
IBM DB2 9.7
for Linux, UNIX, and Windows

Administrative API Reference
Updated September, 2010

Version 9 Release 7

SC27-2435-02

���

IBM DB2 9.7
for Linux, UNIX, and Windows

Administrative API Reference
Updated September, 2010

Version 9 Release 7

SC27-2435-02

���

Note
Before using this information and the product it supports, read the general information under Appendix D, “Notices,” on
page 717.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
Who should use this book vii
How this book is structured. vii
Highlighting conventions viii

Chapter 1. DB2 APIs 1

Chapter 2. Changed APIs and data
structures 19

Chapter 3. Log sequence number
changes affecting API and application
behavior 23

Chapter 4. How the API descriptions
are organized 27
Include files for DB2 API applications 30

Chapter 5. Administrative APIs 33
db2AddContact - Add a contact to whom
notification messages can be sent 34
db2AddContactGroup - Add a contact group to
whom notification messages can be sent 36
db2AddSnapshotRequest - Add a snapshot request 38
db2AdminMsgWrite - Write log messages for
administration and replication function 40
db2ArchiveLog - Archive the active log file 42
db2AutoConfig - Access the Configuration Advisor 45
db2AutoConfigFreeMemory - Free the memory
allocated by the db2AutoConfig API 49
db2Backup - Back up a database or table space . . 50
db2CfgGet - Get the database manager or database
configuration parameters 60
db2CfgSet - Set the database manager or database
configuration parameters 63
db2ConvMonStream - Convert the monitor stream
to the pre-version 6 format 67
db2DatabasePing - Ping the database to test
network response time 70
db2DatabaseQuiesce - Quiesce the database . . . 72
db2DatabaseRestart - Restart database 74
db2DatabaseUnquiesce - Unquiesce database . . . 77
db2DatabaseUpgrade - Upgrade previous version of
DB2 database to the current release 79
db2DbDirCloseScan - End a system or local
database directory scan 81
db2DbDirGetNextEntry - Get the next system or
local database directory entry 82
db2DbDirOpenScan - Start a system or local
database directory scan 86
db2DropContact - Remove a contact from the list of
contacts to whom notification messages can be sent . 88

db2DropContactGroup - Remove a contact group
from the list of contacts to whom notification
messages can be sent 89
db2Export - Export data from a database 90
db2GetAlertCfg - Get the alert configuration settings
for the health indicators 97
db2GetAlertCfgFree - Free the memory allocated
by the db2GetAlertCfg API 102
db2GetContactGroup - Get the list of contacts in a
single contact group to whom notification
messages can be sent 103
db2GetContactGroups - Get the list of contact
groups to whom notification messages can be sent . 105
db2GetContacts - Get the list of contacts to whom
notification messages can be sent 107
db2GetDistMap - Get distribution map 109
db2GetHealthNotificationList - Get the list of
contacts to whom health alert notifications can be
sent 110
db2GetRecommendations - Get recommendations
to resolve a health indicator in alert state 112
db2GetRecommendationsFree - Free the memory
allocated by the db2GetRecommendations API . . 115
db2GetSnapshot - Get a snapshot of the database
manager operational status 116
db2GetSnapshotSize - Estimate the output buffer
size required for the db2GetSnapshot API 120
db2GetSyncSession - Get a satellite synchronization
session identifier 123
db2HADRStart - Start high availability disaster
recovery (HADR) operations 124
db2HADRStop - Stop high availability disaster
recovery (HADR) operations 126
db2HADRTakeover - Instruct a database to take
over as the high availability disaster recovery
(HADR) primary database 128
db2HistoryCloseScan - End the database history
records scan 131
db2HistoryGetEntry - Get the next entry in the
database history records 133
db2HistoryOpenScan - Start a database history
records scan 136
db2HistoryUpdate - Update a database history
records entry 140
db2Import - Import data into a table, hierarchy,
nickname or view 144
db2Inspect - Inspect database for architectural
integrity 158
db2InstanceQuiesce - Quiesce instance 165
db2InstanceStart - Start instance 168
db2InstanceStop - Stop instance 174
db2InstanceUnquiesce - Unquiesce instance . . . 177
db2LdapCatalogDatabase - Register the database
on the LDAP server 179
db2LdapCatalogNode - Provide an alias for node
name in LDAP server 181

© Copyright IBM Corp. 1993, 2010 iii

db2LdapDeregister - Deregister the DB2 server and
cataloged databases from the LDAP server . . . 182
db2LdapRegister - Register the DB2 server on the
LDAP server 183
db2LdapUncatalogDatabase - Deregister database
from LDAP server 187
db2LdapUncatalogNode - Delete alias for node
name from LDAP server. 188
db2LdapUpdate - Update the attributes of the DB2
server on the LDAP server 189
db2LdapUpdateAlternateServerForDB - Update the
alternate server for the database on the LDAP
server 192
db2Load - Load data into a table 194
db2LoadQuery - Get the status of a load operation 215
db2MonitorSwitches - Get or update the monitor
switch settings 222
db2Prune - Delete the history file entries or log
files from the active log path 225
db2QuerySatelliteProgress - Get the status of a
satellite synchronization session 228
db2ReadLog - Read log records 230
db2ReadLogNoConn - Read the database logs
without a database connection. 235
db2ReadLogNoConnInit - Initialize reading the
database logs without a database connection . . . 238
db2ReadLogNoConnTerm - Terminate reading the
database logs without a database connection . . . 240
db2Recover - Restore and roll forward a database 241
db2Reorg - Reorganize an index or a table. . . . 247
db2ResetAlertCfg - Reset the alert configuration of
health indicators 256
db2ResetMonitor - Reset the database system
monitor data 258
db2Restore - Restore a database or table space . . 261
db2Rollforward - Roll forward a database 275
db2Runstats - Update statistics for tables and
indexes 285
db2SelectDB2Copy - Select the DB2 copy to be
used by your application 296
db2SetSyncSession - Set satellite synchronization
session 298
db2SetWriteForDB - Suspend or resume I/O writes
for database 299
db2SpmListIndTrans - List SPM indoubt
transactions 301
db2SyncSatellite - Start satellite synchronization 304
db2SyncSatelliteStop - Pause satellite
synchronization 305
db2SyncSatelliteTest - Test whether a satellite can
be synchronized 306
db2UpdateAlertCfg - Update the alert
configuration settings for health indicators . . . 307
db2UpdateAlternateServerForDB - Update the
alternate server for a database alias in the system
database directory 313
db2UpdateContact - Update the attributes of a
contact 315
db2UpdateContactGroup - Update the attributes of
a contact group. 317

db2UpdateHealthNotificationList - Update the list
of contacts to whom health alert notifications can
be sent 319
db2UtilityControl - Set the priority level of running
utilities 321
sqlabndx - Bind application program to create a
package 323
sqlaintp - Get error message 326
sqlaprep - Precompile application program . . . 328
sqlarbnd - Rebind package 331
sqlbctcq - Close a table space container query . . 334
sqlbctsq - Close a table space query 335
sqlbftcq - Fetch the query data for rows in a table
space container 336
sqlbftpq - Fetch the query data for rows in a table
space 338
sqlbgtss - Get table space usage statistics 340
sqlbmtsq - Get the query data for all table spaces 342
sqlbotcq - Open a table space container query . . 344
sqlbotsq - Open a table space query 346
sqlbstpq - Get information about a single table
space 348
sqlbstsc - Set table space containers 350
sqlbtcq - Get the query data for all table space
containers 353
sqlcspqy - List DRDA indoubt transactions . . . 355
sqle_activate_db - Activate database 356
sqle_deactivate_db - Deactivate database 358
sqleaddn - Add a database partition to the
partitioned database environment 360
sqleatcp - Attach to instance and change password 362
sqleatin - Attach to instance 364
sqlecadb - Catalog a database in the system
database directory 367
sqlecran - Create a database on a database partition
server 373
sqlecrea - Create database 375
sqlectnd - Catalog an entry in the node directory 382
sqledcgd - Change a database comment in the
system or local database directory 385
sqledpan - Drop a database on a database partition
server 387
sqledrpd - Drop database 389
sqledrpn - Check whether a database partition
server can be dropped 391
sqledtin - Detach from instance 393
sqlefmem - Free the memory allocated by the
sqlbtcq and sqlbmtsq API 394
sqlefrce - Force users and applications off the
system 395
sqlegdad - Catalog a database in the database
connection services (DCS) directory 398
sqlegdcl - End a database connection services
(DCS) directory scan 400
sqlegdel - Uncatalog a database from the database
connection services (DCS) directory 401
sqlegdge - Get a specific entry in the database
connection services (DCS) directory 403
sqlegdgt - Get database connection services (DCS)
directory entries 405

iv Administrative API Reference

sqlegdsc - Start a database connection services
(DCS) directory scan 407
sqlegins - Get current instance. 408
sqleintr - Interrupt application requests. 409
sqleisig - Install signal handler 411
sqlemgdb - Migrate previous version of DB2
database to current version 412
sqlencls - End a node directory scan. 414
sqlengne - Get the next node directory entry . . . 415
sqlenops - Start a node directory scan 417
sqleqryc - Query client connection settings . . . 419
sqleqryi - Query client information 421
sqlesact - Set accounting string 423
sqlesdeg - Set the maximum runtime intra-partition
parallelism level or degree for SQL statements . . 424
sqlesetc - Set client connection settings 426
sqleseti - Set client information 429
sqleuncd - Uncatalog a database from the system
database directory 431
sqleuncn - Uncatalog an entry from the node
directory 433
sqlgaddr - Get the address of a variable 435
sqlgdref - Dereference an address. 436
sqlgmcpy - Copy data from one memory area to
another 437
sqlogstt - Get the SQLSTATE message 438
sqludrdt - Redistribute data across a database
partition group 440
sqlugrpn - Get the database partition server
number for a row 444
sqlugtpi - Get table distribution information . . . 447
sqluvqdp - Quiesce table spaces for a table . . . 449

Chapter 6. Calling DB2 APIs in REXX 453
Change Isolation Level 455

Chapter 7. Indoubt transaction
management APIs 457
db2XaGetInfo - Get information for a resource
manager 459
db2XaListIndTrans - List indoubt transactions . . 460
sqlxhfrg - Forget transaction status 465
sqlxphcm - Commit an indoubt transaction . . . 466
sqlxphrl - Roll back an indoubt transaction . . . 467

Chapter 8. Threaded applications with
concurrent access 469
sqleAttachToCtx - Attach to context 470
sqleBeginCtx - Create and attach to an application
context 471
sqleDetachFromCtx - Detach from context 472
sqleEndCtx - Detach from and free the memory
associated with an application context 473
sqleGetCurrentCtx - Get current context 475
sqleInterruptCtx - Interrupt context 476
sqleSetTypeCtx - Set application context type . . . 477

Chapter 9. DB2 database system
plug-ins for customizing database
management. 479
Enabling plug-ins 479

Deploying a group retrieval plug-in 479
Deploying a user ID/password plug-in. . . . 480
Deploying a GSS-API plug-in 481
Deploying a Kerberos plug-in 482

Writing security plug-ins 483
How DB2 loads security plug-ins. 483
Restrictions for developing security plug-in
libraries 486
Restrictions on security plug-ins 487
Return codes for security plug-ins 490
Error message handling for security plug-ins 493
Calling sequences for the security plug-in APIs 494

Security plug-ins 496
Security plug-in library locations 500
Security plug-in naming conventions 501
Security plug-in support for two-part user IDs 502
Security plug-in API versioning 504
32-bit and 64-bit considerations for security
plug-ins 504
Security plug-in problem determination . . . 504

Security plug-in APIs 505
APIs for group retrieval plug-ins 508
db2secDoesGroupExist API - Check if group
exists 510
db2secFreeErrormsg API - Free error message
memory 511
db2secFreeGroupListMemory API - Free group
list memory 512
db2secGetGroupsForUser API - Get list of
groups for user 513
db2secGroupPluginInit API - Initialize group
plug-in 516
db2secPluginTerm - Clean up group plug-in
resources 518

APIs for user ID/password authentication plug-ins 519
db2secClientAuthPluginInit API - Initialize
client authentication plug-in 525
db2secClientAuthPluginTerm API - Clean up
client authentication plug-in resources 527
db2secDoesAuthIDExist - Check if
authentication ID exists 528
db2secFreeInitInfo API - Clean up resources
held by the db2secGenerateInitialCred 529
db2secFreeToken API - Free memory held by
token 530
db2secGenerateInitialCred API - Generate initial
credentials 531
db2secGetAuthIDs API - Get authentication IDs 533
db2secGetDefaultLoginContext API - Get
default login context 535
db2secProcessServerPrincipalName API -
Process service principal name returned from
server 537
db2secRemapUserid API - Remap user ID and
password. 538

Contents v

db2secServerAuthPluginInit - Initialize server
authentication plug-in 540
db2secServerAuthPluginTerm API - Clean up
server authentication plug-in resources 543
db2secValidatePassword API - Validate
password. 544

Required APIs and definitions for GSS-API
authentication plug-ins 547

Restrictions for GSS-API authentication plug-ins 549
Security plug-in samples 550
DB2 APIs for backup and restore to storage
managers. 551

db2VendorGetNextObj - Get next object on
device 552
db2VendorQueryApiVersion - Get the supported
level of the vendor storage API 554
sqluvdel - Delete committed session 555
sqluvend - Unlink a vendor device and release
its resources 556
sqluvget - Read data from a vendor device . . 558
sqluvint - Initialize and link to a vendor device 560
sqluvput - Write data to a vendor device . . . 564
DB2_info 566
Vendor_info 569
Init_input 571
Init_output 573
Data 574
Return_code 575

DB2 APIs for using compression with backup and
restore operations 576

COMPR_CB 578
COMPR_DB2INFO 579
COMPR_PIINFO 581
Compress - Compress a block of data 583
Decompress - Decompress a block of data . . . 585
GetMaxCompressedSize - Estimate largest
possible buffer size 586
GetSavedBlock - Get the vendor of block data
for the backup image 587
InitCompression - Initialize the compression
library. 588
InitDecompression - Initialize the
decompression library 589
TermCompression - Stop the compression
library. 590
TermDecompression - Stop the decompression
library. 591

Chapter 10. Data structures used by
APIs 593
db2DistMapStruct 594
db2HistoryData 595
db2LSN data structure 600
sql_dir_entry 601
SQLB_TBS_STATS 602
SQLB_TBSCONTQRY_DATA 603
SQLB_TBSPQRY_DATA 605
SQLCA 609
sqlchar 610

SQLDA 611
sqldcol 613
sqle_addn_options. 616
sqle_client_info 618
sqle_conn_setting 620
sqle_node_local. 623
sqle_node_npipe 624
sqle_node_struct 625
sqle_node_tcpip 627
sqledbdesc 628
sqledbdescext 635
sqledbterritoryinfo. 641
sqleninfo 642
sqlfupd 645
sqllob 654
sqlma 655
sqlopt 658
SQLU_LSN 660
sqlu_media_list 661
SQLU_RLOG_INFO 666
sqlupi 667
SQLXA_XID. 669

Appendix A. Precompiler
customization APIs 671
Precompiler customization APIs 672

Appendix B. DB2 log records 673
DB2 log records 674

Log manager header 676
Transaction manager log records 678
Long field manager log records 685
Utility manager log records. 687
Data manager log records 690

Appendix C. Overview of the DB2
technical information 707
DB2 technical library in hardcopy or PDF format 708
Ordering printed DB2 books 710
Displaying SQL state help from the command line
processor 711
Accessing different versions of the DB2 Information
Center 711
Displaying topics in your preferred language in the
DB2 Information Center 712
Updating the DB2 Information Center installed on
your computer or intranet server 712
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 713
DB2 tutorials 715
DB2 troubleshooting information 715
Terms and Conditions 716

Appendix D. Notices 717

Index 721

vi Administrative API Reference

About this book

This book provides information about the use of application programming
interfaces (APIs) to execute database administrative functions. It presents detailed
information on the use of database manager API calls in applications written in the
following programming languages:
v C
v C++
v COBOL
v FORTRAN
v REXX

For a compiled language, an appropriate precompiler must be available to process
the statements. Precompilers are provided for all supported languages.

Who should use this book
It is assumed that the reader has an understanding of database administration and
application programming, plus a knowledge of:
v Structured Query Language (SQL)
v The C, C++, COBOL, FORTRAN, and/or REXX programming languages
v Application program design

How this book is structured
This book provides the reference information needed to use the administrative
APIs in application development.

The major subject areas discussed in the chapters of this book are as follows:

Overview of administrative APIs and data structures

v Chapter 1, “DB2® APIs,” includes tables that list administrative APIs,
include files, and sample programs.

v Chapter 2, “Changed APIs and data structures,” uses tables to list
supported and unsupported APIs and data structures that have changed.

v Chapter 3, “How the API descriptions are organized,” describes how
API descriptions are organized and lists the include files for DB2 API
applications.

APIs

v Chapter 4, “Administrative APIs,” alphabetically lists the DB2
administrative APIs.

v Chapter 5, “Calling DB2 APIs in REXX,” describes how to call DB2 APIs
from a REXX application.

v Chapter 6, “Indoubt transaction management APIs,” presents a set of
APIs provided for tool writers to perform heuristic functions on indoubt
transactions.

v Chapter 7, “Threaded applications with concurrent access,” describes
DB2 APIs that can be used in threaded applications.

© Copyright IBM Corp. 1993, 2010 vii

Plug-in APIs

v Chapter 8, “DB2 database system plug-ins for customizing database
management,” presents the security, backup, restore, log archiving, and
compression/decompression for backup images plug-in APIs that you
and third-party vendors can use to customize certain database
management functions.

Data structures

v Chapter 9, “Data structures used by APIs,” describes the data structures
used by APIs.

Appendixes

v Appendix A, “Precompiler customization APIs,” provides a link on
where to obtain information about a set of documented APIs that enable
other application development tools to implement precompiler support
for DB2 directly within their products.

v Appendix B, “DB2 log records,” describes the structure of the various
DB2 log records.

Highlighting conventions
The following highlighting conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:

v Names or values (variables) that must be supplied by the user

v General emphasis

v The introduction of a new term

v A reference to another source of information

Monospace Indicates one of the following:

v Files and directories

v Information that you are instructed to type at a command prompt or in a
window

v Examples of specific data values

v Examples of text similar to what might be displayed by the system

v Examples of system messages

v Samples of programming code

How this book is structured

viii Administrative API Reference

Chapter 1. DB2 APIs

The following tables show the DB2 APIs with the DB2 samples. The first table lists
the DB2 APIs grouped by functional category, their respective include files, and the
sample programs that demonstrate them (see the note after the table for more
information on the include files). The second table lists the C/C++ sample
programs and shows the DB2 APIs demonstrated in each C/C++ program. The
third table shows the COBOL sample programs and the DB2 APIs demonstrated in
each COBOL program.

DB2 APIs, Include files, and Sample Programs
Table 1.

C/C++ Sample Programs with DB2 APIs
Table 2 on page 13.

COBOL Sample Programs with DB2 APIs
Table 3 on page 16.

Table 1. DB2 APIs, Include files, and Sample Programs

API Type DB2 API Include File Sample Programs

Database control
APIs

“db2DatabaseQuiesce - Quiesce the
database” on page 72

db2ApiDf n/a

Database control
APIs

“db2DatabaseUnquiesce - Unquiesce
database” on page 77

db2ApiDf n/a

Database control
APIs

“db2DatabaseRestart - Restart
database” on page 74

db2ApiDf C: dbconn.sqc C++: dbconn.sqC

Database control
APIs

“sqlecrea - Create database” on page
375

sqlenv C: dbcreate.c dbrecov.sqc dbsample.sqc
C++: dbcreate.C dbrecov.sq COBOL:
db_udcs.cbl dbconf.cbl ebcdicdb.cbl

Database control
APIs

“sqlecran - Create a database on a
database partition server” on page 373

sqlenv n/a

Database control
APIs

“sqledrpd - Drop database” on page
389

sqlenv C: dbcreate.c C++: dbcreate.C COBOL:
dbconf.cbl

Database control
APIs

“sqledpan - Drop a database on a
database partition server” on page 387

sqlenv n/a

Database control
APIs

“db2DatabaseUpgrade - Upgrade
previous version of DB2 database to
the current release” on page 79

db2ApiDf C: dbupgrade.c C++: dbupgrade.C
COBOL: dbupgrade.cbl

Database control
APIs

“db2XaListIndTrans - List indoubt
transactions” on page 460

db2ApiDf n/a

Database control
APIs

“sqle_activate_db - Activate database”
on page 356

sqlenv n/a

Database control
APIs

“sqle_deactivate_db - Deactivate
database” on page 358

sqlenv n/a

Database control
APIs

“sqlcspqy - List DRDA indoubt
transactions” on page 355

sqlxa n/a

Database control
APIs

“db2SetWriteForDB - Suspend or
resume I/O writes for database” on
page 299

db2ApiDf n/a

© Copyright IBM Corp. 1993, 2010 1

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Database control
APIs

“sqlefrce - Force users and applications
off the system” on page 395

sqlenv C: dbconn.sqc dbsample.sqc instart.c
C++: dbconn.sqC instart.C COBOL:
dbstop.cbl

Instance control
APIs

“db2InstanceStart - Start instance” on
page 168

db2ApiDf C: instart.c C++: instart.C

Instance control
APIs

“db2InstanceStop - Stop instance” on
page 174

db2ApiDf C: instart.c C++: instart.C

Instance control
APIs

“db2InstanceQuiesce - Quiesce
instance” on page 165

db2ApiDf n/a

Instance control
APIs

“db2InstanceUnquiesce - Unquiesce
instance” on page 177

db2ApiDf n/a

Instance control
APIs

“sqleatin - Attach to instance” on page
364

sqlenv C: inattach.c utilapi.c C++: inattach.C
utilapi.C COBOL: dbinst.cbl

Instance control
APIs

“sqleatcp - Attach to instance and
change password” on page 362

sqlenv C: inattach.c C++: inattach.C COBOL:
dbinst.cbl

Instance control
APIs

“sqledtin - Detach from instance” on
page 393

sqlenv C: inattach.c utilapi.c C++: inattach.C
utilapi.C COBOL: dbinst.cbl

Instance control
APIs

“sqlegins - Get current instance” on
page 408

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dbinst.cbl

Instance control
APIs

“db2UtilityControl - Set the priority
level of running utilities” on page 321

db2ApiDf n/a

Database
manager and
database
configuration
APIs

“db2CfgGet - Get the database
manager or database configuration
parameters” on page 60

db2ApiDf C: dbinfo.c dbrecov.sqc ininfo.c
tscreate.sqc C++: dbinfo.C dbrecov.sqC
ininfo.C tscreate.sqC

Database
manager and
database
configuration
APIs

“db2CfgSet - Set the database manager
or database configuration parameters”
on page 63

db2ApiDf C: dbinfo.c dbrecov.sqc ininfo.c C++:
dbinfo.C dbrecov.sqC ininfo.C

Database
manager and
database
configuration
APIs

“db2AutoConfig - Access the
Configuration Advisor” on page 45

db2AuCfg C: dbcfg.sqc C++: dbcfg.sqC

Database
manager and
database
configuration
APIs

“db2AutoConfigFreeMemory - Free the
memory allocated by the
db2AutoConfig API” on page 49

db2AuCfg C: dbcfg.sqc C++: dbcfg.sqC

Database
monitoring APIs

“db2GetSnapshotSize - Estimate the
output buffer size required for the
db2GetSnapshot API” on page 120

db2ApiDf n/a

Database
monitoring APIs

“db2AddSnapshotRequest - Add a
snapshot request” on page 38

db2ApiDf n/a

Database
monitoring APIs

“db2MonitorSwitches - Get or update
the monitor switch settings” on page
222

db2ApiDf C: utilsnap.c C++: utilsnap.C

DB2 APIs

2 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Database
monitoring APIs

“db2GetSnapshot - Get a snapshot of
the database manager operational
status” on page 116

db2ApiDf C: utilsnap.c C++: utilsnap.C

Database
monitoring APIs

“db2ResetMonitor - Reset the database
system monitor data” on page 258

db2ApiDf n/a

Database
monitoring APIs

“db2ConvMonStream - Convert the
monitor stream to the pre-version 6
format” on page 67

db2ApiDf n/a

Database
monitoring APIs

“db2Inspect - Inspect database for
architectural integrity” on page 158

db2ApiDf n/a

Database health
monitoring APIs

“db2AddContact - Add a contact to
whom notification messages can be
sent” on page 34

db2ApiDf n/a

Database health
monitoring APIs

“db2AddContactGroup - Add a
contact group to whom notification
messages can be sent” on page 36

db2ApiDf n/a

Database health
monitoring APIs

“db2DropContact - Remove a contact
from the list of contacts to whom
notification messages can be sent” on
page 88

db2ApiDf n/a

Database health
monitoring APIs

“db2DropContactGroup - Remove a
contact group from the list of contacts
to whom notification messages can be
sent” on page 89

db2ApiDf n/a

Database health
monitoring APIs

“db2GetAlertCfg - Get the alert
configuration settings for the health
indicators” on page 97

db2ApiDf n/a

Database health
monitoring APIs

“db2GetAlertCfgFree - Free the
memory allocated by the
db2GetAlertCfg API” on page 102

db2ApiDf n/a

Database health
monitoring APIs

“db2GetContactGroup - Get the list of
contacts in a single contact group to
whom notification messages can be
sent” on page 103

db2ApiDf n/a

Database health
monitoring APIs

“db2GetContactGroups - Get the list of
contact groups to whom notification
messages can be sent” on page 105

db2ApiDf n/a

Database health
monitoring APIs

“db2GetContacts - Get the list of
contacts to whom notification
messages can be sent” on page 107

db2ApiDf n/a

Database health
monitoring APIs

“db2GetHealthNotificationList - Get
the list of contacts to whom health
alert notifications can be sent” on page
110

db2ApiDf n/a

Database health
monitoring APIs

“db2ResetAlertCfg - Reset the alert
configuration of health indicators” on
page 256

db2ApiDf n/a

Database health
monitoring APIs

“db2UpdateAlertCfg - Update the alert
configuration settings for health
indicators” on page 307

db2ApiDf n/a

DB2 APIs

Chapter 1. Administrative APIs 3

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Database health
monitoring APIs

“db2UpdateContact - Update the
attributes of a contact” on page 315

db2ApiDf n/a

Database health
monitoring APIs

“db2UpdateContactGroup - Update
the attributes of a contact group” on
page 317

db2ApiDf n/a

Database health
monitoring APIs

“db2UpdateHealthNotificationList -
Update the list of contacts to whom
health alert notifications can be sent”
on page 319

db2ApiDf n/a

Database health
monitoring APIs

“db2GetSnapshot - Get a snapshot of
the database manager operational
status” on page 116

db2ApiDf C: utilsnap.c C++: utilsnap.C

Database health
monitoring APIs

“db2GetSnapshotSize - Estimate the
output buffer size required for the
db2GetSnapshot API” on page 120

db2ApiDf n/a

Database health
monitoring APIs

“db2GetRecommendations - Get
recommendations to resolve a health
indicator in alert state” on page 112

db2ApiDf n/a

Database health
monitoring APIs

“db2GetRecommendationsFree - Free
the memory allocated by the
db2GetRecommendations API” on
page 115

db2ApiDf n/a

Data movement
APIs

“db2Export - Export data from a
database” on page 90

sqlutil C: tbmove.sqc C++: tbmove.sqC COBOL:
expsamp.sqb impexp.sqb tload.sqb

Data movement
APIs

“db2Import - Import data into a table,
hierarchy, nickname or view” on page
144

db2ApiDf C: dtformat.sqc tbmove.sqc C++:
tbmove.sqC COBOL: expsamp.sqb
impexp.sqb

Data movement
APIs

“db2Load - Load data into a table” on
page 194

db2ApiDf C: dtformat.sqc tbload.sqc tbmove.sqc
C++: tbmove.sqC

Data movement
APIs

“db2LoadQuery - Get the status of a
load operation” on page 215

db2ApiDf C: tbmove.sqc C++: tbmove.sqC COBOL:
loadqry.sqb

Recovery APIs “db2Backup - Back up a database or
table space” on page 50

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2Restore - Restore a database or
table space” on page 261

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2Recover - Restore and roll
forward a database” on page 241

db2ApiDf n/a

Recovery APIs “db2Rollforward - Roll forward a
database” on page 275

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2HistoryOpenScan - Start a
database history records scan” on page
136

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2HistoryGetEntry - Get the next
entry in the database history records”
on page 133

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2HistoryCloseScan - End the
database history records scan” on page
131

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

DB2 APIs

4 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Recovery APIs “db2Prune - Delete the history file
entries or log files from the active log
path” on page 225

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2HistoryUpdate - Update a
database history records entry” on
page 140

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Recovery APIs “db2ArchiveLog - Archive the active
log file” on page 42

db2ApiDf n/a

High
Availability
Disaster
Recovery
(HADR) APIs

“db2HADRStart - Start high
availability disaster recovery (HADR)
operations” on page 124

db2ApiDf n/a

High
Availability
Disaster
Recovery
(HADR) APIs

“db2HADRStop - Stop high
availability disaster recovery (HADR)
operations” on page 126

db2ApiDf n/a

High
Availability
Disaster
Recovery
(HADR) APIs

“db2HADRTakeover - Instruct a
database to take over as the high
availability disaster recovery (HADR)
primary database” on page 128

db2ApiDf n/a

Database
directory and
DCS directory
management
APIs

“sqlecadb - Catalog a database in the
system database directory” on page
367

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dbcat.cbl

Database
directory and
DCS directory
management
APIs

“sqleuncd - Uncatalog a database from
the system database directory” on
page 431

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dbcat.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdad - Catalog a database in the
database connection services (DCS)
directory” on page 398

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdel - Uncatalog a database from
the database connection services (DCS)
directory” on page 401

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“sqledcgd - Change a database
comment in the system or local
database directory” on page 385

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dbcmt.cbl

Database
directory and
DCS directory
management
APIs

“db2DbDirOpenScan - Start a system
or local database directory scan” on
page 86

db2ApiDf C: ininfo.c C++: ininfo.C COBOL:
dbcat.cbl dbcmt.cbl

DB2 APIs

Chapter 1. Administrative APIs 5

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Database
directory and
DCS directory
management
APIs

“db2DbDirGetNextEntry - Get the next
system or local database directory
entry” on page 82

db2ApiDf C: ininfo.c C++: ininfo.C COBOL:
dbcat.cbl dbcmt.cbl

Database
directory and
DCS directory
management
APIs

“db2DbDirCloseScan - End a system
or local database directory scan” on
page 81

db2ApiDf C: ininfo.c C++: ininfo.C COBOL:
dbcat.cbl dbcmt.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdsc - Start a database connection
services (DCS) directory scan” on page
407

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdgt - Get database connection
services (DCS) directory entries” on
page 405

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdcl - End a database connection
services (DCS) directory scan” on page
400

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“sqlegdge - Get a specific entry in the
database connection services (DCS)
directory” on page 403

sqlenv C: ininfo.c C++: ininfo.C COBOL:
dcscat.cbl

Database
directory and
DCS directory
management
APIs

“db2UpdateAlternateServerForDB -
Update the alternate server for a
database alias in the system database
directory” on page 313

db2ApiDf n/a

Client/server
management
APIs

“sqleqryc - Query client connection
settings” on page 419

sqlenv C: cli_info.c C++: cli_info.C COBOL:
client.cbl

Client/server
management
APIs

“sqleqryi - Query client information”
on page 421

sqlenv C: cli_info.c C++: cli_info.C

Client/server
management
APIs

“sqlesetc - Set client connection
settings” on page 426

sqlenv C: cli_info.c dbcfg.sqc dbmcon.sqc C++:
cli_info.C dbcfg.sqC dbmcon.sqC
COBOL: client.cbl

Client/server
management
APIs

“sqleseti - Set client information” on
page 429

sqlenv C: cli_info.c C++: cli_info.C

Client/server
management
APIs

“sqlesact - Set accounting string” on
page 423

sqlenv COBOL: setact.cbl

DB2 APIs

6 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Client/server
management
APIs

“db2DatabasePing - Ping the database
to test network response time” on
page 70

db2ApiDf n/a

Client/server
management
APIs

“sqleisig - Install signal handler” on
page 411

sqlenv COBOL: dbcmt.cbl

Client/server
management
APIs

“sqleintr - Interrupt application
requests” on page 409

sqlenv n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapRegister - Register the DB2
server on the LDAP server” on page
183

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapUpdate - Update the
attributes of the DB2 server on the
LDAP server” on page 189

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapDeregister - Deregister the
DB2 server and cataloged databases
from the LDAP server” on page 182

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapCatalogNode - Provide an
alias for node name in LDAP server”
on page 181

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapUncatalogNode - Delete alias
for node name from LDAP server” on
page 188

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapCatalogDatabase - Register
the database on the LDAP server” on
page 179

db2ApiDf n/a

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapUncatalogDatabase -
Deregister database from LDAP
server” on page 187

db2ApiDf n/a

DB2 APIs

Chapter 1. Administrative APIs 7

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Lightweight
Directory Access
Protocol (LDAP)
directory
management
APIs

“db2LdapUpdateAlternateServerForDB
- Update the alternate server for the
database on the LDAP server” on page
192

db2ApiDf n/a

Application
programming
and preparation
APIs

“sqlaintp - Get error message” on page
326

sql C: dbcfg.sqc utilapi.c C++: dbcfg.sqC
utilapi.C COBOL: checkerr.cbl

Application
programming
and preparation
APIs

“sqlogstt - Get the SQLSTATE
message” on page 438

sql C: utilapi.c C++: utilapi.C COBOL:
checkerr.cbl

Application
programming
and preparation
APIs

“sqleisig - Install signal handler” on
page 411

sqlenv COBOL: dbcmt.cbl

Application
programming
and preparation
APIs

“sqleintr - Interrupt application
requests” on page 409

sqlenv n/a

Application
programming
and preparation
APIs

“sqlaprep - Precompile application
program” on page 328

sql C: dbpkg.sqc C++: dbpkg.sqC

Application
programming
and preparation
APIs

“sqlabndx - Bind application program
to create a package” on page 323

sql C: dbpkg.sqc dbsample.sqc C++:
dbpkg.sqC

Application
programming
and preparation
APIs

“sqlarbnd - Rebind package” on page
331

sql C: dbpkg.sqc C++: dbpkg.sqC COBOL:
rebind.sqb

COBOL,
FORTRAN and
REXX
application
specific APIs

“sqlgaddr - Get the address of a
variable” on page 435

sqlutil n/a

COBOL,
FORTRAN and
REXX
application
specific APIs

“sqlgdref - Dereference an address” on
page 436

sqlutil n/a

COBOL,
FORTRAN and
REXX
application
specific APIs

“sqlgmcpy - Copy data from one
memory area to another” on page 437

sqlutil n/a

DB2 APIs

8 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Table space and
table
management
APIs

“sqlbtcq - Get the query data for all
table space containers” on page 353
This command or API has been
deprecated and might be removed in a
future release. See tsinfo.db2 for a
sample program that uses a
replacement function.

sqlutil n/a

Table space and
table
management
APIs

“sqlbotcq - Open a table space
container query” on page 344

sqlutil COBOL: tabscont.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbftcq - Fetch the query data for
rows in a table space container” on
page 336

sqlutil COBOL: tabscont.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbctcq - Close a table space
container query” on page 334

sqlutil COBOL: tabscont.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbstsc - Set table space containers”
on page 350

sqlutil C: dbrecov.sqc C++: dbrecov.sqC
COBOL: tabscont.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbmtsq - Get the query data for all
table spaces” on page 342 This
command or API has been deprecated
and might be removed in a future
release. See tsinfo.db2 for a sample
program that uses a replacement
function.

sqlutil n/a

Table space and
table
management
APIs

“sqlbstpq - Get information about a
single table space” on page 348

sqlutil COBOL: tabspace.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbotsq - Open a table space query”
on page 346 This command or API has
been deprecated and might be
removed in a future release.

sqlutil n/a

Table space and
table
management
APIs

“sqlbftpq - Fetch the query data for
rows in a table space” on page 338

sqlutil COBOL: tabspace.sqb tspace.sqb

Table space and
table
management
APIs

“sqlbctsq - Close a table space query”
on page 335 This command or API has
been deprecated and might be
removed in a future release.

sqlutil n/a

Table space and
table
management
APIs

“sqlbgtss - Get table space usage
statistics” on page 340 This command
or API has been deprecated and might
be removed in a future release.

sqlutil n/a

DB2 APIs

Chapter 1. Administrative APIs 9

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Table space and
table
management
APIs

“sqluvqdp - Quiesce table spaces for a
table” on page 449

sqlutil C: tbmove.sqc C++: tbmove.sqC COBOL:
tload.sqb

Table space and
table
management
APIs

“db2Runstats - Update statistics for
tables and indexes” on page 285

db2ApiDf C: tbreorg.sqc C++: tbreorg.sqC COBOL:
dbstat.sqb

Table space and
table
management
APIs

“db2Reorg - Reorganize an index or a
table” on page 247

db2ApiDf C: tbreorg.sqc C++: tbreorg.sqC COBOL:
dbstat.sqb

Table space and
table
management
APIs

“sqlefmem - Free the memory
allocated by the sqlbtcq and sqlbmtsq
API” on page 394

sqlenv C: dbrecov.sqc C++: dbrecov.sqC
COBOL: tabscont.sqb tabspace.sqb
tspace.sqb

Node directory
management
APIs

“sqlectnd - Catalog an entry in the
node directory” on page 382

sqlenv C: ininfo.c C++: ininfo.C COBOL:
nodecat.cbl

Node directory
management
APIs

“sqleuncn - Uncatalog an entry from
the node directory” on page 433

sqlenv C: ininfo.c C++: ininfo.C COBOL:
nodecat.cbl

Node directory
management
APIs

“sqlenops - Start a node directory
scan” on page 417

sqlenv C: ininfo.c C++: ininfo.C COBOL:
nodecat.cbl

Node directory
management
APIs

“sqlengne - Get the next node
directory entry” on page 415

sqlenv C: ininfo.c C++: ininfo.C COBOL:
nodecat.cbl

Node directory
management
APIs

“sqlencls - End a node directory scan”
on page 414

sqlenv C: ininfo.c C++: ininfo.C COBOL:
nodecat.cbl

Node directory
management
APIs

“db2UpdateAlternateServerForDB -
Update the alternate server for a
database alias in the system database
directory” on page 313

db2ApiDf n/a

Satellite
synchronization
APIs

“db2GetSyncSession - Get a satellite
synchronization session identifier” on
page 123

db2ApiDf n/a

Satellite
synchronization
APIs

“db2QuerySatelliteProgress - Get the
status of a satellite synchronization
session” on page 228

db2ApiDf n/a

Satellite
synchronization
APIs

“db2SetSyncSession - Set satellite
synchronization session” on page 298

db2ApiDf n/a

Satellite
synchronization
APIs

“db2SyncSatellite - Start satellite
synchronization” on page 304

db2ApiDf n/a

Satellite
synchronization
APIs

“db2SyncSatelliteStop - Pause satellite
synchronization” on page 305

db2ApiDf n/a

DB2 APIs

10 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Satellite
synchronization
APIs

