
IBM
®

DB2

Universal

Database
™

Precompiler

Customization

Version

8.2

���

IBM
®

DB2

Universal

Database
™

Precompiler

Customization

Version

8.2

���

The

latest

version

of

this

document

(″Precompiler

Services

APIs″,

prepapi.pdf)

is

available

from

the

DB2

application

development

Web

site

(www.ibm.com/software/data/db2/udb/ad).

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

is

protected

by

copyright

law.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

©

Copyright

International

Business

Machines

Corporation

1997

-

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/software/data/db2/udb/ad

Contents

About

this

document

.

.

.

.

.

.

.

.

. v

Changed

APIs

(All

versions)

.

.

.

.

.

.

.

.

. v

Chapter

1.

Designing

a

precompiler

.

.

. 1

Precompilation

process

.

.

.

.

.

.

.

.

.

.

. 1

Application

programmer

.

.

.

.

.

.

.

.

. 2

Precompiler

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Precompiler

Services

.

.

.

.

.

.

.

.

.

.

. 2

Runtime

Services

.

.

.

.

.

.

.

.

.

.

.

. 3

Processing

model

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Precompiler

design

.

.

.

.

.

.

.

.

.

.

. 3

Language

considerations

.

.

.

.

.

.

.

.

. 4

Precompiler

responsibilities

.

.

.

.

.

.

.

. 4

Chapter

2.

Writing

a

precompiler

.

.

.

. 7

Initialization

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Defining

an

SQLCA

.

.

.

.

.

.

.

.

.

.

. 8

Handling

interrupts

.

.

.

.

.

.

.

.

.

.

. 8

Processing

command

line

arguments

.

.

.

.

. 9

Opening

files

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Preparing

the

option

array

.

.

.

.

.

.

.

.

. 9

Initializing

Precompiler

Services

using

db2Initialize

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Testing

the

return

code

from

db2Initialize

.

.

. 11

Processing

the

program

ID

.

.

.

.

.

.

.

. 11

Errors

that

require

reinitialization

.

.

.

.

.

. 11

Source

processing

.

.

.

.

.

.

.

.

.

.

.

. 12

Copying

non-SQL

code

.

.

.

.

.

.

.

.

. 12

Precompiler

tasks

for

host

variables

.

.

.

.

. 12

Processing

SQL

statements

.

.

.

.

.

.

.

. 17

Preparing

the

token

array

.

.

.

.

.

.

.

. 20

Compiling

an

SQL

statement

through

db2CompileSql

.

.

.

.

.

.

.

.

.

.

.

. 23

Termination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Saving

precompilation

results

.

.

.

.

.

.

. 35

Terminating

Precompiler

Services

through

sqlafini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Cleaning

up

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Chapter

3.

Advanced

precompiler

design

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Compound

SQL

.

.

.

.

.

.

.

.

.

.

.

.

. 37

The

CREATE

TRIGGER

statement

.

.

.

.

.

.

. 39

Optimizing

function

calls

.

.

.

.

.

.

.

.

.

. 40

Avoid

redundant

initializations

.

.

.

.

.

.

. 40

Use

multiple

dynamic

SQLDAs

.

.

.

.

.

.

. 41

Support

for

structure

host

variables

.

.

.

.

.

. 41

Support

for

255-byte

host

variable

names

and

labels

42

Support

for

stand-alone

SQLCODE/SQLSTATE

.

. 42

The

SET

CURRENT

PACKAGE

PATH

statement

.

. 44

Chapter

4.

Precompiler

data

structures

45

Precompiler

option

array

.

.

.

.

.

.

.

.

.

. 45

Program

identifier

string

.

.

.

.

.

.

.

.

.

. 46

Token

identifier

array

.

.

.

.

.

.

.

.

.

.

. 46

Task

array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Return

token

structure

.

.

.

.

.

.

.

.

.

.

. 47

Flagger

diagnostics

structure

.

.

.

.

.

.

.

. 48

Chapter

5.

Runtime

data

structures

.

. 49

Multiple

variable

SQLDA

initialization

structure

.

. 49

Runtime

information

structure

.

.

.

.

.

.

.

. 49

Chapter

6.

Option

APIs

.

.

.

.

.

.

.

. 51

sqlaoptions

-

Parse

Option

String

.

.

.

.

.

.

. 51

sqlaoptions_free

-

Free

Option

Parser

Storage

.

.

. 56

Chapter

7.

Precompiler

Services

APIs

57

SQLCA

and

return

codes

.

.

.

.

.

.

.

.

.

. 57

sqlaalhv

-

Add

Host

Variable

.

.

.

.

.

.

.

. 57

db2CompileSql

-

Compile

SQL

Statement

.

.

.

. 59

db2Initialize

-

Initialize

Precompiler

Services

.

.

. 62

sqlafini

-

Terminate

Precompiler

Services

.

.

.

. 65

Chapter

8.

Runtime

Services

APIs

.

.

. 67

sqlaaloc

-

Allocate

SQLDA

.

.

.

.

.

.

.

.

. 67

sqladloc

-

Deallocate

SQLDA

.

.

.

.

.

.

.

. 68

sqlacall

-

Execute

SQL

Statement

.

.

.

.

.

.

. 69

sqlacmpd

-

Register

Compound

SQL

Substatement

70

sqlastlv

-

Record

Host

Variable

Address

.

.

.

.

. 72

sqlastlva

-

Record

Host

Variable

Address

.

.

.

. 73

sqlasetdata

-

Record

Multiple

Host

Variable

Addresses

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

sqlastls

-

Record

SQL

Statement

Text

.

.

.

.

.

. 75

sqlausda

-

Register

SQLDA

.

.

.

.

.

.

.

.

. 76

sqlastrt

-

Start

Serialized

Execution

.

.

.

.

.

. 77

sqlastop

-

Stop

Serialized

Execution

.

.

.

.

.

. 78

Chapter

9.

Error

messages

and

codes

81

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

©

Copyright

IBM

Corp.

1997

-

2004

iii

iv

Precompiler

Customization

About

this

document

An

SQL

precompiler

examines

source

code

and

processes

SQL

statements

to

generate

modified

source

code

for

your

application

program.

This

document

explains

how

you

can

create

your

own

precompiler

to

support

additional

features

or

languages,

using

the

Precompiler

Services

interface

provided

by

DB2.

It

is

recommended

that

you

read

one

or

more

of

the

following

sections

in

the

Application

Development

Guide:

″Programming

in

C

and

C++″,

″Programming

in

FORTRAN″,

or

″Programming

in

COBOL″,

to

become

familiar

with

the

use

of

the

existing

DB2

precompilers.

As

well,

you

should

study

some

of

the

sample

programs

provided

with

DB2,

and

compare

the

contents

of

the

precompiler

output

with

the

original

source.

This

will

help

you

to

understand

what

the

precompiler

must

do

in

different

circumstances.

Changed

APIs

(All

versions)

Starting

in

Version

6,

a

new

standard

is

being

applied

to

some

DB2

APIs.

Implementation

of

the

new

API

definitions

is

being

carried

out

in

a

staged

manner.

Following

is

a

brief

overview

of

the

changes:

v

The

new

API

names

contain

the

prefix

″db2″,

followed

by

a

meaningful

mixed

case

string

(for

example,

db2CompileSql).

v

Generic

APIs

have

names

that

contain

the

prefix

″db2g″,

followed

by

a

string

that

matches

the

C

API

name.

v

The

first

parameter

into

the

function

(versionNumber)

represents

the

version,

release,

or

PTF

level

to

which

the

code

is

to

be

compiled.

This

version

number

is

used

to

specify

the

level

of

the

structure

that

is

passed

in

as

the

second

parameter.

v

The

second

parameter

into

the

function

is

a

void

pointer

to

the

primary

interface

structure

for

the

API.

Each

element

in

the

structure

is

either

an

atomic

type

(for

example,

db2Uint32)

or

a

pointer.

Each

parameter

name

adheres

to

the

following

naming

conventions:

piCamelCase

-

pointer

to

input

data

poCamelCase

-

pointer

to

output

data

pioCamelCase

-

pointer

to

input

or

output

data

iCamelCase

-

integral

input

data

ioCamelCase

-

integral

input/output

data

oCamelCase

-

integral

output

data

area

v

The

third

parameter

is

a

pointer

to

the

SQLCA,

and

is

mandatory.

Some

Precompiler

Services

APIs

have

been

replaced

by

new

APIs

conforming

to

this

standard.

The

following

table

lists

these

APIs:

Table

1.

Discontinued

APIs

Descriptive

Name

API

(Version)

New

API

(Version)

Compile

SQL

Statement

sqlacmpl

(V5)

db2CompileSql

(V6)

Initialize

Precompiler

Services

sqlainit

(V6)

db2Initializea

(V6

FixPak

4,

V7)

Record

Multiple

Host

Variable

Addresses

sqlasetd

(V6),

sqlasetda

(V7)

sqlasetdata

(V8)

Record

Host

Variable

Address

sqlastlva

(V7

FixPak

1)

©

Copyright

IBM

Corp.

1997

-

2004

v

Note:

a

If

a

version

number

is

specified

when

calling

db2Initialize,

the

data

types

will

adhere

to

the

SQLTYPES

and

the

SQLLEN

for

that

version.

Other

updated

APIs

are

listed

in

the

following

table:

Table

2.

Updated

APIs

Descriptive

Name

API

(Version)

Parse

Option

String

sqlaoptions

(V8,

FixPak

2)

vi

Precompiler

Customization

Chapter

1.

Designing

a

precompiler

To

create

an

effective

precompiler,

you

need

to

understand

the

tasks

of

several

database

manager

services.

The

following

is

an

overview

of

the

precompilation

process.

You

can

then

examine

each

interrelated

service.

The

description

of

a

processing

model

follows.

Use

this

model

to

ensure

that

your

precompiler

is

both

efficient

and

complete.

Precompilation

process

There

are

four

participants

in

creating

a

successful

application

program:

v

The

application

programmer

v

The

precompiler

v

Precompiler

Services

v

Runtime

Services

Each

has

a

distinct

list

of

responsibilities.

During

the

development

process,

these

duties

complement

each

other.

This

division

provides

three

distinct

benefits

for

your

application

development:

v

Programmers

can

make

full

use

of

the

features

of

their

preferred

host

language.

v

Programmers

do

not

need

to

learn

a

new

interface

to

access

the

DB2

kernel.

v

Additional

languages

can

be

added

to

the

list

of

those

supported

by

the

database

manager.

The

following

steps

describe

what

happens

to

an

SQL

statement

from

its

creation

to

its

execution.

You

can

see

what

is

required

at

each

step

of

the

process.

1.

The

programmer

creates

an

application

and

embeds

an

SQL

statement

in

the

source

code.

2.

The

precompiler

identifies

SQL

elements

in

the

source

code.

It

processes

the

statement

to

prepare

it

for

Precompiler

Services.

3.

Precompiler

Services

compiles

the

processed

SQL

statement.

It

stores

the

processed

statement

in

a

bind

file,

and

the

compiled

statement

in

a

section

of

the

package.

Precompiler

Services

then

defines

the

tasks

required

to

successfully

execute

the

SQL

statement

at

run

time.

4.

The

precompiler

creates

host

language

code,

generally

consisting

of

Runtime

Services

function

calls

to

support

these

tasks,

and

inserts

this

code

in

the

modified

source

file.

5.

When

the

application

executes,

the

Runtime

Services

function

calls

communicate

with

the

database

manager

to

process

the

SQL

statements.

This

procedure

occurs

for

each

SQL

statement

in

the

source

being

precompiled.

During

this

process,

the

precompiler

copies

non-SQL

code

directly

into

the

modified

source

file.

The

application

programmer

then

compiles

and

links

this

modified

file

into

the

final

form.

Although

this

sequence

sounds

simple,

writing

a

precompiler

requires

a

significant

design

effort

and

a

solid

understanding

of

text

translation

techniques.

The

following

explains

the

responsibilities

of

each

participant

in

greater

detail.

©

Copyright

IBM

Corp.

1997

-

2004

1

Application

programmer

The

application

programmer

has

two

responsibilities:

v

Construct

correct

SQL

statements.

For

informaton

about

constructing

SQL

statements,

see

the

SQL

Reference.

v

Choose

appropriate

precompilation

options.

The

precompiler

must

collect

a

number

of

options,

values,

and

names

from

the

user.

The

precompiler

passes

this

data

as

parameters

to

Precompiler

Services.

Each

of

the

necessary

parameters

is

discussed

as

Precompiler

Services

APIs

and

Runtime

Services

APIs

are

introduced.

Precompiler

The

precompiler

has

the

following

responsibilities:

v

Create

the

necessary

data

structures.

v

Translate

the

application

source

file

into

a

modified

source

file.

v

Process

host

variable

declarations.

v

Process

SQL

statements.

v

Construct

Runtime

Services

function

calls.

The

precompiler

is

pivotal

to

simplifying

application

development.

With

a

properly

constructed

precompiler,

the

application

programmer

does

not

need

to

create

code

for

direct

access

to

the

database

manager.

The

precompiler

translates

SQL

requests

to

host

language

calls.

Precompiler

Services

Precompiler

Services

has

the

following

responsibilities:

v

Validate

and

compile

SQL

statements.

Precompiler

Services

calls

the

database

manager

for

a

full

syntactic

and

semantic

check

of

the

SQL

statement.

The

kernel

compiles

the

statement

and

stores

it

in

a

section

of

the

package.

v

Identify

how

each

host

variable

is

used

in

the

SQL

statement.

While

compiling

an

SQL

statement,

Precompiler

Services

determines

how

all

host

variables

are

used

(that

is,

for

input

or

for

output,

or

as

indicator

variables).

It

provides

a

usage

code

for

each

host

variable.

v

Identify

tasks

required

to

support

the

SQL

statement.

After

processing

SQL

statements,

Precompiler

Services

creates

a

list

of

tasks

called

a

task

array.

The

precompiler

converts

tasks

in

this

array

to

function

calls

in

the

application

program.

The

precompiler

constructs

host

language

calls

to

allocate

an

SQLDA,

for

example.

It

then

inserts

these

calls

into

the

modified

source

file.

The

application

program

completes

these

tasks

to

execute

the

statement.

v

Create

a

bind

file

and

package.

Precompiler

Services

processes

each

executable

SQL

statement

into

a

separate

section

of

the

package.

The

sections

are

collectively

referred

to

as

a

package.

Each

precompiled

source

module

has

its

own

package.

If

the

application

programmer

chooses

to

defer

binding

(the

act

of

creating

a

package

in

the

database),

the

processed

SQL

statements

are

stored

in

a

bind

file.

The

DB2

bind

utility

uses

the

bind

file

to

create

the

package

at

a

later

time.

This

allows

an

application

to

use

different

databases

without

additional

precompilation,

since

the

bind

file

can

be

bound

multiple

times

against

different

databases.

Precompilation

process

2

Precompiler

Customization

Runtime

Services

Runtime

Services

APIs

support

communication

between

the

application

program

and

the

database

manager.

Runtime

Services

has

three

responsibilities:

v

Initialize

and

validate

the

SQL

Communication

Area

(SQLCA)

and

the

SQL

Description

Areas

(SQLDA).

v

Manipulate

SQLDAs.

v

Provide

a

functional

interface

to

the

database

manager.

Runtime

Services

calls

the

database

manager

to

process

compiled

SQL

statements.

It

also

modifies

the

input

and

output

SQLDA,

and

passes

dynamic

SQL

statements

to

the

database

manager.

Processing

model

This

section

examines

the

responsibilities

of

the

precompiler

in

detail.

It

also

explores

precompiler

design

and

language

considerations.

Precompiler

design

There

are

several

ways

to

structure

a

precompiler.

Three

approaches

are

discussed:

v

The

statement

oriented

model.

You

can

design

a

precompiler

to

process

source

code

one

line

at

a

time;

each

line

is

examined

for

host

variable

declarations

and

SQL

statements.

This

design

presents

the

precompilation

process

in

a

way

that

is

easy

to

understand.

It

may

work

well

with

line-oriented

languages,

such

as

FORTRAN,

but

there

are

significant

disadvantages.

The

design

requires

too

much

text

rescanning

to

be

efficient.

Multi-line

constructs

and

streaming

languages,

such

as

C,

are

difficult

to

handle.

v

The

compiler

model.

Another

method

is

to

create

a

precompiler

that

works

like

a

compiler.

Such

a

precompiler

would

use

a

parser

and

scanner

to

tokenize

and

process

the

input

file.

You

could

create

production

rules

to

identify

and

process

host

variable

declarations

and

SQL

statements.

This

model

might

require

the

precompiler

to

understand

the

complete

host

language

syntax

just

for

statement

recognition.

The

precompiler

would

spend

too

much

time

processing

non-SQL

code.

This

is

also

inefficient.

v

The

hybrid

model.

The

hybrid

model

is

a

compromise

between

the

other

two.

Ideally,

the

precompiler

should

copy

non-SQL

code

directly

into

the

modified

source

file.

One

solution

is

a

state-based

scanner.

The

scanner

could

understand

various

text

modes

such

as

plain

text,

comments,

and

strings,

and

perform

only

minimal

tokenization.

It

should

only

recognize

SQL-related

keywords

in

plain

text

areas

(that

is,

not

in

the

middle

of

comments

or

strings.)

The

precompiler

also

needs

to

process

SQL

statements

as

they

are

found.

The

entire

statement

must

be

processed

at

once.

With

a

statement-oriented

scanner,

the

entire

statement

can

be

identified.

But

additional

semantic

actions

must

occur

before

the

statement

is

processed.

An

intelligent

scanner

or

a

simplified

parser

could

discern

the

changes

needed.

Precompilation

process

Chapter

1.

Designing

a

precompiler

3

Depending

on

the

host

language,

the

precompiler

may

need

to

parse

host

variable

declarations.

Languages

such

as

C

have

a

complex

syntax

for

variable

declaration.

You

may

have

to

process

declarations

and

save

contextual

information

as

you

go.

Although

this

model

begins

to

address

some

important

design

considerations,

it

is

not

the

only

solution.

Base

your

precompiler

design

on

your

understanding

of

the

precompilation

process

and

the

requirements

of

your

situation.

Language

considerations

Your

precompiler

can

be

written

in

any

language.

Some

languages

offer

more

facilities

to

create

an

efficient

precompiler.

C

is

a

good

choice

because

it

offers

the

following:

v

String

manipulation

v

User-defined

data

structures

v

Indirect

addressing

using

pointers

v

Dynamic

allocation

of

storage.

The

most

important

consideration

is

the

ability

of

the

language

to

call

Precompiler

Services.

The

precompiler

should

be

able

to

pass

structures

that

are

arrays

of

pointers

and

other

data

objects.

If

the

language

does

not

support

pointers,

you

may

have

difficulties.

Precompiler

Services

also

uses

signed

and

unsigned

data

types.

Consider

these

factors

before

you

choose

a

language.

Precompiler

responsibilities

The

following

outlines

the

tasks

required

of

a

successful

precompiler.

This

is

a

generic

list.

You

can

add

or

subtract

from

it

as

necessary.

v

Create

necessary

data

structures.

The

precompiler

uses

the

following

structures:

–

Program

identification

string

(PID)

–

Option

array

–

SQLCA

–

Host

variable

name

array

–

Token

ID

array

–

Task

array

–

SQL

flagger

diagnostics

structure.
v

Translate

source

code

into

modified

source

code.

The

precompiler

copies

all

non-SQL

source

code

verbatim

into

the

modified

source

file.

It

is

important

to

maintain

the

integrity

of

the

original

application

code.

v

Process

host

variables.

To

process

host

variables,

the

precompiler:

–

Detects

host

variable

declarations

–

Determines

SQL

data

type,

variable

length,

and

other

information

–

Assigns

unique

token

IDs

to

each

host

variable

–

Maintains

the

host

variables

in

a

symbols

table

–

Declares

the

variables

to

Precompiler

Services.

Your

precompiler

stores

information

about

each

host

variable.

You

need

this

information

to

generate

function

calls

in

the

modified

source

file.

v

Process

SQL

statements.

Processing

model

4

Precompiler

Customization

To

process

SQL

statements,

the

precompiler:

–

Detects

SQL

statements

–

Includes

the

statement

as

a

comment

in

the

modified

source

file

–

Removes

comments

from

the

statement

–

Replaces

EXEC

SQL

keywords

and

the

statement

terminator

with

blanks

–

Replaces

non-blank

white

space

with

blanks

–

Detects

host

variables

in

the

SQL

statement

–

Places

host

variable

IDs

in

the

Token

ID

Array

–

Replaces

SQL

statement

host

variable

names

with

blanks

–

Passes

preprocessed

SQL

statements

to

Precompiler

Services

for

compilation.

By

processing

SQL

statements

into

this

form,

the

precompiler

turns

language-specific

statements

into

language-independent

statements.

Precompiler

Services

can

then

process

each

statement

without

knowing

what

host

language

is

being

used.

v

Construct

host

language

function

calls.

Once

Precompiler

Services

compiles

the

SQL

statement,

it

returns

a

sequence

of

functions

and

values

to

the

precompiler

in

the

task

array.

These

values

define

the

required

calls.

The

precompiler

inserts

necessary

Runtime

Services

function

calls

in

the

modified

source

file,

based

on

the

contents

of

the

task

array.

Processing

model

Chapter

1.

Designing

a

precompiler

5

Processing

model

6

Precompiler

Customization

Chapter

2.

Writing

a

precompiler

The

sequence

of

tasks

a

precompiler

must

perform

is

described

in

this

section.

The

user

interface

is

not

discussed;

you

can

design

an

interface

that

is

appropriate

to

your

needs.

Initialization

Before

the

precompiler

reads

the

first

byte

of

program

input,

it

should

perform

the

following

initialization

tasks:

v

Initialize

the

precompiler.

Allocate

the

SQLCA,

set

the

precompiler

break

handler,

process

command

line

arguments,

open

files,

and

set

up

the

option

array.

A

database

connection

must

be

established

before

calling

Precompiler

Services

initialization

(db2Initialize).

v

Initialize

Precompiler

Services.

Call

db2Initialize

with

initialization

data

and

the

option

array.

v

Process

return

data

from

db2Initialize.

Check

the

SQLCA,

generate

program

ID

data

in

modified

source

file.

Figure

1

on

page

8

shows

the

tasks

performed

by

Precompiler

Services.

©

Copyright

IBM

Corp.

1997

-

2004

7

Defining

an

SQLCA

All

Precompiler

Services

APIs

use

the

SQLCA

to

report

completion

codes

and

other

diagnostic

information

to

the

calling

program.

Define

and

allocate

an

SQLCA

before

calling

Precompiler

Services.

For

detailed

information

about

the

SQLCA

structure,

see

the

SQL

Reference.

You

should

not

alter

the

SQLCA

structure

or

member

names,

because

programmers

may

wish

to

access

the

SQLCA

directly,

according

to

instructions

found

in

other

IBM

manuals.

Handling

interrupts

Precompiling

can

take

a

significant

amount

of

time.

The

application

programmer

may

decide

to

terminate

the

process

by

interrupting

the

precompiler.

Precompiler

Services

detects

user-initiated

interrupts

and

returns

the

SQLCODE

SQLA_RC_CTRL_BREAK

(-4994)

to

the

precompiler

when

these

interrupts

occur.

You

may

want

to

provide

your

own

interrupt

routine

by

installing

a

signal

handler

in

the

precompiler.

Precompiler

Services

acquires

control

when

an

interrupt

occurs.

If

the

precompiler

has

an

installed

signal

handler,

the

Precompiler

Services

handler

invokes

it

before

terminating.

Precompiler

||

Precompiler

Services

||

||

Define

SQLCA

||

Install

Break

Handler

||

Process

Command

Line

||

Arguments

||

Open

Source

and

Modified

||

Source

||

Prepare

Option

Array

||

CONNECT

to

database

||

Call

db2Initialize

||

||

|

|

program

name

+----------

bind

file

name

----+

option

array

|

V

||

||

Validate

Option

Array

||

Open

Package

||

Open

Bindfile

(if

||

required)

||

Build

Program

ID

||

|

+----------

program

ID

-------+

|

sqlca

V

||

Check

return

code

and

||

SQLCODE

||

Place

program

ID

in

||

modified

source

||

||

Figure

1.

Initialization

Tasks

Initialization

8

Precompiler

Customization

Note:

Install

the

signal

handler

before

the

first

db2Initialize

call

occurs.

If

the

precompiler

installs

its

handler

at

any

time

after

the

first

db2Initialize

call,

the

results

of

an

interrupt

are

unpredictable.

Although

Precompiler

Services

maintains

its

own

interrupt

handler,

the

precompiler

must

still

call

Precompiler

Services

after

an

interrupt

has

occurred

to

properly

terminate

the

precompilation

session.

Call

sqlafini

with

the

termination

option

set

to

discard

the

package

or

bind

file.

After

an

interrupt,

Precompiler

Services

rejects

all

calls

except

sqlafini.

After

sqlafini

has

completed,

call

db2Initialize

to

initiate

a

new

precompilation

session.

Processing

command

line

arguments

A

precompiler

requires

the

following

information:

source

file

name

The

name

of

the

file

containing

the

source

program

being

precompiled.

This

is

not

sent

to

db2Initialize,

but

is

required

by

any

precompiler.

modified

source

file

name

The

name

of

the

file

that

will

be

created

by

the

precompiler.

This

is

not

sent

to

db2Initialize,

but

is

required

by

any

precompiler.

bind

file

name

The

name

of

the

bind

file

to

be

produced,

if

any.

This

is

generally

based

on

the

source

file

name,

but

can

be

any

valid

file

name

with

an

extension

of

.bnd.

database

name

A

short

identifier

specifying

the

alias

of

the

database

against

which

this

program

is

to

be

precompiled.

The

precompiler

connects

to

this

database

before

calling

db2Initialize.

package

name

The

name

of

the

package

to

be

created.

This

is

generally

based

on

the

source

file

name,

but

can

be

any

valid

short

identifier.

options

These

specify

the

date

and

time

format,

isolation

level,

and

record

blocking

behavior,

among

others.

See

“Preparing

the

option

array.”

You

can

allow

users

to

specify

these

items

on

the

command

line

or

through

some

other

method.

In

any

case,

the

precompiler

is

responsible

for

validating

these

items.

Opening

files

The

precompiler

opens

the

input

source

file

and

the

output

modified

source

file.

The

precompiler

should

not

attempt

to

open

the

bind

file.

Precompiler

Services

performs

this

function.

Preparing

the

option

array

The

precompiler

uses

the

option

array

to

pass

options

to

Precompiler

Services.

The

array

contains

a

header,

followed

by

pairs

of

4-byte

integers.

The

header

consists

of

two

4-byte

integers.

The

first

integer

gives

the

number

of

option

pairs

allocated.

The

second

gives

the

actual

number

of

options

used.

Initialization

Chapter

2.

