Override

the

default

selectivity

calculation;

or

4.

Replace

the

entire

cost

model

by

subclassing

the

Reply

object.

Related

concepts:

v

“Relative

cost

of

queries

for

the

data

source”

on

page

26

v

“Control

flow

for

query

planning”

on

page

55

Query

execution

for

federated

systems

Once

query

planning

is

complete,

the

federated

server

can

run

the

query.

First,

the

federated

server

distributes

the

query

fragment

assigned

to

each

data

source

to

the

corresponding

wrappers.

In

turn,

the

wrappers

submit

the

fragments

to

the

data

sources

and

retrieve

their

results.

The

federated

server

combines

and

further

processes

the

results.

These

steps

are

typical,

and

can

vary

depending

on

how

a

specific

source

handles

the

concept

of

a

connection,

whether

the

source

accepts

requests

via

a

query

language

or

through

some

other

API,

what

kind

of

result

set

cursors

or

iterators

(if

any)

are

supported

by

a

source,

and

so

forth.

Figure

6

on

page

17

walks

you

through

the

actions

that

are

normally

taken

to

distribute

a

query,

execute

it,

and

retrieve

its

results.

1st tuple cost Re-execute cost Total cost Cardinality

Default cost
equations

Custom cost
equations

Custom
selectivity
estimator

Default
selectivity
estimator

Default statistics Custom statistics

Reply
parameters

Cost
equations

Statistics

Figure

5.

How

costing

works

16

Wrapper

Developer’s

Guide

Related

concepts:

v

“Query

processing

for

federated

systems”

on

page

9

v

“Wrapper

module”

on

page

5

Using

passthrough

with

wrappers

Passthrough

allows

an

application

to

submit

a

query

or

other

request

directly

to

an

external

data

source.

The

query

or

other

request

uses

the

data

sources

native

query

language.

Data

can

be

retrieved

as

rows

and

columns

using

passthrough.

Results

obtained

with

passthrough

cannot

be

joined

or

otherwise

combined

with

results

from

other

sources.

Implementation

of

passthrough

is

optional.

It

is

useful

for

debugging

connectivity

problems,

and

provides

a

way

for

applications

to

perform

administrative

commands

against

an

external

source.

Related

tasks:

v

“Remote

passthru

class”

on

page

97

Typical

process

of

distributing

a

query,

executing

it,

and

returning

its

results:

1.

The

federated

server

passes

to

the

wrapper

the

authorization

information

that

was

specified

in

the

CREATE

USER

MAPPING

statement.

2.

The

federated

server

requests

the

wrapper

to

establish

a

connection

to

the

data

source.

3.

The

wrapper

establishes

the

connections

that

the

federated

server

requested.

4.

The

wrapper

gets

the

Wrapper

Execution

Descriptor

produced

during

query

planning

for

this

fragment

of

the

query.

The

Wrapper

Execution

Descriptor

must

contain

sufficient

information

to

submit

the

query

to

the

data

source.

5.

The

wrapper

submits

the

translated

query

fragments

to

the

data

sources

that

the

queries

reference.

The

wrapper

then

obtains

an

iterator

for

the

result

set

that

the

wrapper

is

to

retrieve.

6.

The

federated

server

requests

a

row

of

results

from

the

wrapper.

The

wrapper,

in

effect,

“forwards”

the

request

to

the

appropriate

data

source.

7.

The

data

source

executes

a

portion

of

a

query

fragment

in

order

to

return

the

requested

row.

8.

The

wrapper

retrieves

the

requested

row.

The

wrapper

also

converts

the

types

of

the

data

in

the

row

to

the

federated

server

data

types,

and

copies

the

converted

types

into

buffers.

9.

The

federated

server,

the

data

source,

and

the

wrapper

repeat

steps

7,

8,

and

9

for

each

successive

row

of

results.

10.

The

wrapper

retrieves

the

last

row

of

results.

After

a

number

of

units

of

work

go

by

without

a

reference,

the

federated

server

disconnects

from

the

data

source.

11.

The

wrapper

disconnects

from

the

data

source.

Figure

6.

Typical

process

of

distributing

a

query,

executing

it,

and

returning

its

results

Chapter

1.

Overview

of

federated

concepts

17

18

Wrapper

Developer’s

Guide

Chapter

2.

Overview

of

developing

wrappers

The

following

topics

provide

an

overview

of

the

wrapper

development

process

and

the

wrapper

development

kit

that

you

use

to

develop

wrappers.

Wrapper

development

process

As

the

writer

of

the

wrapper

for

a

particular

data

source,

you

need

to

know

the

basic

flow

of

development

to

create

your

wrapper

module.

Table

2.

The

phases

in

the

wrapper

writing

process

Phase

Subtasks

Concepts

Understand

federated

concepts

Understand

the

general

wrapper

writing

process

Design

Understand

your

data

source

Develop

a

relational

model

for

your

data

source

Decide

on

options

for

each

federated

construct

Map

federated

constructs

to

your

data

source

Decide

what

kinds

of

queries

your

data

source

supports

Design

a

cost

model

Design

for

passthrough

Design

for

error

handling

Code

Code

the

wrapper

subclasses

Code

for

registration

Code

for

initialization

Code

for

query

planning

Code

for

query

execution

Code

for

passthrough

Consider

portability

issues

Document

Document

your

wrapper

Build

and

package

Compile

your

wrapper

Link

your

wrapper

Package

your

wrapper

Install

your

wrapper

Test

Test

your

SQL

statements

Debug

and

trace

your

wrapper

Test

your

wrapper

options

Test

a

wide

range

of

queries

Related

concepts:

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

©

Copyright

IBM

Corp.

2003,

2004

19

v

“Tips

for

developing

wrappers”

on

page

63

v

“Wrapper

development

kit”

on

page

20

Wrapper

development

kit

DB2®

Information

Integrator

includes

a

software

development

kit

(SDK)

for

developing

wrappers

in

C++

and

Java™.

The

wrapper

development

kit

contains:

v

Sample

C++

wrapper

v

Sample

Java

wrapper

v

Tools

and

samples

for

adding

wrappers

to

the

DB2

Control

Center

The

default

Windows®

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

Sample

C++

wrapper

Table

3

shows

which

directory

for

each

platform

where

the

sample

C++

wrapper

is

located.

Table

3.

Directory

for

sample

C++

wrapper

by

platform

Platform

Wrapper

installation

directory

AIX®

/usr/opt/db2_08_01/samples/wrapper_sdk

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk

Windows

%DB2PATH%\samples\wrapper_sdk

The

sample

C++

wrapper

contains:

v

Header

files

showing

the

wrapper

APIs

(wrapper

class

declarations)

v

A

file

that

allows

a

wrapper

to

be

linked

with

the

federated

server

v

The

wrapper

common

library

(a

stub

library

provided

that

loads

and

invokes

the

custom

wrapper’s

libraries)

v

Sample

wrapper

source

code

used

to

demonstrate

the

use

of

the

C++

API

for

developing

wrappers

v

A

sample

makefile

to

build

the

sample

wrapper

Sample

Java

wrapper

Table

4

shows

which

directory

for

each

platform

where

the

sample

Java

wrapper

is

located.

Table

4.

Directory

for

sample

Java

wrapper

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk_java

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk_java

Windows

%DB2PATH%\samples\wrapper_sdk_java

The

sample

Java

wrapper

contains:

v

Javadoc

describing

the

Java

API

classes

and

methods

20

Wrapper

Developer’s

Guide

|

|
|

|

|

|

|

|
|
|

|

|
|

||

||

||

||

||
|

|

|

|

|
|

|
|

|

|

|
|

||

||

||

||

||
|

|

|

v

Sample

wrapper

source

code

used

to

demonstrate

the

use

of

the

Java

API

for

developing

wrappers

Tools

and

samples

for

adding

wrappers

to

the

DB2

Control

Center

The

wrapper

development

kit

includes

tools

and

sample

files

to

help

you

add

support

for

custom

wrappers

to

the

DB2

Control

Center:

v

The

Develop

XML

Configuration

File

wizard,

which

creates

a

configuration

file

for

adding

a

custom

wrapper

to

the

options

in

the

DB2

Control

Center.

Table

5

shows

which

directory

contains

the

file

that

starts

the

wizard

for

each

platform.

Table

5.

Directory

for

starting

the

Develop

XML

Configuration

File

wizard

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/lib/db2wrapperconfig

HP/Sun/Linux

/opt/IBM/db2/V8.1/lib/db2wrapperconfig

Windows

%DB2PATH%\bin\db2wrapperconfig.bat

v

Sample

output

files

from

the

Develop

XML

Configuration

File

wizard.

Table

6

shows

which

directory

contains

the

sample

output

files

for

each

platform.

Table

6.

Directory

for

sample

output

files

from

the

Develop

XML

Configuration

File

wizard

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk/cc_plugin

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk/cc_plugin

Windows

%DB2PATH%\samples\wrapper_sdk\cc_plugin

v

A

basic

discovery

tool,

which

you

can

use

if

you

want

the

wrapper

to

support

the

DB2

Control

Center’s

discovery

feature.

The

tool

is

a

simple

Java

GUI

that

displays

whatever

has

been

discovered

for

the

wrapper’s

data

source.

This

tool

is

also

included

with

the

DB2

Control

Center.

Table

7

shows

which

directory

provides

the

tool

as

a

Java

.jar

file

for

each

platform.

Table

7.

Directory

for

basic

discovery

tool

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/tools/db2WrapperDiscoverySDK.jar

HP/Sun/Linux

/opt/IBM/db2/V8.1/tools/db2WrapperDiscoverySDK.jar

Windows

%DB2PATH%\tools\db2WrapperDiscoverySDK.jar

v

The

sample

Java

stored

procedure

provided

here

is

an

example

of

how

the

build-in

discovery

can

help

the

wrapper

writer

to

develop

the

plug-in

to

the

Control

Center.

Table

8

shows

which

directory

contains

the

stored

procedure,

a

makefile

to

compile

the

stored

procedure,

and

a

script

to

install

the

markup

file

into

the

federated

server.

Table

8.

Directory

for

sample

Java

stored

procedure

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk\cc_plugin

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk\cc_plugin

Windows

%DB2PATH%\samples\wrapper_sdk\cc_plugin

Chapter

2.

Overview

of

developing

wrappers

21

|
|

|

|

|
|

|
|
|

||

||

||

||

||
|

|
|

||
|

||

||

||

||
|

|
|
|
|
|

||

||

||

||

||
|

|
|
|
|
|

||

||

||

||

||
|

Related

concepts:

v

“Wrapper

development

process”

on

page

19

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

Related

tasks:

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

v

“Installing

the

wrapper

development

kit”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

22

Wrapper

Developer’s

Guide

|

|

|

|

|

|
|

Part

2.

Designing

wrappers

for

data

sources

This

part

of

the

book

takes

you

through

the

following

tasks

required

to

design

a

wrapper:

v

Designing

a

wrapper

to

work

effectively

with

the

data

source

by

determining

data

source

characteristics

v

Mapping

data

sources

to

federated

constructs

v

Determining

the

SQL

constructs

that

the

source

can

accept

v

Designing

error

handling

for

wrappers

©

Copyright

IBM

Corp.

2003,

2004

23

24

Wrapper

Developer’s

Guide

Chapter

3.

Determining

data

source

characteristics

Before

you

begin

designing

your

wrapper,

you

need

to

understand

your

data

source.

You

need

to

answer

the

following

questions:

v

Does

the

data

source

offer

a

choice

of

APIs?

v

What

kinds

of

operations

does

each

interface

support?

v

Does

the

data

source

contain

metadata

that

describes

the

schema

or

other

properties

of

the

primary

data?

v

What

kinds

of

queries

can

the

data

source

answer?

v

Can

some

of

the

queries

be

answered

more

efficiently

than

others?

v

If

there

can

be

more

than

one

instance

of

the

data

source,

what

varies

from

instance

to

instance

and

what

is

always

the

same?

v

Does

the

data

source

support

client-server

communication?

v

Is

there

a

data

source

client

available

for

the

platform

on

which

your

federated

server

is

to

run?

v

Does

the

data

source

support

a

transaction

model?

If

so,

does

it

support

distributed

(one-phase)

commit

protocols?

v

How

does

the

data

source

authenticate

users?

v

Does

your

data

source

support

large

objects?

The

following

sections

provide

more

details

and

examples

for

each

of

the

previous

questions.

Selection

of

APIs

for

the

data

source

When

you

study

a

data

source’s

API,

look

for:

v

Capabilities

that

the

API

supports.

For

example,

can

you

submit

the

kind

of

queries

you

need

to

submit

through

this

API?

Does

the

API

give

the

wrapper

access

to

metadata

describing

the

schema

or

statistical

properties

of

data

that

are

managed

by

the

data

source?

Does

the

API

support

transactions?

Even

though

access

to

nonrelational

sources

is

read-only,

a

wrapper

can

participate

in

a

transaction

in

which

relational

sources

are

updated.

v

Information

that

the

API

requires.

For

example,

what

information

does

the

API

require

when

the

wrapper

is

ready

to

establish

a

connection

to

the

data

source?

What

information

does

it

require

to

facilitate

retrieval

of

result

sets?

A

data

source

client

that

supports

the

selected

API

must

be

available

on

each

platform

on

which

you

want

to

run

a

DB2

UDB

federated

database

server

that

will

access

the

data

source.

Related

concepts:

v

“Operations

that

are

supported

by

the

interface

of

the

data

source”

on

page

25

v

“Metadata

at

the

data

source”

on

page

26

Operations

that

are

supported

by

the

interface

of

the

data

source

Use

the

following

questions

to

help

you

understand

the

operations

supported

by

each

interface

of

your

data

source:

©

Copyright

IBM

Corp.

2003,

2004

25

v

Does

the

data

source

allow

you

to

selectively

retrieve

information

that

is

based

on

data

values?

Can

the

data

source

apply

predicates?

v

Does

the

data

source

allow

you

to

retrieve

partial

entities?

Does

the

data

source

support

projection?

v

Can

the

data

source

combine

data

from

multiple

collections

that

are

based

on

links

or

matching

data

values?

Can

it

do

joins?

v

Does

the

data

source

support

any

special

search

capabilities

that

are

not

expressible

in

standard

SQL?

What

mapped

functions

will

be

necessary

to

model

the

source’s

search

capability?

v

Does

the

data

source

just

return

stored

data

values,

or

can

it

return

the

values

of

expressions

that

combine

these

values

with

other

values

or

constants?

v

Do

the

data

source

semantics

for

predicates

match

the

federated

server

semantics?

Related

concepts:

v

“Metadata

at

the

data

source”

on

page

26

v

“Relative

cost

of

queries

for

the

data

source”

on

page

26

v

“Deciding

on

nickname

and

column

options”

on

page

29

Related

tasks:

v

“Selection

of

APIs

for

the

data

source”

on

page

25

Metadata

at

the

data

source

The

more

information

you

can

obtain

directly

from

the

data

source,

the

less

work

needs

to

done

by

the

database

administrator

when

registering

the

source.

In

particular,

details

of

the

schema

can

be

omitted

from

the

CREATE

NICKNAME

statement

if

they

can

be

obtained

from

the

source.

Similarly,

you

can

sometimes

obtain

from

the

data

source

statistical

metadata

used

by

the

wrapper’s

cost

model

(custom

or

default).

Related

concepts:

v

“Operations

that

are

supported

by

the

interface

of

the

data

source”

on

page

25

v

“Multiple

instances

of

the

data

source”

on

page

27

v

“Client-server

communication

for

the

data

source”

on

page

27

Relative

cost

of

queries

for

the

data

source

It

is

important

to

understand

the

relative

costs

of

different

queries

that

your

data

source

can

answer.

Given

a

query

fragment

from

the

federated

server,

there

are

often

several

ways

to

execute

all

or

part

of

this

fragment

at

the

data

source.

The

wrapper

must

be

able

to

provide

accurate

cost

estimates

for

each

alternative.

Related

concepts:

v

“Operations

that

are

supported

by

the

interface

of

the

data

source”

on

page

25

Related

tasks:

v

“Selection

of

APIs

for

the

data

source”

on

page

25

26

Wrapper

Developer’s

Guide

Multiple

instances

of

the

data

source

Most

data

sources

are

not

truly

one

of

a

kind.

If

they

were,

all

the

information

required

to

connect

to

and

use

a

particular

source

could

be

hard

coded

in

the

wrapper,

including

the

schema.

In

practice,

one

must

allow

the

DBA

to

customize

the

wrapper

for

particular

instances

of

your

data

source.

Since

this

information

will

largely

be

specified

via

DDL,

an

important

part

of

wrapper

design

is

to

determine

what

information

varies

from

instance

to

instance.

You

can

use

this

information

to

define

a

set

of

options

that

will

allow

the

DBA

to

specify

what

is

needed.

If

the

schema

varies

from

instance

to

instance,

it

could

be

possible

to

hard-code

parts

of

it

and

specify

the

rest

via

DDL.

Related

concepts:

v

“Metadata

at

the

data

source”

on

page

26

v

“Client-server

communication

for

the

data

source”

on

page

27

Client-server

communication

for

the

data

source

Your

wrapper

will

run

on

the

same

computer

as

the

federated

server

that

will

incorporate

your

data

source

into

the

federated

system.

If

the

data

source

you

wish

to

access

runs

on

a

different

computer

than

the

federated

server,

you

must

use

the

data

source’s

client/server

communication

facilities.

The

wrapper

and

the

entire

federated

server

are

essentially

a

client

of

the

data

source.

If

the

data

source

does

not

support

client/server

communication,

you

will

have

to

provide

this

capability

as

part

of,

or

in

addition

to,

the

wrapper

itself.

Sometimes

you

can

solve

the

problem

by

running

the

data

source

and

the

federated

server

on

the

same

computer.

Related

concepts:

v

“Transaction

models

and

distributed

commit

protocol

for

the

data

source”

on

page

27

v

“User

authentication

from

the

data

source”

on

page

28

v

“Large

object

support

from

the

data

source”

on

page

28

Transaction

models

and

distributed

commit

protocol

for

the

data

source

Transactions

are

a

mechanism

for

making

a

group

of

updates

to

a

database

atomic:

either

the

entire

group

of

updates

appears

to

take

place

simultaneously,

or

none

of

the

updates

take

place

at

all.

When

a

transaction

involves

multiple

data

sources,

the

sources

must

cooperate

to

ensure

atomicity

of

the

transaction

across

all

the

sources.

DB2®

Information

Integrator

uses

the

XA

distributed

commit

protocol

to

coordinate

transaction

management

among

sources.

Although

the

current

version

of

DB2

Information

Integrator

does

not

support

updates

to

nonrelational

data

sources,

if

your

data

source

supports

transactions,

your

wrapper

must

participate

in

transaction

management.

It

must

participate

in

transaction

management

so

that

locks

obtained

at

your

data

source

can

be

dropped

when

the

transaction

that

locked

them

completes

(whether

successfully

or

unsuccessfully).

Related

concepts:

v

“Client-server

communication

for

the

data

source”

on

page

27

v

“User

authentication

from

the

data

source”

on

page

28

Chapter

3.

Determining

data

source

characteristics

27

v

“Large

object

support

from

the

data

source”

on

page

28

User

authentication

from

the

data

source

Clients

of

the

federated

system

will

authenticate

to

the

federated

server,

using

any

of

the

supported

authentication

schemes.

When

the

federated

server

attempts

to

access

your

data

source

on

their

behalf,

it

will

have

to

present

credentials

that

your

source

recognizes

and

accepts

as

valid.

The

federated

server

stores

these

credentials

as

a

User

Mapping

in

the

federated

server

catalogs.

When

designing

your

wrapper,

you

must

understand

what

credentials

your

data

source

expects,

for

example

userid

and

password.

With

this

understanding,

you

can

define

user

mapping

options

that

allow

these

credentials

to

be

stored

in

the

federated

server

catalog.

Related

concepts:

v

“Client-server

communication

for

the

data

source”

on

page

27

v

“Transaction

models

and

distributed

commit

protocol

for

the

data

source”

on

page

27

v

“Large

object

support

from

the

data

source”

on

page

28

Large

object

support

from

the

data

source

A

large

object

(LOB)

data

type

is

defined

as

a

sequence

of

bytes

with

a

size

that

ranges

from

0

bytes

to

about

2

gigabytes.

(LOB

data

types

include

CLOB,

BLOB,

and

DBCLOB

data

types.)

If

the

data

source

supports

LOBs,

then

you’ll

need

to

design

and

implement

your

wrapper

to

support

them.

Related

concepts:

v

“Client-server

communication

for

the

data

source”

on

page

27

v

“Transaction

models

and

distributed

commit

protocol

for

the

data

source”

on

page

27

v

“User

authentication

from

the

data

source”

on

page

28

Related

reference:

v

“Remote

query

class”

on

page

92

v

“RemoteQuery

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Remote_Query

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

28

Wrapper

Developer’s

Guide

|

|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

Chapter

4.

Mapping

data

sources

to

federated

constructs

The

following

sections

describe

how

to

map

the

data

source

to

a

relational

model.

For

each

of

the

federated

concepts,

you

need

to

decide

on

options

that

work

for

your

data

source.

These

options

are:

v

Generic

(attribute,

value)

pairs

for

storing

wrapper-specific

information

in

the

federated

server’s

system

catalogs

v

Specified

for

any

persistent

building

block

(Wrappers,

Servers,

Nicknames,

Users).

Within

a

nickname,

each

column

can

also

have

options.

v

Defined

and

introduced

by

wrapper

writers

v

In

most

cases,

uninterpreted

by

the

federated

server

Each

wrapper

defines

its

own

set

of

options.

Designing

for

nicknames

No

matter

what

data

model

your

source

uses

to

present

its

data,

you

must

map

it

to

a

relational

model.

This

relational

model

is

then

provided

to

the

federated

server

by

a

user,

a

database

administrator,

or

an

application

through

the

CREATE

NICKNAME

DDL

statement

specific

to

your

data

source.

Deciding

on

nickname

and

column

options

The

following

example

illustrates

how

to

define

nickname

and

column

options.

Consider

a

wrapper

for

a

file

server.

Before

the

wrapper

submits

a

query

fragment

to

the

server,

it

determines

the

path

and

name

of

the

file

whose

nickname

is

referenced

in

the

fragment.

So

that

it

can

do

this,

you

include

an

option

for

the

path

and

name

in

the

same

statement

that

defines

the

nickname.

For

example,

suppose

you

have

a

file

named

EMPINFO

that

is

located

in

the

directory

structure,

root/user/.

On

your

CREATE

NICKNAME

statement

you

might

create

a

new

option

called

PATH.

Your

user

would

assign

the

path

root/user/EMPINFO

to

the

PATH

option.

Related

concepts:

v

“Mapping

queryable

collections

of

source

data

to

nicknames”

on

page

29

v

“Mapping

hierarchical

data

structures

to

nicknames”

on

page

30

Mapping

queryable

collections

of

source

data

to

nicknames

A

user

registers

a

collection

of

foreign

server

data

(for

example,

a

table

or

view)

by

running

the

CREATE

NICKNAME

statement.

The

statement

includes

a

definition

of

the

collection

that

has

the

same

characteristics

as

the

definition

of

a

federated

server

table.

When

you

register

a

collection

of

foreign

server

data,

the

federated

server

defines

it

in

the

schema

as

a

federated

server

table.

The

nickname

specified

©

Copyright

IBM

Corp.

2003,

2004

29

in

the

statement

serves

as

the

table’s

name.

Before

other

parts

of

the

definition,

such

as

column

names

and

data

types,

can

be

specified,

you

must

determine

what

attributes

of

the

collection

correspond

to

them.

Which

attributes

correspond

to

columns?

Which

federated

server

data

type

corresponds

most

closely

to

the

type

of

the

data

source

attribute?

When

you

answer

such

questions,

you

can

define

the

attributes

as

their

counterparts

in

a

federated

server

table.

Suppose

that

an

Oracle

database

contains

a

table

named

EMPLOYEES.

Before

you

can

register

this

table,

you

need

to

determine

what

parts

of

it

correspond

to

the

federated

server’s

table

columns

and

what

parts

correspond

to

these

columns’

data

types.

An

easy

task

because,

as

both

Oracle

and

the

federated

server

follow

the

relational

data

model,

it’s

clear

that

the

Oracle

table’s

columns

correspond

to

the

federated

server

table

columns

and

that

the

Oracle

columns’

data

types

correspond

to

the

federated

server

data

types.

But

what

if

your

data

source

is

a

file

server?

Then

the

question

is:

How

do

the

files

in

the

server

correspond

to

the

federated

server

tables?

One

possible

approach

is

to

regard

each

file

as

a

counterpart

to

a

table,

each

file

record

as

a

counterpart

to

a

table

row,

and

each

field

of

a

record

as

a

counterpart

to

a

column.

Related

concepts:

v

“Mapping

hierarchical

data

structures

to

nicknames”

on

page

30

v

“Deciding

on

nickname

and

column

options”

on

page

29

Mapping

hierarchical

data

structures

to

nicknames

Many

data

sources

contain

hierarchically

organized

collections

of

data.

For

example,

a

set

of

Projects

is

contained

within

the

entity

representing

a

Department,

which

can

in

turn

be

one

of

a

set

of

Departments

for

a

Division,

and

so

on.

However,

the

relational

model

is

flat:

you

cannot

have

a

column

of

a

table

which

is

itself

a

nested

table.

Instead,

you

must

define

separate

tables

for

each

kind

of

entity

and

join

these

tables

to

navigate

the

hierarchical

relationships

among

them.

For

example,

to

find

the

Division

to

which

a

Department

belongs,

or

to

find

all

the

Projects

for

a

Department.

When

incorporating

sources

featuring

hierarchically

structured

data

into

a

DB2®

UDB

federated

system,

model

each

of

its

hierarchical

collections

as

a

set

of

related

Nicknames

that

can

be

joined

together.

Related

concepts:

v

“Mapping

queryable

collections

of

source

data

to

nicknames”

on

page

29

v

“Deciding

on

nickname

and

column

options”

on

page

29

Mapping

data

types

from

data

sources

to

DB2

Universal

Database

Columns

of

a

Nickname

must

have

basic

SQL

types,

like

INTEGER,

VARCHAR(),

DATE,

and

so

forth.

DB2®

Information

Integrator

does

not

support

user-defined

types,

distinct

types,

and

reference

types

as

columns

of

nicknames.

You

must

define

columns

containing

such

values

using

their

underlying

representational

types

instead.

However,

you

can

define

views

over

the

data

the

nickname

represents

that

make

use

of

these

constructs.

For

most

numeric

types

that

are

supported

by

external

sources,

the

mapping

to

the

corresponding

SQL

type

is

straightforward.

30

Wrapper

Developer’s

Guide

However,

keep

attributes

like

precision,

scale,

and

range

of

allowable

values

in

mind

when

deciding

on

the

best

SQL

type

to

represent

a

numeric

value.

Conversion

of

the

data

source’s

representation

of

a

value

into

DB2

UDB’s

representation

of

that

value,

and

vice-versa,

is

the

responsibility

of

your

wrapper.

The

more

different

types

you

use,

the

more

conversion

code

you

could

have

to

write.

For

data

source

attributes

with

character

data

types,

the

wrapper

writer

must

choose

whether

to

represent

the

attribute

using

a

fixed-

or

variable-length

SQL

type,

and

determine

an

appropriate

upper

limit

on

length.

Other

considerations

for

character

data

types

include

character

encoding

and

codepage

issues.

Generally

speaking,

it

will

be

the

wrapper’s

responsibility

to

convert

character

data

to/from

the

designated

codepage

of

the

federated

database.

For

managing

temporal

data,

map

data

types

representing

temporal

values

to

one

of

the

SQL

types

:

TIME,

DATE,

or

TIMESTAMP.

DB2

UDB

provides

operators

to

cast

or

convert

between

many

pairs

of

SQL

types.

Consider

simplifying

your

wrapper

by

representing

data

source

attributes

with

a

basic

type

like

VARCHAR,

and

defining

views

that

cast

or

convert

this

value

to

a

n

appropriate

type

with

more

semantics,

like

FLOAT

or

DATE.

Related

concepts:

v

“Mapping

queryable

collections

of

source

data

to

nicknames”

on

page

29

v

“Mapping

hierarchical

data

structures

to

nicknames”

on

page

30

Related

tasks:

v

“Mapping

parts

of

a

wrapper

to

classes”

on

page

67

Modeling

data

source

capabilities

with

function

templates

Your

data

source

can

have

capabilities

that

are

not

in

DB2®

UDB.

In

that

case

you

will

want

to

extend

SQL

to

model

special

capabilities

of

your

data

source.

For

example,

suppose

that

your

data

source

is

a

Geographic

Information

System

that

can

determine

the

area

of

a

region.

SQL

does

not

have

an

″Area″

operator,

so

you

model

this

operator

as

a

function,

and

write

queries

like

this:

SELECT

id,

name

FROM

Regions

WHERE

Area(id)

>

200

Functions

that

are

executed

by

a

remote

data

source

are

called

custom

functions.

Mapped

functions

are

used

in

queries

in

exactly

the

same

way

as

User-Defined

Functions

(UDFs).

A

mapped

function

differs

from

a

UDF

in

that

DB2

UDB

executes

UDFs,

whereas

an

external

data

source

executes

custom

functions.

Defining

a

custom

function

is

a

one-step

process.

1.

Create

a

function

template

via

DDL:

CREATE

FUNCTION

AREA(VARCHAR())

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

v

In

order

to

distinguish

your

custom

functions

from

other

custom

functions,

UDFs,

or

DB2

UDB

built-in

functions

with

the

same

name,

consider

defining

a

separate

schema

for

your

mapped

functions.

Chapter

4.

Mapping

data

sources

to

federated

constructs

31

Related

concepts:

v

“Modeling

data

source

capabilities

using

pseudo

columns”

on

page

32

Related

tasks:

v

“Default

cost

model

for

federated

queries”

on

page

12

Modeling

data

source

capabilities

using

pseudo

columns

Another

technique

for

exposing

data

source

capabilities

through

a

relational

interface

is

through

the

use

of

pseudo

columns.

These

are

columns

that

are

defined

as

part

of

a

nickname

which

can

be

used

to

control

some

aspect

of

a

query.

They

are

usually

defined

by

the

wrapper,

rather

than

the

end

user.

An

example

would

be

to

create

a

wildcard

pseudo

column

that

controlled

the

wildcard

character

for

text

search

patterns.

Another

example

is

the

MismatchPenalty

pseudo

column

of

the

nicknames

for

the

Blast

wrapper.

This

pseudo

column

controls

one

of

the

Blast

search

parameters,

but

itself

produces

no

value.

A

predicate

of

the

form

MismatchPenalty

=

5

becomes

a

command

line

option,

-q5

when

the

wrapper

invokes

the

Blast

search.

There

are

a

few

issues

with

pseudo

columns

that

you

must

bear

in

mind:

v

If

a

user

references

a

pseudo

column

in

a

select

list

the

wrapper

must

return

a

value

for

the

pseudo

column,

even

if

it

is

an

input-only

datum.

NULL

is

a

good

choice.

v

Not

all

relational

operators

are

appropriate

for

a

particular

pseudo

column.

Frequently,

only

one

operator

(’=’

or

’<’

or

’<=’)

can

be

used.

During

query

planning,

the

wrapper

must

detect

an

invalid

operator

and

reject

the

entire

query,

as

opposed

to

simply

rejecting

the

predicate.

In

the

latter

case,

the

federated

server

will

attempt

to

process

the

predicate

itself

which

could

produce

an

unexpected

result.

v

Pseudo

columns

that

exhibit

default

behavior

can

interfere

with

Materialized

Query

Tables

(MQTs.)

Because

the

optimizer

does

not

recognize

the

default

behavior,

it

might

use

an

MQT

when

it

shouldn’t,

or

the

optimizer

might

fail

to

use

the

MQT

when

it

should.

Queries

against

nicknames

with

pseudo

columns

should

specify

all

predicates

when

used

in

an

MQT

definition.

Related

concepts:

v

“Modeling

data

source

capabilities

with

function

templates”

on

page

31

Related

tasks:

v

“Default

cost

model

for

federated

queries”

on

page

12

Designing

for

wrappers

How

wrappers

work

with

options

A

wrapper

acts

on

options

information

in

several

ways:

v

A

wrapper

validates

options

information

that

is

specified

in

the

SQL

statements

that

are

submitted

during

registration.

32

Wrapper

Developer’s

Guide

v

The

federated

server’s

system

catalog

is

a

holding

place

that

the

wrapper

uses

to

store

configuration

information,

in

the

form

of

option

values,

until

the

wrapper

needs

this

information

to

process

a

query.

v

It

makes

use

of

such

information

to

perform

tasks.

For

example,

suppose

that

as

a

prerequisite

for

routing

error

messages

from

the

data

source

to

the

user,

the

wrapper

needs

to

know

whether

it

should

route

all

such

messages

or

only

those

for

severe

errors.

You

could

create

an

option

to

which

your

user

could

assign

values

that

denote

these

alternatives.

In

preparing

a

wrapper

for

the

actions

listed

in

the

foregoing,

you

need

to:

v

Decide

whether

the

wrapper

needs

information

that

it

should

store

as

values

of

new

options

v

Determine

how

the

wrapper

should

validate

the

options

information

that

SQL

statements

provide

for

the

federated

server’s

system

catalog,

You

must

not

define

option

names

that

begin

with

DB2_.

These

names

are

reserved

for

use

by

IBM®.

Storing

options

information

that

the

wrapper

needs

in

the

federated

server

catalog

When

you

create

an

option

for

a

wrapper,

you

need

to

decide

how

you

are

going

to

obtain

the

value

for

that

option.

You

have

three

choices:

v

specify

the

option

and

value

in

one

of

the

SQL

statements

used

in

registration

v

hardcode

the

option

and

value

in

the

wrapper,

and

pass

them

to

the

federated

server’s

system

catalog

as

a

supplement

to

the

information

specified

in

the

statements

v

obtain

certain

option

values

from

the

data

source

itself.

This

typically

doesn’t

apply

to

wrapper

options,

but

might

for

any

of

the

other

possibilities.

For

example,

a

server

might

have

a

generic

API

from

which

you

could

obtain

information

about

its

maintenance

level.

If

the

wrapper

records

this

as

an

option

value,

the

wrapper

might

be

able

to

use

it

so

as

to

avoid

certain

query

constructs

known

to

cause

problems.

You

might

also

be

able

to

obtain

nickname

options

and

column

options

from

the

data

source.

It

is

advisable

to

allow

users

to

specify

option

values

via

SQL

statements.

If

your

user

doesn’t

supply

a

value,

use

a

hardcoded

value

or

a

value

obtained

from

the

data

source

as

a

default.

If

your

user

is

never

going

to

change

the

value,

it

should

be

hardcoded

into

the

wrapper

and

not

defined

as

an

option.

Related

concepts:

v

“Deciding

on

wrapper

options”

on

page

33

Related

tasks:

v

“Defining

the

CREATE

WRAPPER

statement

for

the

data

source”

on

page

34

Deciding

on

wrapper

options

In

general,

the

wrapper

object

does

not

require

options.

Options

at

this

level

affect

all

of

the

servers

defined

within

the

wrapper.