“db2SyncSatelliteTest - Test whether a
satellite can be synchronized” on page
306

db2ApiDf n/a

Read log files
APIs

“db2ReadLog - Read log records” on
page 230

db2ApiDf C: dbrecov.sqc C++: dbrecov.sqC

Read log files
APIs

“db2ReadLogNoConn - Read the
database logs without a database
connection” on page 235

db2ApiDf n/a

Read log files
APIs

“db2ReadLogNoConnInit - Initialize
reading the database logs without a
database connection” on page 238

db2ApiDf n/a

Read log files
APIs

“db2ReadLogNoConnTerm - Terminate
reading the database logs without a
database connection” on page 240

db2ApiDf n/a

Indoubt
transaction
management
APIs

“db2XaListIndTrans - List indoubt
transactions” on page 460

db2ApiDf n/a

Indoubt
transaction
management
APIs

“sqlxhfrg - Forget transaction status”
on page 465

sqlxa n/a

Indoubt
transaction
management
APIs

“sqlxphcm - Commit an indoubt
transaction” on page 466

sqlxa n/a

Indoubt
transaction
management
APIs

“sqlxphrl - Roll back an indoubt
transaction” on page 467

sqlxa n/a

Indoubt
transaction
management
APIs

“sqlcspqy - List DRDA indoubt
transactions” on page 355

sqlxa n/a

APIs for
obtaining
concurrent access
to a database

“sqleAttachToCtx - Attach to context”
on page 470

sql C: dbthrds.sqc C++: dbthrds.sqC

APIs for
obtaining
concurrent access
to a database

“sqleBeginCtx - Create and attach to
an application context” on page 471

sql C: dbthrds.sqc C++: dbthrds.sqC

APIs for
obtaining
concurrent access
to a database

“sqleDetachFromCtx - Detach from
context” on page 472

sql C: dbthrds.sqc C++: dbthrds.sqC

APIs for
obtaining
concurrent access
to a database

“sqleEndCtx - Detach from and free
the memory associated with an
application context” on page 473

sql n/a

DB2 APIs

Chapter 1. Administrative APIs 11

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

APIs for
obtaining
concurrent access
to a database

“sqleGetCurrentCtx - Get current
context” on page 475

sql n/a

APIs for
obtaining
concurrent access
to a database

“sqleInterruptCtx - Interrupt context”
on page 476

sql n/a

APIs for
obtaining
concurrent access
to a database

“sqleSetTypeCtx - Set application
context type” on page 477

sql C: dbthrds.sqc C++: dbthrds.sqC

Database
partition
management
APIs

“sqleaddn - Add a database partition
to the partitioned database
environment” on page 360

sqlenv n/a

Database
partition
management
APIs

“sqledrpn - Check whether a database
partition server can be dropped” on
page 391

sqlenv n/a

Database
partition
management
APIs

“sqlecran - Create a database on a
database partition server” on page 373

sqlenv n/a

Database
partition
management
APIs

“sqledpan - Drop a database on a
database partition server” on page 387

sqlenv n/a

Database
partition
management
APIs

“sqlesdeg - Set the maximum runtime
intra-partition parallelism level or
degree for SQL statements” on page
424

sqlenv C: ininfo.c C++: ininfo.C

Database
partition
management
APIs

“sqlugtpi - Get table distribution
information” on page 447

sqlutil n/a

Database
partition
management
APIs

“sqlugrpn - Get the database partition
server number for a row” on page 444

sqlutil n/a

Miscellaneous
APIs

“db2AdminMsgWrite - Write log
messages for administration and
replication function” on page 40

db2ApiDf n/a

Miscellaneous
APIs

“db2XaGetInfo - Get information for a
resource manager” on page 459

sqlxa n/a

DB2 APIs

12 Administrative API Reference

Table 1. DB2 APIs, Include files, and Sample Programs (continued)

API Type DB2 API Include File Sample Programs

Note: Include file extensions vary with programming language. C/C++ include files have a file extension of .h.
COBOL include files have a file extension of .cbl. The include files can be found in the following directories:

C/C++ (UNIX®):
sqllib/include

C/C++ (Windows®):
sqllib\include

COBOL (UNIX):
sqllib/include/cobol_a

sqllib/include/cobol_i

sqllib/include/cobol_mf

COBOL (Windows):
sqllib\include\cobol_a

sqllib\include\cobol_i

sqllib\include\cobol_mf

Table 2. C/C++ Sample Programs with DB2 APIs

Sample Program Included APIs

cli_info.c, cli_info.C v sqlesetc API - Set client connection settings

v sqleseti API - Set client information

v sqleqryc API - Query client connection settings

v sqleqryi API - Query client information

dbcfg.sqc,
dbcfg.sqC

v db2AutoConfig API - Access the Configuration Advisor

v db2AutoConfigFreeMemory API - Free the memory allocated by
the db2AutoConfig API

v sqlesetc API - Set client connection settings

v sqlaintp API - Get error message

dbconn.sqc,
dbconn.sqC

v db2DatabaseRestart API - Restart database

v sqlefrce API - Force users and applications off the system

dbcreate.c,
dbcreate.C

v sqlecrea API - Create database

v sqledrpd API - Drop database

dbinfo.c, dbinfo.C v db2CfgGet API - Get the database manager or database
configuration parameters

v db2CfgSet API - Set the database manager or database
configuration parameters

dbmcon.sqc,
dbmcon.sqC

v sqlesetc API - Set client connection settings

dbmigrat.c,
dbmigrat.C

v sqlemgdb API - Migrate previous version of DB2 database to
current version

dbpkg.sqc,
dbpkg.sqC

v sqlaprep API - Precompile application program

v sqlabndx API - Bind application program to create a package

v sqlarbnd API - Rebind package

DB2 APIs

Chapter 1. Administrative APIs 13

Table 2. C/C++ Sample Programs with DB2 APIs (continued)

Sample Program Included APIs

dbrecov.sqc,
dbrecov.sqC

v db2HistoryCloseScan API - End the history file scan

v db2HistoryGetEntry API - Get the next entry in the history file

v db2HistoryOpenScan API - Start a history file scan

v db2HistoryUpdate API - Update the history file entry

v db2Prune API - Delete the history file entries or log files from the
active log path

v db2CfgGet API - Get the database manager or database
configuration parameters

v db2CfgSet API - Set the database manager or database
configuration parameters

v sqlbmtsq API - Get the query data for all table spaces

v sqlbstsc API - Set table space containers

v sqlbtcq API - Get the query data for all table space containers

v sqlecrea API - Create database

v sqledrpd API - Drop database

v sqlefmem API - Free the memory allocated by the sqlbtcq and
sqlbmtsq APIs

v db2Backup API - Back up a database or table space

v db2Restore API - Restore a database or table space

v db2ReadLog API - Asynchronous read log

v db2ReadLogNoConn API - Read log without a database connection

v db2Rollforward API - Roll forward a database

dbsample.sqc v db2DatabaseRestart API - Restart database

v sqlecrea API - Create database

v sqlefrce API - Force users and applications off the system

v sqlabndx API - Bind application program to create a package

dbthrds.sqc,
dbthrds.sqC

v sqleAttachToCtx API - Attach to context

v sqleBeginCtx API - Create and attach to an application context

v sqleDetachFromCtx API - Detach from context

v sqleSetTypeCtx API - Set application context type

dtformat.sqc v db2Load API - Load data into a table

v db2Import API - Import data into a table, hierarchy, nickname or
view

inattach.c,
inattach.C

v sqleatcp API - Attach to instance and change password

v sqleatin API - Attach to instance

v sqledtin API - Detach from instance

DB2 APIs

14 Administrative API Reference

Table 2. C/C++ Sample Programs with DB2 APIs (continued)

Sample Program Included APIs

ininfo.c, ininfo.C v db2CfgGet API - Get the database manager or database
configuration parameters

v db2CfgSet API - Set the database manager or database
configuration parameters

v sqlegins API - Get current instance

v sqlectnd API - Catalog an entry in the node directory

v sqlenops API - Start a node directory scan

v sqlengne API - Get the next node directory entry

v sqlencls API - End a node directory scan

v sqleuncn API - Uncatalog an entry from the node directory

v sqlecadb API - Catalog a database in the system database directory

v db2DbDirOpenScan API - Start a system or local database directory
scan

v db2DbDirGetNextEntry API - Get the next system or local database
directory entry

v sqledcgd API - Change a database comment in the system or local
database directory

v db2DbDirCloseScan API - End a system or local database directory
scan

v sqleuncd API - Uncatalog a database from the system database
directory

v sqlegdad API - Catalog a database in the database connection
services (DCS) directory

v sqlegdsc API - Start a database connection services (DCS) directory
scan

v sqlegdge API - Get a specific entry in the database connection
services (DCS) directory

v sqlegdgt API - Get database connection services (DCS) directory
entries

v sqlegdcl API - End a database connection services (DCS) directory
scan

v sqlegdel API - Uncatalog a database from the database connection
services (DCS) directory

v sqlesdeg API - Set the maximum runtime intra-partition parallelism
level or degree for SQL statements

instart.c, instart.C v sqlefrce API - Force users and applications off the system

v db2InstanceStart API - Start instance

v db2InstanceStop API - Stop instance

tbmove.sqc,
tbmove.sqC

v db2Export API - Export data from a database

v db2Import API - Import data into a table, hierarchy, nickname or
view

v sqluvqdp API - Quiesce table spaces for a table

v db2Load API - Load data into a table

v db2LoadQuery API - Get the status of a load operation

tbreorg.sqc,
tbreorg.sqC

v db2Reorg API - Reorganize an index or a table

v db2Runstats API - Update statistics about the characteristics of a
table and associated indexes

DB2 APIs

Chapter 1. Administrative APIs 15

Table 2. C/C++ Sample Programs with DB2 APIs (continued)

Sample Program Included APIs

tscreate.sqc,
tscreate.sqC

v db2CfgGet API - Get the database manager or database
configuration parameters

utilapi.c, utilapi.C v sqlaintp API - Get error message

v sqlogstt API - Get the SQLSTATE message

v sqleatin API - Attach to instance

v sqledtin API - Detach from instance

utilsnap.c,
utilsnap.C

v db2GetSnapshot API - Get a snapshot of the database manager
operational status

v db2MonitorSwitches API - Get or update the monitor switch
settings

Table 3. COBOL Sample Programs with DB2 APIs

Sample Program Included APIs

checkerr.cbl v sqlaintp API - Get error message

v sqlogstt API - Get the SQLSTATE message

client.cbl v sqleqryc API - Query client connection settings

v sqlesetc API - Set client connection settings

db_udcs.cbl v sqleatin API - Attach to instance

v sqlecrea API - Create database

v sqledrpd API - Drop database

dbcat.cbl v sqlecadb API - Catalog a database in the system database directory

v db2DbDirCloseScan API - End a system or local database directory
scan

v db2DbDirGetNextEntry API - Get the next system or local database
directory entry

v db2DbDirOpenScan API - Start a system or local database directory
scan

v sqleuncd API - Uncatalog a database from the system database
directory

dbcmt.cbl v sqledcgd API - Change a database comment in the system or local
database directory

v db2DbDirCloseScan API - End a system or local database directory
scan

v db2DbDirGetNextEntry API - Get the next system or local database
directory entry

v db2DbDirOpenScan API - Start a system or local database directory
scan

v sqleisig API - Install signal handler

dbinst.cbl v sqleatcp API - Attach to instance and change password

v sqleatin API - Attach to instance

v sqledtin API - Detach from instance

v sqlegins API - Get current instance

DB2 APIs

16 Administrative API Reference

Table 3. COBOL Sample Programs with DB2 APIs (continued)

Sample Program Included APIs

dbstat.sqb v db2Reorg API - Reorganize an index or a table

v db2Runstats API - Update statistics about the characteristics of a
table and associated indexes

dcscat.cbl v sqlegdad API - Catalog a database in the database connection
services (DCS) directory

v sqlegdcl API - End a database connection services (DCS) directory
scan

v sqlegdel API - Uncatalog a database from the database connection
services (DCS) directory

v sqlegdge API - Get a specific entry in the database connection
services (DCS) directory

v sqlegdgt API - Get database connection services (DCS) directory
entries

v sqlegdsc API - Start a database connection services (DCS) directory
scan

ebcdicdb.cbl v sqleatin API - Attach to instance

v sqlecrea API - Create database

v sqledrpd API - Drop database

expsamp.sqb v db2Export API - Export data from a database

v db2Import API - Import data into a table, hierarchy, nickname or
view

impexp.sqb v db2Export API - Export data from a database

v db2Import API - Import data into a table, hierarchy, nickname or
view

loadqry.sqb v db2LoadQuery API - Get the status of a load operation

migrate.cbl v sqlemgdb API - Migrate previous version of DB2 database to
current version

nodecat.cbl v sqlectnd API - Catalog an entry in the node directory

v sqlencls API - End a node directory scan

v sqlengne API - Get the next node directory entry

v sqlenops API - Start a node directory scan

v sqleuncn API - Uncatalog an entry from the node directory

rebind.sqb v sqlarbnd API - Rebind package

tabscont.sqb v sqlbctcq API - Close a table space container query

v sqlbftcq API - Fetch the query data for rows in a table space
container

v sqlbotcq API - Open a table space container query

v sqlbtcq API - Get the query data for all table space containers

v sqlefmem API - Free the memory allocated by the sqlbtcq and
sqlbmtsq APIs

DB2 APIs

Chapter 1. Administrative APIs 17

Table 3. COBOL Sample Programs with DB2 APIs (continued)

Sample Program Included APIs

tabspace.sqb v sqlbctsq API - Close a table space query

v sqlbftpq API - Fetch the query data for rows in a table space

v sqlbgtss API - Get table space usage statistics

v sqlbmtsq API - Get the query data for all table spaces

v sqlbotsq API - Open a table space query

v sqlbstpq API - Get information about a single table space

v sqlefmem API - Free the memory allocated by the sqlbtcq and
sqlbmtsq APIs

tload.sqb v db2Export API - Export data from a database

v sqluvqdp API - Quiesce table spaces for a table

tspace.sqb v sqlbctcq API - Close a table space container query

v sqlbctsq API - Close a table space query

v sqlbftcq API - Fetch the query data for rows in a table space
container

v sqlbftpq API - Fetch the query data for rows in a table space

v sqlbgtss API - Get table space usage statistics

v sqlbmtsq API - Get the query data for all table spaces

v sqlbotcq API - Open a table space container query

v sqlbotsq API - Open a table space query

v sqlbstpq API - Get information about a single table space

v sqlbstsc API - Set table space containers

v sqlbtcq API - Get the query data for all table space containers

v sqlefmem API - Free the memory allocated by the sqlbtcq and
sqlbmtsq APIs

setact.cbl v sqlesact API - Set accounting string

DB2 APIs

18 Administrative API Reference

Chapter 2. Changed APIs and data structures
Table 4. Back-level supported APIs and data structures

API or Data Structure
(Version) Descriptive Name

New API, Data Structure, or Table Function
(Version)

sqlbftsq (V2) Fetch Table Space Query sqlbftpq (V5)

sqlbstsq (V2) Single Table Space Query sqlbstpq (V5)

sqlbtsq (V2) Table Space Query sqlbmtsq (V5)

sqlectdd (V2) Catalog Database sqlecadb (V5)

sqledosd (V8.1) Open Database Directory Scan db2DbDirOpenScan (V8.2)

sqledgne (V8.1) Get Next Database Directory Entry db2DbDirGetNextEntry (V8.2)

sqledcls (V8.1) Close Database Directory Scan db2DbDirCloseScan (V8.2)

sqlepstart (V5) Start Database Manager db2InstanceStart (V8)

sqlepstp (V5) Stop Database Manager db2InstanceStop (V8)

sqlepstr (V2) Start Database Manager (DB2 Parallel
Edition Version 1.2)

db2InstanceStart (V8)

sqlestar (V2) Start Database Manager (DB2 Version
2)

db2InstanceStart (V8)

sqlestop (V2) Stop Database Manager db2InstanceStop (V8)

sqlerstd (V5) Restart Database db2DatabaseRestart (V6)

sqlfddb (V7) Get Database Configuration Defaults db2CfgGet (V8)

sqlfdsys (V7) Get Database Manager Configuration
Defaults

db2CfgGet (V8)

sqlfrdb (V7) Reset Database Configuration db2CfgSet (V8)

sqlfrsys (V7) Reset Database Manager
Configuration

db2CfgSet (V8)

sqlfudb (V7) Update Database Configuration db2CfgSet (V8)

sqlfusys (V7) Update Database Manager
Configuration

db2CfgSet (V8)

sqlfxdb (V7) Get Database Configuration db2CfgGet (V8)

sqlfxsys (V7) Get Database Configuration db2CfgGet (V8)

sqlmon (V6) Get/Update Monitor Switches db2MonitorSwitches (V7)

sqlmonss (V5) Get Snapshot db2GetSnapshot (V6)

sqlmonsz (V6) Estimate Size Required for sqlmonss()
Output Buffer

db2GetSnapshotSize (V7)

sqlmrset (V6) Reset Monitor db2ResetMonitor (V7)

sqlubkp (V5) Backup Database db2Backup (V8)

sqlubkup (V2) Backup Database db2Backup (V8)

sqluexpr Export db2Export (V8)

sqlugrpi (V2) Get Row Partitioning Information
(DB2 Parallel Edition Version 1.x)

sqlugrpn (V5)

sqluhcls (V5) Close Recovery History File Scan db2HistoryCloseScan (V6)

© Copyright IBM Corp. 1993, 2010 19

Table 4. Back-level supported APIs and data structures (continued)

API or Data Structure
(Version) Descriptive Name

New API, Data Structure, or Table Function
(Version)

sqluhget (V5) Retrieve DDL Information From the
History File

db2HistoryGetEntry (V6)

sqluhgne (V5) Get Next Recovery History File Entry db2HistoryGetEntry (V6)

sqluhops (V5) Open Recovery History File Scan db2HistoryOpenScan (V6)

sqluhprn (V5) Prune Recovery History File db2Prune (V6)

sqluhupd (V5) Update Recovery History File db2HistoryUpdate (V6)

sqluimpr Import db2Import (V8)

sqluload (V7) Load db2Load (V8)

sqluqry (V5) Load Query db2LoadQuery (V6)

sqlureot (V7) Reorganize Table db2Reorg (V8)

sqlurestore (V7) Restore Database db2Restore (V8)

sqlurlog (V7) Asynchronous Read Log db2ReadLog (V8)

sqluroll (V7) Rollforward Database db2Rollforward (V8)

sqlursto (V2) Restore Database sqlurst (V5)

sqlustat (V7) Runstats db2Runstats (V8)

sqlxhcom (V2) Commit an Indoubt Transaction sqlxphcm (V5)

sqlxhqry (V2) List Indoubt Transactions sqlxphqr (V5)

sqlxhrol (V2) Roll Back an Indoubt Transaction sqlxphrl (V5)

SQLB-TBSQRY-DATA (V2) Table space data structure. SQLB-TBSPQRY-DATA (V5)

SQLE-START-OPTIONS (V7) Start Database Manager data
structure

db2StartOptionsStruct (V8)

SQLEDBSTOPOPT (V7) Start Database Manager data
structure

db2StopOptionsStruct (V8)

SQLEDBSTRTOPT (V2) Start Database Manager data
structure (DB2 Parallel Edition
Version 1.2)

db2StartOptionsStruct (V8)

SQLEDINFO (v8.1) Get Next Database Directory Entry
data structure

db2DbDirInfo (V8.2)

SQLUEXPT-OUT Export output structure db2ExportOut (V8.2)

SQLUHINFO and
SQLUHADM (V5)

History file data structures db2HistData (V6)

SQLUIMPT-IN Import input structure db2ImportIn (V8.2)

SQLUIMPT-OUT Import output structure db2ImportOut (V8.2)

SQLULOAD-IN (V7) Load input structure db2LoadIn (V8)

SQLULOAD-OUT (V7) Load output structure db2LoadOut (V8)

db2DbDirInfo (V8.2) Get Next Database Directory Entry
data structure

db2DbDirInfoV9 (V9.1)

db2DbDirNextEntryStruct
(V8.2)

Get Next Database Directory Entry
data structure

db2DbDirNextEntryStructV9 (V9.1)

db2gDbDirNextEntryStruct
(V8.2)

Get Next Database Directory Entry
data structure

db2gDbDirNextEntryStrV9 (V9.1)

Changed APIs and data structures

20 Administrative API Reference

Table 4. Back-level supported APIs and data structures (continued)

API or Data Structure
(Version) Descriptive Name

New API, Data Structure, or Table Function
(Version)

sqlbctsq Close a table space query MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions
(V9.7)

sqlbotsq Open a table space query

sqlbftpq Fetch the query data for rows in a
table space

sqlbgtss Get table space usage statistics MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions
(V9.7)

sqlbmtsq Get the query data for all table spaces MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions
(V9.7)

sqlbstpq Get information about a single table
space

MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions
(V9.7)

sqlbtcq Get the query data for all table space
containers

MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions
(V9.7)

Table 5. Back-level unsupported APIs and data structures

Name Descriptive Name
Replacement API, data
structure or table function

sqlufrol/sqlgfrol Roll Forward Database (DB2 Version 1.1) db2Rollforward

sqluprfw Rollforward Database (DB2 Parallel Edition
Version 1.x)

db2Rollforward

sqlurfwd/sqlgrfwd Roll Forward Database (DB2 Version 1.2) db2Rollforward

sqlurllf/sqlgrfwd Rollforward Database (DB2 Version 2) db2Rollforward

sqlxphqr List an Indoubt Transaction db2XaListIndTrans

SQLXA-RECOVER Transaction API structure db2XaRecoverStruct

sqluadau Get current user's authorities AUTH_LIST_AUTHORITIES_
FOR_AUTHID table function

SQL-AUTHORIZATIONS Authorizations structure none required

Changed APIs and data structures

Chapter 2. Changed APIs and data structures 21

Changed APIs and data structures

22 Administrative API Reference

Chapter 3. Log sequence number changes affecting API and
application behavior

The size of the log sequence number (LSN) has increased from six-bytes to
eight-bytes. A new data type, db2LSN, has been created in support of the new LSN
size.

A number of APIs with input and output structures containing LSN fields have
been updated to use the new db2LSN data type. The updated APIs are discussed
below. To ensure that the latest versions of the APIs are used, the new DB2 version
number constant must be passed to the APIs through the version number API
input parameter.

Resulting from the LSN size increase and the creation of new versions of the APIs,
the behavior of the affected APIs is dependent on the current client-server
configuration and the level of the applications in use. Under certain scenarios there
are restrictions and conditions to take note of regarding the extent of the APIs
abilities.

Note: For the older APIs listed below, these APIs do not have new versions and
therefore their structures do not make use of the db2LSN data type, though their
behavior is still influenced by the client-server configuration being used.

db2ReadLog API

The behavior of the db2ReadLog API changes depending on the client-server
configuration.

Here are the possible configurations:
v Latest client and latest server: An error message SQL2032N is returned if

existing applications make use of the older version of the db2ReadLog API. Calls
to the older version of the db2ReadLog API are not supported. Such applications
must be updated to make use of the latest version of the db2ReadLog API. If
you are using an application developed with the latest version of the
db2ReadLog API, then there are no restrictions on the functions of the API.

Note: If the client and server are on differing endian platforms, then all native
data type fields in the db2ReadLogInfoStruct output structure are byte-reversed,
including the LSN fields.

v Older client and latest server: As with the previous configuration, older level
db2ReadLog API calls are not supported and the error message SQL2032N is
returned. The client must be upgraded and any existing applications updated to
use the latest version of the db2ReadLog API in order to proceed.

v Latest client and older server: Whether the latest version of the db2ReadLog API
is invoked from within a newly developed application, or an older version
db2ReadLog API call is made from an existing application, there are no
restrictions on the functions of the API. In both cases however, the log records
returned in the log buffer are representative of the old log records, with the old
LSN format.

© Copyright IBM Corp. 1993, 2010 23

Note: If the client and server are on differing endian platforms, then all native
data type fields in the db2ReadLogInfoStruct output structure are byte-reversed,
excluding the LSN fields.

db2ReadLogNoConn API

The behavior of the db2ReadLogNoConn API changes depending on the
client-server configuration.

Here are the possible configurations:
v Latest client and latest server: An error message SQL2032N is returned if

existing applications make use of the older version of the db2ReadLogNoConn
API. Calls to the older version of the db2ReadLogNoConn API are not supported.
Such applications must be updated to make use of the latest version of the
db2ReadLogNoConn API. If you are using an application developed with the
latest version of the db2ReadLogNoConn API, then there are no restrictions on
the functions of the API.

db2HistoryGetEntry API

The behavior of the db2HistoryGetEntry API changes depending on the
client-server configuration.

Here are the possible configurations:
v Latest client and latest server: An error message SQL2032N is returned if

existing applications make use of the older version of the db2HistoryGetEntry
API and if the LSNs of the history file entries are larger than can be contained
by the “oLastLSN” field of the older level API output structure. Such
applications must be updated to make use of the latest version of the
db2HistoryGetEntry API to correct this behavior. If you are using an application
developed with the latest version of the db2HistoryGetEntry API, then there are
no restrictions on the functions of the API.

v Older client and latest server: An error message SQL2032N is returned if an
older version of the db2HistoryGetEntry API is used, and if the LSNs of the
history file entries are larger than can be contained by the “oLastLSN” field of
the older level API output structure. An upgrade of the client and an update of
the existing applications updated are needed to correct the problem.

v Latest client and older server: If the latest version of the db2HistoryGetEntry
API is invoked from within a newly developed application, or if a call to the
earlier version of the db2HistoryGetEntry API is made from an existing
application, then there are no restrictions on the functions of the API.

db2Prune API

The behavior of the db2Prune API changes depending on the client-server
configuration.

Here are the possible configurations:
v Latest client and latest server: If you are using a new application with the latest

version of the db2Prune API, or you are using and existing application that
utilizes an earlier version of the db2Prune API, then there are no restrictions on
the functions of the API.

Log sequence number changes affecting API and application behavior

24 Administrative API Reference

v Older client and latest server: If you are using an existing application and
making calls to an earlier version of the db2Prune API, then there are no
restrictions on the functions of the API.

v Latest client and older server: When using the latest version of the db2Prune
API with an LSN string as input, an error message SQL2032N is returned if the
LSN string either represents an LSN that exceeds the value 0xFFFF FFFF FFFF,
or the LSN string is less than 12 characters in length. To bypass this error, the
server must be upgraded to at least match the level of the client. If making calls
to an older version of the db2Prune API through an existing application, there
are no restrictions on the functions of the API as introduced by the changes to
the LSN.

sqlbftpq API, sqlbstpq API, and sqlbmtsq API

The behavior of the sqlbftpq API, sqlbstpq API, and sqlbmtsq API changes
depending on the client-server configuration.

Note: These APIs have been deprecated and might be removed in a future release.
You can use the MON_GET_TABLESPACE and the MON_GET_CONTAINER table
functions instead which return more information. For more information, see the
“LIST TABLESPACES and LIST TABLESPACE CONTAINERS commands have
been deprecated” topic in the What's New for DB2 Version 9.7 book.

Here are the possible configurations:
v Latest client and latest server: For each of these APIs, if calls are made to an

earlier version of the API through an existing application, an error message
SQL2032N is returned, provided that the LSN returned is larger in size than the
“lifeLSN” field of the older SQLB_TBSPQRY_DATA structure can contain. There
is an additional consideration for the sqlbmtsq API: when making a call to an
earlier version of this API, the “lifeLSN” field of the SQLB_TBSPQRY_DATA
structure will contain an invalid value, even though all other fields of the
structure contain valid values. Updating the applications to use the latest
versions of the APIs can solve these problems. If using the latest versions of
these APIs, then there are no restrictions on the functions of the APIs.

v Older client and latest server: For this configuration, exercising the earlier
version of any of the three APIs results in a behavior that mirrors the behavior
of the APIs in the configuration where both the client and server are of the latest
release, as noted above, excluding the limitation noted for the sqlbmtsq API. To
resolve these limitations, the client must be upgraded to at least the release level
of the server, and the applications in use updated to make use of the latest
versions of the APIs.

v Latest client and older server: When making a call to an earlier version of the
sqlbmtsq API through an existing application, the “lifeLSN” field of the
SQLB_TBSPQRY_DATA structure is returned with an invalid LSN value. All
other fields of the structure remain valid. To correct this behavior, the
application in use must be updated to incorporate the latest version of the
sqlbmtsq API. For the other APIs, there are no restrictions on the functions of the
APIs regardless of the version of the API in use.

sqlurlog API (older level API)

The behavior of the sqlurlog API changes depending on the client-server
configuration.

Here are the possible configurations:

Log sequence number changes affecting API and application behavior

Chapter 3. Log sequence number changes affecting API and application behavior 25

v Latest client and latest server: Using the sqlurlog API in this client-server
configuration could result in an error message SQL2650N being returned should
any of the LSNs returned be greater in value than can be contained by the LSN
fields of the SQLU_RLOG_INFO output structure. The only way to avoid this
problem would be to modify any applications using the sqlurlog API to make
use of its successor, the db2ReadLog API.

Note: Using the sqlurlog API in this configuration, the log records returned
through the log buffer are representative of the new log records and contain
LSNs of the new db2LSN format.

v Older client and latest server: Similar to the db2ReadLog API and the
db2ReadLogNoConn API, sqlurlog API calls issued from the older level clients
against current level servers are “not supported”. Any attempts at using the
sqlurlog API result in the return of the error message SQL1198N. To avoid this
problem, the client must be upgraded to match the level of the server.

v Latest client and older server: There are no restrictions on the functions of the
API when using the sqlurlog API in this client-server configuration.

sqlbftsq API, sqlbstsq API, and sqlbtsq API (older level APIs)

The behavior of the sqlbftsq API, sqlbstsq API, and sqlbtsq API changes depending
on the client-server configuration.

Here are the possible configurations:
v Latest client and latest server: Using any of these three APIs in this type of

client-server configuration could result in the population of the “lifeLSN” field
of the older SQLB_TBSPQRY_DATA structure with an invalid LSN value. This is
a consequence of the “lifeLSN” field of the SQLB_TBSPQRY_DATA structure
being unable to contain large LSN values. To avoid this problem, the successors
of the sqlbftsq API, sqlbstsq API, and sqlbtsq API must be used, where the
successors are the sqlbftpq API, sqlbstpq API, and sqlbmtsq API respectively.

v Older client and latest server: The API behavior described in the previous
configuration applies for this configuration as well.

v Latest client and older server: There are no limitations in the functions of the
APIs when using the sqlbftsq API, sqlbstsq API, and sqlbtsq API under this
client-server configuration.

Log sequence number changes affecting API and application behavior

26 Administrative API Reference

Chapter 4. How the API descriptions are organized

A short description of each API precedes some or all of the following subsections.

Scope

The API's scope of operation within the instance. In a single-partition database
environment, the scope is that single database partition only. In a partitioned
database environment, the scope can be the collection of all logical database
partition servers defined in the node configuration file (db2nodes.cfg) or the
database partition from which the API is called.

Authorization

The authority required to successfully call the API.

Required connection

One of the following: database, instance, none, or establishes a connection.
Indicates whether the function requires a database connection, an instance
attachment, or no connection to operate successfully.

None means that no database connection is required in order for the API to work
successfully. Establishes a connection means that the API will establish a connection
to the database when the API is called.

An explicit connection to the database or attachment to the instance may be
required before a particular API can be called. APIs that require a database
connection or an instance attachment can be executed either locally or remotely.
Those that require neither cannot be executed remotely; when called at the client,
they affect the client environment only.

API include file

The name of the include file that contains the API prototype, and any necessary
predefined constants and parameters.

Note: Include file extensions vary with programming language. C/C++ include
files have a file extension of .h. COBOL include files have a file extension of .cbl.
The include files can be found in the following directories:

C/C++ (UNIX):
sqllib/include

C/C++ (Windows):
sqllib\include

COBOL (UNIX):
sqllib/include/cobol_a

sqllib/include/cobol_i

sqllib/include/cobol_mf

COBOL (Windows):
sqllib\include\cobol_a

© Copyright IBM Corp. 1993, 2010 27

sqllib\include\cobol_i

sqllib\include\cobol_mf

C API syntax

The C syntax of the API call.

Since Version 6, a new standard has been applied to the DB2 administrative APIs.
Implementation of the new API definitions is being carried out in a staged manner.
Following is a brief overview of the changes:
v The new API names contain the prefix "db2", followed by a meaningful mixed

case string (for example, db2LoadQuery). Related APIs have names that allow
them to be logically grouped. For example:

db2HistoryCloseScan
db2HistoryGetEntry
db2HistoryOpenScan
db2HistoryUpdate

v Generic APIs have names that contain the prefix "db2g", followed by a string
that matches the C API name. Data structures used by generic APIs have names
that also contain the prefix "db2g".

v The first parameter into the function (versionNumber) represents the version,
release, or PTF level to which the code is to be compiled. This version number is
used to specify the level of the structure that is passed in as the second
parameter.

v The second parameter into the function is a void pointer to the primary interface
structure for the API. Each element in the structure is either an atomic type (for
example, db2Long32) or a pointer. Each parameter name adheres to the
following naming conventions:

piCamelCase - pointer to input data
poCamelCase - pointer to output data
pioCamelCase - pointer to input or output data
iCamelCase - input data
ioCamelCase - input/output data
oCamelCase - output data

v The third parameter is a pointer to the SQLCA, and is mandatory.

Generic API syntax

The syntax of the API call for the COBOL and FORTRAN programming languages.

Attention: Provide one extra byte for every character string passed to an API.
Failure to do so may cause unexpected errors. This extra byte is modified by the
database manager.

API parameters

A description of each API parameter and its values. Predefined values are listed
with the appropriate symbolics. Actual values for symbolics can be obtained from
the appropriate language include files. COBOL programmers should substitute a
hyphen (-) for the underscore (_) in all symbolics. For more information about
parameter data types in each host language, see the sample programs.

Note: Applications calling database manager APIs must properly check for error
conditions by examining return codes and the SQLCA structure. Most database
manager APIs return a zero return code when successful. In general, a non-zero

How the API descriptions are organized

28 Administrative API Reference

return code indicates that the secondary error handling mechanism, the SQLCA
structure, may be corrupt. In this case, the called API is not executed. A possible
cause for a corrupt SQLCA structure is passing an invalid address for the structure.

Error information is returned in the SQLCODE and SQLSTATE fields of the
SQLCA structure, which is updated after most database manager API calls. Source
files calling database manager APIs can provide one or more SQLCA structures;
their names are arbitrary. An SQLCODE value of zero means successful execution
(with possible SQLWARN warning conditions). A positive value means that the
statement was successfully executed but with a warning, as with truncation of a
host variable. A negative value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code that is
consistent across other IBM® database products, and across SQL92 compliant
database managers. Use SQLSTATEs when concerned about portability, since
SQLSTATEs are common across many database managers.

The SQLWARN field contains an array of warning indicators, even if SQLCODE is
zero.

REXX API syntax

The REXX syntax of the API call, where appropriate.

The SQLDB2 interface supports calling APIs from REXX. The SQLDB2 interface
was created to provide support in REXX for new or previously unsupported APIs
that do not have any output other than the SQLCA. Invoking a command through
the SQLDB2 interface is syntactically the same as invoking the command through
the command line processor (CLP), except that the token call db2 is replaced by
CALL SQLDB2. Using the CALL SQLDB2 from REXX has the following advantages over
calling the CLP directly:
v The compound REXX variable SQLCA is set
v By default, all CLP output messages are turned off.

REXX API parameters

A description of each REXX API parameter and its values, where appropriate.

How the API descriptions are organized

Chapter 4. How the API descriptions are organized 29

Include files for DB2 API applications

The include files that are intended to be used in your C, C++, COBOL and
FORTRAN applications to call DB2 APIs are described below:

C and C++ include files

DB2APIDF (db2ApiDf.h)
This file defines structures, constants, and prototypes for almost all DB2
APIs whose names start with 'db2'.

DB2AUCFG (db2AuCfg.h)
This file defines structures, constants, and prototypes for the DB2 APIs,
db2AutoConfig and db2AutoConfigFreeMemory.

DB2SECPLUGIN (db2secPlugin.h)
This file defines structures, constants, and prototypes for APIs used to
develop customized security plug-ins for authentication and group
membership lookup purposes.

SQL (sql.h)
This file includes language-specific prototypes for the binder, precompiler,
and error message retrieval APIs. It also defines system constants.

SQLAPREP (sqlaprep.h)
This file contains definitions required to write your own precompiler.

SQLENV (sqlenv.h)
This file defines language-specific calls for the database environment APIs,
and the structures, constants, and return codes for those interfaces.

SQLMON (sqlmon.h)
This file defines language-specific calls for the database system monitor
APIs, and the structures, constants, and return codes for those interfaces.

SQLUTIL (sqlutil.h)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

SQLUVEND (sqluvend.h)
This file defines structures, constants, and prototypes for the APIs to be
used by the storage management vendors.

SQLXA (sqlxa.h)
This file contains function prototypes and constants used by applications
that use the X/Open XA Interface.

COBOL include files

SQL (sql.cbl)
This file includes language-specific prototypes for the binder, precompiler,
and error message retrieval APIs. It also defines system constants.

SQLAPREP (sqlaprep.cbl)
This file contains definitions required to write your own precompiler.

SQLENV (sqlenv.cbl)
This file defines language-specific calls for the database environment APIs,
and the structures, constants, and return codes for those interfaces.

Include files for DB2 API applications

30 Administrative API Reference

SQLMON (sqlmon.cbl)
This file defines language-specific calls for the database system monitor
APIs, and the structures, constants, and return codes for those interfaces.

SQLMONCT (sqlmonct.cbl)
This file contains constant definitions and local data structure definitions
required to call the Database System Monitor APIs.

SQLUTIL (sqlutil.cbl)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

FORTRAN include files

SQL (sql.f)
This file includes language-specific prototypes for the binder, precompiler,
and error message retrieval APIs. It also defines system constants.

SQLAPREP (sqlaprep.f)
This file contains definitions required to write your own precompiler.

SQLENV (sqlenv.f)
This file defines language-specific calls for the database environment APIs,
and the structures, constants, and return codes for those interfaces.

SQLMON (sqlmon.f)
This file defines language-specific calls for the database system monitor
APIs, and the structures, constants, and return codes for those interfaces.

SQLUTIL (sqlutil.f)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

Include files for DB2 API applications

Chapter 4. How the API descriptions are organized 31

Include files for DB2 API applications

32 Administrative API Reference

Chapter 5. Administrative APIs

© Copyright IBM Corp. 1993, 2010 33

db2AddContact - Add a contact to whom notification messages can be
sent

Adds a contact to the contact list. Contacts are users to whom notification
messages can be sent. Contacts can be either defined locally on the system or in a
global list. The setting of the DB2 administration server (DAS) configuration
parameter, contact_host, determines whether the list is local or global.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2AddContact (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2AddContactData
{

char *piUserid;
char *piPassword;
char *piName;
db2Uint32 iType;
char *piAddress;
db2Uint32 iMaxPageLength;
char *piDescription;

} db2AddContactData;

db2AddContact API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2AddContactData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AddContactData data structure parameters

piUserid
Input. The user name.

piPassword
Input. The password for the user ID specified by parameter piUserid.

piName
Input. The contact name.

iType Input. Specifies the type of contact. Valid values are:

db2AddContact - Add a contact to whom notification messages can be sent

34 Administrative API Reference

v DB2CONTACT_EMAIL
v DB2CONTACT_PAGE

piAddress
Input. The e-mail or pager address of the iType parameter.

iMaxPageLength
Input. The maximum message length for when iType is set to
DB2CONTACT_PAGE.

piDescription
Input. User supplied description of the contact.

Usage notes

This API is not supported on UNIX and Linux®. However, you can access the same
functionality through the SQL interface.

db2AddContact - Add a contact to whom notification messages can be sent

Chapter 5. Administrative APIs 35

db2AddContactGroup - Add a contact group to whom notification
messages can be sent

Adds a new contact group to the list of contact groups. A contact group contains a
list of users to whom notification messages can be sent. Contact groups can be
either defined locally on the system or in a global list. The setting of the DB2
administration server (DAS) configuration parameter contact_host determines
whether the list is local or global.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2AddContactGroup (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2AddContactGroupData
{

char *piUserid;
char *piPassword;
char *piGroupName;
char *piDescription;
db2Uint32 iNumContacts;
struct db2ContactTypeData *piContacts;

} db2AddContactGroupData;

typedef SQL_STRUCTURE db2ContactTypeData
{

db2Uint32 contactType;
char *pName;

} db2ContactTypeData;

db2AddContactGroup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2AddContactGroupData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AddContactGroupData data structure parameters

piUserid
Input. The user name.

db2AddContactGroup - Add a contact group to whom notification messages can be sent

36 Administrative API Reference

piPassword
Input. The password for piUserid.

piGroupName
Input. The name of the group to be retrieved.

piDescription
Input. The description of the group.

iNumContacts
Input. The number of piContacts.

piContacts
A pointer to the db2ContactTypeData structure.

db2ContactTypeData data structure parameters

contactType
Specifies the type of contact. Valid values are:
v DB2CONTACT_SINGLE
v DB2CONTACT_GROUP

pName
The contact group name, or the contact name if contactType is set to
DB2CONTACT_SINGLE.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2AddContactGroup - Add a contact group to whom notification messages can be sent

Chapter 5. Administrative APIs 37

db2AddSnapshotRequest - Add a snapshot request

This API prepares the snapshot request stream for db2GetSnapshotSize and
db2GetSnapshot.