Writing

a

precompiler

9

If

M

is

the

required

number

of

options,

you

need

to

allocate

at

least

8

*

(M+1)

bytes

of

storage

for

the

option

array.

The

remaining

pairs

of

integers

specify

options

and

option

values.

Each

pair

represents

one

option

specification

from

the

precompiler.

With

DB2

UDB

Version

5

and

higher,

Precompiler

Services

provides

an

API

which

parses

an

option

string

and

produces

the

corresponding

option

structure

to

be

passed

to

db2Initialize.

This

enables

Precompiler

Services

clients

to

simply

obtain

a

precompilation

option

string

from

the

user

with

little

regard

to

its

contents,

pass

it

to

sqlaoptions,

and

then

use

the

resulting

option

structure

with

db2Initialize.

For

details,

see

“sqlaoptions

-

Parse

Option

String”

on

page

51.

For

a

list

of

the

options

supported

by

the

DB2

precompilers,

see

the

description

of

sqlaprep

in

the

Administrative

API

Reference.

Precompiler

Services

supports

all

of

the

options

listed

there,

except

for

the

following,

which

are

implemented

by

the

various

precompilers:

BINDFILE

(*)

SQLCA

LONGERROR

SQLERROR

MESSAGES

TARGET

NOLINEMACRO

WCHARTYPE

(**)

OPTLEVEL

PACKAGE

(*)

Notes:

1.

(*)

BINDFILE

and

PACKAGE

are

implemented

with

different

option

values

in

Precompiler

Services

than

in

sqlaprep.

See

below.

2.

(**)

WCHARTYPE

is

used

only

for

C

applications,

and

affects

the

contents

of

the

sqla_runtime_info

structure.

See

“Runtime

information

structure”

on

page

49.

The

following

two

options

interact

to

control

the

creation

of

bind

files

and

packages:

v

SQLA_BIND_FILE

(3)

with:

–

Value

SQLA_CREATE_BIND_FILE

(1).

A

bind

file

is

created

with

the

name

specified

in

the

bind

file

argument

to

db2Initialize.

–

Value

SQLA_NO_BIND_FILE

(0).

No

bind

file

is

created;

the

bind

file

argument

to

db2Initialize

is

ignored.

–

Value

SQLA_SQLERROR_CONTINUE

(2).

Similar

to

SQLA_CREATE_BIND_FILE,

but

should

be

used

if

the

user

has

also

requested

SQLERROR

CONTINUE

behavior

(see

the

PRECOMPILE

PROGRAM

command

in

the

Command

Reference

for

details).
v

SQLA_ACCESS_PLAN

(2)

with:

–

Value

SQLA_CREATE_PLAN

(1).

A

package

is

created

with

the

name

specified

in

the

program

name

argument

to

db2Initialize.

–

Value

SQLA_NO_PLAN

(0).

No

package

is

created;

the

program

name

argument

to

db2Initialize

is

ignored.

–

Value

SQLA_SQLERROR_CONTINUE

(2).

Similar

to

SQLA_CREATE_PLAN,

but

should

be

used

if

the

user

has

also

requested

SQLERROR

CONTINUE

behavior

(see

the

PRECOMPILE

PROGRAM

command

in

the

Command

Reference

for

details).

–

Value

SQLA_NO_PLAN_SYNTAX

(3).

Similar

to

SQLA_NO_PLAN,

but

should

be

used

if

the

user

requires

a

check

of

statement

syntax,

but

no

package

or

bind

file

creation.

See

the

SYNTAX

option

under

PRECOMPILE

PROGRAM

in

the

Command

Reference.

Initialization

10

Precompiler

Customization

Note

that

the

behavior

of

the

SQL

flagger

(see

the

SQLA_FLAG_OPT

option

under

sqlaprep

in

the

Administrative

API

Reference)

depends

on

the

setting

of

the

SQLA_BIND_FILE

and

SQLA_ACCESS_PLAN

options.

From

the

DB2

precompiler

interface

(that

is,

the

PRECOMPILE

PROGRAM

command,

or

the

sqlaprep

API),

specifying

one

of

the

variants

of

the

SQLFLAG

option

alone

will

suppress

bind

file

and

package

creation,

and

SQL

statements

will

only

be

verified

against

the

chosen

syntax

(DB2

for

OS/390

or

SQL92E),

not

against

DB2

Universal

Database

(UDB).

This

corresponds

to

SQLA_ACCESS_PLAN

with

SQLA_NO_PLAN,

and

SQLA_BIND_FILE

with

SQLA_NO_BIND_FILE,

in

Precompiler

Services.

(If

desired,

a

package

and/or

bind

file

can

be

created

during

SQL

flagging,

simply

by

specifying

the

SQLA_ACCESS_PLAN

and

SQLA_BIND_FILE

options

with

the

appropriate

values.)

If,

on

the

other

hand,

you

require

syntax

checking

against

both

DB2

for

MVS

or

SQL92E,

and

DB2

UDB,

but

without

package

or

bind

file

creation,

this

can

be

achieved

by

combining

the

SQLA_FLAG_OPT

option

and

the

SQLA_NO_PLAN_SYNTAX

value

of

the

SQLA_ACCESS_PLAN

option.

Initializing

Precompiler

Services

using

db2Initialize

The

precompiler

initializes

Precompiler

Services

by

calling

db2Initialize.

See

“db2Initialize

-

Initialize

Precompiler

Services”

on

page

62

for

a

description

of

this

API.

Testing

the

return

code

from

db2Initialize

Precompiler

Services

passes

any

errors

or

warnings

returned

from

db2Initialize

through

the

SQLCA;

however,

Precompiler

Services

first

attempts

to

validate

the

SQLCA

itself.

The

return

code

from

db2Initialize

shows

whether

the

SQLCA

address

was

valid,

and

whether

the

structure

is

long

enough

to

contain

an

SQLCA.

The

return

code

may

be

set

to

the

following

values:

SQLA_CHECK_SQLCA

(0)

Check

the

SQLCA.SQLCODE

element

for

the

completion

code.

SQLA_SQLCA_BAD

(-1)

The

address

of

the

SQLCA

passed

to

the

function

was

not

valid;

the

command

was

not

processed.

Processing

the

program

ID

The

program

ID

is

a

string

of

alphanumeric

data

used

to

identify

the

program

being

precompiled,

the

user

ID

performing

the

precompilation,

the

date

and

time

when

precompilation

occurred,

and

so

on.

On

initialization,

Precompiler

Services

creates

a

program

ID

and

returns

it

to

the

precompiler.

The

precompiler

generates

the

appropriate

host

language

code

to

declare

a

character

array

in

the

modified

source

file

and

initialize

it

with

the

program

ID.

At

run

time,

the

variable

that

contains

this

data

is

used

as

an

input

parameter

to

the

sqlastrt

function.

Note:

For

maximum

portability,

the

program

ID

should

be

restricted

to

uppercase

A-Z,

0-9,

and

the

underscore

(_).

Errors

that

require

reinitialization

If

db2Initialize

is

successful,

Precompiler

Services

returns

0

to

SQLCODE

in

the

SQLCA.

If

it

is

not

successful,

an

error

code

is

returned.

Initialization

Chapter

2.

Writing

a

precompiler

11

If

a

fatal

error

occurs

while

executing

any

Precompiler

Services

API,

terminate

Precompiler

Services

with

a

call

to

sqlafini.

Reinitialize

with

an

db2Initialize

call

before

continuing.

To

see

which

errors

are

considered

fatal,

refer

to

Chapter

9,

“Error

messages

and

codes,”

on

page

81.

Source

processing

The

following

describes

tasks

related

to

processing

the

input

source

file

and

generating

the

modified

source

file.

Copying

non-SQL

code

Your

precompiler

should

copy

all

non-SQL

code

directly

into

the

modified

source

file.

It

is

important

to

maintain

the

integrity

of

the

application

program.

While

copying

the

non-SQL

code,

the

precompiler

searches

for

the

keywords

EXEC

SQL.

The

precompiler

only

recognizes

these

keywords

if

they

appear

on

the

same

line,

separated

by

one

blank.

You

may

want

to

relax

these

restrictions.

These

keywords

are

part

of

the

ANSI

standard;

however,

you

may

want

to

use

some

other

way

to

identify

SQL

statements.

Note

that

if

the

keyword

pair

EXEC

SQL

appears

in

a

comment

or

a

string,

it

should

be

ignored.

Your

precompiler

should

not

recognize

comments

or

string

characters

as

valid

keywords.

Ensure

that

your

logical

scanning

rules

properly

enter

and

exit

all

comment

and

string

variations.

Precompiler

tasks

for

host

variables

When

Precompiler

Services

compiles

a

BEGIN

DECLARE

SECTION

statement,

it

tells

the

precompiler

to

begin

processing

host

variables.

The

precompiler

should

copy

syntactically

valid

host

variable

declarations

directly

into

the

modified

source

file.

SQL-based

″pseudo

declarations″,

such

as

for

large

object

types,

should

be

translated

into

proper

host

language

syntax

before

they

are

written

to

the

output

file.

The

precompiler

also

needs

to

record

the

host

variable

in

a

symbols

table

and

register

it

with

Precompiler

Services.

When

the

precompiler

detects

a

host

variable,

it

does

the

following:

v

Determines

if

the

host

variable

is

SQL

compatible

v

Determines

the

SQL

type

v

Adds

information

to

the

host

variable

symbols

table

v

Calls

the

Precompiler

Services

function

sqlaalhv

v

Checks

for

successful

completion.

The

precompiler

continues

processing

host

variables

until

an

END

DECLARE

SECTION

statement

is

detected.

Acceptable

host

variables

Only

certain

host

variable

data

types

are

compatible

with

SQL

columns.

To

be

recognized

as

an

SQL

host

variable,

the

variable

must

conform

with

the

SQL

variable

declaration

syntax

of

each

host

language.

See

the

Application

Development

Guide

for

examples

of

language-specific

variable

formats

that

are

compatible

with

SQL.

The

precompiler

determines

if

the

declared

host

variable

is

acceptable.

If

not,

the

precompiler

can

return

an

error,

or

ignore

the

declaration.

Initialization

12

Precompiler

Customization

It

is

up

to

the

implementer

to

decide

what

host

variable

declaration

syntax

will

be

accepted.

Typically,

the

precompiler

accepts

declarations

that

are

valid

in

the

target

host

language

(for

example,

C

declarations

in

a

C

precompiler).

However,

the

precompiler

may

accept

non-host

language

declarations

and

map

them

to

proper

host

language

in

the

modified

source

file.

This

may

simplify

parsing,

or

may

provide

a

way

for

the

user

to

express

a

semantic

difference

between

host

variables

whose

declarations

would

otherwise

be

syntactically

identical

in

the

host

language.

For

example,

C

does

not

provide

a

way

to

indicate

at

declaration

time

that

a

character

array

does

not

contain

a

NULL

terminator,

and

that

it

should

be

treated

as

a

fixed-length

character

string.

A

C

precompiler

could

recognize

some

extra

syntax

and

assign

it

to

the

SQL

type

452

(fixed-length

string)

instead

of

type

460

(C

NULL-terminated

string).

This

hypothetical

precompiler

might

successfully

process

the

following:

exec

sql

begin

declare

section;

FIXED_CHAR

a[10];

/*

type

452

*/

char

b[10];

/*

type

460

*/

exec

sql

end

declare

section;

and

then

give

the

modified

source:

/*

exec

sql

begin

declare

section;

*/

/*FIXED_CHAR*/

char

a[10];

/*

type

452

*/

char

b[10];

/*

type

460

*/

/*

exec

sql

end

declare

section;

*/

The

″pseudo-declaration″

technique

is

used

extensively

for

large

object

declarations.

For

details,

see

“Large

objects”

on

page

14.

Following

are

some

examples

of

host

variable

declarations.

In

these

examples,

all

three

declarations

are

legal

in

C.

The

variables

number

and

mystruct1

would

be

valid

with

a

basic

C

precompiler,

since

they

are

each

recognized

as

an

atomic

SQL

type.

The

variable

mystruct2

would

only

be

valid

to

a

more

sophisticated

precompiler

implementing

structure

support.

This

feature

allows

the

precompiler

to

recognize

declarations

of

structures

which

are

not

themselves

atomic

SQL

types,

but

which

are

composed

of

them.

For

more

detailed

information

about

structure

support,

see

“Support

for

structure

host

variables”

on

page

41.

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

number;

/*

"number"

is

recognized

as

a

*/

/*

SMALLINT

host

variable

by

*/

/*

the

precompiler.

*/

struct

{

/*

"mystruct1"

is

recognized

as

*/

short

number;

/*

a

VARCHAR

host

variable

by

*/

char

mydata[30];

/*

the

precompiler.

*/

}

mystruct1;

struct

{

/*

"mystruct2"

is

NOT

recognized

*/

char

mydata[30];

/*

as

a

host

variable

by

the

*/

short

number;

/*

precompiler,

unless

structure

*/

}

mystruct2;

/*

support

is

implemented.

*/

/*

This

will

cause

a

precompilation

error.

*/

EXEC

SQL

END

DECLARE

SECTION;

Determining

SQL

type

Each

acceptable

host

variable

has

a

corresponding

SQL

data

type.

The

writer

of

a

precompiler

must

determine

what

host

language

declarations

are

equivalent

to

each

SQL

type.

The

precompiler

then

recognizes

those

declarations,

and

maps

Source

Processing

Chapter

2.

Writing

a

precompiler

13

them

to

the

appropriate

SQL

types.

The

SQL

Reference

lists

all

SQL

types,

and

the

Application

Development

Guide

shows

how

they

are

declared

in

the

languages

currently

supported

by

the

precompilers

provided

by

DB2.

Large

objects

DB2

supports

large

object

(LOB)

SQL

types,

which

are

essentially

large

capacity

character

and

byte

strings.

These

are

typically

declared

with

the

″pseudo-declaration″

mechanism

mentioned

earlier.

The

syntax

SQL

TYPE

IS

type-name

is

used

in

these

declarations,

where

type-name

is

one

of:

v

BLOB(size)

v

CLOB(size)

v

DBCLOB(size)

v

BLOB_LOCATOR

v

CLOB_LOCATOR

v

DBCLOB_LOCATOR

v

BLOB_FILE

v

CLOB_FILE

v

DBCLOB_FILE.

The

variable

size

is

the

size

in

bytes

for

BLOBs

and

CLOBs,

and

in

double-byte

characters

for

DBCLOBs.

For

detailed

information

about

the

nature

and

use

of

LOB

SQL

types,

see

the

SQL

Reference.

These

types

are

of

particular

interest

to

the

writer

of

a

precompiler,

because

the

pseudo

declarations

in

the

input

source

file

must

be

replaced

by

equivalent

declarations

in

the

host

language.

For

information

about

how

these

declarations

map

to

their

equivalents

in

C,

COBOL,

and

FORTRAN,

see

the

Application

Development

Guide.

Note

that

the

LOB

and

LOB

file

declarations

map

to

structure

declarations

in

the

host

language.

The

names

of

the

structure

members

are

generated

by

the

precompiler,

but

must

be

predictable

to

the

user,

since

the

application

must

be

able

to

reference

them.

For

example,

in

C:

exec

sql

begin

declare

section;

static

sql

type

is

clob(100)

foo;

exec

sql

end

declare

section;

maps

to:

/*

exec

sql

begin

declare

section;

*/

static

/*

sql

type

is

clob(100)

*/

struct

foo_t

{

sqluint32

length;

char

data[100];

}

foo;

/*

exec

sql

end

declare

section;

*/

In

this

example,

foo

becomes

a

structure

name,

with

members

length

and

data.

The

precompiler

could

have

named

the

members

however

it

liked,

but

the

application

programmer

must

know

what

name

to

use,

so

that

foo.length,

for

example,

can

be

referred

to.

Note

that

in

languages

like

COBOL,

where

structure

members

are

part

of

the

global

name

space,

the

structure

members

should

have

names

that

make

them

uniquely

identifiable;

for

example,

FOO-LENGTH

and

FOO-DATA.

The

LOB

file

structure

has

more

fields,

but

the

principle

is

the

same.

The

LOB

locator

declarations

become

simple

4-byte

integer

declarations

in

the

host

language.

Source

Processing

14

Precompiler

Customization

Structured

types

DB2

supports

structured

types.

They

can

be

declared

using

the

SQL

TYPE

IS

type-name

AS

PREDEINFED_TYPE

var-name.

Refer

to

the

SQL

Reference

for

details

on

structured

types.

The

predefined

PREDEFINED_TYPE

can

be

any

of

the

following:

v

SMALLINT

v

INTEGER

v

BIGINT

v

REAL

v

DECIMAL

v

DOUBLE

v

CHAR

v

GRAPHIC

v

VARCHAR(size)

v

BLOB(size)

v

CLOB(size)

v

DBCLOB(size)

v

BLOB_LOCATOR

v

CLOB_LOCATOR

v

DBCLOB_LOCATOR

v

BLOB_FILE

v

CLOB_FILE

v

DBCLOB_FILE

Just

as

in

a

large

objects

declaration,

the

precompiler

can

replace

these

declarations

with

equivalent

declarations

in

the

host

language.

For

example,

in

C:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

Person_1

AS

VARCHAR(30)

person1;

SQL

TYPE

IS

Person_2

AS

SMALLINT

person2;

EXEC

SQL

END

DECLARE

SECTION;

would

map

to:

struct

{

short

length;

char

data[30];

}

person1;

short

person2;

The

structured

type

information

must

be

added

to

the

precompiler

host

variable

table

and

the

structured

type

name

can

be

passed

to

Precompiler

Services

using

the

sqlaalhv

call.

Recording

host

variables:

The

precompiler

assigns

a

unique

4-byte

token

ID

to

each

declared

host

variable.

The

token

ID

may

actually

be

a

pointer

or

an

array

index,

or

anything

else.

For

Precompiler

Services,

the

only

consideration

is

that

the

token

ID

be

unique

for

each

host

variable.

Precompiler

Services

refers

to

variables

only

by

token

ID;

however,

host

variable

names

passed

to

Precompiler

Services

must

also

be

unique.

Variable

names

may

be

up

to

thirty

characters

in

length.

Source

Processing

Chapter

2.

Writing

a

precompiler

15

Precompiler

Services

uses

host

variable

information

to

set

up

SQLVAR

elements

in

SQLDA

structures;

because

of

this,

the

precompiler

must

be

able

to

provide

the

following

information:

v

Token

ID

v

Variable

name

length

v

Variable

name

v

SQL

type

v

Variable

data

length

v

Location

code.

You

can

use

various

techniques

to

create

a

unique

token

ID

and

determine

variable

name

length.

The

precompiler

should

maintain

a

host

variable

symbols

table

to

provide

a

cross-reference

between

token

IDs

and

variable

names.

Storing

the

variable

name

itself

causes

some

additional

problems.

The

recorded

name

must

not

contain

any

operators.

If

the

variable

is

declared

as

short

*number

(as

in

C),

the

name

should

be

recorded

as

number.

Store

the

operator

separately

with

the

token

ID

as

the

key.

The

operators

used

with

host

variables

must

be

retrievable

by

the

precompiler

when

the

calls

to

Runtime

Services

are

generated

by

the

precompiler.

Note:

The

name

can

contain

characters

from

the

database

manager’s

extended

character

set.

A

host

language

can

allow

characters

that

are

not

part

of

that

extended

set.

Remove

those

characters,

and

replace

them

with

valid

characters

before

sending

the

name

to

Precompiler

Services.

The

precompiler

should

check

the

SQLCA

before

retrieving

messages.

Replace

the

original

characters

before

displaying

error

or

warning

messages.

Otherwise,

variable

names

with

replacement

characters

may

appear

in

your

messages.

The

SQLCODEs

which

currently

contain

host

variable

names

are:

SQL0104N,

SQL0303N,

SQL0307N,

SQL0312N,

SQL0324N,

and

SQL4942N.

For

more

information,

see

Chapter

9,

“Error

messages

and

codes,”

on

page

81.

Determine

SQL

data

type

and

variable

length

from

the

host

variable

declaration.

For

non-graphic

data

types,

variable

length

is

the

actual

length

of

the

host

variable

in

bytes.

For

example,

the

length

of

a

short

integer

is

2.

For

graphic

data

types,

such

as

PIC

G(xx)

in

COBOL,

the

length

is

the

number

of

double-byte

characters,

not

the

number

of

bytes.

For

the

DECIMAL

data

type,

length

is

determined

by

placing

the

declared

precision

of

the

variable

in

the

lower-address

byte

of

the

length

field,

and

the

scale

in

the

higher-address

byte.

In

COBOL,

a

declaration

like

PIC

S9(7)V99

COMP-3

has

precision

9

and

scale

2.

Assembled

in

a

temporary

short

integer

for

calculating

the

length,

this

becomes:

Offset

0

+----------------+

|

precision

=

9

|

1

+----------------+

|

scale

=

2

|

+----------------+

If

the

above

is

again

viewed

as

a

short

integer,

it

becomes

a

value

of

9*256+2=2306

on

″Big

Endian″

(UNIX

based)

operating

systems,

and

2*256+9=521

on

″Little

Endian″

(Windows)

operating

systems.

Source

Processing

16

Precompiler

Customization

The

location

code

tells

Precompiler

Services

where

the

host

variable

was

declared.

Host

variables

found

in

an

SQL

statement,

not

previously

declared

in

an

SQL

declare

section,

are

assumed

to

be

SQLDA

structures

for

dynamic

SQL

statements.

Ensure

that

SQLDAs

have

their

location

marked

correctly.

Reporting

host

variables

through

sqlaalhv:

Once

the

above

information

has

been

determined,

the

precompiler

calls

Precompiler

Services

through

the

sqlaalhv

API.

This

API

provides

Precompiler

Services

with

the

information

it

uses

to

compile

SQL

statements

with

host

variables.

For

a

description

of

this

API,

its

arguments,

and

valid

completion

codes,

see

“sqlaalhv

-

Add

Host

Variable”

on

page

57.

The

return

code

from

sqlaalhv

reports

the

validity

of

the

SQLCA

structure.

If

it

reports

that

the

SQLCA

is

valid,

check

SQLCODE

for

the

completion

status

of

the

sqlaalhv

API.

Processing

host

variables

outside

the

declare

section:

The

precompiler

usually

calls

sqlaalhv

when

processing

a

host

variable

declaration.

There

is

a

special

circumstance

in

which

the

precompiler

calls

sqlaalhv

while

processing

an

SQL

statement.

When

the

precompiler

finds

an

undeclared

host

variable

identifier

in

an

SQL

statement,

the

precompiler

assumes

that

the

identifier

represents

an

SQLDA

structure.

It

should

call

sqlaalhv

with

location

set

to

SQLA_SQL_STMT

(1),

and

the

sqltype

and

sql_length

pointers

set

to

NULL.

If

a

second

undeclared

host

variable

is

found

in

the

statement,

the

precompiler

must

consider

this

an

undeclared

host

variable

error,

because

only

one

SQLDA

name

can

occur

in

a

statement.

Processing

SQL

statements

A

statement

consists

of

all

tokens

found

between

the

EXEC

SQL

keywords

and

the

SQL

statement

terminator.

This

is

exclusive

of

the

begin

and

end

tokens

themselves,

and

any

line

continuation

tokens,

comments,

or

other

host

language

artifacts.

Identifying

SQL

statements

The

precompiler

identifies

statements

by

recognizing

the

EXEC

SQL

keyword

pair

at

the

beginning

of

an

SQL

statement.

It

resumes

scanning

text

after

the

statement

terminator

has

been

found,

and

the

statement

has

been

completely

processed.

SQL

statement

terminators

may

be

language

and

product

specific.

As

a

guideline,

the

ANSI

standard

proposes

the

following

terminators:

C/C++

semicolon

(;)

Pascal

semicolon

(;)

COBOL

END-EXEC

keyword

FORTRAN

End

of

a

line

with

no

continuation.

Using

these

rules,

SQL

statements

embedded

in

C

programs

have

the

following

syntax:

EXEC

SQL

<statement>;

IN

COBOL,

SQL

statements

have

the

following

syntax:

EXEC

SQL

<statement>

END-EXEC

Source

Processing

Chapter

2.

Writing

a

precompiler

17

Statement

termination

processing

is

affected

somewhat

by

compound

SQL.

For

more

information,

see

“Compound

SQL”

on

page

37.

SQL

statements

can

span

lines

using

continuation

tokens

available

in

the

host

language.

In

the

C

precompiler,

statements

span

lines

until

they

are

terminated,

according

to

usual

C

convention.

Host

language

rules

regarding

token

continuation

should

apply

as

well.

Copying

SQL

statements

to

modified

source

The

precompiler

can

copy

SQL

statements

into

the

modified

source

as

comments,

in

a

format

appropriate

to

the

host

language.

Copying

the

statements

enhances

the

readability

of

the

modified

source.

It

helps

the

application

programmer

determine

which

changes

were

made

to

the

source

file.

For

example,

the

C

precompiler

copies

statements

such

as:

/*

<SQL

statement>

*/

Preprocessing

SQL

statements

The

precompiler

preprocesses

each

SQL

statement

before

sending

it

to

Precompiler

Services

for

compilation.

The

precompiler

removes

non-SQL

constructs

such

as

comments,

host

variable

operators

and

names,

and

non-blank

white

space

characters.

The

precompiler

replaces

this

material

with

blanks,

on

a

character-for-character

basis.

In

this

way,

the

position

of

statement

tokens

does

not

change,

and

the

precompiler

may

be

able

to

construct

more

meaningful

diagnostic

messages.

Recognizing

quoted

strings:

During

the

scan

of

an

SQL

statement

string,

the

precompiler

must

recognize

quoted

strings.

Quoted

strings

in

SQL

are

delimited

by

apostrophes

or

quotation

marks.

If

a

string

delimiter

appears

within

a

string,

it

must

be

doubled;

that

is,

''

or

"".

SQL

syntax

does

not

allow

nesting

of

strings

or

mixing

of

string

delimiters,

'

or

".

During

statement

preprocessing,

ignore

all

characters

appearing

within

quoted

strings,

and

do

not

alter

material

there.

Replacing

statement

comments:

There

are

two

methods

for

embedding

comments

within

SQL

statements.

The

first

method

uses

comment

delimiters

native

to

the

host

language.

For

example,

C

uses:

/*

*/

as

comment

delimiters.

Note:

Some

types

of

host

language

comment

introducers,

such

as

//

in

C/C++

and

!

in

FORTRAN

(which

can

both

start

in

mid-line),

can

conflict

with

SQL

syntax.

You

should

be

very

cautious

about

supporting

such

host

language

comment

introducers

within

SQL

statements.

Supporting

them

elsewhere

within

the

input

source

file

is

less

risky.

Besides

language-specific

comment

delimiters,

ANSI

SQL

also

provides

comment

delimiters

for

use

within

SQL

statements.

The

format

for

ANSI

SQL

style

is

a

double

dash

(--).

It

is

followed

by

a

string

of

0

or

more

characters,

and

terminated

by

an

end-of-line

character.