One

possible

option

or

set

of

options

might

control

debugging

and

diagnostic

output

that

is

produced

by

the

wrapper.

Related

concepts:

v

“How

wrappers

work

with

options”

on

page

32

Chapter

4.

Mapping

data

sources

to

federated

constructs

33

Related

tasks:

v

“Defining

the

CREATE

WRAPPER

statement

for

the

data

source”

on

page

34

Defining

the

CREATE

WRAPPER

statement

for

the

data

source

Mapping

the

wrapper

concept

means

understanding

what

the

system

requires

to

initialize

the

wrapper

and

data

source

client

libraries.

The

wrapper

usually

does

not

require

configuration

options.

However,

you

can

define

configuration

options

if

your

wrapper

has

a

use

for

them.

The

rare

but

expected

need

for

this

arises

when

a

global

parameter

is

required

to

initialize

the

data

source

client

library.

For

example,

you

might

have

to

specify

a

global

National

Language

Support

(NLS)

locale

or

a

global

wrapper

debug

level.

In

Java,

to

define

the

CREATE

WRAPPER

DDL

statement

for

your

data

source,

you

need

to

know

at

least

the

name

of

your

unfenced

wrapper

class.

For

example,

if

your

wrapper

class

is

named

my.package.MyUnfencedWrapper,

a

corresponding

CREATE

WRAPPER

statement

could

be:

CREATE

WRAPPER

MyWrapper

LIBRARY

’db2qgjava.dll’

options

(UNFENCED_WRAPPER_CLASS

’my.package.MyUnfencedWrapper’)

Related

concepts:

v

“Deciding

on

wrapper

options”

on

page

33

v

“How

wrappers

work

with

options”

on

page

32

Designing

for

servers

Deciding

on

server

options

The

following

example

illustrates

how

to

decide

on

what

server

options

to

define.

Consider

a

wrapper

for

data

sources

that

contain

spreadsheets.

Assume

that

the

wrapper

communicates

with

these

data

sources

over

TCP/IP.

To

connect

to

a

specific

data

source,

the

wrapper

needs

to

know

the

host

name

and

the

number

of

that

data

source’s

TCP/IP

port.

Accordingly,

you

include

options

for

the

host

name

and

the

port

number

in

the

same

SQL

statement

that

defines

the

data

source’s

server

name.

For

example,

suppose

data

source

A

has

a

host

name

of

Peter

and

is

available

through

port

40.

On

your

CREATE

SERVER

statement

you

might

create

two

new

options,

HOSTNAME

and

PORT.

Your

user

would

assign

the

host

name

Peter

to

the

HOSTNAME

option,

and

assign

the

number

40

to

the

PORT

option.

Related

concepts:

v

“How

wrappers

work

with

options”

on

page

32

Related

tasks:

v

“Defining

the

CREATE

SERVER

statement

for

the

data

source”

on

page

35

34

Wrapper

Developer’s

Guide

|
|
|
|
|

|
|

|
|
|

Defining

the

CREATE

SERVER

statement

for

the

data

source

Mapping

the

server

means

defining

the

CREATE

SERVER

statement

that

matches

your

data

source.

You

need

to

determine

your

data

source

construct

that

maps

to

the

server

concept.

For

example,

consider

a

document

management

system.

Within

a

single

enterprise,

there

can

be

multiple

independent

document

archives

at

various

locations,

each

containing

several

document

collections.

An

application

must

connect

to

a

specific

archive

in

order

to

search

the

collections

it

contains.

For

this

data

source,

you

can

model

each

archive

as

a

server

in

the

federated

system

Then

you

need

to

determine

the

configuration

information

needed

to

configure

the

wrapper

so

it

can

connect

to

and

use

the

server.

These

are

the

options

on

the

CREATE

SERVER

statement.

For

example,

in

the

case

of

the

document

archive,

the

NODE

option

could

be

the

name

of

the

computer

where

the

archive

resides.

There

are

two

other

available

data

items

on

the

CREATE

SERVER

statement.

These

data

items

are

the

server

type

and

version.

When

you

have

a

set

of

data

sources

with

a

large

amount

of

common

behavior,

but

some

minor

variations,

the

server

type

and

version

can

be

used

to

control

the

operation

of

the

wrapper.

This

eliminates

the

need

to

have

separate

wrappers

for

each

variation

and

version.

For

example,

the

CREATE

SERVER

statement

associated

with

the

previous

information

for

your

data

source

could

be:

CREATE

SERVER

Server1

TYPE

TYPEA

WRAPPER

MyWrapper

OPTIONS(NODE

’Mname_Orion’)

Related

concepts:

v

“Deciding

on

user

mapping

options”

on

page

35

Related

tasks:

v

“Defining

the

CREATE

WRAPPER

statement

for

the

data

source”

on

page

34

v

“Defining

the

CREATE

USER

MAPPING

statement

for

the

data

source”

on

page

36

Designing

for

user

mappings

Deciding

on

user

mapping

options

Data

sources

rarely

require

user

mapping

options

beyond

REMOTE_AUTHID

and

REMOTE_PASSWORD.

To

facilitate

security,

the

federated

server

will

encode

the

value

of

any

user

mapping

option

named

REMOTE_PASSWORD

before

storing

it

in

the

federated

server

system’s

catalog.

The

federated

server

will

decode

it

again

before

returning

it

to

the

wrapper.

Use

of

this

option

name

for

authentication

information

that

needs

the

federated

server

to

store

it

securely

is

highly

recommended.

You

must

implement

these

options

yourself

as

the

default

versions

of

the

User

subclasses

do

not

support

them.

Chapter

4.

Mapping

data

sources

to

federated

constructs

35

For

data

sources

on

Windows®,

the

Windows

domain

could

be

necessary

to

make

network

connections

and

for

authentication.

This

is

one

option

that

you

should

support.

For

example,

to

record

domain

information,

your

wrapper

could

define

an

option

named

REMOTE_DOMAIN.

Related

concepts:

v

“Deciding

on

wrapper

options”

on

page

33

v

“Deciding

on

server

options”

on

page

34

v

“Deciding

on

nickname

and

column

options”

on

page

29

Related

tasks:

v

“Defining

the

CREATE

USER

MAPPING

statement

for

the

data

source”

on

page

36

Defining

the

CREATE

USER

MAPPING

statement

for

the

data

source

Mapping

the

user

defines

the

CREATE

USER

MAPPING

statement

for

your

data

source.

For

example,

if

you

were

writing

a

wrapper

for

a

file

archive,

you

want

there

to

be

one

federated

user

per

archive

user.

You

want

to

define

the

following

configuration

information:

v

REMOTE_AUTHID:

User’s

userid.

v

REMOTE_PASSWORD:

User’s

password.

The

resulting

CREATE

USER

MAPPING

statement

could

look

like:

CREATE

USER

MAPPING

FOR

simon

SERVER

myserver

OPTIONS

(REMOTE_AUTHID

’joy’,

REMOTE_PASSWORD

’open1up’)

Related

concepts:

v

“Deciding

on

user

mapping

options”

on

page

35

Related

tasks:

v

“Defining

the

CREATE

WRAPPER

statement

for

the

data

source”

on

page

34

v

“Defining

the

CREATE

SERVER

statement

for

the

data

source”

on

page

35

36

Wrapper

Developer’s

Guide

Chapter

5.

Determining

the

SQL

constructs

that

the

data

source

can

accept

You

must

consider

which

SQL

constructs,

including

mapped

functions,

your

data

source

can

evaluate.

You

must

consider

the

following

questions:

v

What

kinds

of

head

expressions

your

data

source

can

accept.

A

head

expression

is

an

expression

found

in

a

SELECT

list?

v

What

kinds

of

predicates

your

data

source

can

accept?

v

What

kinds

of

joins

your

data

source

can

accept?

v

What

functions

your

data

source

can

accept?

The

following

sections

discuss

these

considerations

in

more

detail.

Determining

the

head

expressions

that

the

data

source

can

accept

The

wrapper

looks

at

each

expression

in

the

SELECT

list,

also

called

a

head

expression,

of

the

query

fragment

that

the

federated

server

supplies.

If

the

data

source

can

process

the

expression,

then

the

wrapper

indicates

this

by

including

the

head

expression

in

the

reply.

If

the

data

source

can

not

process

the

entire

head

expression,

then

the

wrapper

rejects

the

head

expression

by

excluding

it

from

the

reply.

There

is

one

limitation:

DB2

Information

Integrator

v8.2

pushes

down

only

column

references

for

head

expressions.

Related

tasks:

v

“Determining

the

predicates

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

joins

that

the

data

source

can

accept”

on

page

38

v

“Determining

the

functions

that

the

data

source

can

accept”

on

page

38

Determining

the

predicates

that

the

data

source

can

accept

The

wrapper

looks

at

each

predicate

expression

of

the

query

fragment

the

federated

server

supplies.

If

the

data

source

can

process

the

expression,

then

the

wrapper

indicates

this

by

including

the

predicate

expression

in

the

reply.

If

the

data

source

can

not

process

the

entire

predicate

expression,

then

the

wrapper

rejects

the

predicate

expression

by

excluding

it

from

the

reply.

The

data

source

semantics

for

any

predicate

accepted

must

match

the

federated

server

semantics.

The

wrapper

cannot

control

whether

the

federated

server

chooses

to

push

down

certain

predicates.

Any

predicate

can

be

processed

by

either

the

remote

data

source

or

the

federated

server.

If

the

predicate

semantics

differ

between

the

two,

final

results

can

differ,

depending

on

whether

the

predicate

is

pushed

down

or

not.

Before

passing

a

query

fragment

to

the

wrapper,

the

federated

server

rewrites

the

predicates

into

what

is

known

as

conjunctive

normal

form.

The

predicates

are

rearranged

into

a

list

of

predicate

expressions

connected

by

the

AND

operator.

©

Copyright

IBM

Corp.

2003,

2004

37

For

example:

WHERE

expr1

AND

expr2

AND

expr3

...

Expr1,

expr2

and

expr3

could

be

complex

predicate

expressions

including

NOT,

AND,

and

OR

operators.

The

wrapper

must

accept

or

reject

expressions

at

the

top-level.

For

example,

if

the

first

predicate,

expr1,

is

col1

=

0

OR

col2

>

3

and

the

data

source

can

evaluate

col1

=

0

but

not

col2

>

3,

the

wrapper

rejects

the

entire

expr1

predicate.

Related

tasks:

v

“Determining

the

head

expressions

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

joins

that

the

data

source

can

accept”

on

page

38

v

“Determining

the

functions

that

the

data

source

can

accept”

on

page

38

Determining

the

joins

that

the

data

source

can

accept

Join

requests

include

two

or

more

nicknames,

along

with

one

or

more

predicates

that

relate

the

nicknames

together.

The

wrapper

examines

join

requests

and

determines

whether

the

data

source

can

support

the

particular

join

needed.

Related

tasks:

v

“Determining

the

head

expressions

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

predicates

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

functions

that

the

data

source

can

accept”

on

page

38

Determining

the

functions

that

the

data

source

can

accept

The

expression

that

defines

a

predicate

typically

contains

one

or

more

function

invocations.

If

the

wrapper

accepts

a

predicate

that

includes

invocation

of

a

function

DB2

UDB

implements,

the

semantics

of

the

function

the

data

source

runs

must

be

identical

to

those

of

the

federated

server.

The

expression

that

defines

a

predicate

typically

contains

one

or

more

function

invocations.

The

functions

in

a

predicate

can

be

functions

or

operators

that

DB2

UDB

implements

(for

example,

>,

LIKE,

+,

and

CONCAT)

or

they

can

be

custom

functions

specific

to

your

wrapper

that

you

registered

by

defining

a

function

template.

If

the

wrapper

accepts

a

predicate

that

includes

an

invocation

of

a

function

that

DB2

UDB

could

also

evaluate,

the

semantics

of

the

function

the

data

source

runs

must

be

identical

to

those

of

DB2

UDB

The

semantics

of

any

DB2

UDB

function

that

the

data

source

intends

to

support

must

be

identical

to

those

of

DB2

UDB

itself.

This

includes

issues

like

collating

sequence

and

handling

of

nulls.

Related

tasks:

v

“Determining

the

head

expressions

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

predicates

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

joins

that

the

data

source

can

accept”

on

page

38

38

Wrapper

Developer’s

Guide

Chapter

6.

Designing

for

error

handling

In

preparing

to

write

a

wrapper,

you

need

to

decide

how

the

wrapper

should

report

the

errors

that

it

encounters.

If

you

receive

a

non-zero

return

code

from

a

DB2

UDB

support

function

or

DB2

UDB-implemented

member

function,

1.

Recover

and

reset

the

return

code,

if

possible.

2.

Otherwise,

clean

up

locally

and

return

the

same

code

to

the

caller.

If

you

discover

a

“new”

error,

1.

Find

the

closest

code

in

the

SQL

Messages

reference

guide.

2.

Determine

the

number

of

tokens

you

can

use

from

the

message

text.

The

maximum

message

length

is

70

-

(nTokens

-

1).

3.

Report

the

error.

4.

Clean

up

locally

and

return

the

code

to

the

caller.

The

Java

API

uses

Java

exceptions

to

handle

errors

and

also

provides

a

specialized

class

to

throw

an

exception

that

is

converted

into

a

DB2

error

message.

For

Example:

throw

new

WrapperException(-1822,

"FQftc",

new

String[]

{

Integer.toString(remoteCode),

serverName,

remoteMsg}

);

Table

9

list

categories

of

errors,

each

one

followed

by

information

about

the

codes

and

messages

appropriate

to

it.

Table

9.

Categories

of

errors

and

the

associated

error

messages

Event

Message

number

Message

content

Authentication

failure

SQL1403

The

user

name

or

password

supplied

was

not

correct.

Should

be

used

when

the

data

source

supports

authentication.

Authentication,

user

mapping,

missing

SQL1827

No

user

mapping

is

defined

from

local

authorization

ID

auth-ID

to

server

server-name.

Although

the

descriptive

text

for

this

message

refers

specifically

to

ALTER

and

DROP

statements,

this

message

is

also

used

when

a

user

mapping

is

required

and

one

is

not

present.

Blank

truncation

SQL1844

Trailing

blanks

for

column

column-name

were

truncated

between

the

remote

data

source

and

the

federated

server.

This

is

a

warning

message

to

be

produced

when

trailing

blanks

are

truncated

on

transfer

of

data

from

the

remote

data

source

to

the

server.

In

cases

where

the

truncation

is

due

to

code

page

conversion,

use

SQL1580.

©

Copyright

IBM

Corp.

2003,

2004

39

||

|||

|||
|
|

|
|
||
|
|
|
|
|

|||
|
|
|
|
|
|

Table

9.

Categories

of

errors

and

the

associated

error

messages

(continued)

Event

Message

number

Message

content

Blank

truncation,

code

page,

conversion,

data

truncation

SQL1580

Trailing

blanks

were

truncated

while

performing

conversion

from

code

page

source-code-page

to

code

page

target-code-page.

The

maximum

size

of

the

target

area

was

max-len.

The

source

string

length

was

source-len

and

its

hexadecimal

representation

was

string.

A

warning

to

be

used

when

blanks

are

truncated

(Wrapper_Utilities::convert_codepage

returns

CP_CONV_BUFFER_SMALL

and

the

remaining

characters

are

blank.)

Code

page,

conversion,

data

truncation

SQL0334

Overflow

occurred

while

performing

conversion

from

code

page

source

to

code

page

target.

The

maximum

size

of

the

target

area

was

max-len.

The

source

string

length

was

source-len

and

its

hexadecimal

representation

was

string.

Used

when

truncation/overflow

occurs

in

data

conversion.

This

should

be

issued

when

Wrapper_Utilities::convert_codepage

returns

CP_CONV_BUFFER_SMALL.

Code

page,

conversion,

invalid

data

SQL0191

Error

occurred

because

of

a

fragmented

MBCS

character.

This

message

should

be

produced

when

Wrapper_Utilities::convert_codepage

returns

CP_CONV_DBCS_TRUNCATE.

Code

page,

conversion,

not

supported

SQL0332

Column,

data

type,

local,

altering

SQL0270

Function

not

supported

(reason

code

=

reason-code).

Code

65

says

“altering

the

nickname

local

type

from

the

current

type

to

the

specified

type

is

not

allowed.”

This

can

be

used

on

an

ALTER

NICKNAME

ALTER

COLUMN

LOCAL

TYPE

statement.

Column,

data

type,

local,

invalid

length

precision

scale

SQL0604

The

length,

precision,

or

scale

attribute

for

column,

distinct

type,

structured

type,

attribute

of

structured

type,

function,

or

type

mapping

data-item

is

not

valid.

When

validating

a

nickname

column

specification

(for

CREATE

or

ALTER),

use

this

message

if

one

of

the

length,

precision

or

scale

is

bad.

Data-item

should

be

the

column

name.

Column,

data

type,

local,

not

supported

SQL3324

Column

name

has

a

type

of

type

which

is

not

supported.

Can

be

used

for

an

invalid

local

type

for

a

nickname

column.

Column,

operator,

not

allowed

SQL1843

The

operator-name

operator

is

not

supported

for

the

nickname-name.column-name

nickname

column.

Use

this

if

your

wrapper

limits

what

operators

can

be

applied

to

nickname

columns.

Column,

remote,

not

found

SQL0205

Column

or

attribute

name

name

is

not

defined

in

object-name.

Use

this

when

an

option

references

either

a

local

column

or

remote

column

or

attribute

and

the

target

does

not

exist.

This

is

more

specific

than

SQL0204.

Columns,

too

many

SQL0680

Too

many

columns

are

specified

for

a

table,

view

or

table

function.

Useful

if

your

data

source

does

not

support

as

many

columns

as

DB2

UDB.

40

Wrapper

Developer’s

Guide

|

|||

|
|
||
|
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|
|

|||
|
|
|

|
|
||

|||
|
|
|
|

|
|
||
|
|
|
|
|
|

|
|
||
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|

Table

9.

Categories

of

errors

and

the

associated

error

messages

(continued)

Event

Message

number

Message

content

Communication,

lost

connection,

TCP/IP,

general

error

SQL30081

A

communication

error

has

been

detected.

Communication

protocol

being

used:

protocol.

Communication

API

being

used:

interface.

Location

where

the

error

was

detected:

location.

Communication

function

detecting

the

error:

function.

Protocol

specific

error

code(s):

rc1,

rc2,

rc3.

Use

this

for

any

TCP/IP

communications

errors,

other

than

gethostbyname()

not

finding

resolving

a

name

(see

SQL1336.)

This

includes

some

special

conditions

that

indicate

that

a

connection

has

been

dropped.

Communication,

TCP/IP,

host

not

found

SQL1336

The

remote

host

hostname

was

not

found.

Use

this

when

your

TCP/IP

gethostbyname()

fails

to

return

a

host.

See

SQL30081

for

other

TCP/IP

errors.

Conversion,

numeric,

out

of

range

SQL0405

The

numeric

literal

literal

is

not

valid

because

its

value

is

out

of

range.

Use

this

message

when

converting

from

a

remote

data

value

to

a

local

one.

Conversion,

numeric,

overflow

SQL0413

Overflow

occurred

during

numeric

data

type

conversion.

Use

when

converting

and

an

overflow

occurs.

Data

truncation

SQL1844,

SQL1845

Data

for

column

column-name

was

truncated

between

the

remote

data

source

and

the

federated

server.

This

is

the

error

message

that

corresponds

to

the

SQL1844

warning.

If

truncation

is

due

to

code

page

conversion,

use

SQL0334.

Data

source

error

SQL1822

Unexpected

error

code

error-code

received

from

data

source

data-source-name.

Associated

text

and

tokens

are

tokens.

As

the

message

says,

this

is

an

error

reported

by

the

data

source

(for

which

there

isn’t

a

corresponding

DB2

UDB

message.)

It

should

not

be

used

for

internal

errors,

nor

for

errors

detected

by

the

wrapper

itself.

Datetime,

invalid

syntax

SQL0180

The

string

representation

of

a

datetime

value

is

incorrect.

Use

this

one

when

converting

from

a

remote

source

string

to

a

DB2

Information

Integrator

date,

time

or

timestamp

value.

Datetime,

out

of

range

SQL0181

The

string

representation

of

a

datetime

value

is

out

of

range.

This

message

is

the

same

as

SQL0180.

Environment

variable,

missing

SQL5182

A

required

environment

variable

variable-name

has

not

been

set.

This

message

should

be

issued

when

a

variable

is

required

in

db2dj.ini

and

isn’t

there.

Name,

column,

undefined

SQL0204

name

is

an

undefined

name.

Use

this

message

when

you

have

an

option

(such

as

REMOTE_TABLE)

and

the

referenced

object

doesn’t

exist.

See

also

SQL0205

for

references

to

columns

or

attributes.

Name,

column,

undefined

SQL0205

Column

or

attribute

name

name

is

not

defined

in

object-name.

Use

this

when

an

option

references

either

a

local

column

or

remote

column

or

attribute

and

the

target

does

not

exist.

Option,

add,

invalid

SQL1840

The

option-type

option

option-name

cannot

be

added

to

the

object-type

object.

Use

this

one

for

options

that

a

wrapper

might

generate

for

its

own

use,

or

for

options

that

can

only

be

added

at

CREATE

time

and

not

ALTER.

Chapter

6.

Designing

for

error

handling

41

|

|||

|
|
||
|
|
|
|
|
|
|
|
|

|
|
||
|
|

|||
|
|

|||
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|

|||
|

|||
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|
|

Table

9.

Categories

of

errors

and

the

associated

error

messages

(continued)

Event

Message

number

Message

content

Option,

conflict

SQL1846

The

option-type-1

option

option-name-1

for

the

object-name-1

object

conflicts

with

option-type-2

option

option-name-2

for

the

object-name-2

object

Use

this

when

two

(or

more)

options

or

option

values

conflict.

Note

that

this

could

be

a

conflict

between

object

types

(such

as

a

column

option

that

is

not

valid

with

a

particular

nickname

option.)

Option,

drop,

invalid

SQL1837

The

required

option

option-name

of

type

option-type

cannot

be

for

object-name

cannot

be

dropped.

Issued

when

the

user

attempts

to

DROP

an

option

that

cannot

be

dropped.

Option,

duplicate

SQl1884,

SQL1885

You

specified

option-name

(an

option-type

option)

more

than

once

for

object-name.

Some

options,

like

certain

column

options,

can

only

be

specified

once.

As

an

example,

the

PRIMARY_KEY

column

option

for

an

XML

wrapper

nickname

can

only

be

specified

on

one

column.

In

this

context,

the

object-name

would

be

the

nickname.

Option,

invalid

SQL1881

option-name

is

not

a

valid

option-type

option

for

object-name.

Invalid

option.

Can

be

used

if

the

option

is

not

recognized

at

all,

or

can

be

used

if

the

option

is

not

valid

in

the

current

context,

although

the

latter

situation

might

be

better

handled

by

SQL1884.

Option,

invalid

value

SQL1882,

SQL1842

The

option-type

option

option-name

cannot

be

set

to

option-value

for

object-name.

Invalid

option

value.

If

the

value

is

conflicting

with

another

option

value,

use

SQL1846N

instead.

If

the

value

is

a

reference

to

some

other

entity

(like

a

remote

object,

or

even

a

local

catalog

object),

use

SQL0204.

Option,

missing

SQL1883

option-name

is

a

required

option-type

option

for

object-name.

A

required

option

was

not

specified.

Use

this

for

CREATE.

For

DROP,

use

SQL1837.

Option,

set

server

option,

invalid

SQL1841

The

value

of

the

option-type

option

option-name

cannot

be

changed

for

the

object-name

object.

Similar

to

SQL1840,

but

for

SET.

Option,

undefined

SQL1886

The

operation-type

operation

is

not

valid

because

the

option-type

option

option-name

has

not

been

defined

for

object-name.

The

DDL

process

detects

this

when

the

user

tries

to

SET

or

DROP

an

option

that

is

not

defined.

Server,

type,

not

valid

SQL1816

Wrapper

wrapper-name

cannot

be

used

to

access

the

type-or-version

of

data

source

(server-type

server-version)

that

you

are

trying

to

define

to

the

federated

database.

Used

when

validating

the

server

type

or

version

in

the

CREATE

SERVER

and

ALTER

SERVER

statements.

The

component

framework

can

handle

this

for

you.

Server,

version,

not

valid

SQL1817

The

CREATE

SERVER

statement

does

not

identify

the

type-or-version

of

data

source

that

you

want

defined

to

the

federated

database.

Used

when

type

or

version

is

required

on

the

CREATE

SERVER

statement

but

not

specified.

The

component

infrastructure

can

handle

this

for

you.

42

Wrapper

Developer’s

Guide

|

|||

|||
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|

|||
|
|

|||
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|

|||
|
|
|
|
|

Table

9.

Categories

of

errors

and

the

associated

error

messages

(continued)

Event

Message

number

Message

content

SQL,

unsupported

SQL0142

The

SQL

statement

is

not

supported.

The

problem

is

that

there

is

no

further

information,

which

makes

it

very

hard

for

a

user

to

understand.

SQL30090N

with

either

one

of

the

predefined

reason

codes,

or

text

in

place

of

the

reason

code

is

more

useful.

User

id,

missing

SQL1027

Related

concepts:

v

“Deciding

on

wrapper

options”

on

page

33

v

“Deciding

on

server

options”

on

page

34

v

“Deciding

on

nickname

and

column

options”

on

page

29

v

“Deciding

on

user

mapping

options”

on

page

35

Chapter

6.

Designing

for

error

handling

43

|

|||

|||
|
|
|
|

|||
|

44

Wrapper

Developer’s

Guide

Part

3.

Developing

and

documenting

wrappers

This

part

of

the

book

takes

you

through

the

following

tasks

required

to

develop

and

document

a

wrapper:

v

Coding

your

wrapper

based

on

your

design.

v

Documenting

your

wrapper

so

users

can

quickly

learn

how

to

use

it.

©

Copyright

IBM

Corp.

2003,

2004

45

46

Wrapper

Developer’s

Guide

Chapter

7.

Overview

of

data

flows

Federated

query

processing

and

the

objects

that

are

involved

The

following

sections

provide

a

detailed

outline

of

a

typical

query

flow

and

notes

on

the

life

cycles

of

various

objects

that

are

involved

in

query

processing.

Typical

flow

of

a

federated

query

The

following

list

outlines

the

typical

flow

of

a

query.

XX

in

the

subclass

names

represents

your

particular

wrapper.

1.

Client

application

submits

query

that

requires

access

to

external

data

source.

2.

The

federated

server

determines

(based

on

nicknames

in

query)

which

wrappers

are

relevant

to

this

query.

The

following

steps

3-12

apply

to

each

such

wrapper.

3.

The

federated

server

loads

the

unfenced

generic

wrapper

library

(C++)

or

class

(Java),

and

invokes

the

bootstrapping

entry

point

(hook

function).

The

bootstrap

function

is

only

available

in

C++.

4.

The

federated

server

creates

an

instance

of

the

wrapper’s

customized

subclass

of

the

unfenced

generic

wrapper

class.

Specifically:

C++:

The

federated

server

invokes

the

bootstrapping

entry

point

(hook

function),

which

then

creates

an

instance

of

wrapper’s

Unfenced_XX_Wrapper

class.

Java™:

The

federated

server

invokes

the

UnfencedXXWrapper

class’s

constructor,

which

then

creates

an

instance

of

the

class.

5.

The

federated

server

invokes

initialization

method

on

new

wrapper

object.

6.

The

federated

server

determines

which

of

the

wrapper’s

servers

are

involved

in

the

query

(based

on

nicknames).

The

following

steps

7-12

apply

to

each

such

server.

7.

The

federated

server

invokes

the

server-creation

method

on

the

wrapper

object,

to

create

an

instance

of

the

wrapper’s

server

subclass.

C++:

Unfenced_XX_Server

(subclass

of

Unfenced_Generic_Server)

Java:

UnfencedXXServer

(subclass

of

UnfencedGenericServer)

8.

The

federated

server

invokes

initialization

method

on

the

new

server

object.

9.

The

federated

server

submits

Request

objects

that

contains

the

query

fragment

to

the

wrapper

via

query

planning

method

on

server

objects.

Instances

of

the

wrapper’s

nickname

subclass

will

be

created

in

the

process.

10.

The

wrapper

analyzes

query

fragments

and

returns

one

or

more

Reply

objects

to

the

federated

server.

Each

Reply

object

contains

an

accepted

query

fragment,

cost

estimates,

and

an

execution

descriptor.

Repeat

steps

9–12

for

each

query

fragment

generated

by

the

federated

server

optimizer.

11.

The

federated

server

invokes

the

selectivity-estimation

method

on

the

server

object.

It

passes

a

list

containing

all

the

predicates

from

the

query

fragment

that

were

not

accepted

by

the

wrapper.

12.

The

wrapper

estimates

the

predicates’

combined

selectivity,

using

a

custom

selectivity-estimation

method

if

one

was

supplied,

or

the

default

method

otherwise.

©

Copyright

IBM

Corp.

2003,

2004

47

|
|
|

|
|

||
|
|

|
|
|

|
|

||

||

|
|
|

|
|
|
|

13.

The

federated

server

optimizer

chooses

plan

for

entire

query.

14.

Repeat

steps

2-8,

substituting

fenced

for

unfenced.

In

other

words,

create

and

initialize

all

necessary

Fenced_XX_Wrapper

and

Fenced_XX_Server

objects

(FencedXXWrapper

and

FencedXXServer

in

Java).

The

following

steps

15-25

apply

to

each

server.

15.

The

federated

server

invokes

the

user-creation

routine

on

the

server

object.

It

does

this

to

create

an

instance

of

the

wrapper’s

user

subclass

to

represent

the

currently

connected

user.

C++:

Fenced_XX_User

(subclass

of

Fenced_Generic_User)

Java:

FencedXXRemoteUser

(subclass

of

FencedGenericRemoteUser)
16.

The

federated

server

invokes

the

initialization

method

on

the

new

user

object.

17.

The

federated

server

invokes

the

connection-creation

method

on

the

server

object

to

create

an

instance

of

the

wrapper’s

remote

connection

subclass.

C++:

Remote_Connection

(XX_Connection)

Java:

RemoteConnection

(XXConnection)
18.

The

federated

server

invokes

connection

method

on

the

connection

object.

The

wrapper

connects

to

remote

source

(if

necessary).

19.

The

federated

server

invokes

query-creation

method

on

the

connection

object

to

create

an

instance

of

wrapper’s

remote

query

subclass.

C++:

Remote_Query

(XX_Query)

Java:

RemoteQuery

(XXQuery)
20.

The

federated

server

invokes

query-initiation

method

on

the

query

object.

The

wrapper

submits

query

to

remote

source,

using

execution

descriptor

from

Reply

(obtained

from

the

query

object).

21.

The

federated

server

invokes

fetch

method

on

the

query

object

to

request

a

result

row

from

wrapper.

The

wrapper

returns

a

result

row

to

the

federated

server.

22.

Repeat

step

21

until

no

more

rows

to

return.

23.

If

the

federated

server

wants

to

re-execute

the

query,

perhaps

with

an

altered

parameter

value,

the

federated

server

repeats

steps

20–22.

24.

The

federated

server

invokes

the

query-cleanup

method

on

the

query

object.

The

wrapper

cleans

up

cursors

or

other

query-related

resources.

25.

The

federated

server

destroys

the

query

object.

26.

Application

terminates

unit

of

work.

27.

The

federated

server

invokes

commit/abort

method

on

the

connection

object.

This

step

is

repeated

for

each

server.

28.

Application

disconnects

from

database.

29.

The

federated

server

invokes

connection-cleanup

method

on

the

connection

object.

The

federated

server

closes

the

connection

to

the

data

source.

30.

The

federated

server

destroys

the

connection

object.

Steps

29

and

30

are

repeated

for

each

server.

31.

Any

instantiated

Fenced/Unfenced

wrapper,

server,

user,

or

nickname

objects

are

destroyed.

Related

concepts:

v

“Control

flow

for

query

execution”

on

page

57

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Control

flow

for

query

planning”

on

page

55

48

Wrapper

Developer’s

Guide

|
|
|
|

|
|
|

||

||

|
|

||

||

|
|

||

||

|
|
|

|
|

|
|

Related

tasks:

v

“Control

flow

for

registration”

on

page

49

v

“Control

flow

for

initialization”

on

page

55

Related

reference:

v

“Life

cycles

of

objects

that

are

involved

in

federated

queries”

on

page

49

Life

cycles

of

objects

that

are

involved

in

federated

queries

v

Fenced

or

Unfenced

wrapper,

server,

user

or

nickname

objects

will

not

be

created

if

they

already

exist.

That

is,

if

they

have

already

been

created

in

order

to

plan

or

execute

a

query

submitted

previously

by

the

application.

v

The

federated

server

destroys

Fenced

or

Unfenced

wrapper,

server,

user

or

nickname

objects

associated

with

an

application

when

they

are

not

in

use

by

an

in-progress

unit

of

work.

If

this

occurs,

the

federated

server

creates

objects

as

needed

when

the

application

submits

another

query.

The

usual

reason

for

destroying

such

objects

while

the

application

remains

connected

to

the

database

is

because

an

application

has

issued

an

ALTER

or

DROP

DDL

statement.

The

ALTER

or

DROP

DDL

statements

alter

the

properties

of

the

wrapper,

server,

user

or

nickname

that

the

object

represents.

v

The

federated

server

will

not

clean

up

a

connection

to

a

remote

data

source

or

destroy

an

XX_Connection

object

immediately

when

it

completes

a

unit

of

work.

The

connection

will

be

left

open

for

some

time

in

case

the

application

wants

to

execute

another

UOW

that

accesses

the

same

remote

source.

The

federated

server

will

initiate

cleanup

after

the

application

completes

some

number

of

units

of

work

that

do

not

reference

the

source,

or

when

the

application

disconnects

from

the

database.

Related

concepts:

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Typical

flow

of

a

federated

query”

on

page

47

Control

flows

for

processes

The

following

sections

describe

the

control

flows

for

the

following

processes:

v

Registration

v

Initialization

v

Query

planning

v

Query

execution

Control

flow

for

registration

This

topic

introduces

classes

that

model

information

that

is

stored

in

the

federated

server’s

system

catalog

when

data

sources

and

associated

constructs

are

registered.

It

also

outlines

the

generic

control

flows

for

the

registration

process

and

how

to

validate

your

wrapper’s

registration

process.

Standard

and

options

information

When

the

federated

server

registers

a

construct,

one

or

both

of

two

kinds

of

information

go

into

the

federated

server’s

system

catalog.

Standard

information

consists

of

specifications

that

are

common

to

most

constructs

of

a

given

type.

For

example,

when

registering

a

server,

you

supply

a

user-assigned

name

for

the

Chapter

7.

Overview

of

data

flows

49

server

and

the

name

of

the

wrapper

that

will

be

used

to

access

the

server

on

the

CREATE

SERVER

statement.

Because

every

server

definition

requires

these

pieces

of

information,

a

user-assigned

name

and

the

name

of

an

associated

wrapper

can

be

regarded

as

standard

information

for

servers.