Scope

Prepares the snapshot request stream for the db2GetSnapshotSize and
db2GetSnapshot APIs. The output (a snapshot request that is generated by the
db2AddSnapshotRequest API) is passed to the db2GetSnapshotSize and
db2GetSnapshot APIs. A snapshot request contains the snapshot request type and
the identification information.

Authorization

None.

Required connection

None.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2AddSnapshotRequest (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2AddSnapshotRqstData
{

void *pioRequestData;
db2Uint32 iRequestType;
db2int32 iRequestFlags;
db2Uint32 iQualType;
void *piQualData;

} db2AddSnapshotRqstData;

SQL_API_RC SQL_API_FN
db2gAddSnapshotRequest (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gAddSnapshotRqstData
{

void *pioRequestData;
db2Uint32 iRequestType;
db2int32 iRequestFlags;
db2Uint32 iQualType;
void *piQualData;
db2Uint32 iQualDataLen;

} db2gAddSnapshotRqstData;

db2AddSnapshotRequest API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the

db2AddSnapshotRequest - Add a snapshot request

38 Administrative API Reference

second parameter pParmStruct. To use the structure db2AddSnapshotData
as described above, specify db2Versio910. If you want to use a different
version of this structure, check the db2ApiDf header file in the include
directory for the complete list of supported versions. Ensure that you use
the version of the db2AddSnapshotRequestData structure that corresponds
to the version number that you specify.

pParmStruct
Input and/or output. A pointer to the db2AddSnapshotRequestData
structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AddSnapshotRqstData data structure parameters

pioRequestData
Input/output. The request data to be constructed by the
db2AddSnapshotRequest API. Initially, this parameter is set to NULL. The
memory required for pioRequestData will be allocated by the
db2AddSnapshotRequest API. You should free pioRequestData when its
usage ends (for example, after the db2GetSnapshot API call).

iRequestType
Input. Snapshot request type, for example, SQLMA_DB2.

iRequestFlags
Input. Bit mapped action flags, the values are
SQLM_INSTREAM_ADD_REQUEST, SQLM_INSTREAM_ADD_QUAL or
SQLM_INSTREAM_ADD_REQQUAL. If iRequestFlags is not set by the
caller:
v if iRequestType is set, iRequestFlags bit

SQLM_INSTREAM_ADD_REQUEST is turned on by the API.
v if piQualifierData pointer is not null, SQLM_INSTREAM_ADD_QUAL is

turned on by the API.

Upon API call, iRequestType, iQualifierType, iRequestFlags and
piQualifierData are reset to 0.

iQualType
Input. Type of the qualifier attached to the snapshot request, for example,
SQLM_INSTREAM_ELM_DBNAME.

piQualData
Input. Data describing the qualifier. This is a pointer to a null-terminated
string.

db2gAddSnapshotRqstData data structure specific parameters

iQualDataLen
Input. Length of the qualifier data in the piQualData parameter.

db2AddSnapshotRequest - Add a snapshot request

Chapter 5. Administrative APIs 39

db2AdminMsgWrite - Write log messages for administration and
replication function

Provides a mechanism for users and Replication to write information to the
db2diag log file, and the administration notification log.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2AdminMsgWrite (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2AdminMsgWriteStruct
{

db2Uint32 iMsgType;
db2Uint32 iComponent;
db2Uint32 iFunction;
db2Uint32 iProbeID;
char *piData_title;
void *piData;
db2Uint32 iDataLen;
db2Uint32 iError_type;

} db2AdminMsgWriteStruct;

db2AdminMsgWrite API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2AdminMsgWriteStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AdminMsgWriteStruct data structure parameters

iMsgType
Input. Specify the type of data to be logged. Valid values are
BINARY_MSG for binary data, and STRING_MSG for string data.

iComponent
Input. Specify zero.

iFunction
Input. Specify zero.

db2AdminMsgWrite - Write log messages for administration and replication function

40 Administrative API Reference

iProbeID
Input. Specify the numeric probe point. Numeric probe point is a unique
internal identifier that is used to locate the point in the source code that
reported the message.

piData_title
Input. A pointer to the title string describing the data to be logged. Can be
set to NULL if a title is not needed.

piData
Input. A pointer to the data to be logged. Can be set to NULL if data
logging is not needed.

iDataLen
Input. The number of bytes of binary data to be used for logging if
iMsgType is BINARY_MSG. Not used if iMsgType is STRING_MSG.

iError_type
Input. Valid values are:
v DB2LOG_SEVERE_ERROR: (1) Severe error has occurred
v DB2LOG_ERROR: (2) Error has occurred
v DB2LOG_WARNING: (3) Warning has occurred
v DB2LOG_INFORMATION: (4) Informational

Usage notes

This API will log to the administration notification log only if the specified error
type is less than or equal to the value of the notifylevel database manager
configuration parameter. It will log to the db2diag log file only if the specified
error type is less than or equal to the value of the diaglevel database manager
configuration parameter. However, all information written to the administration
notification log is duplicated in the db2diag log file, unless the diaglevel database
manager configuration parameter is set to zero.

db2AdminMsgWrite - Write log messages for administration and replication function

Chapter 5. Administrative APIs 41

db2ArchiveLog - Archive the active log file

Closes and truncates the active log file for a recoverable database. If user exit is
enabled, it also issues an archive request.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v dbadm

Required connection

This API automatically establishes a connection to the specified database. If a
connection to the specified database already exists, the API will return an error.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ArchiveLog (
db2Uint32 versionNumber,
void * pDB2ArchiveLogStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ArchiveLogStruct
{

char *piDatabaseAlias;
char *piUserName;
char *piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iOptions;

} db2ArchiveLogStruct;

SQL_API_RC SQL_API_FN
db2gArchiveLog (

db2Uint32 versionNumber,
void * pDB2ArchiveLogStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gArchiveLogStruct
{

db2Uint32 iAliasLen;
db2Uint32 iUserNameLen;
db2Uint32 iPasswordLen;
char *piDatabaseAlias;
char *piUserName;
char *piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iOptions;

} db2gArchiveLogStruct;

db2ArchiveLog - Archive the active log file

42 Administrative API Reference

db2ArchiveLog API parameters

versionNumber
Input. Specifies the version and release level of the variable passed in as
the second parameter, pDB2ArchiveLogStruct.

pDB2ArchiveLogStruct
Input. A pointer to the db2ArchiveLogStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ArchiveLogStruct data structure parameters

piDatabaseAlias
Input. A string containing the database alias (as cataloged in the system
database directory) of the database for which the active log is to be
archived.

piUserName
Input. A string containing the user name to be used when attempting a
connection.

piPassword
Input. A string containing the password to be used when attempting a
connection.

iAllNodeFlag
Applicable to partitioned database environment only. Input. Flag indicating
whether the operation should apply to all nodes listed in the db2nodes.cfg
file. Valid values are:

DB2ARCHIVELOG_NODE_LIST
Apply to nodes in a node list that is passed in piNodeList.

DB2ARCHIVELOG_ALL_NODES
Apply to all nodes. piNodeList should be NULL. This is the
default value.

DB2ARCHIVELOG_ALL_EXCEPT
Apply to all nodes except those in the node list passed in
piNodeList.

iNumNodes
Partitioned database environment only. Input. Specifies the number of
nodes in the piNodeList array.

piNodeList
Partitioned database environment only. Input. A pointer to an array of
node numbers against which to apply the archive log operation.

iOptions
Input. Reserved for future use.

db2gArchiveLogStruct data structure specific parameters

iAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of the
database alias.

iUserNameLen
Input. A 4-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is used.

db2ArchiveLog - Archive the active log file

Chapter 5. Administrative APIs 43

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is used.

db2ArchiveLog - Archive the active log file

44 Administrative API Reference

db2AutoConfig - Access the Configuration Advisor

Allows application programs to access the Configuration Advisor in the Control
Center. Detailed information about this advisor is provided through the online help
facility within the Control Center.

Scope

In a partitioned database environment, database recommendations are applied by
default on all database partitions. DB2_SG_APPLY_ON_ONE_NODE flag for the
db2AutoConfigInterface data structure's iApply parameter forces the changes to be
limited to the coordinator partition only. Note that the bufferpool changes are
always (DB2_SG_APPLY_ON_ONE_NODE does not matter for bufferpool
recommendations) applied to the system catalogs, thus, all database partitions are
affected.

Authorization

sysadm

Required connection

Database

API include file
db2AuCfg.h

API and data structure syntax
SQL_API_RC SQL_API_FN
db2AutoConfig(

db2Uint32 db2VersionNumber,
void * pAutoConfigInterface,
struct sqlca * pSqlca);

typedef struct {
db2int32 iProductID;
char iProductVersion[DB2_SG_PROD_VERSION_SIZE+1];
char iDbAlias[SQL_ALIAS_SZ+1];
db2int32 iApply;
db2AutoConfigInput iParams;
db2AutoConfigOutput oResult;

} db2AutoConfigInterface;

typedef struct {
db2int32 token;
db2int32 value;

} db2AutoConfigElement;

typedef struct {
db2Uint32 numElements;
db2AutoConfigElement * pElements;

} db2AutoConfigArray;
typedef db2AutoConfigArray db2AutoConfigInput;
typedef db2AutoConfigArray db2AutoConfigDiags;

typedef struct {
db2Uint32 numElements;
struct db2CfgParam * pConfigs;
void * pDataArea;

} db2ConfigValues;

db2AutoConfig - Access the Configuration Advisor

Chapter 5. Administrative APIs 45

typedef struct {
char * pName;
db2int32 value;

} db2AutoConfigNameElement;

typedef struct {
db2Uint32 numElements;
db2AutoConfigNameElement * pElements;

} db2AutoConfigNameArray;
typedef db2AutoConfigNameArray db2BpValues;

typedef struct {
db2ConfigValues oOldDbValues;
db2ConfigValues oOldDbmValues;
db2ConfigValues oNewDbValues;
db2ConfigValues oNewDbmValues;
db2AutoConfigDiags oDiagnostics;
db2BpValues oOldBpValues;
db2BpValues oNewBpValues;

} db2AutoConfigOutput;

db2AutoConfig API parameters

db2VersionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pAutoConfigInterface.

pAutoConfigInterface
Input. A pointer to the db2AutoConfigInterface structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AutoConfigInterface data structure parameters

iProductID
Input. Specifies a unique product identifier. Valid values for the iProductID
parameter (defined in db2AuCfg.h, located in the include directory) are:
v DB2_SG_PID_DEFAULT
v DB2_SG_PID_WEBSPHERE_COMMERCE_SUITE
v DB2_SG_PID_SAP
v DB2_SG_PID_WEBSPHERE_ADVANCED_SERVER
v DB2_SG_PID_SIEBEL
v DB2_SG_PID_PS_EPM
v DB2_SG_PID_PS_ONLINE
v DB2_SG_PID_PS_BATCH
v DB2_SG_PID_PS
v DB2_SG_PID_LOTUS_DOMINO
v DB2_SG_PID_CONTENT_MANAGER

iProductVersion
Input. A 16 byte string specifying the product version.

iDbAlias
Input. A string specifying a database alias.

iApply
Input. Updates the configuration automatically. Valid values for the iApply
parameter (defined in db2AuCfg.h, located in the include directory) are:

db2AutoConfig - Access the Configuration Advisor

46 Administrative API Reference

DB2_SG_NOT_APPLY
Do not apply any recommendations

DB2_SG_APPLY
Apply all recommendations

DB2_SG_APPLY_DB
Apply only database (and bufferpool) recommendations

DB2_SG_APPLY_ON_ONE_NODE
Apply database recommendations (valid only with
DB2_SG_APPLY and DB2_SG_APPLY_DB) on the current database
partition only. By default the database recommendations are
applied on all database partitions.

iParams
Input. Passes parameters into the advisor.

oResult
Output. Includes all results from the advisor.

db2AutoConfigElement data structure parameters

token Input or output. Specifies the configuration value for both the input
parameters and the output diagnostics.

value Input or output. Holds the data specified by the token.

db2AutoConfigArray data structure parameters

numElements
Input or output. The number of array elements.

pElements
Input or output. A pointer to the element array.

db2ConfigValues data structure parameters

numElements
Input or output. The number of array elements.

pConfigs
Input or output. A pointer to an array of db2CfgParam structure.

pDataArea
Input or output. A pointer to the data area containing the values of the
configuration.

db2AutoConfigNameElement data structure parameters

pName
Output. The name of the output buffer pool.

value Input or output. Holds the size (in pages) of the buffer pool specified in
the name.

db2AutoConfigNameArray data structure parameters

numElements
Input or output. The number of array elements.

pElements
Input or output. A pointer to the element array.

db2AutoConfig - Access the Configuration Advisor

Chapter 5. Administrative APIs 47

db2AutoConfigOutput data structure parameters

oOldDbValues
Output. If the iApply value is set to update the database configuration or
all configurations, this value represents the database configuration value
prior to using the advisor. Otherwise, this is the current value.

oOldDbmValues
Output. If the iApply value is set to update all configurations, this value
represents the database manager configuration value prior to using the
advisor. Otherwise, this is the current value.

oNewDbValues
Output. If the iApply value is set to update the database configuration or
all configurations, this value represents the current database configuration
value. Otherwise, this is the recommended value for the advisor.

oNewDbmValues
Output. If the iApply value is set to update all configurations, this value
represents the current database manager configuration value. Otherwise,
this is the recommended value for the advisor.

oDiagnostics
Output. Includes diagnostics from the advisor.

oOldBpValues
Output. If the iApply value is set to update database configuration or all
configurations, this value represents the buffer pool sizes in pages prior to
using the advisor. Otherwise, this value is the current value.

oNewBpValues
Output. If the iApply value is set to update database configuration or all
configurations, this value represents the current buffer pool sizes in pages.
Otherwise, this is the recommended value for the advisor.

Usage notes

To free the memory allocated by the db2AutoConfig API, call the
db2AutoConfigFreeMemory API.

With the deprecation of the maxagents and maxcagents configuration parameters,
the behavior of the db2AutoConfig API will depend on the db2VersionNumber
passed in to the API. If the version is DB2 v9.5 or beyond, maxagents will not be
returned, but, for versions prior to this, it will. In a future release, these
configuration parameters may be removed completely.

db2AutoConfig - Access the Configuration Advisor

48 Administrative API Reference

db2AutoConfigFreeMemory - Free the memory allocated by the
db2AutoConfig API

Frees the memory allocated by the db2AutoConfig API.

Authorization

sysadm

Required connection

Database

API include file
db2AuCfg.h

API and data structure syntax
SQL_API_RC SQL_API_FN
db2AutoConfigFreeMemory(

db2Uint32 db2VersionNumber,
void * pAutoConfigInterface,
struct sqlca * pSqlca);

db2AutoConfigFreeMemory API parameters

db2VersionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pAutoConfigInterface.

pAutoConfigInterface
Input. A pointer to the db2AutoConfigInterface structure.

pSqlca
Output. A pointer to the sqlca structure.

db2AutoConfigFreeMemory - Free the memory allocated by the db2AutoConfig API

Chapter 5. Administrative APIs 49

db2Backup - Back up a database or table space
Creates a backup copy of a database or a table space.

Scope

In a partitioned database environment, by default this API affects only the
database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition
servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the API.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Database. This API automatically establishes a connection to the specified database.

The connection will be terminated upon the completion of the backup.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Backup (
db2Uint32 versionNumber,
void * pDB2BackupStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2BackupStruct
{

char *piDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char oTimestamp[SQLU_TIME_STAMP_LEN+1];
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;
db2Uint32 iUtilImpactPriority;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;

db2Backup - Back up a database or table space

50 Administrative API Reference

db2int32 iAllNodeFlag;
db2int32 iNumNodes;
db2NodeType *piNodeList;
db2int32 iNumMPPOutputStructs;
struct db2BackupMPPOutputStruct *poMPPOutputStruct;

} db2BackupStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;

typedef SQL_STRUCTURE db2BackupMPPOutputStruct
{

db2NodeType nodeNumber;
db2Uint64 backupSize;
struct sqlca sqlca;

} db2BackupMPPOutputStruct;

SQL_API_RC SQL_API_FN
db2gBackup (

db2Uint32 versionNumber,
void * pDB2gBackupStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gBackupStruct
{

char *piDBAlias;
db2Uint32 iDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *poTimestamp;
db2Uint32 iTimestampLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 oBackupSize;
db2Uint32 iCallerAction;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iParallelism;
db2Uint32 iOptions;
db2Uint32 iUtilImpactPriority;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
db2NodeType *piNodeList;
db2int32 iNumMPPOutputStructs;
struct db2gBackupMPPOutputStruct *poMPPOutputStruct;

} db2gBackupStruct;

db2Backup - Back up a database or table space

Chapter 5. Administrative APIs 51

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2gBackupMPPOutputStruct
{

db2NodeType nodeNumber;
db2Uint64 backupSize;
struct sqlca sqlca;

} db2gBackupMPPOutputStruct;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;

db2Backup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2BackupStruct.

pDB2BackupStruct
Input. A pointer to the db2BackupStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2BackupStruct data structure parameters

piDBAlias
Input. A string containing the database alias (as cataloged in the system
database directory) of the database to back up.

oApplicationId
Output. The API will return a string identifying the agent servicing the
application. Can be used to obtain information about the progress of the
backup operation using the database monitor.

oTimestamp
Output. The API will return the time stamp of the backup image

piTablespaceList
Input. List of table spaces to be backed up. Required for table space level
backup only. Must be NULL for a database level backup. See structure
db2TablespaceStruct.

piMediaList
Input. This structure allows the caller to specify the destination for the
backup operation. For more information, see the db2MediaListStruct
structure below.

db2Backup - Back up a database or table space

52 Administrative API Reference

piUsername
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of indirection is
supported. Note that byte-reversal is not done, and code page is not
checked for this data.

iVendorOptionsSize
Input. The length of the piVendorOptions field, which cannot exceed
65535 bytes.

oBackupSize
Output. Size of the backup image (in MB).

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2BACKUP_BACKUP
Start the backup.

DB2BACKUP_NOINTERRUPT
Start the backup. Specifies that the backup will run unattended,
and that scenarios which normally require user intervention will
either be attempted without first returning to the caller, or will
generate an error. Use this caller action, for example, if it is known
that all of the media required for the backup have been mounted,
and utility prompts are not desired.

DB2BACKUP_CONTINUE
Continue the backup after the user has performed some action
requested by the utility (mount a new tape, for example).

DB2BACKUP_TERMINATE
Terminate the backup after the user has failed to perform some
action requested by the utility.

DB2BACKUP_DEVICE_TERMINATE
Remove a particular device from the list of devices used by
backup. When a particular medium is full, backup will return a
warning to the caller (while continuing to process using the
remaining devices). Call backup again with this caller action to
remove the device which generated the warning from the list of
devices being used.

DB2BACKUP_PARM_CHK
Used to validate parameters without performing a backup. This
option does not terminate the database connection after the call
returns. After successful return of this call, it is expected that the
user will issue a call with SQLUB_CONTINUE to proceed with the
action.

DB2BACKUP_PARM_CHK_ONLY
Used to validate parameters without performing a backup. Before

db2Backup - Back up a database or table space

Chapter 5. Administrative APIs 53

this call returns, the database connection established by this call is
terminated, and no subsequent call is required.

iBufferSize
Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8
units.

iNumBuffers
Input. Specifies number of backup buffers to be used. Minimum is 2.
Maximum is limited by memory.

iParallelism
Input. Degree of parallelism (number of buffer manipulators). Minimum is
1. Maximum is 1024.

iOptions
Input. A bitmap of backup properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:

DB2BACKUP_OFFLINE
Offline gives an exclusive connection to the database.

DB2BACKUP_ONLINE
Online allows database access by other applications while the
backup operation occurs.

Note: An online backup operation may appear to hang if users are
holding locks on SMS LOB data.

DB2BACKUP_DB
Full database backup.

DB2BACKUP_TABLESPACE
Table space level backup. For a table space level backup, provide a
list of table spaces in the piTablespaceList parameter.

DB2BACKUP_INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental
backup image is a copy of all database data that has changed since
the most recent successful, full backup operation.

DB2BACKUP_DELTA
Specifies a noncumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

DB2BACKUP_DEDUP_DEVICE
Optimizes the format of the backup image for target storage
devices that support data deduplication. Available in Version 9.7
Fix Pack 3 and later fix packs.

DB2BACKUP_COMPRESS
Specifies that the backup should be compressed.

DB2BACKUP_INCLUDE_COMPR_LIB
Specifies that the library used for compressing the backup should
be included in the backup image.

DB2BACKUP_EXCLUDE_COMPR_LIB
Specifies that the library used for compressing the backup should
be not included in the backup image.

db2Backup - Back up a database or table space

54 Administrative API Reference

DB2BACKUP_INCLUDE_LOGS
Specifies that the backup image should also include the range of
log files required to restore and roll forward this image to some
consistent point in time. This option is not valid for an offline
backup or a multi-partition backup.

DB2BACKUP_EXCLUDE_LOGS
Specifies that the backup image should not include any log files.

Note: When performing an offline backup operation, logs are
excluded whether or not this option is specified, with the exception
of snapshot backups where INCLUDE is the default.

DB2BACKUP_MPP
Perform backup in a manner suitable for a partitioned database.

iUtilImpactPriority
Input. Specifies the priority value to be used during a backup.
v If this value is non-zero, the utility will run throttled. Otherwise, the

utility will run unthrottled.
v If there are multiple concurrent utilities running, this parameter is used

to determine a relative priority between the throttled tasks. For example,
consider two concurrent backups, one with priority 2 and another with
priority 4. Both will be throttled, but the one with priority 4 will be
allotted more resources. Setting priorities to 2 and 4 is no different than
setting them to 5 and 10 or 30 and 60. Priorities values are purely
relative.

piComprLibrary
Input. Indicates the name of the external library to be used to perform
compression of the backup image. The name must be a fully-qualified path
referring to a file on the server. If the value is a null pointer or a pointer to
an empty string, DB2 will use the default library for compression. If the
specified library is not found, the backup will fail.

piComprOptions
Input. Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this string
directly from the client to the server, so any issues of byte-reversal or
code-page conversion will have to be handled by the compression library.
If the first character of the data block is '@', the remainder of the data will
be interpreted by DB2 as the name of a file residing on the server. DB2 will
then replace the contents of piComprOptions and iComprOptionsSize
with the contents and size of this file respectively and will pass these new
values to the initialization routine instead.

iComprOptionsSize
Input. A four-byte unsigned integer representing the size of the block of
data passed as piComprOptions. iComprOptionsSize shall be zero if and
only if piComprOptions is a null pointer.

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
backup operation is to be applied to all or some database partition servers
defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

db2Backup - Back up a database or table space

Chapter 5. Administrative APIs 55

DB2_ALL_NODES
Apply to all database partition servers. piNodeList should be
NULL. This is the default value.

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the backup.

iNumMPPOutputStructs
Input. Specifies the number of elements in the piMPPOutputStruct array.
This must be equal to or greater than the number of database partition
servers that participate in this backup operation.

piMPPOutputStruct
Output. A pointer to an array of db2BackupMPPOutputStruct structures
that specify output parameters for particular database partition servers.

db2TablespaceStruct data structure specific parameters

tablespaces
Input. A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Input. Number of entries in the tablespaces parameter.

db2MediaListStruct data structure parameters

locations
Input. A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
Input. The number of entries in the locations parameter.

locationType
Input. A character indicating the media type. Valid values (defined in
sqlutil header file, located in the include directory.) are:

SQLU_LOCAL_MEDIA: 'L'
Local devices (tapes, disks, diskettes, or named pipes).

SQLU_XBSA_MEDIA: 'X'
XBSA interface.

SQLU_TSM_MEDIA: 'A'
Tivoli® Storage Manager.

SQLU_OTHER_MEDIA: 'O'
Vendor library.

SQLU_SNAPSHOT_MEDIA: 'F'
Specifies that a snapshot backup is to be taken.

db2Backup - Back up a database or table space

56 Administrative API Reference

You cannot use SQLU_SNAPSHOT_MEDIA with any of the
following:
v DB2BACKUP_COMPRESS
v DB2BACKUP_TABLESPACE
v DB2BACKUP_INCREMENTAL
v iNumBuffers

v iBufferSize

v iParallelism

v piComprOptions

v iUtilImpactPriority

v numLocations field of this structure must be 1 for snapshot
restore

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH),
and primary log and mirror log paths (INCLUDE LOGS is the
default for all snapshot backups unless EXCLUDE LOGS is
explicitly stated).

Integrated into IBM Data Server is a DB2 ACS API driver for the
following storage hardware:
v IBM TotalStorage® SAN Volume Controller
v IBM Enterprise Storage Server® Model 800
v IBM System Storage® DS6000™

v IBM System Storage DS8000®

v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

db2BackupMPPOutputStruct and db2gBackupMPPOutputStruct
data structure parameters

nodeNumber
The database partition server to which the option applies.

backupSize
The size of the backup on the specified database partition, in kilobytes.

sqlca The sqlca from the specified database partition.

db2gBackupStruct data structure specific parameters

iDBAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of the
database alias.

iApplicationIdLen
Input. A 4-byte unsigned integer representing the length in bytes of the
poApplicationId buffer. Should be equal to SQLU_APPLID_LEN+1
(defined in sqlutil.h).

iTimestampLen
Input. A 4-byte unsigned integer representing the length in bytes of the
poTimestamp buffer. Should be equal to SQLU_TIME_STAMP_LEN+1
(defined in sqlutil.h).

db2Backup - Back up a database or table space

Chapter 5. Administrative APIs 57

iUsernameLen
Input. A 4-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is provided.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is provided.

iComprLibraryLen
Input. A four-byte unsigned integer representing the length in bytes of the
name of the library specified in piComprLibrary. Set to zero if no library
name is given.

db2Char data structure parameters

pioData
A pointer to a character data buffer. If NULL, no data will be returned.

iLength
Input. The size of the pioData buffer.

oLength
Output. The number of valid characters of data in the pioData buffer.

Usage notes

You can only perform a snapshot backup with versionNumber db2Version950 or
higher. If you specify media type SQLU_SNAPSHOT_MEDIA with a
versionNumber lower than db2Version950, DB2 database will return an error.

This function is exempt from all label-based access control (LBAC) rules. It backs
up all data, even protected data. Also, the data in the backup itself is not protected
by LBAC. Any user with the backup and a place in which to restore it can gain
access to the data.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

Usage notes for a single system view (SSV) backup in a partitioned database
environment

v To perform an SSV backup, specify iOptions DB2BACKUP_MPP and
one of DB2BACKUP_DB or DB2BACKUP_TABLESPACE.

v You can only perform a SSV backup with versionNumber
db2Version950 or higher. If you specify iOptions DB2BACKUP_MPP
with a versionNumber lower than db2Version950, DB2 database will
return an error. If you specify other options related to SSV backup with
a versionNumber lower than db2Version950, DB2 database will ignore
those options.

v The values for piMediaList specified directly in db2BackupStruct will be
used as the default values on all nodes.

v The value of oBackupSize returned in the db2BackupStruct is the sum
of the backup sizes on all nodes. The value of backupSize returned in
the db2BackupMPPOutputStruct is the size of the backup on the
specified database partition.

db2Backup - Back up a database or table space

58 Administrative API Reference

v iAllNodeFlag, iNumNodes, and piNodeList operate the same as the
similarly-named elements in db2RollforwardStruct, with the exception
that there is no CAT_NODE_ONLY value for iAllNodeFlag.

v SSV backups performed with the DB2BACKUP_BACKUP caller action
are performed as if the DB2BACKUP_NOINTERRUPT caller action was
specified.

v *poMPPOutputStruct points to memory allocated by the caller that
contains at least as many elements as there are database partitions
participating in the backup.

db2Backup - Back up a database or table space

Chapter 5. Administrative APIs 59

db2CfgGet - Get the database manager or database configuration
parameters

Returns the values of individual entries in a specific database configuration file or
a database manager configuration file.

Scope

Information about a specific database configuration file is returned only for the
database partition on which it is executed.

Authorization

None

Required connection

To obtain the current online value of a configuration parameter for a specific
database configuration file, a connection to the database is required. To obtain the
current online value of a configuration parameter for the database manager, an
instance attachment is required. Otherwise, a connection to a database or an
attachment to an instance is not required.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2CfgGet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2Cfg
{

db2Uint32 numItems;
struct db2CfgParam *paramArray;
db2Uint32 flags;
char *dbname;

} db2Cfg;

typedef SQL_STRUCTURE db2CfgParam
{

db2Uint32 token;
char *ptrvalue;
db2Uint32 flags;

} db2CfgParam;

SQL_API_RC SQL_API_FN
db2gCfgGet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gCfg
{

db2Uint32 numItems;
struct db2gCfgParam *paramArray;
db2Uint32 flags;
db2Uint32 dbname_len;

db2CfgGet - Get the database manager or database configuration parameters

60 Administrative API Reference

char *dbname;
} db2gCfg;

typedef SQL_STRUCTURE db2gCfgParam
{

db2Uint32 token;
db2Uint32 ptrvalue_len;
char *ptrvalue;
db2Uint32 flags;

} db2gCfgParam;

db2CfgGet API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2Cfg structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Cfg data structure parameters

numItems
Input. The number of configuration parameters in the paramArray array.
Set this value to db2CfgMaxParam to specify the largest number of
elements in the paramArray.

paramArray
Input. A pointer to the db2CfgParam structure.

flags Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

db2CfgDatabase
Specifies to return the values in the database configuration file.

db2CfgDatabaseManager
Specifies to return the values in the database manager
configuration file.

db2CfgImmediate
Returns the current values of the configuration parameters stored
in memory.

db2CfgDelayed
Gets the values of the configuration parameters on disk. These do
not become the current values in memory until the next database
connection or instance attachment.

db2CfgGetDefaults
Returns the default values for the configuration parameter.

dbname
Input. The database name.

db2CfgParam data structure parameters

token Input. The configuration parameter identifier.

Valid entries and data types for the db2CfgParam token element are listed
in "Configuration parameters summary".

db2CfgGet - Get the database manager or database configuration parameters

Chapter 5. Administrative APIs 61

ptrvalue
Output. The configuration parameter value.

flags Output. Provides specific information for each parameter in a request.
Valid values (defined in db2ApiDf header file, located in the include
directory) are:

db2CfgParamAutomatic
Indicates whether the retrieved parameter has a value of
automatic. To determine whether a given configuration parameter
has been set to automatic, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamAutomatic keyword defined in db2ApiDf.h.

db2CfgParamComputed
Indicates whether the retrieved parameter has a value of
computed. To determine whether a given configuration parameter
has been set to computed, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamComputed keyword defined in db2ApiDf.h.

If the boolean AND operation is false for both of the keywords above, it
means that the retrieved parameter value is set manually.

db2gCfg data structure specific parameters

dbname_len
Input. The length in bytes of dbname parameter.

db2gCfgParam data structure specific parameters

ptrvalue_len
Input. The length in bytes of ptrvalue parameter.

Usage notes

The configuration parameters maxagents and maxcagents are deprecated. In a
future release, these configuration parameters may be removed completely.

The db2CfgGet API will tolerate requests for SQLF_KTN_MAXAGENTS and
SQLF_KTN_MAXCAGENTS, but 0 will be returned if the server is DB2 v9.5.

db2CfgGet - Get the database manager or database configuration parameters

62 Administrative API Reference

db2CfgSet - Set the database manager or database configuration
parameters

Modifies individual entries in a specific database configuration file or a database
manager configuration file. A database configuration file resides on every node on
which the database has been created.

Scope

Modifications to the database configuration file affect all database partitions by
default.

Authorization

For modifications to the database configuration file, one of the following:
v sysadm
v sysctrl
v sysmaint

For modifications to the database manager configuration file:
v sysadm

Required connection

To make an online modification of a configuration parameter for a specific
database, a connection to the database is required. To make an online modification
of a configuration parameter for the database manager, an attachment to an
instance is not required.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2CfgSet (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2Cfg
{

db2Uint32 numItems;
struct db2CfgParam *paramArray;
db2Uint32 flags;
char *dbname;
SQL_PDB_NODE_TYPE dbpartitionnum;

} db2Cfg;

typedef SQL_STRUCTURE db2CfgParam
{

db2Uint32 token;
char *ptrvalue;
db2Uint32 flags;

} db2CfgParam;

SQL_API_RC SQL_API_FN
db2gCfgSet (
db2Uint32 versionNumber,

db2CfgSet - Set the database manager or database configuration parameters

Chapter 5. Administrative APIs 63

void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gCfg
{

db2Uint32 numItems;
struct db2gCfgParam *paramArray;
db2Uint32 flags;
db2Uint32 dbname_len;
char *dbname;

} db2gCfg;

typedef SQL_STRUCTURE db2gCfgParam
{

db2Uint32 token;
db2Uint32 ptrvalue_len;
char *ptrvalue;
db2Uint32 flags;

} db2gCfgParam;

db2CfgSet API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2Cfg structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Cfg data structure parameters

numItems
Input. The number of configuration parameters in the paramArray array.
Set this value to db2CfgMaxParam to specify the largest number of
elements in the paramArray.

paramArray
Input. A pointer to the db2CfgParam structure.

flags Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

db2CfgDatabase
Specifies to return the values in the database configuration file.

db2CfgDatabaseManager
Specifies to return the values in the database manager
configuration file.

db2CfgImmediate
Returns the current values of the configuration parameters stored
in memory.

db2CfgDelayed
Gets the values of the configuration parameters on disk. These do
not become the current values in memory until the next database
connection or instance attachment.

db2CfgReset
Reset to default values.

db2CfgSet - Set the database manager or database configuration parameters

64 Administrative API Reference

db2CfgSingleDbpartition
To update or reset the database configuration on a specific
database partition, set this flag and provide a value for
dbpartitionnum.

dbname
Input. The database name.

dbpartitionnum
Input. Specifies on which database partition this API will set the
configuration value.

db2CfgParam data structure parameters

token Input. The configuration parameter identifier. Valid entries and data types
for the db2CfgParam token element are listed in "Configuration parameters
summary".

ptrvalue
Output. The configuration parameter value.

flags Input. Provides specific information for each parameter in a request. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:

db2CfgParamAutomatic
Indicates whether the retrieved parameter has a value of
automatic. To determine whether a given configuration parameter
has been set to automatic, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamAutomatic keyword defined in db2ApiDf.h.

db2CfgParamComputed
Indicates whether the retrieved parameter has a value of
computed. To determine whether a given configuration parameter
has been set to computed, perform a boolean AND operation
against the value returned by the flag and the
db2CfgParamComputed keyword defined in db2ApiDf.h.

db2CfgParamManual
Used to unset the automatic or computed setting of a parameter
and set the parameter to the current value. The ptrvalue field is
ignored and can be set to NULL.

db2gCfg data structure specific parameters

dbname_len
Input. The length in bytes of dbname parameter.

db2gCfgParam data structure specific parameters

ptrvalue_len
Input. The length in bytes of ptrvalue parameter.

Usage notes

The configuration parameters maxagents and maxcagents are deprecated. In a
future release, these configuration parameters may be removed completely.

The db2CfgSet API will tolerate updates to the maxagents and maxcagents
configuration parameters, however these updates will be ignored by DB2.

db2CfgSet - Set the database manager or database configuration parameters

Chapter 5. Administrative APIs 65

Usage samples

CASE 1: The MAXAPPLS parameter will be set to 50 at dbpartitionnum 30.

CASE 2: The MAXAPPLS parameter will be set to 50 on all dbpartitionnum.
int updateDbConfig()
{

struct sqlca sqlca = {0};
db2Cfg cfgStruct = {0};
db2CfgParam cfgParameters[2];
char *dbAlias = “SAMPLE”;

/* initialize cfgParameters */
cfgParameters[0].flags = 0;
cfgParameters[0].token = SQLF_DBTN_TSM_OWNER;
cfgParameters[0].ptrvalue = (char *)malloc(sizeof(char) * 65);
cfgParameters[1].flags = 0;
cfgParameters[1].token = SQLF_DBTN_MAXAPPLS;
cfgParameters[1].ptrvalue = (char *)malloc(sizeof(sqluint16));

/* set two DB Config. fields */
strcpy(cfgParameters[0].ptrvalue, "tsm_owner");
*(sqluint16 *)(cfgParameters[1].ptrvalue) = 50;

/* initialize cfgStruct to update db cfg on single partition*/
cfgStruct.numItems = 2;
cfgStruct.paramArray = cfgParameters;
cfgStruct.flags = db2CfgDatabase | db2CfgImmediate;
cfgStruct.flags |= db2CfgSingleDbpartition;
cfgStruct.dbname = dbAlias;
cfgStruct.dbpartitionnum = 30;

/* CASE 1: update database configuration */
db2CfgSet(db2Version950, (void *)&cfgStruct, &sqlca);

/* set cfgStruct to update db cfg on all db partitions */
cfgStruct.flags &= ~db2CfgSingleDbpartition;

/* CASE 2: update database configuration */
db2CfgSet(db2Version950, (void *)&cfgStruct, &sqlca);
..............

}

db2CfgSet - Set the database manager or database configuration parameters

66 Administrative API Reference

db2ConvMonStream - Convert the monitor stream to the pre-version 6
format

Converts the new, self-describing format for a single logical data element (for
example, SQLM_ELM_DB2) to the corresponding pre-version 6 external monitor
structure (for example, sqlm_db2). When upgrading API calls to use the
post-version 5 stream, one must traverse the monitor data using the new stream
format (for example, the user must find the SQLM_ELM_DB2 element). This portion of
the stream can then be passed into the conversion API to get the associated
pre-version 6 data.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ConvMonStream (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ConvMonStreamData
{

void *poTarget;
struct sqlm_header_info *piSource;
db2Uint32 iTargetType;
db2Uint32 iTargetSize;
db2Uint32 iSourceType;

} db2ConvMonStreamData;

SQL_API_RC SQL_API_FN
db2gConvMonStream (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2ConvMonStream API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2ConvMonStreamData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ConvMonStream - Convert the monitor stream to the pre-version 6 format

Chapter 5. Administrative APIs 67

db2ConvMonStreamData data structure parameters

poTarget
Output. A pointer to the target monitor output structure (for example,
sqlm_db2). A list of output types, and their corresponding input types, is
given below.

piSource
Input. A pointer to the logical data element being converted (for example,
SQLM_ELM_DB2). A list of output types, and their corresponding input
types, is given below.

iTargetType
Input. The type of conversion being performed. Specify the value for the
v5 type in sqlmon.h for instance SQLM_DB2_SS.

iTargetSize
Input. This parameter can usually be set to the size of the structure pointed
to by poTarget; however, for elements that have usually been referenced by
an offset value from the end of the structure (for example, statement text in
sqlm_stmt), specify a buffer that is large enough to contain the sqlm_stmt
statically-sized elements, as well as a statement of the largest size to be
extracted; that is, SQL_MAX_STMT_SIZ plus sizeof(sqlm_stmt).

iSourceType
Input. The type of source stream. Valid values are
SQLM_STREAM_SNAPSHOT (snapshot stream), or
SQLM_STREAM_EVMON (event monitor stream).