To

assist

portability,

precompilers

should

support

ANSI

SQL

style

comments

appearing

within

an

SQL

statement.

This

is

the

preferred

method

of

including

comments

in

SQL

statements.

Source

Processing

18

Precompiler

Customization

Blank

out

all

comments

(including

their

delimiters)

appearing

within

the

SQL

statement

text

before

issuing

a

compile

request

for

that

statement.

Precompiler

Services

treats

comment

delimiters

as

invalid

syntax.

Removing

host

variable

identifiers

and

operators:

Legal

syntax

for

host

variables

varies

across

different

languages.

For

example,

the

form

:A-B

has

one

meaning

in

C,

and

a

different

meaning

in

COBOL.

In

C,

the

form

suggests

a

host

variable

A

minus

column

B

(the

hyphen

is

an

operator).

In

COBOL,

the

form

might

identify

a

single

host

variable

A-B

(the

hyphen

is

part

of

the

identifier).

Note

that

in

the

COBOL

case,

the

precompiler

would

translate

the

embedded

hyphen

to

another

character

(for

example,

an

underscore)

before

calling

sqlaalhv.

In

this

way,

Precompiler

Services

does

not

need

to

know

the

host

language

conventions

regarding

hyphens.

When

the

precompiler

finds

a

host

variable

in

an

SQL

statement,

it

blanks

out

the

host

variable

in

the

statement

string,

looks

up

the

host

variable’s

token

ID

in

the

host

variable

symbols

table,

and

places

the

token

ID

in

the

token

ID

array.

The

colon

that

precedes

a

host

variable

is

left

in

the

SQL

statement.

This

shows

Precompiler

Services

that

a

host

variable

occupies

that

space.

There

is

a

one-to-one

correspondence

between

colons

in

the

SQL

statement

and

entries

in

the

token

array

ID

prepared

by

the

precompiler.

For

example,

assume

that

the

precompiler

is

processing

the

following

SQL

statement

in

C.

The

slash

(/)

represents

a

new

line

character,

and

the

period

(.)

represents

a

blank:

EXEC

SQL

SELECT

A,B,C

INTO

:VAR_A:IND_A,:VAR_B:IND_B,:VAR_C

FROM

T

WHERE

A

>

:HV1

AND

B

<

:HV2

AND

C

=

:HV3;

Removing

the

statement

delimiters

gives:

"...SELECT.A,B,C/

...INTO.:VAR_A:IND_A,:VAR_B:IND_B,:VAR_C/

...FROM.T/

...WHERE.A.>.:HV1.AND.B.<.:HV2.AND.C.=.:HV3"

Removing

host

variables

gives:

"...SELECT.A,B,C/

...INTO.:.....:.....,:.....:.....,:...../

...FROM.T/

...WHERE.A.>.:....AND.B.<.:....AND.C.=.:..."

Keep

a

list

of

all

operators

associated

with

each

host

variable

found

in

an

SQL

statement.

The

precompiler

restores

the

operators

before

using

the

host

variables

in

calls

to

Runtime

Services.

For

example,

the

C

precompiler

allows

the

*

operator

for

host

variables

declared

as

pointers.

If

an

*

operator

prefixes

the

host

variable

in

the

SQL

statement,

it

must

also

be

used

in

the

generated

run

time

calls.

If

a

DECLARE

cname

CURSOR

FOR

select

stmt

statement

contains

host

variables

with

operators,

those

operators

must

be

stored

in

a

table,

with

the

section

number

used

as

the

key

to

the

operator

list.

Precompiler

Services

returns

the

section

number

from

a

db2CompileSql

call

for

a

DECLARE

statement.

When

an

OPEN

CURSOR

statement

is

processed

for

that

cursor,

db2CompileSql

returns

the

token

IDs

of

the

host

variables

in

the

DECLARE

statement.

It

also

returns

a

section

number

that

matches

the

declared

cursor.

The

precompiler

checks

Source

Processing

Chapter

2.

Writing

a

precompiler

19

whether

the

section

number

matches

a

section

number

in

the

operator

list

table.

If

so,

the

precompiler

should

restore

the

operators

to

the

host

variable

names.

The

precompiler

then

uses

the

restored

host

variable

names

and

their

operators

in

sqlastlv

or

sqlasetdata

calls.

Removing

white

space

and

leaving

a

spare

byte:

Replace

each

non-blank

white

space

character

with

a

blank

(X'20')

before

making

a

compile

request

for

that

statement.

White

space

characters

include:

v

Carriage

return

(X'0D')

v

Line

feed

(X'0A')

v

Tab

(X'09').

Finally,

the

precompiler

must

include

at

least

one

extra

byte

beyond

the

last

character

in

the

SQL

statement.

Precompiler

Services

uses

this

byte

when

compiling

the

statement.

Following

is

the

completely

preprocessed

example

statement.

The

white

space

characters

are

replaced

by

blanks,

and

the

extra

byte

(?)

appears

at

the

end

of

the

statement:

"...SELECT.A,B,C....INTO...:.....:.....,.

:.....:.....,.:.........FROM...T....

WHERE..A.>.:....AND.B.<.:....AND.C.=.

:....?"

Preparing

the

token

array

The

token

array

is

used

to

pass

host

variable

and

literal

information

between

the

precompiler

and

Precompiler

Services.

The

precompiler

fills

in

the

token

array

with

the

token

IDs

of

all

the

host

variables

in

the

SQL

statement,

in

the

order

in

which

they

occur.

During

the

db2CompileSql

call,

Precompiler

Services

updates

this

array

with

usage

information

to

indicate

to

the

precompiler

how

each

host

variable

in

the

statement

is

used.

Precompiler

Services

may

also

add

entries

to

the

array,

representing

significant

string

literals

in

the

SQL

statement.

An

example

of

such

a

literal

would

be

the

database

name

in

a

CONNECT

TO

statement.

The

precompiler

does

not

″understand″

SQL,

so

it

doesn’t

″know″

the

nature

of

the

statement,

much

less

where

the

database

name

is

located.

As

a

result,

Precompiler

Services

inserts

an

entry

in

the

array

at

the

appropriate

location,

pushing

down

any

other

entries

which

might

come

behind

it.

On

return

from

db2CompileSql,

the

precompiler

interrogates

the

token

ID

array

to

find

the

value

of

literals

it

needs

to

generate

the

Runtime

Services

calls,

in

a

similar

way

to

how

it

generates

calls

using

host

variables.

The

token

array

is

an

array

of

logically

paired

4-byte

integers.

The

first

integer

is

the

number

of

pairs

available

for

tokens

in

the

array.

The

precompiler

initializes

this

array

size

before

any

compile

calls

to

Precompiler

Services.

It

is

necessary

that

the

token

array

be

large

enough

to

allow

for

the

literals

that

may

be

inserted

by

Precompiler

Services.

If

Precompiler

Services

finds

that

the

token

array

is

too

small,

it

sets

the

second

field

of

the

header

equal

to

the

required

number

of

entries.

It

then

returns

error

SQLA_RC_TOKEN_ARRAY_LIMIT

(-4920)

in

the

SQLCODE

field

of

the

SQLCA.

The

precompiler

can

then

reallocate

the

token

array

to

the

correct

size

and

call

Precompiler

Services

again,

or

return

an

error.

Source

Processing

20

Precompiler

Customization

The

second

integer

is

the

number

of

pairs

that

actually

contain

host

variable

and/or

literal

information.

The

precompiler

provides

this

value

when

it

calls

Precompiler

Services.

However,

Precompiler

Services

can

modify

the

second

integer

if

it

requires

more

token

IDs,

or

if

it

needs

to

insert

literals

into

the

token

array.

An

example

of

Precompiler

Services

requiring

more

token

IDs

is

an

OPEN

statement

in

which

host

variables

appear

in

the

SELECT

clause

of

the

corresponding

DECLARE

CURSOR

statement.

All

other

pairs

contain

information

about

each

host

variable

or

literal

found

in

the

SQL

statement.

For

host

variables,

the

first

element

of

each

pair

is

the

token

ID.

For

literals,

Precompiler

Services

divides

the

first

element

(a

4-byte

integer)

into

two

adjacent

2-byte

integers,

collectively

referred

to

as

a

″return

token″

structure.

The

first

2-byte

integer

gives

the

offset

in

bytes

from

the

beginning

of

the

SQL

statement

to

the

beginning

of

the

literal.

The

second

2-byte

integer

gives

the

length

of

the

literal

in

bytes.

Precompiler

Services

fills

in

the

second

element

of

the

pair

with

a

usage

code.

These

usage

codes

are

as

follows:

SQLA_INPUT_HVAR

(0)

Input

host

variable

SQLA_INPUT_WITH_IND

(1)

Input

host

variable

with

indicator

variable

SQLA_OUTPUT_HVAR

(2)

Output

host

variable

SQLA_OUTPUT_WITH_IND

(3)

Output

host

variable

with

indicator

variable

SQLA_INDICATOR

(4)

Indicator

variable

SQLA_INVALID_USE

(5)

Host

variable

does

not

match

use

SQLA_USER_SQLDA

(6)

User-defined

SQLDA

name

SQLA_INVALID_ID

(7)

Host

variable

token

ID

is

not

valid

SQLA_LITERAL

(8)

Literal

string.

The

following

graphic

represents

the

token

array.

Each

cell

contains

a

4-byte

integer.

v

A

=

Number

of

token

pairs

allocated

in

the

array

v

N

=

Number

of

token

pairs

needed

for

this

statement

v

T

=

Token

ID

or

instance

of

return

token

structure

v

U

=

Usage

code.

+---+---+---+---+---+---+---+---+--

|

A

|

N

|

T

|

U

|

T

|

U

|

T

|

U

|

...

+---+---+---+---+---+---+---+---+--

Your

precompiler

should

determine

some

practical

initial

allocation

size.

If

the

precompiler

encounters

an

SQL

statement

that

contains

more

host

variables

or

literals,

it

can

allocate

a

larger

size

array

and

call

db2CompileSql

again,

if

necessary.

Source

Processing

Chapter

2.

Writing

a

precompiler

21

Example

1

Assume

that

the

precompiler

has

processed

the

following

SQL

statement,

and

that

a

single

new

line

character

follows

the

last

visible

character

on

each

line:

EXEC

SQL

SELECT

A,B,C

INTO

:VAR_A:IND_A,

:VAR_B:IND_B,

:VAR_C

FROM

T

WHERE

A

>

:HV1

AND

B

<

:HV2

AND

C

=

:HV3;

Assume

that

your

precompiler

assigned

the

following

token

IDs

to

the

host

variables:

Name

Token

ID

HV1

6

HV2

7

HV3

8

VAR_A

2

VAR_B

4

VAR_C

5

IND_A

10

IND_B

11

The

following

token

array

has

a

capacity

of

25

host

variables

or

literals.

The

precompiler

constructs

this

array

before

the

compilation

request:

Token

ID

Usage

25

(A)

8

(N)

2

-

10

-

4

-

11

-

5

-

6

-

7

-

8

-

After

compilation,

Precompiler

Services

returns

this

array:

Token

ID

Usage

25

(A)

8

(N)

2

SQLA_OUTPUT_WITH_INDICATOR

10

SQLA_INDICATOR

4

SQLA_OUTPUT_WITH_INDICATOR

11

SQLA_INDICATOR

5

SQLA_OUTPUT_HVAR

6

SQLA_INPUT_HVAR

Source

Processing

22

Precompiler

Customization

Token

ID

Usage

7

SQLA_INPUT_HVAR

8

SQLA_INPUT_HVAR

Example

2

Assume

the

precompiler

has

processed

the

following

SQL

statement:

EXEC

SQL

CONNECT

TO

:dbname

USER

’FRED’

USING

:pwd;

Assume

that

your

precompiler

assigned

the

following

token

IDs

to

the

host

variables:

Name

Token

ID

dbname

2

pwd

3

The

following

token

array

has

a

capacity

of

50

host

variables

or

literals.

The

precompiler

constructs

this

array

before

the

compilation

request:

Token

ID/Literal

Usage

50

(A)

2

(N)

2

-

3

-

After

compiling,

Precompiler

Services

returns

this

array:

Token

ID/Literal

Usage

50

(A)

3

(N)

2

SQLA_INPUT_HVAR

Literal

1

SQLA_LITERAL

3

SQLA_INPUT_HVAR

Literal

1

is

an

instance

of

the

return

token

structure,

where:

offset

=

offset

of

F

in

FRED

in

the

SQL

statement

(24)

length

=

length

of

FRED

(4)

Compiling

an

SQL

statement

through

db2CompileSql

The

db2CompileSql

API

compiles

an

SQL

statement.

During

this

call,

Precompiler

Services:

v

Parses

the

statement

v

Assigns

a

section

number,

if

needed

v

Stores

the

statement

in

a

bind

file,

if

one

is

being

created

v

Completes

the

task

array

v

Completes

the

token

ID

array

v

Provides

other

output

parameters.

For

a

description

of

this

API,

its

arguments,

and

valid

completion

codes,

see

“db2CompileSql

-

Compile

SQL

Statement”

on

page

59.

Source

Processing

Chapter

2.

Writing

a

precompiler

23

As

with

sqlaalhv,

check

the

return

code

to

determine

the

validity

of

your

SQLCA

structure.

If

the

SQLCA

is

valid,

check

SQLCODE

in

the

SQLCA

for

completion

status

of

the

db2CompileSql

function

call.

Generating

code

If

the

Precompiler

Services

compilation

request

was

executed

successfully,

the

precompiler

interrogates

the

task

array.

The

task

array

defines

further

actions

to

be

taken

by

the

precompiler.

The

task

array

is

an

array

of

logically

paired

4-byte

integers,

very

similar

to

the

token

ID

array.

The

pairs

specify

which

run

time

functions

or

data

structures

should

be

generated

in

the

modified

source

file.

The

first

logical

pair

of

4-byte

integers

is

the

header.

The

first

integer

is

the

number

of

pairs

available

in

the

task

array

for

the

task

codes.

The

precompiler

initializes

this

value

before

calling

db2CompileSql.

The

second

integer

is

the

number

of

pairs

that

contain

valid

data

on

return

from

db2CompileSql.

Precompiler

Services

provides

this

value.

If

Precompiler

Services

finds

that

the

task

array

is

too

small,

it

sets

the

second

header

integer

equal

to

the

required

number.

Precompiler

Services

then

returns

error

SQLA_RC_TASK_ARRAY_LIMIT

(-4919)

through

SQLCODE

in

the

SQLCA.

Your

precompiler

can

then

reallocate

the

task

array

to

the

correct

size,

and

call

db2CompileSql

again.

The

remaining

pairs

contain

the

task

array

function

flag

and

the

function

value.

The

function

flag

F

represents

a

function

the

precompiler

must

perform.

The

function

value

V

is

associated

with

the

previous

flag.

It

contains

data

necessary

to

perform

the

function.

This

graphic

represents

the

task

array.

Each

cell

contains

a

4-byte

integer.

v

A

=

Number

of

pairs

allocated

v

U

=

Number

of

pairs

used

v

F

=

Function

flag

v

V

=

Function

value.

+---+---+---+---+---+---+---+---+--

|

A

|

U

|

F

|

V

|

F

|

V

|

F

|

V

|

...

+---+---+---+---+---+---+---+---+--

Table

3

lists

all

possible

function

flags

and

function

values.

It

also

shows

the

tasks

required

of

your

precompiler.

Table

3.

Function

Flags

and

Function

Values

Function

Value

Precompiler

Action

SQLA_START

(0)

(not

used)

Generate

host

language

call

to

sqlastrt.

SQLA_DECLARE

(1)

SQLA_BEGIN

(0)

Begin

processing

host

variables.

SQLA_DECLARE

(1)

SQLA_END

(1)

Terminate

processing

host

variables.

SQLA_INCLUDE

(2)

SQLA_SQLCA

(10)

Generate

code

for

a

standard

SQLCA

template.

Source

Processing

24

Precompiler

Customization

Table

3.

Function

Flags

and

Function

Values

(continued)

Function

Value

Precompiler

Action

SQLA_INCLUDE

(2)

SQLA_SQLDA

(11)

Generate

code

for

a

standard

SQLDA

template.

SQLA_INC_TEXTFILE

(14)

Instance

ofsqla_return_token

Suspend

reading

current

file;

start

reading

include

file.

SQLA_ALLOC_INPUT

(3)

Number

of

SQLVAR

elements

Generate

host

language

call

for

an

input

sqlaaloc,

and

then

generate

sqlastlv

calls

for

all

host

variables

with

an

″input″

usage

in

the

token

ID

array.

SQLA_ALLOC_OUTPUT

(4)

Number

of

SQLVAR

elements

Generate

host

language

call

for

an

output

sqlaaloc,

and

then

generate

sqlastlv

calls

for

all

host

variables

with

an

″output″

usage

in

the

token

ID

array.

SQLA_USDA_INPUT

(6)

Token

ID

of

the

user-specified

input

SQLDA

Generate

host

language

call

to

sqlausda.

SQLA_USDA_OUTPUT

(7)

Token

ID

of

the

user-specified

output

SQLDA

Generate

host

language

call

to

sqlausda.

SQLA_SETS

(5)

Token

ID

of

the

host

variable

containing

the

dynamic

SQL

statement

Generate

host

language

call

to

sqlastls.

SQLA_CALL

(8)

SQLA_CONNECT

(29),

SQLA_DUOW

(40)

Generate

call

to

sqlacall

with

call_type

=

the

task

value

and

section_number

=

poSqlStmtType

returned

from

db2CompileSql.

SQLA_CALL

(8)

Various,

not

CONNECT

or

DUOW

Generate

call

to

sqlacall

with

call_type

=

the

task

value.

SQLA_DEALLOC

(9)

(not

used)

Generate

call

to

sqladloc.

SQLA_STOP

(10)

(not

used)

Generate

call

to

sqlastop.

SQLA_SQLERROR

(11)

Length

of

the

host-label

name

in

poBuffer1

of

db2CompileSql

Generate

code

for

WHENEVER

SQLERROR.

SQLA_SQLWARNING

(12)

Length

of

the

host-label

name

in

poBuffer2

of

db2CompileSql

Generate

code

for

WHENEVER

SQLWARNING.

SQLA_NOT_FOUND

(13)

Length

of

the

host-label

name

in

poBuffer3

of

db2CompileSql

Generate

code

for

WHENEVER

NOT

FOUND.

SQLA_BEGIN_

COMPOUND

(15)

Non-zero

flag

means

that

a

STOP

AFTER

FIRST

clause

was

present

Begin

processing

Compound

SQL

Block

(see

“Compound

SQL”

on

page

37).

SQLA_CMPD

(16)

SQLA_COMMIT

(21)

Generate

call

to

sqlacmpd

with

call_type

=

SQLA_COMMIT.

SQLA_CMPD

(16)

SQLA_EXECUTE

(24)

Generate

call

to

sqlacmpd

with

call_type

=

SQLA_EXECUTE.

Source

Processing

Chapter

2.

Writing

a

precompiler

25

Table

3.

Function

Flags

and

Function

Values

(continued)

Function

Value

Precompiler

Action

SQLA_CMPD_TEST

(17)

Token

ID

of

the

controlling

host

variable

in

a

STOP

AFTER

FIRST

clause

in

compound

SQL

Generate

code

to

test

the

STOP

AFTER

FIRST

variable.

SQLA_CMPD_MARK

(18)

(not

used)

Generate

target

label

for

STOP

AFTER

FIRST

processing

in

compound

SQL.

SQLA_NEXT_

SUBSTATEMENT

(19)

(not

used)

Send

the

next

available

substatement

to

Precompiler

Services

(see

“The

CREATE

TRIGGER

statement”

on

page

39).

SQLA_SQLCODE_COPY

(20)

(not

used)

Update

the

stand-alone

SQLCODE

and

SQLSTATE

variables

(see

“Support

for

stand-alone

SQLCODE/SQLSTATE”

on

page

42).

Null

task

array

If

the

second

integer

in

the

task

array

(the

number

of

pairs

used)

is

set

to

0,

no

further

processing

of

the

task

array

is

required.

The

precompiler

may

need

to

act

on

other

output

parameters

of

the

db2CompileSql

API.

One

instance

of

this

is

after

compiling

a

DECLARE

CURSOR

statement.

If

the

cursor

was

declared

for

a

SELECT

statement

—

indicated

by

the

poSqlStmtType

output

parameter

from

db2CompileSql

being

set

to

SQLA_TYPE_DECLARE_SELECT

(0)

—

that

contained

host

variables

with

operators,

the

precompiler

should

save

the

list

of

operators

used

in

the

SELECT

statement,

keyed

on

the

section

number

also

returned

from

db2CompileSql.

Inserting

an

SQLCA

data

structure

into

modified

source

When

Precompiler

Services

detects

an

SQL

INCLUDE

SQLCA

statement,

it

returns

the

function

pair

SQLA_INCLUDE

and

SQLA_SQLCA

in

the

task

array.

The

precompiler

then

embeds

an

SQLCA

data

structure

declaration

directly

into

the

modified

source

program.

If

appropriate

for

the

host

language,

the

precompiler

also

declares

an

instance

of

that

structure

in

the

modified

source.

Both

the

SQLCA

definition

and

the

declaration

are

host

language-specific.

Inserting

an

SQLDA

data

structure

into

modified

source

When

Precompiler

Services

detects

an

SQL

INCLUDE

SQLDA

statement,

it

returns

the

function

pair

SQLA_INCLUDE

and

SQLA_SQLDA

in

the

task

array.

The

precompiler

then

embeds

an

SQLDA

data

structure

declaration

directly

into

the

modified

source

program.

The

precompiler

does

not

declare

an

instance

of

the

SQLDA,

as

it

does

with

the

SQLCA.

The

SQLDA

is

inserted

into

the

modified

source

only

as

a

template.

The

application

program

assumes

full

responsibility

for

allocating

and

manipulating

SQLDAs.

The

INCLUDE

SQLDA

statement

usually

cannot

be

embedded

in

FORTRAN,

which

does

not

generally

support

templates.

Other

languages

may

share

this

problem.

Source

Processing

26

Precompiler

Customization

Processing

an

embedded

source

file

When

Precompiler

Services

detects

an

SQL

INCLUDE

text

file

statement,

it

returns

the

function

flag

SQLA_INC_TEXTFILE

in

the

task

array.

The

corresponding

function

value

is

a

packed

pair

of

2-byte

integers

providing

the

offset

and

length

of

the

file

name

within

the

SQL

statement.

The

precompiler

then

suspends

processing

of

the

current

source

file

and

begins

processing

the

included

source

file.

Nesting

of

include

files

should

be

permitted

to

a

reasonable

depth,

and

care

should

be

taken

to

detect

cyclic

includes.

The

messages

SQL0062W

and

SQL0063W

can

be

used

to

announce

the

start

and

end

of

include

file

processing

to

the

user.

Inserting

runtime

function

calls

SQL

statements

other

than

DECLARE,

INCLUDE,

WHENEVER,

BEGIN

DECLARE

SECTION,

and

END

DECLARE

SECTION

must

be

executed

by

calling

Runtime

Services

functions.

There

are

ten

Runtime

Services

functions.

The

precompiler

may

need

to

insert

several

function

call

combinations

into

the

modified

source

module

after

a

single

compilation

request.

The

Runtime

Services

functions

are:

sqlastrt

Starts

run

time

SQL

statement

execution.

sqlaaloc

Allocates

an

input

or

output

SQLDA

large

enough

to

contain

a

specified

number

of

SQLVAR

elements.

The

SQLDA

storage

is

allocated

from

the

system

storage

and

is

managed

internally

by

Runtime

Services.

sqlastlv

Sets

the

fields

of

an

SQLDA

SQLVAR

element

to

the

type,

length,

and

address

of

a

host

variable

or

literal

used

in

an

SQL

statement.

sqlastlva

Sets

the

fields

of

an

SQLDA

SQLVAR

element

to

the

type,

length,

and

address

of

a

structured

host

variable

used

in

an

SQL

statement.

sqlasetdata

Sets

the

fields

of

several

SQLDA

SQLVARs

with

a

single

call.

Equivalent

to

multiple

calls

to

sqlastlv.

sqlausda

Sets

an

internal

database

manager

structure

pointer

to

the

address

of

an

input

or

output

SQLDA

created

by

the

user,

rather

than

by

Runtime

Services

functions.

sqlastls

Sets

an

internal

database

manager

structure

pointer

to

the

length

and

address

of

a

host

variable

used

to

store

the

text

of

a

dynamic

SQL

statement.

sqlacall

Calls

the

database

manager

to

execute

a

specific

package

section.

Any

host

variable

data

associated

with

the

call

must

have

already

been

set

up

through

previous

Runtime

Services

function

calls,

such

as

sqlaaloc

and

sqlastlv,

or

sqlausda.

sqlacmpd

Adds

a

compound

SQL

substatement

to

the

list

of

substatements

to

be

executed

on

the

next

call

to

sqlacall.

sqladloc

Deallocates

an

SQLDA.

Source

Processing

Chapter

2.

Writing

a

precompiler

27

sqlastop

Stops

run

time

SQL

statement

execution.

The

calls

that

result

from

a

single

SQL

statement

should

always

be

considered

as

a

group.

If

an

error

occurs

in

one

of

them,

this

error

is

propagated

through

later

calls.

The

SQLCODE

of

the

SQLCA

need

not

be

tested

until

after

the

call

to

sqlastop.

There

is

an

exception

to

this

rule

for

sqlaaloc.

For

more

information,

see

“sqlaaloc

-

Allocate

SQLDA”

on

page

67.

Following

is

the

typical

order

of

Runtime

Services

calls

for

an

executable

SQL

statement.

Note:

No

real

SQL

statement

would

require

an

SQLDA

set

up

with

sqlaaloc/sqlastlv,

and

an

input

SQLDA

set

up

with

sqlausda,

and

an

output

SQLDA

set

up

with

sqlausda,

and

a

dynamic

SQL

statement

set

up

with

sqlastls.

sqlastrt(...);

/*

Always

*/

sqlaaloc(...);

/*

If

statement

contains

host

*/

/*

variables.

*/

if

(sqlca.sqlcode==

/*

The

"if

test"

is

an

*/

SQLA_RC_SQLVARS_SET)

/*

optimization

technique.

*/

{

/*

There

are

input

parms

*/

sqlastlv(...);

/*

to

sqlaaloc

that

cause

it

*/

sqlastlv(...);

/*

to

return

a

non-zero

value

*/

sqlastlv(...);

/*

if

the

sqlastlv

calls

have

*/

}

/*

already

been

made

by

a

*/

/*

previous

call

to

this

*/

/*

statement.

*/

sqlausda(...);

/*

Input

SQLDA

used

with

OPEN

*/

/*

or

EXECUTE.

*/

sqlausda(...);

/*

Output

SQLDA

used

with

*/

/*

FETCH,

DESCRIBE,

or

*/

/*

PREPARE.