In

addition

to

standard

information

that

the

federated

server

maintains

for

all

instances

of

a

construct,

the

federated

server’s

system

catalog

contains

information

whose

nature

varies

from

one

type

of

data

source

to

another.

For

example,

IBM

supplies

a

wrapper

that

accesses

information

stored

in

certain

types

of

files.

To

access

a

file,

the

wrapper

must

know

the

file’s

name.

Information

like

the

filename

is

specific

to

this

kind

of

data

source.

It

would

not

make

sense,

for

example,

when

accessing

an

Oracle

source.

The

federated

server

stores

such

information

in

the

catalogs

by

assigning

values

to

variables

called

options.

You

specify

option

names

and

values

using

DDL.

Thus,

the

file

wrapper

supports

an

option

variable

for

nicknames,

FILE_PATH,

whose

value

you

can

specify

with

the

CREATE

NICKNAME

statement.

Classes

for

both

standard

and

options

information

Several

classes

model

all

information—both

standard

and

options—about

data

sources

and

associated

constructs.

These

classes

collectively

are

referred

to

as

construct

information

classes.

They

are:

Table

10.

The

construct

information

classes

in

C++

and

Java

C++

Java

Description

Wrapper_Info

WrapperInfo

models

information

about

a

wrapper

Server_Info

ServerInfo

models

information

about

a

data

source

Nickname_Info

NicknameInfo

models

information

about

a

collection

of

data

(for

example

a

table

or

view)

in

a

data

source

Column_Info

ColumnInfo

models

information

about

columns

of

values

(or

such

column

equivalents)

within

a

collection

of

data

at

a

data

source

User_Info

UserInfo

models

information

about

an

authorization

to

use

a

data

source

How

objects

of

construct

information

classes

are

used

The

federated

server

and

wrappers

use

objects

of

construct

information

classes

in

the

following

ways:

v

They

serve

as

containers

for

the

information

that

the

system

transfers

from

SQL

statements

and

the

wrapper

to

the

federated

server’s

system

catalog.

For

example,

a

wrapper

validates

information

in

a

CREATE

SERVER

statement

and

the

federated

server

catalogs

this

information,

along

with

any

supplementary

information

that

the

wrapper

provides.

The

system

stores

both

the

validated

and

supplementary

information

to

the

federated

server’s

system

catalog

in

a

Server_Info

object

(ServerInfo

in

Java).

50

Wrapper

Developer’s

Guide

||

|||

|||
|

|||
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|

|
|
|
|
|
|
|

v

They

serve

as

containers

for

information

as

it

is

transferred

from

the

federated

server’s

system

catalog

to

objects

that

represent

constructs;

for

example,

to

a

Server

object

that

represents

a

specific

data

source.

When

the

system

makes

the

transfer,

the

receiving

object

initializes

itself

with

this

information.

Each

wrapper

obtains

authorization

information

from

the

federated

server’s

system

catalog

in

order

to

connect

to

a

data

source.

The

system

passes

this

information

to

the

wrapper

in

a

User_Info

object

(UserInfo

in

Java).

Similarly,

the

wrapper

obtains

cataloged

information

about

the

nicknames

a

query

references,

so

that

the

wrapper

can

identify

the

corresponding

data

collections

at

the

data

source.

The

system

passes

this

information

to

the

wrapper

in

Nickname_Info

objects

(NicknameInfo

in

Java).

Flow

for

CREATE

WRAPPER,

CREATE

SERVER,

and

CREATE

USER

MAPPING

The

following

topic

uses

the

C++

class

and

method

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

method

name.

1.

Application

submits

a

CREATE

YY

DDL

statement,

where

YY

=

WRAPPER,

SERVER,

or

USER

MAPPING.

2.

The

federated

server

parses

the

DDL

statement,

checks

basic

syntactic

correctness,

checks

for

a

preexisting

entity

with

the

same

name,

and

determines

which

wrapper

is

responsible

for

the

entity

to

be

created.

3.

The

federated

server

creates

and

initializes

any

parent

objects

needed

to

create

a

new

entity

of

this

type.

To

create

a

new

User

Mapping,

the

relevant

wrapper

and

server

objects

must

be

instantiated

first.

Table

11.

The

wrapper

and

server

objects

in

C++

and

Java

C++

Java

Unfenced_XX_Wrapper

UnfencedXXWrapper

Unfenced_XX_Server

UnfencedXXServer

4.

The

federated

server

creates

a

new

instance

of

the

relevant

wrapper’s

server,

user,

or

wrapper

subclass.

The

federated

server

does

this

by

calling

the

appropriate

creation

method

on

the

parent

object.

The

federated

server

does

not

call

the

appropriate

creation

method

on

the

parent

object

on

C++

wrappers

that

are

created

by

loading

the

appropriate

library

and

calling

the

hook

function.

For

Java

wrappers,

the

unfenced

wrapper

subclass

is

loaded

directly.

This

object

will

be

an

instance

of

the

class

Unfenced_XX_YY

where

XX

is

the

name

you

specified

for

your

wrapper

and

YY

is

the

name

you

specified

for

the

type

of

object

being

created.

For

example:

C++:

Unfenced_File_Wrapper

Java:

UnfencedFileWrapper

5.

The

federated

server

creates

an

instance

of

the

information

subclass

corresponding

to

the

entity

being

created.

This

object

will

be

an

instance

of

the

class

YY_Info,

and

contain

all

the

information

from

the

application’s

DDL

statement.

6.

The

federated

server

invokes

the

creation-validation

method

on

the

Unfenced_XX_YY

object,

passing

the

information

object

to

the

wrapper

for

inspection.

7.

The

wrapper

checks

the

information

from

the

DDL

statement

for

consistency

and

correctness

by

inspecting

the

YY_Info

object.

In

particular,

the

wrapper

checks

that

option

values

are

present

where

mandatory,

valid,

and

mutually

consistent.

Chapter

7.

Overview

of

data

flows

51

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

||

||

||

||
|

|
|
|
|
|
|
|
|
|

||

||

|
|
|
|

|
|
|

|
|
|
|

8.

The

wrapper

optionally

constructs

another

YY_Info

object,

referred

to

as

a

delta-info

object.

The

wrapper

can

assign

values

to

options

or

control

other

aspects

of

the

entity

being

created

by

providing

information

in

the

delta-info

object

that

overrides

or

augments

the

information

specified

via

the

DDL

statement.

9.

The

federated

server

merges

the

information

from

the

DDL

statement

with

the

information

from

the

delta-info

object

(if

any),

and

stores

the

resulting

configuration

in

the

federated

server’s

system

catalogs.

10.

The

federated

server

invokes

the

initialization

method

for

the

Unfenced_XX_YY

object.

Flow

for

CREATE

NICKNAME

The

following

topic

uses

the

C++

class

and

method

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

method

name.

Registration

flow

for

CREATE

NICKNAME

adds

an

extra

validation

step

that

utilizes

the

creation-validation

method

on

the

nickname

class.

Since

the

fenced

classes

have

the

machinery

for

contacting

the

data

source,

this

allows

the

wrapper

to

connect

to

the

data

source

to

collect

configuration

information

not

explicitly

specified

in

the

DDL.

1.

Application

submits

a

CREATE

NICKNAME

DDL

statement.

2.

The

federated

server

creates

the

appropriate

Unfenced_XX_Wrapper

and

Unfenced_XX_Server

parent

objects,

and

the

Unfenced_XX_Nickname

object

representing

the

new

nickname.

3.

The

federated

server

creates

Fenced_XX_Wrapper,

Fenced_XX_Server,

and

Fenced_XX_Nickname

objects.

4.

The

federated

server

creates

a

Nickname_Info

object

from

the

information

on

the

DDL

statement.

5.

The

federated

server

invokes

the

creation-validation

method

on

the

Fenced_XX_Nickname

object,

passing

the

Nickname_Info

object

for

inspection.

6.

Wrapper

optionally

connects

to

the

external

source

and

obtains

additional

information

from

the

data

source.

This

information

includes

schema

information,

statistical

information,

or

both.

7.

Wrapper

optionally

creates

a

delta

Nickname_Info

object,

containing

information

(possibly

obtained

from

the

data

source)

that

augments

or

overrides

the

DDL.

8.

The

federated

server

merges

information

from

the

DDL

statement

with

information

from

the

delta

Nickname_Info

object

(if

any).

9.

The

merged

Nickname_Info

created

by

the

Fenced_XX_Nickname

validation

method

becomes

the

input

to

the

Unfenced_XX_Nickname

validation

method,

and

the

rest

of

the

steps

are

the

same

as

steps

6

through

10

of

the

wrapper,

server,

and

user

mapping

registration

flow.

Flow

for

ALTER

WRAPPER,

ALTER

SERVER,

ALTER

NICKNAME,

ALTER

USER

MAPPING

The

following

topic

uses

the

C++

class

and

method

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

method

name.

The

ALTER

flow

differs

from

the

CREATE

flow

because

the

wrapper

must

determine

whether

new

option

values

specified

via

DDL

are

consistent

with

current

values

that

remain

unchanged,

as

well

as

with

each

other.

52

Wrapper

Developer’s

Guide

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

1.

Application

submits

one

of

the

DDL

statements

listed

previously

for

entity

YY,

where

YY

is

one

of

Wrapper,

Server,

or

User

Mapping.

2.

The

federated

server

parses

the

DDL

statement,

checks

basic

syntactic

correctness,

checks

to

ensure

an

entity

with

the

specified

name

exists,

and

determines

which

wrapper

is

responsible

for

the

entity

to

be

altered.

3.

The

federated

server

creates

and

initializes

any

parent

objects

needed

to

instantiate

the

object

representing

the

entity

to

be

altered.

To

instantiate

an

Unfenced_XX_User

or

Unfenced_XX_Nickname,

the

relevant

Unfenced_XX_Wrapper

and

Unfenced_XX_Server

objects

must

be

instantiated

first.

The

federated

server

will

not

create

objects

if

they

already

exist.

4.

The

federated

server

creates

a

new

instance

of

the

relevant

wrapper

objects

Unfenced_Generic_Wrapper,

Unfenced_Generic_Server

or

Unfenced_Generic_User

subclass,

depending

on

the

entity

your

user

wants

to

alter.

The

federated

server

does

this

by

calling

the

appropriate

creation

method

on

the

parent

object,

except

in

the

case

of

wrappers

which

are

created

by

loading

the

appropriate

library

and

calling

the

hook

function.

This

object

will

be

an

instance

of

the

class

Unfenced_XX_YY

where

XX

is

the

wrapper

and

YY

is

the

type

of

object

being

created

(for

example

Unfenced_File_Wrapper,

Unfenced_Blast_Server,

and

so

forth).

The

federated

server

will

not

create

objects

if

they

already

exist.

In

Java,

there

is

no

library

and

no

hook

function.

Instead,

the

federated

server

instantiates

the

appropriate

wrapper

subclass.

5.

The

federated

server

initializes

the

newly

created

Unfenced_XX_YY

object.

6.

The

federated

server

creates

an

instance

of

the

Catalog_Info

subclass

corresponding

to

the

entity

your

user

wants

to

alter.

This

object

will

be

an

instance

of

the

class

YY_Info

(for

example

Server_Info,

Remote_User_Info),

and

contain

all

the

information

from

the

application’s

DDL

statement.

7.

The

federated

server

invokes

the

alter-validation

method

on

the

Unfenced_XX_YY

object,

passing

the

YY_Info

object

to

the

wrapper

for

inspection.

8.

The

wrapper

checks

the

information

from

the

DDL

statement

for

consistency

and

correctness

by

inspecting

the

YY_Info

object.

In

particular,

the

wrapper

checks

to

ensure

that

new

option

values

are

consistent

with

existing

ones

whose

values

remain

unchanged

and

that

mandatory

options

are

not

dropped.

9.

The

wrapper

optionally

constructs

another

YY_Info

object,

referred

to

as

a

delta-info

object.

The

wrapper

can

assign

values

to

options

or

control

other

aspects

of

the

entity

being

altered

by

providing

information

in

the

delta-info

object

that

overrides

or

augments

the

information

specified

via

the

DDL

statement.

10.

The

federated

server

merges

the

information

from

the

DDL

statement

with

the

information

from

the

delta-info

object

(if

any),

and

stores

the

resulting

configuration

in

the

federated

server’s

system

catalogs.

11.

The

federated

server

destroys

the

Unfenced_XX_YY

object,

which

was

initialized

with

old

catalog

information

that

does

not

reflect

this

DDL

statement.

The

federated

server

recreates

it

when

it

is

next

needed

and

initialize

it

with

the

updated

information.

General

steps

for

validating

the

registration

process

Validation

of

your

wrapper’s

registration

process

follows

these

general

steps:

CREATE

DDL

Chapter

7.

Overview

of

data

flows

53

The

following

topic

uses

the

C++

class

and

method

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

method

name.

Validation

for

any

of

the

CREATE

DDL

should

be

necessary

only

if

the

wrapper

developer

has

defined

specific

options.

The

following

is

a

generic

procedure

for

validating

your

registration.

See

the

following

sections

for

the

specific

validation

procedure

for

each

wrapper

building

block.

1.

For

each

Catalog_Option

in

the

XX_Info

object:

a.

Determine

if

it

is

a

reserved

DB2

UDB

option

by

calling

is_reserved_xx_option()

(Java

API

provides

the

method

isReserved()

on

the

CatalogOption

class

that

has

similar

functionality).

If

it

is

reserved,

skip

to

the

next

one.

b.

Determine

if

it

is

an

option

supported

by

the

wrapper;

if

it

is

not,

issue

an

SQL1881N

error

message.

c.

Determine

if

the

option

value

is

valid

for

that

option;

if

it

is

not,

issue

an

SQL1882N

error

message.
2.

If

your

user

omits

any

required

options,

issue

an

SQL1883N

error

message.

3.

Determine

that

all

supplied

option

values

are

consistent

with

each

other

(as

applicable.)

Use

the

SQL1882N

error

message

to

report

invalid

or

inconsistent

values.

4.

If

necessary,

provide

additional

options:

a.

Determine

if

a

delta

XX_Info

object

has

been

allocated.

Allocate

one

if

needed.

b.

Use

the

add_option

method

of

XX_Info

to

add

new

options

as

necessary.

ALTER

DDL

Like

CREATE,

this

is

only

necessary

if

the

wrapper

developer

has

defined

wrapper-specific

options.

ALTER

processing

differs

from

CREATE

processing

in

two

significant

ways:

First,

the

validation

routine

must

take

into

consideration

the

current

state

of

the

wrapper.

The

information

supplied

in

the

XX_Info

object

will

only

be

that

information

which

is

new

or

changing.

Second,

the

validation

routine

must

pay

attention

to

the

action

parameter

for

each

option.

Most

importantly,

the

validation

routine

must

issue

an

SQL1881N

error

message

if

the

user

attempts

to

DROP

a

required

option.

Also,

attempting

to

check

the

value

of

an

option

that

is

being

DROPped

will

result

in

problems

such

as

the

engine

crashing

with

an

addressing

error.

Related

concepts:

v

“Control

flow

for

query

execution”

on

page

57

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Control

flow

for

query

planning”

on

page

55

v

“Typical

flow

of

a

federated

query”

on

page

47

Related

tasks:

v

Chapter

6,

“Designing

for

error

handling,”

on

page

39

v

“Control

flow

for

initialization”

on

page

55

v

“Altering

a

wrapper”

in

the

Federated

Systems

Guide

Related

reference:

v

“ALTER

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

54

Wrapper

Developer’s

Guide

|
|

Control

flow

for

initialization

The

following

outlines

the

control

flow

for

the

initialization

process.

This

outline

uses

the

C++

object

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

object

name.

This

flow

is

truly

generic,

applying

to

all

objects

that

are

instances

of

a

subclass

of

a

Fenced_Generic

or

Unfenced_Generic

base

class

(for

example

Unfenced_Blast_Nickname,

Fenced_File_User,

and

so

forth).

1.

The

federated

server

creates

an

instance

of

a

wrapper-defined

subclass,

“X”

(for

example

Fenced_Excel_Server),

using

the

appropriate

creation

method

on

its

parent

object

(or,

for

wrappers,

the

hook

function).

2.

The

federated

server

creates

a

YY_Info

(for

example

Server_Info)

object

containing

all

known

information

about

the

entity

that

the

object

represents,

as

stored

in

the

appropriate

the

federated

server’s

system

catalogs.

All

Catalog_Info

objects

include

a

list

of

Catalog_Option

objects,

which

supply

the

names

and

values

of

any

options

defined

for

the

corresponding

entity.

Nickname_Info

objects

include

a

list

of

Column_Info

objects,

one

for

each

column

of

the

nickname.

3.

The

federated

server

invokes

the

initialization

method

on

the

“X”

object

created

in

step

1,

passing

the

YY_Info

object

created

in

step

2.

4.

The

wrapper

optionally

extracts

information

(for

example

option

values)

from

the

YY_Info

object,

and

stores

it

in

member

variables

of

the

“X”

object

for

more

efficient

access.

The

federated

server

copies

and

attaches

the

corresponding

YY_Info

object

to

the

“X”

object.

For

Nickname

objects

(fenced

or

unfenced),

the

federated

server

does

not

copy

the

Nickname_Info

object.

Related

concepts:

v

“Control

flow

for

query

execution”

on

page

57

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Control

flow

for

query

planning”

on

page

55

v

“Typical

flow

of

a

federated

query”

on

page

47

Related

tasks:

v

“Control

flow

for

registration”

on

page

49

Control

flow

for

query

planning

The

following

outlines

the

flow

for

the

query

planning

process.

This

outline

uses

C++

object

names.

If

you

are

developing

your

wrapper

in

Java™,

substitute

the

corresponding

Java

object

name.

The

flow

outline

assumes

that

the

federated

server

is

asking

the

wrapper

to

plan

a

single-table

query

fragment

with

one

or

more

head

expressions

and

predicates.

The

federated

server

plans

single-table

fragments

first,

followed

by

fragments

that

join

two

nicknames

from

the

source,

then

three-way

joins,

and

so

forth

For

these

more

complex

fragments,

there

will

be

additional

quantifier

handles

in

the

Request

and

some

of

the

predicate

handles

in

the

Request

will

represent

join

predicates.

1.

The

federated

server

creates

a

Request

object

describing

the

query

fragment,

and

invokes

the

planning

method

on

the

appropriate

Unfenced_XX_Server

object.

Chapter

7.

Overview

of

data

flows

55

|

2.

The

wrapper

creates

a

Reply

object

for

this

request.

If

the

wrapper

supports

a

custom

cost

model,

this

will

be

an

instance

of

a

Reply

subclass

defined

by

the

wrapper.

If

the

wrapper

uses

the

default

cost

model,

the

wrapper

instantiates

the

base

Reply

class.

3.

The

wrapper

obtains

a

handle

for

the

quantifier

representing

the

nickname

over

which

the

query

fragment

ranges

(The

Java

API

uses

instances

rather

than

handles).

4.

Using

the

handle,

the

wrapper

asks

the

federated

server

for

an

instance

of

its

Unfenced_Generic_Nickname

subclass,

Unfenced_XX_Nickname,

corresponding

to

the

nickname

found

in

the

query

fragment.

5.

The

federated

server

creates

and

initializes

an

Unfenced_XX_Nickname

object.

6.

As

necessary,

wrapper

obtains

information

about

nickname

columns,

configuration,

and

so

forth

from

Unfenced_XX_Nickname

object.

7.

The

wrapper

adds

handle

for

quantifier

to

Reply.

8.

The

wrapper

obtains

a

handle

for

one

of

the

head

expressions

in

the

query

fragment.

9.

The

wrapper

uses

a

handle

to

obtain

a

Request_Exp

object

that

describes

the

head

expression.

10.

The

wrapper

determines

whether

data

source

can

compute

the

value

of

the

head

expression

that

is

represented

by

Request_Exp.

Wrapper

repeats

step

12

recursively

descending

the

Request_Exp

tree

until

a

the

wrapper

makes

a

decision.

11.

If

the

data

source

can

compute

the

entire

head

expression,

the

wrapper

adds

the

handle

for

the

head

expression

to

the

Reply

object.

12.

Repeat

steps

9-12

for

each

additional

head

expression

in

the

request.

13.

The

wrapper

obtains

a

handle

for

one

of

the

predicates

in

the

query

fragment.

14.

The

wrapper

uses

the

handle

to

obtain

a

Request_Exp

object

that

describes

the

predicate.

15.

The

wrapper

determines

whether

the

data

source

can

process

the

entire

predicate

represented

by

the

Request_Exp.

The

wrapper

will

need

to

recursively

descend

the

Request_Exp

tree

to

make

this

decision.

16.

If

the

data

source

can

process

the

predicate,

the

wrapper

adds

the

handle

for

the

predicate

to

the

Reply

object.

17.

Repeat

steps

15-17

for

each

additional

predicate

in

the

request.

18.

If

the

data

source

returns

rows

in

a

particular

order

that

is

compatible

with

DB2®

Information

Integrator

collation,

the

wrapper

adds

order

descriptions

to

the

Reply.

19.

The

wrapper

examines

query

sub-fragment

that

is

represented

by

Reply

and

generates

persistent

representation

to

store

in

wrapper

execution

descriptor.

20.

The

wrapper

stores

execution

descriptor

in

Reply.

21.

If

the

wrapper

wishes

to

generate

alternative

plans

for

this

query

fragment,

repeat

steps

9-23

for

each

alternative.

22.

The

wrapper

returns

list

of

Reply

objects

to

the

federated

server.

23.

The

federated

server

invokes

costing

methods

on

Reply

object

to

calculate

cost

and

cardinality

for

corresponding

wrapper

plan.

24.

If

wrapper

uses

a

custom

cost

model,

wrapper’s

costing

methods

calculate

cost

and

cardinality,

optionally

referring

to

custom

statistics

that

are

obtained

from

the

Unfenced_XX_Nickname

object.

Otherwise,

default

implementations

will

calculate

these

values

by

using

the

default

cost

model.

25.

Repeat

steps

26-27

for

each

additional

Reply

object,

if

any.

56

Wrapper

Developer’s

Guide

Related

concepts:

v

“Control

flow

for

query

execution”

on

page

57

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Typical

flow

of

a

federated

query”

on

page

47

Related

tasks:

v

“Control

flow

for

registration”

on

page

49

v

“Control

flow

for

initialization”

on

page

55

Control

flow

for

query

execution

The

following

outlines

the

query

execution

process.

This

query

uses

C++

object

names.

If

you

are

developing

your

wrapper

in

Java™,

substitute

the

corresponding

Java

object

name.

1.

The

federated

server

invokes

query-initiation

method

on

instance

of

wrapper’s

Remote_Query

subclass,

XX_Query.

2.

Wrapper

obtains

wrapper

execution

descriptor

from

XX_Query

object.

Using

information

in

the

descriptor,

the

wrapper

prepares

to

execute

the

query

fragment

at

the

remote

source.

3.

Wrapper

obtains

output

Runtime_Data_List

from

XX_Query

object

and

determines

mapping

between

data

that

are

returned

from

data

source

and

data

the

wrapper

returns

to

the

federated

server.

4.

If

query

fragment

had

parameters,

wrapper

obtains

parameter

values

from

corresponding

elements

of

the

input

Runtime_Data_List,

obtained

from

the

XX_Query

object.

5.

Wrapper

converts

parameter

values

(if

any)

from

SQL

(DB2

UDB)

representation

to

the

representation

expected

by

the

data

source.

6.

Wrapper

initiates

execution

of

query

fragment

at

remote

source.

7.

The

federated

server

invokes

fetch

method

on

XX_Query

object.

8.

Wrapper

retrieves

at

least

one

row’s

worth

of

data

from

data

source.

The

wrapper

buffers

additional

rows.

9.

The

wrapper

converts

result

values

from

the

representation

provided

by

the

data

source

to

the

SQL

representation

expected

by

the

federated

server

.

It

copies

each

converted

value

to

a

DB2®

buffer

by

invoking

a

method

on

the

appropriate

element

of

the

output

Runtime_Data_List.

10.

Repeat

steps

7-9

until

the

data

source

has

no

more

rows

to

return.

11.

The

federated

server

invokes

query

cleanup

method

XX_Query.

Status

flag

indicates

whether

DB2

will

re-execute

the

query

fragment

as

part

of

the

same

application

query.

12.

If

query

is

re-executed,

the

federated

server

invokes

a

query

re-execution

method

on

XX_Query.

Steps

4-11

are

repeated

until

no

more

re-executions

are

requested

by

the

federated

server.

Related

concepts:

v

“Communication

between

wrappers

and

foreign

servers”

on

page

58

v

“Control

flow

for

query

planning”

on

page

55

v

“Typical

flow

of

a

federated

query”

on

page

47

Related

tasks:

Chapter

7.

Overview

of

data

flows

57

|

v

“Control

flow

for

registration”

on

page

49

v

“Control

flow

for

initialization”

on

page

55

Communication

between

wrappers

and

foreign

servers

Some

of

the

ways

in

which

a

wrapper

participates

in

query

processing

are

to

translate

query

fragments

into

requests

that

the

data

source

understands,

to

submit

these

subqueries

to

the

data

source,

and

to

retrieve

rows

of

results

that

the

data

source

returns.

Methods

of

the

unfenced

generic

server

subclass

plan

these

tasks.

Methods

of

the

remote

query

subclass

perform

the

execution;

and

you

have

considerable

discretion

in

determining

how

to

distribute

the

tasks

among

the

methods.

To

illustrate:

Example

1

The

following

example

begins

when

a

wrapper

for

a

file

server

starts

processing

a

SELECT

statement

in

a

query

fragment

that

references

columns

and

contains

no

predicates.

1.

During

query

planning,

the

optimizer

examines

a

query

fragment

and

sends

the

wrapper

a

request

based

on

the

fragment.

The

wrapper

examines

the

request

and

returns

a

reply

along

with

a

wrapper

plan

that

lets

the

optimizer

know

what

the

wrapper

can

and

cannot

do

with

the

data

source.

The

optimizer

creates

a

query

plan

for

execution

that

includes

the

wrapper

plan.

2.

During

query

execution,

the

optimizer

sends

the

wrapper

plan

to

the

wrapper.

3.

The

wrapper

executes

the

plan

against

the

data

source.

4.

On

the

basis

of

the

value

of

an

option

that

was

supplied

by

the

wrapper

execution

descriptor,

the

wrapper

determines

the

name

and

location

of

the

data

source

file

that

contains

the

data

set

that

corresponds

to

the

nickname.

5.

The

wrapper

examines

the

wrapper

plan

to

determine

the

names

of

the

columns

to

be

retrieved.

6.

On

the

basis

of

the

value

of

an

option

that

was

supplied

by

the

wrapper

execution

descriptor,

the

wrapper

determines

which

ordinal

column

in

the

file

corresponds

to

each

named

column

in

the

query.

7.

On

the

basis

of

the

value

of

an

option

that

was

supplied

by

the

wrapper

execution

descriptor,

the

wrapper

determines

the

terminating

delimiter

for

each

column

named

in

the

query.

8.

The

wrapper

opens

the

file

and

begins

to

read

data.

It

uses

information

determined

previously

to

parse

and

format

rows

to

return

to

the

federated

server.

Example

2

The

following

example

begins

when

a

wrapper

for

a

document

server

starts

processing

a

SELECT

statement

in

a

query

fragment.

This

fragment

references

three

kinds

of

data

source

constructs:

repositories

of

documents,

constructs

that

are

called

attributes,

and

a

text-search

function.

In

the

federated

server’s

system

catalog,

the

federated

server

defines

the

repositories

as

DB2®

UDB

tables,

DB2

UDB

defines

the

attributes

as

columns

of

these

tables,

and

the

function

maps

to

a

function

template.

1.

During

query

planning,

the

optimizer

examines

a

query

fragment

and

sends

the

wrapper

a

request

based

on

the

fragment.

The

wrapper

examines

the

request

and

returns

a

reply

along

with

a

wrapper

plan

58

Wrapper

Developer’s

Guide

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

that

lets

the

optimizer

know

what

the

wrapper

can

and

cannot

do

with

the

data

source.

The

optimizer

creates

a

query

plan

for

execution

that

includes

the

wrapper

plan.

2.

During

query

execution,

the

optimizer

sends

the

wrapper

plan

to

the

wrapper.

3.

The

wrapper

executes

the

plan

against

the

data

source.

4.

On

the

basis

of

the

value

of

an

option

that

was

supplied

by

the

wrapper

execution

descriptor,

the

wrapper

determines

which

repository

of

documents

corresponds

to

the

nickname.

5.

The

wrapper

examines

the

wrapper

plan

to

determine

the

names

of

the

columns

to

be

retrieved.

6.

On

the

basis

of

the

value

of

an

option

that

was

supplied

by

the

wrapper

execution

descriptor,

the

wrapper

determines

which

attribute

corresponds

to

each

column

named

in

the

query.

7.

The

wrapper

identifies

a

text-search

function

in

the

wrapper

execution

descriptor.

8.

Using

information

determined

previously

(for

example,

the

names

of

the

repositories

of

documents,

the

names

of

the

attributes

and

the

text-search

predicate),

the

wrapper

generates

a

statement

in

the

query

language

of

the

document

server.

9.

The

wrapper

submits

the

query

to

the

document

server’s

API,

and

begins

to

read

data

to

return

to

the

federated

server.

Related

concepts:

v

“Control

flow

for

query

execution”

on

page

57

v

“Control

flow

for

query

planning”

on

page

55

v

“Typical

flow

of

a

federated

query”

on

page

47

Related

tasks:

v

“Control

flow

for

registration”

on

page

49

v

“Control

flow

for

initialization”

on

page

55

Related

reference:

v

“Life

cycles

of

objects

that

are

involved

in

federated

queries”

on

page

49

Chapter

7.

Overview

of

data

flows

59

|
|
|

|
|

|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

60

Wrapper

Developer’s

Guide

Chapter

8.

Developing

with

wrapper

classes

The

following

sections

describe

how

to

develop

a

wrapper

and

the

classes

you

need

to

use

when

developing

a

wrapper.

Typical

procedure

for

developing

a

wrapper

This

topic

describes

the

typical

procedure

for

developing

a

wrapper.

Before

you

start

to

develop

the

wrapper,

first:

v

Familiarize

yourself

with

the

SQL

statements

used

in

registration,

the

base

classes

that

you’ll

need

to

subclass,

and

the

API

of

the

data

source.

v

Determine

how

to

model

as

relational

tables

the

collections

of

data

at

the

data

source.

v

Determine

how

to

represent

in

the

DB2®

UDB

catalog

the

metadata

about

collections

of

data

at

the

data

source.

v

Perform

other

planning

activities,

as

needed.

When

you

develop

a

wrapper,

you

typically

perform

the

following

steps:

1.

Implement

and

test

the

wrapper

subclasses:

C++:

Unfenced_Generic_Wrapper

and

Fenced_Generic_Wrapper

Java™:

UnfencedGenericWrapper

and

FencedGenericWrapper

Test

your

implementation

by

running

the

CREATE

WRAPPER

statement.

Examine

the

resulting

entries

made

in

the

SYSCAT.WRAPPERS

and

SYSCAT.WRAPOPTIONS

catalog

views.

2.

Implement

and

test

the

server

classes:

C++:

Unfenced_Generic_Server

and

Fenced_Generic_Server

Java:

UnfencedGenericServer

and

FencedGenericServer

Test

your

implementation

by

running

the

CREATE

SERVER

statement

and

examining

the

resulting

entries

made

in

the

SYSCAT.SERVERS

and

SYSCAT.SERVEROPTIONS

catalog

views.

3.

(Optional)

Implement

and

test

the

user

classes

if

the

wrapper

needs

authorization

and

contacts

the

data

source

during

nickname

validation.

C++:

Unfenced_Generic_User

and

Fenced_Generic_User

Java:

UnfencedGenericRemoteUser

and

FencedGenericRemoteUser

Test

your

implementation

by

running

the

CREATE

USER

MAPPING

statement

and

examining

the

resulting

entries

made

in

the

SYSCAT.USEROPTIONS

catalog

view.

4.

(Optional)

Implement

the

remote

connection

subclass

if

the

wrapper

contacts

the

data

source

during

nickname

validation.

C++:

Remote_Connection

Java:

RemoteConnection

©

Copyright

IBM

Corp.

2003,

2004

61

|
|

|

||

|
|

|
|
|

|

||

||

|
|
|

|
|

||

||

|
|
|

|
|

||

||

5.

If

you

want

data

sources

to

support

passthru,

implement

the

remote

passthru

class:

C++:

Remote_Passthru

Java:

RemotePassthru

Test

your

implementation

of

both

the

remote

passthru

subclass

and

the

remote

connection

class

by

running

a

passthru

request

that

references

collections

of

data

in

your

data

source.

6.

Implement

the

nickname

subclasses:

C++:

Unfenced_Generic_Nickname

and

Fenced_Generic_Nickname

Java:

UnfencedGeneric

Nickname

and

FencedGeneric

Nickname

Test

your

implementation

by

running

the

CREATE

NICKNAME

statement

for

several

collections

of

foreign

server

data,

and

examining

the

resulting

entries

in

the

SYSCAT.TABLES,

SYSCAT.TABOPTIONS,

SYSCAT.COLUMNS

and

SYSCAT.COLOPTIONS

catalog

views

and

the

SYSTAT.TABLES

and

SYSTAT.COLUMNS

catalog

tables.

If

you

want

users

to

use

a

data

source

function

that

has

no

DB2

UDB

equivalent,

create

a

function

template

that

corresponds

to

the

function.

7.

(Optional)

Implement

and

test

the

user

classes

if

the

wrapper

needs

authorization

and

does

not

connect

to

the

data

source

during

nickname

validation.

C++:

Unfenced_Generic_User

and

Fenced_Generic_User

Java:

UnfencedGenericRemoteUser

and

FencedGenericRemoteUser

Test

your

implementation

by

running

the

CREATE

USER

MAPPING

statement

and

examining

the

resulting

entries

made

in

the

SYSCAT.USEROPTIONS

catalog

view.

8.

If

you

did

not

do

so

in

Step

4,

implement

the

remote

connection

subclass.

C++:

Remote_Connection

Java:

RemoteConnection

9.

Implement

the

remote

query

subclasses.

C++:

Remote_Query

Java:

RemoteQuery

To

test

your

implementation

of

both

this

class

and

the

remote

connection

class,

submit

a

federated

query

that

references

collections

of

data

in

your

data

source.

10.

Document

your

wrapper.

Related

concepts:

v

“Tips

for

developing

wrappers”

on

page

63

Related

tasks:

v

“Trusted

and

fenced

mode

process

environments”

on

page

64

v

“Wrapper

classes”

on

page

69

v

“Server

classes”

on

page

72

v

“User

classes”

on

page

80

62

Wrapper

Developer’s

Guide

|
|

||

||

|
|
|

|

||

||

|
|
|
|
|
|
|

|
|
|

||

||

|
|
|

|

||

||

|

||

||

|
|
|

Implementations

of

subclasses

and

methods

In

familiarizing

yourself

with

the

wrapper

interface,

consider:

v

What

base

classes

to

use.

Be

aware

that:

–

Table

12

shows

the

base

classes

that

require

you

to

create

your

own

implementations

of

subclasses.

Table

12.