Usage notes

Following is a list of supported convertible data elements:

Table 6. Supported convertible data elements: snapshot variables

Snapshot variable datastream type Structure

SQLM_ELM_APPL sqlm_appl

SQLM_ELM_APPL_INFO sqlm_applinfo

SQLM_ELM_DB2 sqlm_db2

SQLM_ELM_FCM sqlm_fcm

SQLM_ELM_FCM_NODE sqlm_fcm_node

SQLM_ELM_DBASE sqlm_dbase

SQLM_ELM_TABLE_LIST sqlm_table_header

SQLM_ELM_TABLE sqlm_table

SQLM_ELM_DB_LOCK_LIST sqlm_dbase_lock

SQLM_ELM_APPL_LOCK_LIST sqlm_appl_lock

SQLM_ELM_LOCK sqlm_lock

SQLM_ELM_STMT sqlm_stmt

SQLM_ELM_SUBSECTION sqlm_subsection

SQLM_ELM_TABLESPACE_LIST sqlm_tablespace_header

SQLM_ELM_TABLESPACE sqlm_tablespace

SQLM_ELM_ROLLFORWARD sqlm_rollfwd_info

SQLM_ELM_BUFFERPOOL sqlm_bufferpool

db2ConvMonStream - Convert the monitor stream to the pre-version 6 format

68 Administrative API Reference

Table 6. Supported convertible data elements: snapshot variables (continued)

Snapshot variable datastream type Structure

SQLM_ELM_LOCK_WAIT sqlm_lockwait

SQLM_ELM_DCS_APPL sqlm_dcs_appl, sqlm_dcs_applid_info,
sqlm_dcs_appl_snap_stats, sqlm_xid,
sqlm_tpmon

SQLM_ELM_DCS_DBASE sqlm_dcs_dbase

SQLM_ELM_DCS_APPL_INFO sqlm_dcs_applid_info

SQLM_ELM_DCS_STMT sqlm_dcs_stmt

SQLM_ELM_COLLECTED sqlm_collected

Table 7. Supported convertible data elements: event monitor variables

Event monitor variable datastream type Structure

SQLM_ELM_EVENT_DB sqlm_db_event

SQLM_ELM_EVENT_CONN sqlm_conn_event

SQLM_ELM_EVENT_TABLE sqlm_table_event

SQLM_ELM_EVENT_STMT sqlm_stmt_event

SQLM_ELM_EVENT_XACT sqlm_xaction_event

SQLM_ELM_EVENT_DEADLOCK sqlm_deadlock_event

SQLM_ELM_EVENT_DLCONN sqlm_dlconn_event

SQLM_ELM_EVENT_TABLESPACE sqlm_tablespace_event

SQLM_ELM_EVENT_DBHEADER sqlm_dbheader_event

SQLM_ELM_EVENT_START sqlm_evmon_start_event

SQLM_ELM_EVENT_CONNHEADER sqlm_connheader_event

SQLM_ELM_EVENT_OVERFLOW sqlm_overflow_event

SQLM_ELM_EVENT_BUFFERPOOL sqlm_bufferpool_event

SQLM_ELM_EVENT_SUBSECTION sqlm_subsection_event

SQLM_ELM_EVENT_LOG_HEADER sqlm_event_log_header

The sqlm_rollfwd_ts_info structure is not converted; it only contains a table space
name that can be accessed directly from the stream. The sqlm_agent structure is
also not converted; it only contains the pid of the agent, which can also be
accessed directly from the stream.

db2ConvMonStream - Convert the monitor stream to the pre-version 6 format

Chapter 5. Administrative APIs 69

db2DatabasePing - Ping the database to test network response time

Tests the network response time of the underlying connectivity between a client
and a database server. This API can be used by an application when a host
database server is accessed via DB2 Connect™ either directly or through a gateway.

Authorization

None

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabasePing (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DatabasePingStruct
{

char iDbAlias[SQL_ALIAS_SZ + 1];
db2int32 RequestPacketSz;
db2int32 ResponsePacketSz;
db2Uint16 iNumIterations;
db2Uint32 *poElapsedTime;

} db2DatabasePingStruct;

SQL_API_RC SQL_API_FN
db2gDatabasePing (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDatabasePingStruct
{

db2Uint16 iDbAliasLength;
char iDbAlias[SQL_ALIAS_SZ + 1];
db2int32 RequestPacketSz;
db2int32 ResponsePacketSz;
db2Uint16 iNumIterations;
db2Uint32 *poElapsedTime;

} db2gDatabasePingStruct;

db2DatabasePing API parameters

versionNumber
Input. Specifies the version and release of the DB2 database or DB2
Connect product that the application is using.

pParmStruct
Input. A pointer to the db2DatabasePingStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DatabasePing - Ping the database to test network response time

70 Administrative API Reference

db2DatabasePingStruct data structure parameters

iDbAlias
Input. Database alias name. Reserved for future use.If a value is provided,
it is ignored.

RequestPacketSz
Input. Size of the packet (in bytes) to be sent to the server. The size must
be between 0 and 32767 inclusive. This parameter is only valid on servers
running DB2 Universal Database™ (UDB) for Linux, UNIX and Windows
Version 8 or higher, or DB2 UDB for z/OS® Version 8 or higher.

ResponsePacketSz
Input. Size of the packet (in bytes) to be returned back to client. The size
must be between 0 and 32767 inclusive. This parameter is only valid on
servers running DB2 UDB for Linux, UNIX and Windows Version 8 or
higher, or DB2 UDB for z/OS Version 8 or higher.

iNumIterations
Input. Number of test request iterations. The value must be between 1 and
32767 inclusive.

poElapsedTime
Output. A pointer to an array of 32-bit integers where the number of
elements is equal to iNumIterations. Each element in the array will contain
the elapsed time in microseconds for one test request iteration.

Note: The application is responsible for allocating the memory for this
array prior to calling this API.

db2gDatabasePingStruct data structure specific parameters

iDbAliasLength
Input. Length of the database alias name. Reserved for future use.

Usage notes

This API will not work when it is used from a DB2 UDB Version 7 client through a
DB2 Connect Version 8 to a connected DB2 host database server.

db2DatabasePing - Ping the database to test network response time

Chapter 5. Administrative APIs 71

db2DatabaseQuiesce - Quiesce the database

Forces all users off the database, immediately rolls back all active transactions or
waits for them to complete their current units of work within the number of
minutes specified (if they cannot be completed within the specified number of
minutes, the operation will fail), and puts the database into quiesce mode. This
API provides exclusive access to the database. During this quiesced period, system
administration can be performed on the database by users with appropriate
authority. After administration is complete, you can unquiesce the database, using
the db2DatabaseUnquiesce API. The db2DatabaseUnquiesce API allows other users
to connect to the database, without having to shut down and perform another
database start. In this mode only groups or users with QUIESCE CONNECT
authority and sysadm, sysmaint, or sysctrl will have access to the database and its
objects.

Authorization

One of the following:
v sysadm
v dbadm

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseQuiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbQuiesceStruct
{

char *piDatabaseName;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2DbQuiesceStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseQuiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbQuiesceStruct
{

db2Uint32 iDatabaseNameLen;
char *piDatabaseName;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;

} db2gDbQuiesceStruct;

db2DatabaseQuiesce - Quiesce the database

72 Administrative API Reference

db2DatabaseQuiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DbQuiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbQuiesceStruct data structure parameters

piDatabaseName
Input. The database name.

iImmediate
Input. Valid values are:

TRUE=1
Force the applications immediately.

FALSE=0
Deferred force. Applications will wait the number of minutes
specified by iTimeout parameter to let their current units of work
be completed, and then will terminate. If this deferred force cannot
be completed within the number of minutes specified by iTimeout
parameter, the quiesce operation will fail.

iForce Input. Reserved for future use.

iTimeout
Input. Specifies the time, in minutes, to wait for applications to commit the
current unit of work. If iTimeout is not specified, in a single-partition
database environment, the default value is 10 minutes. In a partitioned
database environment the value specified by the start_stop_time database
manager configuration parameter will be used.

db2gDbQuiesceStruct data structure specific parameters

iDatabaseNameLen
Input. Specifies the length in bytes of piDatabaseName.

db2DatabaseQuiesce - Quiesce the database

Chapter 5. Administrative APIs 73

db2DatabaseRestart - Restart database

Restarts a database that has been abnormally terminated and left in an inconsistent
state. At the successful completion of this API, the application remains connected
to the database if the user has CONNECT privilege.

Scope

This API affects only the database partition server on which it is executed.

Authorization

None

Required connection

This API establishes a database connection.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseRestart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2RestartDbStruct
{

char *piDatabaseName;
char *piUserId;
char *piPassword;
char *piTablespaceNames;
db2int32 iOption;

} db2RestartDbStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseRestart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2gRestartDbStruct
{

db2Uint32 iDatabaseNameLen;
db2Uint32 iUserIdLen;
db2Uint32 iPasswordLen;
db2Uint32 iTablespaceNamesLen;
char *piDatabaseName;
char *piUserId;
char *piPassword;
char *piTablespaceNames;

} db2gRestartDbStruct;

db2DatabaseRestart API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

db2DatabaseRestart - Restart database

74 Administrative API Reference

pParamStruct
Input. A pointer to the db2RestartDbStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RestartDbStruct data structure parameters

piDatabaseName
Input. A pointer to a string containing the alias of the database that is to be
restarted.

piUserId
Input. A pointer to a string containing the user name of the application.
May be NULL.

piPassword
Input. A pointer to a string containing a password for the specified user
name (if any). May be NULL.

piTablespaceNames
Input. A pointer to a string containing a list of table space names to be
dropped during the restart operation. May be NULL.

iOption
Input. Valid values are:

DB2_DB_SUSPEND_NONE
Performs normal crash recovery.

DB2_DB_RESUME_WRITE
Required to perform crash recovery on a database that has I/O
writes suspended.

db2gRestartDbStruct data structure specific parameters

iDatabaseNameLen
Input. Length in bytes of piDatabaseName parameter.

iUserIdLen
Input. Length in bytes of piUserId parameter.

iPasswordLen
Input. Length in bytes of piPassword parameter.

iTablespaceNamesLen
Input. Length in bytes of piTablespaceNames parameter.

Usage notes

Call this API if an attempt to connect to a database returns an error message,
indicating that the database must be restarted. This action occurs only if the
previous session with this database terminated abnormally (due to power failure,
for example).

At the completion of this API, a shared connection to the database is maintained if
the user has CONNECT privilege, and an SQL warning is issued if any indoubt
transactions exist. In this case, the database is still usable, but if the indoubt
transactions are not resolved before the last connection to the database is dropped,
another call to the API must be completed before the database can be used again.

db2DatabaseRestart - Restart database

Chapter 5. Administrative APIs 75

In the case of circular logging, a database restart operation will fail if there is any
problem with the table spaces, such as an I/O error, an unmounted file system,
and so on. If losing such table spaces is not an issue, their names can be explicitly
specified; this will put them into drop pending state, and the restart operation can
complete successfully.

REXX API syntax
RESTART DATABASE database_alias [USER username USING password]

REXX API parameters

database_alias
Alias of the database to be restarted.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

db2DatabaseRestart - Restart database

76 Administrative API Reference

db2DatabaseUnquiesce - Unquiesce database

Restores user access to databases which have been quiesced for maintenance or
other reasons. User access is restored without necessitating a shutdown and
database restart.

Authorization

One of the following:
v sysadm
v dbadm

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseUnquiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbUnquiesceStruct
{

char *piDatabaseName;
} db2DbUnquiesceStruct;

SQL_API_RC SQL_API_FN
db2gDatabaseUnquiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbUnquiesceStruct
{

db2Uint32 iDatabaseNameLen;
char *piDatabaseName;

} db2gDbUnquiesceStruct;

db2DatabaseUnquiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DbUnquiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbUnquiesceStruct data structure parameters

piDatabaseName
Input. The database name.

db2DatabaseUnquiesce - Unquiesce database

Chapter 5. Administrative APIs 77

db2gDbUnquiesceStruct data structure specific parameters

iDatabaseNameLen
Input. Specifies the length in bytes of piDatabaseName.

db2DatabaseUnquiesce - Unquiesce database

78 Administrative API Reference

db2DatabaseUpgrade - Upgrade previous version of DB2 database to
the current release

Converts a DB2 Version 9.5, Version 9.1, or Version 8 database to the current
release.

Authorization

SYSADM

Required connection

This API establishes a database connection.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DatabaseUpgrade (
db2Uint32 versionNumber,
void *pParmStruct,
struct sqlca *pSqlca);

typedef SQL_STRUCTURE db2DatabaseUpgradeStruct
{

char *piDbAlias;
char *piUserName;
char *piPassword;
db2Uint16 iDbAliasLen;
db2Uint16 iUserNameLen;
db2Uint16 iPasswordLen;

} db2DatabaseUpgradeStruct;

db2DatabaseUpgrade API parameters

versionNumber
Input. Specifies the version and release level of the pParmStruct structure
passed as the second parameter.

pParmStruct
Input. A pointer to the db2DatabaseUpgradeStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DatabaseUpgradeStruct data parameters

piDbAlias
Input. A string containing the alias of the database that is cataloged in the
system database directory.

piUserName
Input. A string containing the user name of the application. May be NULL.

piPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

db2DatabaseUpgrade - Upgrade previous version of DB2 database to the current release

Chapter 5. Administrative APIs 79

iDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

iPasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero when no password is supplied.

iUserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero when no user name is supplied.

Usage notes

This API will only upgrade a database to a higher version, and cannot be used to
convert an upgraded database to its previous version.

The database must be cataloged before database upgrade.

db2DatabaseUpgrade - Upgrade previous version of DB2 database to the current release

80 Administrative API Reference

db2DbDirCloseScan - End a system or local database directory scan

Frees the resources allocated by db2DbDirOpenScan.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DbDirCloseScan (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbDirCloseScanStruct
{

db2Uint16 iHandle;
} db2DbDirCloseScanStruct;

SQL_API_RC SQL_API_FN
db2gDbDirCloseScan (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbDirCloseScanStruct
{

db2Uint16 iHandle;
} db2gDbDirCloseScanStruct;

db2DbDirCloseScan API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2DbDirCloseScanStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbDirCloseScanStruct data structure parameters

iHandle
Input. Identifier returned from the associated db2DbDirOpenScan API.

db2DbDirCloseScan - End a system or local database directory scan

Chapter 5. Administrative APIs 81

db2DbDirGetNextEntry - Get the next system or local database
directory entry

Returns the next entry in the system database directory or the local database
directory copy returned by db2DbDirOpenScan. Subsequent calls to this API return
additional entries.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DbDirGetNextEntry (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbDirNextEntryStructV9
{

db2Uint16 iHandle;
struct db2DbDirInfoV9 *poDbDirEntry;

} db2DbDirNextEntryStructV9;

SQL_STRUCTURE db2DbDirInfoV9
{

_SQLOLDCHAR alias[SQL_ALIAS_SZ];
_SQLOLDCHAR dbname[SQL_DBNAME_SZ];
_SQLOLDCHAR drive[SQL_DB_PATH_SZ];
_SQLOLDCHAR intname[SQL_INAME_SZ];
_SQLOLDCHAR nodename[SQL_NNAME_SZ];
_SQLOLDCHAR dbtype[SQL_DBTYP_SZ];
_SQLOLDCHAR comment[SQL_CMT_SZ];
short com_codepage;
_SQLOLDCHAR type;
unsigned short authentication;
char glbdbname[SQL_DIR_NAME_SZ];
_SQLOLDCHAR dceprincipal[SQL_DCEPRIN_SZ];
short cat_nodenum;
short nodenum;
_SQLOLDCHAR althostname[SQL_HOSTNAME_SZ];
_SQLOLDCHAR altportnumber[SQL_SERVICE_NAME_SZ];

};

SQL_API_RC SQL_API_FN
db2gDbDirGetNextEntry (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbDirNextEntryStrV9
{

db2Uint16 iHandle;
struct db2DbDirInfoV9 *poDbDirEntry;

} db2gDbDirNextEntryStrV9;

db2DbDirGetNextEntry - Get the next system or local database directory entry

82 Administrative API Reference

db2DbDirGetNextEntry API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2DbDirGetNextEntryStructV9 structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbDirNextEntryStructV9 data structure parameters

iHandle
Input. Identifier returned from the associated db2DbDirOpenScan API.

poDbDirEntry
Output. A pointer to a db2DbDirInfoV9 structure. The space for the
directory data is allocated by the API, and a pointer to that space is
returned to the caller.

db2DbDirInfoV9 data structure parameters

alias An alternate database name.

dbname
The name of the database.

drive The local database directory path name where the database resides. This
field is returned only if the system database directory is opened for scan.

Note: On Windows, this parameter is CHAR(12).

intname
A token identifying the database subdirectory. This field is returned only if
the local database directory is opened for scan.

nodename
The name of the node where the database is located. This field is returned
only if the cataloged database is a remote database.

dbtype
Database manager release information.

comment
The comment associated with the database.

com_codepage
The code page of the comment. Not used.

type Entry type. Valid values are:

SQL_INDIRECT
Database created by the current instance (as defined by the value
of the DB2INSTANCE environment variable).

SQL_REMOTE
Database resides at a different instance.

SQL_HOME
Database resides on this volume (always HOME in local database
directory).

db2DbDirGetNextEntry - Get the next system or local database directory entry

Chapter 5. Administrative APIs 83

SQL_DCE
Database resides in DCE directories.

authentication
Authentication type. Valid values are:

SQL_AUTHENTICATION_SERVER
Authentication of the user name and password takes place at the
server.

SQL_AUTHENTICATION_CLIENT
Authentication of the user name and password takes place at the
client.

SQL_AUTHENTICATION_DCE
Authentication takes place using DCE Security Services.

SQL_AUTHENTICATION_KERBEROS
Authentication takes place using Kerberos Security Mechanism.

SQL_AUTHENTICATION_NOT_SPECIFIED
DB2 no longer requires authentication to be kept in the database
directory. Specify this value when connecting to anything other
than an earlier (DB2 V2 or less) server.

SQL_AUTHENTICATION_SVR_ENCRYPT
Specifies that authentication takes place on the node containing the
target database, and that the authentication password is to be
encrypted.

SQL_AUTHENTICATION_DATAENC
Specifies that authentication takes place on the node containing the
target database, and that connections must use data encryption.

SQL_AUTHENTICATION_GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

glbdbname
The global name of the target database in the global (DCE) directory, if the
entry is of type SQL_DCE.

dceprincipal
The principal name if the authentication is of type DCE or KERBEROS.

cat_nodenum
Catalog node number.

nodenum
Node number.

althostname
The hostname or IP address of the alternate server where the database is
reconnected at failover time.

altportnumber
The port number of the alternate server where the database is reconnected
at failover time.

Usage notes

All fields of the directory entry information buffer are padded to the right with
blanks.

db2DbDirGetNextEntry - Get the next system or local database directory entry

84 Administrative API Reference

A subsequent db2DbDirGetNextEntry obtains the entry following the current entry.

If db2DbDirGetNextEntry is called when there are no more entries to scan, then
SQL1014N is set in the SQLCA.

The count value returned by the db2DbDirOpenScan API can be used to scan
through the entire directory by issuing db2DbDirGetNextEntry calls, one at a time,
until the number of scans equals the count of entries.

db2DbDirGetNextEntry - Get the next system or local database directory entry

Chapter 5. Administrative APIs 85

db2DbDirOpenScan - Start a system or local database directory scan

Stores a copy of the system database directory or the local database directory in
memory, and returns the number of entries. This copy represents a snapshot of the
directory at the time the directory is opened. This copy is not updated, even if the
directory itself is changed later.

Use the db2DbDirGetNextEntry API to advance through the database directory,
examining information about the database entries. Close the scan using the
db2DbDirCloseScan API. This removes the copy of the directory from memory.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DbDirOpenScan (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DbDirOpenScanStruct
{

char *piPath;
db2Uint16 oHandle;
db2Uint16 oNumEntries;

} db2DbDirOpenScanStruct;

SQL_API_RC SQL_API_FN
db2gDbDirOpenScan (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gDbDirOpenScanStruct
{

db2Uint32 iPath_len;
char *piPath;
db2Uint16 oHandle;
db2Uint16 oNumEntries;

} db2gDbDirOpenScanStruct;

db2DbDirOpenScan API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2DbDirOpenScanStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DbDirOpenScan - Start a system or local database directory scan

86 Administrative API Reference

db2DbDirOpenScanStruct data structure parameters

piPath Input. The name of the path on which the local database directory resides.
If the specified path is a NULL pointer, the system database directory is
used.

oHandle
Output. A 2-byte area for the returned identifier. This identifier must be
passed to the db2DbDirGetNextEntry API for scanning the database
entries, and to the db2DbDirCloseScan API to release the resources.

oNumEntries
Output. A 2-byte area where the number of directory entries is returned.

db2gDbDirOpenScanStruct data structure specific parameters

iPath_len
Input. The length in bytes of the piPath parameter.

Usage notes

Storage allocated by this API is freed by the db2DbDirCloseScan API.

Multiple db2DbDirOpenScan APIs can be issued against the same directory.
However, the results may not be the same. The directory may change between
openings.

There can be a maximum of eight opened database directory scans per process.

db2DbDirOpenScan - Start a system or local database directory scan

Chapter 5. Administrative APIs 87

db2DropContact - Remove a contact from the list of contacts to whom
notification messages can be sent

Removes a contact from the list of contacts. Contacts are users to whom
notification messages can be sent.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DropContact (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DropContactData
{

char *piUserid;
char *piPassword;
char *piName;

} db2DropContactData;

db2DropContact API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DropContactData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DropContactData data structure parameters

piUserid
Input. The user name.

piPassword
Input. The password for piUserid.

piName
Input. The name of the contact to be dropped.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2DropContact - Remove a contact from the list of contacts to whom notification
messages can be sent

88 Administrative API Reference

db2DropContactGroup - Remove a contact group from the list of
contacts to whom notification messages can be sent

Removes a contact group from the list of contacts. A contact group contains a list
of users to whom notification messages can be sent.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2DropContactGroup (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2DropContactData
{

char *piUserid;
char *piPassword;
char *piName;

} db2DropContactData;

db2DropContactGroup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2DropContactData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2DropContactData data structure parameters

piUserid
Input. The user name.

piPassword
Input. The password for piUserid.

piName
Input. The name of the contact to be dropped.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2DropContactGroup - Remove a contact group from the list of contacts to whom
notification messages can be sent

Chapter 5. Administrative APIs 89

db2Export - Export data from a database

Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables.

Authorization

One of the following:
v dataaccess authority
v CONTROL or SELECT privilege on each participating table or view

Label-based access control (LBAC) is enforced for this function. The data that is
exported may be limited by the LBAC credentials of the caller if the data is
protected by LBAC.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Export (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ExportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqlu_media_list *piLobFileList;
struct sqldcol *piDataDescriptor;
struct sqllob *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ExportOut *poExportInfoOut;
struct db2ExportIn *piExportInfoIn;
struct sqlu_media_list *piXmlPathList;
struct sqlu_media_list *piXmlFileList;

} db2ExportStruct;

typedef SQL_STRUCTURE db2ExportIn
{

db2Uint16 *piXmlSaveSchema;
} db2ExportIn;

typedef SQL_STRUCTURE db2ExportOut
{

db2Uint64 oRowsExported;
} db2ExportOut;

SQL_API_RC SQL_API_FN
db2gExport (

db2Export - Export data from a database

90 Administrative API Reference

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gExportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqlu_media_list *piLobFileList;
struct sqldcol *piDataDescriptor;
struct sqllob *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ExportOut *poExportInfoOut;
db2Uint16 iDataFileNameLen;
db2Uint16 iFileTypeLen;
db2Uint16 iMsgFileNameLen;
struct db2ExportIn *piExportInfoIn;
struct sqlu_media_list *piXmlPathList;
struct sqlu_media_list *piXmlFileList;

} db2gExportStruct;

db2Export API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ExportStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ExportStruct data structure parameters

piDataFileName
Input. A string containing the path and the name of the external file into
which the data is to be exported.

piLobPathList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the LOB files are to be stored. Exported LOB data will
be distributed evenly among all the paths listed in the sqlu_media_entry
structure.

piLobFileList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure
containing base file names.

When the name space is exhausted using the first name in this list, the API
will use the second name, and so on. When creating LOB files during an
export operation, file names are constructed by appending the current base
name from this list to the current path (from piLobPathList), and then
appending a 3-digit sequence number and the .lob extension. For example,
if the current LOB path is the directory /u/foo/lob/path, the current LOB
file name is bar, and the LOBSINSEPFILES file type modifier is set, then
the created LOB files will be /u/foo/LOB/path/bar.001.lob,
/u/foo/LOB/path/bar.002.lob, and so on. If the LOBSINSEPFILES file

db2Export - Export data from a database

Chapter 5. Administrative APIs 91

type modifier is not set, then all the LOB documents will be concatenated
and put into one file /u/foo/lob/path/bar.001.lob

piDataDescriptor
Input. Pointer to an sqldcol structure specifying the column names for the
output file. The value of the dcolmeth field determines how the remainder
of the information provided in this parameter is interpreted by the export
utility. Valid values for this parameter (defined in sqlutil header file,
located in the include directory) are:

SQL_METH_N
Names. Specify column names to be used in the output file.

SQL_METH_D
Default. Existing column names from the table are to be used in
the output file. In this case, the number of columns and the
column specification array are both ignored. The column names are
derived from the output of the SELECT statement specified in
piActionString.

piActionString
Input. Pointer to an sqllob structure containing a valid dynamic SQL
SELECT statement. The structure contains a 4-byte long field, followed by
the characters that make up the SELECT statement. The SELECT statement
specifies the data to be extracted from the database and written to the
external file.

The columns for the external file (from piDataDescriptor), and the database
columns from the SELECT statement, are matched according to their
respective list/structure positions. The first column of data selected from
the database is placed in the first column of the external file, and its
column name is taken from the first element of the external column array.

piFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats (defined in sqlutil header file) are:

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_WSF
Worksheet formats (WSF) for exchange with Lotus® Symphony and
1-2-3® programs. Support for this file format is deprecated and
might be removed in a future release. It is recommended that you
start using a supported file format instead of WSF files before
support is removed.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table. Data exported to this file
format can later be imported or loaded into the same table or into
another database manager table.

piFileTypeMod
Input. A pointer to an sqldcol structure containing a 2-byte long field,
followed by an array of characters that specify one or more processing
options. If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default specification.

db2Export - Export data from a database

92 Administrative API Reference

Not all options can be used with all of the supported file types. See related
link below: "File type modifiers for the export utility."

piMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and the
name of an operating system file or a standard device. If the file already
exists, the information is appended . If it does not exist, a file is created.

iCallerAction
Input. An action requested by the caller. Valid values (defined in sqlutil
header file, located in the include directory) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the API. If
the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested export operation, the caller action must be set to one of
the following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

SQLU_TERMINATE
Terminate processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
was not performed, and the utility is to terminate processing the
initial request.

poExportInfoOut
A pointer to the db2ExportOut structure.

piExportInfoIn
Input. Pointer to the db2ExportIn structure.

piXmlPathList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the XML files are to be stored. Exported XML data will
be distributed evenly among all the paths listed in the sqlu_media_entry
structure.

piXmlFileList
Input. Pointer to an sqlu_media_list structure with its media_type field set
to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure
containing base file names.

When the name space is exhausted using the first name in this list, the API
will use the second name, and so on. When creating XML files during an
export operation, file names are constructed by appending the current base
name from this list to the current path (from piXmlFileList), and then
appending a 3-digit sequence number and the .xml extension. For example,
if the current XML path is the directory /u/foo/xml/path, the current
XML file name is bar, and the XMLINSEPFILES file type modifier is set,

db2Export - Export data from a database

Chapter 5. Administrative APIs 93

then the created XML files will be /u/foo/xml/path/bar.001.xml,
/u/foo/xml/path/bar.002.xml, and so on. If the XMLINSEPFILES file type
modifier is not set, then all the XML documents will be concatenated and
put into one file /u/foo/xml/path/bar.001.xml

db2ExportIn data structure parameters

piXmlSaveSchema
Input. Indicates that the SQL identifier of the XML schema used to validate
each exported XML document should be saved in the exported data file.
Possible values are TRUE and FALSE.

db2ExportOut data structure parameters

oRowsExported
Output. Returns the number of records exported to the target file.

db2gExportStruct data structure specific parameters

iDataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
data file name.

iFileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of the file
type.

iMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
message file name.

Usage notes

Before starting an export operation, you must complete all table operations and
release all locks in one of two ways:
v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.
v Roll back the data changes by executing the ROLLBACK statement.

Table aliases can be used in the SELECT statement.

The messages placed in the message file include the information returned from the
message retrieval service. Each message begins on a new line.

If the export utility produces warnings, the message will be written out to a
message file, or standard output if one is not specified.

A warning message is issued if the number of columns (dcolnum field of sqldcol
structure) in the external column name array, piDataDescriptor, is not equal to the
number of columns generated by the SELECT statement. In this case, the number
of columns written to the external file is the lesser of the two numbers. Excess
database columns or external column names are not used to generate the output
file.

If the db2uexpm.bnd module or any other shipped .bnd files are bound manually,
the format option on the binder must not be used.

db2Export - Export data from a database

94 Administrative API Reference

DB2 Connect can be used to export tables from DRDA® servers such as DB2 for
z/OS and OS/390®, DB2 for VM and VSE, and DB2 for System i®. Only PC/IXF
export is supported.

PC/IXF import should be used to move data between databases. If character data
containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

The export utility will not create multiple-part PC/IXF files when invoked from an
AIX® system.

Index definitions for a table are included in the PC/IXF file when the contents of a
single database table are exported to a PC/IXF file with a piActionString
parameter beginning with SELECT * FROM tablename, and the piDataDescriptor
parameter specifying default names. Indexes are not saved for views, or if the
SELECT clause of the piActionString includes a join. A WHERE clause, a GROUP
BY clause, or a HAVING clause in the piActionString parameter will not prevent
the saving of indexes. In all of these cases, when exporting from typed tables, the
entire hierarchy must be exported.

The export utility will store the NOT NULL WITH DEFAULT attribute of the table
in an IXF file if the SELECT statement provided is in the form: SELECT * FROM
tablename.

When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables to
export. If this list is not specified, all tables in the hierarchy are exported, and the
default order is the OUTER order. The alternative is to use the default order, which
is the order given by the OUTER function.

Note: Use the same traverse order during an import operation. The load utility
does not support loading hierarchies or sub-hierarchies.

REXX API syntax
EXPORT :stmt TO datafile OF filetype
[MODIFIED BY :filetmod] [USING :dcoldata]
MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

REXX API parameters

stmt A REXX host variable containing a valid dynamic SQL SELECT statement.
The statement specifies the data to be extracted from the database.

datafile
Name of the file into which the data is to be exported.

filetype
The format of the data in the export file. The supported file formats are:

db2Export - Export data from a database

Chapter 5. Administrative APIs 95

DEL Delimited ASCII.

WSF Worksheet format. Support for this file format is deprecated and
might be removed in a future release. It is recommended that you
start using a supported file format instead of WSF files before
support is removed.

IXF PC version of Integration Exchange Format.

filetmod
A host variable containing additional processing options.

dcoldata
A compound REXX host variable containing the column names to be used
in the export file. In the following, XXX represents the name of the host
variable:

XXX.0 Number of columns (number of elements in the remainder of the
variable).

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been specified,
the utility uses the column names from the database table.

msgfile
File, path, or device name where error and warning messages are to be
sent.

number
A host variable that will contain the number of exported rows.

db2Export - Export data from a database

96 Administrative API Reference

db2GetAlertCfg - Get the alert configuration settings for the health
indicators

Returns the alert configuration settings for the health indicators.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

None

Required connection

Instance. If there is not instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetAlertCfg (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetAlertCfgData
{

db2Uint32 iObjType;
char *piObjName;
db2Uint32 iDefault;
char *piDbName;
db2Uint32 ioNumIndicators;
struct db2GetAlertCfgInd *pioIndicators;

} db2GetAlertCfgData;

typedef SQL_STRUCTURE db2GetAlertCfgInd
{

db2Uint32 ioIndicatorID;
sqlint64 oAlarm;
sqlint64 oWarning;
db2Uint32 oSensitivity;
char *poFormula;
db2Uint32 oActionEnabled;
db2Uint32 oCheckThresholds;
db2Uint32 oNumTaskActions;
struct db2AlertTaskAction *poTaskActions;
db2Uint32 oNumScriptActions;
struct db2AlertScriptAction *poScriptActions;
db2Uint32 oDefault;

} db2GetAlertCfgInd;

typedef SQL_STRUCTURE db2AlertTaskAction
{

char *pTaskName;
db2Uint32 condition;
char *pUserID;
char *pPassword;

db2GetAlertCfg - Get the alert configuration settings for the health indicators

Chapter 5. Administrative APIs 97

char *pHostName;
} db2AlertTaskAction;

typedef SQL_STRUCTURE db2AlertScriptAction
{

db2Uint32 scriptType;
db2Uint32 condition;
char *pPathName;
char *pWorkingDir;
char *pCmdLineParms;
char stmtTermChar;
char *pUserID;
char *pPassword;
char *pHostName;

} db2AlertScriptAction;

db2GetAlertCfg API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetAlertCfgData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetAlertCfgData data structure parameters

iObjType
Input. Specifies the type of object for which configuration is requested.
Valid values are:
v DB2ALERTCFG_OBJTYPE_DBM
v DB2ALERTCFG_OBJTYPE_DATABASES
v DB2ALERTCFG_OBJTYPE_TABLESPACES
v DB2ALERTCFG_OBJTYPE_TS_CONTAINERS
v DB2ALERTCFG_OBJTYPE_DATABASE
v DB2ALERTCFG_OBJTYPE_TABLESPACE
v DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName
Input. The name of the table space or table space container when the object
type, iObjType, is set to DB2ALERTCFG_OBJTYPE_TABLESPACE or
DB2ALERTCFG_OBJTYPE_TS_CONTAINER.

iDefault
Input. Indicates that the default installation configuration values are to be
retrieved.

piDbname
Input. The alias name for the database for which configuration is requested
when object type, iObjType, is
DB2ALERTCFG_OBJTYPE_TS_CONTAINER,
DB2ALERTCFG_OBJTYPE_TABLESPACE, and
DB2ALERTCFG_OBJTYPE_DATABASE.

ioNumIndicators
This parameter can be used as either an input or output parameter.

db2GetAlertCfg - Get the alert configuration settings for the health indicators

98 Administrative API Reference

Input: Indicates the number of pioIndicators submitted when requesting
the settings for a subset of health indicators.

Output: Indicates the total number of health indicators returned by the
API.

pioIndicators
A pointer to the db2GetAlertCfgInd structure. If it is set to NULL, all
health indicators for that object will be returned.

db2GetAlertCfgInd data structure parameters

ioIndicatorID
The health indicator (defined in sqlmon.h).

oAlarm
Output. The health indicator alarm threshold setting. This setting is valid
for threshold-based health indicators only.

oWarning
Output. The health indicator warning threshold setting. This setting is
valid for threshold-based health indicators only.

oSensitivity
Output. The period of time a health indicator's value must remain within a
threshold zone before the associated alarm or warning condition is
registered.

poFormula
Output. A string representation of the formula used to compute the health
indicator's value.

oActionEnabled
Output. If TRUE, then any alert actions that are defined in poTaskActions
or poScriptActions will be invoked if a threshold is breached. If FALSE,
none of the defined actions will be invoked.

oCheckThresholds
Output. If TRUE, the threshold breaches or state changes will be evaluated.
If threshold breaches or states are not evaluated, then alerts will not be
issued and alert actions will not be invoked regardless of whether
oActionEnabled is TRUE.

oNumTaskActions
Output. The number of task alert actions in the pTaskAction array.

poTaskActions
A pointer to the db2AlertTaskAction structure.

oNumScriptActions
Output. The number of script actions in the poScriptActions array.

poScriptActions
A pointer to the db2AlertScriptAction structure.

oDefault
Output. Indicates whether current settings are inherited from the default.
Set to TRUE to indicate the current settings are inherited from the default;
set to FALSE otherwise.

db2GetAlertCfg - Get the alert configuration settings for the health indicators

Chapter 5. Administrative APIs 99

db2AlertTaskAction data structure parameters

pTaskname
The name of the task.

condition
The condition for which to run the action.

pUserID
The user account under which the script will be executed.

pPassword
The password for the user account pUserId.

pHostName
The host name on which to run the script. This applies for both task and
script.

Script The hostname for where the script resides and will be run.

Task The hostname for where the scheduler resides.

db2AlertScriptAction data structure parameters

scriptType
Specifies the type of script. Valid values are:
v DB2ALERTCFG_SCRIPTTYPE_DB2CMD
v DB2ALERTCFG_SCRIPTTYPE_OS

condition
The condition on which to run the action. Valid values for threshold based
health indicators are:
v DB2ALERTCFG_CONDITION_ALL
v DB2ALERTCFG_CONDITION_WARNING
v DB2ALERTCFG_CONDITION_ALARM

For state based health indicators, use the numerical value defined in
sqlmon.

pPathname
The absolute pathname of the script.

pWorkingDir
The absolute pathname of the directory in which the script is to be
executed.

pCmdLineParms
The command line parameters to be passed to the script when it is
invoked. Optional for DB2ALERTCFG_SCRIPTTYPE_OS only.

stmtTermChar
The character that is used in the script to terminate statements. Optional
for DB2ALERTCFG_SCRIPTTYPE_DB2CMD only.

pUserID
The user account under which the script will be executed.

pPassword
The password for the user account pUserId.

pHostName
The host name on which to run the script. This applies for both task and
script.

db2GetAlertCfg - Get the alert configuration settings for the health indicators

100 Administrative API Reference

Script The hostname for where the script resides and will be run.

Task The hostname for where the scheduler resides.

Usage notes

If pioIndicators is left NULL, all health indicators for that object will be returned.
This parameter can be set to an array of db2GetAlertCfgInd structures with the
ioIndicatorID set to the health indicator for which the configuration is wanted.
When used in this manner, be sure to set ioNumIndicators to the input array
length and to set all other fields in db2GetAlertCfgInd to 0 or NULL.

All of the memory under this pointer is allocated by the engine and must be freed
with a call to the db2GetAlertCfgFree API whenever the db2GetAlertCfg API
returns with no error. See db2ApiDf.h, located in the include directory, for
information about the db2GetAlertCfgFree API.

db2GetAlertCfg - Get the alert configuration settings for the health indicators

Chapter 5. Administrative APIs 101

db2GetAlertCfgFree - Free the memory allocated by the
db2GetAlertCfg API

Frees the memory allocated by the db2GetAlertCfg API.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetAlertCfgFree (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2GetAlertCfgFree API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2GetAlertCfgData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetAlertCfgFree - Free the memory allocated by the db2GetAlertCfg API

102 Administrative API Reference

db2GetContactGroup - Get the list of contacts in a single contact
group to whom notification messages can be sent

Returns the contacts included in a single contact group. Contacts are users to
whom notification messages can be sent. Contacts can be either defined locally on
the system or in a global list. The setting of the DB2 administration server (DAS)
configuration parameter contact_host determines whether the list is local or global.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetContactGroup (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ContactGroupData
{

char *pGroupName;
char *pDescription;
db2Uint32 numContacts;
struct db2ContactTypeData *pContacts;

} db2ContactGroupData;

typedef SQL_STRUCTURE db2ContactTypeData
{

db2Uint32 contactType;
char *pName;

} db2ContactTypeData;

db2GetContactGroup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ContactGroupData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ContactGroupData data structure parameters

pGroupName
Input. The name of the group to be retrieved.

pDescription
The description of the group.

db2GetContactGroup - Get the list of contacts in a single contact group to whom
notification messages can be sent

Chapter 5. Administrative APIs 103

numContacts
The number of pContacts.

pContacts
A pointer to the db2ContactTypeData structure. The fields pGroupName,
pDescription, pContacts, and pContacts.pName should be preallocated by
the user with their respective maximum sizes. Call db2GetContactGroup
with numContacts=0 and pContacts=NULL to have the required length for
pContacts returned in numContacts.

db2ContactTypeData data structure parameters

contactType
Specifies the type of contact. Valid values are:
v DB2CONTACT_SINGLE
v DB2CONTACT_GROUP

pName
The contact group name, or the contact name if contactType is set to
DB2CONTACT_SINGLE.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2GetContactGroup - Get the list of contacts in a single contact group to whom
notification messages can be sent

104 Administrative API Reference

db2GetContactGroups - Get the list of contact groups to whom
notification messages can be sent

Returns the list of contact groups. Contacts are users to whom notification
messages can be sent. Contact groups can be either defined locally on the system
or in a global list. The setting of the DB2 administration server (DAS) configuration
parameter contact_host determines whether the list is local or global.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetContactGroups (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetContactGroupsData
{

db2Uint32 ioNumGroups;
struct db2ContactGroupDesc *poGroups;

} db2GetContactGroupsData;

typedef SQL_STRUCTURE db2ContactGroupDesc
{

char *poName;
char *poDescription;

} db2ContactGroupDesc;

db2GetContactGroups API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetContactGroupsData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetContactGroupsData data structure parameters

ioNumGroups
The number of groups. If oNumGroups = 0 and poGroups = NULL, it will
contain the number of db2ContactGroupDesc structures needed in
poGroups.

poGroups
Output. A pointer to the db2ContactGroupDesc structure.

db2GetContactGroups - Get the list of contact groups to whom notification messages can
be sent

Chapter 5. Administrative APIs 105

db2ContactGroupDesc data structure parameters

poName
Output. The group name. This parameter should be preallocated by the
caller with the respective maximum size.

poDescription
Output. The group description. This parameter should be preallocated by
the caller with the respective maximum size.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2GetContactGroups - Get the list of contact groups to whom notification messages can
be sent

106 Administrative API Reference

db2GetContacts - Get the list of contacts to whom notification
messages can be sent

Returns the list of contacts. Contacts are users to whom notification messages can
be sent. Contacts can be either defined locally on the system or in a global list. The
setting of the DB2 administration server (DAS) configuration parameter
contact_host determines whether the list is local or global.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetContacts (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetContactsData
{

db2Uint32 ioNumContacts;
struct db2ContactData *poContacts;

} db2GetContactsData;

typedef SQL_STRUCTURE db2ContactData
{

char *pName;
db2Uint32 type;
char *pAddress;
db2Uint32 maxPageLength;
char *pDescription;

} db2ContactData;

db2GetContacts API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetContactsData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetContactsData data structure parameters

ioNumContacts
The number of poContacts.

poContacts
Output. A pointer to the db2ContactData structure. The fields poContacts,

db2GetContacts - Get the list of contacts to whom notification messages can be sent

Chapter 5. Administrative APIs 107

pocontacts.pAddress, pocontacts.pDescription, and pocontacts.pName
should be preallocated by the user with their respective maximum sizes.
Call db2GetContacts with numContacts=0 and poContacts=NULL to have
the required length for poContacts returned in numContacts.

db2ContactData data structure parameters

pName
The contact name.

type Specifies the type of contact. Valid values are:
v DB2CONTACT_EMAIL
v DB2CONTACT_PAGE

pAddress
The address of the type parameter.

maxPageLength
The maximum message length for when type is set to
DB2CONTACT_PAGE.

pDescription
User supplied description of the contact.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2GetContacts - Get the list of contacts to whom notification messages can be sent

108 Administrative API Reference

db2GetDistMap - Get distribution map
Allows an application to obtain the distribution information for a table. The
distribution information includes the distribution map and the column definitions
of the distribution key.