*/

sqlastls(...);

/*

Character

host

var

used

*/

/*

with

PREPARE

or

EXECUTE

*/

/*

IMMEDIATE.

*/

sqlacmpd(...);

/*

Substatement

from

a

*/

/*

compound

SQL

statement.

*/

sqlacall(...);

/*

Always

*/

sqladloc(...);

/*

Optional

after

CLOSE,

*/

/*

COMMIT,

or

ROLLBACK.

*/

SQLCODE

=

sqlca.sqlcade;

/*

If

STDS_LEVEL

STND_SQL92E

*/

/*

is

set.

*/

/*

If

WHENEVER

SQLERROR

active

*/

if

(sqlca.sqlcode

<

0)

{

sqlastop(...);

goto

error_label;

}

/*

If

WHENEVER

SQLWARNING

active

*/

if

(((sqlca.sqlcode

>

0)

AND

(sqlca.sqlcode

<>

100))

OR

((sqlca.sqlcode

==

0)

AND

(sqlca.sqlwarn[0]

==

’W’)))

{

sqlastop(...);

goto

warning_label;

}

Source

Processing

28

Precompiler

Customization

/*

If

WHENEVER

NOT

FOUND

active

*/

if

(sqlca.sqlcode

==

100)

{

sqlastop(...);

goto

notfound_label;

}

sqlastop(...);

/*

Always

*/

For

detailed

information

about

the

syntax,

arguments,

and

completion

codes

for

the

run

time

APIs,

see

Chapter

8,

“Runtime

Services

APIs,”

on

page

67.

Starting

the

statement

Precompiler

Services

places

the

flag

SQLA_START

in

the

task

array

when

sqlastrt

is

required.

The

sqlastrt

API

records

the

address

of

the

SQLCA

and

the

program

ID,

which

identifies

the

package.

It

also

obtains

a

semaphore

to

serialize

access

to

DB2

structures

between

different

threads

of

a

single

process.

Allocating

input

and

output

SQLDAs

The

precompiler

generates

an

sqlaaloc

call

when

a

task

array

flag

SQLA_ALLOC_INPUT

or

SQLA_ALLOC_OUTPUT

is

returned.

The

function

value

field

is

the

number

of

SQLVAR

elements

to

be

allocated

(the

SQLD

value).

This

cannot

be

the

number

of

host

variables

or

literals

found

in

the

statement,

since

the

statement

may

contain

both

input

and

output

host

variables.

As

well,

indicator

variables

do

not

get

a

separate

SQLVAR

entry.

The

precompiler

decides

whether

to

create

a

new

SQLDA,

or

use

an

existing

one.

If

the

sqlda_id

it

passes

to

Runtime

Services

matches

an

existing

SQLDA,

and

the

input

sqld

parameter

is

less

than

or

equal

to

the

current

number

of

SQLVAR

elements

in

the

SQLDA,

Precompiler

Services

leaves

the

size

of

the

existing

SQLDA

unchanged,

but

updates

its

SQLD

field

to

the

new

value.

If

the

sqld

parameter

is

greater

than

the

current

number

of

SQLVAR

elements

in

the

SQLDA,

Precompiler

Services

reallocates

the

SQLDA

and

updates

its

SQLN

and

SQLD

fields.

The

precompiler

assigns

a

unique

stmt_id

to

each

SQL

statement.

This

identifies

the

statement

for

which

the

SQLDA

is

allocated.

Use

any

unique

value

(source

line,

for

example)

for

each

SQL

statement

within

the

module.

After

examining

the

stmt_id

and

the

sqlda_id,

Runtime

Services

may

return

an

SQLCODE

reporting

that

the

SQLDA

has

already

been

allocated

and

initialized

for

that

particular

statement.

If

this

is

the

case,

subsequent

calls

to

sqlastlv

or

sqlasetdata

for

the

current

SQL

statement

can

be

skipped.

This

occurs

when

a

fetch

statement

contains

host

variables

and

is

performed

in

a

loop

—

there

may

be

no

need

to

repeat

the

calls

to

initialize

the

SQLDA.

When

sqlaaloc

allocates

or

reallocates

a

dynamic

SQLDA,

Runtime

Services

returns

SQLA_RC_OK

in

SQLCODE.

If

the

sqlastlv

or

sqlasetdata

calls

have

already

been

performed

for

the

SQLDA

for

the

current

SQL

statement,

SQLCODE

is

SQLA_SQLVARS_SET

(4959).

Describing

host

variables

and

literals

The

sqlastlv

and

sqlasetdata

functions

are

used

with

sqlaaloc.

They

initialize

the

fields

of

an

SQLDA

SQLVAR

element

to

the

type,

length,

and

address

of

a

host

variable

or

literal

found

in

an

SQL

statement.

The

difference

between

the

two

is

that

sqlastlv

initializes

one

SQLVAR

element

at

a

time,

requiring

multiple

calls

to

set

up

an

entire

SQLDA.

The

sqlasetdata

API

was

introduced

as

a

way

to

speed

this

process

up.

It

can

initialize

many

SQLVARs

in

a

single

call,

avoiding

the

Source

Processing

Chapter

2.

Writing

a

precompiler

29

performance

cost

of

repeatedly

validating

parameters

which

don’t

change

from

one

host

variable

to

the

next.

However,

some

extra

effort

is

required

to

set

up

the

parameters

for

sqlasetdata.

Initially,

sqlastlv

will

be

discussed,

followed

by

differences

between

it

and

sqlasetdata.

If

either

of

the

task

flags

SQLA_ALLOC_INPUT

or

SQLA_ALLOC_OUTPUT

is

present

and

has

a

non-zero

value,

the

precompiler

must

process

the

token

array.

The

task

value

indicates

the

number

of

SQLVARs

which

must

be

allocated

in

the

SQLDA.

To

set

up

an

input

SQLDA,

scan

the

token

ID

array

for

tokens

with

input-related

usage

codes:

SQLA_INPUT_HVAR,

SQLA_INPUT_WITH_IND,

and

SQLA_LITERAL.

To

set

up

an

output

SQLDA,

scan

the

token

ID

array

for

tokens

with

output-related

usage

codes:

SQLA_OUTPUT_HVAR

and

SQLA_OUTPUT_WITH_IND.

Indicator

variables

do

not

have

to

be

separately

allocated.

Usage

types

SQLA_INPUT_WITH_IND

and

SQLA_OUTPUT_WITH_IND

imply

indicator

variables.

EXEC

SQL

SELECT

A,

B,

C,

D,

E

INTO

:VA:IA,

:VB:IB,

:VC,

:VD,

:VE

FROM

T;

This

statement

would

result

in

the

generation

of

five

function

calls

to

sqlastlv.

VA,

VB,

VC,

VD,

and

VE

are

host

variables.

Each

requires

an

SQLVAR

structure.

IA

and

IB

are

indicator

variables,

and

as

such

do

not

require

separate

SQLVAR

structures.

Instead,

they

are

passed

to

sqlastlv

with

their

host

variables,

VA

and

VB,

respectively.

When

generating

the

sqlastlv

call,

add

one

(1)

to

the

SQL

type

of

any

host

variable

used

with

an

indicator

variable.

For

example,

a

NULL-terminated

character

string

would

normally

use

SQL

type

460

as

the

sqltype

parameter;

however,

with

an

indicator

variable,

the

sqltype

parameter

is

set

to

461.

If

we

assume

that

VA

and

VB

are

10-byte

fixed-length

character

strings,

and

VC,

VD

and

VE

are

small

integers,

the

sqlastlv

calls

for

the

above

statement

might

look

like

the

following:

sqlastlv(

2,0,453,10,A,&IA,NULL

);

sqlastlv(

2,1,453,10,B,&IB,NULL

);

sqlastlv(

2,2,500,2,&C,NULL,NULL

);

sqlastlv(

2,3,500,2,&D,NULL,NULL

);

sqlastlv(

2,4,500,2,&E,NULL,NULL

);

The

precompiler

retrieves

all

necessary

host

variable

information

(name,

SQL

type,

and

size)

from

its

symbols

table,

based

on

the

ID

from

the

token

array.

For

literals,

an

SQL

type

of

460

should

be

used

if

the

target

host

language

supports

NULL-terminated

strings;

otherwise,

SQL

type

452

should

be

used.

Alternatively,

the

five

calls

to

sqlastlv

in

the

above

example

could

be

replaced

by

a

single

call

to

sqlasetdata.

This

function

takes

a

pointer

to

an

array

of

sqla_setd_list

structures,

which

have

been

initialized

at

run

time

to

the

type,

address,

and

length

information

of

the

host

variables

being

added

to

the

SQLDA.

{

struct

sqla_setdata_list

sqla_setd_list[5];

sqla_setd_list[0].sqltype

=

453;

sqla_setd_list[0].sqllen

=

10;

sqla_setd_list[0].sqldata

=

A;

sqla_setd_list[0].sqlind

=

&IA;

sqla_setd_list[1].sqltype

=

453;

sqla_setd_list[1].sqllen

=

10;

Source

Processing

30

Precompiler

Customization

sqla_setd_list[1].sqldata

=

B;

sqla_setd_list[1].sqlind

=

&IB;

sqla_setd_list[2].sqltype

=

500;

sqla_setd_list[2].sqllen

=

2;

sqla_setd_list[2].sqldata

=

&C;

sqla_setd_list[2].sqlind

=

NULL;

sqla_setd_list[3].sqltype

=

500;

sqla_setd_list[3].sqllen

=

2;

sqla_setd_list[3].sqldata

=

&D;

sqla_setd_list[3].sqlind

=

NULL;

sqla_setd_list[4].sqltype

=

500;

sqla_setd_list[4].sqllen

=

2;

sqla_setd_list[4].sqldata

=

&E;

sqla_setd_list[4].sqlind

=

NULL;

sqlasetdata(

2,0,5,sqla_setd_list,NULL

);

}

In

this

case,

the

sqla_setd_list

structure

is

dynamically

allocated

on

the

stack

and

then

discarded

after

the

call.

Since

sqlasetdata

internally

records

the

information

in

the

structure,

a

single

structure

with

N

entries

can

be

used

and

re-used

for

all

sqlasetdata

calls

in

an

application.

If

an

SQL

statement

is

processed

which

contains

more

than

N

host

variables,

multiple

calls

to

sqlasetdata

can

be

made,

each

providing

the

information

on

up

to

N

host

variables

at

a

time.

The

start_index

and

elements

parameters

to

sqlasetdata

tell

the

API

which

SQLVAR

elements

are

to

be

initialized

on

each

call.

Designating

a

user-defined

SQLDA

When

Precompiler

Services

sets

task

array

flags

SQLA_USDA_INPUT

or

SQLA_USDA_OUTPUT,

the

precompiler

generates

an

sqlausda

call.

This

call

sets

a

pointer

in

an

internal

database

manager

data

structure

to

the

address

of

the

user-specified

input

or

output

SQLDA.

That

flag’s

function

value

is

the

token

ID

of

the

user-specified

SQLDA.

The

precompiler

assigns

an

sqlda_id

to

these

SQLDAs,

just

as

it

does

for

dynamically

allocated

SQLDAs.

The

sqlacall

function

uses

the

sqlda_id

to

identify

the

particular

input

or

output

SQLDA

used

in

the

SQL

statement

to

be

executed.

Passing

a

statement

Dynamic

PREPARE

and

EXECUTE

IMMEDIATE

statements

specify

the

name

of

a

host

variable

used

to

store

the

dynamic

SQL

statement

text.

The

precompiler

generates

a

statement

assignment

call.

This

provides

the

address

and

the

length

of

that

host

variable

to

Runtime

Services.

Insert

an

sqlastls

call

when

Precompiler

Services

returns

flag

SQLA_SETS

in

the

task

array.

The

function

value

specifies

the

token

ID

of

the

host

variable

containing

the

SQL

statement

text.

The

length

parameter

of

sqlastls

must

be

set

to

the

length

of

the

SQL

statement

at

run

time,

since

the

length

is

not

known

during

precompilation.

A

run

time

string

length

function,

or

something

similar,

must

be

used

to

determine

the

correct

statement

length.

If

the

statement

is

NULL-terminated,

as

in

C,

a

length

of

0

may

be

passed

to

sqlastls.

The

sqlastls

function

will

then

calculate

the

length

of

the

SQL

statement

itself.

An

alternative

is

to

use

a

fixed-length

variable.

Pad

shorter

SQL

statements

with

blank

spaces.

Source

Processing

Chapter

2.

Writing

a

precompiler

31

Executing

the

section

Precompiler

Services

compiles

SQL

statements,

generating

sections

in

the

package.

Calls

to

sqlacall

execute

these

sections

at

run

time.

The

precompiler

inserts

a

call

to

sqlacall

when

the

flag

SQLA_CALL

occurs

in

the

task

array.

The

function

value

is

passed

to

sqlacall

as

the

call_type

parameter.

The

SQLDA

IDs

of

the

input

and

output

SQLDAs

are

assigned

by

the

precompiler.

They

should

match

IDs

used

in

calls

to

sqlaaloc

or

sqlausda

generated

for

this

particular

statement.

The

section

number

is

returned

from

db2CompileSql.

The

value

is

zero

for

statements

that

do

not

have

a

section,

such

as

COMMIT

and

ROLLBACK.

A

special

case

occurs

if

the

function

value

is

SQLA_CONNECT

or

SQLA_DUOW:

the

statement

type

passed

back

by

db2CompileSql

should

be

passed

to

sqlacall

in

place

of

the

section

number.

The

sqlacall

function

is

the

only

Runtime

Services

call

that

actually

communicates

with

the

database

manager

during

execution

of

the

application

program.

Deallocating

an

SQLDA

The

sqladloc

call

deallocates

SQLDAs

that

have

been

previously

allocated

through

sqlaaloc.

The

SQLA_DEALLOC

flag

is

currently

never

set

(that

is,

Precompiler

Services

never

tells

the

precompiler

to

deallocate

an

SQLDA).

The

function

value

is

not

used.

You

can

choose

to

have

your

precompiler

deallocate

SQLDAs

on

its

own.

You

may

want

to

deallocate

all

SQLDAs

after

each

COMMIT

or

ROLLBACK

statement.

You

can

also

deallocate

SQLDAs

associated

with

a

cursor

after

a

CLOSE

statement.

This

would

optimize

in

favor

of

storage

over

speed.

Internal

SQLDAs

not

deallocated

at

run

time

are

freed

at

process

end

or,

if

appropriate,

when

the

application

library

is

unloaded.

Updating

stand-alone

SQLCODE

and

SQLSTATE

If

SQL92E

stand-alone

SQLCODE

and

SQLSTATE

support

is

in

effect

(that

is,

if

the

SQLA_STDS_LEVEL

option

with

value

SQLA_STND_SQL92E

was

passed

to

db2Initialize),

the

SQLCODE

resulting

from

statement

execution

is

copied

into

a

stand-alone

SQLCODE

variable

by

the

precompiler

before

error

handling

and

statement

termination.

This

is

signaled

by

the

SQLA_SQLCODE_COPY

task

returned

in

the

task

array.

For

more

information,

see

“Support

for

stand-alone

SQLCODE/SQLSTATE”

on

page

42.

Error

handling

There

are

three

SQLCA

error

conditions:

SQLERROR

Flow

is

affected

if

the

SQLCA

return

code

is

negative.

SQLWARNING

Flow

is

affected

if

the

SQLCA

return

code

is

one

of

the

following:

v

Greater

than

0,

and

not

equal

to

100

v

Equal

to

0,

and

an

SQLWARN0

value

of

W.

NOT

FOUND

Flow

is

affected

if

the

SQLCA

return

code

is

equal

to

a

value

of

100

after

a

FETCH

or

SELECT

statement.

Source

Processing

32

Precompiler

Customization

The

precompiler

can

set

one

of

two

flags

to

redirect

program

control

if

an

SQL

error

is

detected.

They

are:

CONTINUE

Continue

with

the

next

instruction

in

the

program.

GOTO

host-label

Pass

control

to

the

host

label

when

the

specified

condition

exists.

Host

labels

need

not

be

prefixed

with

a

colon

(:).

Precompiler

Services

maintains

information

about

active

WHENEVER

statements.

Each

of

three

″WHENEVER

flags″

inside

Precompiler

Services

is

initialized

to

FALSE

when

db2Initialize

is

called.

If

Precompiler

Services

detects

a

WHENEVER

SQL

statement

with

a

GOTO

action,

it

sets

the

corresponding

internal

flag

to

TRUE.

If

the

WHENEVER

SQL

statement

specifies

CONTINUE,

the

internal

flag

is

set

to

FALSE.

Associated

with

each

flag

is

a

256-byte

character

array

that

contains

the

label

in

the

application

program

to

which

control

may

be

transferred.

These

labels

are

passed

back

to

the

precompiler

in

the

poBuffer1,

poBuffer2,

and

poBuffer3

parameters

of

the

db2CompileSql

call

when

a

WHENEVER

condition

is

active.

The

task

array

function

flags

SQLA_SQLERROR,

SQLA_SQLWARNING,

or

SQLA_NOT_FOUND

will

occur

in

the

task

array,

depending

on

which

error

conditions

are

active

when

an

SQL

statement

is

compiled.

The

task

array

function

value

is

the

length

of

the

host

label

name.

When

the

precompiler

encounters

one

of

these

function

flags,

it

generates

a

language-specific

set

of

instructions

to

test

the

SQLCA,

and

possibly

transfer

control

to

the

host

label.

Since

the

call

to

sqlastop

marks

the

end

of

the

SQL

statement’s

use

of

the

SQLCA

structure

(possibly

releasing

it

for

use

in

other

SQL

statements

by

other

threads),

the

SQLCODE

must

be

tested

before

sqlastop

is

called.

Precompiler

Services

generates

the

tasks

in

the

correct

order.

For

example,

suppose

the

following

WHENEVER

statements

were

found

in

a

C

source

file:

EXEC

SQL

WHENEVER

SQLERROR

GOTO

label1;

EXEC

SQL

WHENEVER

SQLWARNING

GOTO

label2;

EXEC

SQL

WHENEVER

NOT

FOUND

GOTO

label3;

The

following

code

would

need

to

be

generated

by

the

precompiler

after

every

call

that

might

access

the

database:

if

(sqlca.sqlcode

<

0)

{

sqlastop(NULL);

goto

label1;

}

if

(((sqlca.sqlcode

>

0)

&&

(sqlca.sqlcode

!=

100))

||

((sqlca.sqlcode

==

0)

&&

(sqlca.sqlwarn[0]

==

’W’)))

{

sqlastop(NULL);

goto

label2;

}

if

(sqlca.sqlcode

==

100)

Source

Processing

Chapter

2.

Writing

a

precompiler

33

{

sqlastop(NULL);

goto

label3;

}

After

your

precompiler

inserts

the

correct

error

handling

instruction,

it

inserts

the

final

sqlastop

call.

Terminating

SQL

statement

processing

The

precompiler

inserts

an

sqlastop

function

call

when

it

finds

an

SQLA_STOP

function

flag

in

the

task

array.

The

sqlastop

function

terminates

run

time

statement

execution.

It

releases

the

semaphore

obtained

by

sqlastrt,

and

updates

the

application

SQLCA

with

the

final

status

of

the

SQL

statement.

Note

that,

except

for

the

very

rare

event

of

problems

being

encountered

in

releasing

the

semaphore,

the

SQLCODE

portion

of

the

SQLCA

is

already

set

before

sqlastop

is

called.

This

enables

the

correct

SQLCODE

value

to

be

copied

to

a

stand-alone

SQLCODE,

before

sqlastop

is

called,

in

the

event

that

stand-alone

SQLCODE

processing

is

selected

by

the

user.

Reporting

results

from

the

SQL

flagger

If

SQL

flagging

is

desired,

the

SQL_FLAG_OPT

option

must

have

been

passed

to

db2Initialize.

On

each

call

to

db2CompileSql,

a

pointer

to

an

instance

of

the

sqla_flaginfo

structure

is

passed

in.

This

structure

contains

a

counted

array

of

SQLCAs,

which

is

used

to

store

messages

regarding

the

SQL

statement

being

compiled.

The

db2CompileSql

function

fills

in

this

structure.

If

sqla_flaginfo.msgs.count

is

non-zero

on

return

from

db2CompileSql,

that

number

of

SQLCAs

in

the

sqlq_flaginfo.msgs.sqlca

array

contain

flagger-related

diagnostics

about

the

SQL

statement.

In

this

case,

the

precompiler

should

issue

these

messages

to

the

user.

Since

the

SQL

flagger

only

returns

informational

messages,

no

change

in

the

precompiler’s

other

behavior

is

required

when

flagging

is

enabled.

For

more

information

about

the

sqla_flaginfo

structure,

see

Chapter

4,

“Precompiler

data

structures,”

on

page

45.

Termination

After

the

last

token

of

the

source

program,

or

after

a

fatal

error,

the

precompiler

terminates

Precompiler

Services.

Figure

2

on

page

35

shows

the

termination

tasks.

Source

Processing

34

Precompiler

Customization

Saving

precompilation

results

Depending

on

the

kind

of

errors

and

warnings

you

receive

while

processing

SQL

statements,

the

precompiler

determines

whether

to

save

both

the

package

and

the

bind

file,

or

to

discard

them.

Terminating

Precompiler

Services

through

sqlafini

The

sqlafini

function

completes

the

precompilation

process,

and

saves

or

discards

the

package

or

bind

file

as

directed

by

the

term_option

parameter.

The

sqlafini

function

is

the

final

call

to

Precompiler

Services

from

the

precompiler.

Once

this

call

has

been

issued,

all

other

calls

to

Precompiler

Services

are

rejected

until

a

new

db2Initialize

call

is

successfully

completed.

The

sqlafini

function

returns

data

to

two

SQLCA

fields.

The

fields

indicate

whether

or

not

the

package

or

bind

file

was

saved.

The

fields

are

SQLWARN6

and

SQLWARN7.

They

are

always

set,

regardless

of

the

termination

option

or

any

error

condition

that

may

have

occurred.

These

single

byte

fields

are

used

as

follows:

v

SQLWARN6

—

If

set

to

1,

the

package

was

saved

successfully.

Otherwise,

it

was

discarded.

v

SQLWARN7

—

If

set

to

1,

the

bind

file

was

saved

successfully.

Otherwise,

it

was

either

deleted,

or

a

disk

error

occurred,

depending

on

the

type

of

error.

Check

these

fields,

even

if

an

error

is

returned

in

SQLCODE.

The

package

or

bind

file

may

actually

have

been

created

successfully

before

the

error

condition

occurred.

This

is

particularly

important

when

handling

break

signals.

Precompiler

||

Precompiler

Services

||

||

Decide

whether

to

keep

||

or

discard

the

package

||

and/or

bind

file

||

Call

sqlafini

||

||

|

+------

termination

option

-----+

|

||

V

||

||

Save

or

discard

||

bind

file

and

||

package.

||

|

+-------------

sqlca

----------+

|

V

||

||

Check

return

code

and

||

SQLCODE.

||

Clean

up.

||

||

Figure

2.

Terminating

a

Precompilation

Termination

Chapter

2.

Writing

a

precompiler

35

Cleaning

up

Close

all

open

files,

release

the

break

handler,

and

inform

the

application

programmer

of

the

precompile

completion

status.

Termination

36

Precompiler

Customization

Chapter

3.

Advanced

precompiler

design

Compound

SQL

Compound

SQL

(see

the

SQL

Reference)

is

somewhat

more

difficult

to

precompile

than

traditional

atomic

SQL

statements.

A

compound

SQL

statement

is

composed

of

substatements

which

are

essentially

individual

SQL

statements

executed

in

″batch

mode″.

Substatements

are

separated

by

semicolons

(;),

may

have

their

own

host

variables,

and

so

on,

and

are

sent

to

db2CompileSql

individually.

The

statement

itself

begins

with

the

keywords

″BEGIN

COMPOUND

...″,

which

forces

Precompiler

Services

into

a

compound

SQL

″mode″,

wherein

substatements

are

processed

appropriately

until

the

statement

ends

(marked

with

the

″END

COMPOUND″

keywords.)

For

each

compound

SQL

statement,

there

is

only

one

sqlastrt

call

at

the

beginning,

and

one

sqlastop

call

at

the

end.

In

between,

each

substatement

is

handled

with

its

own

calls

to

Runtime

Services

APIs,

such

as

sqlaaloc,

sqlastlv,

sqlasetdata,

or

sqlausda.

Substatements

are

not

individually

executed

with

calls

to

sqlacall,

like

ordinary

SQL.

Instead,

a

call

to

sqlacmpd

is

generated,

which

adds

the

substatement

to

an

internal

list.

At

the

end

of

the

compound

SQL

statement

as

a

whole,

a

call

to

sqlacall

is

generated,

which

initiates

the

execution

of

the

list

of

substatements

built

with

the

sqlacmpd

calls.

Since

each

substatement

must

be

handled

individually,

the

precompiler

must

recognize

the

semicolon

substatement

separator

as

a

type

of

statement

terminator.

During

ordinary

(non-compound)

SQL

processing,

a

semicolon

encountered

in

an

SQL

statement

should

cause

the

statement

(as

accumulated

to

that

point)

to

be

sent

to

Precompiler

Services

for

compilation.

This

is

required,

since

the

semicolon

may

indicate

a

compound

SQL

statement.

Since

the

semicolon

is

not

a

valid

statement

terminator

in

every

language,

the

precompiler

should

then

check

the

results

of

db2CompileSql

to

ensure

that

the

semicolon

is

indeed

part

of

a

compound

SQL

statement.

If,

for

example,

the

following

code

were

encountered

in

a

COBOL

application

processed

by

the

DB2

COBOL

precompiler:

EXEC

SQL

FETCH

C1

INTO

:MY-VAR;

the

precompiler

would

send

the

FETCH

statement

(up

to,

but

not

including,

the

semicolon)

to

db2CompileSql.

This

API

would

then

return

information

indicating

that

this

was

not

the

beginning

of

a

compound

SQL

statement,

invalidating

the

use

of

the

semicolon

terminator.

An

error

message

would

then

be

issued

by

the

precompiler.

If,

on

the

other

hand,

the

statement

were

as

follows:

EXEC

SQL

BEGIN

COMPOUND

ATOMIC

STATIC

EXECUTE

STMT_1

USING

:HV-1,

:HV-2;

EXECUTE

STMT_2

USING

DESCRIPTOR

:MY-SQLDA;

END

COMPOUND

END-EXEC

the

precompiler

would

send

everything

from

BEGIN

to

HV-2

to

db2CompileSql,

which

would

return

two

tasks

in

the

task

array:

SQLA_START

and

SQLA_BEGIN_COMPOUND.

SQLA_START

is

processed

normally,

and

©

Copyright

IBM

Corp.

1997

-

2004

37

SQLA_BEGIN_COMPOUND

signals

the

precompiler

to

enter

its

own

″compound

SQL

mode″.