Base

classes

that

require

implementations

of

subclasses

C++

Java™

Unfenced_Generic_Wrapper

UnfencedGenericWrapper

Fenced_Generic_Wrapper

FencedGenericWrapper

Unfenced_Generic_Server

UnfencedGenericServer

Fenced_Generic_Server

FencedGenericServer

Unfenced_Generic_Nickname

UnfencedGenericNickname

Fenced_Generic_Nickname

FencedGenericNickname

Unfenced_Generic_User

UnfencedGenericRemoteUser

Fenced_Generic_User

FencedGenericRemoteUser

Remote_Connection

RemoteConnection

Remote_Query

RemoteQuery

–

If

you

are

implementing

your

own

cost

model,

you

need

to

subclass

the

following:

-

Reply
–

If

your

wrapper

supports

passthrough,

you

need

to

subclass:

-

Remote_Passthru

(RemotePassthru

in

Java)
–

You

need

to

use

IBM®’s

implementations

of

certain

classes.
v

What

to

include

in

the

implementations

that

you

create.

Be

aware

that:

–

You

must

override

the

default

implementations

of

certain

methods

with

customized

implementations

of

your

own.

–

You

have

the

choice

of

using

certain

default

implementations

of

methods

or

overriding

them

with

customized

implementations

of

your

own.

–

You

can

add

new

methods

of

your

own.

Note

that

when

you

want

to

do

so,

you

can

build

new

methods

that

call

methods

of

the

parent

class

that

you

are

implementing.

–

You

can

add

new

data

members.

Related

tasks:

v

“Reply

class”

on

page

83

v

“Remote

passthru

class”

on

page

97

Tips

for

developing

wrappers

When

you

write

a

wrapper,

be

aware

that:

v

The

Wrapper_Utilities

class

(WrapperUtilities

in

Java™)

provides

services

to

help

you

with

your

work.

For

example,

if

you

run

into

a

problem

with

your

code,

you

can

use

the

class’s

trace_data

method.

The

trace_data

method

generates

a

record

that

can

help

you

locate

and

identify

the

problem.

Chapter

8.

Developing

with

wrapper

classes

63

|
|

||

||

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|
|

v

You

can

produce

the

wrapper

in

several

versions,

the

first

one

limited

to

basic

services,

and

the

subsequent

versions

progressively

more

functional

and

efficient.

Related

concepts:

v

“Implementations

of

subclasses

and

methods”

on

page

63

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

Trusted

and

fenced

mode

process

environments

During

query

execution,

the

federated

server

can

improve

performance

by

creating

multiple

subagents

(threads

or

processes)

to

access

data

sources

in

parallel.

Code

executing

in

the

subagent

environment

can

be

isolated

more

easily.

This

isolation

makes

failures

less

likely

to

cause

loss

of

integrity

for

the

system.

For

this

reason,

the

portion

of

the

wrapper

that

is

involved

in

query

execution

is

separated

from

the

piece

that

is

involved

in

query

planning.

As

a

result,

wrappers

are

divided

into

two

parts:

v

The

unfenced

portion

is

involved

in

query

planning.

v

The

fenced

portion

is

involved

in

query

execution.

Each

of

the

wrapper

building

blocks

must

therefore

be

assigned

to

either

the

fenced

or

the

unfenced

portion

of

the

wrapper.

In

some

cases,

the

building

blocks

must

be

split

between

the

two.

If

communication

with

the

external

source

is

required,

the

function

goes

in

the

fenced

portion.

The

processing

environment

varies

slightly

depending

on

whether

the

wrapper

was

developed

in

C++

or

Java.

C++

Processing

Environment

A

C++

wrapper

is

linked

as

two

separate

libraries,

one

containing

the

class

implementations

for

the

unfenced

portion

of

the

wrapper

and

one

containing

the

class

implementations

for

the

fenced

portion.

In

what

is

known

as

fenced

mode,

the

fenced

portions

of

wrappers

are

loaded

into

special

isolated

subagents

called

the

Fenced-Mode

processes

(FMP).

Unfenced

portions

of

wrappers

are

loaded

into

the

main

federated

server

agent.

Figure

7

on

page

65

illustrates

the

fenced-mode

process

model.

64

Wrapper

Developer’s

Guide

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

Figure

7

shows

the

two

separate

libraries

containing

the

fenced

and

unfenced

portions

of

the

wrapper

and

the

separate

areas

where

they

are

loaded;

unfenced

portions

in

the

federated

server

environment

and

fenced

portions

in

the

fenced-mode

process.

When

parallelism

is

not

an

issue,

performance

will

be

better

if

you

do

not

use

subagents

and

all

the

function

takes

place

within

the

federated

server

environment.

Since

you

sacrifice

the

safety

of

isolation,

this

mode

is

called

trusted

mode.

Figure

8

on

page

66

illustrates

the

trusted-mode

process

model.

Structured
and
non-structured
data

Unfenced
User

Unfenced
Nickame

Unfenced
Server

Unfenced
Wrapper

Structured
and
non-structured
data

Source Q

Client

Agent Process

DB2 UDB
Engine

Unfenced-Library

Q
uery G

atew
ay

DB2 Federated Server Environment

Fenced-Mode
Process

Fenced-Library

C
onnection

S
ource Q

 C
lient

Fenced
User

Fenced
Nickame

Fenced
Server

Fenced
Wrapper

Operation

Figure

7.

Fenced-mode

process

model

for

C++

Chapter

8.

Developing

with

wrapper

classes

65

Figure

8

shows

that

in

trusted

mode,

the

fenced

and

unfenced

portions

of

the

wrapper

are

both

loaded

into

the

federated

server

environment.

While

DB2

Information

Integrator

only

supports

trusted-mode

execution

in

V8.1,

you

must

design

wrappers

to

support

both

trusted-mode

and

fenced-mode

execution.

Java

Processing

Environment

Wrappers

that

are

developed

in

Java

always

run

entirely

in

fenced-mode

processes.

Both

the

fenced

and

unfenced

Java

classes

run

in

fenced-mode

processes.

Figure

9

on

page

67

illustrates

the

fenced-mode

processing

environment

for

Java

wrappers.

Unfenced
User

Unfenced
Nickame

Unfenced
Server

Unfenced
Wrapper

Structured
and
non-structured
data

Structured
and
non-structured
data

Source Q

Client

Agent Process

DB2 UDB
Engine

Unfenced-Library

Q
uery G

atew
ay

DB2 Federated Server Environment

Fenced-Library
C

onnection

S
ource Q

 C
lient

Fenced
User

Fenced
Nickame

Fenced
Server

Fenced
Wrapper

Operation

Figure

8.

Trusted–mode

process

model

for

C++

66

Wrapper

Developer’s

Guide

|

|
|
|
|

Figure

9

shows

the

fenced

and

unfenced

classes

running

in

fenced-mode

processes,

not

in

the

federated

server

environment.

Related

concepts:

v

“Classes

for

communications

between

wrappers

and

data

sources”

on

page

69

v

“Implementations

of

subclasses

and

methods”

on

page

63

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

v

“Tips

for

developing

wrappers”

on

page

63

Related

tasks:

v

“Mapping

parts

of

a

wrapper

to

classes”

on

page

67

Mapping

parts

of

a

wrapper

to

classes

Many

of

the

building

blocks

have

unfenced

and

fenced

’sides’

to

them

that

you

must

code

using

the

respective

classes.

The

unfenced

side

takes

part

in

query

planning.

The

fenced

side

is

involved

in

the

query

execution

phase

to

protect

the

federated

server

from

the

data

source’s

environment

when

the

federated

server

is

in

fenced-mode.

Unfenced
User

Unfenced
Nickame

Unfenced
Server

Unfenced
Wrapper

Structured
and
non-structured
data

Structured
and
non-structured
data

Source Q

Client

Agent Process

DB2 UDB
Engine

Java
Wrapper Support

Unfenced-Class

Q
uery G

atew
ay

Federated Server Environment

Fenced-Mode
Process

Fenced-Class

C
onnection

S
ource Q

 C
lient

Fenced
User

Fenced
Nickame

Fenced
Server

Fenced
Wrapper

Operation

Figure

9.

Fenced-mode

process

model

for

Java

Chapter

8.

Developing

with

wrapper

classes

67

|
|

Table

13.

The

unfenced

and

fenced

class

of

the

basic

wrapper

building

blocks

in

C++

Building

block

C++

unfenced

class

C++

fenced

class

Wrapper

Unfenced_Generic_Wrapper

Fenced_Generic_Wrapper

Server

Unfenced_Generic_Server

Fenced_Generic_Server

Nickname

Unfenced_Generic_Nickname

Fenced_Generic_Nickname

User

Unfenced_Generic_User

Fenced_Generic_User

Connection

none

Remote_Connection

Operation

none

Remote_Operation

Table

14.

The

unfenced

and

fenced

class

of

the

basic

wrapper

building

blocks

in

Java

Building

block

Java

unfenced

class

Java

fenced

class

Wrapper

UnfencedGenericWrapper

FencedGenericWrapper

Server

UnfencedGenericServer

FencedGenericServer

Nickname

UnfencedGenericNickname

FencedGenericNickname

User

UnfencedGenericRemoteUser

FencedGenericRemoteUser

Connection

none

RemoteConnection

Operation

none

RemoteOperation

Related

concepts:

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

v

“Tips

for

developing

wrappers”

on

page

63

Related

tasks:

v

“Trusted

and

fenced

mode

process

environments”

on

page

64

68

Wrapper

Developer’s

Guide

||

|||

|||

|||

|||

|||

|||

|||
|

||

|||

|||

|||

|||

|||

|||

|||
|

Chapter

9.

Classes

for

coding

wrappers

This

section

describe

the

classes

you

use

to

code

wrappers.

Classes

for

communications

between

wrappers

and

data

sources

Table

15

shows

the

base

classes

that

model

the

connection

to

the

data

source

and

the

operation

that

the

data

source

performs.

Table

15.

Base

classes

that

model

the

connection

to

the

data

source

Base

classes

in

C++

Base

classes

in

Java™

Remote_Query

RemoteQuery

Remote_Connection

RemoteConnection

Remote_Operation

RemoteOperation

Runtime_Data

RuntimeData

Runtime_Data_List

RuntimeDataList

Runtime_Data_Desc

RuntimeDataDesc

Runtime_Data_Desc_List

RuntimeDataDescList

Remote_Passthru

RemotePassthru

Like

connections,

data

source

operations

are

transient.

Therefore,

the

federated

server

stores

no

information

about

them

in

the

federated

server’s

system

catalog.

Related

concepts:

v

“Implementations

of

subclasses

and

methods”

on

page

63

v

“Typical

procedure

for

developing

a

wrapper”

on

page

61

v

“Tips

for

developing

wrappers”

on

page

63

Related

tasks:

v

“Trusted

and

fenced

mode

process

environments”

on

page

64

v

“Mapping

parts

of

a

wrapper

to

classes”

on

page

67

v

“Remote

connection

class”

on

page

90

v

“Runtime

data

classes”

on

page

94

v

“Runtime

data

description

classes”

on

page

96

v

“Remote

passthru

class”

on

page

97

Related

reference:

v

“Remote

query

class”

on

page

92

Wrapper

classes

The

following

sections

describe

the

unfenced

generic

wrapper

and

fenced

generic

wrapper

classes.

©

Copyright

IBM

Corp.

2003,

2004

69

||

||

||

||

||

||

||

||

||

||
|

|
|

Unfenced_Generic_Wrapper

class

C++:

Invoking

the

function

UnfencedWrapper_Hook

in

the

shared

library

containing

the

wrapper

code

creates

an

instance

of

your

unfenced

wrapper

subclass.

The

federated

server

calls

this

function

when

it

first

loads

the

wrapper’s

unfenced

shared

library.

If

a

DDL

operation

changes

information

pertaining

to

a

wrapper,

the

federated

server

will

destroy

and

recreate

the

wrapper

object

before

its

next

use.

Java:

When

the

federated

server

loads

the

unfenced

wrapper

class,

an

instance

of

the

class

is

automatically

created.

The

name

of

the

wrapper-specific

unfenced

wrapper

class

is

specified

as

the

value

of

the

UNFENCED_WRAPPER_CLASS

option

in

the

CREATE

WRAPPER

statement.

The

unfenced

generic

wrapper

base

class

implementation

maintains

the

following

information:

v

Wrapper

name.

v

Wrapper

type:

’N’

for

nonrelational.

v

Wrapper

version:

a

wrapper-specified

version

number

that

represents

the

version

of

the

wrapper

code

that

was

executing

at

the

time

the

wrapper

registered

with

the

federated

server.

You

can

compare

this

value

with

the

version

of

the

currently

executing

code

to

assure

compatibility.

v

Top-level

filename

of

wrapper

module

library.

v

A

wrapper

information

object

containing

all

the

information

pertaining

to

this

wrapper

that

was

stored

in

the

federated

server’s

system

catalog

as

a

result

of

executing

CREATE

WRAPPER

or

ALTER

WRAPPER

DDL

statements.

Only

member

functions

should

inspect

or

alter

this

information.

Required

customization

for

all

wrappers

The

unfenced

generic

wrapper

subclass

must

implement:

v

A

constructor,

which

calls

the

corresponding

unfenced

generic

wrapper

base

class

constructor.

C++:

Unfenced_Generic_Wrapper

Java:

UnfencedGenericWrapper
v

create

server:

a

method

to

create

an

instance

of

your

unfenced

generic

server

subclass.

C++:

Unfenced_Generic_Server

Java:

UnfencedGenericServer

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

your

unfenced

generic

wrapper

subclass,

override

the

default

implementation

of

the

initialize_my_wrapper()

function

to

extract

this

information

from

the

wrapper

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

wrapper

information

object.

If

you

choose

to

refer

to

the

information

in

this

form,

use

the

data

member

that

contains

a

copy

of

the

wrapper

information

object.

In

Java,

the

wrapper

can

retain

a

reference

to

the

WrapperInfo

object

but

there

is

no

copy

function.

v

If

you

define

wrapper

options,

override

the

default

implementations

of

the

verify_my_register_wrapper_info

function

and

verify_my_alter_wrapper_info

function

to

verify

that

the

options

and

values

supplied

on

the

DDL

are

valid.

If

you

wish

to

alter

an

option

value

supplied

on

the

DDL,

or

supply

additional

70

Wrapper

Developer’s

Guide

|

|
|

||

||

|
|

||

||

|
|
|
|
|
|
|
|
|

|
|
|
|

options,

your

implementation

should

supply

the

overriding/additional

information

via

a

“delta”

wrapper

information

object.

Before

allocating

a

new

“delta”

object,

check

whether

one

already

exists.

If

a

“delta”

object

does

exist,

do

not

allocate

another.

In

Java,

the

“delta”

wrapper

information

object

is

actually

the

return

object

of

the

verifyMyRegisterWrapperInfo

and

verifyMyAlterWrapperInfo

methods.

This

object

must

be

created

by

the

wrapper.

v

If

your

unfenced

generic

wrapper

subclass

points

to

any

out-of-line

storage

you

have

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Table

16.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

behavior

initialize_my_wrapper

initializeMyWrapper

No-op

create_server

createServer

Error

verify_my_register_wrapper_info

verifyMyRegisterWrapperInfo

Verifies

no

non-DB2

Information

Integrator

options

were

specified

verify_my_alter_wrapper_info

verifyMyAlterWrapperInfo

Calls

verify

my

register

wrapper

information

object

Table

17.

Public/protected

member

function

Public/protected

member

function

in

C++

Public/protected

member

function

in

Java

Behavior

is_reserved_wrapper_option

isReserved

Returns

true

if

option

handled

by

DB2

UDB

Fenced_Generic_Wrapper

class

C++:

Invoking

the

function

FencedWrapper_Hook

in

the

shared

library

containing

the

wrapper

code

creates

an

instance

of

your

fenced

wrapper

subclass.

The

federated

server

calls

this

function

when

it

first

loads

the

wrapper’s

fenced

shared

library.

If

a

DDL

operation

changes

information

pertaining

to

a

wrapper,

the

federated

server

will

destroy

and

recreate

the

wrapper

object

before

its

next

use.

Java:

When

the

federated

server

loads

the

fenced

wrapper

class,

an

instance

of

the

class

is

automatically

created.

The

name

of

the

wrapper-specific

fenced

wrapper

class

is

specified

as

the

value

of

the

FENCED_WRAPPER_CLASS

option

in

the

CREATE

WRAPPER

statement.

The

fenced

generic

wrapper

base

class

implementation

maintains

the

following

information:

v

Wrapper

name.

v

Wrapper

type:

’N’

for

nonrelational.

v

Wrapper

version:

a

wrapper-specified

version

number

that

represents

the

version

of

the

wrapper

code

that

was

executing

at

the

time

the

wrapper

registered

with

the

federated

server.

This

version

number

is

an

integer,

not

a

float.

You

can

compare

this

value

with

the

version

of

the

currently

executing

code

to

assure

compatibility.

v

Filename

of

wrapper

module

library.

v

A

wrapper

information

object

containing

information

pertaining

to

this

wrapper

that

was

stored

in

the

database

manager

catalog

as

a

result

of

executing

CREATE

WRAPPER

or

ALTER

WRAPPER

DDL

statements.

Only

member

functions

should

inspect

or

alter

this

information.

Chapter

9.

Classes

for

coding

wrappers

71

|
|
|
|
|
|

||

|||

|||

|||

|||
|

|||
|
|

||

|||

|||
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|

Required

customization

for

all

wrappers

The

fenced

generic

wrapper

subclass

must

implement:

v

A

constructor,

which

calls

the

corresponding

fenced

generic

wrapper

base

class

constructor.

C++:

Fenced_Generic_Wrapper

Java:

FencedGenericWrapper
v

create

server:

a

method

to

create

an

instance

of

your

fenced

generic

server

subclass.

C++:

Fenced_Generic_Server

Java:

FencedGenericServer

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

your

fenced

generic

wrapper

subclass,

override

the

default

implementation

of

the

initialize_my_wrapper

function

to

extract

this

information

from

the

wrapper

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

wrapper

information

object.

If

you

choose

to

refer

to

the

information

in

this

form,

use

the

data

member

that

contains

a

copy

of

the

wrapper

information

object.

In

Java,

the

wrapper

can

retain

a

reference

to

the

WrapperInfo

object

but

there

is

no

copy

function.

v

If

your

Unfenced_Generic_Wrapper

subclass

points

to

any

out-of-line

storage

you

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Table

18.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

initialize_my_wrapper

initializeMyWrapper

Yes

No-op

create_server

createServer

Yes

Error

Related

tasks:

v

“Server

classes”

on

page

72

v

“Nickname

classes”

on

page

76

v

“User

classes”

on

page

80

v

“Altering

a

wrapper”

in

the

Federated

Systems

Guide

Related

reference:

v

“ALTER

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

v

“Wrapper

classes

for

the

Java

API”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Wrapper

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Wrapper

classes

for

the

C++

API”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Server

classes

The

following

sections

describe

the

Unfenced_Generic_Server

and

fenced

generic

server

classes.

72

Wrapper

Developer’s

Guide

|
|

||

||

|
|

||

||

||

||||

||||

||||
|

Unfenced_Generic_Server

class

Invoking

the

create

server

method

on

an

instance

of

your

unfenced

wrapper

subclass

creates

an

instance

of

your

unfenced

server

subclass.

The

federated

server

calls

this

method

prior

to

the

application’s

first

use

of

the

relevant

server.

If

a

DDL

operation

changes

information

pertaining

to

a

server,

the

federated

server

will

destroy

and

recreate

the

server

object

before

its

next

use.

Unless

otherwise

customized,

the

Unfenced_Generic_Server

base

class

implementation

maintains

the

following

information:

v

Server

name.

v

A

pointer

to

the

appropriate

wrapper

object.

v

A

server

information

object

containing

information

pertaining

to

the

server

that

was

stored

in

the

federated

server’s

system

catalog

as

a

result

of

executing

DDL

statements.

You

can

access

some

of

this

information

directly

as

data

members.

Only

data

member

functions

can

inspect

or

alter

the

rest

of

this

information.

Required

customization

for

all

wrappers

The

Unfenced_Generic_Server

subclass

must

implement:

v

A

constructor

for

the

subclass,

which

calls

the

corresponding

Unfenced_Generic_Server

constructor.

v

create

nickname:

a

method

to

create

an

instance

of

your

unfenced

nickname

subclass.

v

plan

request:

a

method

to

analyze

a

query

fragment

contained

in

a

Request

object,

and

return

one

or

more

Reply

objects

each

identifying

a

query

fragment

that

can

be

executed

by

the

data

source

and

its

corresponding

execution

cost.

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

your

Unfenced_Generic_Server

subclass,

override

the

default

implementation

of

the

initialize_my_server

member

function

to

extract

this

information

from

the

server

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

server

information

object.

If

you

chose

to

store

the

information

in

this

form,

use

the

data

member

that

contains

a

copy

of

this

information

object.

In

Java

the

server

can

retain

a

reference

to

the

ServerInfo

object,

and

there

is

no

copy

function.

v

If

you

define

server

options,

server

type,

and

server

version,

in

addition

to

those

already

defined

for

the

Unfenced_Generic_Server

class,

override

the

default

implementations

of

the

verify_my_register_server_info

object

and

verify_my_alter_server_info

object

to

verify

the

validity

of

the

options

and

values

supplied

on

the

DDL.

You

do

not

need

to

verify

the

standard

Unfenced_Generic_Server

options;

the

Unfenced_Generic_Server

implementation

will

do

this.

If

you

wish

to

alter

an

option

value

supplied

on

the

DDL,

or

supply

additional

options,

your

implementation

should

supply

the

overriding/additional

information

via

a

“delta”

server

information

object.

In

C++,

before

allocating

a

new

“delta”object,

check

whether

one

already

exists.

If

it

does,

do

not

allocate

another.

In

Java,

the

“delta”

wrapper

information

object

is

actually

the

return

object

of

the

verifyMyRegisterWrapperInfo

and

verifyMyAlterWrapperInfo

methods.

This

object

must

be

created

by

the

wrapper.

v

If

the

default

Unfenced_Generic_User

class

is

not

sufficient

for

your

wrapper,

override

the

implementation

of

the

create

remote

user

method

to

create

an

instance

of

your

Unfenced_Generic_User

subclass.

Chapter

9.

Classes

for

coding

wrappers

73

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

v

If

the

default

cost

model

produces

inaccurate

estimates

for

cardinality

or

execution

time,

override

the

implementation

of

the

create

reply

method

to

create

an

instance

of

a

Reply

subclass

that

you

have

customized

to

support

your

custom

cost

model.

v

If

the

default

selectivity

estimator

produces

inaccurate

values

for

predicates

involving

data

from

your

data

source,

override

the

default

implementation

of

the

get

selectivity

method

with

a

method

that

produces

more

accurate

results.

v

If

your

Unfenced_Generic_Server

subclass

points

to

any

out-of-line

storage

you

have

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Table

19.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

verify_my_register_server_info

verifyMyRegisterServerInfo

Yes

Verifies

the

options

against

the

predefined

list

(according

to

the

is_reserved_server_option()

function

in

C++

and

the

isReserved()

function

in

the

CatalogOption

class

in

Java).

Any

other

options

produce

an

error.

verify_my_alter_server_info

verifyMyAlterServerInfo

Yes

Verifies

the

options

against

the

predefined

list

(according

to

the

is_reserved_server_option()

function

in

C++

and

the

isReserved()

function

in

the

CatalogOption

class

in

Java).

Any

other

options

produce

an

error.

initialize_my_server

initializeMyServer

Yes

No-op

create_nickname

createNickname

Yes

Error

create_remote_user

createRemoteUser

Yes

Creates

unfenced

generic

user

create_reply

createReply

Yes

Creates

Reply

supporting

default

cost

model

get_selectivity

getSelectivity

Yes

Calculates

selectivity

with

default

model

get_type

getType

Yes

Gets

type

from

information

get_version

getVersion

Yes

Gets

version

from

information

plan_request

planRequest

No

Returns

the

appropriate

reply

objects

Fenced_Generic_Server

class

Invoking

the

create

server

method

on

an

instance

of

your

fenced

wrapper

subclass

creates

an

instance

of

your

fenced

server

subclass.

The

federated

server

calls

this

method

prior

to

the

application’s

first

use

of

the

relevant

server.

If

a

DDL

operation

changes

information

pertaining

to

a

server,

the

federated

server

will

destroy

and

recreate

the

server

object

before

its

next

use.

74

Wrapper

Developer’s

Guide

|
|
|

||

||
|
||

||||
|
|
|
|
|
|
|
|

||||
|
|
|
|
|
|
|
|

||||

||||

||||
|

||||
|

||||
|

||||
|

||||
|

||||
|
|

|
|
|
|
|

Unless

otherwise

customized,

the

fenced

generic

server

base

class

implementation

maintains

the

following

information:

v

Server

name.

v

A

pointer

to

the

appropriate

wrapper

object.

v

A

server

information

object

containing

information

pertaining

to

this

server

that

was

stored

in

the

federated

server’s

system

catalog

as

a

result

of

executing

DDL

statements.

v

A

table

of

instantiated

remote

connection

objects

for

this

server

(The

current

implementation

limits

the

number

of

remote

connections

to

one.)

v

If

a

connection

to

the

data

source

exists,

a

pointer

to

a

fenced

generic

user

object

representing

the

user

mapping

for

the

connected

user.

You

can

access

some

of

this

information

directly

as

data

members.

Only

data

member

functions

can

inspect

or

alter

the

rest

of

this

information.

Required

customization

for

all

wrappers

The

fenced

generic

server

subclass

must

implement:

v

A

constructor

for

the

subclass,

which

calls

the

corresponding

fenced

generic

server

constructor.

v

create

nickname:

a

method

to

create

an

instance

of

your

fenced

nickname

subclass.

C++:

Fenced_Nickname

Java:

FencedNickname
v

create

remote

connection:

a

method

to

create

an

instance

of

your

remote

connection

subclass.

C++:

Remote_Connection

Java:

RemoteConnection

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

the

fenced

generic

server

subclass,

override

the

default

implementation

of

the

initialize_my_server

function

to

extract

this

information

from

the

server

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

server

information

object,

instead

use

the

data

member

that

contains

a

copy

of

this

object,

should

you

choose

to

store

the

information

in

this

form.

In

Java,

the

server

can

retain

a

reference

to

the

ServerInfo

object

and

there

is

no

copy

function

v

If

the

default

fenced

generic

user

class

is

not

sufficient

for

your

wrapper,

override

the

implementation

of

the

create

remote

user

method

to

create

an

instance

of

your

fenced

generic

user

subclass.

C++:

Fenced_Generic_User

Java:

FencedGenericRemoteUser
v

If

the

fenced

generic

server

subclass

points

to

any

out-of-line

storage

you

have

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Table

20.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

initialize_my_server

initializeMyServer

Yes

No-op

Chapter

9.

Classes

for

coding

wrappers

75

|
|

|
|

|
|

||

||

|
|

||

||

|
|
|

||

||

||

||
|
||

||||

Table

20.

Virtual

functions

(continued)

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

create_remote_user

createRemoteUser

Yes

Creates

the

unfenced

generic

user

class

create_remote_connection

createRemoteConnection

Yes

Error

create_nickname

createNickname

Yes

Error

get_type

getType

Yes

Gets

type

from

information

get_version

getVersion

Yes

Gets

version

from

information

Table

21.

Public/protected

member

functions

Public/protected

member

functions

in

C++

Public/protected

member

functions

in

Java

Behavior

find_current_remote_user

findRemoteUser

Finds

the

remote

user

object

for

the

current

author

id

find_connection

findConnection

Gets

the

connection

object

for

a

single

connected

remote

user

find_nickname

findNickname

Gets

the

unfenced

nickname

object

given

a

local

schema

name

Related

tasks:

v

“Wrapper

classes”

on

page

69

v

“Nickname

classes”

on

page

76

v

“User

classes”

on

page

80

Related

reference:

v

“Server

classes

for

the

Java

API”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Server

classes

for

the

C++

API”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Nickname

classes

The

following

sections

describe

the

unfenced

generic

nickname

and

fenced

generic

nickname

classes.

Unfenced_Generic_Nickname

class

Invoking

the

create

nickname

method

on

an

instance

of

the

fenced

server

subclass

creates

an

instance

of

the

unfenced

nickname

subclass.

This

method

is

usually

called

as

a

result

of

a

call

to

the

unfenced

generic

server

method

find_nickname

(findNickname

in

Java).

If

a

DDL

operation

changes

information

pertaining

to

a

nickname,

the

federated

server

will

destroy

and

recreate

the

nickname

object

before

its

next

use.

Unless

otherwise

customized,

the

unfenced

generic

nickname

base

class

implementation

maintains

the

following

information:

v

The

local

name

for

the

remote

data

set

for

which

the

nickname

is

being

defined.

76

Wrapper

Developer’s

Guide

|

||
|
||

||||
|

||||

||||

||||
|

||||
|
|

||

|
|
|
|
|

|||
|

|||
|

|||
|
|

|
|

v

The

local

schema

for

the

remote

data

set

for

which

the

nickname

is

being

defined.

v

A

pointer

to

the

appropriate

server

object.

v

Estimated

values

for

four

statistics

that

the

default

cost

model

uses:

1.

The

cardinality

of

a

nickname.

This

is

defined

as

the

number

of

rows

contained

in

the

nickname.

The

federated

server

stores

the

cardinality

for

an

individual

nickname

in

the

system

table

SYSCAT.TABLES

or

SYSSTAT.TABLES

(the

“CARD”

column

in

either

table.)

If

cardinality

is

not

available

for

a

nickname,

the

cost

model

uses

a

default

value

of

1000

rows.

2.

The

setup

cost

for

a

nickname.

Setup

cost

represents

the

typical

time,

in

milliseconds,

that

it

takes

a

wrapper

to

get

a

query

fragment

ready

to

submit

to

the

remote

source.

Setup

begins

when

a

wrapper

receives

the

wrapper

Execution

Descriptor

it

produced

during

query

planning,

and

ends

when

the

wrapper

is

ready

to

submit

the

corresponding

operation

to

the

remote

source.

Setup

cost

should

only

include

work

that

the

wrapper

does

not

need

to

repeat

if

the

wrapper

is

asked

to

perform

the

same

query

fragment

again,

perhaps

with

a

different

parameter

value.

For

example,

if

a

wrapper

submits

query

fragment

to

a

remote

source

in

the

form

of

a

URL,

setup

cost

includes

the

time

required

to

generate

that

URL

from

the

information

stored

by

the

wrapper

in

the

Execution

Descriptor.

The

federated

server

stores

this

statistic

in

the

SETUP_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

2000

milliseconds.

3.

The

submission

cost

for

a

nickname.

Submission

cost

represents

the

typical

time,

in

milliseconds,

that

it

takes

a

wrapper

to

submit

a

query

fragment

to

the

remote

source.

Submission

begins

at

the

end

of

setup,

as

defined

above,

and

ends

when

the

wrapper

is

ready

to

request

the

first

row

or

block

of

result

data

from

the

source.

Submission

cost

should

only

include

work

that

the

wrapper

must

repeat

each

time

a

given

query

fragment

is

submitted.

For

example,

if

a

new

HTTP

connection

is

required

for

each

interaction

with

the

remote

source,

submission

cost

should

include

the

time

necessary

to

create

this

connection.

The

federated

server

stores

this

statistic

in

the

SUBMISSION_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

25

milliseconds.

4.

The

advance

cost

for

a

nickname.

This

is

the

typical

time,

in

milliseconds,

that

it

takes

to

fetch

a

single

row

for

the

nickname.

It

is

exclusive

of

any

time

necessary

to

start

a

query.

The

federated

server

stores

this

statistic

in

the

ADVANCE_COST

nickname

option.

If

that

option

is

not

present

for

a

nickname,

then

the

cost

model

uses

a

value

of

50

milliseconds.

If

the

data

source

returns

data

in

blocks,

rather

than

rows,

calculate

the

advance

cost

by

dividing

the

typical

cost

of

fetching

a

block

by

the

typical

number

of

rows

per

block.

Required

customization

for

all

wrappers

The

Unfenced_Generic_Nickname

subclass

must

implement:

v

A

constructor

for

the

subclass,

which

should

just

call

the

corresponding

Unfenced_Generic_Nickname

constructor.

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

the

Unfenced_Generic_Nickname

subclass,

override

the

default

implementation

of

initialize_my_nickname

function

to

extract

this

information

from

the

nickname

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

nickname

information

object.

In

Java,

you

can

retain

a

reference

to

the

nickname

information

object.

Chapter

9.

Classes

for

coding

wrappers

77

|
|

|
|
|
|
|
|

v

If

you

define

nickname

options

or

column

options,

override

the

default

implementations

of

verify_my_register_nickname_info

and

verify_my_alter_nickname_info

(verifyMyRegisterNicknameInfo

and

verifyMyAlterNicknameInfo

in

Java)

to

verify

the

validity

of

the

options

and

values

supplied

on

the

DDL.

If

you

wish

to

alter

an

option

value

supplied

on

the

DDL

or

supply

additional

options,

the

implementation

should

supply

the

overriding/additional

information

via

a

“delta”

nickname

information

object.

Before

allocating

a

new

“delta”

object,

check

whether

one

already

exists.

If

so,

use

it

and

do

not

allocate

another.

In

Java,

the

“delta”

object

is

actually

a

return

object

and

must

be

created

by

the

wrapper.

v

If

you

allocated

any

out-of-line

storage

pointed

to

by

the

Unfenced_Generic_Nickname

subclass,

you

must

implement

a

destructor

for

the

subclass

which

frees

this

storage.

Table

22.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

behavior

initialize_my_nickname

initializeMyNickname

No-op

verify_my_register_nickname_info

verifyMyRegisterNicknameInfo

Verifies

the

options

against

the

predefined

list

(according

to

the

is_reserved_nickname_option()

function

in

C++

and

the

CatalogOption.isReserved()

method

in

Java).

Any

other

options

produce

an

error.

verify_my_alter_nickname_info

verifyMyAlterNicknameInfo

Verifies

the

options

against

the

predefined

list

(according

to

the

is_reserved_nickname_option()

function

in

C++

and

the

CatalogOption.isReserved()

method

in

Java).

Any

other

options

produce

an

error.

Fenced_Generic_Nickname

class

Invoking

the

create

nickname

method

on

an

instance

of

the

fenced

server

subclass

creates

an

instance

of

the

fenced

nickname

subclass.

This

method

is

usually

called

as

a

result

of

executing

a

CREATE

NICKNAME

statement.

If

a

DDL

operation

changes

information

pertaining

to

a

nickname,

the

federated

server

will

destroy

and

recreate

the

nickname

object

before

its

next

use.

Unless

otherwise

customized,

the

Fenced_Generic_Nickname

base

class

implementation

maintains

the

following

information:

v

The

local

name

for

the

remote

data

set

for

which

the

nickname

is

being

defined.

v

The

local

schema

for

the

remote

data

set

for

which

the

nickname

is

being

defined.

v

A

pointer

to

the

appropriate

server

object.

Required

customization

for

all

wrappers

The

Fenced_Generic_Nickname

subclass

must

implement:

v

A

constructor

for

the

subclass,

which

calls

the

corresponding

Fenced_Generic_Nickname

constructor.