Information returned by this API can be passed to the sqlugrpn API to determine
the database partition number and the database partition server number for any
row in the table.

To use this API, the application must be connected to the database that contains
the table for which distribution information is being requested.

Scope

This API can be executed on any database partition server defined in the
db2nodes.cfg file.

Authorization

For the table being referenced, a user must have at least one of the following
authorities or privileges:
v DATAACCESS authority
v CONTROL privilege
v SELECT privilege

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
db2GetDistMap(db2Uint32 versionNumber, // DB2 version number

void *pParmStruct, // In/Out parameters
struct sqlca *pSqlca); // Sqlca

where
SQL_STRUCTURE db2DistMapStruct
{
unsigned char *tname; /* Fully qualified table name */
unsigned short pmaplen; /* Length of distribution map */
SQL_PDB_NODE_TYPE pmap[SQL_PDB_MAP_SIZE]; /* Distribution map */
unsigned short sqld; /* # of used SQLPARTKEY elements */
struct sqlpartkey sqlpartkey[SQL_MAX_NUM_PART_KEYS]; /* Distribution keys */};

db2GetDistMap API parameters

tname The fully qualified name of the table.

pmaplen
The length of the distribution map.

pmap The name of the distribution map.

sqld The number of elements used in the sqlpartkey structure.

sqlpartkey
Distribution keys used for the table.

db2GetDistMap - Get distribution map

Chapter 5. Administrative APIs 109

db2GetHealthNotificationList - Get the list of contacts to whom health
alert notifications can be sent

Returns the list of contacts and/or contact groups that are notified about the health
of an instance. A contact list consists of e-mail addresses or pager internet
addresses of individuals who are to be notified when non-normal health conditions
are present for an instance or any of its database objects.

Authorization

None

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetHealthNotificationList (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetHealthNotificationListData
{

db2Uint32 ioNumContacts;
struct db2ContactTypeData *poContacts;

} db2GetHealthNotificationListData;

typedef SQL_STRUCTURE db2ContactTypeData
{

db2Uint32 contactType;
char *pName;

} db2ContactTypeData;

db2GetHealthNotificationList API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetHealthNotificationListData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetHealthNotificationListData data structure parameters

ioNumContacts
The number of contacts. If the API was called with a NULL poContact,
then ioNumContacts will be set to the number of contacts the user should
allocate to perform a successful call.

poContacts
Output. A pointer to the db2ContactTypeData structure.

db2GetHealthNotificationList - Get the list of contacts to whom health alert notifications
can be sent

110 Administrative API Reference

db2ContactTypeData data structure parameters

contactType
Specifies the type of contact. Valid values are:
v DB2CONTACT_SINGLE
v DB2CONTACT_GROUP

pName
The contact group name, or the contact name if contactType is set to
DB2CONTACT_SINGLE.

db2GetHealthNotificationList - Get the list of contacts to whom health alert notifications
can be sent

Chapter 5. Administrative APIs 111

db2GetRecommendations - Get recommendations to resolve a health
indicator in alert state

Retrieves a set of recommendations to resolve a health indicator in alert state on a
particular object. The recommendations are returned as an XML document.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

None

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetRecommendations (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetRecommendationsData
{

db2Uint32 iSchemaVersion;
db2Uint32 iNodeNumber;
db2Uint32 iIndicatorID;
db2Uint32 iObjType;
char *piObjName;
char *piDbName;
char *poRecommendation;

} db2GetRecommendationsData;

db2GetRecommendations API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetRecommendationsData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetRecommendationsData data structure parameters

iSchemaVersion
Input. Version ID of the schema used to represent the XML document. The

db2GetRecommendations - Get recommendations to resolve a health indicator in alert
state

112 Administrative API Reference

recommendation document will only contain elements or attributes that
were defined for that schema version. Set this parameter to:
DB2HEALTH_RECSCHEMA_VERSION8_2

iNodeNumber
Input. Specifies the database partition number where the health indicator
(HI) entered an alert state. Use the constant SQLM_ALL_NODES to
retrieve recommendations for a given object on a given HI across all
database partitions. If the HI has the same recommendations on different
database partitions, those recommendations will be grouped into a single
recommendation set, where the problem is the group of HIs on different
database partitions and the recommendations apply to all of these HIs. To
retrieve recommendations on the current database partition, use the
constant value SQLM_CURRENT_NODE. For standalone instances,
SQLM_CURRENT_NODE should be used.

iIndicatorID
Input. The health indicator that has entered an alert state and for which a
recommendation is requested. Values are externalized in the header file
sqlmon.h in the include directory.

iObjType
Input. Specifies the type of object on which the health indicator (identified
by iIndicatorID) entered an alert state. Value values are:
v DB2HEALTH_OBJTYPE_DBM
v DB2HEALTH_OBJTYPE_DATABASE
v DB2HEALTH_OBJTYPE_TABLESPACE
v DB2HEALTH_OBJTYPE_TS_CONTAINER

piObjName
Input. The name of the table space or table space container when the object
type parameter, iObjType, is set to DB2HEALTH_OBJTYPE_TABLESPACE
or DB2HEALTH_OBJTYPE_TS_CONTAINER. Specify NULL if not
required. In the case of a table space container, the object name is specified
as <tablespace name>.<container name>.

piDbname
Input. The alias name for the database on which the HI entered an alert
state when the object type parameter, iObjType, is
DB2HEALTH_OBJTYPE_TS_CONTAINER,
DB2HEALTH_OBJTYPE_TABLESPACE, or
DB2HEALTH_OBJTYPE_DATABASE. Specify NULL otherwise.

poRecommendation
Output. Character pointer that will be set to the address of a buffer in
memory containing the recommendation text, formatted as an XML
document according to the schema provided in sqllib/misc/
DB2RecommendationSchema.xsd. The XML document will be encoded in
UTF-8, and text in the document will be in the caller's locale.

The xml:lang attribute on the DB2_HEALTH node will be set to the
appropriate client language. The API should be considered as a trusted
source and the XML document should not be validated. XML is used as a
means of structuring the output data. All memory under this pointer is
allocated by the engine and must be freed with a
db2GetRecommendationsFree call whenever db2GetRecommendations
returns with no error.

db2GetRecommendations - Get recommendations to resolve a health indicator in alert
state

Chapter 5. Administrative APIs 113

Usage notes
v Invoke this API to retrieve a set of recommendations to resolve a health alert on

a specific DB2 object. If the input health indicator is not in an alert state on the
object identified, an error will be returned.

v The recommendations are returned as an XML document, and contain
information about actions and scripts that can be run to resolve the alert. Any
scripts returned by the API must be executed on the instance on which the
health indicator entered the alert state. For information about the structure and
content of the recommendation XML document returned, refer to the schema at
sqllib/misc/DB2RecommendationSchema.xsd

v All memory allocated by the engine and returned by this function (the
recommendation document) must be freed with a db2GetRecommendationsFree
call whenever db2GetRecommendations returns with no error.

db2GetRecommendations - Get recommendations to resolve a health indicator in alert
state

114 Administrative API Reference

db2GetRecommendationsFree - Free the memory allocated by the
db2GetRecommendations API

Frees the memory allocated by the db2GetRecommendations API.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetRecommendationsFree (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2GetRecommendationsFree API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2GetRecommendationsData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetRecommendationsFree - Free the memory allocated by the
db2GetRecommendations API

Chapter 5. Administrative APIs 115

db2GetSnapshot - Get a snapshot of the database manager
operational status

Collects database manager monitor information and returns it to a user-allocated
data buffer. The information returned represents a snapshot of the database
manager operational status at the time the API was called.

Scope

This API can return information for the database partition server on the instance,
or all database partitions on the instance.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

To obtain a snapshot from a remote instance (or a different local instance), it is
necessary to first attach to that instance.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetSnapshot (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetSnapshotData
{

void *piSqlmaData;
struct sqlm_collected *poCollectedData;
void *poBuffer;
db2Uint32 iVersion;
db2Uint32 iBufferSize;
db2Uint32 iStoreResult;
db2int32 iNodeNumber;
db2Uint32 *poOutputFormat;
db2Uint32 iSnapshotClass;

} db2GetSnapshotData;

SQL_API_RC SQL_API_FN
db2gGetSnapshot (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gGetSnapshotData

db2GetSnapshot - Get a snapshot of the database manager operational status

116 Administrative API Reference

{
void *piSqlmaData;
struct sqlm_collected *poCollectedData;
void *poBuffer;
db2Uint32 iVersion;
db2Uint32 iBufferSize;
db2Uint32 iStoreResult;
db2int32 iNodeNumber;
db2Uint32 *poOutputFormat;
db2Uint32 iSnapshotClass;

} db2gGetSnapshotData;

API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct. To use the structure as described above,
specify db2Version810 or newer. If you want to use a different version of
this structure, check the db2ApiDf.h header file in the include directory for
the complete list of supported versions. Ensure that you use the version of
the db2GetSnapshotData structure that corresponds to the version number
that you specify.

pParmStruct
Input/Output. A pointer to the db2GetSnapshotData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetSnapshotData data structure parameters

piSqlmaData
Input. Pointer to the user-allocated sqlma (monitor area) structure or
request data structure, "poRequestData" constructed and returned by the
db2AddSnapshotRequest API. The structure specifies the type or types of
snapshot data to be collected. If a pointer to the sqlma structure is used,
the version passed to the db2GetSnapshot API in the versionNumber
parameter should be less than db2Version900 (for example, db2Version810,
db2Version822). If a pointer to the request data structure returned by the
db2AddSnapshotRequest API in poRequestData parameter is used then the
value db2Version900 should be passed in the versionNumber parameter of
the db2GetSnapshot API.

poCollectedData
Output. A pointer to the sqlm_collected structure into which the database
monitor delivers summary statistics and the number of each type of data
structure returned in the buffer area.

Note: This structure is only used for pre-Version 6 data streams. However,
if a snapshot call is made to an earlier remote server, this structure must be
passed in for results to be processed. It is therefore recommended that this
parameter always be passed in.

poBuffer
Output. Pointer to the user-defined data area into which the snapshot
information will be returned.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following constants:

db2GetSnapshot - Get a snapshot of the database manager operational status

Chapter 5. Administrative APIs 117

v SQLM_DBMON_VERSION1
v SQLM_DBMON_VERSION2
v SQLM_DBMON_VERSION5
v SQLM_DBMON_VERSION5_2
v SQLM_DBMON_VERSION6
v SQLM_DBMON_VERSION7
v SQLM_DBMON_VERSION8
v SQLM_DBMON_VERSION9
v SQLM_DBMON_VERSION9_5
v SQLM_DBMON_VERSION9_7 (required for information on reclaiming

MDC extents through a reorganization)

Note: Constants SQLM_DBMON_VERSION5_2, and earlier, are deprecated
and may be removed in a future release of DB2.

iBufferSize
Input. The length of the data buffer. Use the db2GetSnapshotSize API to
estimate the size of this buffer. If the buffer is not large enough, a warning
is returned, along with the information that will fit in the assigned buffer.
It may be necessary to resize the buffer and call the API again.

iStoreResult
Input. An indicator set to constant value TRUE or FALSE, depending on
whether the snapshot results are to be stored at the DB2 server for viewing
through SQL. This parameter should only be set to TRUE when the
snapshot is being taken over a database connection, and when one of the
snapshot types in the sqlma is SQLMA_DYNAMIC_SQL.

iNodeNumber
Input. The node where the request is to be sent. Based on this value, the
request will be processed for the current node, all nodes or a user specified
node. Valid values are:
v SQLM_CURRENT_NODE
v SQLM_ALL_NODES. Only allowed when the iVersion parameter is set

to SQLM_DBMON_VERSION7 or newer.
v node value

Note: For standalone instances the SQLM_CURRENT_NODE value must
be used.

poOutputFormat
The format of the stream returned by the server. It will be one of the
following:
v SQLM_STREAM_STATIC_FORMAT
v SQLM_STREAM_DYNAMIC_FORMAT

iSnapshotClass
Input. The class qualifier for the snapshot. Valid values (defined in sqlmon
header file, located in the include directory) are:
v SQLM_CLASS_DEFAULT for a standard snapshot
v SQLM_CLASS_HEALTH for a health snapshot
v SQLM_CLASS_HEALTH_WITH_DETAIL for a health snapshot including

additional details

db2GetSnapshot - Get a snapshot of the database manager operational status

118 Administrative API Reference

Note: SQLM_CLASS_HEALTH and
SQLM_CLASS_HEALTH_WITH_DETAIL have been deprecated and might
be removed in a future release because the health monitor has been
deprecated in Version 9.7. For more information, see the “Health monitor
has been deprecated” topic in the What's New in Version 9.7 book.

Usage notes

If an alias for a database residing at a different instance is specified, an error
message is returned.

To retrieve a health snapshot with full collection information, use the AGENT_ID
field in the SQLMA data structure.

db2GetSnapshot - Get a snapshot of the database manager operational status

Chapter 5. Administrative APIs 119

db2GetSnapshotSize - Estimate the output buffer size required for the
db2GetSnapshot API

Estimates the buffer size needed by the db2GetSnapshot API.

Scope

This API can either affect the database partition server on the instance, or all
database partitions on the instance.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

To obtain information from a remote instance (or a different local instance), it is
necessary to first attach to that instance. If an attachment does not exist, an implicit
instance attachment is made to the node specified by the DB2INSTANCE
environment variable.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetSnapshotSize (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2GetSnapshotSizeData
{

void *piSqlmaData;
sqluint32 *poBufferSize;
db2Uint32 iVersion;
db2int32 iNodeNumber;
db2Uint32 iSnapshotClass;

} db2GetSnapshotSizeData;

SQL_API_RC SQL_API_FN
db2gGetSnapshotSize (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gGetSnapshotSizeData
{

void *piSqlmaData;
sqluint32 *poBufferSize;

db2GetSnapshotSize - Estimate the output buffer size required for the db2GetSnapshot
API

120 Administrative API Reference

db2Uint32 iVersion;
db2int32 iNodeNumber;
db2Uint32 iSnapshotClass;

} db2gGetSnapshotSizeData;

db2GetSnapshotSize API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct. To use the structure as described above,
specify db2Version810 or newer. If you want to use a different version of
this structure, check the db2ApiDf.h header file in the include directory for
the complete list of supported versions. Ensure that you use the version of
the db2GetSnapshotSizeStruct structure that corresponds to the version
number that you specify.

pParmStruct
Input. A pointer to the db2GetSnapshotSizeStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetSnapshotSizeData data structure parameters

piSqlmaData
Input. Pointer to the user-allocated sqlma (monitor area) structure or
request data structure, "poRequestData" constructed and returned by the
db2AddSnapshotRequest API. The structure specifies the type or types of
snapshot data to be collected. If a pointer to the sqlma structure is used,
the version passed to the db2GetSnapshotSize API in the versionNumber
parameter should be less than db2Version900 (for example, db2Version810,
db2Version822). If a pointer to the request data structure returned by the
db2AddSnapshotRequest API in poRequestData parameter is used then the
value db2Version900 should be passed in the versionNumber parameter of
the db2GetSnapshotSize API.

poBufferSize
Output. A pointer to the returned estimated buffer size needed by the GET
SNAPSHOT API.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1
v SQLM_DBMON_VERSION2
v SQLM_DBMON_VERSION5
v SQLM_DBMON_VERSION5_2
v SQLM_DBMON_VERSION6
v SQLM_DBMON_VERSION7
v SQLM_DBMON_VERSION8
v SQLM_DBMON_VERSION9
v SQLM_DBMON_VERSION9_5

Note: Constants SQLM_DBMON_VERSION5_2, and earlier, are deprecated
and may be removed in a future release of DB2.

db2GetSnapshotSize - Estimate the output buffer size required for the db2GetSnapshot
API

Chapter 5. Administrative APIs 121

iNodeNumber
Input. The database partition server where the request is to be sent. Based
on this value, the request will be processed for the current database
partition server, all database partition servers, or a user specified database
partition server. Valid values are:
v SQLM_CURRENT_NODE
v SQLM_ALL_NODES. Only allowed when iVersion is set to

SQLM_DBMON_VERSION7 or newer.
v node value

For stand-alone instances, the value, SQLM_CURRENT_NODE must be
used.

iSnapshotClass
Input. The class qualifier for the snapshot. Valid values (defined in sqlmon
header file, located in the include directory) are:
v SQLM_CLASS_DEFAULT for a standard snapshot
v SQLM_CLASS_HEALTH for a health snapshot
v SQLM_CLASS_HEALTH_WITH_DETAIL for a health snapshot including

additional details

Usage notes

This function generates a significant amount of overhead. Allocating and freeing
memory dynamically for each db2GetSnapshot API call is also expensive. If calling
db2GetSnapshot repeatedly, for example, when sampling data over a period of
time, it may be preferable to allocate a buffer of fixed size, rather than call
db2GetSnapshotSize.

If the database system monitor finds no active databases or applications, it may
return a buffer size of zero (if, for example, lock information related to a database
that is not active is requested). Verify that the estimated buffer size returned by
this API is non-zero before calling db2GetSnapshot. If an error is returned by
db2GetSnapshot because of insufficient buffer space to hold the output, call this
API again to determine the new size requirements.

db2GetSnapshotSize - Estimate the output buffer size required for the db2GetSnapshot
API

122 Administrative API Reference

db2GetSyncSession - Get a satellite synchronization session identifier

Gets the satellite's current synchronization session identifier.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2GetSyncSession (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2GetSyncSessionStruct
{

char *poSyncSessionID;
} db2GetSyncSessionStruct;

db2GetSyncSession API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2GetSyncSessionStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2GetSyncSessionStruct data structure parameters

poSyncSessionID
Output. Specifies an identifier for the synchronization session that a
satellite is currently using.

db2GetSyncSession - Get a satellite synchronization session identifier

Chapter 5. Administrative APIs 123

db2HADRStart - Start high availability disaster recovery (HADR)
operations

Starts HADR operations on a database.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. The API establishes a database connection if one does not exist, and
closes the database connection when the API completes.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HADRStart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRStartStruct
{

char *piDbAlias;
char *piUserName;
char *piPassword;
db2Uint32 iDbRole;
db2Uint16 iByForce;

} db2HADRStartStruct;

SQL_API_RC SQL_API_FN
db2gHADRStart (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRStartStruct
{

char *piDbAlias;
db2Uint32 iAliasLen;
char *piUserName;
db2Uint32 iUserNameLen;
char *piPassword;
db2Uint32 iPasswordLen;
db2Uint32 iDbRole;
db2Uint16 iByForce;

} db2gHADRStartStruct;

db2HADRStart API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

db2HADRStart - Start high availability disaster recovery (HADR) operations

124 Administrative API Reference

pParmStruct
Input. A pointer to the db2HADRStartStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2HADRStartStruct data structure parameters

piDbAlias
Input. A pointer to the database alias.

piUserName
Input. A pointer to the user name under which the command will be
executed.

piPassword
Input. A pointer to a string containing the password.

iDbRole
Input. Specifies which HADR database role should be started on the
specified database. Valid values are:

DB2HADR_DB_ROLE_PRIMARY
Start HADR operations on the database in the primary role.

DB2HADR_DB_ROLE_STANDBY
Start HADR operations on the database in the standby role.

iByForce
Input. This argument is ignored if the iDbRole parameter is set to
DB2HADR_DB_ROLE_STANDBY. Valid values are:

DB2HADR_NO_FORCE
Specifies that HADR is started on the primary database only if a
standby database connects to it within a prescribed time limit.

DB2HADR_FORCE
Specifies that HADR is to be started by force, without waiting for
the standby database to connect to the primary database.

db2gHADRStartStruct data structure specific parameters

iAliasLen
Input. Specifies the length in bytes of the database alias.

iUserNameLen
Input. Specifies the length in bytes of the user name.

iPasswordLen
Input. Specifies the length in bytes of the password.

db2HADRStart - Start high availability disaster recovery (HADR) operations

Chapter 5. Administrative APIs 125

db2HADRStop - Stop high availability disaster recovery (HADR)
operations

Stops HADR operations on a database.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. The API establishes a database connection if one does not exist, and
closes the database connection when the API completes.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HADRStop (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRStopStruct
{

char *piDbAlias;
char *piUserName;
char *piPassword;

} db2HADRStopStruct;

SQL_API_RC SQL_API_FN
db2gHADRStop (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRStopStruct
{

char *piDbAlias;
db2Uint32 iAliasLen;
char *piUserName;
db2Uint32 iUserNameLen;
char *piPassword;
db2Uint32 iPasswordLen;

} db2gHADRStopStruct;

db2HADRStop API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2HADRStopStruct structure.

db2HADRStop - Stop high availability disaster recovery (HADR) operations

126 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure.

db2HADRStopStruct data structure parameters

piDbAlias
Input. A pointer to the database alias.

piUserName
Input. A pointer to the user name under which the command will be
executed.

piPassword
Input. A pointer to a string containing the password.

db2gHADRStopStruct data structure specific parameters

iAliasLen
Input. Specifies the length in bytes of the database alias.

iUserNameLen
Input. Specifies the length in bytes of the user name.

iPasswordLen
Input. Specifies the length in bytes of the password.

db2HADRStop - Stop high availability disaster recovery (HADR) operations

Chapter 5. Administrative APIs 127

db2HADRTakeover - Instruct a database to take over as the high
availability disaster recovery (HADR) primary database

Instructs a standby database to take over as the primary database. This API can be
called against a standby database only.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

Instance. The API establishes a database connection if one does not exist, and
closes the database connection when the API completes.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HADRTakeover (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HADRTakeoverStruct
{

char *piDbAlias;
char *piUserName;
char *piPassword;
db2Uint16 iByForce;

} db2HADRTakeoverStruct;

SQL_API_RC SQL_API_FN
db2gHADRTakeover (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHADRTakeoverStruct
{

char *piDbAlias;
db2Uint32 iAliasLen;
char *piUserName;
db2Uint32 iUserNameLen;
char *piPassword;
db2Uint32 iPasswordLen;
db2Uint16 iByForce;

} db2gHADRTakeoverStruct;

db2HADRTakeover API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

db2HADRTakeover - Instruct a database to take over as the high availability disaster
recovery (HADR) primary database

128 Administrative API Reference

pParmStruct
Input. A pointer to the db2HADRTakeoverStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2HADRTakeoverStruct data structure parameters

piDbAlias
Input. A pointer to the database alias.

piUserName
Input. A pointer to the user name under which the command will be
executed.

piPassword
Input. A pointer to a string containing the password.

iByForce
Input. Valid values are:

DB2HADR_NO_FORCE
Specifies that a takeover occurs only if the two systems are in peer
state with communication established; this results in a role reversal
between the HADR primary and HADR standby databases.

DB2HADR_FORCE
Specifies that the standby database takes over as the primary
database without waiting for confirmation that the original
primary database has been shut down. Forced takeover must be
issued when the standby database is in either remote catchup
pending or peer state.

DB2HADR_FORCE_PEERWINDOW
When this option is specified, there will not be any committed
transaction loss if the command succeeds and the primary database
is brought down before the end of the peer window period (set the
database configuration parameter HADR_PEER_WINDOW to a
non-zero value). Not bringing down the primary database, before
the peer window expires, will result in split brain. If executed when
the HADR pair is not in a peer or disconnected peer state (the peer
window has expired), an error is returned.

Note: The takeover operation with the
DB2HADR_FORCE_PEERWINDOW parameter may behave
incorrectly if the primary database clock and the standby database
clock are not synchronized to within 5 seconds of each other. That
is, the operation may succeed when it should fail, or fail when it
should succeed. You should use a time synchronization service
(e.g., NTP) to keep the clocks synchronized to the same source.

/* Values for iByForce */
#define DB2HADR_NO_FORCE 0 /* Do not perform START or */

/* TAKEOVER HADR operation */
/* by force */

#define DB2HADR_FORCE 1 /* Do perform START or */
/* TAKEOVER HADR operation */
/* by force */

#define DB2HADR_FORCE_PEERWINDOW 2 /* Perform TAKEOVER HADR */
/* operation by force inside */
/* the Peer Window only */

db2HADRTakeover - Instruct a database to take over as the high availability disaster
recovery (HADR) primary database

Chapter 5. Administrative APIs 129

db2gHADRTakeoverStruct data structure specific parameters

iAliasLen
Input. Specifies the length in bytes of the database alias.

iUserNameLen
Input. Specifies the length in bytes of the user name.

iPasswordLen
Input. Specifies the length in bytes of the password.

db2HADRTakeover - Instruct a database to take over as the high availability disaster
recovery (HADR) primary database

130 Administrative API Reference

db2HistoryCloseScan - End the database history records scan

Ends a database history records scan and frees DB2 resources required for the scan.
This API must be preceded by a successful call to the db2HistoryOpenScan API.

Note: The language support for COBOL and FORTRAN has been deprecated for
this API and might be discontinued in a future release. Use the following
supported alternatives:
v Build your application using C, C++, or Java™.
v Access database history records by using the DB_HISTORY administrative view.

Authorization

None

Required connection

Instance. It is not necessary to call the sqleatin API before calling this API.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HistoryCloseScan (
db2Uint32 versionNumber,
void * piHandle,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
db2gHistoryCloseScan (

db2Uint32 versionNumber,
void * piHandle,
struct sqlca * pSqlca);

db2HistoryCloseScan API parameters

versionNumber
Input. Specifies the version and release level of the second parameter,
piHandle.

piHandle
Input. Specifies a pointer to the handle for scan access that was returned
by the db2HistoryOpenScan API.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

For a detailed description of the use of the database history records APIs, refer to
the db2HistoryOpenScan API.

REXX API syntax
CLOSE RECOVERY HISTORY FILE :scanid

db2HistoryCloseScan - End the database history records scan

Chapter 5. Administrative APIs 131

REXX API parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

db2HistoryCloseScan - End the database history records scan

132 Administrative API Reference

db2HistoryGetEntry - Get the next entry in the database history
records

Gets the next entry from the database history records. This API must be preceded
by a successful call to the db2HistoryOpenScan API.

Note: The language support for COBOL and FORTRAN has been deprecated for
this API and might be discontinued in a future release. Use the following
supported alternatives:
v Build your application using C, C++, or Java.
v Access database history records by using the DB_HISTORY administrative view.

Authorization

None

Required connection

Instance. It is not necessary to call sqleatin before calling this API.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HistoryGetEntry (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryGetEntryStruct
{

struct db2HistoryData *pioHistData;
db2Uint16 iHandle;
db2Uint16 iCallerAction;

} db2HistoryGetEntryStruct;

SQL_API_RC SQL_API_FN
db2gHistoryGetEntry (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2HistoryGetEntry API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2HistoryGetEntryStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2HistoryGetEntryStruct data structure parameters

pioHistData
Input. A pointer to the db2HistData structure.

db2HistoryGetEntry - Get the next entry in the database history records

Chapter 5. Administrative APIs 133

iHandle
Input. Contains the handle for scan access that was returned by the
db2HistoryOpenScan API.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2HISTORY_GET_ENTRY
Get the next entry, but without any command data.

DB2HISTORY_GET_DDL
Get only the command data from the previous fetch.

DB2HISTORY_GET_ALL
Get the next entry, including all data.

Usage notes

The records that are returned will have been selected using the values specified in
the call to the db2HistoryOpenScan API.

For a detailed description of the use of the database history records APIs, refer to
the db2HistoryOpenScan API.

REXX API syntax
GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

REXX API parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

value A compound REXX host variable into which the database history records
entry information is returned. In the following, XXX represents the host
variable name:

XXX.0 Number of first level elements in the variable (always 15)

XXX.1 Number of table space elements

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10
BACKUP_ID (identifier for the backup)

XXX.11
SCHEMA (qualifier for the table name)

XXX.12
TABLE_NAME (name of the loaded table)

db2HistoryGetEntry - Get the next entry in the database history records

134 Administrative API Reference

XXX.13.0
NUM_OF_TABLESPACES (number of table spaces involved in
backup or restore)

XXX.13.1
Name of the first table space backed up/restored

XXX.13.2
Name of the second table space backed up/restored

XXX.13.3
and so on

XXX.14
LOCATION (where backup or copy is stored)

XXX.15
COMMENT (text to describe the entry).

db2HistoryGetEntry - Get the next entry in the database history records

Chapter 5. Administrative APIs 135

db2HistoryOpenScan - Start a database history records scan

This API starts a database history records scan.

Note: The language support for COBOL and FORTRAN has been deprecated for
this API and might be discontinued in a future release. Use the following
supported alternatives:
v Build your application using C, C++, or Java.
v Access database history records by using the DB_HISTORY administrative view.

Authorization

None

Required connection

Instance. If the database is cataloged as remote, call the sqleatin API before calling
this API.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HistoryOpenScan (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryOpenStruct
{

char *piDatabaseAlias;
char *piTimestamp;
char *piObjectName;
db2Uint32 oNumRows;
db2Uint32 oMaxTbspaces;
db2Uint16 iCallerAction;
db2Uint16 oHandle;

} db2HistoryOpenStruct;

SQL_API_RC SQL_API_FN
db2gHistoryOpenScan (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHistoryOpenStruct
{

char *piDatabaseAlias;
char *piTimestamp;
char *piObjectName;
db2Uint32 iAliasLen;
db2Uint32 iTimestampLen;
db2Uint32 iObjectNameLen;
db2Uint32 oNumRows;
db2Uint32 oMaxTbspaces;
db2Uint16 iCallerAction;
db2Uint16 oHandle;

} db2gHistoryOpenStruct;

db2HistoryOpenScan - Start a database history records scan

136 Administrative API Reference

db2HistoryOpenScan API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input or Output. A pointer to the db2HistoryOpenStruct data structure.

pSqlca
Output. A pointer to the sqlca structure.

db2HistoryOpenStruct data structure parameters

piDatabaseAlias
Input. A pointer to a string containing the database alias.

piTimestamp
Input. A pointer to a string specifying the time stamp to be used for
selecting records. Records whose time stamp is equal to or greater than this
value are selected. Setting this parameter to NULL, or pointing to zero,
prevents the filtering of entries using a time stamp.

piObjectName
Input. A pointer to a string specifying the object name to be used for
selecting records. The object may be a table or a table space. If it is a table,
the fully qualified table name must be provided. Setting this parameter to
NULL, or pointing to zero, prevents the filtering of entries using the object
name.

oNumRows
Output. Upon return from the API call, this parameter contains the number
of matching database history records entries.

oMaxTbspaces
Output. The maximum number of table space names stored with any
history entry.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2HISTORY_LIST_HISTORY
Lists all events that are currently logged in the database history
records.

DB2HISTORY_LIST_BACKUP
Lists backup and restore operations.

DB2HISTORY_LIST_ROLLFORWARD
Lists rollforward operations.

DB2HISTORY_LIST_DROPPED_TABLE
Lists dropped table records. The DDL field associated with an
entry is not returned. To retrieve the DDL information for an entry,
db2HistoryGetEntry must be called with a caller action of
DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_LOAD
Lists load operations.

DB2HISTORY_LIST_CRT_TABLESPACE
Lists table space create and drop operations.

db2HistoryOpenScan - Start a database history records scan

Chapter 5. Administrative APIs 137

DB2HISTORY_LIST_REN_TABLESPACE
Lists table space renaming operations.

DB2HISTORY_LIST_ALT_TABLESPACE
Lists alter table space operations. The DDL field associated with an
entry is not returned. To retrieve the DDL information for an entry,
db2HistoryGetEntry must be called with a caller action of
DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_REORG
Lists REORGANIZE TABLE operations. This value is not currently
supported.

oHandle
Output. Upon return from the API, this parameter contains the handle for
scan access. It is subsequently used in the db2HistoryGetEntry, and
db2HistoryCloseScan APIs.

db2gHistoryOpenStruct data structure specific parameters

iAliasLen
Input. Specifies the length in bytes of the database alias string.

iTimestampLen
Input. Specifies the length in bytes of the timestamp string.

iObjectNameLen
Input. Specifies the length in bytes of the object name string.

Usage notes

The combination of time stamp, object name and caller action can be used to filter
records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:
v Specifying a table will return records for load operations, because this is the only

information for tables in the database history records.
v Specifying a table space will return records for backup, restore, and load

operations for the table space.

Note: To return records for tables, they must be specified as schema.tablename.
Specifying tablename will only return records for table spaces.

A maximum of eight database history records scans per process is permitted.

To list every entry in the database history records, a typical application will
perform the following steps:
1. Call the db2HistoryOpenScan API, which returns parameter value oNumRows.
2. Allocate a db2HistData structure with space for n oTablespace fields, where n is

an arbitrary number.
3. Set the iNumTablespaces field of the db2HistoryData structure to n.
4. In a loop, perform the following:
v Call the db2HistoryGetEntry API to fetch from the database history records.
v If db2HistoryGetEntry API returns an SQLCODE value of SQL_RC_OK, use

the oNumTablespaces field of the db2HistoryData structure to determine the
number of table space entries returned.

db2HistoryOpenScan - Start a database history records scan

138 Administrative API Reference

v If db2HistoryGetEntry API returns an SQLCODE value of
SQLUH_SQLUHINFO_VARS_WARNING, not enough space has been
allocated for all of the table spaces that DB2 is trying to return; free and
reallocate the db2HistoryData structure with enough space for
oDB2UsedTablespace table space entries, and set iDB2NumTablespace to
oDB2UsedTablespace.

v If db2HistoryGetEntry API returns an SQLCODE value of
SQLE_RC_NOMORE, all database history records entries have been
retrieved.

v Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call the db2HistoryCloseScan API

to free the resources allocated by the call to db2HistoryOpenScan.

The macro SQLUHINFOSIZE(n) (defined in sqlutil header file) is provided to help
determine how much memory is required for a db2HistoryData structure with
space for n oTablespace entries.

REXX API syntax
OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias
[OBJECT objname] [TIMESTAMP :timestamp]
USING :value

REXX API parameters

database_alias
The alias of the database that is to have its database history records listed.

objname
Specifies the object name to be used for selecting records. The object may
be a table or a table space. If it is a table, the fully qualified table name
must be provided. Setting this parameter to NULL prevents the filtering of
entries using objname.

timestamp
Specifies the time stamp to be used for selecting records. Records whose
time stamp is equal to or greater than this value are selected. Setting this
parameter to NULL prevents the filtering of entries using timestamp.

value A compound REXX host variable to which database history records
information is returned. In the following, XXX represents the host variable
name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching database history records entries.

db2HistoryOpenScan - Start a database history records scan

Chapter 5. Administrative APIs 139

db2HistoryUpdate - Update a database history records entry

Updates the location, device type, or comment in a database history records entry.

Note: The language support for COBOL and FORTRAN has been deprecated for
this API and might be discontinued in a future release. Use the following
supported alternatives:
v Build your application using C, C++, or Java.
v Access database history records by using the DB_HISTORY administrative view.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection

Database. To update entries in the database history records for a database other
than the default database, a connection to the database must be established before
calling this API.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2HistoryUpdate (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2HistoryUpdateStruct
{

char *piNewLocation;
char *piNewDeviceType;
char *piNewComment;
char *piNewStatus;
db2HistoryEID iEID;

} db2HistoryUpdateStruct;

typedef SQL_STRUCTURE db2HistoryEID
{

SQL_PDB_NODE_TYPE ioNode;
db2Uint32 ioHID;

} db2HistoryEID;

SQL_API_RC SQL_API_FN
db2gHistoryUpdate (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gHistoryUpdateStruct
{

char *piNewLocation;

db2HistoryUpdate - Update a database history records entry

140 Administrative API Reference

char *piNewDeviceType;
char *piNewComment;
char *piNewStatus;
db2Uint32 iNewLocationLen;
db2Uint32 iNewDeviceLen;
db2Uint32 iNewCommentLen;
db2Uint32 iNewStatusLen;
db2HistoryEID iEID;

} db2gHistoryUpdateStruct;

db2HistoryUpdate API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2HistoryUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2HistoryUpdateStruct data structure parameters

piNewLocation
Input. A pointer to a string specifying a new location for the backup,
restore, or load copy image. Setting this parameter to NULL, or pointing to
zero, leaves the value unchanged.

piNewDeviceType
Input. A pointer to a string specifying a new device type for storing the
backup, restore, or load copy image. Setting this parameter to NULL, or
pointing to zero, leaves the value unchanged. Valid device types are:

D Disk

K Diskette

T Tape

F Snapshot backup

A Tivoli Storage Manager

U User exit

P Pipe

N Null device

X XBSA

Q SQL statement

O Other

piNewComment
Input. A pointer to a string specifying a new comment to describe the
entry. Setting this parameter to NULL, or pointing to zero, leaves the
comment unchanged.

piNewStatus
Input. A pointer to a string specifying a new status type for the entry.
Setting this parameter to NULL, or pointing to zero, leaves the status
unchanged. Valid values are:

db2HistoryUpdate - Update a database history records entry

Chapter 5. Administrative APIs 141

A Active. The backup image is on the active log chain. Most entries
are active.

I Inactive. Backup images that no longer correspond to the current
log sequence, also called the current log chain are flagged as
inactive.

E Expired. Backup images that are no longer required because there
are more than NUM_DB_BACKUPS active images are flagged as
expired.

D Deleted. Backup images that are no longer available for recovery
should be marked as having been deleted.

X Do_not_delete. Recovery history entries that are marked as do not
delete will not be pruned or deleted by calls to the PRUNE
HISTORY command, running the ADMIN_CMD procedure with
PRUNE HISTORY, calls to the db2Prune API, or automated
recovery database history records pruning. You can use the
do_not_delete status to protect key recovery file entries from being
pruned and the recovery objects associated with them from being
deleted.

iEID Input. A unique identifier that can be used to update a specific entry in the
database history records.

db2HistoryEID data structure parameters

ioNode
This parameter can be used as either an input or output parameter.

Indicates the node number.

ioHID This parameter can be used as either an input or output parameter.

Indicates the local database history records entry ID.

db2gHistoryUpdateStruct data structure specific parameters

iNewLocationLen
Input. Specifies the length in bytes of the piNewLocation parameter.

iNewDeviceLen
Input. Specifies the length in bytes of the piNewDeviceType parameter.

iNewCommentLen
Input. Specifies the length in bytes of the piNewComment parameter.

iNewStatusLen
Input. Specifies the length in bytes of the piNewStatus parameter.

Usage notes

This is an update function, and all information prior to the change is replaced and
cannot be recreated. These changes are not logged.

The primary purpose of the database history records is to record information, but
the data contained in the history is used directly by automatic restore operations.
During any restore where the AUTOMATIC option is specified, the history of
backup images and their locations will be referenced and used by the restore
utility to fulfill the automatic restore request. If the automatic restore function is to
be used and backup images have been relocated since they were created, it is

db2HistoryUpdate - Update a database history records entry

142 Administrative API Reference

recommended that the database history record for those images be updated to
reflect the current location. If the backup image location in the database history is
not updated, automatic restore will not be able to locate the backup images, but
manual restore commands can still be used successfully.