While

in

this

mode,

it

does

not

need

to

search

for

the

EXEC

SQL

keyword

pair

to

find

new

statements.

Instead,

it

repeatedly

accumulates

substatements,

passes

them

to

db2CompileSql,

and

performs

the

resulting

tasks.

Note

that

the

first

substatement

is

appended

to

the

BEGIN

COMPOUND

phrase

by

the

precompiler.

It

has

not

been

processed

by

Precompiler

Services,

however.

Instead,

as

part

of

BEGIN

COMPOUND

handling,

Precompiler

Services

has

moved

it

to

the

beginning

of

the

SQL

statement

buffer,

in

preparation

for

immediate

resubmission

to

db2CompileSql.

During

this

second

call,

the

substatement

will

be

processed

normally.

After

handling

the

resulting

task

array,

the

precompiler

can

proceed

to

the

second

and

subsequent

substatements.

As

mentioned

above,

substatements

in

compound

SQL

are

not

executed

individually

with

sqlacall.

Instead,

one

of

the

function

flags

returned

when

a

substatement

is

processed

is

SQLA_CMPD,

which

instructs

the

precompiler

to

generate

a

call

to

sqlacmpd.

The

function

value

for

SQLA_CMPD

provides

a

call_type

to

be

passed

to

sqlacmpd,

much

like

sqlacall.

When

Precompiler

Services

processes

the

END

COMPOUND

clause,

it

returns

a

normal

SQLA_CALL

function

flag

and

value

pair

to

trigger

execution

of

the

statement,

followed

by

SQLA_STOP.

At

this

point,

the

precompiler

can

exit

its

compound

SQL

mode.

If

the

precompiler

is

processing

a

compound

SQL

statement,

and

finds

that

it

cannot

obtain

the

next

substatement

(due

to,

for

example,

an

end-of-file,

or

a

″real″

statement

terminator

being

found),

it

can

force

Precompiler

Services

out

of

compound

SQL

mode

by

passing

a

zero-length

string

to

db2CompileSql.

The

compound

SQL

syntax

is

further

extended

by

the

optional

STOP

AFTER

FIRST

:n

STATEMENTS

clause.

This

allows

the

application

to

limit

execution

to

the

first

n

substatements,

where

n

is

a

SMALLINT

host

variable

containing

the

number

of

substatements

to

be

executed.

This

is

implemented

through

simple

code

generated

by

the

precompiler.

The

compound

SQL

statement:

exec

sql

begin

compound

atomic

static

stop

after

first

:n

statements

execute

stmt_1

using

:hv_1,

:hv_2;

execute

stmt_2

using

descriptor

:my_sqlda;

end

compound;

could

be

precompiled

in

two

ways,

depending

on

the

mechanisms

supported

by

the

host

language:

/*

Method

1

*/

|

/*

Method

2

*/

|

sqlastrt(...);

|

sqlastrt(...);

|

if(

n

>=

1

)

|

if(

n

<

1

)

{

|

goto

sql_label_XXX;

/*

1st

substmnt

*/

|

/*

1st

substmnt

*/

sqlaaloc(...);

|

sqlaaloc(...);

sqlasetdata(...);

|

sqlasetdata(...);

sqlacmpd(...);

|

sqlacmpd(...);

}

|

|

if(

n

>=

2

)

|

if(

n

<

2

)

{

|

goto

sql_label_XXX;

/*

2nd

substmnt

*/

|

/*

2nd

substmnt

*/

Compound

SQL

38

Precompiler

Customization

sqlausda(...);

|

sqlausda(...);

sqlacmpd(...);

|

sqlacmpd(...);

}

|

|

sql_label_XXX:

sqlacall(...);

|

sqlacall(...);

sqlastop(...);

|

sqlastop(...);

Method

2

is

slightly

more

efficient

than

method

1,

but

may

be

slightly

more

difficult

to

generate.

The

task

functions

and

values

returned

from

Precompiler

Services

support

both

methods.

When

a

STOP

AFTER

FIRST

clause

is

used

at

the

beginning

of

a

compound

SQL

statement,

the

tasks

for

each

substatement

will

include

the

SQLA_TEST

function

flag,

with

the

function

value

containing

the

token

ID

of

the

control

variable.

In

the

above

example,

this

would

be

n.

The

precompiler

then

generates

a

test

of

the

control

variable,

to

determine

whether

to

execute

the

substatement’s

run

time

API

calls.

The

task

function

flag

SQLA_CMPD_MARK

is

returned

by

db2CompileSql

near

the

end

of

the

compound

SQL

statement,

when

it

is

time

for

the

precompiler

to

generate

the

target

label

used

in

method

2.

If

method

1

is

being

used,

the

SQLA_CMPD_MARK

function

flag

can

be

ignored.

Note

that

when

a

STOP

AFTER

FIRST

clause

is

used,

the

token

array

passed

into

the

first

call

to

db2CompileSql

contains

both

the

token

ID

of

the

control

variable,

and

the

token

IDs

of

any

host

variables

used

in

the

first

substatement.

Precompiler

Services

alters

the

contents

of

the

token

ID

array

so

that

it

contains

only

the

host

variable

IDs

of

the

first

substatement;

this

is

similar

to

the

way

in

which

it

moves

the

first

substatement

to

the

beginning

of

the

SQL

statement

buffer

before

returning

to

the

precompiler.

This

is

in

preparation

for

the

first

substatement

being

resubmitted

to

db2CompileSql

for

compilation.

The

CREATE

TRIGGER

statement

The

CREATE

TRIGGER

statement

is

syntactically

similar

to

compound

SQL,

because

it

can

have

substatements

separated

by

semicolons.

These

substatements

cannot

stand

alone

as

individual

SQL

statements,

however.

The

entire

statement

must

be

processed

at

once

by

Precompiler

Services.

If

the

precompiler

supports

compound

SQL,

it

will

likely

see

the

semicolons,

and

send

the

substatements

to

db2CompileSql

one

by

one.

If

this

happens,

Precompiler

Services

returns

the

SQLA_NEXT_SUBSTATEMENT

function

flag

as

the

only

entry

in

the

task

array.

When

the

precompiler

sees

this

flag,

it

should

send

the

next

substatement

(or

just

the

remainder

of

the

SQL

statement,

if

possible)

to

db2CompileSql.

This

process

repeats

until

the

entire

CREATE

TRIGGER

statement

has

been

accumulated

by

Precompiler

Services,

whereupon

the

task

array

will

then

be

returned

to

the

precompiler

with

the

tasks

for

executing

the

entire

CREATE

TRIGGER

statement.

Note

that

the

precompiler

does

not

have

to

send

in

the

CREATE

TRIGGER

statement

in

this

piecemeal

fashion.

An

entire

statement,

semicolons

and

all,

is

perfectly

acceptable.

Any

substatements

that

are

passed

in,

however,

should

not

include

the

trailing

semicolon.

If

the

precompiler

receives

the

SQLA_NEXT_SUBSTATEMENT

function

flag,

but

there

are

clearly

no

more

substatements

to

be

found

(for

example,

an

end-of-file

has

been

read),

the

CREATE

TRIGGER

statement

is

in

error.

In

this

case,

the

precompiler

should

send

an

empty

statement

to

db2CompileSql

to

indicate

the

error

condition.

Compound

SQL

Chapter

3.

Advanced

precompiler

design

39

Optimizing

function

calls

Your

precompiler

should

generate

the

correct

Runtime

Services

function

calls

for

each

entry

in

the

task

array,

but

you

can

create

a

precompiler

that

will

optimize

the

modified

source

file.

Two

examples

of

how

to

increase

application

performance

follow:

v

Avoid

redundant

initializations

v

Use

multiple

dynamic

SQLDAs.

These

two

techniques

can

have

a

dramatic

effect

on

the

run

time

environment

of

precompiled

applications.

Avoid

redundant

initializations

The

tasks

required

for

a

FETCH

statement

include

allocating

a

dynamic

SQLDA

with

sqlaaloc,

and

storing

host

variable

data

with

as

many

sqlastlv

or

sqlasetdata

calls

as

necessary.

Your

precompiler

generates

this

code

before

it

generates

the

sqlacall

call

for

the

FETCH

request.

If

the

same

FETCH

request

occurs

a

number

of

times

(in

a

loop,

for

example),

there

may

be

no

need

to

initialize

the

SQLDA

repeatedly.

Your

precompiler

can

insert

code

to

test

if

the

SQLDA

needs

to

be

initialized.

The

first

time

the

FETCH

is

executed,

the

SQLDA

is

initialized

so

that

sqlaaloc

sets

the

SQLCODE

element

in

the

SQLCA

to

zero.

During

further

calls

to

the

same

statement,

sqlaaloc

finds

that

the

specified

SQLDA

is

already

initialized.

When

this

happens,

sqlaaloc

sets

SQLCODE

to

SQLA_RC_SQLVARS_SET

(+4959).

After

inserting

sqlaaloc

in

the

modified

source,

the

precompiler

can

insert

a

test

for

SQLCODE

equal

to

SQLA_RC_SQLVARS_SET.

If

this

is

the

case

during

execution,

the

application

does

not

need

to

call

the

sqlastlv

or

sqlasetdata

functions

that

follow.

Here

is

a

sample

of

the

standard

and

optimized

code

in

C:

/*

Standard

code

for

EXEC

SQL

FETCH

C1

INTO

:name;

*/

{

sqlastrt(...)

sqlaaloc(...)

sqlastlv(...)

sqlacall(...)

sqlastop(...)

}

/*

Optimized

code

for

EXEC

SQL

FETCH

C1

INTO

:name;

*/

{

sqlastrt(...)

sqlaaloc(...)

if

(sqlca.sqlcode

!=

SQLA_RC_SQLVARS_SET)

/*

4959

*/

{

sqlastlv(...)

}

sqlacall(...)

sqlastop(...)

}

Note:

This

optimization

is

possible

only

if

the

host

variable

addresses

remain

constant.

The

sqlastlv

cannot

be

skipped

if

the

host

variables

are

pointers

or

temporary

variables,

because

the

addresses

may

change

from

one

iteration

to

the

next.

Optimizing

function

calls

40

Precompiler

Customization

Use

multiple

dynamic

SQLDAs

Suppose

you

are

optimizing

with

the

previous

method.

It

would

be

of

little

benefit

to

use

the

same

SQLDA

for

two

different

FETCH

statements,

even

if

they

use

the

same

host

variables.

Although

the

sqlaaloc

finds

that

the

SQLDA

has

been

initialized,

it

was

not

initialized

for

the

same

statement.

Consequently,

the

SQLCODE

will

not

equal

zero,

and

the

application

will

initialize

the

SQLDA.

To

avoid

this

overhead,

determine

which

statements

warrant

their

own

SQLDAs.

The

easy

answer

is

to

use

an

SQLDA

ID

for

each

SQL

statement

in

the

source

file.

This

would

allocate

new

memory

for

each

statement,

instead

of

reusing

existing

allocated

memory.

Perhaps

a

better

approach

is

to

use

unique

SQLDA

IDs

for

each

FETCH

statement.

Use

two

other

SQLDA

IDs

for

all

other

SQL

statements

(one

for

input

host

variables,

and

one

for

output

host

variables).

As

you

develop

your

precompiler,

you

can

determine

the

best

means

to

optimize

the

code

it

generates

for

the

modified

source

file.

Support

for

structure

host

variables

The

DB2

COBOL

and

C/C++

precompiler

supports

declaration

and

use

of

host

structures.

These

are

composite

data

items

whose

member

parts

are

themselves

host

variables.

The

members

can

be

used

individually,

but

more

importantly,

the

entire

composite

data

item

can

be

used

in

SQL

statements

as

a

type

of

″shorthand″

for

the

members

it

contains.

Typically,

such

structures

would

contain

members

corresponding

to

the

columns

in

a

database

table.

In

such

cases,

a

structure

host

variable

could

be

used

as

the

only

host

variable

in

a

FETCH

statement,

for

example.

This

would

be

treated

as

equivalent

to

listing

out

the

column

host

variables

one

by

one.

References

to

individual

members

can

be

qualified,

as

in

struct.member,

but

they

do

not

have

to

be.

For

more

information,

see

the

description

of

host

structures

in

COBOL

and

C/C++

in

the

Application

Development

Guide.

Structure

support

is

a

very

popular

feature,

and

any

writer

of

a

full-featured

custom

precompiler

should

consider

implementing

it.

Structure

support

is

implemented

almost

totally

by

the

precompiler.

Additional

responsibilities

include:

v

Accepting

and

parsing

structure

and

indicator

array

host

variable

definitions.

v

Maintaining

a

hierarchy

of

host

variable

symbols

tables.

v

If

partially

or

totally

unqualified

structure

member

references

are

permitted,

being

able

to

complete

the

qualification

to

avoid

ambiguity

of

reference

at

compile

time.

v

Recognizing

structure

references

in

SQL

statements,

and

expanding

them

to

the

equivalent

list

of

member

variables,

before

sending

the

statement

to

Precompiler

Services.

v

Ensuring

structure

members

are

uniquely

named.

This

is

required,

because

all

structure

members

must

be

passed

to

Precompiler

Services

through

the

sqlaalhv

interface,

just

like

″ordinary″

host

variables.

As

stated

earlier,

the

names

of

such

variables

must

be

unique.

Since

most

host

languages

permit

duplicate

names

of

fields

in

different

structures,

the

precompiler

must

provide

a

mechanism

to

″rename″

the

host

variables

to

ensure

uniqueness.

Note

that

if

host

variables

are

declared

to

Precompiler

Services

with

aliases,

tokens

for

error

messages

which

mention

host

variable

names

must

be

scrutinized,

to

map

the

alias

reported

from

Optimizing

function

calls

Chapter

3.

Advanced

precompiler

design

41

Precompiler

Services

back

to

the

original

host

variable

name

for

the

user.

See

messages

SQL0104N,

SQL0303N,

SQL0307N,

SQL0312N,

SQL0324N,

and

SQL4942N.

Another

issue

relates

to

the

expansion

of

structure

host

variables

during

statement

processing.

The

use

of

a

structure

name

in

an

SQL

statement

is

equivalent

to

using

a

comma

delimited

list

of

host

variables.

If

used

inappropriately

(for

example,

in

a

CONNECT

statement:

EXEC

SQL

CONNECT

TO

:a,:b,:c),

such

a

list

generates

a

syntax

error.

If

the

user

had

entered

the

statement

this

way,

the

syntax

error

complaining

about

the

unexpected

comma

following

″a″

would

be

reasonable.

If,

however,

a,

b,

and

c

were

part

of

a

structure

s,

and

the

user

had

instead

coded

EXEC

SQL

CONNECT

TO

:s,

the

error

message

would

still

refer

to

the

errant

comma.

This

might

be

quite

a

difficult

error

to

fix,

unless

the

user

realized

that

structure

s

had

been

expanded

by

the

precompiler.

To

fix

this

problem,

Precompiler

Services

will

return

error

SQL0087N

if

a

multi-member

structure

has

been

expanded

when

it

should

not

have

been.

To

enable

this,

the

precompiler

must

do

two

things.

First,

when

it

calls

db2Initialize,

it

must

pass

the

option

SQLA_TOKEN_USE_INITIALIZED_OPT

(1000),

set

to

some

non-zero

value.

This

indicates

that

the

usage

fields

in

the

token

ID

array

have

been

initialized

by

the

precompiler

before

each

db2CompileSql

call.

Secondly,

the

precompiler

must

initialize

these

usage

fields

to

one

of

two

values:

SQLA_MULTIPLE_STRUCT_FIELD

(9)

indicates

that

the

corresponding

token

was

expanded

from

a

structure

host

variable,

and

SQLA_ATOMIC_FIELD

(10)

indicates

that

the

token

was

not

expanded.

Support

for

255-byte

host

variable

names

and

labels

With

DB2

UDB

Version

5

and

higher,

Precompiler

Services

supports

255-byte

host

variable

and

label

names.

This

will

have

little

impact

on

Precompiler

Services

clients,

except

for

the

fact

that

the

three

buffers

passed

to

the

db2CompileSql

API

need

to

be

256

(not

128)

bytes

long.

In

order

for

Precompiler

Services

to

distinguish

between

down-level

clients

passing

existing

128-byte

buffers,

and

newer

clients

passing

256-byte

buffers,

an

extra

option

must

be

passed

to

db2Initialize

to

enable

full

255-byte

label

support.

If

the

internal

option

SQLA_USE_LONG_LABELS

(1001)

is

passed

in

the

option

array

to

db2Initialize

with

a

value

of

1,

Precompiler

Services

will

assume

the

buffers

passed

to

db2CompileSql

can

store

up

to

256

bytes.

If

this

option

is

not

passed,

labels

will

be

limited

to

128

bytes,

since

the

db2CompileSql

buffers

will

be

assumed

to

be

only

128

bytes

long.

Note

that

this

has

no

effect

on

the

support

for

long

host

variable

names.

They

can

be

up

to

255

bytes

long,

even

with

down-level

Precompiler

Services

clients.

Support

for

stand-alone

SQLCODE/SQLSTATE

Stand-alone

SQLCODE

and

SQLSTATE

variables,

as

defined

in

ISO/ANSI

SQL92,

are

supported

through

the

SQLA_STDS_LEVEL

db2Initialize

option,

with

value

SQLA_STND_SQL92E.

This

means

that

precompiled

applications

do

not

have

to

define

an

SQLCA

structure

in

their

application.

In

fact,

if

they

do

attempt

to

define

one

through

EXEC

SQL

INCLUDE

SQLCA,

in

an

application

precompiled

with

SQLA_STND_SQL92E,

Precompiler

Services

will

return

an

SQL0143W

warning,

and

will

not

insert

an

SQLCA

in

the

modified

source

code.

Support

for

structure

host

variables

42

Precompiler

Customization

When

SQLA_STDS_LEVEL

or

SQLA_STND_SQL92E

is

specified,

the

following

points

apply:

v

The

precompiler

should

generate

a

declaration

for

an

SQLCA-like

structure

in

the

modified

source

code.

v

When

the

precompiler

generates

code

to

call

sqlastrt

and

to

perform

error

handling,

it

will

do

so

using

this

precompiler-generated

SQLCA.

Here,

SQLCA-like

means

that

the

SQLCODE

and

SQLSTATE

fields

may

need

to

be

given

different

names,

so

that

they

do

not

collide

with

the

application

program’s

own

stand-alone

variables.

For

example,

the

DB2

C

precompiler

uses

sqlcade

and

sqlstat.

Since

the

SQLCA

is

not

intended

to

be

manipulated

by

the

application

code,

it

does

not

have

to

be

called

SQLCA.

v

Precompiler

Services

will

return

the

task

SQLA_SQLCODE_COPY

(20)

in

the

task

array

resulting

from

db2CompileSql.

The

precompiler

should

generate

code

as

follows,

based

on

whether

declarations

for

SQLCODE

and

SQLSTATE

have

been

made:

SQLCODE

declared?

N

Y

N

Y

SQLSTATE

declared?

N

N

Y

Y

generate

SQLCODE

assignment

Y

Y

N

Y

generate

SQLSTATE

assignment

N

N

Y

Y

That

is,

just

as

the

SQLCA

structure

is

presumed

to

have

been

declared

by

the

application

in

non-SQLA_STND_SQL92E

processing,

here

it

is

assumed

that

a

4-byte

integer

SQLCODE

has

been

declared.

The

precompiler

generates

an

assignment

as

follows:

:

sqlacall(

...

);

SQLCODE

=

sqlca.sqlcade;

:

If

a

declaration

for

SQLCODE

has

been

made

in

the

DECLARE

SECTION,

the

precompiler

should

still

generate

the

code,

as

above.

If

a

DECLARE

SECTION

contains

declarations

for

both

SQLCODE

and

SQLSTATE,

assignments

should

be

made

for

both:

:

sqlacall(

...

);

SQLCODE

=

sqlca.sqlcade;

strncpy(SQLSTATE,

sqlca.sqlstat,

sizeof(SQLSTATE));

SQLSTATE[sizeof(SQLSTATE)-1]

=

’\0’;

:

If

only

an

SQLSTATE

declaration

is

made,

the

SQLCODE

assignment

should

be

omitted:

:

sqlacall(

...

);

strncpy(SQLSTATE,

sqlca.sqlstat,

sizeof(SQLSTATE));

SQLSTATE[sizeof(SQLSTATE)-1]

=

’\0’;

:

v

In

the

case

of

an

error

being

returned

from

db2CompileSql,

the

precompiler

should

generate

code

to

set

SQLCODE

and

SQLSTATE

to

the

precompile-time

SQLCODE

and

SQLSTATE

values.

For

example,

the

following

statement:

exec

sql

foobar;

would

cause

the

following

to

be

generated

in

the

modified

source

file

by

the

DB2

C

precompiler:

/*

SQL0104N

An

unexpected

token

"END-OF-STATEMENT"

was

found

following

"foobar".

Expected

tokens

may

include:

"JOIN

<joined_table>".

SQLSTATE=42601

*/

Support

for

stand-alone

SQLCODE/SQLSTATE

Chapter

3.

Advanced

precompiler

design

43

{

SQLCODE

=

-104;

strncpy(SQLSTATE,

"42601",

sizeof(SQLSTATE));

SQLSTATE[sizeof(SQLSTATE)-1]

=

’\0’;

}

Note

that

no

task

is

returned

from

Precompiler

Services

to

trigger

this

assignment

of

an

error

code.

It

is

up

to

the

precompiler

to

generate

the

code

when

an

error

is

returned

from

db2CompileSql,

if

SQLA_STND_SQL92E

has

been

specified.

To

summarize

the

responsibilities

of

the

precompiler

with

respect

to

stand-alone

SQLCODE/SQLSTATE

support,

the

precompiler

must:

v

Automatically

generate

an

SQLCA

declaration

v

Determine

and

generate

the

appropriate

assignments

(based

on

whether

SQLCODE

or

SQLSTATE

has

been

declared)

when

the

SQLA_SQLCODE_COPY

task

is

received

v

Determine

and

generate

the

appropriate

assignments

(based

on

whether

SQLCODE

or

SQLSTATE

has

been

declared)

when

an

error

is

returned

from

db2CompileSql.

The

SET

CURRENT

PACKAGE

PATH

statement

Special

processing

of

the

token

ID

array

is

required

for

the

SET

CURRENT

PACKAGE

PATH

statement,

support

for

which

has

been

added

as

of

DB2

UDB

Version

8.2.

An

additional

SQLVAR

must

be

generated

for

each

input

item

(there

are

no

output

items

for

this

statement).

Note

that

the

number

of

input

variables

returned

in

the

task

array

for

the

SQLA_ALLOC_INPUT

task

will

have

already

been

doubled

by

Precompiler

Services.

The

extra

SQLVAR

generated

for

each

input

item

will

indicate

whether

the

SQLVAR

that

follows

is

a

literal

or

an

input

host

variable.

The

extra

SQLVAR

must

be

initialized

with

a

SMALLINT

type

and

length,

as

well

as

the

address

of

one

of

two

2-byte

variables

that

have

had

declarations

generated

for

them

in

the

modified

source

file

by

the

precompiler.

One

of

these

variables

must

be

assigned

a

value

of

1

to

represent

a

literal,

and

the

second

variable

must

be

assigned

a

value

of

2

to

represent

an

input

host

variable.

These

specific

values

are

required

for

the

Runtime

Services

functions

to

process

the

input

items

correctly.

The

header

file

(sqladef.h)

that

is

shipped

with

DB2

UDB

includes

the

following

defined

constants:

#define

SQL_IS_LITERAL

1

#define

SQL_IS_INPUT_HVAR

2

The

modified

source

file

would

include

declarations

similar

to

the

following:

short

sqlIsLiteral

=

SQL_IS_LITERAL;

short

sqlIsInputHvar

=

SQL_IS_INPUT_HVAR;

Support

for

stand-alone

SQLCODE/SQLSTATE

44

Precompiler

Customization

Chapter

4.

Precompiler

data

structures

There

are

six

data

structures

used

between

the

precompiler

and

Precompiler

Services.

The

precompiler

allocates

each

of

the

following:

v

Precompiler

option

array

v

Program

identifier

string

v

Token

identifier

array

v

Task

array

v

Return

token

structure

v

Flagger

diagnostics

structure.

Precompiler

option

array

The

precompiler

option

array

is

an

input

parameter

used

by

db2Initialize.

This

array

of

logically

paired

4-byte

integers

provides

information

required

to

initialize

Precompiler

Services.

Figure

3

shows

the

precompiler

option

array.

Each

cell

contains

a

4-byte

integer.

The

first

logical

pair

is

the

header.

It

specifies

the

number

of

pairs

allocated

for

the

option

data,

and

the

number

of

pairs

actually

used.

The

header

itself

is

not

included

in

the

count

of

pairs

allocated

and

used.

The

following

options

are

always

specified:

v

Package

creation

(SQLA_ACCESS_PLAN)

v

Bind

file

creation

(SQLA_BIND_FILE).

Each

option

is

represented

by

a

pair

of

4-byte

integers.

The

first

integer

contains

the

type

of

option,

and

the

second

integer

contains

the

actual

value

for

the

option.

Offset

0

+------------------+-------------------+

|

header.allocated

|

header.used

|

8

+------------------+-------------------+

|

option(0).type

|

option(0).val

|

16

+------------------+-------------------+

|

option(1).type

|

option(1).val

|

24

+------------------+-------------------+

|

option(2).type

|

option(2).val

|

32

+------------------+-------------------+

.

.

.

Figure

3.

Precompiler

Option

Array

©

Copyright

IBM

Corp.

1997

-

2004

45

Program

identifier

string

The

program

identifier

string

(PID)

is

an

output

parameter

of

db2Initialize.

After

DB2

Version

7,

the

PID

is

a

character

array

of

a

maximum

of

162

bytes

that

is

used

to

uniquely

identify

the

modified

source

file

and

associate

it

with

its

package.

The

PID

for

DB2

Version

6.1

is

a

40-byte

character

array.

The

precompiler

generates

a

variable

definition

in

the

modified

source

file

and

initializes

it

with

the

alphanumeric

contents

of

the

PID.

Runtime

Services

uses

the

PID

to

execute

sections

in

the

package.

Token

identifier

array

The

token

identifier

array

is

both

an

input

and

an

output

parameter

of

db2CompileSql.

It

has

the

same

basic

structure

as

the

option

array

and

is

used

to

pass

host

variable

and

literal

information

between

the

precompiler

and

Precompiler

Services.

Figure

4

shows

the

token

identifier

array.

Each

cell

contains

a

4-byte

integer.

The

first

pair

in

the

token

identifier

array

is

the

header.

The

first

4-byte

integer

is

the

number

of

pairs

allocated.

The

second

4-byte

integer

is

the

actual

number

of

pairs

used.

The

remaining

logical

pairs

identify

host

variables

and

literals

and

how

they

were

used

in

an

SQL

statement.

For

host

variables,

the

first

element

of

a

token

pair

contains

a

non-zero,

4-byte

integer

that

identifies

a

specific

host

variable.