78

Wrapper

Developer’s

Guide

|
|
|

||

|||

|||

|||
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|

|
|

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

the

Fenced_Generic_Nickname

subclass,

override

the

default

implementation

of

the

initialize_my_nickname

function

to

extract

this

information

from

the

nickname

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

nickname

information

object.

In

Java,

you

can

retain

a

reference

to

the

nickname

information

object.

v

If

you

define

nickname

options,

override

the

default

implementation

of

the

verify_my_register_nickname_info

function

to

verify

that

the

validity

of

the

options

and

values

supplied

on

the

DDL.

If

you

wish

to

alter

an

option

value

supplied

on

the

DDL,

supply

additional

options,

or

supply

information

and

options

obtained

from

the

data

source

rather

than

from

DDL,

your

implementation

should

supply

the

overriding

or

additional

information

using

a

“delta”

nickname

information

object.

Before

allocating

a

new

“delta”

object,

check

whether

one

already

exists.

If

so,

use

it

and

do

not

allocate

another.

In

Java,

the

“delta”

object

is

actually

a

return

object

and

must

be

created

by

the

wrapper.

v

If

you

allocated

any

out-of-line

storage

pointed

to

by

the

Unfenced_Generic_Nickname

subclass,

you

must

implement

a

destructor

for

the

subclass

which

frees

this

storage.

Table

23.

Virtual

Functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

behavior

initialize_my_nickname

initializeMyNickname

No-op

verify_my_register_nickname_info

verifyMyRegisterNicknameInfo

Verifies

the

options

against

the

predefined

list

(according

to

the

is_reserved_nickname_option()

in

C++

and

the

CatalogOption.isReserved()

method

in

Java).

Any

other

options

produce

an

error.

Table

24.

Public/protected

member

functions

Public/protected

member

function

in

C++

Public/protected

member

function

in

Java

Behavior

get_card

getCard

Accessor

get_setup_cost

n/a

Accessor

get_advance_cost

n/a

Accessor

get_submission_cost

n/a

Accessor

Related

tasks:

v

“Wrapper

classes”

on

page

69

v

“Server

classes”

on

page

72

v

“User

classes”

on

page

80

Related

reference:

v

“Nickname

classes

for

the

Java

API”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Nickname

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Nickname

classes

for

the

C++

API”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Chapter

9.

Classes

for

coding

wrappers

79

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

||

|||

|||

|||
|
|
|
|
|
|

||

|
|
|
|
|

|||

|||

|||

|||
|

User

classes

The

following

sections

describe

the

Unfenced_Generic_User

and

fenced

generic

user

classes.

Unfenced_Generic_User

class

Invoking

the

create

remote

user

method

on

an

instance

of

your

unfenced

server

subclass

creates

an

instance

of

your

unfenced

user

subclass.

The

federated

server

calls

this

method

when

processing

CREATE

USER

MAPPING

or

ALTER

USER

MAPPING

statements.

If

a

DDL

operation

changes

information

pertaining

to

a

remote

user,

the

federated

server

will

destroy

and

recreate

the

remote

user

object

before

its

next

use.

Unless

otherwise

customized,

the

Unfenced_Generic_User

base

class

implementation

maintains

the

following

information:

v

The

local

authid

of

the

user.

v

A

user

information

object

containing

information

pertaining

to

this

(server,

user)

pair

that

was

stored

in

the

federated

server’s

system

catalog

as

a

result

of

executing

DDL

statements.

v

A

pointer

to

the

appropriate

server

object.

Required

customization

for

all

wrappers

If

your

data

source

does

not

require

authentication

information,

customization

of

the

unfenced

generic

user

base

class

is

not

necessary.

If

you

create

an

Unfenced_Generic_User

subclass,

it

must

implement:

v

A

constructor

for

your

subclass,

which

should

just

call

the

corresponding

Unfenced_Generic_User

constructor.

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

your

Unfenced_Generic_User

subclass,

override

the

default

implementation

of

the

initialize_my_user

function

to

extract

this

information

from

the

user

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

user

information

object,

instead

use

the

data

member

that

contains

a

copy

of

this

object,

should

you

choose

to

store

the

information

in

this

form.

In

Java,

you

can

retain

a

reference

to

the

UserInfo

object

but

there

is

no

copy

functionality.

v

If

you

define

user

options,

override

the

default

implementations

of

the

verify_my_register_user_

info

and

the

verify_my_alter_user_info

functions

to

verify

the

validity

of

the

options

and

values

supplied

on

the

DDL.

If

you

wish

to

alter

an

option

value

supplied

on

the

DDL,

or

supply

additional

options,

your

implementation

should

supply

the

overriding/additional

information

via

a

“delta”

user

information

object.

Before

allocating

a

new

“delta”

object,

check

whether

one

already

exists.

If

so,

use

it

and

do

not

allocate

another.

In

Java,

the

“delta”

object

is

actually

the

object

returned

by

the

verify

methods

and

needs

to

be

created

by

the

wrapper.

v

If

your

Unfenced_Generic_User

subclass

points

to

any

out-of-line

storage

you

have

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

80

Wrapper

Developer’s

Guide

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Table

25.

Virtual

Functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

verify_my_register_user_info

verifyMyRegisterUserInfo

Yes

Verifies

that

only

DB2

UDB

options

have

been

specified.

initialize_my_user

initializeMyUser

Yes

No-op

verify_my_alter_user_info

verifyMyAlterUserInfo

Yes

Verifies

that

only

DB2

UDB

options

have

been

specified.

Table

26.

Public/protected

member

functions

Public/protected

member

function

in

C++

Public/protected

member

function

in

Java

Behavior

get_local_name

getLocalName

Accessor

Fenced_Generic_User

class

Invoking

the

create

remote

user

method

on

an

instance

of

your

fenced

server

subclass

creates

an

instance

of

your

fenced

user

subclass.

This

method

is

called

by

the

federated

server

prior

to

the

application’s

first

request

to

connect

to

the

server

using

the

remote

connection

object.

If

a

DDL

operation

changes

information

pertaining

to

a

remote

user,

the

federated

server

will

destroy

and

recreate

the

remote

user

object

before

its

next

use.

Unless

otherwise

customized,

the

fenced

generic

user

base

class

implementation

maintains

the

following

information:

v

The

local

authid

of

the

user.

v

A

user

information

object

containing

information

pertaining

to

this

server/user

pair

that

was

stored

in

the

federated

server’s

system

catalog

as

a

result

of

executing

DDL

statements.

v

A

pointer

to

the

appropriate

server

object.

Required

customization

for

all

wrappers

If

your

data

source

does

not

require

authentication

information,

customization

of

the

Fenced_Generic_User

base

class

is

not

necessary.

If

you

create

a

Fenced_Generic_User

subclass,

it

must

implement:

v

A

constructor

for

your

subclass,

which

should

just

call

the

corresponding

Fenced_Generic_User

constructor.

Additional

customization

v

If

you

need

to

store

additional

information

in

instances

of

your

fenced

generic

user

subclass,

override

the

default

implementation

of

the

initialize_my_user

function

to

extract

this

information

from

the

user

information

object

supplied

as

a

parameter.

In

C++,

you

cannot

retain

a

pointer

to

this

user

information

object,

instead

use

the

data

member

that

contains

a

copy

of

this

object,

should

you

choose

to

store

the

information

in

this

form.

In

Java,

you

can

retain

a

reference

to

the

UserInfo

object,

but

there

is

no

“copy”

functionality.

v

If

your

Fenced_Generic_User

subclass

points

to

any

out-of-line

storage

you

have

allocated,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Chapter

9.

Classes

for

coding

wrappers

81

||

|||
|
|

||||
|
|

||||

||||
|
|
|

||

|
|
|
|
|

|||
|

|
|
|
|
|
|

|
|

|

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

Table

27.

Virtual

functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

initialize_my_user

initializeMyUser

Yes

No-op

Table

28.

Public/Protected

member

functions

Public/protected

member

function

in

C++

Public/protected

member

function

in

Java

Behavior

get_local_name

getLocalName

Accessor

Related

tasks:

v

“Wrapper

classes”

on

page

69

v

“Server

classes”

on

page

72

v

“Nickname

classes”

on

page

76

Related

reference:

v

“User

classes

for

the

Java

API”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“User

classes

for

the

C++

API”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Request

class

This

class

is

used

during

query

planning

as

part

of

the

Request-Reply-Compensate

protocol.

The

federated

server

optimizer

generates

an

instance

of

this

class

to

describe

each

query

fragment

that

the

data

source

might

be

asked

to

evaluate.

Methods

Table

29.

Methods

Name

in

C++

Name

in

Java

Description

get_number_of_quantifiers

getNumberOfQuantifiers

Retrieves

the

number

of

elements

in

the

FROM

clause.

get_number_of_predicates

getNumberOfPredicates

Retrieves

the

number

of

elements

in

the

WHERE

clause.

get_number_of_head_exp

getNumberOfHeadExp

Retrieves

the

number

of

elements

in

the

SELECT

clause.

get_quantifier_handle

getQuantifier.getHandle

Retrieves

a

handle

for

the

element

at

a

specified

position

in

the

FROM

clause.

get_predicate_handle

getPredicate.getHandle

Retrieves

a

handle

for

the

element

at

a

specified

position

in

the

WHERE

clause.

get_head_exp_handle

getHeadExp.getHandle

Retrieves

a

handle

for

the

element

at

a

specified

position

in

the

SELECT

clause.

get_nickname

getNickname

Retrieves

a

Nickname

object

for

a

quantifier

designated

by

a

handle

in

the

FROM

clause.

get_head_exp

getHeadExp

Retrieves

a

Request

Exp

object

for

a

head

expression

designated

by

a

handle

in

the

SELECT

clause.

82

Wrapper

Developer’s

Guide

||

||
|
|
|
|

||||
|

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

Table

29.

Methods

(continued)

Name

in

C++

Name

in

Java

Description

get_predicate

getPredicate

Retrieves

a

Request

Exp

object

for

a

predicate

designated

by

a

handle

in

the

WHERE

clause.

get_distinct

getDistinct

Tests

the

DISTINCT

indicator.

Related

reference:

v

“Request

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Request

classes

for

the

C++

API”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Reply

class

A

wrapper

generates

an

instance

of

this

class

to

represent

a

portion

of

the

query

fragment

in

a

request

that

the

data

source

can

run.

A

wrapper

can

generate

several

replies

for

a

single

Request.

The

Reply

class

adds

methods

and

data

members

to:

v

populate

the

reply

by

adding

entries

to

the

classes:

add_to_CCCC

v

store

the

execution

descriptor

pointer

and

size

v

chain

the

replies

when

the

wrapper

returns

more

than

one

plan

for

the

same

request

v

store

order

information:

interesting

orderings

of

the

returned

data

that

the

optimizer

might

use

to

construct

more

optimal

plan

Advanced

customization

You

can

override

the

default

implementation

of

the

costing

methods

with

ones

that

more

precisely

describe

the

source’s

execution

model.

Overriding

the

default

costing

is

dependent

on

the

default

selectivity

estimation

for

the

predicates

in

the

query

fragment.

Calling

the

Unfenced_Generic_Server::get_selectivity

method

(UnfencedGenericServer.getSelectivity

method

in

Java)

obtains

selectivity

estimates

that

you

can

also

override.

Methods

Table

30.

Methods

Name

in

C++

Name

in

Java

Default

provided?

Description

add_head_exp

addHeadExp

Yes

Adds

a

head

expression

handle

at

the

next

free

position.

add_predicate

addPredicate

Yes

Adds

a

predicate

handle

at

the

next

free

position.

add_quantifier

addQuantifier

Yes

Adds

a

quantifier

handle

at

the

next

free

position

add_order_entry

addOrderEntry

Yes

Adds

an

order

entry.

Order

entry

is

composed

of

a

direction

(ASC

or

DSC)

and

integer

index

of

the

head

expression

ordered.

Chapter

9.

Classes

for

coding

wrappers

83

|

|||

|||
|
|

|||
|

|
|
|
|
|
|

||

||
|
||

||||
|

||||
|

||||
|

||||
|
|
|

Table

30.

Methods

(continued)

Name

in

C++

Name

in

Java

Default

provided?

Description

get_parameter_order

n/a

Yes

Returns

an

order

of

the

parameters

for

replies

that

represent

query

fragments

requiring

parameters.

It

performs

a

preorder

traversal

of

all

the

expressions

in

the

WHERE

and

SELECT

clauses

and

produces

an

order.

Returns

a

list

of

parameter

handles.

cardinality

cardinality

Yes

Returns

the

cardinality

of

the

result

returned

by

executing

the

query

fragment

represented

by

the

reply.

The

default

version

of

cardinality()

returns

the

product

of

the

cardinalities

of

all

of

the

nicknames

multiplied

by

the

selectivity

of

the

predicates.

total_cost

totalCost

Yes

Total

execution

cost,

in

milliseconds,

needed

to

execute

the

query

fragment

represented

by

the

reply.

The

default

version

calls

all_costs

and

returns

the

total

cost

value.

re_exec_cost

reExecCost

Yes

Time

needed

to

re-execute

the

query

fragment

represented

by

the

reply.

The

default

calls

all_costs()

and

returns

the

re-execute

cost

value.

Note:

It

is

better

if

the

developer

overrides

all_costs()

than

override

this

routine.

first_tuple_cost

firstTupleCost

Yes

Time

needed

to

obtain

the

first

result

tuple

for

the

query

fragment

represented

by

the

reply.

The

default

calls

all_costs()

and

returns

the

first-tuple

cost

value

Note:

It

is

better

if

the

developer

overrides

all_costs()

than

override

this

routine.

set_next_reply

setNextReply

Yes

Chain

the

replies

when

the

wrapper

returns

more

than

one

reply

for

a

request.

84

Wrapper

Developer’s

Guide

|

||
|
||

||||
|
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|

Table

30.

Methods

(continued)

Name

in

C++

Name

in

Java

Default

provided?

Description

all_costs

n/a

No;

you

must

implement

Calculates

three

cost

values,

total

cost,

first

tuple

cost

and

re-execute

cost.

first

tuple

cost

=

average-setup-cost

+

average-submission-cost

+

average-advance-cost.

re-execute

cost

=

average-submission-cost

+

(average-advance-cost

*

estimated-cardinality)

total

cost

=

average-setup-cost

+

average-submission-cost

+

(average-advance-cost

*

estimated-cardinality)

where:

average-setup-cost

The

average

of

the

setup

costs

for

all

nicknames

in

the

query

fragment.

average-submission-cost

The

average

of

the

submission

costs

for

all

nicknames

in

the

query

fragment.

average-advance-cost

The

average

of

the

advance

costs

for

all

nicknames

in

the

query

fragment.

estimated-cardinality

The

estimated

cardinality

(returned

by

the

cardinality()

method)

for

the

query

fragment.

get_number_of_quantifiers

getNumberOfQuantifiers

Yes

Retrieves

the

number

of

elements

in

the

FROM

clause.

get_number_of_predicates

getNumberOfPredicates

No;

you

must

implement

Retrieves

the

number

of

elements

in

the

WHERE

clause.

get_number_of_head_exp

getNumberOfHeadExp

No;

you

must

implement

Retrieves

the

number

of

elements

in

the

SELECT

clause.

get_quantifier_handle

getQuantifier.getHandle

No;

you

must

implement

Retrieves

a

handle

at

a

position

in

the

FROM

clause.

get_predicate_handle

getPredicate.getHandle

No;

you

must

implement

Retrieves

a

handle

at

a

position

in

the

WHERE

clause.

get_head_exp_handle

getHeadExp.getHandle

No;

you

must

implement

Retrieves

a

handle

at

a

position

in

the

SELECT.

get_nickname

getNickname

No;

you

must

implement

Retrieves

a

class

Nickname

object

for

quantifier

at

a

given

handle

in

the

FROM

clause.

get_head_exp

getHeadExp

No;

you

must

implement

Retrieves

a

class

Request_Exp

object

for

a

head

expression

at

a

given

handle

in

the

SELECT

clause.

Chapter

9.

Classes

for

coding

wrappers

85

|

||
|
||

|||
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

||||
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|
|

Table

30.

Methods

(continued)

Name

in

C++

Name

in

Java

Default

provided?

Description

get_predicate

getPredicate

No

Retrieves

a

class

Request_Exp

object

for

a

predicate

at

a

given

handle

in

the

WHERE

clause.

set_distinct

setDistinct

No;

you

must

implement

Retrieves

the

DISTINCT

indicator

(SELECT

DISTINCT

clause).

get_distinct

getDistinct

No;

you

must

implement

Tests

the

DISTINCT

indicator.

get_exec_desc

getExecDistinct

No;

you

must

implement

Retrieves

a

pointer

and

length

for

the

execution

descriptor

for

this

query.

set_exec_desc

setExecDesc

No;

you

must

implement

Stores

an

execution

descriptor

in

the

Reply.

Related

reference:

v

“Reply

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Reply

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Predicate

list

class

Instances

of

the

predicate

list

class

are

input

to

the

selectivity

estimation

method,

Unfenced_Generic_Server::getSelectivity()

(UnfencedGenericServer.getSelectivity

in

Java).

The

two

predicate

lists

are:

v

a

set

of

predicates,

P,

for

which

selectivity

is

solicited.

v

a

set

of

predicates,

AP,

that

have

already

been

applied.

The

result

selectivity

is

the

conditional

selectivity

of

P

given

AP,

that

is

the

selectivity

of

the

predicates

in

set

P

given

that

the

predicates

in

set

AP

have

already

been

applied:

selectivity(P/AP)

If

unconditional

selectivity

is

required,

AP

can

be

NULL.

The

list

of

predicates

are

similar

to

the

list

of

predicates

in

the

Request

and

are

manipulated

with

similar

methods.

Methods

Table

31.

Methods

Name

in

C++

Name

in

Java

Description

create_empty_predicate_list

n/a

Creates

an

empty

predicate

list,

of

the

same

size

as

the

predicate

list

in

a

request.

The

resulting

list

is

empty.

create_and_copy_predicate_list

n/a

Creates

an

empty

predicate

list

and

copies

the

predicate

list

from

the

reply.

operator

new

n/a

Allocates

the

predicate

list

on

the

QG

heap.

86

Wrapper

Developer’s

Guide

|

||
|
||

||||
|
|

|||
|
|
|

|||
|
|

|||
|
|
|

|||
|
|
|
|

||

|||

|||
|
|
|

|||
|
|

|||
|

Table

31.

Methods

(continued)

Name

in

C++

Name

in

Java

Description

destructor

n/a

Predicate_List

objects

are

created

by

the

wrapper

and

must

be

destroyed

by

the

wrapper.

get_number_of_predicates

getNumberOfPredicates

Retrieves

the

length

of

the

predicate

list.

get_predicate

getPredicate

Returns

a

Request_Exp

object

describing

the

predicate

at

a

handle.

get_predicate_handle

getPredicateHandle

Returns

the

handle

of

a

predicate

at

a

position.

get_number_of_applied_predicates

getNumberOfAppliedPredicates

Returns

the

length

of

the

applied

predicate

list.

get_applied_predicate

getAppliedPredicate

Returns

a

Request_Exp

object

describing

the

applied

predicate

at

a

handle.

get_applied_predicate_handle

getAppliedPredicateHandle

Returns

the

handle

of

an

applied

predicate

at

a

position.

add_predicate

addPredicate

Adds

predicate

handle

to

the

next

free

position

in

the

predicate

list.

add_applied_predicate

addAppliedPredicate

Adds

applied

predicate

handle

to

the

next

free

position

in

the

applied

predicate

list.

Related

reference:

v

“PredicateList

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Predicate_List

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Request

expression

class

This

class

defines

the

interface

for

exploring

the

request

expressions.

An

expression

can

be

a

head

expression

or

a

predicate.

All

these

expressions

are

represented

as

parsed

operator

trees.

Since

expressions

are

recursively

defined,

each

tree

node

itself

is

an

expression.

The

interior

nodes

(subexpressions)

of

a

tree

represent

operators

while

the

leaves

represent

constants,

columns,

or

parameters.

Depending

on

the

type

of

the

expressions,

different

information

is

available

to

the

wrapper

writer.

For

each

kind

of

expression,

different

information

is

available

to

the

wrapper.

In

addition

to

a

method

that

returns

the

kind,

all

expressions

have

methods

that

return

the

data

type

of

the

expression,

its

parent

expression

(NULL

for

the

root

expression)

and

its

sibling

expression

(next

child

to

the

right

if

it

exists,

otherwise

NULL).

The

individual

kinds

of

expressions

have

methods

that

return

additional

information,

as

described

in

the

following

table:

Chapter

9.

Classes

for

coding

wrappers

87

|

|||

|||
|
|

|||
|

|||
|
|

|||
|

|||
|

|||
|
|

|||
|

|||
|
|

|||
|
|
|

Table

32.

Additional

information

for

each

type

of

expression

Type

of

expression

Information

Operators

v

number

of

children

(operands)

v

first

operand

v

token

(as

parsed

from

the

query)

v

signature

-

resolved

function/operator

name

including

the

operand

data

types

Column

v

column

name

v

quantifier

to

which

the

column

belongs

Constant

Value

buffer,

length,

and

type

Parameter

Parameter

handle

used

to

identify

the

position

of

the

parameter

in

the

parameter

array

used

to

pass

the

parameters

from

the

engine

to

the

wrapper.

Methods

Table

33.

Request

expression

class

methods

in

C++

Name

in

C++

Description

get_kind

Returns

the

kind

of

the

expression

(Request_Exp::oper,

Request_Exp::column,

Request_Exp::unbound,

Request_Exp::constant).

The

last

argument

to

the

function

is

needed

only

when

called

from

the

optimizer.

get_data_type

Returns

Request_Exp_Type

instance

describing

the

result

data

type

of

the

expression.

get_parent

Returns

the

parent

node

of

the

expressions.

get_next_child

Returns

the

sibling

node.

get_column_name

Returns

a

string

with

the

column

name.

get_column_quantifier_handle

Returns

the

quantifier

to

which

this

column

belongs.

get_value

Returns

a

Request_Constant

instance

representing

the

value

and

the

type

of

a

constant

in

the

expression.

get_parameter_handle

Returns

an

integer

uniquely

identifying

a

parameter.

get_number_of_children

Returns

the

number

of

operands

of

an

operator

expression.

get_first_child

Returns

the

first

operand.

get_token

Returns

the

token

value

as

a

string.

get_signature

Returns

the

signature

of

an

operator.

Table

34.

Request

expression

class

methods

in

Java

Name

in

Java

Description

getKind

Returns

the

kind

of

the

expression

(RequestExp.OPERATOR,

RequestExp.CONSTANT,

RequestExp.UNBOUND,

RequestExp.COLUMN).

getDataType

Returns

RequestExpType

instance

describing

the

result

data

type

of

the

expression.

getParent

Returns

the

parent

node

of

the

expressions.

getNextChild

Returns

the

sibling

node.

getColumnName

Returns

a

string

with

the

column

name.

88

Wrapper

Developer’s

Guide

||

||

||
|
|
|

||
|

||

||

||

||

||
|

||

||

||

||

||
|

||

||

||
|
|

||
|

||

||

||

Table

34.

Request

expression

class

methods

in

Java

(continued)

Name

in

Java

Description

getQuantifier

Returns

the

quantifier

to

which

this

column

belongs.

getValue

Returns

a

RequestConstant

instance

representing

the

value

of

a

constant

in

the

expression.

getNumberOfChildren

Returns

the

number

of

operands

of

an

operator

expression.

getFirstChild

Returns

the

first

operand.

getToken

Returns

the

token

value

as

a

string.

getSignature

Returns

the

signature

of

an

operator.

getHandle

Returns

the

handle

of

the

expression.

Related

reference:

v

“RequestExp

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Request_Exp

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Request

constant

class

You

use

this

class

to

describe

constants

in

a

query

expression.

The

Request_Exp::get_value()

(RequestExp

getValue

in

Java)

function

returns

an

instance

of

the

request

constant

class

when

applied

to

a

node

of

Request_Exp::constant

kind

(RequestExp.CONSTANT

in

Java).

Methods

Table

35.

Methods

Name

in

C++

Name

in

Java

Description

get_actual_length

getActualLength

Gets

the

length

of

data

in

the

buffer.

get_data

getData

Gets

a

pointer

to

the

data

buffer.

get_data_type

getDataType

Returns

the

DB2

UDB

type

ID

of

the

column

is_data_null

isDataNull

Semantic

or

friendly

arithmetic

null?

get_precision

getPrecision

Returns

the

precision

of

a

numeric

constant

value.

get_scale

getScale

Returns

the

scale

of

a

numeric

constant

value.

get_codepage

getCodepage

Returns

the

codepage

of

a

character

value.

Related

reference:

v

“RequestConstant

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Request_Constant

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Chapter

9.

Classes

for

coding

wrappers

89

|

||

||

||
|

||

||

||

||

||
|

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

Request

expression

type

class

Instances

of

this

class

describe

the

data

type

of

a

query

expression.

Each

query

expression,

including

the

subexpressions,

is

typed.

The

function

Request_Exp::get_data_type()

(RequestExpType

getDataType

in

Java)

returns

a

request

expression

type

instance.

Methods

Table

36.

Name

in

C++

Name

in

Java

Description

get_for_bit_data

getForBitData

Does

column

contain

binary

data?

Valid

values

are

Y

and

N

where

Y

is

Yes

and

N

is

No.

The

Java

method

getForBitData

returns

a

boolean

value

(not

Y

and

N).

get_null_indicator

getNullIndicator

Specifies

which

column

is

the

null

indicator

get_data_type

getDataType

In

C++,

SQL

type

of

column

(from

sql.h).

In

Java,

the

type

ID

constants

are

defined

in

the

Data

class.

get_maximum_length

getMaximumLength

Max

length

of

column

(except

for

SQL_TYP_DECIMAL)

get_precision

getPrecision

Precision

(SQL_TYP_DECIMAL

only)

get_scale

getScale

Scale

(SQL_TYPE_DECIMAL

only)

get_codepage

getCodepage

Codepage

for

column

get_name

getName

Column

name

(if

any)

get_name_length

getNameLength

Length

of

column

name

Related

reference:

v

“RequestExpType

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Request_Exp_Type

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Remote

connection

class

To

create

a

remote

connection

instance,

invoke

the

method

create_remote_connection

(createRemoteConnection

in

Java)

on

an

instance

of

the

appropriate

fenced

server

subclass.

The

federated

server

calls

this

method

prior

to

processing

the

first

remote

operation

at

the

relevant

server.

The

federated

server

destroys

the

remote

connection

instance

after

the

application

has

executed

a

prescribed

number

of

transactions

without

making

use

of

the

server.

Unless

otherwise

customized,

the

remote

connection

base

class

implementation

maintains

the

following

information:

v

The

status

(connected

or

disconnected)

of

your

connection

to

your

data

source.

v

A

pointer

to

the

appropriate

server

object.

v

A

pointer

to

the

appropriate

user

object.

v

A

list

of

remote

operation

objects

that

are

instantiated

for

this

connection.

90

Wrapper

Developer’s

Guide

||

|||

|||
|
|
|
|

|||
|

|||
|
|

|||
|

|||

|||

|||

|||

|||
|

|
|

|

|

|

|

v

The

code

page

to

use

for

this

connection.

This

is

the

code

page

for

the

client

application

connected

to

the

federated

server.

v

The

connection

kind:

no-phase,

one-phase,

two-phase

(For

Version

8.2,

two-phase

transactions

are

not

supported).

Required

customization

for

all

wrappers

The

remote

connection

subclass

must

implement

a

constructor

for

the

subclass,

which

calls

the

corresponding

remote

connection

constructor.

The

remote

connection

class

might

also

need

to

implement

other

methods,

depending

on

the

needs

of

the

wrapper.

The

following

list

describes

the

constructors

and

their

use:

v

connect:

a

method

to

establish

a

connection

to

your

data

source.

You

must

implement

this

method

even

if

your

data

source

does

not

require

a

connection.

v

disconnect:

a

method

to

close

an

established

connection

to

your

data

source.

You

must

implement

this

method

even

if

your

data

source

does

not

require

a

connection.

A

call

to

the

mark_disconnected

method

(markDisconnected

method

in

Java)

is

not

necessary

after

you

establish

or

close

the

connection.

v

Create

remote

query

method:

creates

an

instance

of

the

remote

query

subclass.

C++:

create_remote_query

Java:

createRemoteQuery
v

commit:

a

method

to

commit

the

current

transaction

at

your

data

source.

If

the

connection

is

being

used

for

a

passthru

session

and

the

data

source

supports

transactions,

your

implementation

should

commit

the

current

transaction

at

the

data

source.

All

non-passthru

transactions

are

read-only

in

version

8.1,

but

your

data

source

requires

an

end-of-transaction

notification

to

free

resources,

drop

read

locks,

and

so

on.

You

must

implement

this

method

even

if

your

data

source

does

not

support

transactions.

v

rollback:

a

method

to

roll

back

the

current

transaction

at

the

data

source.

If

the

connection

is

being

used

for

a

passthru

session

and

the

data

source

supports

transactions,

your

implementation

should

roll

back

the

current

transaction

at

the

data

source.

All

non-passthru

transactions

are

read-only

in

version

8.1,

but

your

data

source

requires

an

end-of-transaction

notification

to

free

resources,

drop

read

locks,

and

so

on.

You

must

implement

this

method

even

if

your

data

source

does

not

support

transactions.

In

addition,

if

any

part

of

your

implementation

detects

that

your

connection

to

the

data

source

is

lost,

it

should

call

the

mark

disconnected

method

and

return

an

error.

The

mark

disconnection

method

informs

the

database

manager

that

the

connection

is

lost

and

starts

the

appropriate

cleanup.

Additional

customization

v

If

you

need

to

store

information

about

a

connection

to

your

data

source,

such

as

a

connection

handle,

add

appropriate

data

members

to

your

subclass

definition

and

initialize

them

in

the

constructor.

v

If

you

allocated

any

out-of-line

storage

pointed

to

by

your

remote

connection

subclass,

you

must

implement

a

destructor

for

your

subclass

which

frees

this

storage.

Your

destructor

does

not

need

to

close

the

connection

to

the

data

source;

if

a

connection

to

the

data

source

might

exist,

the

federated

server

will

always

call

the

disconnect

method

before

deleting

a

remote

connection

object.

Chapter

9.

Classes

for

coding

wrappers

91

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

||

||

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

v

If

your

wrapper

supports

passthru,

you

must

override

the

default

implementation

of

the

create

remote

passthru

method.

Your

implementation

should

create

an

instance

of

your

remote

passthru

subclass.

Table

37.

Virtual

Functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

connect

connect

No;

you

must

implement

disconnect

disconnect

No;

you

must

implement

create_remote_query

createRemoteQuery

Yes

Error

create_remote_passthru

createRemotePassthru

Yes

Error

commit

commit

No;

you

must

implement

rollback

rollback

No;

you

must

implement

Table

38.

Public/protected

Member

Functions

Public/protected

member

function

in

C++

Pub./Prot.

member

function

in

Java

Behavior

is_connected

isConnected

Connected

to

data

source?

mark_connected

markConnected

Connected

to

data

source

mark_disconnected

markDisconnected

Not

connected

to

data

source.

get_kind

getKind

Accessor

get_codepage

getCodepage

Accessor

Related

reference:

v

“Remote_Connection

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

v

“RemoteConnection

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

Remote

query

class

Invoking

the

method

create

remote

query

class

on

an

instance

of

the

appropriate

remote

connection

subclass

creates

an

instance

of

your

remote

query

subclass.

The

federated

server

destroys

the

remote

query

object

when

the

application

that

submitted

the

query

closes

its

cursor

over

the

query’s

result

set.

For

some

data

sources,

a

wrapper

will

not

be

able

to

control

the

order

in

which

the

data

source

returns

data

values.

The

wrapper

might

get

non-LOB

data

followed

by

LOB

data,

followed

by

more

non-LOB

data,

and

so

forth.

The

wrapper

has

no

choice

but

to

handle

data

in

the

order

the

data

is

received

from

the

data

source.

You

must

implement

the

constructor

for

the

subclass,

which

calls

the

corresponding

remote

query

constructor.

The

output

runtime

data

list

is

created

by

the

remote

operation

base

class

constructor.

The

remote

query

subclass

must

implement

the

following

methods.

The

following

explanations

use

the

C++

names;

if

you

are

developing

a

wrapper

in

Java

substitute

the

corresponding

Java

method

name.

92

Wrapper

Developer’s

Guide

|
|
|

||

||||

|||
|
|

|||
|
|

||||

||||

|||
|
|

|||
|
|

|

||

|
|
|
|
|

|||

|||

|||

|||

|||
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

fetch()

The

fetch()

method

is

responsible

for

retrieving

non-LOB

data

into

the

federated

server

buffers

that

are

identified

by

the

runtime

data

list.

fetch_lob()

The

fetch_lob()

method

is

responsible

for

retrieving

LOB

data,

one

chunk

at

a

time,

into

a

special

LOB

buffer

that

the

federated

server

provides.

The

fetch_lob()

method

might

require

several

calls

to

process

the

entire

LOB,

because

the

size

of

the

buffer

limits

the

amount

that

is

transferred

on

each

call.

fetch()

and

fetch_lob()

The

fetch()

and

fetch_lob()

methods

operate

in

a

coordinated

fashion

to

handle

LOB

and

non-LOB

columns

in

the

order

in

which

they

arrive

from

the

remote

source.

The

remote

query

object

provides

shared

state,

so

the

wrapper

can

keep

track

of

where

it

is

in

the

data

stream.

Before

returning

from

either

fetch()

or

fetch_lob(),

the

wrapper

indicates

to

the

gateway

whether

the

next

call

from

the

federated

server

should

be

to

fetch()

or

fetch_lob().

open_input_lob()

The

open_input_lob()

method

allows

the

wrapper

to

initialize

a

remote

query

that

contains

input

LOB

parameters.

You

must

implement

this

method

in

the

wrapper-specific

remote

query

class

if

the

wrapper

supports

input

LOB

parameters.

DB2

Information

Integrator

calls

this

method

if

it

finds

input

LOB

host

variables.

The

wrapper

must

return

the

index

of

the

host

variable

that

receives

the

next

LOB

fragment

and

call

set_row_status()

to

indicate

that

there

are

input

LOB

parameters.

While

the

wrapper

indicates

that

there

are

more

LOB

input

parameters

to

process,

DB2

Information

Integrator

calls

this

method

with

another

LOB

fragment.

The

size,

in

bytes,

of

the

current

LOB

fragment

is

passed

to

the

wrapper,

and

the

wrapper

must

use

that

information

to

advance

to

the

next

input

variable

or

to

signal

that

the

entire

input

values

have

been

read.

reopen_input_lob()

The

reopen_input_lob()

method

resets

a

previously

opened

result

stream

and

prepares

the

data

source

to

return

more

result

sets,

possibly

based

on

different

parameter

bindings

for

queries

with

input

LOB

parameters.

You

must

implement

this

method

in

the

wrapper-specific

remote

query

class

if

the

wrapper

supports

input

LOB

parameters.

This

method

is

not

called

unless

the

query

was

previously

closed

with

an

end-of-query

status

(the

close

method).