REXX API syntax
UPDATE RECOVERY HISTORY USING :value

REXX API parameters

value A compound REXX host variable containing information pertaining to the
new location of a database history records entry. In the following, XXX
represents the host variable name:

XXX.0 Number of elements in the variable (must be between 1 and 4)

XXX.1 OBJECT_PART (time stamp with a sequence number from 001 to
999)

XXX.2 New location for the backup or copy image (this parameter is
optional)

XXX.3 New device used to store the backup or copy image (this
parameter is optional)

XXX.4 New comment (this parameter is optional).

db2HistoryUpdate - Update a database history records entry

Chapter 5. Administrative APIs 143

db2Import - Import data into a table, hierarchy, nickname or view

Inserts data from an external file with a supported file format into a table,
hierarchy, nickname or view. The load utility is faster than this function. The load
utility, however, does not support loading data at the hierarchy level or loading
into a nickname.

Authorization
v IMPORT using the INSERT option requires one of the following:

– dataaccess
– CONTROL privilege on each participating table, view or nickname
– INSERT and SELECT privilege on each participating table or view

v IMPORT to an existing table using the INSERT_UPDATE option, requires one of
the following:
– dataaccess
– CONTROL privilege on the table, view or nickname
– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:
– dataaccess
– CONTROL privilege on the table or view
– INSERT, SELECT, and DELETE privilege on the table or view

v IMPORT to a new table using the CREATE or REPLACE_CREATE option,
requires one of the following:
– dbadm
– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a table or a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:
– dbadm
– CREATETAB authority on the database, and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the
table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists
- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:
– dataaccess
– CONTROL privilege on every sub-table in the hierarchy

db2Import - Import data into a table, hierarchy, nickname or view

144 Administrative API Reference

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Import (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ImportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2ImportIn *piImportInfoIn;
struct db2ImportOut *poImportInfoOut;
db2int32 *piNullIndicators;
struct sqllob *piLongActionString;

} db2ImportStruct;

typedef SQL_STRUCTURE db2ImportIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
db2Uint64 iSkipcount;
db2int32 *piCommitcount;
db2Uint32 iWarningcount;
db2Uint16 iNoTimeout;
db2Uint16 iAccessLevel;
db2Uint16 *piXmlParse;
struct db2DMUXmlValidate *piXmlValidate;

} db2ImportIn;

typedef SQL_STRUCTURE db2ImportOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsInserted;
db2Uint64 oRowsUpdated;
db2Uint64 oRowsRejected;
db2Uint64 oRowsCommitted;

} db2ImportOut;

typedef SQL_STRUCTURE db2DMUXmlMapSchema
{

struct db2Char iMapFromSchema;
struct db2Char iMapToSchema;

} db2DMUXmlMapSchema;

typedef SQL_STRUCTURE db2DMUXmlValidateXds
{

struct db2Char *piDefaultSchema;
db2Uint32 iNumIgnoreSchemas;
struct db2Char *piIgnoreSchemas;

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 145

db2Uint32 iNumMapSchemas;
struct db2DMUXmlMapSchema *piMapSchemas;

} db2DMUXmlValidateXds;

typedef SQL_STRUCTURE db2DMUXmlValidateSchema
{

struct db2Char *piSchema;
} db2DMUXmlValidateSchema;

typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing;
struct db2DMUXmlValidateXds *piXdsArgs;
struct db2DMUXmlValidateSchema *piSchemaArgs;

} db2DMUXmlValidate;

SQL_API_RC SQL_API_FN
db2gImport (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gImportStruct
{

char *piDataFileName;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piMsgFileName;
db2int16 iCallerAction;
struct db2gImportIn *piImportInfoIn;
struct dbg2ImportOut *poImportInfoOut;
db2int32 *piNullIndicators;
db2Uint16 iDataFileNameLen;
db2Uint16 iFileTypeLen;
db2Uint16 iMsgFileNameLen;
struct sqllob *piLongActionString;

} db2gImportStruct;

typedef SQL_STRUCTURE db2gImportIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
db2Uint64 iSkipcount;
db2int32 *piCommitcount;
db2Uint32 iWarningcount;
db2Uint16 iNoTimeout;
db2Uint16 iAccessLevel;
db2Uint16 *piXmlParse;
struct db2DMUXmlValidate *piXmlValidate;

} db2gImportIn;

typedef SQL_STRUCTURE db2gImportOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsInserted;
db2Uint64 oRowsUpdated;
db2Uint64 oRowsRejected;
db2Uint64 oRowsCommitted;

} db2gImportOut;

db2Import - Import data into a table, hierarchy, nickname or view

146 Administrative API Reference

db2Import API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter pParmStruct.

pParmStruct
Input/Output. A pointer to the db2ImportStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ImportStruct data structure parameters

piDataFileName
Input. A string containing the path and the name of the external input file
from which the data is to be imported.

piLobPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the LOB files can be found. This parameter is not valid
when you import to a nickname.

piDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for import from the external file. The value of the
dcolmeth field determines how the remainder of the information provided
in this parameter is interpreted by the import utility. Valid values for this
parameter are:

SQL_METH_N
Names. Selection of columns from the external input file is by
column name.

SQL_METH_P
Positions. Selection of columns from the external input file is by
column position.

SQL_METH_L
Locations. Selection of columns from the external input file is by
column location. The database manager rejects an import call with
a location pair that is invalid because of any one of the following
conditions:
v Either the beginning or the ending location is not in the range

from 1 to the largest signed 2-byte integer.
v The ending location is smaller than the beginning location.
v The input column width defined by the location pair is not

compatible with the type and the length of the target column.

A location pair with both locations equal to zero indicates that a
nullable column is to be filled with NULLs.

SQL_METH_D
Default. If piDataDescriptor is NULL, or is set to SQL_METH_D,
default selection of columns from the external input file is done. In
this case, the number of columns and the column specification
array are both ignored. For DEL, IXF, or WSF files, the first n
columns of data in the external input file are taken in their natural
order, where n is the number of database columns into which the
data is to be imported.

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 147

piActionString
Deprecated. Replaced by piLongActionString.

piLongActionString
Input. Pointer to an sqllob structure containing a 4-byte long field, followed
by an array of characters specifying an action that affects the table.

The character array is of the form:
{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}
INTO {tname[(tcolumn-list)] |
[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]
[IN] HIERARCHY {STARTING tname | (tname[, tname])}
[UNDER sub-table-name | AS ROOT TABLE]}

INSERT
Adds the imported data to the table without changing the existing
table data.

INSERT_UPDATE
Adds the imported rows if their primary key values are not in the
table, and uses them for update if their primary key values are
found. This option is only valid if the target table has a primary
key, and the specified (or implied) list of target columns being
imported includes all columns for the primary key. This option
cannot be applied to views.

REPLACE
Deletes all existing data from the table by truncating the table
object, and inserts the imported data. The table definition and the
index definitions are not changed. (Indexes are deleted and
replaced if indexixf is in FileTypeMod, and FileType is SQL_IXF.) If
the table is not already defined, an error is returned.

Note: If an error occurs after the existing data is deleted, that data
is lost.
This parameter is not valid when you import to a nickname.

CREATE

Note: The CREATE parameter is deprecated and may be removed
in a future release. For additional details, see “IMPORT command
options CREATE and REPLACE_CREATE are deprecated”.

Creates the table definition and the row contents using the
information in the specified PC/IXF file, if the specified table is not
defined. If the file was previously exported by DB2, indexes are
also created. If the specified table is already defined, an error is
returned. This option is valid for the PC/IXF file format only. This
parameter is not valid when you import to a nickname.

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may
be removed in a future release. For additional details, see
“IMPORT command options CREATE and REPLACE_CREATE are
deprecated”.

Replaces the table contents using the PC/IXF row information in
the PC/IXF file, if the specified table is defined. If the table is not
already defined, the table definition and row contents are created
using the information in the specified PC/IXF file. If the PC/IXF

db2Import - Import data into a table, hierarchy, nickname or view

148 Administrative API Reference

file was previously exported by DB2, indexes are also created. This
option is valid for the PC/IXF file format only.

Note: If an error occurs after the existing data is deleted, that data
is lost.
This parameter is not valid when you import to a nickname.

tname The name of the table, typed table, view, or object view into which
the data is to be inserted. An alias for REPLACE,
INSERT_UPDATE, or INSERT can be specified, except in the case
of a server with a previous version of the DB2 product installed,
when a qualified or unqualified name should be specified. If it is a
view, it cannot be a read-only view.

tcolumn-list
A list of table or view column names into which the data is to be
inserted. The column names must be separated by commas. If
column names are not specified, column names as defined in the
CREATE TABLE or the ALTER TABLE statement are used. If no
column list is specified for typed tables, data is inserted into all
columns within each sub-table.

sub-table-name
Specifies a parent table when creating one or more sub-tables
under the CREATE option.

ALL TABLES
An implicit keyword for hierarchy only. When importing a
hierarchy, the default is to import all tables specified in the
traversal-order-list.

HIERARCHY
Specifies that hierarchical data is to be imported.

STARTING
Keyword for hierarchy only. Specifies that the default order,
starting from a given sub-table name, is to be used.

UNDER
Keyword for hierarchy and CREATE only. Specifies that the new
hierarchy, sub-hierarchy, or sub-table is to be created under a given
sub-table.

AS ROOT TABLE
Keyword for hierarchy and CREATE only. Specifies that the new
hierarchy, sub-hierarchy, or sub-table is to be created as a
stand-alone hierarchy.

The tname and the tcolumn-list parameters correspond to the tablename
and the colname lists of SQL INSERT statements, and have the same
restrictions.

The columns in tcolumn-list and the external columns (either specified or
implied) are matched according to their position in the list or the structure
(data from the first column specified in the sqldcol structure is inserted
into the table or view field corresponding to the first element of the
tcolumn-list).

If unequal numbers of columns are specified, the number of columns
actually processed is the lesser of the two numbers. This could result in an

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 149

error (because there are no values to place in some non-nullable table
fields) or an informational message (because some external file columns are
ignored).

This parameter is not valid when you import to a nickname.

piFileType
Input. A string that indicates the format of the data within the external file.
Supported external file formats are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table so that it can be imported
later into the same table or into another database manager table.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and 1-2-3
programs. The WSF file type is not supported when you import to
a nickname.

piFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed by
an array of characters that specify one or more processing options. If this
pointer is NULL, or the structure pointed to has zero characters, this action
is interpreted as selection of a default specification.

Not all options can be used with all of the supported file types. See related
link "File type modifiers for the import utility".

piMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and the
name of an operating system file or a standard device. If the file already
exists, it is appended to. If it does not exist, a file is created.

iCallerAction
Input. An action requested by the caller. Valid values are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the API. If
the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested import operation, the caller action must be set to one of
the following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

db2Import - Import data into a table, hierarchy, nickname or view

150 Administrative API Reference

SQLU_TERMINATE
Terminate processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape
condition). It specifies that the user action requested by the utility
was not performed, and the utility is to terminate processing the
initial request.

piImportInfoIn
Input. Pointer to the db2ImportIn structure.

poImportInfoOut
Output. Pointer to the db2ImportOut structure.

piNullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. The number of elements in this array must
match the number of columns in the input file; there is a one-to-one
ordered correspondence between the elements of this array and the
columns being imported from the data file. Therefore, the number of
elements must equal the dcolnum field of the piDataDescriptor parameter.
Each element of the array contains a number identifying a column in the
data file that is to be used as a null indicator field, or a zero indicating that
the table column is not nullable. If the element is not zero, the identified
column in the data file must contain a Y or an N. A Y indicates that the
table column data is NULL, and N indicates that the table column data is
not NULL.

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the XML files can be found.

db2ImportIn data structure parameters

iRowcount
Input. The number of physical records to be loaded. Allows a user to load
only the first iRowcount rows in a file. If iRowcount is 0, import will
attempt to process all the rows from the file.

iRestartcount
Input. The number of records to skip before starting to insert or update
records. Functionally equivalent to iSkipcount parameter. iRestartcount and
iSkipcount parameters are mutually exclusive.

iSkipcount
Input. The number of records to skip before starting to insert or update
records. Functionally equivalent to iRestartcount.

piCommitcount
Input. The number of records to import before committing them to the
database. A commit is performed whenever piCommitcount records are
imported. A NULL value specifies the default commit count value, which
is zero for offline import and AUTOMATIC for online import.
Commitcount AUTOMATIC is specified by passing in the value
DB2IMPORT_COMMIT_AUTO.

iWarningcount
Input. Stops the import operation after iWarningcount warnings. Set this
parameter if no warnings are expected, but verification that the correct file

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 151

and table are being used is desired. If the import file or the target table is
specified incorrectly, the import utility will generate a warning for each
row that it attempts to import, which will cause the import to fail.

If iWarningcount is 0, or this option is not specified, the import operation
will continue regardless of the number of warnings issued.

iNoTimeout
Input. Specifies that the import utility will not time out while waiting for
locks. This option supersedes the locktimeout database configuration
parameter. Other applications are not affected. Valid values are:

DB2IMPORT_LOCKTIMEOUT
Indicates that the value of the locktimeout configuration parameter
is respected.

DB2IMPORT_NO_LOCKTIMEOUT
Indicates there is no timeout.

iAccessLevel
Input. Specifies the access level. Valid values are:

- SQLU_ALLOW_NO_ACCESS
Specifies that the import utility locks the table exclusively.

- SQLU_ALLOW_WRITE_ACCESS
Specifies that the data in the table should still be accessible to
readers and writers while the import is in progress.

An intent exclusive (IX) lock on the target table is acquired when the first
row is inserted. This allows concurrent readers and writers to access table
data. Online mode is not compatible with the REPLACE, CREATE, or
REPLACE_CREATE import options. Online mode is not supported in
conjunction with buffered inserts. The import operation will periodically
commit inserted data to prevent lock escalation to a table lock and to avoid
running out of active log space. These commits will be performed even if
the piCommitCount parameter was not used. During each commit, import
will lose its IX table lock, and will attempt to reacquire it after the commit.
This parameter is required when you import to a nickname and
piCommitCount parameter must be specified with a valid number
(AUTOMATIC is not considered a valid option).

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory, are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.

db2ImportOut data structure parameters

oRowsRead
Output. Number of records read from the file during import.

oRowsSkipped
Output. Number of records skipped before inserting or updating begins.

db2Import - Import data into a table, hierarchy, nickname or view

152 Administrative API Reference

oRowsInserted
Output. Number of rows inserted into the target table.

oRowsUpdated
Output. Number of rows in the target table updated with information from
the imported records (records whose primary key value already exists in
the table).

oRowsRejected
Output. Number of records that could not be imported.

oRowsCommitted
Output. Number of records imported successfully and committed to the
database.

db2DMUXmlMapSchema data structure parameters

iMapFromSchema
Input. The SQL identifier of the XML schema to map from.

iMapToSchema
Input. The SQL identifier of the XML schema to map to.

db2DMUXmlValidateXds data structure parameters

piDefaultSchema
Input. The SQL identifier of the XML schema that should be used for
validation when an XDS does not contain an SCH attribute.

iNumIgnoreSchemas
Input. The number of XML schemas that will be ignored during XML
schema validation if they are referred to by an SCH attribute in XDS.

piIgnoreSchemas
Input. The list of XML schemas that will be ignored during XML schema
validation if they are referred to by an SCH attribute in XDS.

iNumMapSchemas
Input. The number of XML schemas that will be mapped during XML
schema validation. The first schema in the schema map pair represents a
schema that is referred to by an SCH attribute in an XDS. The second
schema in the pair represents the schema that should be used to perform
schema validation.

piMapSchemas
Input. The list of XML schema pairs, where each pair represents a mapping
of one schema to a different one. The first schema in the pair represents a
schema that is referred to by an SCH attribute in an XDS. The second
schema in the pair represents the schema that should be used to perform
schema validation.

db2DMUXmlValidateSchema data structure parameters

piSchema
Input. The SQL identifier of the XML schema to use.

db2DMUXmlValidate data structure parameters

iUsing
Input. A specification of what to use to perform XML schema validation.
Valid values found in the db2ApiDf header file in the include directory,
are:

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 153

- DB2DMU_XMLVAL_XDS
Validation should occur according to the XDS. This corresponds to
the CLP "XMLVALIDATE USING XDS" clause.

- DB2DMU_XMLVAL_SCHEMA
Validation should occur according to a specified schema. This
corresponds to the CLP "XMLVALIDATE USING SCHEMA" clause.

- DB2DMU_XMLVAL_SCHEMALOC_HINTS
Validation should occur according to schemaLocation hints found
within the XML document. This corresponds to the
"XMLVALIDATE USING SCHEMALOCATION HINTS" clause.

piXdsArgs
Input. Pointer to a db2DMUXmlValidateXds structure, representing
arguments that correspond to the CLP "XMLVALIDATE USING XDS"
clause.

This parameter applies only when the iUsing parameter in the same
structure is set to DB2DMU_XMLVAL_XDS.

piSchemaArgs
Input. Pointer to a db2DMUXmlValidateSchema structure, representing
arguments that correspond to the CLP "XMLVALIDATE USING SCHEMA"
clause.

This parameter applies only when the iUsing parameter in the same
structure is set to DB2DMU_XMLVAL_SCHEMA.

db2gImportStruct data structure specific parameters

iDataFileNameLen
Input. Specifies the length in bytes of piDataFileName parameter.

iFileTypeLen
Input. Specifies the length in bytes of piFileType parameter.

iMsgFileNameLen
Input. Specifies the length in bytes of piMsgFileName parameter.

Usage notes

Before starting an import operation, you must complete all table operations and
release all locks in one of two ways:
v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.
v Roll back the data changes by executing the ROLLBACK statement.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:
v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.
v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and
processing halts.

db2Import - Import data into a table, hierarchy, nickname or view

154 Administrative API Reference

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the
application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE
operation, the utility performs an automatic COMMIT on inserted records. If the
system fails, or the application interrupts the database manager after an automatic
COMMIT, a table with partial data remains in the database. Use the REPLACE or
the REPLACE_CREATE option to rerun the whole import operation, or use
INSERT with the iRestartcount parameter set to the number of rows successfully
imported.

By default, automatic COMMITs are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the *piCommitcount
parameter is not zero. A full log results in a ROLLBACK.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is
written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any
dependents other than itself, or an object view if its base table has any dependents
(including itself). To replace such a table or a view, do the following:
1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when creating
tables from PC/IXF files. (Primary key definitions are preserved if the data was
previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the
size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the
client may be missing messages from the middle of the import operation. The first
30 KB of message information and the last 30 KB of message information are
always retained.

Non-default values for piDataDescriptor, or specifying an explicit list of table
columns in piLongActionString, makes importing to a remote database slower.

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 155

The database table or hierarchy must exist before data in the ASC, DEL, or WSF
file formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data
from a PC/IXF file. For typed tables, IMPORT CREATE can create the type
hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified,
the import utility assumes that data in the PC/IXF file has the same code page as
the application performing the import. This occurs even if there is a conversion
table for the two code pages. If the two differ, the FORCEIN option is not
specified, and there is a conversion table, all data in the PC/IXF file will be
converted from the file code page to the application code page. If the two differ,
the FORCEIN option is not specified, and there is no conversion table, the import
operation will fail. This applies only to PC/IXF files on DB2 for AIX clients.

For table objects on an 8KB page that are close to the limit of 1012 columns, import
of PC/IXF data files may cause DB2 to return an error, because the maximum size
of an SQL statement was exceeded. This situation can occur only if the columns
are of type CHAR, VARCHAR, or CLOB. The restriction does not apply to import
of DEL or ASC files.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400®. Only PC/IXF import
(INSERT option) is supported. The restartcnt parameter, but not the commitcnt
parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined
in the PC/IXF file; sub-table definitions cannot be altered. When using options
other than CREATE with typed tables, the traversal order list enables one to
specify the traverse order; therefore, the traversal order list must match the one
used during the export operation. For the PC/IXF file format, one need only
specify the target sub-table name, and use the traverse order stored in the file. The
import utility can be used to recover a table previously exported to a PC/IXF file.
The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, a created
temporary table, or a summary table.

Views cannot be created through the import utility.

On the Windows operating system:
v Importing logically split PC/IXF files is not supported.
v Importing bad format PC/IXF or WSF files is not supported.

db2Import - Import data into a table, hierarchy, nickname or view

156 Administrative API Reference

Federated considerations

When using the db2Import API and the INSERT, UPDATE, or INSERT_UPDATE
parameters, you must ensure that you have CONTROL privilege on the
participating nickname. You must ensure that the nickname you wish to use when
doing an import operation already exists.

db2Import - Import data into a table, hierarchy, nickname or view

Chapter 5. Administrative APIs 157

db2Inspect - Inspect database for architectural integrity

Inspects the database for architectural integrity and checks the pages of the
database for page consistency.

Scope

In a single partition database environment, the scope is the single database
partition only. In a partitioned database environment it is the collection of all
logical database partitions defined in db2nodes.cfg. For partitioned tables, the
scope for database and table space level inspection includes individual data
partitions and non-partitioned indexes. Table level inspection for a partitioned
table checks all the data partitions and indexes in a table, rather than checking a
single data partition or index.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Inspect (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InspectStruct
{

char *piTablespaceName;
char *piTableName;
char *piSchemaName;
char *piResultsName;
char *piDataFileName;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iAction;
db2int32 iTablespaceID;
db2int32 iObjectID;
db2Uint32 iFirstPage;
db2Uint32 iNumberOfPages;
db2Uint32 iFormatType;
db2Uint32 iOptions;
db2Uint32 iBeginCheckOption;
db2int32 iLimitErrorReported;
db2Uint16 iObjectErrorState;
db2Uint16 iCatalogToTablespace;
db2Uint16 iKeepResultfile;

db2Inspect - Inspect database for architectural integrity

158 Administrative API Reference

db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
db2Uint16 iLevelObjectData;
db2Uint16 iLevelObjectIndex;
db2Uint16 iLevelObjectLong;
db2Uint16 iLevelObjectLOB;
db2Uint16 iLevelObjectBlkMap;
db2Uint16 iLevelExtentMap;
db2Uint16 iLevelObjectXML;
db2Uint32 iLevelCrossObject;

} db2InspectStruct;

SQL_API_RC SQL_API_FN
db2gInspect (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInspectStruct
{

char *piTablespaceName;
char *piTableName;
char *piSchemaName;
char *piResultsName;
char *piDataFileName;
SQL_PDB_NODE_TYPE *piNodeList;
db2Uint32 iResultsNameLength;
db2Uint32 iDataFileNameLength;
db2Uint32 iTablespaceNameLength;
db2Uint32 iTableNameLength;
db2Uint32 iSchemaNameLength;
db2Uint32 iAction;
db2int32 iTablespaceID;
db2int32 iObjectID;
db2Uint32 iFirstPage;
db2Uint32 iNumberOfPages;
db2Uint32 iFormatType;
db2Uint32 iOptions;
db2Uint32 iBeginCheckOption;
db2int32 iLimitErrorReported;
db2Uint16 iObjectErrorState;
db2Uint16 iCatalogToTablespace;
db2Uint16 iKeepResultfile;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
db2Uint16 iLevelObjectData;
db2Uint16 iLevelObjectIndex;
db2Uint16 iLevelObjectLong;
db2Uint16 iLevelObjectLOB;
db2Uint16 iLevelObjectBlkMap;
db2Uint16 iLevelExtentMap;
db2Uint16 iLevelObjectXML;
db2Uint32 iLevelCrossObject;

} db2gInspectStruct;

db2Inspect API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InspectStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Inspect - Inspect database for architectural integrity

Chapter 5. Administrative APIs 159

db2InspectStruct data structure parameters

piTablespaceName
Input. A string containing the table space name. The table space must be
identified for operations on a table space. If the pointer is NULL, the table
space ID value is used as input.

piTableName
Input. A string containing the table name. The table must be identified for
operations on a table or a table object. If the pointer is NULL, the table
space ID and table object ID values are used as input.

piSchemaName
Input. A string containing the schema name.

piResultsName
Input. A string containing the name for results output file. This input must
be provided. The file will be written out to the diagnostic data directory
path.

piDataFileName
Input. Reserved for future use. Must be set to NULL.

piNodeList
Input. A pointer to an array of database partition numbers on which to
perform the operation.

iAction
Input. Specifies the inspect action. Valid values (defined in the db2ApiDf
header file, which is located in the include directory) are:

DB2INSPECT_ACT_CHECK_DB
Inspect the entire database.

DB2INSPECT_ACT_CHECK_TABSPACE
Inspect a table space.

DB2INSPECT_ACT_CHECK_TABLE
Inspect a table.

DB2INSPECT_ACT_FORMAT_XML
Format an XML object page.

DB2INSPECT_ACT_ROWCMPEST_TBL
Estimate row compression effectiveness on a table.

iTablespaceID
Input. Specifies the table space ID. If the table space must be identified, the
table space ID value is used as input if the pointer to table space name is
NULL.

iObjectID
Input. Specifies the object ID. If the table must be identified, the object ID
value is used as input if the pointer to table name is NULL.

iBeginCheckOption
Input. Option for check database or check table space operation to indicate
where operation should begin. It must be set to zero to begin from the
normal start. Values are:

DB2INSPECT_BEGIN_TSPID
Use this value for check database to begin with the table space
specified by the table space ID field, the table space ID must be set.

db2Inspect - Inspect database for architectural integrity

160 Administrative API Reference

DB2INSPECT_BEGIN_TSPID_OBJID
Use this value for check database to begin with the table specified
by the table space ID and object ID field. To use this option, the
table space ID and object ID must be set.

DB2INSPECT_BEGIN_OBJID
Use this value for check table space to begin with the table
specified by the object ID field, the object ID must be set.

iLimitErrorReported
Input. Specifies the reporting limit of the number of pages in error for an
object. Specify the number you want to use as the limit value or specify
one the following values:

DB2INSPECT_LIMIT_ERROR_DEFAULT
Use this value to specify that the maximum number of pages in
error to be reported is the extent size of the object.

DB2INSPECT_LIMIT_ERROR_ALL
Use this value to report all pages in error.

When DB2INSPECT_LVL_XOBJ_INXDAT_RID is used in the
iLevelCrossObject field, the limit value specified, or the above DEFAULT or
ALL values, represent a limit in the number of errors, instead of number of
pages in error, to be reported during the online index to data consistency
checking.

iObjectErrorState
Input. Specifies whether to scan objects in error state. Valid values are:

DB2INSPECT_ERROR_STATE_NORMAL
Process object only in normal state.

DB2INSPECT_ERROR_STATE_ALL
Process all objects, including objects in error state.

When DB2INSPECT_LVL_XOBJ_INXDAT_RID is used in the
iLevelCrossObject field, as long as the index or data object is in an error
state, DB2INSPECT_ERROR_STATE_ALL will be ignored if specified in this
field, and the online index to data consistency checking will not be
performed.

iKeepResultfile
Input. Specifies result file retention. Valid values are:

DB2INSPECT_RESFILE_CLEANUP
If errors are reported, the result output file will be retained.
Otherwise, the result file will be removed at the end of the
operation.

DB2INSPECT_RESFILE_KEEP_ALWAYS
The result output file will be retained.

iAllNodeFlag
Input. Indicates whether the operation is to be applied to all nodes defined
in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to all nodes in a node list that is passed in pNodeList.

DB2_ALL_NODES
Apply to all nodes. pNodeList should be NULL. This is the default
value.

db2Inspect - Inspect database for architectural integrity

Chapter 5. Administrative APIs 161

DB2_ALL_EXCEPT
Apply to all nodes except those in a node list that is passed in
pNodeList.

iNumNodes
Input. Specifies the number of nodes in the pNodeList array.

iLevelObjectData
Input. Specifies processing level for data object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectIndex
Input. Specifies processing level for index object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectLong
Input. Specifies processing level for long object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectLOB
Input. Specifies processing level for LOB object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectBlkMap
Input. Specifies processing level for block map object. Valid values are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

db2Inspect - Inspect database for architectural integrity

162 Administrative API Reference

iLevelExtentMap
Input. Specifies processing level for extent map. Valid values (defined in
the db2ApiDf header file, which is located in the include directory) are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelObjectXML
Input. Specifies processing level for XML object. Valid values (defined in
the db2ApiDf header file, which is located in the include directory) are:

DB2INSPECT_LEVEL_NORMAL
Level is normal.

DB2INSPECT_LEVEL_LOW
Level is low.

DB2INSPECT_LEVEL_NONE
Level is none.

iLevelCrossObject
A bit-based field used for any cross object consistency checking. Valid
values are:

DB2INSPECT_LVL_XOBJ_NONE
Online index data consistency checking will not be performed
(0x00000000).

DB2INSPECT_LVL_XOBJ_INXDAT_RID
INDEXDATA checking is enabled on RID index (0x00000001) and
will be performed with IS table lock to allow for both readers and
writers.

db2gInspectStruct data structure specific parameters

iResultsNameLength
Input. The string length of the results file name.

iDataFileNameLength
Input. The string length of the data output file name.

iTablespaceNameLength
Input. The string length of the table space name.

iTableNameLength
Input. The string length of the table name.

iSchemaNameLength
Input. The string length of the schema name.

Usage notes

The online inspect processing will access database objects using isolation level
uncommitted read. Commit processing will be done during the inspect processing.
It is advisable to end the unit of work by committing or rolling back changes, by
executing a COMMIT or ROLLBACK statement respectively, before starting the
inspect operation.

db2Inspect - Inspect database for architectural integrity

Chapter 5. Administrative APIs 163

The inspect check processing will write out unformatted inspection data results to
the result file. The file will be written out to the diagnostic data directory path. If
there are no errors found by the check processing, the result output file will be
erased at the end of the inspect operation. If there are errors found by the check
processing, the result output file will not be erased at the end of the inspect
operation. To see the inspection details, format the inspection result output file
with the db2inspf utility.

In a partitioned database environment, the extension of the result output file will
correspond to the database partition number. The file is located in the database
manager diagnostic data directory path.

A unique results output file name must be specified. If the result output file
already exists, the operation will not be processed.

When you call the db2Inspect API, you need to specify iLevelCrossObject in the
db2InspectStruct with a proper value. When DB2INSPECT_LVL_XOBJ_NONE is
used, online index data consistency checking will not be performed. To enable
online index data consistency checking, DB2INSPECT_LVL_XOBJ_INXDAT_RID
needs to be specified in the iLevelCrossObject field.

The processing of table spaces will process only the objects that reside in that table
space. The exception is during an index data consistency check, when data objects
can reside in other table spaces and still benefit from the checking, as long as the
index objects are in the table space to be inspected. For a partitioned table, each
index can reside in a different table space. Only those indexes that reside in the
specified table space will benefit from the index to data checking.

db2Inspect - Inspect database for architectural integrity

164 Administrative API Reference

db2InstanceQuiesce - Quiesce instance

Forces all users off the instance, immediately rolls back all active transaction, and
puts the instance into quiesce mode. This API provides exclusive access to the
instance. During this quiesced period, system administration can be performed on
the instance. After administration is complete, you can unquiesce the instance
using the db2InstanceUnquiesce API. This API allows other users to connect to the
databases within the instance without having to shut down and perform another
instance start.

In this mode, only groups or users with DBADM, sysadm, sysmaint, or sysctrl
authority will have access to the database and its objects.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceQuiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InsQuiesceStruct
{

char *piInstanceName;
char *piUserId;
char *piGroupId;
db2Uint32 iImmediate;
db2Uint32 iForce;
db2Uint32 iTimeout;
db2Uint32 iQOptions;

} db2InsQuiesceStruct;

SQL_API_RC SQL_API_FN
db2gInstanceQuiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInsQuiesceStruct
{

db2Uint32 iInstanceNameLen;
char *piInstanceName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iGroupIdLen;
char *piGroupId;
db2Uint32 iImmediate;

db2InstanceQuiesce - Quiesce instance

Chapter 5. Administrative APIs 165

db2Uint32 iForce;
db2Uint32 iTimeout;
db2Uint32 iQOptions;

} db2gInsQuiesceStruct;

db2InstanceQuiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InsQuiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InsQuiesceStruct data structure parameters

piInstanceName
Input. The instance name.

piUserId
Input. The name of a user who will be allowed access to the instance while
it is quiesced.

piGroupId
Input. The name of a group that will be allowed access to the instance
while the instance is quiesced.

iImmediate
Input. Valid values are:

TRUE=1
Force the applications immediately.

FALSE=0
Deferred force. Applications will wait the number of minutes
specified by iTimeout parameter to let their current units of work
be completed, and then will terminate. If this deferred force cannot
be completed within the number of minutes specified by iTimeout
parameter, the quiesce operation will fail.

iForce Input. Reserved for future use.

iTimeout
Input. Specifies the time, in minutes, to wait for applications to commit the
current unit of work. If iTimeout is not specified, in a single-partition
database environment, the default value is 10 minutes. In a partitioned
database environment the value specified by the start_stop_time database
manager configuration parameter will be used.

iQOptions
Input. Specifies instance quiesce options. Valid values (defined in sqlenv
header file, located in the include directory) are:

DB2INSQUIESCE_RESTRICTEDACCESS
The instance is quiesced with the RESTRICTED ACCESS option
to prevent databases being activated to do authorization checking.

db2gInsQuiesceStruct data structure specific parameters

iInstanceNameLen
Input. Specifies the length in bytes of piInstanceName.

db2InstanceQuiesce - Quiesce instance

166 Administrative API Reference

iUserIdLen
Input. Specifies the length in bytes of piUserID.

iGroupIdLen
Input. Specifies the length in bytes of piGroupId.

db2InstanceQuiesce - Quiesce instance

Chapter 5. Administrative APIs 167

db2InstanceStart - Start instance

Starts a local or remote instance.

Scope

In a single-partition database environment, the scope is that single database
partition only. In a partitioned database environment, it is the collection of all
logical database partition servers defined in the node configuration file,
db2nodes.cfg.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceStart (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InstanceStartStruct
{

db2int8 iIsRemote;
char *piRemoteInstName;
db2DasCommData * piCommData;
db2StartOptionsStruct * piStartOpts;

} db2InstanceStartStruct;

typedef SQL_STRUCTURE db2DasCommData
{

db2int8 iCommParam;
char *piNodeOrHostName;
char *piUserId;
char *piUserPw;

} db2DasCommData;

typedef SQL_STRUCTURE db2StartOptionsStruct
{

db2Uint32 iIsProfile;
char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iOption;
db2Uint32 iIsHostName;
char *piHostName;
db2Uint32 iIsPort;
db2PortType iPort;
db2Uint32 iIsNetName;

db2InstanceStart - Start instance

168 Administrative API Reference

char *piNetName;
db2Uint32 iTblspaceType;
db2NodeType iTblspaceNode;
db2Uint32 iIsComputer;
char *piComputer;
char *piUserName;
char *piPassword;
db2QuiesceStartStruct iQuiesceOpts;

} db2StartOptionsStruct;

typedef SQL_STRUCTURE db2QuiesceStartStruct
{

db2int8 iIsQRequested;
db2int8 iQOptions;
char *piQUsrName;
char *piQGrpName;
db2int8 iIsQUsrGrpDef;

} db2QuiesceStartStruct;

SQL_API_RC SQL_API_FN
db2gInstanceStart (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInstanceStStruct
{

db2int8 iIsRemote;
db2Uint32 iRemoteInstLen;
char *piRemoteInstName;
db2gDasCommData * piCommData;
db2gStartOptionsStruct * piStartOpts;

} db2gInstanceStStruct;

typedef SQL_STRUCTURE db2gDasCommData
{

db2int8 iCommParam;
db2Uint32 iNodeOrHostNameLen;
char *piNodeOrHostName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iUserPwLen;
char *piUserPw;

} db2gDasCommData;

typedef SQL_STRUCTURE db2gStartOptionsStruct
{

db2Uint32 iIsProfile;
char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iOption;
db2Uint32 iIsHostName;
char *piHostName;
db2Uint32 iIsPort;
db2PortType iPort;
db2Uint32 iIsNetName;
char *piNetName;
db2Uint32 iTblspaceType;
db2NodeType iTblspaceNode;
db2Uint32 iIsComputer;
char *piComputer;
char *piUserName;
char *piPassword;
db2gQuiesceStartStruct iQuiesceOpts;

} db2gStartOptionsStruct;

db2InstanceStart - Start instance

Chapter 5. Administrative APIs 169

typedef SQL_STRUCTURE db2gQuiesceStartStruct
{

db2int8 iIsQRequested;
db2int8 iQOptions;
db2Uint32 iQUsrNameLen;
char *piQUsrName;
db2Uint32 iQGrpNameLen;
char *piQGrpName;
db2int8 iIsQUsrGrpDef;

} db2gQuiesceStartStruct;

db2InstanceStart API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InstanceStartStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InstanceStartStruct data structure parameters

iIsRemote
Input. An indicator set to constant integer value TRUE or FALSE. This
parameter should be set to TRUE if this is a remote start.

piRemoteInstName
Input. The name of the remote instance.

piCommData
Input. A pointer to the db2DasCommData structure.

piStartOpts
Input. A pointer to the db2StartOptionsStruct structure.

db2DasCommData data structure parameters

iCommParam
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piNodeOrHostName
Input. The database partition or hostname.

piUserId
Input. The user name.

piUserPw
Input. The user password.

db2StartOptionsStruct data structure parameters

iIsProfile
Input. Indicates whether a profile is specified. If this field indicates that a
profile is not specified, the file db2profile is used.

piProfile
Input. The name of the profile file to be executed at each node to define
the DB2 environment (MPP only). This file is executed before the nodes are
started. The default value is db2profile.

db2InstanceStart - Start instance

170 Administrative API Reference

iIsNodeNum
Input. Indicates whether a node number is specified. If specified, the start
command only affects the specified node.

iNodeNum
Input. The database partition number.

iOption
Input. Specifies an action. Valid values for OPTION (defined in sqlenv
header file, located in the include directory) are:

SQLE_NONE
Issue the normal db2start operation.

SQLE_ADDNODE
Issue the ADD NODE command.

SQLE_RESTART
Issue the RESTART DATABASE command.

SQLE_RESTART_PARALLEL
Issue the RESTART DATABASE command for parallel execution.

SQLE_STANDALONE
Start the node in STANDALONE mode.

iIsHostName
Input. Indicates whether a host name is specified.

piHostName
Input. The system name.

iIsPort
Input. Indicates whether a port number is specified.

iPort Input. The port number.

iIsNetName
Input. Indicates whether a net name is specified.

piNetName
Input. The network name.

iTblspaceType
Input. Specifies the type of system temporary table space definitions to be
used for the node being added. Valid values are:

SQLE_TABLESPACES_NONE
Do not create any system temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the system temporary table spaces should be the
same as those for the specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the system temporary table spaces should be the
same as those for the catalog node of each database.

iTblspaceNode
Input. Specifies the node number from which the system temporary table
space definitions should be obtained. The node number must exist in the
db2nodes.cfg file, and is only used if the tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

db2InstanceStart - Start instance

Chapter 5. Administrative APIs 171

iIsComputer
Input. Indicates whether a computer name is specified. Valid on the
Windows operating system only.

piComputer
Input. Computer name. Valid on the Windows operating system only.

piUserName
Input. Logon account user name. Valid on the Windows operating system
only.

piPassword
Input. The password corresponding to the logon account user name.

iQuiesceOpts
Input. A pointer to the db2QuiesceStartStruct structure.

db2QuiesceStartStruct data structure parameters

iIsQRequested
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if quiesce is requested.

iQOptions
Input. Specifies any instance quiesce options. Valid values (defined in
sqlenv header file, located in the include directory) are:

DB2INSQUIESCE_RESTRICTEDACCESS
The instance is started in ADMIN MODE with the RESTRICTED
ACCESS option to prevent databases being activated to do
authorization checking.

piQUsrName
Input. The quiesced username.

piQGrpName
Input. The quiesced group name.

iIsQUsrGrpDef
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if a quiesced user or quiesced group is defined.

db2gInstanceStStruct data structure specific parameters

iRemoteInstLen
Input. Specifies the length in bytes of piRemoteInstName.

db2gDasCommData data structure specific parameters

iNodeOrHostNameLen
Input. Specifies the length in bytes of piNodeOrHostName.

iUserIdLen
Input. Specifies the length in bytes of piUserId.

iUserPwLen
Input. Specifies the length in bytes of piUserPw.

db2gQuiesceStartStruct data structure specific parameters

iQUsrNameLen
Input. Specifies the length in bytes of piQusrName.

db2InstanceStart - Start instance

172 Administrative API Reference

iQGrpNameLen
Input. Specifies the length in bytes of piQGrpName.

db2InstanceStart - Start instance

Chapter 5. Administrative APIs 173

db2InstanceStop - Stop instance

Stops the local or remote DB2 instance.