The

precompiler

fills

in

this

value

before

calling

Precompiler

Services

to

compile

the

SQL

statement.

There

is

one

entry

for

each

occurrence

of

a

host

variable

found

in

the

SQL

statement.

Note:

An

SQLDA

in

a

dynamic

statement

is

considered

a

host

variable

even

though

it

does

not

appear

in

a

host

variable

declaration

section.

Precompiler

Services

returns

a

usage

code

for

each

token

ID

in

the

second

integer

of

each

token

pair.

The

code

specifies

how

the

host

variable

was

used

within

the

SQL

statement.

For

literals,

the

first

element

of

a

token

pair

contains

an

instance

of

the

return

token

structure.

This

is

returned

by

Precompiler

Services.

The

second

element

of

the

pair

contains

a

usage

code

indicating

that

this

entry

represents

a

literal

found

in

the

SQL

statement.

Offset

0

+------------------+-------------------+

|

header.allocated

|

header.used

|

8

+------------------+-------------------+

|

token(0).id

|

token(0).use

|

16

+------------------+-------------------+

|

token(1).id

|

token(1).use

|

24

+------------------+-------------------+

|

token(2).id

|

token(2).use

|

32

+------------------+-------------------+

.

.

.

Figure

4.

Token

Identifier

Array

Program

identifier

string

46

Precompiler

Customization

There

can

be

thousands

of

array

entries,

although

most

SQL

statements

never

contain

that

many

host

variables

or

literals.

The

precompiler

can

determine

some

practical

size

for

normal

usage

and

then,

if

necessary,

allocate

a

larger

size

array

if

it

finds

an

SQL

statement

that

contains

more

host

variables

or

literals

than

are

currently

allocated.

Task

array

The

task

array

is

an

output

parameter

of

db2CompileSql.

Upon

completion

of

a

call

to

db2CompileSql,

the

task

array

specifies

the

run

time

function

calls

and

data

to

be

used

in

the

modified

source

of

an

application

program.

Figure

5

shows

the

task

array.

Each

cell

contains

a

4-byte

integer.

The

task

array

has

the

same

structure

as

the

precompiler

option

array

and

the

token

ID

array.

The

first

integer

of

the

header

is

the

number

of

pairs

allocated

for

task

information.

The

precompiler

supplies

this

number.

The

second

integer

of

the

header

specifies

the

number

of

task

pairs

returned.

Precompiler

Services

calculates

that

figure.

If

the

number

of

tasks

returned

is

greater

than

the

number

allocated

in

the

array,

Precompiler

Services

sets

the

second

header

integer

to

the

required

size,

and

returns

an

error

(SQL4919N)

in

the

SQLCA.

The

precompiler

can

then

reallocate

the

task

array

to

the

size

required

and

attempt

the

compile

request

again.

The

remaining

pairs

are

function

flags

and

function

values.

Each

function

flag

represents

a

particular

task

the

precompiler

must

perform

when

that

function

flag

is

active.

The

function

value

contains

data

or

a

value

needed

to

complete

the

task.

Return

token

structure

This

structure

is

used

by

the

SQLA_INC_TEXTFILE

tasks.

The

structure

is

used

in

place

of

the

4-byte

integer

function

value,

in

the

task

array

returned

by

db2CompileSql.

It

is

also

used

when

passing

literal

information

in

the

token

ID

array.

It

is

used

in

place

of

the

4-byte

integer

ID

value

in

the

token

ID

array

returned

by

db2CompileSql.

The

offset

field

contains

the

offset

of

the

appropriate

literal

string

within

the

SQL

statement.

Length

contains

the

length

of

the

string.

Figure

6

on

page

48

shows

the

structure.

Offset

0

+------------------+-------------------+

|

header.allocated

|

header.used

|

8

+------------------+-------------------+

|

task(0).func

|

task(0).val

|

16

+------------------+-------------------+

|

task(1).func

|

task(1).val

|

24

+------------------+-------------------+

|

task(2).func

|

task(2).val

|

32

+------------------+-------------------+

.

.

.

Figure

5.

Task

Array

Token

identifier

array

Chapter

4.

Precompiler

data

structures

47

Flagger

diagnostics

structure

This

structure

is

passed

to

the

db2CompileSql

API

when

SQL

flagging

is

requested.

The

precompiler

must

initialize

the

version

field

to

SQLA_FLAG_VERSION

(currently

1;

the

value

of

this

constant

should

be

obtained

from

the

sqlaprep

header

file

by

the

precompiler.)

Upon

completion

of

the

API,

count

SQLCAs

within

the

structure

have

been

set

up

with

diagnostic

information

from

the

flagger.

The

precompiler

should

then

display

these

messages

to

the

user.

Figure

7

shows

the

structure.

Offset

0

+-------------+

|

offset

|

2

+-------------+

|

length

|

+-------------+

Figure

6.

Return

Token

Structure

Offset

0

+--------------+--------------+

|

version

|

(padding)

|

4

+--------------+--------------+

|

count

|

(padding)

|

8

+--------------+--------------+

|

SQLCA(0)

|

144

+--------------+--------------+

|

SQLCA(1)

|

+--------------+--------------+

.

.

.

N

+--------------+--------------+

|

SQLCA(SQLA_FLAG_MAXMSGS-1)

|

+--------------+--------------+

N

=

8

+

(SQLA_FLAG_MAXMSGS-1)

*

136

Figure

7.

Flagger

Diagnostics

Structure

Flagger

diagnostics

structure

48

Precompiler

Customization

Chapter

5.

Runtime

data

structures

Multiple

variable

SQLDA

initialization

structure

This

structure

can

be

used

with

sqlasetdata,

an

alternative

to

sqlastlv.

Typically,

the

precompiler

generates

an

array

of

sqla_setd_list

structures

in

the

modified

source

files.

If

there

are

any

structured

types,

the

sqla_setds_list

structure

is

also

generated.

Code

is

also

generated

to

initialize

this

array

with

information

describing

the

host

variables

used

in

an

SQL

statement.

The

array

is

then

passed

to

sqlasetdata

to

initialize

the

internal

SQLDA.

Figure

8

shows

the

structure.

Runtime

information

structure

A

pointer

to

this

structure

is

passed

to

the

second

argument

of

the

sqlastrt

API

at

run

time.

It

is

currently

only

used

to

indicate

how

data

stored

in

and

retrieved

from

wchar_t

host

variables

in

C

applications

should

be

treated.

The

wc_size

field

provides

the

size

(in

bytes)

of

the

wchar_t

C

data

type

as

implemented

by

the

application

compiler.

It

should

be

initialized

to

sizeof(wchar_t).

The

wc_type

field

should

be

set

to

SQL_WCHAR_NOCONVERT

(0)

if

wchar_t

host

variables

in

the

application

contain

graphic

data

in

DBCS

format.

If

such

host

variables

contain

data

in

native

wchar_t

format,

the

wc_type

field

should

be

set

to

SQL_WCHAR_CONVERT

(1).

The

ID

field

should

be

set

to

SQLARTIN,

and

the

unused

field

should

be

set

to

blank

spaces.

Offset

0

+--------------+--------------+

|

sqltype

|

(padding)

|

4

+--------------+--------------+

|

sqllen

|

8

+--------------+--------------+

|

sqldata

|

12

+--------------+--------------+

|

sqlind

|

+--------------+--------------+

Figure

8.

Multiple

Variable

SQLDA

Initialization

Structure

©

Copyright

IBM

Corp.

1997

-

2004

49

In

the

DB2

C

precompiler,

the

WCHARTYPE

option

controls

the

setting

of

this

flag,

allowing

the

application

programmer

to

indicate

the

desired

behavior.

If

WCHARTYPE

is

inappropriate

or

unsupported,

the

precompiler

can

pass

a

NULL

pointer

to

sqlastrt.

Figure

9

shows

the

structure.

Offset

0

+--------------+--------------+

|

id

|

4

+--------------+--------------+

|

id

(cont’d)

|

8

+--------------+--------------+

|

wc_size

|

wc_type

|

12

+--------------+--------------+

|

unused

|

+--------------+--------------+

Figure

9.

Runtime

Information

Structure

Runtime

information

structure

50

Precompiler

Customization

Chapter

6.

Option

APIs

sqlaoptions

-

Parse

Option

String

This

API

parses

an

input

string

into

an

option

array

or

other

parameters

for

the

Precompiler

Services

initialization

API

(db2Initialize).

Storage

for

the

option

array

must

be

allocated

by

the

caller.

However,

storage

for

database

name

(ppszDBName),

user

ID

(ppszUserid),

password

(ppszPassword),

package

name

(ppszPackageName),

and

bind

file

(ppszBindFile),

as

well

as

text-based

option

values

such

as

COLLECTION,

is

allocated

by

the

API

on

behalf

of

the

caller.

This

storage

must

be

freed

after

db2Initialize

is

called,

by

a

call

to

sqlaoptions_free,

a

function

that

should

be

called

even

if

sqlaoptions

returns

an

unsuccessful

SQLCODE.

Valid

option

string

contents

for

SQLAO_PREP_SVCS_API

are

as

follows:

ACTION

{ADD

|

REPLACE

[RETAIN

{YES

|

NO}]

[REPLVER

version-id]}

AS400NAMING

{SYSTEM

|

SQL}

BINDFILE

[

USING

bind-file

]

BLOCKING

{UNAMBIG

|

ALL

|

NO}

CALL_RESOLUTION

{IMMEDIATE

|

DEFERRED}

CCSIDG

double-ccsid

CCSIDM

mixed-ccsid

CCSIDS

sbcs-ccsid

CHARSUB

{DEFAULT

|

BIT

|

SBCS

|

MIXED}

CNULREQD

{YES

|

NO}

COLLECTION

collection-id

CONNECT

{1

|

2}

DATABASE

dbname

DATETIME

{DEF

|

USA

|

EUR

|

ISO

|

JIS

|

LOC}

DBPROTOCOL

{DRDA

|

PRIVATE}

DEC

{31

|

15}

DECDEL

{PERIOD

|

COMMA}

DEFERRED_PREP

{YES

|

NO

|

ALL}

DEGREE

{1

|

degree-of-I/O-parallelism

|

ANY}

DISCONNECT

{EXPLICIT

|

CONDITIONAL

|

AUTOMATIC}

DYNAMICRULES

{BIND

|

RUN}

ENCODING

{ASCII

|

EBCDIC

|

UNICODE

|

CCSID}

EXPLAIN

{NO

|

YES

|

ALL}

EXPLSNAP

{NO

|

YES

|

ALL}

FEDERATED

{NO

|

YES}

FUNCPATH

schema-name

[

{,schema-name}

...

]

GENERIC

string

IMMEDWRITE

{NO

|

YES

|

PH1}

INSERT

{DEF

|

BUF}

ISOLATION

{CS

|

RR

|

UR

|

RS

|

NC}

KEEPDYNAMIC

{YES

|

NO}

LANGLEVEL

{SAA1

|

MIA

|

SQL92E}

LEVEL

consistency-token

OPTHINT

number

OS400NAMING

{SYSTEM

|

SQL}

OWNER

authorization-id

PACKAGE

[

USING

package-name

]

PATH

schema-name

[

{,schema-name}

...

]

QUALIFIER

qualifier-name

QUERYOPT

optimization-level

RELEASE

{COMMIT

|

DEALLOCATE}

{REOPT

VARS

|

NOREOPT

VARS}

SORTSEQ

{JOBRUN

|

HEX}

SQLERROR

{NOPACKAGE

|

CHECK

|

CONTINUE}

SQLFLAG

{MVSDB2V23

|

MVSDB2V31

|

MVSDB2V41

|

SQL92E}

SYNTAX

SQLRULES

{DB2

|

STD}

SQLWARN

{YES

|

NO}

©

Copyright

IBM

Corp.

1997

-

2004

51

STRDEL

{APOSTROPHE

|

QUOTE}

SYNCPOINT

{ONEPHASE

|

TWOPHASE

|

NONE}

TEXT

label

TRANSFORMGROUP

string

USER

userid

USING

password

VALIDATE

{RUN

|

BIND}

VERSION

version-id

Note:

The

FEDERATED

option

is

supported

in

Version

7,

FixPak

2.

In

general,

keywords

and

values

in

the

option

string

are

the

same

as

the

parts

of

the

DB2

PRECOMPILE

PROGRAM

command

that

are

applicable

to

Precompiler

Services.

For

example,

the

DB2

PREP

NOLINEMACRO

option

is

not

accepted

by

sqlaoptions,

because

it

does

not

apply

to

Precompiler

Services.

It

is

used

exclusively

by

the

DB2

C

precompiler.

A

database

name,

user

ID

and

password

can

also

be

included,

for

use

in

connecting

to

the

database

prior

to

calling

db2Initialize.

All

options

are

returned

through

the

option

structure,

with

the

following

exceptions:

v

package-name

and

bind-file,

if

supplied,

are

returned

through

their

own

output

parameters

(ppszPackage

and

ppszBindFile,

respectively).

The

caller

passes

these

on

as

parameters

to

db2Initialize.

v

dbname,

userid,

and

password,

if

supplied,

are

returned

through

their

own

output

parameters

(ppszDBName,

ppszUserid,

and

ppszPassword,

respectively.)

The

caller

would

use

these

in

a

CONNECT

statement,

prior

to

calling

db2Initialize.

Valid

option

string

contents

for

SQLAO_BIND_API

are

as

follows:

ACTION

{ADD

|

REPLACE

[RETAIN

{YES

|

NO}]

[REPLVER

version-id]}

AS400NAMING

{SYSTEM

|

SQL}

BLOCKING

{UNAMBIG

|

ALL

|

NO}

CCSIDG

double-ccsid

CCSIDM

mixed-ccsid

CCSIDS

sbcs-ccsid

CHARSUB

{DEFAULT

|

BIT

|

SBCS

|

MIXED}

CLIPKG

number

CNULREQD

{YES

|

NO}

COLLECTION

collection-id

DATETIME

{DEF

|

USA

|

EUR

|

ISO

|

JIS

|

LOC}

DBPROTOCOL

{DRDA

|

PRIVATE}

DEC

{31

|

15}

DECDEL

{PERIOD

|

COMMA}

DEGREE

{1

|

degree-of-I/O-parallelism

|

ANY}

DYNAMICRULES

{BIND

|

RUN}

ENCODING

{ASCII

|

EBCDIC

|

UNICODE

|

CCSID}

EXPLAIN

{NO

|

YES

|

ALL}

EXPLSNAP

{NO

|

YES

|

ALL}

FEDERATED

{NO

|

YES}

FUNCPATH

schema-name

[

{,schema-name}

...

]

GENERIC

string

IMMEDWRITE

{NO

|

YES

|

PH1}

INSERT

{DEF

|

BUF}

ISOLATION

{CS

|

RR

|

UR

|

RS

|

NC}

KEEPDYNAMIC

{YES

|

NO}

OPTHINT

number

OS400NAMING

{SYSTEM

|

SQL}

OWNER

authorization-id

PATH

schema-name

[

{,schema-name}

...

]

QUALIFIER

qualifier-name

QUERYOPT

optimization-level

RELEASE

{COMMIT

|

DEALLOCATE}

{REOPT

VARS

|

NOREOPT

VARS}

SORTSEQ

{JOBRUN

|

HEX}

sqlaoptions

-

Parse

Option

String

52

Precompiler

Customization

SQLERROR

{NOPACKAGE

|

CHECK

|

CONTINUE}

SQLWARN

{YES

|

NO}

STRDEL

{APOSTROPHE

|

QUOTE}

TEXT

label

TRANSFORMGROUP

string

VALIDATE

{RUN

|

BIND}

Note:

The

FEDERATED

option

is

supported

in

Version

7,

FixPak

2.

API

Include

File:

sqlaprep.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

pscInputString

The

input

string

containing

the

option

data

to

be

parsed.

This

is

a

VARCHAR-like

string,

consisting

of

a

2-byte

length

field

followed

by

an

array

of

characters.

pSqlOptStruct

A

pointer

to

an

sqlopt

option

structure

allocated

by

the

caller.

The

format

of

SQL_API_RC

SQL_API_FN

sqlaoptions(void

*pscInputString,

struct

sqlopt

*pSqlOptStruct,

short

*psiDBNameLength,

char

**ppszDBName,

short

*psiUseridLength,

char

**ppszUserid,

short

*psiPasswordLength,

char

**ppszPassword,

short

*psiMsgFileLength,

char

**ppszMsgFile,

short

*psiPackageLength,

char

**ppszPackage,

short

*psiBindFileLength,

char

**ppszBindFile,

long

lTarget,

void

*pvMemList,

struct

sqlca

*pSqlca

)

SQL_API_RC

SQL_API_FN

sqlgoptions(void

*pscInputString,

struct

sqlopt

*pSqlOptStruct,

short

*psiDBNameLength,

char

**ppszDBName,

short

*psiUseridLength,

char

**ppszUserid,

short

*psiPasswordLength,

char

**ppszPassword,

short

*psiMsgFileLength,

char

**ppszMsgFile,

short

*psiPackageLength,

char

**ppszPackage,

short

*psiBindFileLength,

char

**ppszBindFile,

long

lTarget,

void

*pvMemList,

struct

sqlca

*pSqlca

)

sqlaoptions

-

Parse

Option

String

Chapter

6.

Option

APIs

53

this

structure

is

defined

in

sql.h.

When

sqlaoptions

is

called,

the

allocated

field

in

the

structure

header

must

be

set

to

indicate

the

number

of

entries

allocated.

On

successful

return,

the

used

field

in

the

structure

header

indicates

how

many

fields

were

used.

Note:

If

the

amount

used

exceeds

the

amount

allocated

on

return,

too

few

option

spaces

were

available,

and

some

options

present

in

the

input

string

were

not

transferred

to

the

option

array.

This

condition

should

be

checked

for

even

if

the

SQLCODE

indicates

success.

To

prevent

this

problem

in

DB2

Version

5

or

higher,

allocate

50

option

entries

in

the

structure.

This

parameter

will

always

contain

at

least

two

entries,

one

for

package

and

one

for

bindfile.

See

below

for

details

on

how

these

two

entries

are

interpreted.

psiDBNameLength

Address

of

a

short

integer

which

is

updated

with

the

length

of

the

database

name

found

in

the

option

string.

A

zero

length

indicates

that

no

database

name

was

found.

ppszDBName

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

database

name.

If

the

psiDBNameLength

parameter

has

a

non-zero

value,

the

database

name

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszDBName.

psiUseridLength

Address

of

a

short

integer,

which

is

updated

with

the

length

of

the

user

ID

found

in

the

option

string.

A

zero

length

indicates

that

no

user

ID

was

found.

ppszUserid

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

user

ID.

If

the

psiUseridLength

parameter

has

a

non-zero

value,

the

user

ID

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszUserid.

psiPasswordLength

Address

of

a

short

integer,

which

is

updated

with

the

length

of

the

password

found

in

the

option

string.

A

zero

length

indicates

that

no

password

was

found.

ppszPassword

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

password.

If

the

psiPasswordLength

parameter

has

a

non-zero

value,

the

password

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszPassword.

psiMsgFileLength

Address

of

a

short

integer,

which

is

updated

with

the

length

of

the

message

file

name

found

in

the

option

string.

A

zero

length

indicates

that

no

message

file

name

was

found.

ppszMsgFile

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

sqlaoptions

-

Parse

Option

String

54

Precompiler

Customization

message

file

name.

If

the

psiMsgFileLength

parameter

has

a

non-zero

value,

the

message

file

name

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszMsgFile.

psiPackageLength

Address

of

a

short

integer,

which

is

updated

with

the

length

of

the

package

name

found

in

the

option

string.

A

zero

length

indicates

that

no

package

name

was

found.

ppszPackage

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

package

name.

If

the

psiPackageLength

parameter

has

a

non-zero

value,

the

package

name

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszPackage.

psiBindFileLength

Address

of

a

short

integer,

which

is

updated

with

the

length

of

the

bind

file

name

found

in

the

option

string.

A

zero

length

indicates

that

no

bind

file

name

was

found.

ppszBindFile

Address

of

a

pointer

to

character

storage.

This

pointer

will

be

updated

by

the

API

to

indicate

dynamic

storage

containing

the

NULL-terminated

bind

file

name.

If

the

psiBindFileLength

parameter

has

a

non-zero

value,

the

bind

file

name

can

be

extracted

from

the

buffer

indicated

by

the

address

returned

through

ppszBindFile.

lTarget

A

long

integer

indicating

the

target

API

for

which

the

option

string

should

be

parsed.

Currently,

the

only

supported

target

API

is

db2Initialize;

therefore,

this

parameter

can

be

set

to

SQLAO_PREP_SVCS_API

(0)

or

SQLAO_BIND_API

(2).

pvMemList

A

pointer

to

4

bytes

of

memory,

in

which

sqlaoptions

will

store

a

pointer

to

storage

allocated

during

option

parsing.

This

storage

should

be

freed

by

a

call

to

sqlaoptions_free

or

sqlgoptions_free

after

the

target

API

has

been

called.

pSqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

Usage

Notes:

Upon

successful

return

from

sqlaoptions,

the

caller

should

test

the

first

two

entries

of

the

options

array.

If

SQLAO_PREP_SVCS_API

has

been

specified,

the

following

will

be

populated:

v

The

first

entry

indicates

whether

a

package

is

to

be

created.

If

the

option

value

is

SQLA_CREATE_PLAN

(1),

the

caller

should

verify

that

pscPackage

contains

a

package

name.

If

it

does

not,

no

package

name

was

present

in

the

option

string,

and

the

caller

must

provide

a

default

name

to

db2Initialize.

v

Similarly,

the

second

entry

indicates

whether

a

bind

file

was

requested.

If

the

option

value

is

SQLA_CREATE_BIND_FILE

(1),

the

caller

should

verify

that

pscBindFile

contains

a

bind

file

name.

If

it

does

not,

no

bind

file

name

was

present

in

the

option

string,

and

the

caller

must

provide

a

default

name

to

db2Initialize.

sqlaoptions

-

Parse

Option

String

Chapter

6.

Option

APIs

55

Note:

These

two

options

should

be

checked

on

any

successful

return,

even

if

the

input

string

was

empty,

or

contained

only

other

options.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-7

Invalid

character.

-10

Unterminated

string.

-83

Insufficient

storage.

-104

Syntax

error.

sqlaoptions_free

-

Free

Option

Parser

Storage

This

API

releases

any

storage

allocated

by

sqlaoptions.

The

sqlaoptions

API

allocates

storage

to

hold

any

or

all

of:

database

name,

user

ID,

password,

package

name,

bind

file

name,

or

any

string

option,

such

as

collection

name.

The

sqlaoptions_free

API

should

be

called

after

each

call

to

sqlaoptions.

API

Include

File:

sqlaprep.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

mem_list

The

value

of

the

4

bytes

of

memory

updated

by

sqlaoptions

through

pvMemList.

Note

the

one

fewer

levels

of

indirection

here

in

comparison

to

sqlaoptions:

pvMemList

is

updated

by

sqlaoptions,

so

it

is

passed

by

reference.

In

sqlaoptions_free,

it

is

passed

by

value.

sqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-83

Memory

error.

SQL_API_RC

SQL_API_FN

sqlaoptions_free(

void

*mem_list,

struct

sqlca

*sqlca

)

SQL_API_RC

SQL_API_FN

sqlgoptions_free(

void

*mem_list,

struct

sqlca

*sqlca

)

sqlaoptions

-

Parse

Option

String

56

Precompiler

Customization

Chapter

7.

Precompiler

Services

APIs

The

precompiler

calls

the

following

Precompiler

Services

APIs

to

analyze

SQL

statements:

sqlaalhv

Records

a

host

variable.

db2CompileSql

Compiles

an

SQL

statement

and

places

it

into

a

section

in

the

package.

db2Initialize

Initializes

the

precompilation

process.

sqlafini

Terminates

the

precompilation

process.

Generic

versions

of

these

APIs

are

also

provided

for

writing

precompilers

in

host

languages

other

than

C.

SQLCA

and

return

codes

All

Precompiler

Services

and

Runtime

Services

functions

return

one

of

the

following

2-byte

status

codes:

SQLA_CHECK_SQLCA

(0)

Check

the

SQLCA

for

the

function

call

completion

code.

SQLA_SQLCA_BAD

(-1)

The

SQLCA

address

passed

as

input

is

not

valid.

The

command

was

not

processed.

Precompiler

Services

and

the

database

manager

both

return

status

codes

in

the

SQLCA.

Test

the

SQLCA

after

every

Precompiler

Services

function.

The

SQLCA

structure

is

consistent

with

other

call

interfaces

to

the

database

manager

and

with

the

SQL

language

itself.

For

detailed

information

about

the

SQLCA,

see

the

SQL

Reference.

sqlaalhv

-

Add

Host

Variable

Use

a

call

to

this

API

to

register

a

host

variable

with

Precompiler

Services.

The

precompiler

detects

a

host

variable,

determines

its

type

and

length,

and

then

assigns

it

a

unique

token

ID.

Precompiler

Services

uses

this

information

to

process

SQL

statements

that

reference

host

variables.

API

Include

File:

sqlaprep.h

C

API

Syntax:

©

Copyright

IBM

Corp.

1997

-

2004

57

Generic

API

Syntax:

API

Parameters:

name_length

Pointer

to

the

length

of

the

host

variable

name.

name

Pointer

to

the

host

variable

name.

The

name

must

be

composed

of

characters

taken

from

the

database

manager’s

extended

character

set.

Some

host

languages

allow

characters

that

are

not

in

the

extended

set.

The

precompiler

should

replace

those

with

valid

characters

before

they

are

sent

to

Precompiler

Services.

sqltype

Pointer

to

the

SQL

data

type

of

the

host

variable.

sql_length

Pointer

to

the

length

of

the

host

variable.

token_id

Pointer

to

the

4-byte

token

ID

of

the

host

variable.

location

Pointer

to

the

location

value

of

the

host

variable.

Possible

values

are:

v

SQLA_DECLARE_SECT

(0)

—

Host

variable

was

found

in

declare

section.

v

SQLA_SQL_STMT

(1)

—

Host

variable

without

a

token

ID

was

found

in

an

SQL

statement.

This

is

returned

when

a

statement

contains

an

SQLDA

reference.

SQLDA

names

are

not

declared

within

declare

sections.

udtname

A

pointer

to

the

structured

type

name.

It

can

also

be

set

to

NULL

or

to

point

to

zero.

sqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

SQL_API_RC

SQL_API_FN

sqlaalhv

(unsigned

short

*name_length,

char

*name,

unsigned

short

*sqltype,

unsigned

long

*sql_length,

unsigned

long

*token_id,

unsigned

short

*location,

void

*udtname,

struct

sqlca

*sqlca);

SQL_API_RC

SQL_API_FN

sqlgalhv

(unsigned

short

*name_length,

char

*name,

unsigned

short

*sqltype,

unsigned

long

*sql_length,

unsigned

long

*token_id,

unsigned

short

*location,

void

*udtname,

struct

sqlca

*sqlca);

sqlaalhv

-

Add

Host

Variable

58

Precompiler

Customization

0

Successful

execution.