DB2

Information

Integrator

calls

the

reopen_input_lob()

method

if

input

LOB

host

variables

are

found.

The

wrapper

must

return

the

index

of

the

host

variable

that

receives

the

next

LOB

fragment

and

call

set_row_status()

to

indicate

that

there

are

input

LOB

parameters.

While

the

wrapper

indicates

that

there

are

more

LOB

input

parameters

to

process,

DB2

Information

Integrator

calls

this

method

with

another

LOB

fragment.

The

size,

in

bytes,

of

the

LOB

input

value

and

the

current

LOB

fragment

are

passed

to

the

wrapper,

and

the

wrapper

must

use

these

values

to

advance

to

the

next

input

variable

or

to

signal

that

the

entire

input

values

have

been

read.

set_row_status()

The

get_row_status()

method

sets

the

current

row

status.

This

method

is

already

implemented

and

cannot

be

overloaded

by

the

wrapper.

get_row_status()

The

set_row_status()

method

retrieves

the

current

row

status.

This

method

is

already

implemented

and

cannot

be

overloaded

by

the

wrapper.

Chapter

9.

Classes

for

coding

wrappers

93

||
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

You

have

considerable

discretion

in

how

you

want

to

distribute

function

among

the

methods

here.

Table

39.

Functions

Virtual

function

in

C++

Virtual

function

in

Java

Default

provided?

Default

behavior

fetch

fetch

Yes

Error

fetch_lob

fetchLob

Yes

Error

open

open

Yes

Error

open_input_lob

openInputLob

Yes

Error

reopen

reopen

Yes

Error

reopen_input_lob

reopenInputLob

Yes

Error

close

close

Yes

Error

set_row_status

setRowStatus

Yes

Error

get_row_status

getRowStatus

Yes

Error

Related

reference:

v

“RemoteQuery

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Remote_Query

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Runtime

data

classes

The

following

sections

describe

the

runtime

data

and

runtime

data

list

classes.

Table

40.

Runtime

data

list

classes

in

C++

and

Java

C++

Java

Runtime_Data

RuntimeData

Runtime_Data_List

RuntimeDataList

Runtime

data

class

The

federated

server

creates

an

instance

of

the

runtime

data

class

to

represent

each

buffer

the

system

uses

to

transfer

column

values

between

the

server

and

a

wrapper.

The

federated

server

creates

a

buffer

for

each

query

parameter

for

which

it

transfers

a

value

to

the

wrapper

during

execution.

The

federated

server

also

creates

a

buffer

for

each

column

of

the

result

row

returned

by

the

wrapper

(for

example,

for

each

head

expression

in

the

query

fragment).

The

following

state

is

maintained:

v

Column

number

v

A

pointer

to

a

Runtime_Data_Desc

object

(RuntimeDataDesc

in

Java)

describing

the

value.

v

A

pointer

to

a

data

buffer

v

The

length

of

the

data

in

the

buffer

94

Wrapper

Developer’s

Guide

|
|

||

|
|
|
|
||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|

|
|

|
|

||

||

||

||
|

|
|

v

For

columns

representing

parameter

values,

a

flag

indicating

whether

or

not

the

parameter

value

is

invariant.

The

value

of

an

invariant

parameter

will

not

change

unless

the

wrapper

is

notified

via

the

“action”

parameter

of

the

“reopen”

method.

The

federated

server

supplies

the

column

number,

data

description

and

data

buffer.

If

the

runtime

data

object

is

being

used

to

pass

a

parameter

from

the

federated

server

to

a

wrapper,

the

data

length

and

buffer

contents

will

be

supplied

by

the

federated

server.

The

value

in

the

buffer

will

have

the

SQL

type

specified

by

the

attached

description.

The

wrapper

must

convert

the

value

to

whatever

type

the

data

source

expects.

If

the

runtime

data

object

is

being

used

to

return

results

from

the

wrapper

to

the

federated

server,

the

wrapper

supplies

the

data

length

and

buffer

contents.

The

maximum

(allocated)

length

of

the

buffer

and

the

expected

data

type

can

be

obtained

from

the

attached

description.

The

wrapper

must

convert

the

value

obtained

from

the

data

source

to

the

SQL

type

specified

by

the

description.

Table

41.

Public

member

functions

Public

member

function

in

C++

Public

member

function

in

Java

Behavior

check_friendly_div_by_0

checkFriendlyDivBy0

Division

by

zero?

check_friendly_exception

checkFriendlyException

Arithmetic

exception?

get_actual_length

getActualLength

Get

length

of

data

in

buffer

get_data

getData

Get

pointer

to

data

buffer

get_data_index

getDataIndex

Get

column

number

get_invariant

getInvariant

Is

input

value

invariant?

is_data_null

isDataNull

Semantic

or

“friendly

arithmetic”

null?

is_semantic_null

isSemanticNull

Semantic

null?

set_actual_length

setActualLength

Set

length

of

data

in

buffer

set_data

setXX

Copy

data

to

buffer

set_data_null

setDataNull

Set

null

indicator

set_friendly_div_by_0

setFriendlyDivBy0

Indicate

zero-divide

exception,

set

null

first!

set_friendly_exception

setFriendlyException

Indicate

arithmetic

exception,

set

null

first!

Runtime

data

list

class

The

base

class

constructor

creates

instances

of

this

class

for

the

remote

query.

Separate

lists

are

created

for

output

rows

and

input

parameters.

Table

42.

Public

member

functions

Public

member

function

in

C++

Public

member

function

in

Java

Behavior

get_number_of_values

getNumberOfValues

Get

number

of

columns

get_ith_value

getValue

Get

pointer

to

Runtime_Data

for

i-th

column

operator[]

n/a

Get

pointer

to

Runtime_Data

for

i-th

column

Chapter

9.

Classes

for

coding

wrappers

95

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

||

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||
|

|||
|
|

|
|

||

|
|
|
|
|

|||

|||
|

|||
|
|

Related

reference:

v

“Runtime_Data

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

v

“Runtime_Data_List

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

v

“RuntimeDataList

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“RuntimeData

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

Runtime

data

description

classes

The

following

sections

describe

the

runtime

data

description

and

runtime

data

description

list

classes.

Table

43.

Runtime

data

description

list

classes

in

C++

and

Java

C++

Java

Runtime_Data_Desc

RuntimeDataDesc

Runtime_Data_Desc_List

RuntimeDataDescList

Runtime

data

description

class

The

federated

server

creates

an

instance

of

this

class

to

represent

each

buffer

the

system

uses

to

transfer

column

values

to

a

wrapper.

The

federated

server

creates

a

buffer

for

each

query

parameter

for

which

it

transfers

a

value

to

the

wrapper

during

execution.

The

federated

server

also

creates

a

buffer

for

each

column

of

the

result

row

returned

by

the

wrapper

(for

example,

for

each

head

expression

in

the

query

fragment).

For

both

remote

query

and

remote

passthru

objects,

the

federated

server

will

create

a

runtime

data

description

for

each

runtime

data

object

in

the

input

data

list

representing

parameter

values.

The

federated

server

supplies

the

column

descriptions.

For

remote

query

objects,

the

federated

server

also

creates

a

runtime

data

description

for

each

runtime

data

object

in

the

output

data

list,

representing

values

in

result

rows.

The

federated

server

supplies

these

column

descriptions

as

well.

Table

44.

Public

member

functions

Public

member

function

in

C++

Public

member

function

in

Java

Behavior

get_for_bit_data

getForBitData

Does

column

contain

binary

data?

get_null_indicator

getNullIndicator

Can

column

be

null?

get_data_type

getDataType

SQL

type

of

column

(from

sql.h)

get_maximum_length

getMaximumLength

Max

length

of

column

(except

for

SQL_TYP_DECIMAL)

get_precision

getPrecision

Precision

(SQL_TYP_DECIMAL

only)

get_scale

getScale

Scale

(SQL_TYPE_DECIMAL

only)

get_codepage

getCodepage

Codepage

for

column

get_name

getName

Column

name

(if

any)

get_name_length

getNameLength

Length

of

column

name

96

Wrapper

Developer’s

Guide

||

||

||

||
|

||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

|||
|

Runtime

data

description

list

class

Table

45.

Public

member

function

Public

member

function

in

C++

Public

member

function

in

Java

Behavior

get_number_of_values

getNumberOfValues

Get

number

of

columns

get_ith_value

getValue

Get

pointer

to

Runtime_Data_Desc

for

i-th

column

set_ith_value

setValue

Set

pointer

to

Runtime_Data_Desc

for

i-th

column

operator[]

n/a

Get

pointer

to

Runtime_Data_Desc

for

i-th

column

Related

reference:

v

“Runtime_Data_Desc

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

v

“Runtime_Data_Desc_List

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

v

“RuntimeDataDesc

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“RuntimeDataDescList

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

Remote

passthru

class

Invoking

the

method

create

remote

passthru

class

on

an

instance

of

the

appropriate

remote

connection

subclass

creates

an

instance

of

your

remote

passthru

subclass.

If

your

data

source

does

not

support

passthru,

do

not

implement

a

remote

passthru

subclass

and

do

not

override

the

default

implementation

of

this

method.

Required

customization

for

all

wrappers

Your

remote

passthru

subclass

must

implement:

v

A

constructor

for

your

subclass,

which

should

call

the

corresponding

remote

passthru

constructor.

C++:

Remote_Passthru

Java:

RemotePassthru
v

prepare:

a

method

that

allows

the

passthru

string

to

be

submitted

to

the

data

source,

to

determine

the

number

and

type

of

the

columns

that

will

make

up

each

row

of

the

result.

v

describe:

a

method

that

populates

a

runtime

data

description

list

that

describes

the

number

and

type

of

the

columns

that

make

up

each

row

of

the

result.

v

open:

a

method

that

allows

the

data

source

to

prepare

to

return

the

first

result

row

for

the

query.

v

fetch:

a

method

that

copies

a

single

result

row

into

the

output

runtime

data

list.

v

close:

a

method

that

allows

the

data

source

to

clean

up

after

executing

a

query.

Chapter

9.

Classes

for

coding

wrappers

97

||

|
|
|
|
|

|||

|||
|
|

|||
|
|

|||
|
|
|

As

in

the

case

of

remote

query,

the

wrapper-writer

has

considerable

discretion

in

the

distribution

of

function

among

the

methods

listed

previously.

For

example,

population

of

the

runtime

data

description

list

could

occur

in

either

the

prepare

or

describe

methods,

and

submission

of

the

passthru

string

to

the

data

source

could

occur

in

the

open

or

fetch

methods.

Additional

customization

If

your

data

source

supports

passthru

strings

that

return

a

result

code

but

no

rows,

override

the

default

implementation

of

the

execute

method.

Your

implementation

should

submit

the

string

to

the

data

source

and

return

the

result

code.

If

the

client

application

submits

a

passthru

string

via

the

EXECUTE

or

EXECUTE

IMMEDIATE

language

construct,

the

execute

method

will

be

called

and

should

report

an

error

if

the

passthru

string

does

not

represent

an

appropriate

operation

(that

is

if

it

represents

an

operation

that

returns

rows)

Table

46.

Virtual

Functions

Virtual

Function

in

C++

and

Java

Default?

Default

behavior

prepare

Yes

Error

describe

Yes

Error

execute

Yes

Error

open

Yes

Error

close

Yes

Error

Related

reference:

v

“RemotePassthru

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Remote_Passthru

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

Wrapper

utilities

class

This

class

should

not

be

instantiated.

This

class

exists

only

to

group

together

a

collection

of

static

methods

that

give

wrappers

access

to

miscellaneous

services

that

are

provided

by

the

federated

server.

Static

methods

of

the

wrapper

utilities

class

provide

the

following

services:

v

Memory

allocation

and

deallocation.

Your

implementation

must

use

these

methods

to

allocate

and

deallocate

memory,

except

when

using

“new”

to

instantiate

or

“delete”

to

destroy

a

C++

object

that

is

derived

from

the

Sqlqg_Base_Class.

If

a

class

is

not

a

descendant

of

Sqlqg_Base_Class,

or

you

want

to

override

the

Sqlqg_Base_Class

implementation

of

“new”

or

“delete”,

you

must

provide

implementations

of

these

operators

that

use

these

methods

to

allocate

and

deallocate

memory.

v

Error

reporting.

It

is

the

responsibility

of

the

wrapper

to

map

an

error

returned

by

a

data

source

to

the

most

appropriate

DB2

UDB

error

or

SQL

code.

An

error

message

string

exists

for

every

SQL

code

and

is

frequently

parameterized

by

tokens

that

are

specific

to

the

circumstances

under

which

the

error

occurred.

For

example,

the

error

message

string

for

reporting

a

missing

option

is

parameterized

by

tokens

that

contain

the

kind

of

option

(wrapper,

server,

and

so

forth),

the

entity

name

(wrapper

name,

server

name,

and

so

forth),

and

the

name

98

Wrapper

Developer’s

Guide

|
|
|
|
|

|
|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

of

the

missing

option.

The

wrapper

should

provide

values

for

these

tokens

when

reporting

an

error.

To

find

the

most

appropriate

SQL

code

and

the

content

of

the

associated

tokens,

see

the

Message

Reference.

After

you

identify

the

most

appropriate

SQL

code,

find

a

corresponding

symbolic

definition.

Table

47

shows

the

directory

for

each

platform.

Table

47.

Directory

for

symbolic

definition

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/include/sqlcodes.h

HP/Sun/Linux

/opt/IBM/db2/V8.1/include/sqlcodes.h

Windows

%DB2PATH%/include/sqlcodes.h

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

For

errors

that

cannot

be

readily

mapped

to

any

other

SQL

code,

use

SQL_RC_E1822

(SQL

code

=

-1822).

v

Code

page-appropriate

case

conversion.

v

Access

to

the

single-byte

and

double-byte

code

pages

of

the

current

DB2

UDB

database.

v

Wrapper

control

flow

information

from

the

wrapper

tracing

facility.

Table

48.

Public

static

member

function

behavior

of

the

wrapper

utilities

class

Public

static

member

function

in

C++

Public

static

member

function

in

Java

Behavior

allocate

n/a

Allocate

a

memory

block.

deallocate

n/a

Free

a

memory

block.

report_error

WrapperException

class

(Java

uses

exceptions)

Report

an

error

with

SQL

code,

message,

and

tokens.

report_warning

reportWarning

Report

a

warning.

convert_to_upper

n/a

Code

page-appropriate

case

conversion.

convert_to_lower

n/a

Code

page-appropriate

case

conversion.

get_sb_DB_codepage

getSingleByteDBCodepage

Obtain

a

single-byte

database

code

page.

get_db_DB_codepage

getDoubleByteDBCodepage

Obtain

a

double-byte

database

code

page.

string_to_tokens

n/a

Tokenize

a

string.

trace_data

n/a

Write

trace

information

to

the

trace

facility.

get_db2_install_path

getDB2InstallPath

Retrieve

the

path

to

the

installation.

get_db2_instance_path

getDB2InstancePath

Retrieve

the

path

to

the

federated

server.

get_db2_release

getDB2Release

Retrieve

the

version

of

DB2

UDB,

including

the

Fix

Pack,

that

the

wrapper

currently

runs

on.

fnc_entry

traceFunctionEntry

Record

the

entry

into

a

function

for

the

wrapper

trace

facility.

Chapter

9.

Classes

for

coding

wrappers

99

|
|
|

|
|

||

||

||

||

||
|
|
|
|

|
|

|

|
|

|

||

|
|
||

|||

|||

||
|
|
|

|||

|||
|

|||
|

|||
|

|||
|

|||

|||
|

|||
|

|||
|

|||
|
|

|||
|

Table

48.

Public

static

member

function

behavior

of

the

wrapper

utilities

class

(continued)

Public

static

member

function

in

C++

Public

static

member

function

in

Java

Behavior

fnc_exit

traceFunctionExit

Record

the

exit

from

a

function

for

the

wrapper

trace

facility.

fnc_data

traceFunctionData

Record

the

trace

data

by

using

the

wrapper

trace

facility.

fnc_data2

traceFunctionData

Record

the

trace

data,

which

includes

the

probe

point

and

two

data

elements,

by

using

the

wrapper

trace

facility.

fnc_data3

traceFunctionData

Record

the

trace

data,

which

includes

the

probe

point

and

three

data

elements,

by

using

the

wrapper

trace

facility.

trace_error

traceException

or

traceError

Record

the

error

trace

data,

which

includes

an

error

code

and

the

probe

points,

by

using

the

wrapper

trace

facility.

convert_codepage

n/a

Convert

input

data

from

the

source

code

page

to

the

target

code

page.

get_expected_conv_len

n/a

Return

the

number

of

bytes

of

a

string

that

is

converted

from

an

original

code

page

to

a

new

code

page.

get_env_lang

n/a

Return

the

language

setting

of

the

operating

system.

change_endian2

n/a

Change

the

endian

byte

order

of

a

double-byte

character

string.

Related

reference:

v

“WrapperUtilities

class

(Java)”

in

the

IBM

DB2

Information

Integrator

Java

API

Reference

for

Developing

Wrappers

v

“Wrapper_Utilities

class

(C++)”

in

the

IBM

DB2

Information

Integrator

C++

API

Reference

for

Developing

Wrappers

100

Wrapper

Developer’s

Guide

|

|
|
||

|||
|

|||
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|

|||
|
|
|

|||
|

|||
|
|

Chapter

10.

Ensuring

wrappers

coexist

with

the

environment

This

section

describes

what

you

need

to

consider

to

ensure

that

a

wrapper

coexists

with

the

rest

of

the

environment.

It

includes

the

following

topics:

v

What

you

need

to

be

aware

of

when

working

with

system

services

v

How

to

make

environment

variables

accessible

to

wrappers

v

Wrapper

portability

Using

system

services

with

wrappers

Because

a

wrapper

must

coexist

with

other

federated

server

processes,

you

must

be

careful

when

using

operating

system

services.

A

complete

inventory

of

the

services

that

the

federated

server

uses

is

not

possible;

it

is

better

to

assume

that

the

federated

server

uses

any

system

service

and

plan

accordingly.

This

requirement

applies

as

well

to

any

third-party

software

that

a

wrapper

could

include.

If

it

is

not

possible

to

guarantee

good

behavior,

then

some

functionality

must

be

isolated

in

its

own

process

space.

The

first

step

is

to

minimize

the

use

of

operating

systems

services

wherever

possible.

The

second

step

is

to

use

those

systems

services

routines

that

are

provided

through

the

wrapper

utilities;

it

is

especially

important

that

memory

management

be

done

using

these

utilities.

Lastly,

the

wrapper

must

ensure

that

it

uses

services

that

change

the

system

state

correctly.

For

instance,

if

a

wrapper

uses

signal

handlers,

it

must

install

and

remove

them

every

time

a

wrapper

routine

is

called;

when

the

wrapper

returns

control

to

the

federated

server,

its

signal

handlers

cannot

be

left

active.

Another

example

is

the

use

of

alarms.

A

wrapper

must

restore

the

alarm

state

whenever

it

returns

to

the

federated

server.

Known

restrictions

on

systems

services:

v

Memory

management

must

be

done

through

the

supplied

utility

functions

and

classes.

v

input/output

(I/O)

to

stdout,

stderr,

stdin,

cin,

cout,

cerr

does

not

work.

v

Windows:

Wrappers

must

use

the

Win32

routine

GetEnvironmentVariable(),

not

getenv().

v

Wrappers

must

not

use

the

Unix

and

Windows

system

services

for

tokenization,

strtok

and

strtok_r.

The

wrapper

interface

provides

replacement

system

services

for

tokenization.

Memory

management

(C++

only)

All

memory

management

should

be

done

through

the

wrapper

utilities

allocate

and

deallocate

methods.

A

base

class,

Sqlqg_Base_Class

is

provided

that

has

new

and

delete

operators

that

use

these

methods,

so

classes

derived

from

Sqlqg_Base_Class

will

be

well-behaved.

©

Copyright

IBM

Corp.

2003,

2004

101

Tokenization

services

(C++

only)

The

Unix

and

Windows

services

strtok

and

strtok_r

exist

to

break

a

string

into

parts

that

are

based

on

a

separator.

Rather

than

use

these,

the

wrapper

writer

must

use

the

string_to_token()

method

of

the

wrapper

utilities

class.

This

method

works

exactly

as

strtok_r

and

is

thread-safe.

The

following

code

fragment

illustrates

the

use

of

the

Wrapper_Utilities::string_to_token

method.

char*

string_to_scan

=

"this

is

a

test

string";

char*

scan_state

=

NULL;

char*

cur_token

=

NULL;

//

Scan

for

the

first

token

cur_token

=

Wrapper_Utilities::string_to_token

(

string_to_scan,

"

",

&scan_state);

while

(cur_token

!=

NULL)

{

//

Do

something

useful

here

with

the

token

we

found

//

Get

the

next

token;

note

that

we

pass

NULL

for

the

string

cur_token

=

Wrapper_Utilities::string_to_token

(

NULL,

"

",

&scan_state);

}

Related

concepts:

v

“Making

environment

variables

accessible

to

wrappers”

on

page

102

Related

tasks:

v

“Wrapper

portablilty”

on

page

103

Making

environment

variables

accessible

to

wrappers

The

federated

server

controls

what

environment

variables

are

available

to

wrappers.

In

order

for

an

environment

variable

to

be

accessible

by

a

wrapper,

you

must

specify

its

value

in

the

db2dj.ini

configuration

file.

Table

49

shows

the

directory

by

platform

where

the

configuration

file

resides

on

the

federated

server.

Table

49.

Directory

for

configuration

file

on

the

federated

server

Platform

Wrapper

installation

directory

AIX®

/usr/opt/db2_08_01/cfg

HP/Sun/Linux

/opt/IBM/db2/V8.1/cfg

Windows®

%DB2PATH%/cfg

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2®

Information

Integrator

is

installed

on

Windows.

The

federated

server

reads

it

upon

startup.

To

change

the

value

of

an

environment

variable,

you

must

stop

and

restart

the

federated

server.

Entries

in

db2dj.ini

have

the

following

format:

[white

space]Variable[white

space]=[white

space]Value[white

space][eoln]

Note

that

[white

space]

is

optional.

Neither

the

variable

name

nor

the

variable

value

can

contain

white

space

or

end

of

line

characters.

Each

line

in

the

configuration

file

requires

the

end

of

line

character,

even

for

the

last

line

of

the

file.

102

Wrapper

Developer’s

Guide

The

wrapper

can

use

getenv()

(on

Windows

platforms,

GetEnvironmentVariable())

to

access

environment

variables.

C++

coding

considerations

There

are

restrictions

on

how

a

wrapper

can

use

some

C++

facilities,

such

as

exceptions

and

Run

Time

Type

Identification

(RTTI).

A

wrapper

can

use

C++

exceptions,

but

the

wrapper

must

ensure

that

an

exception

will

not

propagate

to

the

federated

server.

Failure

to

catch

all

exceptions

and

turn

them

into

return

codes

at

the

wrapper

interface

will

result

in

the

federated

server

agent

process

(or

possibly

the

entire

federated

server

instance)

terminating

abnormally.

The

wrapper

interface

does

not

support

Run

Time

Type

Identification

(RTTI).

This

means

that

some

other

C++

features

such

as

dynamic

cast

will

not

be

available

as

many

compilers

require

RTTI

for

these

features.

Related

tasks:

v

“Using

system

services

with

wrappers”

on

page

101

v

“Wrapper

portablilty”

on

page

103

Wrapper

portablilty

For

Windows,

a

wrapper

must

use

the

Win32

routines

GetEnvironmentVariable()

or

GetEnvironmentStrings()

routines

to

access

environment

variables

rather

than

the

Unix

getenv()

routine.

Related

concepts:

v

“Making

environment

variables

accessible

to

wrappers”

on

page

102

Related

tasks:

v

“Using

system

services

with

wrappers”

on

page

101

Chapter

10.

Ensuring

wrappers

coexist

with

the

environment

103

104

Wrapper

Developer’s

Guide

Chapter

11.

Documenting

wrappers

Because

the

wrapper

developer

determines,

in

large

part,

what

to

specify

on

the

SQL

statements

submitted

for

registration,

it

is

advisable

for

the

developer

to

let

users

know

how

to

code

these

statements.

Because

the

capabilities

that

the

developer

gives

to

a

wrapper

determine,

to

a

large

extent,

what

users

can

expect

from

data

sources,

it

is

advisable

for

the

developer

to

let

users

know

how

to

work

with

the

data

sources.

One

way

to

provide

information

for

users

is

to

compile

it

in

a

booklet

or

online

file.

This

topic

suggests

what

items

to

include

in

such

a

compilation

and

offers

tips

on

how

to

treat

these

items.

When

you

document

your

wrapper,

consider

addressing

the

following

items:

Information

available

at

the

data

source

So

that

users

can

understand

what

sort

of

information

they

can

request

in

their

queries,

you

might

describe:

v

The

nature

of

the

information

that

users

can

retrieve

from

collections

of

data

(for

example,

from

tables,

data

sets,

or

spread

sheets)

at

a

data

source

v

The

types

of

data

collections

available

at

the

data

source

v

The

nature

of

the

retrievable

information

that

functions

at

the

data

source

can

derive

from

stored

information

Registration

In

discussing

registration,

consider

providing

the

following

information:

v

Which

constructs

need

to

be

registered

v

The

syntax

of

the

SQL

statements

with

which

registration

will

be

initiated

v

Which

options

can

be

coded

in

these

statements

v

What

the

options’

allowable

values

are

v

What

the

statements’

parameters

mean

v

What

the

parameters’

allowable

values

are

v

How

collections

of

data

at

the

data

source

map

to

the

parameters

of

the

CREATE

NICKNAME

statement

v

Which

capabilities

of

the

data

source

are

represented

by

function

templates

Advisories

You

might

include

advisories—short

pieces

of

helpful

information.

There

are

various

kinds:

requirements,

restrictions,

recommendations,

hints,

tips,

and

reminders.

The

examples

in

the

following

list

are

from

IBM®’s

documentation

of

the

wrapper

for

table-structured

file

servers.

Examples

of

requirements

v

“The

column

delimiter

must

be

consistent

throughout

the

file”

v

“Statistics

for

nicknames

of

table-structured

files

must

be

updated

manually

by

updating

the

SYSSTAT

views.”

Examples

of

restrictions

v

“Passthru

sessions

are

not

allowed

with

the

wrapper”

v

“Files

are

limited

to

one

record

per

line”.

©

Copyright

IBM

Corp.

2003,

2004

105

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

|
|
|
|
|

|

|

|
|

|

|

|

Examples

of

tips

v

“The

system

can

search

sorted

data

files

much

more

efficiently

than

non-sorted

files.”

v

“For

sorted

files,

you

can

improve

performance

by

specifying

a

value

or

range

for

the

key

column.”

Errors

and

warnings

Consider

also

documenting

the

messages

through

which

the

wrapper

reports

errors

or

warns

of

possible

problems.

So

that

the

user

can

look

up

explanations

of

these

messages,

include

their

associated

SQLCODEs,

return

codes

(if

any),

and

SQLSTATE

values

(if

any).

Users

also

find

examples

and

step-by-step

instructions

extremely

helpful.

For

examples

of

wrapper

documentation,

see

the

DB2®

Information

Integrator

Data

Source

Configuration

Guide.

Related

tasks:

v

“Compiling

wrappers

(C++)”

on

page

109

v

Chapter

13,

“Linking

wrappers

(C++

only),”

on

page

113

v

Chapter

14,

“Installing

wrappers,”

on

page

117

v

“Testing

wrappers

with

valid

and

invalid

options”

on

page

127

v

“Compiling

wrappers

(Java)”

on

page

110

106

Wrapper

Developer’s

Guide

|

|
|

|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

Part

4.

Building,

testing,

and

tracing

wrappers

This

part

of

the

book

takes

you

through

the

following

tasks

required

to

build,

test,

and

trace

a

wrapper:

v

Building

and

packaging

your

wrapper

for

deployment.

v

Testing

your

wrapper

to

ensure

it

works

as

designed.

©

Copyright

IBM

Corp.

2003,

2004

107

108

Wrapper

Developer’s

Guide

Chapter

12.

Compiling

wrappers

Compiling

wrappers

(C++)

When

compiling

your

wrapper

code,

the

compiler

must

be

able

to

access

the

wrapper

interface

header

files

that

are

installed

with

the

wrapper

development

kit.

These

files,

along

with

other

necessary

header

files,

reside

in

the

include

subdirectory

of

the

federated

server.

Compiling

on

AIX

Use

the

xlC_r7

program

to

compile

wrapper

code

on

AIX.

The

following

example

shows

the

commands

to

use

when

compiling

one

file

from

the

sample

wrapper:

/usr/ibmcxx/bin/xlC_r7

-qlanglvl=ansi

-qflag=i:i

-qmaxmem=-1

-M

-qnoansialias

-qnotempinc

-DSQLUNIX

-g

-qnamemangling=v5

-qlonglong

-I/home/inst/sqllib/include

-c

sample_wrapper.C

-o

sample_wrapper.o

Use

the

-qnamemangling=v5

and

-qlonglong

options

if

you

are

using

the

VisualAge

6.0

(or

later)

compiler.

For

more

details,

see

the

makefile

that

is

provided

in

the

wrapper

development

kit.

Table

50

shows

the

subdirectory

by

platform

where

the

wrapper

development

kit

is

stored.

Table

50.

Directory

by

platform

for

the

wrapper

development

kit

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk

Windows

%DB2PATH%\samples\wrapper_sdk

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

Compiling

on

Windows

Use

the

CL

program

to

compile

wrapper

code

on

Windows.

The

following

example

shows

the

commands

to

use

when

compiling

one

file

from

the

sample

wrapper:

C:\VC98\bin\CL

-c

/nologo

-Zi

-GZ

-W3

-DNULL=0

-DWIN32

-D_X86_=1

-D_CRTAPI1=__cdecl

-D_CRTAPI2=__cdecl

-D_MT

-D_DLL

-J

-Od

-IC:\VC98\include

-IC:\sqllib\include

sample_wrapper.C

/Tp

-Fosample_wrapper.obj

Related

tasks:

v

Chapter

14,

“Installing

wrappers,”

on

page

117

v

“Testing

wrappers

with

valid

and

invalid

options”

on

page

127

v

“Compiling

wrappers

(Java)”

on

page

110

©

Copyright

IBM

Corp.

2003,

2004

109

|
|
|
|

|
|

|
|
|

||

||

||

||

||
|
|
|
|

Compiling

wrappers

(Java)

The

steps

that

you

perform

to

compile

a

wrapper

depend

on

the

language

in

which

the

wrapper

is

developed.

This

topic

explains

how

to

compile

wrappers

developed

in

Java.

Prerequisites:

You

must

have

the

Java

Development

Kit

(JDK)

version

1.3

or

later.

In

particular,

you

must

have

the

Java

compiler,

which

is

included

in

the

JDK.

The

Java

compiler

is

javac.exe

on

Windows

and

javac

on

UNIX.

You

must

have

db2qgjava.jar

in

your

class

path.

db2qgjava.jar

is

the

Java

archive

that

contains

the

wrapper

API

classes.

You

can

add

it

to

your

system

CLASSPATH

or

use

the

-classpath

option

during

compilation.

Table

51

shows

the

directory

by

platform

where

the

db2qgjava.jar

file

is

located.

Table

51.

Directory

by

platform

for

Java

configuration

file

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/java/db2qgjava.jar

HP/Sun/Linux

/opt/IBM/db2/V8.1/java/db2qgjava.jar

Windows

%DB2PATH%\java\db2qgjava.jar

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

Procedure:

To

compile

a

Java

wrapper:

1.

Ensure

that

db2qgjava.jar

is

in

your

class

path.

2.

Compile

the

custom

wrapper

classes

as

you

would

any

other

Java

classes.

javac

@wrapperfiles

The

javac

compiler

allows

you

to

specify

various

options,

including:

v

The

Java

source

files

to

compile.

Because

the

Java

source

files

have

the

name

of

the

class

definitions

they

contain,

the

source

files

for

a

wrapper

typically

include

files

such

as

UnfencedXXWrapper.java,

UnfencedXXServer.java,

FencedXXWrapper.java,

FencedXXServer.java,

and

FencedXXUser.java,

where

XX

is

the

name

of

the

wrapper.

v

The

location

of

the

Java

source

files

to

compile.

If

the

Java

source

files

are

not

in

the

working

directory

or

in

the

class

path,

you

can

specify

their

location

in

the

javac

command

using

the

-sourcepath

option.

v

Additions

to

the

CLASSPATH.

If

you

did

not

include

db2qgjava.jar

in

your

CLASSPATH

environment

variable,

include

it

in

the

javac

command

using

the

-classpath

option.

v

The

destination

directory

for

the

compiled

.class

files.

For

example,

you

could

execute

the

following

command

from

a

DB2

CLP

window

in

your

working

directory

to

add

the

db2qgjava.jar

file

to

your

class

path,

compile

the

sample

Java

wrapper,

and

install

the

compiled

classes

in

%DB2PATH%\function:

Windows

110

Wrapper

Developer’s

Guide

|

|
|
|

|

|
|
|

|
|
|
|

||

||

||

||

||
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|

javac

-classpath

%CLASSPATH%;%DB2PATH%\java\db2qgjava.jar

-d

%DB2PATH%\function

UnfencedFileWrapper.java

UnfencedFileServer.java

UnfencedFileNickname.java

FencedFileWrapper.java

FencedFileServer.java

FencedFileNickname.java

FileConnection.java

FileQuery.java

FileExecDesc.java

UNIX

javac

-classpath

$CLASSPATH:$DB2PATH/java/db2qgjava.jar

-d

%DB2PATH%/function

UnfencedFileWrapper.java

UnfencedFileServer.java

UnfencedFileNickname.java

FencedFileWrapper.java

FencedFileServer.java

FencedFileNickname.java

FileConnection.java

FileQuery.java

FileExecDesc.java

Related

tasks:

v

“Compiling

wrappers

(C++)”

on

page

109

v

Chapter

14,

“Installing

wrappers,”

on

page

117

v

“Testing

wrappers

with

valid

and

invalid

options”

on

page

127

Chapter

12.

Compiling

wrappers

111

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|

112

Wrapper

Developer’s

Guide

Chapter

13.

Linking

wrappers

(C++

only)

A

wrapper

consists

of

three

separate

code

libraries;

these

are

the

top-level

library

and

the

fenced

and

unfenced

libraries.

The

shared

library

for

the

top-level

library

is

provided

as

part

of

the

wrapper

development

kit.

The

remaining

two

libraries

must

be

built

from

your

wrapper

code.

The

three

libraries

for

a

wrapper

must

conform

to

platform

conventions

for

shared

libraries

of

executable

code,

and

they

must

conform

to

a

naming

convention

that

associates

the

three

libraries.

The

following

examples

illustrate

this.

On

AIX,

the

sample

wrapper

top-level

library

is

named

’libsample.a’.

The

’lib’

prefix

and

’.a’

suffix

are

platform

conventions

for

shared

libraries.

The

unfenced

wrapper

library

is

named

’libsampleU.a’.

Note

that

this

is

identical

to

the

top-level

library,

with

the

addition

of

the

capital

’U’

just

before

the

suffix.