Scope

In a single-partition database environment, the scope is that single database
partition only. In a partitioned database environment, it is the collection of all
logical database partition servers defined in the node configuration file,
db2nodes.cfg.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceStop (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InstanceStopStruct
{

db2int8 iIsRemote;
char *piRemoteInstName;
db2DasCommData * piCommData;
db2StopOptionsStruct * piStopOpts;

} db2InstanceStopStruct;

typedef SQL_STRUCTURE db2DasCommData
{

db2int8 iCommParam;
char *piNodeOrHostName;
char *piUserId;
char *piUserPw;

} db2DasCommData;

typedef SQL_STRUCTURE db2StopOptionsStruct
{

db2Uint32 iIsProfile;
char *piProfile;
db2Uint32 iIsNodeNum;
db2NodeType iNodeNum;
db2Uint32 iStopOption;
db2Uint32 iCallerac;

} db2StopOptionsStruct;

SQL_API_RC SQL_API_FN
db2gInstanceStop (

db2InstanceStop - Stop instance

174 Administrative API Reference

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInstanceStopStruct
{

db2int8 iIsRemote;
db2Uint32 iRemoteInstLen;
char *piRemoteInstName;
db2gDasCommData * piCommData;
db2StopOptionsStruct * piStopOpts;

} db2gInstanceStopStruct;

typedef SQL_STRUCTURE db2gDasCommData
{

db2int8 iCommParam;
db2Uint32 iNodeOrHostNameLen;
char *piNodeOrHostName;
db2Uint32 iUserIdLen;
char *piUserId;
db2Uint32 iUserPwLen;
char *piUserPw;

} db2gDasCommData;

db2InstanceStop API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InstanceStopStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InstanceStopStruct data structure parameters

iIsRemote
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piRemoteInstName
Input. The name of the remote instance.

piCommData
Input. A pointer to the db2DasCommData structure.

piStopOpts
Input. A pointer to the db2StopOptionsStruct structure.

db2DasCommData data structure parameters

iCommParam
Input. An indicator set to TRUE or FALSE. This parameter should be set to
TRUE if this is a remote start.

piNodeOrHostName
Input. The database partition or hostname.

piUserId
Input. The user name.

piUserPw
Input. The user password.

db2InstanceStop - Stop instance

Chapter 5. Administrative APIs 175

db2StopOptionsStruct data structure parameters

iIsProfile
Input. Indicates whether a profile is specified. Possible values are TRUE
and FALSE. If this field indicates that a profile is not specified, the file
db2profile is used.

piProfile
Input. The name of the profile file that was executed at startup to define
the DB2 environment for those nodes that were started (MPP only). If a
profile for the db2InstanceStart API was specified, the same profile must be
specified here.

iIsNodeNum
Input. Indicates whether a node number is specified. Possible values are
TRUE and FALSE. If specified, the stop command only affects the specified
node.

iNodeNum
Input. The database partition number.

iStopOption
Input. Option. Valid values are:

SQLE_NONE
Issue the normal db2stop operation.

SQLE_FORCE
Issue the FORCE APPLICATION (ALL) command.

SQLE_DROP
Drop the node from the db2nodes.cfg file.

iCallerac
Input. This field is valid only for the SQLE_DROP value of the OPTION
field. Valid values are:

SQLE_DROP
Initial call. This is the default value.

SQLE_CONTINUE
Subsequent call. Continue processing after a prompt.

SQLE_TERMINATE
Subsequent call. Terminate processing after a prompt.

db2gInstanceStopStruct data structure specific parameters

iRemoteInstLen
Input. Specifies the length in bytes of piRemoteInstName.

db2gDasCommData data structure specific parameters

iNodeOrHostNameLen
Input. Specifies the length in bytes of piNodeOrHostName.

iUserIdLen
Input. Specifies the length in bytes of piUserId.

iUserPwLen
Input. Specifies the length in bytes of piUserPw.

db2InstanceStop - Stop instance

176 Administrative API Reference

db2InstanceUnquiesce - Unquiesce instance

Unquiesce all databases in the instance.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2InstanceUnquiesce (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2InsUnquiesceStruct
{

char *piInstanceName;
} db2InsUnquiesceStruct;

SQL_API_RC SQL_API_FN
db2gInstanceUnquiesce (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gInsUnquiesceStruct
{

db2Uint32 iInstanceNameLen;
char *piInstanceName;

} db2gInsUnquiesceStruct;

db2InstanceUnquiesce API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2InsUnquiesceStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2InsUnquiesceStruct data structure parameters

piInstanceName
Input. The instance name.

db2InstanceUnquiesce - Unquiesce instance

Chapter 5. Administrative APIs 177

db2gInsUnquiesceStruct data structure specific parameters

iInstanceNameLen
Input. Specifies the length in bytes of piInstanceName.

db2InstanceUnquiesce - Unquiesce instance

178 Administrative API Reference

db2LdapCatalogDatabase - Register the database on the LDAP server

Catalogs a database entry in LDAP (Lightweight Directory Access Protocol).

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapCatalogDatabase (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapCatalogDatabaseStruct
{

char *piAlias;
char *piDatabaseName;
char *piComment;
char *piNodeName;
char *piGWNodeName;
char *piParameters;
char *piARLibrary;
unsigned short iAuthentication;
char *piDCEPrincipalName;
char *piBindDN;
char *piPassword;

} db2LdapCatalogDatabaseStruct;

db2LdapCatalogDatabase API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapCatalogDatabaseStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapCatalogDatabaseStruct data structure parameters

piAlias
Input. Specify an alias to be used as an alternate name for the database
being cataloged. If an alias is not specified, the database manager uses the
database name as the alias name.

piDatabaseName
Input. Specify the name of the database to catalog. This parameter is
mandatory.

db2LdapCatalogDatabase - Register the database on the LDAP server

Chapter 5. Administrative APIs 179

piComment
Input. Describes the DB2 server. Any comment that helps to describe the
server registered in the network directory can be entered. Maximum length
is 30 characters. A carriage return or a line feed character is not permitted.

piNodeName
Input. Specify the node name of the database server on which the database
resides. This parameter is required if the database resides on a remote
database server.

piGWNodename
Input. Specify the node name of the DB2 Connect gateway server. If the
database server node type is DCS (reserved for host database servers), and
the client does not have DB2 Connect installed, the client will connect to
the DB2 Connect gateway server.

piParameters
Input. Specify a parameter string that is to be passed to the application
requester (AR). Authentication DCE is not supported.

piARLibrary
Input. Specify the name of the application requester (AR) library.

iAuthentication
Input. Specifying an authentication type can result in a performance
benefit.

piDCEPrincipalName
Input. Specify the fully qualified DCE principal name for the target server.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to create and update the object in the
LDAP directory. If the user's LDAP DN is not specified, the credentials of
the current logon user will be used.

piPassword
Input. Account password.

Usage notes

A database may need to be manually registered or cataloged in LDAP if:

- The database server does not support LDAP. In this case, the administrator needs
to manually register each database in LDAP to allow clients that support LDAP to
access the database without having to catalog the database locally on each client
machine.

- The application wants to use a different name to connect to the database. In this
case, the administrator needs to catalog the database using a different alias name.

- During CREATE DATABASE IN LDAP, the database name already exists in
LDAP. The database is still created on the local machine (and can be accessed by
local applications), but the existing entry in LDAP will not be modified to reflect
the new database. In this case, the administrator can: -- Remove the existing
database entry from LDAP, and manually register the new database in LDAP. --
Register the new database in LDAP using a different alias name.

db2LdapCatalogDatabase - Register the database on the LDAP server

180 Administrative API Reference

db2LdapCatalogNode - Provide an alias for node name in LDAP server

Specifies an alternate name for the node entry in LDAP (Lightweight Directory
Access Protocol), or a different protocol type for connecting to the database server.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapCatalogNode (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapCatalogNodeStruct
{

char *piAlias;
char *piNodeName;
char *piBindDN;
char *piPassword;

} db2LdapCatalogNodeStruct;

db2LdapCatalogNode API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapCatalogNodeStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapCatalogNodeStruct data structure parameters

piAlias
Input. Specify a new alias to be used as an alternate name for the node
entry.

piNodeName
Input. Specify a node name that represents the DB2 server in LDAP.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to create and update the object in the
LDAP directory. If the user's LDAP DN is not specified, the credentials of
the current logon user will be used.

piPassword
Input. Account password.

db2LdapCatalogNode - Provide an alias for node name in LDAP server

Chapter 5. Administrative APIs 181

db2LdapDeregister - Deregister the DB2 server and cataloged
databases from the LDAP server

Deregisters the DB2 server from LDAP (Lightweight Directory Access Protocol).

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapDeregister (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapDeregisterStruct
{

char *piNodeName;
char *piBindDN;
char *piPassword;

} db2LdapDeregisterStruct;

db2LdapDeregister API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapDeregisterStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapDeregisterStruct data structure parameters

piNodeName
Input. Specify a short name that represents the DB2 server in LDAP.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to delete the object from the LDAP
directory. If the user's LDAP DN is not specified, the credentials of the
current logon user will be used.

piPassword
Input. Account password.

db2LdapDeregister - Deregister the DB2 server and cataloged databases from the LDAP
server

182 Administrative API Reference

db2LdapRegister - Register the DB2 server on the LDAP server

Registers the DB2 server in LDAP (Lightweight Directory Access Protocol).

Note: NetBIOS is no longer supported. SNA, including its APIs APPC, APPN, and
CPI-C, is also no longer supported. If you use these protocols, you must re-catalog
your nodes and databases using a supported protocol such as TCP/IP. References
to these protocols should be ignored.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapRegister (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapRegisterStruct
{

char *piNodeName;
char *piComputer;
char *piInstance;
unsigned short iNodeType;
unsigned short iOsType;
db2LdapProtocolInfo iProtocol;
char *piComment;
char *piBindDN;
char *piPassword;

} db2LdapRegisterStruct;

typedef SQL_STRUCTURE db2LdapProtocolInfo
{

char iType;
char *piHostName;
char *piServiceName;
char *piNetbiosName;
char *piNetworkId;
char *piPartnerLU;
char *piTPName;
char *piMode;
unsigned short iSecurityType;
char *piLanAdapterAddress;
char *piChangePasswordLU;
char *piIpxAddress;

} db2LdapProtocolInfo;

db2LdapRegister API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

db2LdapRegister - Register the DB2 server on the LDAP server

Chapter 5. Administrative APIs 183

pParamStruct
Input. A pointer to the db2LdapRegisterStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapRegisterStruct data structure parameters

piNodeName
Input. Specify a short name (less than 8 characters) that represents the DB2
server in LDAP.

piComputer
Input. Specify the name of the computer on which the DB2 server resides.
The computer name value must be the same as the value specified when
adding the server machine to LDAP. On Windows operating systems, this
is the Windows computer name. On UNIX based systems, this is the
TCP/IP host name. Specify NULL to register the DB2 server on the local
computer.

piInstance
Input. Specify the instance name of the DB2 server. The instance name
must be specified if the computer name is specified to register a remote
server. Specify NULL to register the current instance (as defined by the
DB2SYSTEM environment variable).

iNodeType
Input. Specify the node type for the database server. Valid values are:
v SQLF_NT_SERVER
v SQLF_NT_MPP
v SQLF_NT_DCS

iOsType
Input. Specifies the operating system type of the server machine. If an
operating system type is not specified, the local operating system type will
be used for a local server and no operating system type will be used for a
remote server.

iProtocol
Input. Specify the protocol information in the db2LdapProtocolInfo
structure.

piComment
Input. Describes the DB2 server. Any comment that helps to describe the
server registered in the network directory can be entered. Maximum length
is 30 characters. A carriage return or a line feed character is not permitted.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to create and update the object in the
LDAP directory. If the user's LDAP DN is not specified, the credentials of
the current logon user will be used.

piPassword
Input. Account password.

db2LdapProtocolInfo data structure parameters

iType Input. Specify the protocol type that this server supports. If the server
supports more than one protocol, multiple registrations (each with a
different node name and protocol type) are required. Valid values are:

db2LdapRegister - Register the DB2 server on the LDAP server

184 Administrative API Reference

SQL_PROTOCOL_TCPIP
For TCP/IPv4 or TCP/IPv6 support

SQL_PROTOCOL_TCPIP4
For TCP/IPv4 support

SQL_PROTOCOL_TCPIP6
For TCP/IPv6 support

SQL_PROTOCOL_SOCKS
For TCP/IP with security SOCKS

SQL_PROTOCOL_SOCKS4
For TCP/IPv4 with security SOCKS

SQL_PROTOCOL_NPIPE
For Windows Named Pipe support

piHostName
Input. Specify the TCP/IP host name or the IP address. The IP address can
be an IPv4 or an IPv6 address. If an IP address is specified, it must match
the protocol type selected. For example, if SQL_PROTOCOL_TCPIP4 is
selected, the IP address specified must be an IPv4 address.

piServiceName
Input. Specify the TCP/IP service name or port number.

piNetbiosName
Input. Specify the NetBIOS workstation name. The NetBIOS name must be
specified for NetBIOS support.

piNetworkID
Input. Specify the network ID. The network ID must be specified for
APPC/APPN support.

piPartnerLU
Input. Specify the partner LU name for the DB2 server machine. The
partner LU must be specified for APPC/APPN support.

piTPName
Input. Specify the transaction program name. The transaction program
name must be specified for APPC/APPN support.

piMode
Input. Specify the mode name. The mode must be specified for
APPC/APPN support.

iSecurityType
Input. Specify the APPC security level. Valid values are:
v SQL_CPIC_SECURITY_NONE (default)
v SQL_CPIC_SECURITY_SAME
v SQL_CPIC_SECURITY_PROGRAM

piLanAdapterAddress
Input. Specify the network adapter address. This parameter is only
required for APPC support. For APPN, this parameter can be set to NULL.

piChangePasswordLU
Input. Specify the name of the partner LU to use when changing the
password for the host database server.

db2LdapRegister - Register the DB2 server on the LDAP server

Chapter 5. Administrative APIs 185

piIpxAddress
Input. Specify the complete IPX address. The IPX address must be
specified for IPX/SPX support.

Usage notes

Register the DB2 server once for each protocol that the server supports each time
specifying a unique node name.

If any protocol configuration parameter is specified when registering a DB2 server
locally, it will override the value specified in the database manager configuration
file.

Only a remote DB2 server can be registered in LDAP. The computer name and the
instance name of the remote server must be specified, along with the protocol
communication for the remote server.

When registering a host database server, a value of SQLF_NT_DCS must be
specified for the iNodeType parameter.

db2LdapRegister - Register the DB2 server on the LDAP server

186 Administrative API Reference

db2LdapUncatalogDatabase - Deregister database from LDAP server

Removes a database entry from LDAP (Lightweight Directory Access Protocol).

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapUncatalogDatabase (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapUncatalogDatabaseStruct
{

char *piAlias;
char *piBindDN;
char *piPassword;

} db2LdapUncatalogDatabaseStruct;

db2LdapUncatalogDatabase API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

pParamStruct
Input. A pointer to the db2LdapUncatalogDatabaseStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapUncatalogDatabaseStruct data structure parameters

piAlias
Input. Specify an alias name for the database entry. This parameter is
mandatory.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to delete the object from the LDAP
directory. If the user's LDAP DN is not specified, the credentials of the
current logon user will be used.

piPassword
Input. Account password.

db2LdapUncatalogDatabase - Deregister database from LDAP server

Chapter 5. Administrative APIs 187

db2LdapUncatalogNode - Delete alias for node name from LDAP
server

Removes a node entry from LDAP (Lightweight Directory Access Protocol).

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapUncatalogNode (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapUncatalogNodeStruct
{

char *piAlias;
char *piBindDN;
char *piPassword;

} db2LdapUncatalogNodeStruct;

db2LdapUncatalogNode API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParamStruct
Input. A pointer to the db2LdapUncatalogNodeStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapUncatalogNodeStruct data structure parameters

piAlias
Input. Specify the alias of the node to uncatalog from LDAP.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to delete the object from the LDAP
directory. If the user's LDAP DN is not specified, the credentials of the
current logon user will be used.

piPassword
Input. Account password.

db2LdapUncatalogNode - Delete alias for node name from LDAP server

188 Administrative API Reference

db2LdapUpdate - Update the attributes of the DB2 server on the LDAP
server

Updates the communication protocol information for the DB2 server in LDAP
(Lightweight Directory Access Protocol).

Note: NetBIOS is no longer supported. SNA, including its APIs APPC, APPN, and
CPI-C, is also no longer supported. If you use these protocols, you must re-catalog
your nodes and databases using a supported protocol such as TCP/IP. References
to these protocols should be ignored.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapUpdate (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapUpdateStruct
{

char *piNodeName;
char *piComment;
unsigned short iNodeType;
db2LdapProtocolInfo iProtocol;
char *piBindDN;
char *piPassword;

} db2LdapUpdateStruct;

typedef SQL_STRUCTURE db2LdapProtocolInfo
{

char iType;
char *piHostName;
char *piServiceName;
char *piNetbiosName;
char *piNetworkId;
char *piPartnerLU;
char *piTPName;
char *piMode;
unsigned short iSecurityType;
char *piLanAdapterAddress;
char *piChangePasswordLU;
char *piIpxAddress;

} db2LdapProtocolInfo;

db2LdapUpdate API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParamStruct.

db2LdapUpdate - Update the attributes of the DB2 server on the LDAP server

Chapter 5. Administrative APIs 189

pParamStruct
Input. A pointer to the db2LdapUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapUpdateStruct data structure parameters

piNodeName
Input. Specify the node name that represents the DB2 server in LDAP.

piComment
Input. Specify a new description for the DB2 server. Maximum length is 30
characters. A carriage return or a line feed character is not permitted.

iNodeType
Input. Specify a new node type. Valid values are:
v SQLF_NT_SERVER
v SQLF_NT_MPP
v SQLF_NT_DCS
v SQL_PARM_UNCHANGE

iProtocol
Input. Specify the updated protocol information in the
db2LdapProtocolInfo structure.

piBindDN
Input. Specify the user's LDAP distinguished name (DN). The LDAP user
DN must have sufficient authority to create and update the object in the
LDAP directory. If the user's LDAP DN is not specified, the credentials of
the current logon user will be used.

piPassword
Input. Account password.

db2LdapProtocolInfo data structure parameters

iType Input. Specify the protocol type that this server supports. If the server
supports more than one protocol, multiple registrations (each with a
different node name and protocol type) are required. Valid values are:

SQL_PROTOCOL_TCPIP
For TCP/IPv4 or TCP/IPv6 support

SQL_PROTOCOL_TCPIP4
For TCP/IPv4 support

SQL_PROTOCOL_TCPIP6
For TCP/IPv6 support

SQL_PROTOCOL_SOCKS
For TCP/IP with security SOCKS

SQL_PROTOCOL_SOCKS4
For TCP/IPv4 with security SOCKS

SQL_PROTOCOL_NPIPE
For Windows Named Pipe support

piHostName
Input. Specify the TCP/IP host name or the IP address. The IP address can
be an IPv4 or an IPv6 address. If an IP address is specified, it must match

db2LdapUpdate - Update the attributes of the DB2 server on the LDAP server

190 Administrative API Reference

the protocol type selected. For example, if SQL_PROTOCOL_TCPIP4 is
selected, the IP address specified must be an IPv4 address.

piServiceName
Input. Specify the TCP/IP service name or port number.

piNetbiosName
Input. Specify the NetBIOS workstation name. The NetBIOS name must be
specified for NetBIOS support.

piNetworkID
Input. Specify the network ID. The network ID must be specified for
APPC/APPN support.

piPartnerLU
Input. Specify the partner LU name for the DB2 server machine. The
partner LU must be specified for APPC/APPN support.

piTPName
Input. Specify the transaction program name. The transaction program
name must be specified for APPC/APPN support.

piMode
Input. Specify the mode name. The mode must be specified for
APPC/APPN support.

iSecurityType
Input. Specify the APPC security level. Valid values are:
v SQL_CPIC_SECURITY_NONE (default)
v SQL_CPIC_SECURITY_SAME
v SQL_CPIC_SECURITY_PROGRAM

piLanAdapterAddress
Input. Specify the network adapter address. This parameter is only
required for APPC support. For APPN, this parameter can be set to NULL.

piChangePasswordLU
Input. Specify the name of the partner LU to use when changing the
password for the host database server.

piIpxAddress
Input. Specify the complete IPX address. The IPX address must be
specified for IPX/SPX support.

db2LdapUpdate - Update the attributes of the DB2 server on the LDAP server

Chapter 5. Administrative APIs 191

db2LdapUpdateAlternateServerForDB - Update the alternate server for
the database on the LDAP server

Updates the alternate server for a database in Lightweight Directory Access
Protocol (LDAP).

Authorization

Read/write access to the LDAP server.

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LdapUpdateAlternateServerForDB (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LdapUpdateAltServerStruct
{

char *piDbAlias;
char *piNode;
char *piGWNode;
char *piBindDN;
char *piPassword;

} db2LdapUpdateAltServerStruct;

db2LdapUpdateAlternateServerForDB API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2LdapUpdateAltServerStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LdapUpdateAltServerStruct data structure parameters

piDbAlias
Input. A string containing an alias for the database to be updated.

piNode
Input. A string containing the alternate node name. This node name must
exist in LDAP.

piGWNode
Input. A string containing the alternate gateway node name. This node
name must exist in LDAP. This is used by the IBM Data Server Runtime
Client to connect to the host via the gateway.

db2LdapUpdateAlternateServerForDB - Update the alternate server for the database on
the LDAP server

192 Administrative API Reference

piBindDN
Input. Specifies the user's LDAP distinguished name (DN). The user's
LDAP DN must have sufficient authority to create and update objects in
the LDAP directory. If the user's LDAP DN is not specified, the credentials
of the current user will be used.

piPassword
Input. Account password.

db2LdapUpdateAlternateServerForDB - Update the alternate server for the database on
the LDAP server

Chapter 5. Administrative APIs 193

db2Load - Load data into a table

Loads data into a DB2 table. Data residing on the server may be in the form of a
file, cursor, tape, or named pipe. Data residing on a remotely connected client may
be in the form of a fully qualified file, a cursor, or named pipe. Although faster
than the import utility, the load utility does not support loading data at the
hierarchy level or loading into a nickname.

Authorization

One of the following:
v dataaccess

v load authority on the database and:
– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

If the FORCE option is specified, SYSADM authority is required.

Note: In general, all load processes and all DB2 server processes are owned by the
instance owner. All of these processes use the identification of the instance owner
to access needed files. Therefore, the instance owner must have read access to the
input files, regardless of who invokes the command.

Required connection

Database. If implicit connect is enabled, a connection to the default database is
established. Utility access to Linux, UNIX, or Windows database servers from
Linux, UNIX, or Windows clients must be a direct connection through the engine
and not through a DB2 Connect gateway or loop back environment.

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Load (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadStruct
{

struct sqlu_media_list *piSourceList;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;

db2Load - Load data into a table

194 Administrative API Reference

struct sqlchar *piFileTypeMod;
char *piLocalMsgFileName;
char *piTempFilesPath;
struct sqlu_media_list *piVendorSortWorkPaths;
struct sqlu_media_list *piCopyTargetList;
db2int32 *piNullIndicators;
struct db2LoadIn *piLoadInfoIn;
struct db2LoadOut *poLoadInfoOut;
struct db2PartLoadIn *piPartLoadInfoIn;
struct db2PartLoadOut *poPartLoadInfoOut;
db2int16 iCallerAction;
struct sqlu_media_list *piXmlPathList;
struct sqllob *piLongActionString;

} db2LoadStruct;

typedef SQL_STRUCTURE db2LoadUserExit
{

db2Char iSourceUserExitCmd;
struct db2Char *piInputStream;
struct db2Char *piInputFileName;
struct db2Char *piOutputFileName;
db2Uint16 *piEnableParallelism;

} db2LoadUserExit;

typedef SQL_STRUCTURE db2LoadIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
char *piUseTablespace;
db2Uint32 iSavecount;
db2Uint32 iDataBufferSize;
db2Uint32 iSortBufferSize;
db2Uint32 iWarningcount;
db2Uint16 iHoldQuiesce;
db2Uint16 iCpuParallelism;
db2Uint16 iDiskParallelism;
db2Uint16 iNonrecoverable;
db2Uint16 iIndexingMode;
db2Uint16 iAccessLevel;
db2Uint16 iLockWithForce;
db2Uint16 iCheckPending;
char iRestartphase;
char iStatsOpt;
db2Uint16 *piXmlParse;
db2DMUXmlValidate *piXmlValidate;
db2Uint16 iSetIntegrityPending;
struct db2LoadUserExit *piSourceUserExit;

} db2LoadIn;

typedef SQL_STRUCTURE db2LoadOut
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsLoaded;
db2Uint64 oRowsRejected;
db2Uint64 oRowsDeleted;
db2Uint64 oRowsCommitted;

} db2LoadOut;

typedef SQL_STRUCTURE db2PartLoadIn
{

char *piHostname;
char *piFileTransferCmd;
char *piPartFileLocation;
struct db2LoadNodeList *piOutputNodes;
struct db2LoadNodeList *piPartitioningNodes;
db2Uint16 *piMode;

db2Load - Load data into a table

Chapter 5. Administrative APIs 195

db2Uint16 *piMaxNumPartAgents;
db2Uint16 *piIsolatePartErrs;
db2Uint16 *piStatusInterval;
struct db2LoadPortRange *piPortRange;
db2Uint16 *piCheckTruncation;
char *piMapFileInput;
char *piMapFileOutput;
db2Uint16 *piTrace;
db2Uint16 *piNewline;
char *piDistfile;
db2Uint16 *piOmitHeader;
SQL_PDB_NODE_TYPE *piRunStatDBPartNum;

} db2PartLoadIn;

typedef SQL_STRUCTURE db2LoadNodeList
{

SQL_PDB_NODE_TYPE *piNodeList;
db2Uint16 iNumNodes;

} db2LoadNodeList;

typedef SQL_STRUCTURE db2LoadPortRange
{

db2Uint16 iPortMin;
db2Uint16 iPortMax;

} db2LoadPortRange;

typedef SQL_STRUCTURE db2PartLoadOut
{

db2Uint64 oRowsRdPartAgents;
db2Uint64 oRowsRejPartAgents;
db2Uint64 oRowsPartitioned;
struct db2LoadAgentInfo *poAgentInfoList;
db2Uint32 iMaxAgentInfoEntries;
db2Uint32 oNumAgentInfoEntries;

} db2PartLoadOut;

typedef SQL_STRUCTURE db2LoadAgentInfo
{

db2int32 oSqlcode;
db2Uint32 oTableState;
SQL_PDB_NODE_TYPE oNodeNum;
db2Uint16 oAgentType;

} db2LoadAgentInfo;

SQL_API_RC SQL_API_FN
db2gLoad (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadStruct
{

struct sqlu_media_list *piSourceList;
struct sqlu_media_list *piLobPathList;
struct sqldcol *piDataDescriptor;
struct sqlchar *piActionString;
char *piFileType;
struct sqlchar *piFileTypeMod;
char *piLocalMsgFileName;
char *piTempFilesPath;
struct sqlu_media_list *piVendorSortWorkPaths;
struct sqlu_media_list *piCopyTargetList;
db2int32 *piNullIndicators;
struct db2gLoadIn *piLoadInfoIn;
struct db2LoadOut *poLoadInfoOut;
struct db2gPartLoadIn *piPartLoadInfoIn;
struct db2PartLoadOut *poPartLoadInfoOut;

db2Load - Load data into a table

196 Administrative API Reference

db2int16 iCallerAction;
db2Uint16 iFileTypeLen;
db2Uint16 iLocalMsgFileLen;
db2Uint16 iTempFilesPathLen;
struct sqlu_media_list *piXmlPathList;
struct sqllob *piLongActionString;

} db2gLoadStruct;

typedef SQL_STRUCTURE db2gLoadIn
{

db2Uint64 iRowcount;
db2Uint64 iRestartcount;
char *piUseTablespace;
db2Uint32 iSavecount;
db2Uint32 iDataBufferSize;
db2Uint32 iSortBufferSize;
db2Uint32 iWarningcount;
db2Uint16 iHoldQuiesce;
db2Uint16 iCpuParallelism;
db2Uint16 iDiskParallelism;
db2Uint16 iNonrecoverable;
db2Uint16 iIndexingMode;
db2Uint16 iAccessLevel;
db2Uint16 iLockWithForce;
db2Uint16 iCheckPending;
char iRestartphase;
char iStatsOpt;
db2Uint16 iUseTablespaceLen;
db2Uint16 iSetIntegrityPending;
db2Uint16 *piXmlParse;
db2DMUXmlValidate *piXmlValidate;
struct db2LoadUserExit *piSourceUserExit;

} db2gLoadIn;

typedef SQL_STRUCTURE db2gPartLoadIn
{

char *piHostname;
char *piFileTransferCmd;
char *piPartFileLocation;
struct db2LoadNodeList *piOutputNodes;
struct db2LoadNodeList *piPartitioningNodes;
db2Uint16 *piMode;
db2Uint16 *piMaxNumPartAgents;
db2Uint16 *piIsolatePartErrs;
db2Uint16 *piStatusInterval;
struct db2LoadPortRange *piPortRange;
db2Uint16 *piCheckTruncation;
char *piMapFileInput;
char *piMapFileOutput;
db2Uint16 *piTrace;
db2Uint16 *piNewline;
char *piDistfile;
db2Uint16 *piOmitHeader;
void *piReserved1;
db2Uint16 iHostnameLen;
db2Uint16 iFileTransferLen;
db2Uint16 iPartFileLocLen;
db2Uint16 iMapFileInputLen;
db2Uint16 iMapFileOutputLen;
db2Uint16 iDistfileLen;

} db2gPartLoadIn;

/* Definitions for iUsing value of db2DMUXmlValidate structure */
#define DB2DMU_XMLVAL_XDS 1 /* Use XDS */
#define DB2DMU_XMLVAL_SCHEMA 2 /* Use a specified schema */
#define DB2DMU_XMLVAL_SCHEMALOC_HINTS 3 /* Use schemaLocation hints */

db2Load - Load data into a table

Chapter 5. Administrative APIs 197

#define DB2DMU_XMLVAL_ORIGSCHEMA 4 /* Use schema that document was
originally validated against
(load from cursor only) */

db2Load API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2LoadStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LoadStruct data structure parameters

piSourceList
Input. A pointer to an sqlu_media_list structure used to provide a list of
source files, devices, vendors, pipes, or SQL statements.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil header file, located in the
include directory) are:

SQLU_SQL_STMT
If the media_type field is set to this value, the caller provides an
SQL query through the pStatement field of the target field. The
pStatement field is of type sqlu_statement_entry. The sessions field
must be set to the value of 1, since the load utility only accepts a
single SQL query per load.

SQLU_SERVER_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions
field indicates the number of sqlu_location_entry structures
provided. This is used for files, devices, and named pipes.

SQLU_CLIENT_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions
field indicates the number of sqlu_location_entry structures
provided. This is used for fully qualified files and named pipes.
Note that this media_type is only valid if the API is being called
via a remotely connected client.

SQLU_TSM_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where filename is the unique identifier for the
data to be loaded. There should only be one sqlu_vendor entry,
regardless of the value of sessions. The sessions field indicates the
number of TSM sessions to initiate. The load utility will start the
sessions with different sequence numbers, but with the same data
in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where shr_lib is the shared library name, and
filename is the unique identifier for the data to be loaded. There
should only be one sqlu_vendor entry, regardless of the value of

db2Load - Load data into a table

198 Administrative API Reference

sessions. The sessions field indicates the number of other vendor
sessions to initiate. The load utility will start the sessions with
different sequence numbers, but with the same data in the one
sqlu_vendor entry.

SQLU_REMOTEFETCH
If the media_type field is set to this value, the caller provides
information through an sqlu_remotefetch_entry structure. The
sessions field must be set to the value of 1.

piLobPathList
Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL
file types, a list of fully qualified paths or devices to identify the location
of the individual LOB files to be loaded. The file names are found in the
IXF, ASC, or DEL files, and are appended to the paths provided.

The information provided in this structure depends on the value of the
media_type field. Valid values (defined in sqlutil header file, located in the
include directory) are:

SQLU_LOCAL_MEDIA
If set to this value, the caller provides information through
sqlu_media_entry structures. The sessions field indicates the
number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA
If set to this value, the sqlu_vendor structure is used, where
filename is the unique identifier for the data to be loaded. There
should only be one sqlu_vendor entry, regardless of the value of
sessions. The sessions field indicates the number of TSM sessions
to initiate. The load utility will start the sessions with different
sequence numbers, but with the same data in the one sqlu_vendor
entry.

SQLU_OTHER_MEDIA
If set to this value, the sqlu_vendor structure is used, where shr_lib
is the shared library name, and filename is the unique identifier for
the data to be loaded. There should only be one sqlu_vendor entry,
regardless of the value of sessions. The sessions field indicates the
number of other vendor sessions to initiate. The load utility will
start the sessions with different sequence numbers, but with the
same data in the one sqlu_vendor entry.

piDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for loading from the external file.

If the piFileType parameter is set to SQL_ASC, the dcolmeth field of this
structure must be set to SQL_METH_L. The user specifies the start and end
locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or
SQL_METH_D. If it is SQL_METH_P, the user must provide the source
column position. If it is SQL_METH_D, the first column in the file is
loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,
SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here,
except that SQL_METH_N indicates that file column names are to be
provided in the sqldcol structure.

db2Load - Load data into a table

Chapter 5. Administrative APIs 199

piActionString
Deprecated, replaced by piLongActionString.

piLongActionString
Input. Pointer to an sqllob structure containing a 4-byte long field, followed
by an array of characters specifying an action that affects the table.

The character array is of the form:
"INSERT|REPLACE KEEPDICTIONARY|REPLACE RESETDICTIONARY|RESTART|TERMINATE
INTO tbname [(column_list)]
[FOR EXCEPTION e_tbname]"

INSERT
Adds the loaded data to the table without changing the existing
table data.

REPLACE
Deletes all existing data from the table, and inserts the loaded data.
The table definition and the index definitions are not changed.

RESTART
Restarts a previously interrupted load operation. The load
operation will automatically continue from the last consistency
point in the load, build, or delete phase.

TERMINATE
Terminates a previously interrupted load operation, and rolls back
the operation to the point in time at which it started, even if
consistency points were passed. The states of any table spaces
involved in the operation return to normal, and all table objects are
made consistent (index objects may be marked as invalid, in which
case index rebuild will automatically take place at next access). If
the table spaces in which the table resides are not in load pending
state, this option does not affect the state of the table spaces.

The load terminate option will not remove a backup pending state
from table spaces.

tbname
The name of the table into which the data is to be loaded. The
table cannot be a system table, a declared temporary table, or a
created temporary table. An alias, or the fully qualified or
unqualified table name can be specified. A qualified table name is
in the form schema.tablename. If an unqualified table name is
specified, the table will be qualified with the CURRENT SCHEMA.

(column_list)
A list of table column names into which the data is to be inserted.
The column names must be separated by commas. If a name
contains spaces or lowercase characters, it must be enclosed by
quotation marks.

FOR EXCEPTION e_tbname
Specifies the exception table into which rows in error will be
copied. The exception table is used to store copies of rows that
violate unique index rules, range constraints and security policies.

NORANGEEXC
Indicates that if a row is rejected because of a range violation it
will not be inserted into the exception table.

db2Load - Load data into a table

200 Administrative API Reference

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique
constraint it will not be inserted into the exception table.

piFileType
Input. A string that indicates the format of the input data source.
Supported external formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the IBM
Personal Decision Series programs, and many other database
managers and file managers.

SQL_IXF
PC version of the Integration Exchange Format, the preferred
method for exporting data from a table so that it can be loaded
later into the same table or into another database manager table.

SQL_CURSOR
An SQL query. The sqlu_media_list structure passed in through the
piSourceList parameter is either of type SQLU_SQL_STMT or
SQLU_REMOTEFETCH, and refers to an SQL query or a table
name.

piFileTypeMod
Input. A pointer to the sqlchar structure, followed by an array of characters
that specify one or more processing options. If this pointer is NULL, or the
structure pointed to has zero characters, this action is interpreted as
selection of a default specification.

Not all options can be used with all of the supported file types. See related
link "File type modifiers for the load utility."

piLocalMsgFileName
Input. A string containing the name of a local file to which output
messages are to be written.

piTempFilesPath
Input. A string containing the path name to be used on the server for
temporary files. Temporary files are created to store messages, consistency
points, and delete phase information.

piVendorSortWorkPaths
Input. A pointer to the sqlu_media_list structure which specifies the
Vendor Sort work directories.

piCopyTargetList
Input. A pointer to an sqlu_media_list structure used (if a copy image is to
be created) to provide a list of target paths, devices, or a shared library to
which the copy image is to be written.

The values provided in this structure depend on the value of the
media_type field. Valid values for this parameter (defined in sqlutil header
file, located in the include directory) are:

SQLU_LOCAL_MEDIA
If the copy is to be written to local media, set the media_type to
this value and provide information about the targets in

db2Load - Load data into a table

Chapter 5. Administrative APIs 201

sqlu_media_entry structures. The sessions field specifies the
number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA
If the copy is to be written to TSM, use this value. No further
information is required.

SQLU_OTHER_MEDIA
If a vendor product is to be used, use this value and provide
further information via an sqlu_vendor structure. Set the shr_lib
field of this structure to the shared library name of the vendor
product. Provide only one sqlu_vendor entry, regardless of the
value of sessions. The sessions field specifies the number of
sqlu_media_entry structures provided. The load utility will start
the sessions with different sequence numbers, but with the same
data provided in the one sqlu_vendor entry.

piNullIndicators
Input. For ASC files only. An array of integers that indicate whether or not
the column data is nullable. There is a one-to-one ordered correspondence
between the elements of this array and the columns being loaded from the
data file. That is, the number of elements must equal the dcolnum field of
the piDataDescriptor parameter. Each element of the array contains a
number identifying a location in the data file that is to be used as a NULL
indicator field, or a zero indicating that the table column is not nullable. If
the element is not zero, the identified location in the data file must contain
a Y or an N. A Y indicates that the table column data is NULL, and N
indicates that the table column data is not NULL.

piLoadInfoIn
Input. A pointer to the db2LoadIn structure.

poLoadInfoOut
Output. A pointer to the db2LoadOut structure.

piPartLoadInfoIn
Input. A pointer to the db2PartLoadIn structure.

poPartLoadInfoOut
Output. A pointer to the db2PartLoadOut structure.

iCallerAction
Input. An action requested by the caller. Valid values (defined in sqlutil
header file, located in the include directory) are:

SQLU_INITIAL
Initial call. This value (or SQLU_NOINTERRUPT) must be used on
the first call to the API.

SQLU_NOINTERRUPT
Initial call. Do not suspend processing. This value (or
SQLU_INITIAL) must be used on the first call to the API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested load operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on subsequent
calls to the API, after the initial call has returned with the utility
requesting user input (for example, to respond to an end of tape

db2Load - Load data into a table

202 Administrative API Reference

condition). It specifies that the user action requested by the utility
has completed, and the utility can continue processing the initial
request.

SQLU_TERMINATE
Terminate processing. Causes the load utility to exit prematurely,
leaving the table spaces being loaded in LOAD_PENDING state.
This option should be specified if further processing of the data is
not to be done.

SQLU_ABORT
Terminate processing. Causes the load utility to exit prematurely,
leaving the table spaces being loaded in LOAD_PENDING state.
This option should be specified if further processing of the data is
not to be done.

SQLU_RESTART
Restart processing.

SQLU_DEVICE_TERMINATE
Terminate a single device. This option should be specified if the
utility is to stop reading data from the device, but further
processing of the data is to be done.

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the xml files can be found.

db2LoadUserExit data structure parameters

iSourceUserExitCmd
Input. The fully qualified name of an executable that will be used to feed
data to the utility. For security reasons, the executable must be placed
within the sqllib/bin directory on the server. This parameter is mandatory
if the piSourceUserExit structure is not NULL.