-83

Insufficient

storage.

-307

Host

variable

already

declared.

-308

Maximum

number

of

host

variables

exceeded.

-4901

Reinitialization

has

not

occurred

since

last

fatal

error.

-4902

Invalid

characters

in

parameter.

-4903

Invalid

parameter

length.

-4904

Invalid

pointer

to

parameter.

-4905

Parameter

not

within

valid

range.

-4911

SQL

type

for

host

variable

is

invalid.

-4912

Length

of

host

variable

is

out

of

range.

-4913

Token

ID

has

already

been

used.

-4914

Invalid

token

ID.

-4916

db2Initialize

has

not

been

invoked.

-4994

Interrupt

key

sequence

detected.

-4999

Database

manager

error.

db2CompileSql

-

Compile

SQL

Statement

Compiles

an

SQL

statement.

This

API

parses

the

statement,

assigns

a

section

number,

and

possibly

stores

the

statement

in

the

bind

file.

It

completes

the

task

array,

the

token

array,

and

any

other

required

output

parameters.

API

Include

File:

db2ApiDf.h

C

API

Syntax:

SQL_API_RC

SQL_API_FN

db2CompileSql

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

struct

db2CompileSqlStruct

{

db2Uint32

*piSqlStmtLen;

char

*piSqlStmt;

db2Uint32

*piLineNum;

struct

sqla_flaginfo

*pioFlagInfo;

struct

sqla_tokens

*pioTokenIdArray;

struct

sqla_tasks

*poTaskArray;

db2Uint16

*poSectionNum;

db2Uint16

*poSqlStmtType;

char

*poBuffer1;

char

*poBuffer2;

char

*poBuffer3;

void

*pioReserved;

}

db2CompileSqlStruct;

sqlaalhv

-

Add

Host

Variable

Chapter

7.

Precompiler

Services

APIs

59

Generic

API

Syntax:

API

Parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

pParmStruct

Input.

A

pointer

to

the

db2CompileSqlStruct

structure.

pSqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

piSqlStmtLen

Pointer

to

the

text

length

(in

bytes)

of

the

SQL

statement.

piSqlStmt

Pointer

to

the

preprocessed

SQL

statement

text.

The

statement

buffer

must

have

one

more

trailing

byte

than

is

required

for

the

statement

text.

This

byte

is

not

included

in

the

length

parameter.

The

contents

of

the

statement

buffer

may

change

during

the

call

to

db2CompileSql.

piLineNum

Pointer

to

the

source

file

line

number

where

the

SQL

statement

begins.

If

the

application

is

being

precompiled

against

a

DRDA

server

such

as

DB2

for

OS/390,

DB2

for

AS400,

or

DB2

for

VM/VSE,

this

line

number

must

be

greater

than

or

equal

to

1.

pioFlagInfo

Pointer

to

an

instance

of

the

sqla_flaginfo

structure.

This

is

only

required

if

SQL

flagging

is

requested

in

the

call

to

db2Initialize.

If

flagging

is

not

desired,

set

the

pointer

to

NULL.

pioTokenIdArray

Pointer

to

the

start

of

the

token

identifier

array.

poTaskArray

Pointer

to

the

start

of

the

task

array.

SQL_API_RC

SQL_API_FN

db2gCompileSql

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

struct

db2gCompileSqlStruct

{

db2Uint32

*piSqlStmtLen;

char

*piSqlStmt;

db2Uint32

*piLineNum;

struct

sqla_flaginfo

*pioFlagInfo;

struct

sqla_tokens

*pioTokenIdArray;

struct

sqla_tasks

*poTaskArray;

db2Uint16

*poSectionNum;

db2Uint16

*poSqlStmtType;

char

*poBuffer1;

char

*poBuffer2;

char

*poBuffer3;

void

*pioReserved;

}

db2gCompileSqlStruct;

db2CompileSql

-

Compile

SQL

Statement

60

Precompiler

Customization

poSectionNum

Pointer

to

the

package

section

number

assigned

to

this

SQL

statement.

If

the

statement

does

not

require

a

section

number,

Precompiler

Services

returns

zero

to

this

address.

poSqlStmtType

Pointer

to

the

SQL

statement

type.

If

an

SQL

CONNECT

or

SQL

CALL

statement

is

being

processed,

the

value

returned

to

this

address

should

be

passed

to

sqlacall

in

place

of

the

section

number.

Valid

values

are

defined

in

the

sqlaprep

include

file

(sql.h).

poBuffer1

Pointer

to

a

256-byte

character

buffer

used

to

store

string

data.

The

use

of

this

buffer

(and

the

following

two

buffers)

depends

on

the

type

of

statement

that

was

precompiled.

Current

use

is

for

WHENEVER

processing

only.

poBuffer2

Pointer

to

a

256-byte

character

buffer

used

to

store

string

data.

Current

use

is

for

WHENEVER

processing

only.

poBuffer3

Pointer

to

a

256-byte

character

buffer

used

to

store

string

data.

Current

use

is

for

WHENEVER

processing

only.

pioReserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

143

SQL

statement

is

not

supported;

syntax

ignored.

513

SQL

statement

will

modify

an

entire

table.

4943

Number

of

host

variables

does

not

match

number

of

items

in

SELECT

clause.

-7

Invalid

character

in

SQL

statement.

-10

String

begun

but

not

terminated.

-32

Cannot

access

disk

or

file.

-51

Maximum

number

of

package

sections

exceeded.

-83

Insufficient

storage.

-85

Duplicate

statement

name

declared.

-87

Invalid

use

of

multi-member

structure

host

variable.

-100

Invalid

numeric

literal.

-101

Statement

too

long

or

too

complex.

-104

Incorrect

statement

syntax.

-107

Name

of

database

object

too

long.

-108

Name

has

improper

number

of

qualifiers.

db2CompileSql

-

Compile

SQL

Statement

Chapter

7.

Precompiler

Services

APIs

61

-142

SQL

statement

is

not

supported.

-199

Invalid

use

of

an

SQL

reserved

word.

-306

Host

variable

has

not

been

declared.

-310

Number

of

host

variables

in

statement

exceeds

limit.

-324

Host

variable

may

not

be

used

in

this

context.

-505

Duplicate

cursor

name.

-751

Invalid

trigger

statement.

-968

File

system

full.

-4010

Recursive

compound

SQL

is

invalid.

-4011

Illegal

statement

type

in

compound

SQL

block.

-4012

Only

one

COMMIT

allowed

per

compound

SQL

block.

-4013

Not

in

compound

SQL

block,

so

END

COMPOUND

is

invalid.

-4901

Reinitialization

has

not

occurred

since

last

fatal

error.

-4902

Invalid

characters

in

parameter.

-4903

Invalid

parameter

length.

-4904

Invalid

pointer

to

parameter.

-4905

Parameter

not

within

valid

range.

-4916

db2Initialize

has

not

been

invoked.

-4919

Task

array

too

small.

-4920

Token

ID

array

too

small.

-4940

Illegal

clause

in

statement.

-4941

Blank

or

empty

SQL

statement

text.

-4942

Incompatible

data

type

selected

into

host

variable.

-4944

Attempt

to

store

a

NULL

value

in

a

NOT

NULL

column.

-4945

Invalid

use

of

a

parameter

marker.

-4946

Cursor

not

declared.

-4994

Interrupt

key

sequence

detected.

-4998

Database

connection

has

been

lost.

-4999

Internal

error.

db2Initialize

-

Initialize

Precompiler

Services

This

call

initializes

the

Precompiler

Services

data

structures,

opens

a

bind

file

if

necessary,

and

calls

the

DB2

kernel

to

initialize

the

package

in

the

database.

No

other

Precompiler

Services

calls

are

valid

until

db2Initialize

has

been

successfully

completed.

API

Include

File:

db2ApiDf.h

db2CompileSql

-

Compile

SQL

Statement

62

Precompiler

Customization

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

versionNumber

Input.

Specifies

the

version

and

release

level

of

the

structure

passed

in

as

the

second

parameter,

pParmStruct.

The

versionNumber

allows

the

Precompiler

Services

to

emulate

the

specific

version

level

behaviour

such

as

maping

of

SGL

data

types

and

sizes.

pParmStruct

Input.

A

pointer

to

the

db2InitStruct

structure.

pSqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

SQL_API_RC

SQL_API_FN

db2Initialize

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

struct

db2InitStruct

{

db2Uint16

*piProgramNameLength;

char

*piProgramName;

db2Uint16

*piDbNameLength;

char

*piDbName;

db2Uint16

*piDbPasswordLength;

char

*piDbPassword;

db2Uint16

*piBindNameLength;

char

*piBindName;

struct

sqla_options

*piOptionsArray;

db2Uint16

*piPidLength;

struct

sqla_program_id

*poPrecompilerPid;

}

db2InitStruct;

SQL_API_RC

SQL_API_FN

db2gInitialize

(

db2Uint32

versionNumber,

void

*

pParmStruct,

struct

sqlca

*

pSqlca);

typedef

struct

db2gInitStruct

{

db2Uint16

*piProgramNameLength;

char

*piProgramName;

db2Uint16

*piDbNameLength;

char

*piDbName;

db2Uint16

*piDbPasswordLength;

char

*piDbPassword;

db2Uint16

*piBindNameLength;

char

*piBindName;

struct

sqla_options

*piOptionsArray;

db2Uint16

*piPidLength;

struct

sqla_program_id

*poPrecompilerPid;

}

db2gInitStruct;

db2Initialize

-

Initialize

Precompiler

Services

Chapter

7.

Precompiler

Services

APIs

63

piProgramNameLength

A

pointer

to

a

2-byte

unsigned

integer

representing

the

length

of

the

program

name.

piProgramName

The

package

name.

If

the

application

is

being

precompiled

against

a

DRDA

server

such

as

DB2

for

OS/390,

DB2/400,

or

DB2

for

VM/VSE,

program_name

should

consist

only

of

the

following

characters:

A-Z,

0-9,

and

_.

spare1-4

Spare

pointers,

set

to

NULL

or

to

point

to

zero.

piBindNameLength

A

pointer

to

a

2-byte

unsigned

integer

representing

the

length

of

the

bind

file

name.

piBindName

The

name

of

the

bind

file.

piOptionsArray

Pointer

to

the

start

of

the

precompiler

option

array.

poPrecompilerPid

Pointer

to

the

start

of

the

precompiler

program

ID.

piPidLength

Precompiler

program

ID

buffer

length.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

20

Precompile

options

ignored.

-31

Cannot

open

disk

or

file.

-32

Cannot

access

disk

or

file.

-83

Insufficient

storage.

-968

File

system

full.

-1024

No

database

connection

exists.

-4902

Invalid

characters

in

parameter.

-4903

Invalid

parameter

length.

-4904

Invalid

pointer

to

parameter.

-4915

db2Initialize

has

already

been

invoked.

-4917

Unsupported

option

found

in

option

array.

-4930

Invalid

option

found

in

option

array.

-4994

Interrupt

key

sequence

detected.

-4995

Cannot

find

COUNTRY.SYS.

-4997

Invalid

authorization

ID.

-4998

Database

connection

has

been

lost.

db2Initialize

-

Initialize

Precompiler

Services

64

Precompiler

Customization

-4999

Precompiler

Services

error.

sqlafini

-

Terminate

Precompiler

Services

Terminates

Precompiler

Services.

It

is

the

final

call

to

Precompiler

Services

from

the

precompiler.

Once

this

call

has

been

issued,

all

other

calls

to

Precompiler

Services

are

rejected

unless

a

new

initialization

call

is

successfully

completed.

API

Include

File:

sqlaprep.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

term_option

Pointer

to

a

2-byte

integer

that

indicates

whether

the

package

or

bind

file

being

created

should

be

saved

or

discarded.

Possible

values

are:

v

SQLA_SAVE

—

Save

the

package

or

bind

file.

v

SQLA_DISCARD

—

Discard

the

package

or

bind

file.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

sqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

This

function

returns

completion

codes

in

SQLCODE.

It

also

uses

the

SQLWARN6

and

SQLWARN7

fields

of

the

SQLCA

as

follows:

v

SQLWARN6

—

If

set

to

1,

the

package

was

successfully

saved.

Otherwise,

it

was

discarded.

v

SQLWARN7

—

If

set

to

1,

the

bind

file

was

successfully

saved.

Otherwise,

it

was

deleted,

or

could

not

be

successfully

saved.

These

warning

fields

are

always

set,

regardless

of

the

termination

option.

This

allows

the

precompiler

to

determine

whether

either

of

the

objects

was

saved

if

an

error

or

interrupt

occurs

while

sqlafini

is

being

executed.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

SQL_API_RC

SQL_API_FN

sqlafini

(unsigned

short

*term_option,

void

*reserved,

struct

sqlca

*sqlca);

SQL_API_RC

SQL_API_FN

sqlgfini

(unsigned

short

*term_option,

void

*reserved,

struct

sqlca

*sqlca);

db2Initialize

-

Initialize

Precompiler

Services

Chapter

7.

Precompiler

Services

APIs

65

-32

Cannot

access

disk

or

file.

-83

Insufficient

storage.

-968

File

system

full.

-4903

Invalid

parameter

length.

-4904

Invalid

pointer

to

parameter.

-4916

db2Initialize

has

not

been

invoked.

-4918

Invalid

termination

option.

-4994

Interrupt

key

sequence

detected.

-4998

Database

connection

has

been

lost.

-4999

Internal

error.

sqlafini

-

Terminate

Precompiler

Services

66

Precompiler

Customization

Chapter

8.

Runtime

Services

APIs

The

application

calls

the

following

Runtime

Services

APIs

to

use

the

database

manager:

sqlaaloc

Allocates

a

dynamic

run

time

SQLDA.

sqlacall

Calls

DB2

to

process

a

package

section

or

function.

sqlacmpd

Registers

a

compound

SQL

substatement

for

execution.

sqladloc

Deallocates

a

dynamic

run

time

SQLDA.

sqlastls

Passes

a

statement

string

to

be

processed

dynamically.

sqlastlv

Adds

a

variable

to

a

dynamic

SQLDA.

sqlastlva

Adds

a

structured

type

variable

to

a

dynamic

SQLDA.

sqlasetdata

Adds

a

group

of

variables

to

a

dynamic

SQLDA.

sqlastop

Terminates

a

sequence

of

calls

to

Runtime

Services.

sqlastrt

Begins

a

sequence

of

calls

to

Runtime

Services.

sqlausda

Records

a

pointer

to

a

user-defined

SQLDA.

Generic

versions

of

these

APIs

are

also

provided

for

writing

precompilers

in

host

languages

other

than

C.

Treat

all

Runtime

Services

APIs

between

sqlastrt

and

sqlastop

as

a

unit.

The

generated

run

time

code

does

not

usually

check

SQLCA

contents

until

final

error

processing.

If

an

error

occurs

in

one

API,

the

error

is

passed

along

through

the

other

APIs.

The

sqlaaloc

API

is

an

exception,

in

which

the

SQLCODE

of

the

SQLCA

reports

whether

the

SQLVAR

fields

of

the

allocated

SQLDA

need

to

be

initialized.

sqlaaloc

-

Allocate

SQLDA

Allocates

an

internal

SQLDA.

The

SQLDA

is

not

seen

directly

by

the

application

programmer.

Runtime

Services

uses

this

SQLDA

to

send

host

variable

information

to

the

database

manager.

There

are

techniques

to

optimize

usage

of

internal

SQLDAs.

For

details,

see

“Optimizing

function

calls”

on

page

40.

©

Copyright

IBM

Corp.

1997

-

2004

67

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

sqlda_id

A

2-byte

SQLDA

identifier

that

cannot

be

zero.

If

the

ID

matches

an

existing

dynamic

SQLDA,

the

existing

SQLDA

is

used;

a

new

SQLDA

is

not

allocated.

sqlvar_num

A

2-byte

integer

representing

the

number

of

SQLVAR

elements

to

allocate

in

this

dynamic

SQLDA.

stmt_id

A

2-byte

unique

identifier

of

the

current

statement.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

SQLVAR

elements

must

be

initialized;

call

sqlastlv.

4959

No

SQLVAR

elements

need

to

be

initialized.

-4905

Parameter

not

within

valid

range.

-4951

Invalid

sqlda_id.

-4999

Internal

error.

sqladloc

-

Deallocate

SQLDA

Deallocates

an

internal

SQLDA

previously

allocated

by

sqlaaloc.

It

also

removes

the

sqlda_id

from

the

list

of

SQLDA

IDs

recognized

by

sqlacall.

API

Include

File:

sqlaprep.h

SQL_API_RC

SQL_API_FN

sqlaaloc

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_num,

unsigned

short

stmt_id,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgaloc

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_num,

unsigned

short

stmt_id,

void

*reserved);

sqlaaloc

-

Allocate

SQLDA

68

Precompiler

Customization

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

sqlda_id

A

2-byte

identifier

for

the

SQLDA

to

be

deallocated.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-4951

Invalid

sqlda_id.

-4999

Internal

error.

sqlacall

-

Execute

SQL

Statement

Calls

the

database

manager

to

execute

an

SQL

statement.

This

is

the

only

Runtime

Services

API

that

communicates

with

the

database

manager.

All

execution

parameters

are

set

up

prior

to,

or

provided

with,

this

function

call.

All

validation

of

host

variables

is

performed

by

this

API.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

SQL_API_RC

SQL_API_FN

sqladloc

(unsigned

short

sqlda_id,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgdloc

(unsigned

short

sqlda_id,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlacall

(unsigned

short

call_type,

unsigned

short

section_number,

unsigned

short

input_sqlda,

unsigned

short

output_sqlda,

void

*reserved);

sqladloc

-

Deallocate

SQLDA

Chapter

8.

Runtime

Services

APIs

69

API

Parameters:

call_type

A

2-byte

integer

identifying

the

type

of

call

being

made.

section_number

A

2-byte

integer

denoting

the

section

of

the

package

to

be

processed.

This

may

be

zero

for

statements

that

do

not

use

section

numbers,

such

as

COMMIT

and

ROLLBACK.

For

the

SQL

CONNECT

and

CALL

statements,

this

parameter

is

used

to

pass

information

about

the

statement

type.

input_sqlda

A

2-byte

identifier

for

the

input

SQLDA.

If

the

statement

does

not

use

an

input

SQLDA,

set

this

parameter

to

zero.

output_sqlda

A

2-byte

identifier

for

the

output

SQLDA.

If

the

statement

does

not

use

an

output

SQLDA,

set

this

parameter

to

zero.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-311

Length

of

host

variable

is

negative.

-804

Invalid

sqlda

contents

(incorrect

sqltype,

sqllen,

or

other).

-822

Invalid

address

in

sqlda.

-1216

Invalid

use

of

graphic

data.

-4951

Invalid

sqlda_id.

-4953

Invalid

call_type.

-4954

Section

number

is

invalid.

-4999

Internal

error.

sqlacmpd

-

Register

Compound

SQL

Substatement

Calls

the

database

manager

to

add

a

compound

SQL

substatement

to

the

current

list

of

substatements

to

be

executed.

The

substatement

will

not

actually

be

executed

until

the

next

call

to

sqlacall.

API

Include

File:

sqlaprep.h

sqladef.h

SQL_API_RC

SQL_API_FN

sqlgcall

(unsigned

short

call_type,

unsigned

short

section_number,

unsigned

short

input_sqlda,

unsigned

short

output_sqlda,

void

*reserved);

sqlacall

-

Execute

SQL

Statement

70

Precompiler

Customization

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

call_type

A

2-byte

integer

identifying

the

type

of

call

to

be

made

when

the

substatement

is

executed.

section_number

A

2-byte

integer

denoting

the

section

of

the

package

to

be

processed.

input_sqlda

A

2-byte

identifier

for

the

input

SQLDA.

If

the

statement

does

not

use

an

input

SQLDA,

set

this

parameter

to

zero.

output_sqlda

A

2-byte

identifier

for

the

output

SQLDA.

If

the

statement

does

not

use

an

output

SQLDA,

set

this

parameter

to

zero.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-83

Insufficient

storage.

-4011

Invalid

compound

SQL

substatement.

-4012

Invalid

COMMIT

within

compound

SQL.

-4951

Invalid

sqlda_id.

-4953

Invalid

call_type.

-4954

Section

number

is

invalid.

-4999

Internal

error.

SQL_API_RC

SQL_API_FN

sqlacmpd

(unsigned

short

call_type,

unsigned

short

section_number,

unsigned

short

input_sqlda,

unsigned

short

output_sqlda,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgcmpd

(unsigned

short

call_type,

unsigned

short

section_number,

unsigned

short

input_sqlda,

unsigned

short

output_sqlda,

void

*reserved);

sqlacmpd

-

Register

Compound

SQL

Substatement

Chapter

8.

Runtime

Services

APIs

71

sqlastlv

-

Record

Host

Variable

Address

Use

sqlastlv

after

the

sqlaaloc

allocation

call

to

initialize

the

fields

of

an

SQLDA

SQLVAR

element

to

the

type,

length,

and

address

of

a

host

variable

that

refers

to

a

structured

type

found

in

an

SQL

statement.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

sqlda_id

A

2-byte

integer

containing

the

ID

of

the

SQLDA

to

be

initialized.

It

must

match

an

SQLDA

ID

passed

to

sqlaaloc.

sqlvar_index

A

2-byte

integer

containing

the

index

of

the

SQLVAR

element

in

the

SQLDA

to

be

initialized.

sqltype

A

2-byte

integer

containing

the

SQL

data

type

of

the

host

variable

or

literal.

If

the

host

variable

uses

an

indicator

variable,

the

data

type

must

be

odd;

otherwise,

without

an

indicator

variable,

it

is

even.

This

parameter

is

not

verified

when

the

API

is

called.

var_length

A

4-byte

integer

containing

the

declared

length

of

the

host

variable

or

literal.

This

parameter

is

not

verified

when

the

API

is

called.

host_var

Address

of

the

host

variable

or

literal.

ind_var

Address

of

the

indicator

variable,

if

one

was

used

with

the

host

variable;

otherwise

NULL.

SQL_API_RC

SQL_API_FN

sqlastlv

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_index,

unsigned

short

sqltype,

unsigned

long

var_length,

void

*host_var,

short

*ind_var,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgstlv

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_index,

unsigned

short

sqltype,

unsigned

long

var_length,

void

*host_var,

short

*ind_var,

void

*reserved);

sqlastlv

-

Record

Host

Variable

Address

72

Precompiler

Customization

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-4911

SQL

type

for

host

variable

is

invalid.

-4912

Length

of

host

variable

is

out

of

range.

-4951

Invalid

sqlda_id.

-4952

Invalid

sqlvar_index

parameter.

-4999

Internal

error.

sqlastlva

-

Record

Host

Variable

Address

Use

sqlastlva

after

the

sqlaaloc

allocation

call

to

initialize

the

fields

of

an

SQLDA

SQLVAR

element

to

the

type,

length,

and

address

of

a

host

variable

that

refers

to

a

structured

type

found

in

an

SQL

statement.

Note:

Support

for

this

function

was

added

for

DB2

Universal

Database,

Version

7

FixPak

1.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

SQL_API_RC

SQL_API_FN

sqlastlva

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_index,

unsigned

short

sqltype,

unsigned

long

var_length,

void

*host_var,

sqluint32

sqldslen,

void

*sqldsname,

short

*ind_var,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgstlv

(unsigned

short

sqlda_id,

unsigned

short

sqlvar_index,

unsigned

short

sqltype,

unsigned

long

var_length,

void

*host_var,

sqluint32

sqldslen,

void

*sqldsname,

short

*ind_var,

void

*reserved);

sqlastlv

-

Record

Host

Variable

Address

Chapter

8.

Runtime

Services

APIs

73

sqlda_id

A

2-byte

integer

containing

the

ID

of

the

SQLDA

to

be

initialized.

It

must

match

an

SQLDA

ID

passed

to

sqlaaloc.

sqlvar_index

A

2-byte

integer

containing

the

index

of

the

SQLVAR

element

in

the

SQLDA

to

be

initialized.

sqltype

A

2-byte

integer

containing

the

SQL

data

type

of

the

host

variable

or

literal.

If

the

host

variable

uses

an

indicator

variable,

the

data

type

must

be

odd;

otherwise,

without

an

indicator

variable,

it

is

even.

This

parameter

is

not

verified

when

the

API

is

called.

var_length

A

4-byte

integer

containing

the

declared

length

of

the

host

variable

or

literal.

This

parameter

is

not

verified

when

the

API

is

called.

host_var

Address

of

the

host

variable

or

literal.

sqldslen

A

4-byte

integer

containing

the

length

of

the

structured

type

name.

sqldsname

Address

of

the

structured

type

name.

ind_var

Address

of

the

indicator

variable,

if

one

was

used

with

the

host

variable;

otherwise

NULL.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-4911

SQL

type

for

host

variable

is

invalid.

-4912

Length

of

host

variable

is

out

of

range.

-4951

Invalid

sqlda_id.

-4952

Invalid

sqlvar_index

parameter.

-4999

Internal

error.

sqlasetdata

-

Record

Multiple

Host

Variable

Addresses

Use

sqlasetdata

after

the

sqlaaloc

allocation

call

to

initialize

the

fields

of

several

SQLDA

SQLVAR

elements

to

the

types,

lengths,

and

addresses

of

multiple

host

variables

or

literals

found

in

an

SQL

statement.

Similar

to

sqlastlv,

except

that

it

can

process

several

host

variables

at

once.

API

Include

File:

sqladef.h

sqlastlva

-

Record

Host

Variable

Address

74

Precompiler

Customization

C

API

Syntax:

Generic

API

Syntax:

Not

currently

available.

Use

sqlastlv

or

sqlastlva

instead.

API

Parameters:

sqlda_id

A

2-byte

integer

containing

the

ID

of

the

SQLDA

to

be

initialized.

It

must

match

an

SQLDA

ID

passed

to

sqlaaloc.

start_index

A

2-byte

integer

containing

the

starting

index

of

the

SQLVAR

elements

in

the

SQLDA

to

be

initialized.

elements

A

2-byte

integer

containing

the

number

of

SQLVARs

to

be

initialized.

setdlist

Pointer

to

an

array

of

sqla_setdata_list

structures

containing

host

variable

information

to

be

stored

in

the

SQLDA.

setdslist

Pointer

to

an

array

of

sqla_setds_list

structures

containing

structured

type

host

variable

information

to

be

stored

in

the

SQLDA.

spare

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-4911

SQL

type

for

host

variable

is

invalid.

-4912

Length

of

host

variable

is

out

of

range.

-4951

Invalid

sqlda_id.

-4952

Invalid

sqlvar_index

parameter.