The

fenced

wrapper

library

is

named

’libsampleF.a’.

On

Windows,

the

sample

wrapper

libraries

are

’db2sample.dll’,

’db2sampleU.dll’,

and

’db2sampleF.dll’.

The

following

table

lists

shared

library

suffixes

for

each

platform:

Table

52.

Platform

and

supported

shared

library

suffix

Platform

Library

Suffix

AIX

.a

HP-UX

.sl

Linux

.so

Sun

.so

Windows

.dll

The

unfenced

wrapper

library

must

contain

the

unfenced

wrapper

hook

routine,

UnfencedWrapper_Hook()

and

all

of

the

code

for

subclasses

of

the

following:

v

Unfenced_Generic_Wrapper

v

Unfenced_Generic_Server

v

Unfenced_Generic_User

v

Unfenced_Generic_Nickname

The

fenced

wrapper

library

must

contain

the

fenced

wrapper

hook

routine,

FencedWrapper_Hook()

and

all

of

the

code

for

subclasses

of

the

following:

v

Fenced_Generic_Wrapper

v

Fenced_Generic_Server

v

Fenced_Generic_User

v

Fenced_Generic_Nickname

v

Remote_Connection

v

Remote_Query

v

Remote_Passthru

©

Copyright

IBM

Corp.

2003,

2004

113

If

certain

classes

are

not

used

(for

example,

if

your

wrapper

uses

the

default

implementation

of

the

Fenced_Generic_User

class),

then

there

will

be

no

code

for

those

classes

to

be

linked

into

the

library.

Linking

on

AIX

The

top-level

library

is

provided

in

the

/usr/opt/db2_08_01/lib

directory

of

the

DB2

Information

Integrator

installation,

and

is

named

libdb2sqqgtop.a.

This

library

is

already

linked

and

only

needs

to

be

copied

and

renamed

for

the

wrapper.

The

fenced

and

unfenced

libraries

must

be

linked

with

a

file

of

exported

symbols;

this

file

allows

the

linking

program

to

resolve

symbols

that

will

be

available

when

the

library

is

loaded

into

the

federated

server

environment

at

execution

time.

The

exported

symbol

file

is

in

the

/usr/opt/db2_08_01/lib

directory

of

the

federated

server

and

is

called

udbwrapper.exp.

To

link

the

fenced

and

unfenced

libraries

on

AIX,

use

the

makeC++SharedLib_r

tool.

Following

is

an

example

that

uses

this

tool

to

link

an

unfenced

wrapper

library:

/usr/lpp/xlC/bin/makeC++SharedLib_r

-p

2048

-I

/home/inst/sqllib/lib/udbwrapper.exp

-n

UnfencedWrapper_Hook

-lpthreads

-lc

-lc_r

sample_wrapper.o

sample_server.o

sample_nickname.o

-o

libsampleU.a

The

wrapper

development

kit

provides

a

makefile

with

more

detail.

The

makefile

is

located

in

the

/usr/opt/db2_08_01/samples/wrapper_sdk

subdirectory.

Linking

on

Windows

The

top-level

library

is

provided

in

the

%DB2PATH%\bin

directory

of

the

wrapper

development

kit,

and

is

named

db2sqqgtop.dll.

This

library

is

already

linked

and

only

needs

to

be

copied

and

renamed

for

the

wrapper.

The

fenced

and

unfenced

libraries

must

be

linked

with

a

file

of

exported

symbols;

this

file

allows

the

linking

program

to

resolve

symbols

that

will

be

available

when

the

library

is

loaded

into

the

federated

server

environment

at

execution

time.

The

exported

symbol

file

my

be

found

in

the

%DB2PATH%\bin

directory

of

the

federated

server.

There

are

two

files

db2qgstp.lib

and

db2qg.lib.

The

trusted

side

library

should

be

linked

to

db2qg.lib

and

the

fenced

side

to

db2qgstp.lib.

To

link

the

fenced

and

unfenced

libraries

on

Windows,

use

the

’link’

tool.

Following

is

an

example

that

uses

this

tool

to

link

an

unfenced

wrapper

library:

C:\VC98\bin\link

/OUT:db2sampleU.dll

C:\sqllib\lib\db2qg.lib

/DLL

/NODEFAULTLIB

/INCREMENTAL:NO

/MACHINE:i386

/SUBSYSTEM:CONSOLE

sample_wrapper.obj

sample_server.obj

sample_nickname.obj

The

wrapper

development

kit

provides

a

makefile

with

more

detail.

The

makefile

is

located

in

the

%DB2PATH%\samples\wrapper_sdk

directory.

Related

tasks:

v

“Compiling

wrappers

(C++)”

on

page

109

v

Chapter

14,

“Installing

wrappers,”

on

page

117

114

Wrapper

Developer’s

Guide

|
|
|
|

|
|
|
|
|
|

|
|

v

“Compiling

wrappers

(Java)”

on

page

110

Chapter

13.

Linking

wrappers

(C++

only)

115

116

Wrapper

Developer’s

Guide

Chapter

14.

Installing

wrappers

Before

you

can

use

a

custom

wrapper,

you

must

install

it

on

the

federated

server.

The

details

of

installing

a

wrapper

depend

on

the

language

in

which

the

wrapper

was

developed.

Installing

C++

wrappers

To

install

a

C++

wrapper:

1.

Stop

the

federated

server.

You

must

stop

the

DB2

Universal

Database

federated

server

instance

before

you

install,

replace,

or

delete

C++

wrapper

libraries.

Managing

these

libraries

while

DB2

UDB

is

running

could

cause

DB2

UDB

to

crash.

2.

Locate

the

three

C++

wrapper

libraries

that

were

creating

by

linking

the

wrapper:

the

shared

top-level

library

(which

was

included

in

the

wrapper

development

kit),

the

fenced

library,

and

the

unfenced

library.

3.

Install

these

libraries

into

the

appropriate

directory

of

your

DB2

UDB

installation.

Table

53

shows

which

directory

applies

for

each

platform.

Table

53.

Directory

for

C++

wrapper

installation

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/lib

HP/Sun/Linux

/opt/IBM/db2/V8.1/lib

Windows

%DB2PATH%\bin

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

Installing

Java

wrappers

You

can

deliver

a

Java

wrapper

in

either

of

two

formats:

v

A

set

of

.class

files,

which

you

create

by

compiling

the

Java

wrapper.

Typically,

developers

use

.class

files

to

install

a

wrapper

only

during

development

and

testing.

v

A

single

.jar

file,

which

you

create

from

the

.class

files

using

the

Java

Archive

tool

(included

in

the

Java

Development

Kit).

Typically,

developers

use

a

.jar

file

to

deliver

Java

applications

because

the

.jar

file

is

easier

to

install.

Installing

the

single

.jar

file

also

reduces

the

chance

of

missing

files.

Installing

.class

files

To

install

the

wrapper

as

a

set

of

.class

files:

1.

Copy

the

all

of

the

wrapper’s

.class

files

from

your

development

system

to

the

federated

server.

If,

during

the

installation

process,

you

update

the

CLASSPATH

or

if

you

replace

existing

.jar

and

.class

files,

you

might

need

to

restart

DB2

UDB

before

using

the

newly

installed

wrapper

files.

For

ease

of

installation,

install

the

files

into

the

following

directory,

depending

on

platform.

Table

54

on

page

118

shows

which

directory

applies

for

each

platform.

©

Copyright

IBM

Corp.

2003,

2004

117

|

|

|
|
|

|
|

|

|
|
|
|

|
|
|

|
|

||

||

||

||

||
|
|
|
|

|
|

|

|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

Table

54.

Directory

for

Java

Wrapper

installation

by

platform

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/lib

HP/Sun/Linux

/opt/IBM/db2/V8.1/lib

Windows

%DB2PATH%\bin

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

2.

Include

the

directory

that

contains

the

wrapper’s

.class

files

in

the

system

CLASSPATH

environment

variable.

The

CLASSPATH

environment

variable

usually

already

contains

the

SQLLIB\function

directory.

3.

Include

all

Java

classes

used

by

the

wrapper

in

the

system

CLASSPATH

environment

variable.

Installing

a

.jar

file

To

install

the

wrapper

as

a

.jar

file:

1.

Copy

the

wrapper

.jar

file

from

your

development

system

to

the

federated

server.

2.

Configure

the

system

so

that

the

federated

server

can

locate

the

wrapper

.jar

file.

There

are

two

ways

to

do

this:

v

Include

the

path

and

name

of

the

wrapper

.jar

file

in

the

system

CLASSPATH

environment

variable,

or

v

Register

the

wrapper

.jar

file

with

the

federated

server

using

the

DB2

Universal

Database

stored

procedure

SQLJ.install_jar.

When

you

use

SQLJ.install_jar,

DB2

Universal

Database

makes

a

copy

of

the

.jar

file.

If

you

update

the

.jar

file,

you

must

instruct

DB2

Universal

Database

to

replace

its

copy

of

the

.jar

file.

See

the

DB2

Universal

Database

documentation

for

additional

information.
3.

Include

all

Java

classes

used

by

the

wrapper

in

the

system

CLASSPATH

environment

variable.

Ensuring

that

Java

memory

sizing

is

sufficient

Ensure

that

the

Java

memory

sizing

is

sufficient

by

modifying

the

JAVA_HEAP_SZ

DBM

environment

variable

for

DB2

Universal

Database.

The

minimum

recommended

size

is

1024

for

a

simple

wrapper,

such

as

the

sample

wrapper

provided

in

the

wrapper

development

kit.

The

measure

unit

for

JAVA_HEAP_SZ

variable

is

4

KB.

The

optimal

value

depends

on

the

wrapper:

how

many

classes

are

loaded,

how

many

objects

are

created,

and

the

number

of

concurrent

connections

using

Java

wrappers.

A

wrapper

that

loads

500–1000

classes

might

require

a

setting

as

high

as

2048.

See

the

DB2

Universal

Database

documentation

for

additional

information

about

setting

the

JAVA_HEAP_SZ

variable.

Related

tasks:

v

“Installing

the

Develop

XML

Configuration

File

wizard”

on

page

120

v

“Installing

XML

configuration

files”

on

page

122

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

118

Wrapper

Developer’s

Guide

||

||

||

||

||
|
|
|
|

|
|
|

|
|

|

|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

Chapter

15.

Adding

data

sources

to

the

Control

Center

Adding

data

sources

to

the

DB2

Control

Center

You

can

make

a

custom

wrapper

available

to

users

by

adding

it

as

a

data

source

in

the

DB2

Control

Center.

Users

then

can

choose

your

data

source

(wrapper)

and

specify

options.

XML

configuration

files

are

used

to

describe

data

sources

and

their

options

to

the

DB2

Control

Center.

When

the

DB2

Control

Center

starts,

it

loads

all

of

the

data

sources

for

which

XML

configuration

files

exist.

When

a

user

selects

a

data

source,

the

Control

Center

displays

the

options

that

are

defined

in

the

XML

configuration

file

for

that

data

source.

The

wrapper

development

kit

includes

a

tool

to

assist

you

in

creating

XML

configuration

files.

Prerequisites:

You

must

have

the

wrapper

development

kit.

Procedure:

To

add

a

custom

data

source

to

the

DB2

Control

Center:

1.

Use

the

Develop

XML

Configuration

File

wizard

to

create

an

XML

configuration

file

and

associated

properties

files

for

your

wrapper.

2.

Install

the

XML

configuration

file.

Table

55

shows

the

directory

by

platform

where

to

install

the

file

on

the

federated

server.

Table

55.

Directory

by

platform

for

installing

the

XML

configuration

file

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/cfg

HP/Sun/Linux

/opt/IBM/db2/V8.1/cfg

Windows

%DB2PATH%/cfg

Table

56

shows

where

to

find

the

associated

properties

file.

Table

56.

Directory

by

platform

for

installing

the

XML

configuration

file

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/tools/en_US/wrapper_cfg

HP/Sun/Linux

/opt/IBM/db2/V8.1/tools/en_US/wrapper_cfg

Windows

%DB2PATH%\tools\en_US\wrapper_cfg

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

3.

If

you

want

to

support

the

DB2

Control

Center’s

discovery

feature

so

that

users

can

discover

nickname,

view

and

server

discovery

information

for

the

custom

data

source,

then

install

the

necessary

discovery

support

on

the

federated

©

Copyright

IBM

Corp.

2003,

2004

119

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|

|
|

||

||

||

||

||
|
|

||

||

||

||

||
|
|
|
|

|
|
|

server.

If

you

choose

to

use

the

built-in

discovery

tool,

you

need

to

install

only

a

custom

discovery

stored

procedure.

(A

graphical

discovery

tool

is

already

installed

with

the

DB2

Control

Center.)

4.

Restart

the

DB2

Control

Center.

Related

concepts:

v

“How

users

add

data

sources

to

federated

systems”

on

page

7

Related

tasks:

v

“Installing

the

Develop

XML

Configuration

File

wizard”

on

page

120

v

“Creating

XML

configuration

files”

on

page

120

v

“Installing

XML

configuration

files”

on

page

122

Installing

the

Develop

XML

Configuration

File

wizard

The

Develop

XML

Configuration

File

wizard

is

used

to

create

the

configuration

files

necessary

to

add

a

wrapper

(data

source)

to

the

DB2

Control

Center.

The

wizard

is

installed

with

the

DB2

Information

Integrator

wrapper

development

kit.

Table

57

shows

where

to

look

to

determine

if

the

wizard

is

installed

on

your

system.

Installation

file

for

the

wizard

is

db2qgjava.jar.

Table

57.

Directory

by

platform

for

XML

Configuration

File

wizard

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/lib/db2wrapperconfig

HP/Sun/Linux

/opt/IBM/db2/V8.1/lib/db2wrapperconfig

Windows

%DB2PATH%\bin\db2wrapperconfig.bat

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

Related

tasks:

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

v

“Installing

the

wrapper

development

kit”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Creating

XML

configuration

files

The

Control

Center

reads

XML

configuration

files

to

determine

the

data

sources

(wrappers)

and

options

to

offer

users.

To

add

a

custom

wrapper

to

the

DB2

Control

Center,

you

must

create

XML

configuration

files

for

the

wrapper.

To

create

XML

configuration

files,

you

use

the

Develop

XML

Configuration

file

wizard.

Prerequisites:

You

must

have

the

wrapper

development

kit

installed.

You

must

have

a

Java

Runtime

Environment

(JRE)

installed.

(The

wizard

is

a

Java

application.)

Procedure:

120

Wrapper

Developer’s

Guide

|
|
|

|

|

|

|

|

|

|

|
|

|
|
|

||

||

||

||

||
|
|
|
|

|

|

|
|

|
|
|
|

|

|

|
|

|

To

create

an

XML

configuration

file:

1.

Start

the

Develop

XML

Configuration

File

wizard.

Table

58

shows

which

directory

from

which

to

start

the

wizard.

Table

58.

Directory

by

platform

from

which

to

start

the

wizard

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/lib/db2wrapperconfig

HP/Sun/Linux

/opt/IBM/db2/V8.1/lib/db2wrapperconfig

Windows

%DB2PATH%\bin\db2wrapperconfig.bat

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

2.

Select

whether

you

want

to

create

a

new

configuration

file

or

modify

an

existing

one.

3.

Follow

the

steps

provided

by

the

wizard.

The

wizard

prompts

you

for:

v

File

information,

including

the

name

to

use

in

the

DB2

Control

Center

to

identify

the

wrapper,

the

DTD

path,

and

the

XML

file

path.

v

Wrapper

information,

including

the

name

and

description

to

use

in

the

DB2

Control

Center

to

identify

the

wrapper’s

data

source.

Wrapper

information

also

includes

the

supported

operating

systems

and

the

wrapper

library

or

class

name

to

use

for

each

operating

system.

v

Wrapper

options

that

users

must

provide

to

the

wrapper.

For

each

option,

you

can

specify

allowed

values,

the

default

value,

and

a

description.

You

also

can

specify

whether

the

option

is

required,

whether

users

can

edit

it

during

creation

of

the

wrapper,

and

whether

users

can

alter

it

after

creating

the

wrapper.

You

can

also

specify

SQL

requirements,

such

as

whether

the

CREATE

SERVER

statement

requires

a

user

ID.

v

Server

options

that

users

must

provide

to

the

wrapper.

v

User

mapping

options

that

users

must

provide

to

the

wrapper.

v

Nickname

options

that

users

must

provide

to

the

wrapper.

You

also

can

specify

whether

or

not

users

can

specify

column

definitions

in

the

CREATE

NICKNAME

statement.

v

Column

options

that

users

must

provide

to

the

wrapper.

v

DB2

data

types

that

the

wrapper

supports.

You

can

specify

different

data

types

for

each

server.

v

Whether

the

DB2

Control

Center

supports

the

discover

function

for

this

wrapper.

If

you

choose

to

support

the

discover

function,

there

are

additional

steps

that

you

must

perform.

v

Environment

variables

that

users

must

provide

and

the

location

where

they

will

be

set.

v

Functions

templates,

user-defined

functions,

and

function

mappings

required

by

this

wrapper.

Help

and

infopops

are

available

on

all

pages.

Results:

The

wizard

creates

two

files:

v

An

XML

configuration

file,

which

contains

that

information

that

you

specified

in

the

wizard.

The

XML

configuration

file

is

located

in

the

directory

that

you

Chapter

15.

Adding

data

sources

to

the

Control

Center

121

|

|
|

||

||

||

||

||
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|

|
|

|
|
|

|
|

|
|

|

|

|

|
|

specified

on

the

second

page

of

the

wizard.

The

file

name

is

based

on

the

wrapper

name.

For

example,

if

the

wrapper

name

is

GeoDataSource,

then

the

XML

file

name

is

GeoDataSource.xml.

v

A

properties

file,

which

contains

the

literal

text

strings

that

will

be

displayed

in

the

DB2

Control

Center

for

the

wrapper

and

its

options.

Externalizing

text

strings

to

a

properties

file

makes

it

easy

to

support

multiple

languages.

You

can

use

one

configuration

file

with

multiple

properties

files.

The

XML

configuration

file

contains

symbolic

names

in

place

of

text

strings;

the

Control

Center

looks

up

those

symbolic

names

in

the

properties

file

that

corresponds

to

the

wrapper

name

and

the

user’s

language.

The

properties

file

is

created

in

the

same

directory

as

the

XML

configuration

file

and

has

a

name

based

on

the

wrapper

name.

For

example,

if

the

wrapper

name

is

GeoDataSource,

then

the

properties

file

name

is

GeoDataSource.properties.

Table

59

shows

where

the

samples

of

both

files

are

provided

in

the

cc_plugin

directory.

Table

59.

Directory

by

platform

for

samples

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk/cc_plugin

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk/cc_plugin

Windows

%DB2PATH%\samples\wrapper_sdk\cc_plugin

Related

concepts:

v

“Deciding

on

wrapper

options”

on

page

33

v

“Deciding

on

server

options”

on

page

34

v

“Deciding

on

nickname

and

column

options”

on

page

29

v

“Deciding

on

user

mapping

options”

on

page

35

v

“How

users

add

data

sources

to

federated

systems”

on

page

7

Related

tasks:

v

“Determining

the

head

expressions

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

predicates

that

the

data

source

can

accept”

on

page

37

v

“Determining

the

joins

that

the

data

source

can

accept”

on

page

38

v

“Determining

the

functions

that

the

data

source

can

accept”

on

page

38

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

Installing

XML

configuration

files

The

DB2

Control

Center

determines

which

wrappers

(data

sources)

and

options

to

present

to

users

by

reading

XML

configuration

files.

After

you

create

the

XML

configuration

files

for

the

wrapper,

you

must

install

those

files

on

the

federated

server

from

which

the

DB2

Control

Center

can

load

them.

To

add

a

data

source

to

the

DB2

Control

Center,

you

must

install

the

XML

configuration

files

for

the

data

source

on

the

federated

server.

Prerequisites:

You

must

have

access

to

the

set

of

XML

configuration

and

properties

files

for

the

wrapper.

122

Wrapper

Developer’s

Guide

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|

You

must

have

access

to

the

federated

server.

Procedure:

To

install

the

XML

configuration

file

for

a

wrapper:

1.

Transfer

the

wrapper

XML

configuration

file

and

associated

properties

files

to

the

federated

server.

2.

Move

the

XML

configuration

file

(wrappername.xml).

Table

60

shows

what

directory

to

move

the

file

to.

Table

60.

Directory

by

platform

that

you

move

the

XML

configuration

file

to

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/cfg

HP/Sun/Linux

/opt/IBM/db2/V8.1/cfg

Windows

%DB2PATH%\cfg

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

3.

Move

each

properties

file

(wrappername.properties)

to

the

(wrapper_cfg)

directory.

For

example,

if

you

provide

US

English

support

for

your

wrapper-specific

additions

to

the

DB2

Control

Center,

then

move

the

US

English

properties

file

for

the

wrapper.

Table

61

shows

what

directory

to

move

the

file

to.

Table

61.

Directory

by

platform

that

you

move

properties

file

to

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/tools/en_US/wrapper_cfg

HP/Sun/Linux

/opt/IBM/db2/V8.1/tools/en_US/wrapper_cfg

Windows

%DB2PATH%\Tools\en_US\wrapper_cfg

4.

Restart

the

DB2

Control

Center.

When

the

DB2

Control

Center

is

started,

it

loads

options

for

all

of

the

data

sources

for

which

an

XML

configuration

file

and

properties

file

are

installed.

Your

data

source

is

presented

as

an

option,

along

with

the

standard

IBM

data

sources.

Related

concepts:

v

“How

users

add

data

sources

to

federated

systems”

on

page

7

Related

tasks:

v

Chapter

14,

“Installing

wrappers,”

on

page

117

v

“Creating

XML

configuration

files”

on

page

120

Supporting

discovery

in

the

DB2

Control

Center

The

DB2

Control

Center

can

discover

features

of

data

sources,

such

as

servers,

view,

and

nicknames.

When

you

develop

a

custom

wrapper,

you

can

choose

to

provide

support

for

the

DB2

Control

Center’s

discovery

feature.

When

you

provide

discovery

support,

users

can

discover

nickname,

view

and

server

information

for

the

custom

data

source

in

the

same

way

that

they

can

for

standard

data

sources.

Prerequisites:

Chapter

15.

Adding

data

sources

to

the

Control

Center

123

|

|

|

|
|

|
|

||

||

||

||

||
|
|
|
|

|
|
|
|
|

||

||

||

||

||
|

|

|
|
|

|

|

|

|

|

|
|
|
|
|

|

On

the

development

system,

you

must

have

the

wrapper

developer’s

kit.

On

the

federated

server,

you

must

have

a

Java

Runtime

Environment

(JRE).

Procedure:

To

support

discovery

for

a

custom

wrapper

(data

source):

1.

Create

an

XML

configuration

file

that

specifies

the

discovery

function

and

options

to

use

for

your

wrapper:

a.

Start

the

Develop

XML

Configuration

File

wizard.

b.

If

an

XML

configuration

file

exists

for

the

wrapper,

choose

to

modify

that

file.

If

an

XML

configuration

file

does

not

exist,

choose

to

create

a

new

one.

Follow

the

instructions

in

c.

On

the

Specify

the

discover

function

requirements

page

of

the

wizard,

select

one

of

the

two

options

to

support

the

discover

function:

v

Support

the

discover

function

using

a

built-in

concrete

Java

class

uses

the

simple

Java

discovery

tool

that

is

installed

with

the

DB2

Control

Center

and

the

wrapper

development

kit.

(In

the

DB2

Control

Center

installation,

the

tool

is

provided

as

the

Java

file

db2WrapperDiscovery.jar.

In

the

wrapper

development

kit,

it

is

called

db2WrapperDiscoverySDK.jar.

The

contents

of

the

two

files

are

identical.)

v

Support

the

discover

function

using

a

custom

Java

class

uses

a

custom

Java

class

that

you

provide.
d.

On

the

same

page,

add

any

custom

or

user

interface

options

for

the

discovery

class.

e.

Finish

the

wizard.
2.

If

you

selected

the

built-in

concrete

Java

class,

you

must

create

a

stored

procedure

that

returns

the

information

that

you

want

discovered

from

your

wrapper’s

data

source.

Table

62

shows

the

directory

for

the

wrapper

development

kit

that

includes

a

Java

stored

procedure

that

you

can

use

as

an

example.

Table

62.

Directory

by

platform

for

Java

stored

procedure

Platform

Wrapper

installation

directory

AIX

/usr/opt/db2_08_01/samples/wrapper_sdk/cc_plugin/sample.java

HP/Sun/Linux

/opt/IBM/db2/V8.1/samples/wrapper_sdk/cc_plugin/sample.java

Windows

%DB2PATH%\samples\wrapper_sdk\cc_plugin\sample.java

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

sample

stored

procedure

is

an

example

in

Java

of

how

the

build-in

discovery

works.

You

can

use

a

C

stored

procedure,

a

SQL

stored

procedure,

or

any

other

stored

procedure

to

implement

your

discovery

function.

To

create

a

custom

stored

procedure

from

the

sample

provided

in

cc_plugin:

a.

Using

sample.java

as

a

guide,

create

a

stored

procedure

that

will

return

the

information

that

you

want

discovered

for

your

data

source.

b.

Update

the

sample

makefile

so

that

it

refers

to

your

Java

stored

procedure.

c.

Use

the

makefile

to

compile

the

Java

stored

procedure.

d.

Update

the

sample.db2

script

so

that

it

will

load

the

stored

procedure

into

the

DB2

Universal

Database

instance

that

is

your

federated

server.

124

Wrapper

Developer’s

Guide

|

|

|

|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

||

||

||

||

||
|
|
|
|

|
|
|
|

|
|

|

|

|
|

e.

Run

your

updated

sample.db2

script

to

install

the

stored

procedure

in

the

federated

server.
3.

If

you

selected

a

custom

Java

class,

then

you

must

provide

the

class

and

any

supporting

stored

procedures

that

it

requires.

Install

the

custom

Java

class

and

any

other

necessary

components

on

the

federated

server.

4.

Install

the

XML

configuration

files

on

the

federated

server.

5.

Restart

the

DB2

Command

Center.

Results:

After

you

install

the

wrapper,

the

wrapper’s

XML

configuration

files,

and

the

stored

procedure,

DB2

Control

Center

users

will

see

the

custom

data

source

as

an

option

and

will

be

able

to

perform

discovery

for

that

data

source.

The

DB2

Control

Center

reads

the

XML

configuration

file

to

determine

if

it

should

support

discovery

for

this

data

source

and,

if

so,

which

Java

class

to

use

for

the

discovery

tool.

If

you

choose

the

built-in

concrete

Java

class

for

discovery,

then

you

do

not

need

to

install

any

other

discovery

tools.

The

DB2

Control

Center

will

use

its

built-in

Java

tool

in

combination

with

your

custom

stored

procedure

to

perform

discovery.

Related

tasks:

v

“Installing

the

Develop

XML

Configuration

File

wizard”

on

page

120

v

“Creating

XML

configuration

files”

on

page

120

v

“Installing

XML

configuration

files”

on

page

122

v

“Adding

data

sources

to

the

DB2

Control

Center”

on

page

119

Chapter

15.

Adding

data

sources

to

the

Control

Center

125

|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

126

Wrapper

Developer’s

Guide

Chapter

16.

Testing

wrappers

The

following

sections

describe

how

to

test

wrappers.

Using

registration

DLL

statements

to

test

wrappers

SQL

statements

such

as

CREATE

SERVER

and

ALTER

SERVER

can

be

used

for

testing

a

wrapper.

For

example,

to

test

your

implementation

of

the

wrapper

base

class,

you

can

run

CREATE

WRAPPER.

To

test

your

implementation

of

the

Server

base

classes,

you

can

run

CREATE

SERVER.

It

is

up

to

you

to

determine

what

information

to

specify

in

SQL

statements

for

purposes

of

testing

and

registration.

To

make

such

a

determination,

you

need

to

understand

these

statements’

parameters.

To

acquire

this

understanding,

see

the

SQL

Reference

for

DB2®

Universal

Database

Version

8.

Related

tasks:

v

“Testing

wrappers

with

valid

and

invalid

options”

on

page

127

v

“Creating

trace

information

from

wrappers”

on

page

130

Testing

wrappers

with

valid

and

invalid

options

It

is

advisable

to

test

options

information

for

the

following

conditions:

v

A

specified

option

should

be

valid

for

the

SQL

statement

that

contains

the

option.

Otherwise,

the

wrapper

should

return

SQLCODE

SQL1881N.

v

The

value

to

which

an

option

has

been

set

should

be

valid

for

this

option.

Otherwise,

the

wrapper

should

return

SQLCODE

SQL1882N.

In

some

cases,

an

option

value

is

invalid

because

it

is

inconsistent

with

another

option

value.

For

example,

suppose

that

a

data

source

encodes

query

results

when

the

user

sets

an

option

called

ENCRYPT

to

Y

(yes,

encrypt

this

result

set)

and

an

option

called

ENCRYPTION_KEY

to

a

string

of

symbols

required

by

the

encryption

program.

Clearly,

when

ENCRYPT

is

set

to

N

(no,

do

not

encrypt

this

result

set),

the

string

of

symbols

(or

any

value

at

all,

for

that

matter)

would

be

invalid

for

ENCRYPTION_KEY.

v

Options

required

on

an

SQL

statement

should

be

specified

in

the

statement.

If

a

required

option

is

missing,

the

wrapper

should

return

SQLCODE

SQL1883N.

v

An

option

should

be

specified

only

once

on

the

same

SQL

statement.

If

it

is

specified

more

than

once,

DB2

returns

SQLCODE

SQL1884N.

v

If

the

user

uses

an

ALTER

[CONSTRUCT]

statement

(for

example,

ALTER

SERVER)

to

add

an

option

that

has

already

been

defined,

DB2

returns

SQLCODE

SQL1885N.

v

A

user

can

use

an

ALTER

[CONSTRUCT]

statement

(for

example,

ALTER

SERVER)

to

update

or

delete

a

value

of

an

option

only

if

the

option

has

already

been

set

to

a

value.

If

the

option

has

not

been

set

to

a

value,

DB2

returns

SQLCODE

SQL1886N.

Related

concepts:

v

“Using

registration

DLL

statements

to

test

wrappers”

on

page

127

©

Copyright

IBM

Corp.

2003,

2004

127

Related

tasks:

v

“Creating

trace

information

from

wrappers”

on

page

130

128

Wrapper

Developer’s

Guide

Chapter

17.

Tracing

wrappers

The

wrapper

tracing

facility

logs

control

flow

and

troubleshooting

information

from

your

wrapper.

The

following

sections

describe

the

wrapper

tracing

facility

and

how

to

create

trace

information

from

your

wrapper

Wrapper

trace

facility

The

wrapper

trace

facility

records

control

flow

information,

such

as

function

entry

points

and

function

exit

points,

from

the

wrappers

that

you

develop.

You

can

use

this

information

to

identify

potential

problems

when

you

are

developing

your

wrapper

and

to

solve

problems

that

you

might

encounter

after

your

wrapper

is

deployed.

To

obtain

this

troubleshooting

information,

you

call

the

tracing

member

functions

from

the

areas

that

you

specify

in

your

wrapper.

You

can

then

use

the

db2trc

command

to

start

and

to

control

the

trace

operation.

The

wrapper

utilities

class

provides

a

set

of

member

functions

that

you

can

use

in

the

wrapper

code

to

retrieve

the

function

entry

and

exit

points

and

the

data

from

the

error

trace.

The

following

table

describes

the

purpose

of

these

member

functions

in.

Table

63.

Tracing

member

functions

for

the

wrapper

utilities

class

Member

function

in

C++

Member

function

in

Java™

Purpose

fnc_entry

traceFunctionEntry

Record

the

entry

into

a

function.

fnc_exit

traceFunctionExit

Record

the

exit

from

a

function.

fnc_data

traceFunctionData

Record

the

data

trace,

which

includes

the

probe

point

and

a

single

data

element.

fnc_data2

traceFunctionData

Record

the

data

trace,

which

includes

the

probe

point

and

two

data

elements,

if

needed.

fnc_data3

traceFunctionData

Record

the

data

trace,

which

includes

the

probe

point

and

three

data

elements,

if

needed.

trace_error

traceError

or

traceException

Record

the

error

trace,

which

includes

an

error

code

and

the

probe

points.

After

you

enter

the

tracing

member

functions

in

your

wrapper

code,

you

can

use

the

db2trc

command

to

start

the

trace

facility.

The

trace

facility

collects

the

wrapper

control

flow

information.

To

collect

this

data

from

your

wrapper,

you

must

issue

the

db2trc

command

with

a

trace

record

component

ID

of

135.

A

component

ID

of

135

is

specific

to

custom

wrappers.

©

Copyright

IBM

Corp.

2003,

2004

129

|
|
|
|
|

|
|
|

|
|
|
|

||

|||

|||
|

|||
|

|||
|
|

|||
|
|

|||
|
|
|

|||
|
|
|

|
|
|
|
|

Note:

The

component

ID

for

external

wrappers

might

change.

See

the

DB2

Information

Integrator

Release

Notes

for

the

latest

information.

Related

tasks:

v

“Creating

trace

information

from

wrappers”

on

page

130

Related

reference:

v

“Example

of

wrapper

trace

facility”

on

page

131

Creating

trace

information

from

wrappers

You

can

use

the

trace

facility

to

log

control

flow

information

and

to

obtain

troubleshooting

information

from

your

wrapper.

The

wrapper

utilities

class

provides

member

functions

that

collect

control

flow

records

from

your

wrapper.

Use

the

db2trc

command

to

extract

these

control

flow

records

and

to

format

this

information

into

readable

text.

Procedure:

To

create

trace

information

from

your

wrapper:

1.

Issue

the

db2trc

command

with

an

adequate

buffer

size.

For

example:

db2trc

on

-l

8M

2.

After

you

run

the

trace

facility

for

an

appropriate

length

of

time,

write

the

current

contents

of

the

trace

buffer

to

a

file.

For

example:

db2trc

dump

trc.dmp

This

command

writes

the

trace

information

into

an

output

file

named

trc.dmp

in

the

current

directory.

3.

Turn

off

the

trace

facility

by

issuing

the

following

command:

db2trc

off

4.

Write

the

contents

of

the

trace

output

to

a

file

that

contains

error

code

and

trace

flow

information

from

your

wrapper.

For

example:

db2trc

flw

-m

..135.*.*

trc.dmp

trc.flw

You

must

specify

a

mask

option

of

..135.*.*

to

retrieve

only

the

trace

records

that

correspond

to

external

wrappers.

The

value

of

135

is

the

component

ID

for

external

wrappers.

Note:

The

component

ID

for

external

wrappers

might

change.

See

the

DB2

Information

Integrator

Release

Notes

for

the

latest

information.

5.

Write

the

contents

of

the

trace

output

to

a

file

that

contains

the

trace

data

from

your

wrapper

in

chronological

order.

For

example:

db2trc

flw

-m

..135.*.*

trc.dmp

trc.fmt

Related

concepts:

v

“Wrapper

trace

facility”

on

page

129

Related

reference:

130

Wrapper

Developer’s

Guide

|
|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|

|

|

|
|

|

|

|
|
|

|
|

|
|

|

|

|

|

|

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

v

“Example

of

wrapper

trace

facility”

on

page

131

Example

of

wrapper

trace

facility

This

topic

provides

examples

that

show

you

how

to

call

tracing

member

functions

by

using

the

wrapper

utilities

class

in

your

wrapper

code.