-4999

Internal

error.

sqlastls

-

Record

SQL

Statement

Text

Generate

this

call

when

an

SQL

statement

contains

the

name

of

a

host

variable

used

to

store

statement

text,

as

in

the

dynamic

SQL

statements

PREPARE

and

EXECUTE

IMMEDIATE.

This

call

sends

the

length

and

the

address

of

a

host

variable

containing

the

stored

statement

text

to

Runtime

Services.

It

is

the

responsibility

of

the

calling

program

to

determine

the

string

length

at

execution

time,

unless

the

string

is

contained

within

a

host

variable

of

data

type

SQL_API_RC

SQL_API_FN

sqlasetdata

(unsigned

short

sqlda_id,

unsigned

short

start_index,

unsigned

short

elements,

struct

sqla_setdata_list

*setdlist,

struct

sqla_setds_list

*setdslist,

void

*spare);

sqlasetdata

-

Record

Multiple

Host

Variable

Addresses

Chapter

8.

Runtime

Services

APIs

75

460

(NULL-terminated

string).

In

this

case,

a

zero

can

be

passed

as

the

string

length,

and

the

API

will

calculate

the

length.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

stmt_length

A

4-byte

integer

containing

the

length

of

the

SQL

statement,

in

bytes.

stmt_text

Address

of

an

array

of

characters

containing

the

SQL

statement

text.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-101

SQL

statement

is

too

long.

-4904

Invalid

pointer

to

parameter.

-4905

Parameter

not

within

valid

range.

-4999

Internal

error.

sqlausda

-

Register

SQLDA

Stores

the

address

of

a

user-specified

input

or

output

SQLDA

in

Runtime

Services.

It

generates

an

SQLDA

ID

for

this

structure.

Calling

sqlacall

with

the

generated

SQLDA

ID

tells

Runtime

Services

to

use

this

user-defined

SQLDA

for

the

SQL

statement.

API

Include

File:

sqlaprep.h

sqladef.h

SQL_API_RC

SQL_API_FN

sqlastls

(unsigned

long

stmt_length,

const

void

*stmt_text,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgstls

(unsigned

long

stmt_length,

const

void

*stmt_text,

void

*reserved);

sqlastls

-

Record

SQL

Statement

Text

76

Precompiler

Customization

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

sqlda_id

A

2-byte

integer

containing

a

unique

identifier

for

the

SQLDA

data

structure.

This

ID

is

passed

in

a

subsequent

call

to

sqlacall.

sqlda

Pointer

to

a

user-defined

SQLDA

data

structure.

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-83

Insufficient

storage.

-4904

Invalid

pointer

to

parameter.

-4951

Invalid

sqlda_id.

-4999

Internal

error.

sqlastrt

-

Start

Serialized

Execution

Initializes

the

SQLCA,

and

registers

the

address

of

the

program

ID

that

identifies

the

access

plan.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

SQL_API_RC

SQL_API_FN

sqlausda

(unsigned

short

sqlda_id,

struct

sqlda

*sqlda,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgusda

(unsigned

short

sqlda_id,

struct

sqlda

*sqlda,

void

*reserved);

SQL_API_RC

SQL_API_FN

sqlastrt

(char

runtime_pid[40],

struct

sqla_runtime_info

*sqla_rtinfo,

struct

sqlca

*sqlca);

sqlausda

-

Register

SQLDA

Chapter

8.

Runtime

Services

APIs

77

API

Parameters:

runtime_pid

Address

of

the

run

time

program

ID.

This

ID

is

registered

in

the

Runtime

Services

internal

control

block.

It

is

returned

from

the

db2Initialize

function

at

precompile

time.

sqla_rtinfo

Pointer

to

an

instance

of

the

sqla_runtime_info

structure.

This

structure

currently

indicates

only

the

program’s

preferred

method

of

handling

the

C

wchar_t

data

type.

For

non-C

applications,

this

pointer

should

be

set

to

NULL.

See

“Runtime

information

structure”

on

page

49.

sqlca

A

pointer

to

an

SQLCA

structure

containing

the

return

status

of

the

API

call.

Return

Codes:

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-83

Insufficient

storage.

-4903

Invalid

parameter

length.

-4904

Invalid

pointer

to

parameter.

-4999

Internal

error.

sqlastop

-

Stop

Serialized

Execution

Terminates

processing

of

the

SQL

statement.

API

Include

File:

sqlaprep.h

sqladef.h

C

API

Syntax:

Generic

API

Syntax:

API

Parameters:

reserved

Spare

pointer,

set

to

NULL

or

to

point

to

zero.

Return

Codes:

SQL_API_RC

SQL_API_FN

sqlgstrt

(char

runtime_pid[40],

struct

sqla_runtime_info

*sqla_rtinfo,

struct

sqlca

*sqlca);

SQL_API_RC

SQL_API_FN

sqlastop

(void

*reserved);

SQL_API_RC

SQL_API_FN

sqlgstop

(void

*reserved);

sqlastrt

-

Start

Serialized

Execution

78

Precompiler

Customization

This

API

returns

one

of

the

following

messages.

Check

the

SQLCODE

field

in

the

SQLCA.

0

Successful

execution.

-4999

Internal

error.

sqlastop

-

Stop

Serialized

Execution

Chapter

8.

Runtime

Services

APIs

79

sqlastop

-

Stop

Serialized

Execution

80

Precompiler

Customization

Chapter

9.

Error

messages

and

codes

Table

4

lists

the

error

code

values

returned

from

Precompiler

Services

and

Runtime

Services.

It

also

lists

the

database

manager

message

code,

the

associated

constant,

and

a

brief

description.

The

sqlaprep.h

include

file

separates

these

codes

into

standard

error

codes,

and

those

that

are

considered

fatal.

Another

db2Initialize

must

be

issued

before

you

can

continue

precompiling

after

a

fatal

error.

Table

4.

Error

Messages

and

Codes

Value

Code

Constant

Fatal?

Description

0

SQL0000N

SQLA_RC_OK

N

Successful

execution.

20

SQL0020W

SQLA_RC_OPTION_IGNORED

N

Precompiled

option

ignored.

143

SQL0143W

SQLA_RC_DDSIGN

N

SQL

statement

is

not

supported;

invalid

syntax

ignored.

513

SQL0513W

SQLA_RC_STMT_MODIFY_ALL

N

Statement

modifies

entire

table.

4943

SQL4943W

SQLA_RC_SELECT_LIST_BAD

N

Number

of

host

variables

does

not

match

number

of

items

in

SELECT

clause.

4959

SQL4959W

SQLA_RC_SQLVARS_SET

N

SQLVARS

already

initialized.

-7

SQL0007N

SQLA_RC_CHAR_BAD

N

Invalid

character

in

SQL

statement.

-10

SQL0010N

SQLA_RC_STRING_NOT_TERMINATED

N

String

begun

but

not

terminated.

-13

SQL0013N

SQLA_RC_EMPTY_DEL_IDENT

N

An

empty

string

delimiter

is

not

valid.

-31

SQL0031N

SQLA_RC_BFILE_OPEN_ERROR

Y

Cannot

open

disk

or

file.

-32

SQL0032N

SQLA_RC_BFILE_DISK_ERROR

Y

Cannot

access

disk

or

file.

-51

SQL0051N

SQLA_RC_SECTION_LIMIT

N

Too

many

sections.

-83

SQL0083N

SQLA_RC_MEMORY_BAD

Y

Insufficient

storage.

-85

SQL0085N

SQLA_RC_SNAME_DUP

N

Duplicate

statement

name.

-87

SQL0087N

SQLA_RC_NO_STRUCT

N

Invalid

use

of

host

structure.

-88

SQL0088N

SQLA_RC_AMBIG_HOSTVAR

N

Ambiguous

reference

to

host

structure

field.

-101

SQL0101N

SQLA_RC_STMT_LIMIT

N

Statement

too

long

or

too

complex.

-103

SQL0103N

SQLA_RC_NUMBER_BAD

N

Invalid

numeric

literal.

-104

SQL0104N

SQLA_RC_STMT_SYNTAX_BAD

N

Incorrect

statement

syntax.

-105

SQL0105N

SQLA_RC_GSTRING_BAD

N

Invalid

graphic

string

(DBCS

environment

only).

-107

SQL0107N

SQLA_RC_IDENTIFIER_LIMIT

N

Name

of

database

object

is

too

long.

©

Copyright

IBM

Corp.

1997

-

2004

81

Table

4.

Error

Messages

and

Codes

(continued)

Value

Code

Constant

Fatal?

Description

-108

SQL0108N

SQLA_RC_QUALIFIER_BAD

N

Name

has

improper

number

of

qualifiers.

-142

SQL0142N

SQLA_RC_DDSBAD

N

SQL

statement

is

not

supported.

-198

SQL0198N

SQLA_RC_EC

N

The

statement

is

blank

or

empty.

-199

SQL0199N

SQLA_RC_KEYWORD_BAD

N

Invalid

use

of

reserved

word.

-306

SQL0306N

SQLA_RC_HVAR_NOT_DEC

N

Host

variable

used

but

not

declared.

-307

SQL0307N

SQLA_RC_HVAR_DUP_NAME

N

Host

variable

already

declared.

-308

SQL0308N

SQLA_RC_HVAR_LIMIT

N

Maximum

number

of

host

variables

exceeded.

-310

SQL0310N

SQLA_RC_STMT_HVAR_LIMIT

N

Number

of

host

variables

in

statement

exceeds

limit.

-311

SQL0311N

none

N

Length

of

host

variable

is

negative.

-324

SQL0324N

SQLA_RC_HVAR_USE_BAD

N

Host

variable

may

not

be

used

in

this

context.

-505

SQL0505N

SQLA_RC_CURSOR_DUP

N

Duplicate

cursor

name.

-751

SQL0751N

SQLA_RC_INVALID_TRIGGER_STMT

N

Statement

unsupported

within

trigger.

-803

SQL0803N

SQLA_RC_INV_INSERT

Y

Insert

causes

duplicate

row

in

table

with

unique

index.

-804

SQL0804N

SQLA_RC_SQLDA_SQLD_ERR,

SQLA_RC_SQLVAR_TYPE_ERR

Y

Invalid

sqlda

contents

(incorrect

sqltype,

sqllen,

or

other).

-822

SQL0822N

SQLA_RC_E822

Y

Invalid

address

in

SQLDA.

-902

SQL0902C

SQLA_RC_SYS_ERROR.

Y

System

error.

-911

SQL0911N

SQLA_RC_DEADLOCK_ERR

N

Transaction

has

been

rolled

back

because

of

deadlock.

-912

SQL0912N

SQLA_RC_TOO_MANY_LKS

Y

Maximum

number

of

lock

requests

exceeded.

-930

SQL0930N

SQLA_RC_FAT_SYS_ERR

Y

Fatal

system

error.

-954

SQL0954C

SQLA_RC_STORAGE_ERR

Y

Not

enough

storage

to

process

statement.

-956

SQL0956C

SQLA_RC_DB_HEAP_ERR

Y

Not

enough

storage

to

process

statement.

-958

SQL0958C

SQLA_RC_TOOMANY_OFLS

Y

Maximum

number

of

open

files

exceeded.

-960

SQL0960C

SQLA_RC_TOOMANY_FILES

Y

Maximum

number

of

files

in

database

exceeded.

-964

SQL0964C

SQLA_RC_LOG_FULL

Y

Transaction

log

full.

-968

SQL0968C

SQLA_RC_DISK_FULL

Y

File

system

full.

82

Precompiler

Customization

Table

4.

Error

Messages

and

Codes

(continued)

Value

Code

Constant

Fatal?

Description

-970

SQL0970N

SQLA_RC_READ_ONLY_FIL

Y

Attempt

to

write

to

a

read-only

file.

-972

SQL0972N

SQLA_RC_INCORRECT_DSK

Y

Database

drive

does

not

contain

correct

diskette.

-974

SQL0974N

SQLA_RC_DB_DRV_LOCKED

Y

Database

drive

locked.

-976

SQL0976N

SQLA_RC_DRV_DOOR_OPEN

Y

Database

drive

door

open.

-978

SQL0978N

SQLA_RC_DISK_WRT_PRO

Y

Database

drive

diskette

write

protected.

-980

SQL0980C

SQLA_RC_DISK_ERROR

Y

Disk

error.

-982

SQL0982N

SQLA_RC_RDS_DISK_ERR

Y

Disk

error.

-984

SQL0984C

SQLA_RC_COMM_RB_ERR

Y

Unsuccessful

COMMIT

or

ROLLBACK.

-985

SQL0985C

SQLA_RC_CAT_FILE_ERR

Y

File

error

in

catalog.

-986

SQL0986N

SQLA_RC_TAB_FILE_ERR

Y

File

error

in

user

table.

-990

SQL0990C

SQLA_RC_INDEX_ERR

Y

Index

error.

-992

SQL0992C

SQLA_RC_REL_NUM_BAD

Y

Release

number

of

precompiled

program

invalid.

-1024

SQL1024

none

Y

No

database

connection

exists.

-1216

SQL1216N

none

N

Invalid

use

of

graphic

data.

-1224

SQL1224N

SQLA_RC_AGENT_GONE

Y

Database

agent

could

not

be

started.

-4010

SQL4010N

SQLA_RC_CMPD_NESTED

N

Illegal

nesting

of

compound

SQL

statements.

-4011

SQL4011N

SQLA_RC_CMPD_INVALID_STMT

N

Invalid

substatement

in

a

compound

SQL

statement.

-4012

SQL4012N

SQLA_RC_CMPD_INVALID_COMMIT

N

Invalid

use

of

COMMIT

within

a

compound

SQL

statement.

-4013

SQL4013N

SQLA_RC_CMPD_INVALID_END

N

END

COMPOUND

found

without

previous

BEGIN

COMPOUND.

-4901

SQL4901N

SQLA_RC_FATAL_ERROR

Y

Reinitialization

has

not

occurred

since

last

fatal

error.

-4902

SQL4902N

SQLA_RC_PARM_CHARS_BAD

N

Invalid

characters

in

parameter.

-4903

SQL4903N

SQLA_RC_PARM_LENGTH_BAD

N

Invalid

parameter

length.

-4904

SQL4904N

SQLA_RC_PARM_POINTER_BAD

N

Invalid

pointer

to

parameter.

-4905

SQL4905N

SQLA_RC_PARM_RANGE_BAD

N

Parameter

not

within

valid

range.

-4911

SQL4911N

SQLA_RC_HVAR_SQLTYPE_BAD

N

SQL

type

for

host

variable

is

invalid.

Chapter

9.

Error

messages

and

codes

83

Table

4.

Error

Messages

and

Codes

(continued)

Value

Code

Constant

Fatal?

Description

-4912

SQL4912N

SQLA_RC_HVAR_SQLLEN_BAD

N

Length

of

host

variable

is

out

of

range.

-4913

SQL4913N

SQLA_RC_VAR_TOKEN_ID_DUP

N

Token

ID

has

already

been

used.

-4914

SQL4914N

SQLA_RC_HVAR_TOKEN_ID_BAD

N

Invalid

token

ID.

-4915

SQL4915N

SQLA_RC_INIT_DUP

Y

db2Initialize

has

already

been

invoked.

-4916

SQL4916N

SQLA_RC_INIT_REQUIRED

Y

sqlaalhv

has

not

been

invoked.

-4917

SQL4917N

SQLA_RC_OPTION_BAD

Y

Unsupported

option

found

in

option

array.

-4918

SQL4918N

SQLA_RC_TERM_OPTION_BAD

N

Invalid

termination

option.

-4919

SQL4919N

SQLA_RC_TASK_ARRAY_LIMIT

N

Task

array

too

small.

-4920

SQL4920N

SQLA_RC_TOKEN_ARRAY_LIMIT

N

Token

array

too

small.

-4940

SQL4940N

SQLA_RC_STMT_CLAUSE_BAD

N

Illegal

clause

in

statement.

-4941

SQL4941N

SQLA_RC_STMT_BLANK

N

Blank

or

empty

SQL

statement

text.

-4942

SQL4942N

SQLA_RC_SELECT_HVAR_TYPE_BAD

N

Incompatible

data

type

selected

into

host

variable.

-4944

SQL4944N

SQLA_RC_COLUMN_NOT_NULLABLE

N

Attempt

to

store

a

NULL

value

in

a

NOT

NULL

column.

-4945

SQL4945N

SQLA_RC_STMT_MARKER_BAD

N

Invalid

use

of

a

parameter

marker.

-4946

SQL4946N

SQLA_RC_CURSOR_NOT_DECLARED

N

Cursor

not

declared.

-4951

SQL4951N

SQLA_RC_SQLDA_ID_BAD

N

Invalid

SQLDA

ID.

-4952

SQL4952N

SQLA_RC_SQLVAR_INDEX_BAD

N

Invalid

sqlvar_index

parameter.

-4953

SQL4953N

SQLA_RC_CALL_TYPE_BAD

N

Invalid

call

type.

-4954

SQL4954N

SQLA_RC_SECTION_BAD

N

Section

number

is

invalid.

-4994

SQL4994N

SQLA_RC_CTRL_BREAK

Y

Interrupt

key

sequence

detected.

-4995

SQL4995C

SQLA_RC_CODEPAGE_BAD

Y

Cannot

find

COUNTRY.SYS.

-4997

SQL4997N

SQLA_RC_SQLUSER_BAD

Y

Invalid

authorization

ID.

-4998

SQL4998C

SQLA_RC_DB_DISCONNECTED

Y

Database

connection

has

been

lost.

-4999

SQL4999C

SQLA_RC_INTERNAL_ERR

Y

Internal

error.

84

Precompiler

Customization

Index

A
ADD

HOST

VARIABLE

API
description

of

57

reporting

host

variables

in

custom

precompiler

17

ALLOCATE

SQLDA

API
description

of

67

Application

Program

Interface

(API)
calling

from

custom

precompiler

5

precompiler

services

APIs,

list

of

57

runtime

services

APIs,

list

of

67

C
command

line

arguments
custom

precompiler,

processing

in

9

comments
replacing

in

custom

precompiler

18

COMPILE

SQL

STATEMENT

API
description

of

59

D
data

structure
precompiler

option

array

45

program

identifier

string

46

task

array

47

token

identifier

array

46

data

types
determining

in

custom

precompiler

13

db2CompileSql

API
description

of

59

db2Initialize

API
description

of

62

DEALLOCATE

SQLDA

API
description

of

68

declare

section
host

variables

in

custom

precompiler,

processing

outside

of

17

E
error

handling
in

custom

precompiler

11

error

messages
from

precomplier

services,

list

of

81

from

runtime

services,

list

of

81

EXECUTE

SQL

STATEMENT

API
description

of

69

H
host

variables
in

custom

precompiler
describing

29

processing

of

4,

12

recording

of

15

host

variables

(continued)
in

custom

precompiler

(continued)
reporting

through

sqlaalhv

API

17

processing

outside

declare

section

in

custom

precompiler

17

registering

with

precompiler

services

57

I
INITIALIZE

PRECOMPILER

SERVICES

API
description

of

62

P
performance

of

custom

precompiler,

improving

40

precompiler
command

line

arguments,

processing

of

9

writing

a

custom

7

Precompiler

Services
ADD

HOST

VARIABLE

API

57

APIs,

list

of

57

COMPILE

SQL

STATEMENT

API,

description

of

59

custom

precompiler,

terminating

34

error

message

from

81

functions

of

2

INITIALIZE

PRECOMPILER

SERVICES

API,

description

of

62

return

codes

57

TERMINATE

PRECOMPILER

SERVICES

API,

description

of

65

precompiler,

designing

custom
allocating

SQLDA

structure

29

API

calls,

processing

of

5

compiler

model

3

copying

SQL

statements

to

modified

source

file

18

data

structures

for

45

design

models

3

functions

of

4

generating

code

24

host

variable
describing

29

processing

of

4,

12

recording

of

15

hybrid

model

3

initialization

tasks

7

interrupt

handler

8

language

considerations

4

optimizing

function

call

performance

40

processing

host

variables

outside

declare

section

17

reporting

host

variables

through

sqlaalhv

17

precompiler,

designing

custom

(continued)
return

code

handler

11

source

file

processing

12

SQL

data

type

determination

13

SQL

statement
compiling

through

db2CompileSql

API

23

identifying

17

passing

31

preprocessing

of

18

processing

17

processing

of

4

replacing

comments

in

18

SQLCA

structure

8

statement

oriented

model

3

task

array

functions

and

values

24

terminate

processing

in

34

termination

of

34

token

array

preparation

20

precompiling
non-SQL

code

in

custom

precompiler

12

precompiler

functions

2

precompiler

services,

functions

of

2

processing

steps,

description

of

1

programmer’s

responsibilities

2

runtime

services,

functions

of

3

R
RECORD

HOST

VARIABLE

ADDRESS

API
description

of

72,

73

RECORD

MULTIPLE

HOST

VARIABLE

ADDRESSES

API
description

of

74

RECORD

SQL

STATEMENT

TEXT

API
description

of

75

REGISTER

COMPOUND

SQL

SUBSTATEMENT

API
description

of

70

REGISTER

SQLDA

API
description

of

76

return

codes
for

precompiler

and

run

time

services

57

Return

Token

structure
in

custom

precompiler

47

Runtime

Services
ALLOCATE

SQLDA

API,

description

of

67

APIs,

list

of

67

DEALLOCATE

SQLDA

API,

description

of

68

error

messages

from

81

EXECUTE

SQL

STATEMENT

API,

description

of

69

functions

of

3

INITIALIZE

SQLDA

API,

description

of

72,

73

©

Copyright

IBM

Corp.

1997

-

2004

85

Runtime

Services

(continued)
RECORD

SQL

STATEMENT

TEXT

API,

description

of

75

REGISTER

COMPOUND

SQL

SUBSTATEMENT

API,

description

of

70

REGISTER

SQLDA

API,

description

of

76

START

SERIALIZED

EXECUTION

API,

description

of

77

STOP

SERIALIZED

EXECUTION

API,

description

of

78

S
signal

handling
in

custom

precompiler

8

source

file
in

custom

precompiler,

processing

of

12

SQL

statement
compiling,

API

for

59

in

custom

precompiler
compiling

through

db2CompileSql

API

23

copying

to

modified

source

file

18

identifying

17

passing

31

preprocessing

of

18

processing

of

4,

17

terminate

processing

of

34

sqla

return

token

structure
in

custom

precompilers

47

sqlaalhv

API
description

of

57

sqlaaloc

API
description

of

67

sqlacall

API
description

of

69

sqlacmpd

API
description

of

70

sqladloc

API
description

of

68

sqlafini

API
description

of

65

sqlasetdata

API
description

of

74

sqlastls

API
description

of

75

sqlastlv

API
description

of

72

sqlastlva

API
description

of

73

sqlastop

API
description

of

78

sqlastrt

API
description

of

77

sqlausda

API
description

of

76

SQLCA

structure
defining

in

custom

precompiler

8

SQLCODE

structure
db2CompileSql

messages

61

db2Initialize

messages

64

sqlaalhv

messages

58

sqlaaloc

messages

68

SQLCODE

structure

(continued)
sqlacall

messages

70

sqlacmpd

messages

71

sqladloc

messages

69

sqlafini

messages

65

sqlaoptions

messages

56

sqlaoptions_free

messages

56

sqlasetdata

messages

75

sqlastls

messages

76

sqlastlv

messages

73,

74

sqlastop

messages

78

sqlastrt

messages

78

sqlausda

messages

77

SQLDA

structure
allocating

in

custom

precompiler

29

START

SERIALIZED

EXECUTION

API
description

of

77

STOP

SERIALIZED

EXECUTION

API
description

of

78

syntax
SQL

statements,

identifying

in

custom

precompiler

17

T
TERMINATE

PRECOMPILER

SERVICES

API
description

of

65

token

array
in

custom

precompiler,

preparing

20

86

Precompiler

Customization

����

Printed

in

USA

	Contents
	About this document
	Changed APIs (All versions)

	Chapter 1. Designing a precompiler
	Precompilation process
	Application programmer
	Precompiler
	Precompiler Services
	Runtime Services

	Processing model
	Precompiler design
	Language considerations
	Precompiler responsibilities

	Chapter 2. Writing a precompiler
	Initialization
	Defining an SQLCA
	Handling interrupts
	Processing command line arguments
	Opening files
	Preparing the option array
	Initializing Precompiler Services using db2Initialize
	Testing the return code from db2Initialize
	Processing the program ID
	Errors that require reinitialization

	Source processing
	Copying non-SQL code
	Precompiler tasks for host variables
	Acceptable host variables
	Determining SQL type
	Large objects
	Structured types

	Processing SQL statements
	Identifying SQL statements
	Copying SQL statements to modified source
	Preprocessing SQL statements

	Preparing the token array
	Example 1
	Example 2

	Compiling an SQL statement through db2CompileSql
	Generating code
	Null task array
	Inserting an SQLCA data structure into modified source
	Inserting an SQLDA data structure into modified source
	Processing an embedded source file
	Inserting runtime function calls
	Starting the statement
	Allocating input and output SQLDAs
	Describing host variables and literals
	Designating a user-defined SQLDA
	Passing a statement
	Executing the section
	Deallocating an SQLDA
	Updating stand-alone SQLCODE and SQLSTATE
	Error handling
	Terminating SQL statement processing
	Reporting results from the SQL flagger

	Termination
	Saving precompilation results
	Terminating Precompiler Services through sqlafini
	Cleaning up

	Chapter 3. Advanced precompiler design
	Compound SQL
	The CREATE TRIGGER statement
	Optimizing function calls
	Avoid redundant initializations
	Use multiple dynamic SQLDAs

	Support for structure host variables
	Support for 255-byte host variable names and labels
	Support for stand-alone SQLCODE/SQLSTATE
	The SET CURRENT PACKAGE PATH statement

	Chapter 4. Precompiler data structures
	Precompiler option array
	Program identifier string
	Token identifier array
	Task array
	Return token structure
	Flagger diagnostics structure

	Chapter 5. Runtime data structures
	Multiple variable SQLDA initialization structure
	Runtime information structure

	Chapter 6. Option APIs
	sqlaoptions - Parse Option String
	sqlaoptions_free - Free Option Parser Storage

	Chapter 7. Precompiler Services APIs
	SQLCA and return codes
	sqlaalhv - Add Host Variable
	db2CompileSql - Compile SQL Statement
	db2Initialize - Initialize Precompiler Services
	sqlafini - Terminate Precompiler Services

	Chapter 8. Runtime Services APIs
	sqlaaloc - Allocate SQLDA
	sqladloc - Deallocate SQLDA
	sqlacall - Execute SQL Statement
	sqlacmpd - Register Compound SQL Substatement
	sqlastlv - Record Host Variable Address
	sqlastlva - Record Host Variable Address
	sqlasetdata - Record Multiple Host Variable Addresses
	sqlastls - Record SQL Statement Text
	sqlausda - Register SQLDA
	sqlastrt - Start Serialized Execution
	sqlastop - Stop Serialized Execution

	Chapter 9. Error messages and codes
	Index