This

topic

also

provides

example

trc.flw

and

trc.fmt

files

that

contain

control

flow

information

from

the

tracing

member

functions

in

wrapper

code.

You

generate

trace

files

by

issuing

the

db2trc

command.

This

example

uses

the

C++

method

names.

If

you

are

developing

your

wrapper

in

Java,

substitute

the

corresponding

Java

method

name.

The

following

example

shows

an

UnfencedWrapper_Hook

function

that

uses

the

wrapper

utilities

class

to

call

tracing

member

functions.

This

example

obtains

trace

information

for

two

data

elements

that

are

indicated

by

the

fnc_data2

member

function.

You

can

then

issue

the

db2trc

command

to

start

the

trace

facility.

The

following

examples

show

the

contents

of

the

trc.flw

and

trc.fmt

files

after

you

run

the

trace

facility.

An

example

of

a

trc.flw

file:

extern

"C"

UnfencedWrapper*

UnfencedWrapper_Hook()

{

#define

FUNC_ID

1

UnfencedWrapper*

wrapper=NULL;

sqlint32

rc=0;

const

char*

fName

=

"UnfencedWrapper_Hook";

Wrapper_Utilities::fnc_entry(FUNC_ID,

fName);

Wrapper_Utilities::fnc_data2(FUNC_ID,

fName,

10,

strlen("First

Function"),

"First

Function",

sizeof(rc),

&rc);

wrapper

=

new(&rc)

Sample_Wrapper(&rc);

if(

(rc)

||

(wrapper

==

NULL)

)

{

Wrapper_Utilities::trace_error(FUNC_ID,

fName,

30,

sizeof(rc),

&rc);

if

(wrapper

!=

NULL

)

{

delete

wrapper;

wrapper

=

NULL;

}

}

Wrapper_Utilities::fnc_exit(FUNC_ID,

fName,

rc);

return

wrapper;

}

Figure

10.

Wrapper

code

with

tracing

member

functions

Chapter

17.

Tracing

wrappers

131

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|

The

trc.flw

file

contains

the

wrapper

tracing

error

codes,

function

entry

points,

function

exit

points,

and

data

trace

points.

probe

0

indicates

a

reference

to

the

function

name

that

calls

the

tracing

facility.

Function

names

are

not

specified

in

the

trc.flw

file.

An

example

of

a

trc.fmt

file:

The

trc.fmt

file

contains

the

actual

function

names

that

are

indicated

by

probe

0

in

the

trc.flw

file.

Lines

1

and

6

in

the

following

trc.fmt

file

indicate

the

function

entry

and

exit

points,

respectively.

Lines

2,

3,

and

5

indicate

a

reference

to

the

UnfencedWrapper_Hook

function

that

calls

the

tracing

facility

from

the

wrapper

code.

Line

4

shows

the

data

trace

and

data

elements.

pid

=

2316

tid

=

2292

node

=

0

1

Func~1

entry

2

Func~1

data

[probe

0]

3

Func~1

data

[probe

0]

4

Func~1

data

[probe

10]

5

Func~1

data

[probe

0]

6

Func~1

exit

Figure

11.

trc.flw

file

132

Wrapper

Developer’s

Guide

|
|

|
|
|

|

|
|

|
|
|
|
|

Related

concepts:

v

“Wrapper

trace

facility”

on

page

129

Related

tasks:

v

“Creating

trace

information

from

wrappers”

on

page

130

Related

reference:

v

“db2trc

-

Trace

Command”

in

the

Command

Reference

1

entry

DB2

External

Wrappers

Func~1

fnc

(1.3.135.1.0)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

0

2

data

DB2

External

Wrappers

Func~1

fnc

(3.3.135.1.0.0)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

527

probe

0

bytes

28

Data1

(PD_TYPE_HEXDUMP,20)

Hexdump:

556E

6665

6E63

6564

5772

6170

7065

725F

486F

6F6B

UnfencedWrapper_Hook

3

data

DB2

External

Wrappers

Func~1

fnc

(3.3.135.1.0.0)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

639

probe

0

bytes

28

Data1

(PD_TYPE_HEXDUMP,20)

Hexdump:

556E

6665

6E63

6564

5772

6170

7065

725F

486F

6F6B

UnfencedWrapper_Hook

4

data

DB2

External

Wrappers

Func~1

fnc

(3.3.135.1.0.10)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

696

probe

10

bytes

34

Data1

(PD_TYPE_HEXDUMP,14)

Hexdump:

4669

7273

7420

4675

6E63

7469

6F6E

First

Function

Data2

(PD_TYPE_HEXDUMP,4)

Hexdump:

0000

0000

....

5

data

DB2

External

Wrappers

Func~1

fnc

(3.3.135.1.0.0)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

2644

probe

0

bytes

28

Data1

(PD_TYPE_HEXDUMP,20)

Hexdump:

556E

6665

6E63

6564

5772

6170

7065

725F

486F

6F6B

UnfencedWrapper_Hook

6

exit

DB2

External

Wrappers

Func~1

fnc

(2.3.135.1.0)

pid

2316

tid

2292

cpid

-1

node

0

sec

0

nsec

2737

rc

=

0

Figure

12.

trc.fmt

file

Chapter

17.

Tracing

wrappers

133

|

|

|

|

|

|

134

Wrapper

Developer’s

Guide

Glossary

C

collaboration.

An

occurrence

of

a

sequence

of

operations

that

realizes

a

use

case

scenario.

Also

known

as

user-to-user.

It

typically

involves

collaboration

between

two

or

more

components.

As

an

example,

consider

the

scenario

of

updating

customer

details

in

a

client-server

system.

There

is

a

sequence

of

operations

in

which

the

graphical

user

interface

(GUI)

component

displays

a

window,

calls

a

data

server

component

with

a

request

for

data,

displays

the

customer

details

(and

amends

them),

calls

the

data

server

to

perform

an

update.

This

whole

pattern

of

component

operations

and

exchanges

between

components

is

a

collaboration

that

″realizes″

the

scenario.

composition.

This

is

the

process

of

creating

(or

composing)

an

XML

document

from

data

in

DB2

tables.

Elements

in

the

generated

XML

document

are

created

from

fields

in

one

or

more

DB2

tables.

And,

the

XML

document

can

be

stored

in

DB2

or

outside

of

DB2,

in

the

file

system

and

MQSeries

message

queues.

D

decomposition.

Also

known

as

shredding.

This

is

the

process

of

storing

an

XML

document

in

DB2.

The

XML

document

is

broken

apart

(or

shredded)

and

the

elements

are

stored

as

fields

in

one

or

more

DB2

tables.

DB2

Administrator.

A

person

responsible

for

administrative

tasks

such

as

access

authorization

and

content

management.

Administrators

can

also

grant

levels

of

authority

to

users.

decomposition.

Also

known

as

shredding.

This

is

the

process

of

storing

an

XML

document

in

DB2.

The

XML

document

is

broken

apart

(or

shredded)

and

the

elements

are

stored

as

fields

in

one

or

more

DB2

tables.

E

enterprise

java

bean.

An

enterprise

java

bean

is

a

Java

component

that

can

be

combined

with

other

enterprise

beans

and

other

Java

components

to

create

a

distributed

application.

There

are

two

types

of

enterprise

beans:

an

entity

bean

and

a

session

bean.

extended

enterprise

applications.

Applications

that

integrate

programmatic

interactions

among

organizations.

Also

known

as

business-to-business

applications.

F

fenced.

Pertaining

to

a

type,

or

characteristic,

of

a

procedure,

user-defined

function,

or

federated

wrapper

that

is

defined

to

run

in

a

separate

process

from

the

database

manager.

When

this

type

of

object

is

run

(using

the

fenced

clause),

the

database

manager

is

protected

from

modifications

by

the

object.

H

heterogeneous

systems.

A

collection

of

dissimilar

systems

with

a

range

of

diverse

computing

resources

that

can

be

local

to

one

another

or

geographically

distributed.

hypertext

transfer

protocol

(http).

The

Hypertext

Transfer

Protocol

(HTTP)

is

an

application-level

protocol

for

distributed,

collaborative,

hypermedia

information

systems.

I

information

aggregation

applications.

Applications

where

tools

extract

information

from

other

data

sources.

Also

known

as

user-to-data.

informational

data.

Data

that

is

extracted

from

the

operational

data

and

then

transformed

for

decision

making.

See

also

operational

data.

J

Java

2

Platform,

Enterprise

Edition

(J2EE).

A

platform

that

offers

a

multitiered

distributed

application

model,

the

ability

to

reuse

components,

integrated

Extensible

Markup

Language

(XML)-based

data

interchange,

a

unified

security

model,

and

flexible

transaction

control.

informational

data.

Data

that

is

extracted

from

the

operational

data

and

then

transformed

for

decision

making.

See

also

operational

data.

L

legacy

data.

Data

that

is

produced

from

decades

of

information

gathering

and

data

analysis,

that

you

already

have

and

use.

Most

often,

this

takes

the

forms

of

records

in

an

existing

database

on

a

system

in

current

use.It

is

generally

information

that

exists

in

local

or

proprietary

databases,

safely

tucked

away

in

data

management

systems,

that

is

usually

not

available

to

an

enterprise

system.

©

Copyright

IBM

Corp.

2003,

2004

135

|

|

|

|

|

|

N

namespace

table.

A

Namespace

Table

(NST)

resource

defines

the

mapping

from

DB2

XML

Extender

DTDIDs

to

XML

Schema

(XSD)

namespaces

and

locations.

Namespaces

enable

you

to

mix,

in

one

XML

document,

element

(and

sometimes

attribute)

names

from

more

than

one

XML

vocabulary.

nickname.

(1)

In

a

federated

system,

an

identifier

that

is

used

in

a

query

to

refer

to

an

object

at

a

data

source.

The

objects

that

nicknames

identify

are

referred

to

as

data

source

objects.

Examples

of

data

source

objects

include

tables,

views,

synonyms,

table-structured

files,

and

search

algorithms.

(2)

A

name

that

is

defined

in

DB2

Information

Integrator

to

represent

a

physical

database

object

(such

as

a

table

or

stored

procedure)

in

a

non-DB2

relational

database.

S

scenario.

An

instance

of

a

use

case.

That

is,

a

scenario

is

an

execution

of

a

use

case

under

well-specified

assumptions.

A

scenario

is

realized

in

a

particular

system

by

a

collaboration.

self-service

applications.

Also

known

as

User-to-Business

applications

where

users

are

interacting

with

enterprise

transactions

and

data

semistructured

data.

Data

that

can

include

spreadsheets,

address

books,

configuration

parameters,

financial

transactions,

or

technical

drawings.

The

Structured

Query

Language

(SQL)

works

well

with

structured

data.

structured

data.

Data

that

can

include

spreadsheets,

address

books,

configuration

parameters,

financial

transactions,

or

technical

drawings.

The

Structured

Query

Language

(SQL)

works

well

with

structured

data.

U

unfenced.

Pertaining

to

a

type,

or

characteristic,

of

a

procedure,

user-defined

function,

or

federated

wrapper

that

is

defined

to

run

in

the

database

manager

process.

When

this

type

of

object

is

run

(using

the

not

fenced

clause),

the

database

manager

is

not

protected

from

changes

made

by

this

object.

unstructured

data.

Any

data

that

is

stored

unorganized,

and

possibly

outside

of

a

traditional

database.

Some

examples

of

this

data

are

text,

audio,

video,

fax,

image,

or

graphics.

use

case.

An

identifiable

and

externally

observable

behavior

within

a

particular

system.

It

is

a

pattern

of

usage

that

is

initiated

by

an

actor

or

user,

and

that

performs

or

aims

to

perform

some

useful

work.

A

use

case

represents

a

dialog

between

an

actor

and

the

system.

For

example,

″Draw

funds

from

checking

account″

is

a

use

case.

W

WORF.

Web

object

runtime

framework.

The

runtime

engine

that

supports

the

DB2

Web

services

provider.

wrapper.

In

a

federated

system,

the

mechanism

that

the

federated

server

uses

to

communicate

with

and

retrieve

data

from

the

data

sources.

To

implement

a

wrapper,

the

federated

server

uses

routines

stored

in

a

library

called

a

wrapper

module.

These

routines

allow

the

federated

server

to

perform

operations

such

as

connecting

to

a

data

source

and

retrieving

data

from

it

iteratively.

The

DB2

Universal

Database

federated

instance

owner

uses

the

CREATE

WRAPPER

statement

to

register

a

wrapper

for

each

data

source

that

is

to

be

included

in

the

federated

system.

X

XSD.

Extensible

Markup

Language

(XML)

schema

definition.

A

language

for

describing

XML

files

that

contain

schema.

136

Wrapper

Developer’s

Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

138.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

138.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

©

Copyright

IBM

Corp.

2003,

2004

137

|

|
|
|

|
|

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

in

the

Infrastructure

Topics

(DB2

Common

Files)

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

v

“Changing

the

fonts

for

menus

and

text:

Common

GUI

help”

138

Wrapper

Developer’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2003,

2004

139

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

140

Wrapper

Developer’s

Guide

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

IBM

AIX

DB2

Java

Windows

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies:

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel,

Intel

Inside

(logos),

MMX

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

141

142

Wrapper

Developer’s

Guide

Index

A
access

plans
definition

3

accessibility
features

137

attributes
assigning

DB2

data

types

30

B
Blast

wrapper
data

source

capabilities

32

pseudo-columns

32

C
C++

classes
Fenced_Generic_Nickname

76

Fenced_Generic_Server

72

Fenced_Generic_User

80

Fenced_Generic_Wrapper

69

Predicate_List

86

Remote_Connection

90

Remote_Passthru

97

Remote_Query

92

Reply

83

Request

82

Request_Constant

89

Request_Exp

87

Request_Exp_Type

90

Runtime_Data

94

Runtime_Data_Desc

96

Runtime_Data_Desc_List

96

Runtime_Data_List

94

Unfenced_Generic_Nickname

76

Unfenced_Generic_Server

72

Unfenced_Generic_User

80

Unfenced_Generic_Wrapper

69

Wrapper_Utilities

98

coding

considerations

for

wrappers

102

classes
nickname

76

server

72

user

80

wrapper

69

client-to-server

communication
data

sources

for

wrappers

27

columns
assigning

DB2

data

types

30

retrieving

with

passthrough

17

wrapper

options

29

commit

protocols
data

sources

for

wrappers

27

compensation

(for

wrappers)
definition

10

compiling
wrappers

C++

109

compiling

(continued)
wrappers

(continued)
Java

110

construct

information

classes

49

Control

Center
adding

data

sources

119

XML

configuration

file
creating

120

installing

122

control

flow
initialization

55

query

execution

57

query

planning

55

registration

49

tracing

130

wrapper

trace

facility
description

129

example

131

tracing

130

cost

model
description

12

D
data

sources
adding

to

a

federated

system

7

adding

to

DB2

Control

Center

119

APIs

25

assigning

DB2

data

types

30

classes

for

communicating

with

wrappers

69

client-server

communication

27

communicating

with

foreign

servers

58

compiling

wrappers
C++

109

Java

110

control

flow
initialization

55

query

execution

57

query

planning

55

registration

49

data

source

capabilities
pseudo-columns

32

differences

and

similarities

between

instances

27

distributed

commit

protocols

27

documenting

wrappers
description

105

error

handling

39

fenced

mode

64

functions

38

head

expressions

37

hierarchical

data

30

joins

38

LOB

(large

object)

data

types

28

mapping

data

to

nicknames

29

mapping

federated

constructs
servers

35

user

mappings

36

wrappers

34

data

sources

(continued)
modelling

capabilities
with

mapped

functions

31

operations

supported

by

each

interface

25

options

for

parts

of

wrappers
columns

29

description

32

nicknames

29

servers

34

user

mappings

35

wrappers

33

parallel

processing

64

passthrough

17

predicates

37

properties

of

the

primary

data

26

queryable

data

29

relative

costs

of

different

queries

26

schema

description

26

testing
using

DDL

statements

127

valid

and

invalid

options

127

transaction

models

27

trusted

mode

64

typical

query

flow

47

user

authentication

28

writing

wrappers

19

data

types
assigning

DB2

data

types

30

large

object

(LOB)

data

types

28

DB2

Control

Center
adding

data

sources

119

XML

configuration

file
creating

120

installing

122

DDL

(data

definition

language)
for

wrapper

modules

5

registration

127

testing

wrappers

127

verification

from

wrappers

7

Develop

XML

Configuration

File

wizard
installing

120

developing
wrappers

building

code

libraries

113

compiling,

C++

109

compiling,

Java

110

description

19

development

kit

20

documenting

105

portability

considerations

103

procedure

61

testing

valid

and

invalid

options

127

testing

with

DDL

statements

127

tips

63

disability

137

distributed

commit

protocols
data

sources

for

wrappers

27

©

Copyright

IBM

Corp.

2003,

2004

143

E
environment

variables
available

to

wrappers

102

error

handling
wrappers

39

F
federated

databases
definition

3

federated

queries
example

3

federated

query

process

47

federated

servers
client-server

communication

27

communicating

with

foreign

servers

58

definition

3

distributed

commit

protocols

27

hierarchical

data

30

mapping

data

to

nicknames

29

mapping

federated

constructs

to

data

sources
servers

35

user

mappings

36

wrappers

34

mapping

wrappers

to

classes

67

options

for

wrappers

34

processing

data

sources

in

parallel

64

transaction

models

27

typical

query

flow

47

when

DB2

UDB

creates

and

destroys

objects

49

federated

systems
adding

data

sources

7

assigning

DB2

data

types

30

definition

3

user

authentication

for

data

sources

28

fenced

mode
description

64

mapping

wrappers

to

classes

67

when

DB2

UDB

creates

and

destroys

objects

49

Fenced_Generic_Nickname

class
description

76

requirement

for

subclasses

63

Fenced_Generic_Server

class
description

72

requirement

for

subclasses

63

Fenced_Generic_User

class
description

80

requirement

for

subclasses

63

Fenced_Generic_Wrapper

class
description

69

requirement

for

subclasses

63

FencedGenericNickname

class
description

76

FencedGenericRemoteUser

class
description

80

FencedGenericServer

class
description

72

FencedGenericWrapper

class
description

69

first-tuple

cost
definition

12

foreign

servers
communicating

with

58

definition

3

registering

as

DB2

data

29

request-reply-compensate

protocol

10

functions
for

data

sources

38

H
head

expressions

37

query

planning

55

heterogeneous

data

3

hierarchical

data,

mapping

to

nicknames

30

I
initialization

control

flow

55

installing
Develop

XML

Configuration

File

wizard

120

wrapper

libraries

117

interfaces
wrappers

63

J
Java

classes
FencedGenericNickname

76

FencedGenericRemoteUser

80

FencedGenericServer

72

FencedGenericWrapper

69

PredicateList

86

RemoteConnection

90

RemotePassthru

97

RemoteQuery

92

Reply

83

Request

82

RequestConstant

89

RequestExp

87

RequestExpType

90

RuntimeData

94

RuntimeDataDesc

96

RuntimeDataDescList

96

RuntimeDataList

94

UnfencedGenericNickname

76

UnfencedGenericRemoteUser

80

UnfencedGenericServer

72

UnfencedGenericWrapper

69

WrapperUtilities

98

joins
for

data

sources

38

K
keyboard

shortcuts
support

for

137

L
large

object

(LOB)

data

types
data

sources

for

wrappers

28

libraries
wrappers

building

113

installing

117

linking

113

linking
wrappers

113

LOB

(large

object)

data

types
data

sources

for

wrappers

28

M
mapped

functions

for

modelling

capabilities

31

mapping
federated

attributes

to

DB2

data

types

30

federated

constructs

to

data

sources
servers

35

user

mappings

36

wrappers

34

wrappers

to

classes

67

memory
managing

for

wrappers

101

modeling

capabilities
pseudo-columns

32

with

mapped

functions

31

N
nickname

classes,

description

76

nicknames
control

flow
initialization

55

query

execution

57

query

planning

55

registration

49

cost

model

12

error

handling

39

hierarchical

data

30

joins

38

mapping

federated

constructs

to

data

sources
servers

35

user

mappings

36

wrappers

34

mapping

in

federated

schema

29

mapping

wrappers

to

classes

67

object

life

cycles

49

processing

data

sources

in

parallel

64

scenario

3

typical

query

flow

47

wrapper

options

29

nonrelational

data

sources
example

3

O
one-phase

commit
data

sources

for

wrappers

27

144

Wrapper

Developer’s

Guide

P
parallelism

data

sources

64

wrappers

64

passthrough
description

17

passwords
data

sources

for

wrappers

28

user

mapping

options

35

portability
wrappers

103

Predicate_List

class
description

86

PredicateList

class
description

86

predicates
for

data

sources

37

protocols
data

sources

for

wrappers

27

pseudo-columns
data

source

capabilities

32

wildcard

character

32

Q
query

execution
control

flow

57

description

9,

16

processing

data

sources

in

parallel

64

typical

query

flow

47

query

fragments
communicating

with

foreign

servers

58

cost

model

12

costs

for

data

sources

26

definition

10

first-tuple

cost

12

functions

38

head

expressions

37

joins

38

predicates

37

Reply

class

83

Request

class

82

typical

query

flow

47

query

planning
communicating

with

foreign

servers

58

control

flow

55

cost

model

12

description

9

Request

class

82

request-reply-compensate

protocol

10

query

processing
communicating

with

foreign

servers

58

description

9

typical

query

flow

47

R
registration

adding

data

sources

7

control

flow

49

documenting

wrappers
description

105

registration

(continued)
using

DDL

to

test

wrappers

127

validating

49

Remote_Connection

class
description

90

requirement

for

subclasses

63

Remote_Passthru

class
description

97

requirement

for

subclasses

63

Remote_Query

class
description

92

requirement

for

subclasses

63

RemoteConnection

class
description

90

RemotePassthru

class
description

97

RemoteQuery

class
description

92

replies

(for

wrappers)
contents

10

definition

3

head

expressions

37

manipulating

10

predicates

37

typical

query

flow

47

Reply

class
description

83

requirement

for

subclasses

63

Request

class
description

82

request

expressions

class
description

87

Request_Constant

class
description

89

Request_Exp

class
description

87

Request_Exp_Type

class
description

90

request-reply-compensate

(RRC)

protocol
definition

3

description

10

manipulating

10

Reply

class

83

Request

class

82

RequestConstant

class
description

89

RequestExp

class
description

87

RequestExpType

class
description

90

requests

(for

wrappers)
definition

3

manipulating

10

typical

query

flow

47

rows
retrieving

with

passthrough

17

RRC

(request-reply-compensate)

protocol
definition

3

description

10

manipulating

10

Reply

class

83

Request

class

82

RTTI

(Run

Time

Type

Identification)
restrictions

for

wrappers

102

Run

Time

Type

Identification

(RTTI)
restrictions

for

wrappers

102

Runtime_Data

class
description

94

Runtime_Data_Desc

class
description

96

Runtime_Data_Desc_List

class
description

96

Runtime_Data_List

class
description

94

RuntimeData

class
description

94

RuntimeDataDesc

class
description

96

RuntimeDataDescList

class
description

96

RuntimeDataList

class
description

94

S
schemas

data

sources

for

wrappers

26

federated
mapping

to

nicknames

29

server

classes
description

72

server

options
wrappers

34

servers
mapping

federated

constructs

35

mapping

wrappers

to

classes

67

when

DB2

UDB

creates

and

destroys

objects

49

sub-agents
processing

data

sources

in

parallel

64

sub-fragments
definition

3

request-reply-compensate

protocol

10

system

services
using

with

wrappers

101

T
testing

wrappers
using

DDL

statements

127

valid

and

invalid

options

127

tokenization

services
using

with

wrappers

101

tracing
wrappers

example

131

procedure

130

wrapper

trace

facility

129

transaction

models
data

sources

for

wrappers

27

trusted

mode
description

64

two-phase

commit
data

sources

for

wrappers

27

U
Unfenced_Generic_Nickname

class
description

76

requirement

for

subclasses

63

Index

145

Unfenced_Generic_Server

class
description

72

requirement

for

subclasses

63

Unfenced_Generic_User

class
description

80

requirement

for

subclasses

63

Unfenced_Generic_Wrapper

class
description

69

requirement

for

subclasses

63

UnfencedGenericNickname

class
description

76

UnfencedGenericRemoteUser

class
description

80

UnfencedGenericServer

class
description

72

UnfencedGenericWrapper

class
description

69

user

classes
description

80

user

IDs
data

sources

for

wrappers

28

user

mapping

options

35

user

mappings
mapping

federated

constructs

to

data

sources

36

wrapper

options

35

W
wizards

creating

XML

configuration

file

120

Develop

XML

Configuration

File
installing

120

wrapper
mapping

to

classes

67

wrapper

classes
description

69

wrapper

development

kit
compiling

wrappers
C++

109

Java

110

description

20

installing

Develop

XML

Configuration

File

wizard

120

wrapper

libraries
building

113

installing

117

linking

113

mapping

federated

constructs

34

wrapper

module
description

5

options
columns

29

description

32

nicknames

29

servers

34

user

mappings

35

wrappers

33

writing

wrappers

19

wrapper

trace

facility
description

129

example

131

tracing

130

Wrapper_Utilities

class
description

98

wrappers
Blast

pseudo-columns

32

building

5

classes
constants

89

data

type

90

nickname

76

passthru

97

predicate

lists

86

remote

connection

90

remote

passthru

97

remote

query

92

Reply

83

Request

82

request

expressions

87

runtime

data

94

runtime

data

descriptions

96

server

72

user

80

utilities

98

wrapper

69

wrapper

utilities

98

classes

for

communicating

with

data

sources

69

communicating

with

foreign

servers

58

compiling
C++

109

Java

110

control

flow
initialization

55

query

execution

57

query

planning

55

registration

49

cost

model

12

data

source

capabilities
pseudo-columns

32

data

source

client

libraries

34

data

source

considerations
APIs

25

client-server

communication

27

differences

and

similarities

between

instances

27

distributed

commit

protocols

27

large

object

(LOB)

data

types

28

LOB

(large

object)

data

types

28

operations

supported

by

each

interface

25

properties

of

the

primary

data

26

relative

costs

of

different

queries

26

transaction

models

27

user

authentication

28

developing
procedure

61

tips

63

development

kit

20

documenting
description

105

environment

variables

102

error

handling

39

fenced

class
description

64

mapping

67

fenced

mode

64

functions

38

wrappers

(continued)
head

expressions

37

hierarchical

data

30

interface

63

joins

38

libraries
building

113

installing

117

linking

113

linking

113

mapping

data

to

nicknames

29

mapping

federated

constructs

34

modelling

capabilities
with

mapped

functions

31

options

7

columns

29

nicknames

29

servers

34

user

mappings

35

wrappers

33

portability

103

predicates

37

processing

data

sources

in

parallel

64

query

execution

16

queryable

data

29

Reply

class

12

RTTI

(Run

Time

Type

Identification)

102

Run

Time

Type

Identification

(RTTI)

102

testing
using

DDL

statements

127

valid

and

invalid

options

127

tracing
example

131

procedure

130

wrapper

trace

facility

129

trusted

mode

64

typical

query

flow

47

unfenced

class
description

64

mapping

67

using

system

services

101

when

DB2

UDB

creates

and

destroys

objects

49

wrapper

trace

facility
description

129

example

131

tracing

130

writing

process

19

WrapperUtilities

class
description

98

writing
wrappers

compiling,

C++

109

compiling,

Java

110

description

19

development

kit

20

documenting

105

portability

considerations

103

tips

63

X
XML

configuration

file
creating

120

146

Wrapper

Developer’s

Guide

XML

configuration

file

(continued)
installing

122

wizard

120

Index

147

148

Wrapper

Developer’s

Guide

Contacting

IBM

To

contact

IBM

customer

service

in

the

United

States

or

Canada,

call

1-800-IBM-SERV

(1-800-426-7378).

To

learn

about

available

service

options,

call

one

of

the

following

numbers:

v

In

the

United

States:

1-888-426-4343

v

In

Canada:

1-800-465-9600

To

locate

an

IBM

office

in

your

country

or

region,

see

the

IBM

Directory

of

Worldwide

Contacts

on

the

Web

at

www.ibm.com/planetwide.

Product

information

Information

about

DB2

Information

Integrator

is

available

by

telephone

or

on

the

Web.

If

you

live

in

the

United

States,

you

can

call

one

of

the

following

numbers:

v

To

order

products

or

to

obtain

general

information:

1-800-IBM-CALL

(1-800-426-2255)

v

To

order

publications:

1-800-879-2755

On

the

Web,

go

to

www.ibm.com/software/data/integration/db2ii/support.html.

This

site

contains

the

latest

information

about:

v

The

technical

library

v

Ordering

books

v

Client

downloads

v

Newsgroups

v

Fix

packs

v

News

v

Links

to

Web

resources

Comments

on

the

documentation

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

Information

Integrator

documentation.

You

can

use

any

of

the

following

methods

to

provide

comments:

v

Send

your

comments

using

the

online

readers’

comment

form

at

www.ibm.com/software/data/rcf.

v

Send

your

comments

by

e-mail

to

comments@us.ibm.com.

Include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

name

and

part

number

of

the

book

(if

applicable).

If

you

are

commenting

on

specific

text,

please

include

the

location

of

the

text

(for

example,

a

title,

a

table

number,

or

a

page

number).

©

Copyright

IBM

Corp.

2003,

2004

149

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/integration/db2ii/support.html
http://www.ibm.com/software/data/rcf/

150

Wrapper

Developer’s

Guide

����

Printed

in

USA

SC18-9174-00

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IB
M

D
B

2

In
fo

rm
at

io
n

In
te

gr
at

or

W
ra

pp
er

D
ev

el
op

er
’s

G
ui

de

Ve
rs

io
n

8.
2

	Contents
	About this book
	Who should read this book?
	Conventions and terminology used in this book

	Part 1. Overview of federated concepts and developing wrappers
	Chapter 1. Overview of federated concepts
	Why develop a wrapper?
	The problem: No easy way to access or integrate heterogeneous data
	The solution: Federated systems
	Example: Accessing and integrating data
	A walk through a basic federated query

	Wrapper module
	How users add data sources to federated systems
	Query processing for federated systems
	Request-reply-compensate protocol
	Manipulating requests and replies with handles
	Example of Request-Reply-Compensate protocol

	Default cost model for federated queries
	Query execution for federated systems
	Using passthrough with wrappers

	Chapter 2. Overview of developing wrappers
	Wrapper development process
	Wrapper development kit
	Sample C++ wrapper
	Sample Java wrapper
	Tools and samples for adding wrappers to the DB2 Control Center

	Part 2. Designing wrappers for data sources
	Chapter 3. Determining data source characteristics
	Selection of APIs for the data source
	Operations that are supported by the interface of the data source
	Metadata at the data source
	Relative cost of queries for the data source
	Multiple instances of the data source
	Client-server communication for the data source
	Transaction models and distributed commit protocol for the data source
	User authentication from the data source
	Large object support from the data source

	Chapter 4. Mapping data sources to federated constructs
	Designing for nicknames
	Deciding on nickname and column options
	Mapping queryable collections of source data to nicknames
	Mapping hierarchical data structures to nicknames

	Mapping data types from data sources to DB2 Universal Database
	Modeling data source capabilities with function templates
	Modeling data source capabilities using pseudo columns
	Designing for wrappers
	How wrappers work with options
	Deciding on wrapper options
	Defining the CREATE WRAPPER statement for the data source

	Designing for servers
	Deciding on server options
	Defining the CREATE SERVER statement for the data source

	Designing for user mappings
	Deciding on user mapping options
	Defining the CREATE USER MAPPING statement for the data source

	Chapter 5. Determining the SQL constructs that the data source can accept
	Determining the head expressions that the data source can accept
	Determining the predicates that the data source can accept
	Determining the joins that the data source can accept
	Determining the functions that the data source can accept

	Chapter 6. Designing for error handling
	Part 3. Developing and documenting wrappers
	Chapter 7. Overview of data flows
	Federated query processing and the objects that are involved
	Typical flow of a federated query
	Life cycles of objects that are involved in federated queries

	Control flows for processes
	Control flow for registration
	Control flow for initialization
	Control flow for query planning
	Control flow for query execution

	Communication between wrappers and foreign servers

	Chapter 8. Developing with wrapper classes
	Typical procedure for developing a wrapper
	Implementations of subclasses and methods
	Tips for developing wrappers
	Trusted and fenced mode process environments
	C++ Processing Environment
	Java Processing Environment

	Mapping parts of a wrapper to classes

	Chapter 9. Classes for coding wrappers
	Classes for communications between wrappers and data sources
	Wrapper classes
	Unfenced_Generic_Wrapper class
	Required customization for all wrappers
	Additional customization

	Fenced_Generic_Wrapper class
	Required customization for all wrappers
	Additional customization

	Server classes
	Unfenced_Generic_Server class
	Required customization for all wrappers
	Additional customization

	Fenced_Generic_Server class
	Required customization for all wrappers
	Additional customization

	Nickname classes
	Unfenced_Generic_Nickname class
	Required customization for all wrappers
	Additional customization

	Fenced_Generic_Nickname class
	Required customization for all wrappers
	Additional customization

	User classes
	Unfenced_Generic_User class
	Required customization for all wrappers
	Additional customization

	Fenced_Generic_User class
	Required customization for all wrappers
	Additional customization

	Request class
	Methods

	Reply class
	Advanced customization
	Methods

	Predicate list class
	Methods

	Request expression class
	Methods

	Request constant class
	Methods

	Request expression type class
	Methods

	Remote connection class
	Required customization for all wrappers
	Additional customization

	Remote query class
	Runtime data classes
	Runtime data class
	Runtime data list class

	Runtime data description classes
	Runtime data description class
	Runtime data description list class

	Remote passthru class
	Required customization for all wrappers
	Additional customization

	Wrapper utilities class

	Chapter 10. Ensuring wrappers coexist with the environment
	Using system services with wrappers
	Memory management (C++ only)
	Tokenization services (C++ only)

	Making environment variables accessible to wrappers
	C++ coding considerations

	Wrapper portablilty

	Chapter 11. Documenting wrappers
	Part 4. Building, testing, and tracing wrappers
	Chapter 12. Compiling wrappers
	Compiling wrappers (C++)
	Compiling wrappers (Java)

	Chapter 13. Linking wrappers (C++ only)
	Chapter 14. Installing wrappers
	Installing C++ wrappers
	Installing Java wrappers

	Chapter 15. Adding data sources to the Control Center
	Adding data sources to the DB2 Control Center
	Installing the Develop XML Configuration File wizard
	Creating XML configuration files
	Installing XML configuration files
	Supporting discovery in the DB2 Control Center

	Chapter 16. Testing wrappers
	Using registration DLL statements to test wrappers
	Testing wrappers with valid and invalid options

	Chapter 17. Tracing wrappers
	Wrapper trace facility
	Creating trace information from wrappers
	Example of wrapper trace facility

	Glossary
	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information
	Comments on the documentation