The piInputStream, piInputFileName, piOutputFileName and
piEnableParallelism fields are optional.

piInputStream
Input. A generic byte-stream that will be passed directly to the user-exit
application via STDIN. You have complete control over what data is
contained in this byte-stream and in what format. The load utility will
simply carry this byte-stream over to the server and pass it into the
user-exit application by feeding the process' STDIN (it will not codepage
convert or modify the byte-stream). Your user-exit application would read
the arguments from STDIN and use the data however intended.

One important attribute of this feature is the ability to hide sensitive
information (such as userid/passwords).

piInputFileName
Input. Contains the name of a fully qualified client-side file, whose
contents will be passed into the user-exit application by feeding the
process' STDIN.

piOutputFileName
Input. The fully qualified name of a server-side file. The STDOUT and
STDERR streams of the process which is executing the user-exit application
will be streamed into this file. When piEnableParallelism is TRUE, multiple

db2Load - Load data into a table

Chapter 5. Administrative APIs 203

files will be created (one per user-exit instance), and each file name will be
appended with a 3 digit numeric node-number value, such as
<filename>.000).

piEnableParallelism
Input. A flag indicating that the utility should attempt to parallelize the
invocation of the user-exit application.

db2LoadIn data structure parameters

iRowcount
Input. The number of physical records to be loaded. Allows a user to load
only the first rowcnt rows in a file.

iRestartcount
Input. Reserved for future use.

piUseTablespace
Input. If the indexes are being rebuilt, a shadow copy of the index is built
in table space iUseTablespaceName and copied over to the original table
space at the end of the load. Only system temporary table spaces can be
used with this option. If not specified then the shadow index will be
created in the same table space as the index object.

If the shadow copy is created in the same table space as the index object,
the copy of the shadow index object over the old index object is
instantaneous. If the shadow copy is in a different table space from the
index object a physical copy is performed. This could involve considerable
I/O and time. The copy happens while the table is offline at the end of a
load.

This field is ignored if iAccessLevel is SQLU_ALLOW_NO_ACCESS.

This option is ignored if the user does not specify INDEXING MODE
REBUILD or INDEXING MODE AUTOSELECT. This option will also be
ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to
incrementally update the index.

iSavecount
The number of records to load before establishing a consistency point. This
value is converted to a page count, and rounded up to intervals of the
extent size. Since a message is issued at each consistency point, this option
should be selected if the load operation will be monitored using
db2LoadQuery - Load Query. If the value of savecount is not sufficiently
high, the synchronization of activities performed at each consistency point
will impact performance.

The default value is 0, meaning that no consistency points will be
established, unless necessary.

iDataBufferSize
The number of 4KB pages (regardless of the degree of parallelism) to use
as buffered space for transferring data within the utility. If the value
specified is less than the algorithmic minimum, the required minimum is
used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.

db2Load - Load data into a table

204 Administrative API Reference

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

iSortBufferSize
Input. This option specifies a value that overrides the SORTHEAP database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the iIndexingMode parameter
is not specified as SQLU_INX_DEFERRED. The value that is specified
cannot exceed the value of SORTHEAP. This parameter is useful for
throttling the sort memory used by LOAD without changing the value of
SORTHEAP, which would also affect general query processing.

iWarningcount
Input. Stops the load operation after warningcnt warnings. Set this
parameter if no warnings are expected, but verification that the correct file
and table are being used is desired. If the load file or the target table is
specified incorrectly, the load utility will generate a warning for each row
that it attempts to load, which will cause the load to fail. If warningcnt is
0, or this option is not specified, the load operation will continue
regardless of the number of warnings issued.

If the load operation is stopped because the threshold of warnings was
exceeded, another load operation can be started in RESTART mode. The
load operation will automatically continue from the last consistency point.
Alternatively, another load operation can be initiated in REPLACE mode,
starting at the beginning of the input file.

iHoldQuiesce
Input. A flag whose value is set to TRUE if the utility is to leave the table
in quiesced exclusive state after the load, and to FALSE if it is not.

iCpuParallelism
Input. The number of processes or threads that the load utility will create
for parsing, converting and formatting records when building table objects.
This parameter is designed to exploit intra-partition parallelism. It is
particularly useful when loading presorted data, because record order in
the source data is preserved. If the value of this parameter is zero, the load
utility uses an intelligent default value at run time. Note: If this parameter
is used with tables containing either LOB or LONG VARCHAR fields, its
value becomes one, regardless of the number of system CPUs, or the value
specified by the user.

iDiskParallelism
Input. The number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

iNonrecoverable
Input. Set to SQLU_NON_RECOVERABLE_LOAD if the load transaction is
to be marked as non-recoverable, and it will not be possible to recover it
by a subsequent roll forward action. The rollforward utility will skip the
transaction, and will mark the table into which data was being loaded as
"invalid". The utility will also ignore any subsequent transactions against
that table. After the roll forward is completed, such a table can only be
dropped. With this option, table spaces are not put in backup pending
state following the load operation, and a copy of the loaded data does not

db2Load - Load data into a table

Chapter 5. Administrative APIs 205

have to be made during the load operation. Set to
SQLU_RECOVERABLE_LOAD if the load transaction is to be marked as
recoverable.

iIndexingMode
Input. Specifies the indexing mode. Valid values (defined in sqlutil header
file, located in the include directory) are:

SQLU_INX_AUTOSELECT
LOAD chooses between REBUILD and INCREMENTAL indexing
modes.

SQLU_INX_REBUILD
Rebuild table indexes.

SQLU_INX_INCREMENTAL
Extend existing indexes.

SQLU_INX_DEFERRED
Do not update table indexes.

iAccessLevel
Input. Specifies the access level. Valid values are:

SQLU_ALLOW_NO_ACCESS
Specifies that the load locks the table exclusively.

SQLU_ALLOW_READ_ACCESS
Specifies that the original data in the table (the non-delta portion)
should still be visible to readers while the load is in progress. This
option is only valid for load appends, such as a load insert, and
will be ignored for load replace.

iLockWithForce
Input. A boolean flag. If set to TRUE load will force other applications as
necessary to ensure that it obtains table locks immediately. This option
requires the same authority as the FORCE APPLICATIONS command
(SYSADM or SYSCTRL).

SQLU_ALLOW_NO_ACCESS loads may force conflicting applications at
the start of the load operation. At the start of the load, the utility may force
applications that are attempting to either query or modify the table.

SQLU_ALLOW_READ_ACCESS loads may force conflicting applications at
the start or end of the load operation. At the start of the load, the load
utility may force applications that are attempting to modify the table. At
the end of the load, the load utility may force applications that are
attempting to either query or modify the table.

iCheckPending
This parameter is being deprecated as of Version 9.1. Use the
iSetIntegrityPending parameter instead.

iRestartphase
Input. Reserved. Valid value is a single space character ' '.

iStatsOpt
Input. Granularity of statistics to collect. Valid values are:

SQLU_STATS_NONE
No statistics to be gathered.

SQLU_STATS_USE_PROFILE
Statistics are collected based on the profile defined for the current

db2Load - Load data into a table

206 Administrative API Reference

table. This profile must be created using the RUNSTATS command.
If no profile exists for the current table, a warning is returned and
no statistics are collected.

During load, distribution statistics are not collected for columns of
type XML.

iSetIntegrityPending
Input. Specifies to put the table into set integrity pending state. If the value
SQLU_SI_PENDING_CASCADE_IMMEDIATE is specified, set integrity
pending state will be immediately cascaded to all dependent and
descendent tables. If the value
SQLU_SI_PENDING_CASCADE_DEFERRED is specified, the cascade of
set integrity pending state to dependent tables will be deferred until the
target table is checked for integrity violations.
SQLU_SI_PENDING_CASCADE_DEFERRED is the default value if the
option is not specified.

piSourceUserExit
Input. A pointer to the db2LoadUserExit structure.

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.
/* XML Validate structure */
typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing; /* What to use to perform */
/* validation */

struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */
/* XMLVALIDATE USING XDS */

struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */
/* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

db2LoadOut data structure parameters

oRowsRead
Output. Number of records read during the load operation.

oRowsSkipped
Output. Number of records skipped before the load operation begins.

oRowsLoaded
Output. Number of rows loaded into the target table.

oRowsRejected
Output. Number of records that could not be loaded.

oRowsDeleted
Output. Number of duplicate rows deleted.

db2Load - Load data into a table

Chapter 5. Administrative APIs 207

oRowsCommitted
Output. The total number of processed records: the number of records
loaded successfully and committed to the database, plus the number of
skipped and rejected records.

db2PartLoadIn data structure parameters

piHostname
Input. The hostname for the iFileTransferCmd parameter. If NULL, the
hostname will default to "nohost". This parameter is deprecated.

piFileTransferCmd
Input. File transfer command parameter. If not required, it must be set to
NULL. This parameter is deprecated. Use the piSourceUserExit parameter
instead.

piPartFileLocation
Input. In PARTITION_ONLY, LOAD_ONLY, and
LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify
the location of the partitioned files. This location must exist on each
database partition specified by the piOutputNodes option.

For the SQL_CURSOR file type, this parameter cannot be NULL and the
location does not refer to a path, but to a fully qualified file name. This
will be the fully qualified base file name of the partitioned files that are
created on each output database partition for PARTITION_ONLY mode, or
the location of the files to be read from each database partition for
LOAD_ONLY mode. For PARTITION_ONLY mode, multiple files may be
created with the specified base name if there are LOB columns in the target
table. For file types other than SQL_CURSOR, if the value of this
parameter is NULL, it will default to the current directory.

piOutputNodes
Input. The list of Load output database partitions. A NULL indicates that
all nodes on which the target table is defined.

piPartitioningNodes
Input. The list of partitioning nodes. A NULL indicates the default.

piMode
Input. Specifies the load mode for partitioned databases. Valid values
(defined in db2ApiDf header file, located in the include directory) are:

- DB2LOAD_PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously
on the corresponding database partitions.

- DB2LOAD_PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written
to files in a specified location on each loading database partition.
For file types other than SQL_CURSOR, the name of the output file
on each database partition will have the form filename.xxx, where
filename is the name of the first input file specified by piSourceList
and xxx is the database partition number.For the SQL_CURSOR file
type, the name of the output file on each database partition will be
determined by the piPartFileLocation parameter. Refer to the
piPartFileLocation parameter for information about how to specify
the location of the database partition file on each database
partition.

db2Load - Load data into a table

208 Administrative API Reference

Note: This mode cannot be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY
Data is assumed to be already distributed; the distribution process
is skipped, and the data is loaded simultaneously on the
corresponding database partitions. For file types other than
SQL_CURSOR, the input file name on each database partition is
expected to be of the form filename.xxx, where filename is the
name of the first file specified by piSourceList and xxx is the
13-digit database partition number. For the SQL_CURSOR file type,
the name of the input file on each database partition will be
determined by the piPartFileLocation parameter. Refer to the
piPartFileLocation parameter for information about how to specify
the location of the database partition file on each database
partition.

Note: This mode cannot be used when loading a data file located
on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed, but the data file does
not contain a database partition header. The distribution process is
skipped, and the data is loaded simultaneously on the
corresponding database partitions. During the load operation, each
row is checked to verify that it is on the correct database partition.
Rows containing database partition violations are placed in a
dumpfile if the dumpfile file type modifier is specified. Otherwise,
the rows are discarded. If database partition violations exist on a
particular loading database partition, a single warning will be
written to the load message file for that database partition. The
input file name on each database partition is expected to be of the
form filename.xxx, where filename is the name of the first file
specified by piSourceList and xxx is the 13-digit database partition
number.

Note: This mode cannot be used when loading a data file located
on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_ANALYZE
An optimal distribution map with even distribution across all
database partitions is generated.

piMaxNumPartAgents
Input. The maximum number of partitioning agents. A NULL value
indicates the default, which is 25.

piIsolatePartErrs
Input. Indicates how the load operation will react to errors that occur on
individual database partitions. Valid values (defined in db2ApiDf header
file, located in the include directory) are:

DB2LOAD_SETUP_ERRS_ONLY
In this mode, errors that occur on a database partition during
setup, such as problems accessing a database partition or problems
accessing a table space or table on a database partition, will cause
the load operation to stop on the failing database partitions but to
continue on the remaining database partitions. Errors that occur on

db2Load - Load data into a table

Chapter 5. Administrative APIs 209

a database partition while data is being loaded will cause the
entire operation to fail and rollback to the last point of consistency
on each database partition.

DB2LOAD_LOAD_ERRS_ONLY
In this mode, errors that occur on a database partition during setup
will cause the entire load operation to fail. When an error occurs
while data is being loaded, the database partitions with errors will
be rolled back to their last point of consistency. The load operation
will continue on the remaining database partitions until a failure
occurs or until all the data is loaded. On the database partitions
where all of the data was loaded, the data will not be visible
following the load operation. Because of the errors in the other
database partitions the transaction will be aborted. Data on all of
the database partitions will remain invisible until a load restart
operation is performed. This will make the newly loaded data
visible on the database partitions where the load operation
completed and resume the load operation on database partitions
that experienced an error.

Note: This mode cannot be used when iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_SETUP_AND_LOAD_ERRS
In this mode, database partition-level errors during setup or
loading data cause processing to stop only on the affected database
partitions. As with the DB2LOAD_LOAD_ERRS_ONLY mode,
when database partition errors do occur while data is being
loaded, the data on all database partitions will remain invisible
until a load restart operation is performed.

Note: This mode cannot 1be used when iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_NO_ISOLATION
Any error during the Load operation causes the transaction to be
aborted. If this parameter is NULL, it will default to
DB2LOAD_LOAD_ERRS_ONLY, unless iAccessLevel is set to
SQLU_ALLOW_READ_ACCESS and a copy target is also specified,
in which case the default is DB2LOAD_NO_ISOLATION.

piStatusInterval
Input. Specifies the number of megabytes (MB) of data to load before
generating a progress message. Valid values are whole numbers in the
range of 1 to 4000. If NULL is specified, a default value of 100 will be
used.

piPortRange
Input. The TCP port range for internal communication. If NULL, the port
range used will be 6000-6063.

piCheckTruncation
Input. Causes Load to check for record truncation at Input/Output. Valid
values are TRUE and FALSE. If NULL, the default is FALSE.

piMapFileInput
Input. Distribution map input filename. If the mode is not ANALYZE, this
parameter should be set to NULL. If the mode is ANALYZE, this
parameter must be specified.

db2Load - Load data into a table

210 Administrative API Reference

piMapFileOutput
Input. Distribution map output filename. The rules for piMapFileInput
apply here as well.

piTrace
Input. Specifies the number of records to trace when you need to review a
dump of all the data conversion process and the output of hashing values.
If NULL, the number of records defaults to 0.

piNewline
Input. Forces Load to check for newline characters at end of ASC data
records if RECLEN file type modifier is also specified. Possible values are
TRUE and FALSE. If NULL, the value defaults to FALSE.

piDistfile
Input. Name of the database partition distribution file. If a NULL is
specified, the value defaults to "DISTFILE".

piOmitHeader
Input. Indicates that a distribution map header should not be included in
the database partition file when using DB2LOAD_PARTITION_ONLY
mode. Possible values are TRUE and FALSE. If NULL, the default is
FALSE.

piRunStatDBPartNum
Specifies the database partition on which to collect statistics. The default
value is the first database partition in the output database partition list.

db2LoadNodeList data structure parameters

piNodeList
Input. An array of node numbers.

iNumNodes
Input. The number of nodes in the piNodeList array. A 0 indicates the
default, which is all nodes on which the target table is defined.

db2LoadPortRange data structure parameters

iPortMin
Input. Lower port number.

iPortMax
Input. Higher port number.

db2PartLoadOut data structure parameters

oRowsRdPartAgents
Output. Total number of rows read by all partitioning agents.

oRowsRejPartAgents
Output. Total number of rows rejected by all partitioning agents.

oRowsPartitioned
Output. Total number of rows partitioned by all partitioning agents.

poAgentInfoList
Output. During a load operation into a partitioned database, the following
load processing entities may be involved: load agents, partitioning agents,
pre-partitioning agents, file transfer command agents and load-to-file
agents (these are described in the Data Movement Guide). The purpose of
the poAgentInfoList output parameter is to return to the caller information

db2Load - Load data into a table

Chapter 5. Administrative APIs 211

about each load agent that participated in a load operation. Each entry in
the list contains the following information:

oAgentType
A tag indicating what kind of load agent the entry describes.

oNodeNum
The number of the database partition on which the agent executed.

oSqlcode
The final sqlcode resulting from the agent's processing.

oTableState
The final status of the table on the database partition on which the
agent executed (relevant only for load agents).

It is up to the caller of the API to allocate memory for this list prior to
calling the API. The caller should also indicate the number of entries for
which they allocated memory in the iMaxAgentInfoEntries parameter. If
the caller sets poAgentInfoList to NULL or sets iMaxAgentInfoEntries to 0,
then no information will be returned about the load agents.

iMaxAgentInfoEntries
Input. The maximum number of agent information entries allocated by the
user for poAgentInfoList. In general, setting this parameter to 3 times the
number of database partitions involved in the load operation should be
sufficient.

oNumAgentInfoEntries
Output. The actual number of agent information entries produced by the
load operation. This number of entries will be returned to the user in the
poAgentInfoList parameter as long as iMaxAgentInfoEntries is greater than
or equal to oNumAgentInfoEntries. If iMaxAgentInfoEntries is less than
oNumAgentInfoEntries, then the number of entries returned in
poAgentInfoList is equal to iMaxAgentInfoEntries.

db2LoadAgentInfo data structure parameters

oSqlcode
Output. The final sqlcode resulting from the agent's processing.

oTableState
Output. The purpose of this output parameter is not to report every
possible state of the table after the load operation. Rather, its purpose is to
report only a small subset of possible tablestates in order to give the caller
a general idea of what happened to the table during load processing. This
value is relevant for load agents only. The possible values are:

DB2LOADQUERY_NORMAL
Indicates that the load completed successfully on the database
partition and the table was taken out of the LOAD IN PROGRESS
(or LOAD PENDING) state. In this case, the table still could be in
SET INTEGRITY PENDING state due to the need for further
constraints processing, but this will not reported as this is normal.

DB2LOADQUERY_UNCHANGED
Indicates that the load job aborted processing due to an error but
did not yet change the state of the table on the database partition
from whatever state it was in prior to calling db2Load. It is not
necessary to perform a load restart or terminate operation on such
database partitions.

db2Load - Load data into a table

212 Administrative API Reference

DB2LOADQUERY_LOADPENDING
Indicates that the load job aborted during processing but left the
table on the database partition in the LOAD PENDING state,
indicating that the load job on that database partition must be
either terminated or restarted.

oNodeNum
Output. The number of the database partition on which the agent
executed.

oAgentType
Output. The agent type. Valid values (defined in db2ApiDf header file,
located in the include directory) are :
v DB2LOAD_LOAD_AGENT
v DB2LOAD_PARTITIONING_AGENT
v DB2LOAD_PRE_PARTITIONING_AGENT
v DB2LOAD_FILE_TRANSFER_AGENT
v DB2LOAD_LOAD_TO_FILE_AGENT

db2gLoadStruct data structure specific parameters

iFileTypeLen
Input. Specifies the length in bytes of iFileType parameter.

iLocalMsgFileLen
Input. Specifies the length in bytes of iLocalMsgFileName parameter.

iTempFilesPathLen
Input. Specifies the length in bytes of iTempFilesPath parameter.

piXmlPathList
Input. Pointer to an sqlu_media_list with its media_type field set to
SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths
on the client where the xml files can be found.

db2gLoadIn data structure specific parameters

iUseTablespaceLen
Input. The length in bytes of piUseTablespace parameter.

piXmlParse
Input. Type of parsing that should occur for XML documents. Valid values
found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS
Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS
Whitespace should be stripped.

piXmlValidate
Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML
schema validation should occur for XML documents.
/* XML Validate structure */
typedef SQL_STRUCTURE db2DMUXmlValidate
{

db2Uint16 iUsing; /* What to use to perform */
/* validation */

struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */
/* XMLVALIDATE USING XDS */

struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */
/* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

db2Load - Load data into a table

Chapter 5. Administrative APIs 213

db2gPartLoadIn data structure specific parameters

piReserved1
Reserved for future use.

iHostnameLen
Input. The length in bytes of piHostname parameter.

iFileTransferLen
Input. The length in bytes of piFileTransferCmd parameter.

iPartFileLocLen
Input. The length in bytes of piPartFileLocation parameter.

iMapFileInputLen
Input. The length in bytes of piMapFileInput parameter.

iMapFileOutputLen
Input. The length in bytes of piMapFileOutput parameter.

iDistfileLen
Input. The length in bytes of piDistfile parameter.

Usage notes

Data is loaded in the sequence that appears in the input file. If a particular
sequence is desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception tables
are used to handle duplicates on unique keys. The utility does not enforce
referential integrity, perform constraints checking, or update summary tables that
are dependent on the tables being loaded. Tables that include referential or check
constraints are placed in set integrity pending state. Summary tables that are
defined with REFRESH IMMEDIATE, and that are dependent on tables being
loaded, are also placed in set integrity pending state. Issue the SET INTEGRITY
statement to take the tables out of set integrity pending state. Load operations
cannot be carried out on replicated summary tables.

For clustering indexes, the data should be sorted on the clustering index prior to
loading. The data need not be sorted when loading into an multi-dimensionally
clustered (MDC) table.

db2Load - Load data into a table

214 Administrative API Reference

db2LoadQuery - Get the status of a load operation

Checks the status of a load operation during processing.

Authorization

None

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2LoadQuery (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadQueryStruct
{

db2Uint32 iStringType;
char *piString;
db2Uint32 iShowLoadMessages;
struct db2LoadQueryOutputStruct *poOutputStruct;
char *piLocalMessageFile;

} db2LoadQueryStruct;

typedef SQL_STRUCTURE db2LoadQueryOutputStruct
{

db2Uint32 oRowsRead;
db2Uint32 oRowsSkipped;
db2Uint32 oRowsCommitted;
db2Uint32 oRowsLoaded;
db2Uint32 oRowsRejected;
db2Uint32 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;
db2Uint32 oTableState;

} db2LoadQueryOutputStruct;

typedef SQL_STRUCTURE db2LoadQueryOutputStruct64
{

db2Uint64 oRowsRead;
db2Uint64 oRowsSkipped;
db2Uint64 oRowsCommitted;
db2Uint64 oRowsLoaded;
db2Uint64 oRowsRejected;
db2Uint64 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;
db2Uint32 oTableState;

db2LoadQuery - Get the status of a load operation

Chapter 5. Administrative APIs 215

} db2LoadQueryOutputStruct64;

typedef SQL_STRUCTURE db2LoadQueryStruct64
{

db2Uint32 iStringType;
char *piString;
db2Uint32 iShowLoadMessages;
struct db2LoadQueryOutputStruct64 *poOutputStruct;
char *piLocalMessageFile;

} db2LoadQueryStruct64;

SQL_API_RC SQL_API_FN
db2gLoadQuery (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadQueryStruct
{

db2Uint32 iStringType;
db2Uint32 iStringLen;
char *piString;
db2Uint32 iShowLoadMessages;
struct db2LoadQueryOutputStruct *poOutputStruct;
db2Uint32 iLocalMessageFileLen;
char *piLocalMessageFile;

} db2gLoadQueryStruct;

typedef SQL_STRUCTURE db2gLoadQueryStru64
{

db2Uint32 iStringType;
db2Uint32 iStringLen;
char *piString;
db2Uint32 iShowLoadMessages;
struct db2LoadQueryOutputStruct64 *poOutputStruct;
db2Uint32 iLocalMessageFileLen;
char *piLocalMessageFile;

} db2gLoadQueryStru64;

db2LoadQuery API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2LoadQueryStruct structure. If the version is
Version 9 or higher, it is a pointer to the db2LoadQueryStruct64 structure.
Otherwise, it is a pointer to the db2LoadQueryStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2LoadQueryStruct data structure parameters

iStringType
Input. Specifies a type for piString. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2LOADQUERY_TABLENAME
Specifies a table name for use by the db2LoadQuery API.

piString
Input. Specifies a temporary files path name or a table name, depending
on the value of iStringType.

db2LoadQuery - Get the status of a load operation

216 Administrative API Reference

iShowLoadMessages
Input. Specifies the level of messages that are to be returned by the load
utility. Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2LOADQUERY_SHOW_ALL_MSGS
Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS
Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS
Return only messages that have been generated since the last call
to this API.

poOutputStruct
Output. A pointer to the db2LoadQueryOutputStruct structure, which
contains load summary information. Set to NULL if a summary is not
required.

piLocalMessageFile
Input. Specifies the name of a local file to be used for output messages.

db2LoadQueryOutputStruct data structure parameters

oRowsRead
Output. Number of records read so far by the load utility.

oRowsSkipped
Output. Number of records skipped before the load operation began.

oRowsCommitted
Output. Number of rows committed to the target table so far.

oRowsLoaded
Output. Number of rows loaded into the target table so far.

oRowsRejected
Output. Number of rows rejected from the target table so far.

oRowsDeleted
Output. Number of rows deleted from the target table so far (during the
delete phase).

oCurrentIndex
Output. Index currently being built (during the build phase).

oNumTotalIndexes
Output. Total number of indexes to be built (during the build phase).

oCurrentMPPNode
Output. Indicates which database partition server is being queried (for
partitioned database environment mode only).

oLoadRestarted
Output. A flag whose value is TRUE if the load operation being queried is
a load restart operation.

oWhichPhase
Output. Indicates the current phase of the load operation being queried.
Valid values (defined in db2ApiDf header file, located in the include
directory) are:

db2LoadQuery - Get the status of a load operation

Chapter 5. Administrative APIs 217

DB2LOADQUERY_LOAD_PHASE
Load phase.

DB2LOADQUERY_BUILD_PHASE
Build phase.

DB2LOADQUERY_DELETE_PHASE
Delete phase.

DB2LOADQUERY_INDEXCOPY_PHASE
Index copy phase.

oWarningCount
Output. Total number of warnings returned so far.

oTableState
Output. The table states. Valid values (defined in db2ApiDf header file,
located in the include directory) are:

DB2LOADQUERY_NORMAL
No table states affect the table.

DB2LOADQUERY_SI_PENDING
The table has constraints and the constraints have yet to be
verified. Use the SET INTEGRITY command to take the table out
of the DB2LOADQUERY_SI_PENDING state. The load utility puts
a table into the DB2LOADQUERY_SI_PENDING state when it
begins a load on a table with constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS
There is a load actively in progress on this table.

DB2LOADQUERY_LOAD_PENDING
A load has been active on this table but has been aborted before
the load could commit. Issue a load terminate, a load restart, or a
load replace to bring the table out of the
DB2LOADQUERY_LOAD_PENDING state.

DB2LOADQUERY_REORG_PENDING
A reorg recommended alter has been performed on this table. A
classic reorg must be performed before the table will be accessible.

DB2LOADQUERY_READ_ACCESS
The table data is available for read access queries. Loads using the
DB2LOADQUERY_READ_ACCESS option put the table into Read
Access Only state.

DB2LOADQUERY_NOTAVAILABLE
The table is unavailable. The table may only be dropped or it may
be restored from a backup. Rollforward through a non-recoverable
load will put a table into the unavailable state.

DB2LOADQUERY_NO_LOAD_RESTART
The table is in a partially loaded state that will not allow a load
restart. The table will also be in the Load Pending state. Issue a
load terminate or a load replace to bring the table out of the No
Load Restartable state. The table can be placed in the
DB2LOADQUERY_NO_LOAD_RESTART state during a
rollforward operation. This can occur if you rollforward to a point
in time that is prior to the end of a load operation, or if you roll
forward through an aborted load operation but do not roll forward
to the end of the load terminate or load restart operation.

db2LoadQuery - Get the status of a load operation

218 Administrative API Reference

DB2LOADQUERY_TYPE1_INDEXES
The table currently uses type-1 indexes. Type-1 indexes are no
longer supported and are converted to type-2 indexes when the
table is next accessed. As a result, this value is deprecated and
might be removed in a future release.

db2LoadQueryOutputStruct64 data structure parameters

oRowsRead
Output. Number of records read so far by the load utility.

oRowsSkipped
Output. Number of records skipped before the load operation began.

oRowsCommitted
Output. Number of rows committed to the target table so far.

oRowsLoaded
Output. Number of rows loaded into the target table so far.

oRowsRejected
Output. Number of rows rejected from the target table so far.

oRowsDeleted
Output. Number of rows deleted from the target table so far (during the
delete phase).

oCurrentIndex
Output. Index currently being built (during the build phase).

oNumTotalIndexes
Output. Total number of indexes to be built (during the build phase).

oCurrentMPPNode
Output. Indicates which database partition server is being queried (for
partitioned database environment mode only).

oLoadRestarted
Output. A flag whose value is TRUE if the load operation being queried is
a load restart operation.

oWhichPhase
Output. Indicates the current phase of the load operation being queried.
Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2LOADQUERY_LOAD_PHASE
Load phase.

DB2LOADQUERY_BUILD_PHASE
Build phase.

DB2LOADQUERY_DELETE_PHASE
Delete phase.

DB2LOADQUERY_INDEXCOPY_PHASE
Index copy phase.

oWarningCount
Output. Total number of warnings returned so far.

oTableState
Output. The table states. Valid values (defined in db2ApiDf header file,
located in the include directory) are:

db2LoadQuery - Get the status of a load operation

Chapter 5. Administrative APIs 219

DB2LOADQUERY_NORMAL
No table states affect the table.

DB2LOADQUERY_SI_PENDING
The table has constraints and the constraints have yet to be
verified. Use the SET INTEGRITY command to take the table out
of the DB2LOADQUERY_SI_PENDING state. The load utility puts
a table into the DB2LOADQUERY_SI_PENDING state when it
begins a load on a table with constraints.

DB2LOADQUERY_LOAD_IN_PROGRESS
There is a load actively in progress on this table.

DB2LOADQUERY_LOAD_PENDING
A load has been active on this table but has been aborted before
the load could commit. Issue a load terminate, a load restart, or a
load replace to bring the table out of the
DB2LOADQUERY_LOAD_PENDING state.

DB2LOADQUERY_REORG_PENDING
A reorg recommended alter has been performed on this table. A
classic reorg must be performed before the table will be accessible.

DB2LOADQUERY_READ_ACCESS
The table data is available for read access queries. Loads using the
DB2LOADQUERY_READ_ACCESS option put the table into Read
Access Only state.

DB2LOADQUERY_NOTAVAILABLE
The table is unavailable. The table may only be dropped or it may
be restored from a backup. Rollforward through a non-recoverable
load will put a table into the unavailable state.

DB2LOADQUERY_NO_LOAD_RESTART
The table is in a partially loaded state that will not allow a load
restart. The table will also be in the Load Pending state. Issue a
load terminate or a load replace to bring the table out of the No
Load Restartable state. The table can be placed in the
DB2LOADQUERY_NO_LOAD_RESTART state during a
rollforward operation. This can occur if you rollforward to a point
in time that is prior to the end of a load operation, or if you roll
forward through an aborted load operation but do not roll forward
to the end of the load terminate or load restart operation.

DB2LOADQUERY_TYPE1_INDEXES
The table currently uses type-1 indexes. Type-1 indexes are no
longer supported and are converted to type-2 indexes when the
table is next accessed. As a result, this value is deprecated and
might be removed in a future release.

db2LoadQueryStruct64 data structure parameters

iStringType
Input. Specifies a type for piString. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2LOADQUERY_TABLENAME
Specifies a table name for use by the db2LoadQuery API.

db2LoadQuery - Get the status of a load operation

220 Administrative API Reference

piString
Input. Specifies a temporary files path name or a table name, depending
on the value of iStringType.

iShowLoadMessages
Input. Specifies the level of messages that are to be returned by the load
utility. Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2LOADQUERY_SHOW_ALL_MSGS
Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS
Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS
Return only messages that have been generated since the last call
to this API.

poOutputStruct
Output. A pointer to the db2LoadQueryOutputStruct structure, which
contains load summary information. Set to NULL if a summary is not
required.

piLocalMessageFile
Input. Specifies the name of a local file to be used for output messages.

db2gLoadQueryStruct data structure specific parameters

iStringLen
Input. Specifies the length in bytes of piString parameter.

iLocalMessageFileLen
Input. Specifies the length in bytes of piLocalMessageFile parameter.

db2gLoadQueryStru64 data structure specific parameters

iStringLen
Input. Specifies the length in bytes of piString parameter.

iLocalMessageFileLen
Input. Specifies the length in bytes of piLocalMessageFile parameter.

Usage notes

This API reads the status of the load operation on the table specified by piString,
and writes the status to the file specified by piLocalMsgFileName.

db2LoadQuery - Get the status of a load operation

Chapter 5. Administrative APIs 221

db2MonitorSwitches - Get or update the monitor switch settings

Selectively turns on or off switches for groups of monitor data to be collected by
the database manager. Returns the current state of these switches for the
application issuing the call.

Scope

This API can return information for the database partition server on the instance,
or all database partitions on the instance.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

To display the settings for a remote instance (or a different local instance), it is
necessary to first attach to that instance.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2MonitorSwitches (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2MonitorSwitchesData
{

struct sqlm_recording_group *piGroupStates;
void *poBuffer;
db2Uint32 iBufferSize;
db2Uint32 iReturnData;
db2Uint32 iVersion;
db2int32 iNodeNumber;
db2Uint32 *poOutputFormat;

} db2MonitorSwitchesData;

SQL_API_RC SQL_API_FN
db2gMonitorSwitches (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gMonitorSwitchesData
{

struct sqlm_recording_group *piGroupStates;
void *poBuffer;

db2MonitorSwitches - Get or update the monitor switch settings

222 Administrative API Reference

db2Uint32 iBufferSize;
db2Uint32 iReturnData;
db2Uint32 iVersion;
db2int32 iNodeNumber;
db2Uint32 *poOutputFormat;

} db2gMonitorSwitchesData;

db2MonitorSwitches API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct. To use the structure as described above,
specify db2Version810. If you want to use a different version of this
structure, check the db2ApiDf.h header file in the include directory for the
complete list of supported versions. Ensure that you use the version of the
db2MonitorSwitchesStruct structure that corresponds to the version
number that you specify.

pParmStruct
Input. A pointer to the db2MonitorSwitchesStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2MonitorSwitchesData data structure parameters

piGroupStates
Input. A pointer to the sqlm-recording-group structure (defined in
sqlmon.h) containing a list of switches.

poBuffer
A pointer to a buffer where the switch state data will be written.

iBufferSize
Input. Specifies the size of the output buffer.

iReturnData
Input. A flag specifying whether or not the current switch states should be
written to the data buffer pointed to by poBuffer.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1
v SQLM_DBMON_VERSION2
v SQLM_DBMON_VERSION5
v SQLM_DBMON_VERSION5_2
v SQLM_DBMON_VERSION6
v SQLM_DBMON_VERSION7
v SQLM_DBMON_VERSION8
v SQLM_DBMON_VERSION9
v SQLM_DBMON_VERSION9_5

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

Note: Constants SQLM_DBMON_VERSION5_2, and earlier, are deprecated
and may be removed in a future release of DB2.

db2MonitorSwitches - Get or update the monitor switch settings

Chapter 5. Administrative APIs 223

iNodeNumber
Input. The database partition server where the request is to be sent. Based
on this value, the request will be processed for the current database
partition server, all database partition servers or a user specified database
partition server. Valid values are:
v SQLM_CURRENT_NODE
v SQLM_ALL_NODES
v node value

Note: For standalone instances SQLM_CURRENT_NODE must be used.

poOutputFormat
The format of the stream returned by the server. It will be one of the
following:

SQLM_STREAM_STATIC_FORMAT
Indicates that the switch states are returned in static, pre-Version 7
switch structures.

SQLM_STREAM_DYNAMIC_FORMAT
Indicates that the switches are returned in a self-describing format,
similar to the format returned for db2GetSnapshot.

Usage notes

To obtain the status of the switches at the database manager level, call
db2GetSnapshot, specifying SQLMA_DB2 for OBJ_TYPE (get snapshot for database
manager).

The timestamp switch is unavailable if iVersion is less than
SQLM_DBMON_VERSION8.

db2MonitorSwitches - Get or update the monitor switch settings

224 Administrative API Reference

db2Prune - Delete the history file entries or log files from the active
log path

Deletes entries from the history file or log files from the active log path.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required connection

Database. To delete entries from the history file for any database other than the
default database, a connection to the database must be established before calling
this API.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Prune (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2PruneStruct
{

char *piString;
db2HistoryEID iEID;
db2Uint32 iAction;
db2Uint32 iOptions;

} db2PruneStruct;

SQL_API_RC SQL_API_FN
db2gPrune (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gPruneStruct
{

db2Uint32 iStringLen;
char *piString;
db2HistoryEID iEID;
db2Uint32 iAction;
db2Uint32 iOptions;

} db2gPruneStruct;

db2Prune API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

db2Prune - Delete the history file entries or log files from the active log path

Chapter 5. Administrative APIs 225

pParmStruct
Input. A pointer to the db2PruneStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2PruneStruct data structure parameters

piString
Input. A pointer to a string specifying a time stamp or a log sequence
number (LSN). The time stamp or part of a time stamp (minimum yyyy, or
year) is used to select records for deletion. All entries equal to or less than
the time stamp will be deleted. A valid time stamp must be provided; a
NULL parameter value is invalid.

This parameter can also be used to pass an LSN, so that inactive logs can
be pruned.

iEID Input. Specifies a unique identifier that can be used to prune a single entry
from the history file.

iAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2PRUNE_ACTION_HISTORY
Remove history file entries.

DB2PRUNE_ACTION_LOG
Remove log files from the active log path.

iOptions
Input. Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2PRUNE_OPTION_FORCE
Force the removal of the last backup.

DB2PRUNE_OPTION_DELETE
Delete log files that are pruned from the history file.

If you set the auto_del_rec_obj database configuration parameter
to ON, calling db2Prune with DB2PRUNE_OPTION_DELETE also
causes the associated backup images and load copy images to be
deleted.

DB2PRUNE_OPTION_LSNSTRING
Specify that the value of piString is an LSN, used when a caller
action of DB2PRUNE_ACTION_LOG is specified.

db2gPruneStruct data structure specific parameters

iStringLen
Input. Specifies the length in bytes of piString.

Usage notes

Those entries with do_not_delete status will not be pruned or deleted. You can set
the status of recovery history file entries to do_not_delete using the UPDATE
HISTORY command, the ADMIN_CMD with UPDATE_HISTORY, or the
db2HistoryUpdate API. You can use the do_not_delete status to prevent key
recovery history file entries from being pruned or deleted.

db2Prune - Delete the history file entries or log files from the active log path

226 Administrative API Reference

If the latest full database backup is deleted from the media (in addition to being
pruned from the history file), the user must ensure that all table spaces, including
the catalog table space and the user table spaces, are backed up. Failure to do so
may result in a database that cannot be recovered, or the loss of some portion of
the user data in the database.

You can prune snapshot backup database history file entries using db2Prune, but
you cannot delete the related physical recovery objects using the
DB2PRUNE_OPTION_DELETE parameter. The only way to delete snapshot
backup object is to use the db2acsutil command.

REXX API syntax
PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

REXX API parameters

timestamp
A host variable containing a time stamp. All entries with time stamps
equal to or less than the time stamp provided are deleted from the history
file.

WITH FORCE OPTION
If specified, the history file will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are deleted
from the file. If not specified, the most recent restore set will be kept, even
if the time stamp is less than or equal to the time stamp specified as input.

db2Prune - Delete the history file entries or log files from the active log path

Chapter 5. Administrative APIs 227

db2QuerySatelliteProgress - Get the status of a satellite
synchronization session

Checks on the status of a satellite synchronization session.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2QuerySatelliteProgress (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2QuerySatelliteProgressStruct
{

db2int32 oStep;
db2int32 oSubstep;
db2int32 oNumSubsteps;
db2int32 oScriptStep;
db2int32 oNumScriptSteps;
char *poDescription;
char *poError;
char *poProgressLog;

} db2QuerySatelliteProgressStruct;

db2QuerySatelliteProgress API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2QuerySatelliteProgressStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2QuerySatelliteProgressStruct data structure parameters

oStep Output. The current step of the synchronization session (defined in
db2ApiDf header file, located in the include directory).

oSubstep
Output. If the synchronization step indicated by parameter, oStep, can be
broken down into substeps, this will be the current substep.

oNumSubsteps
Output. If there exists a substep (oSubstep) for the current step of the
synchronization session, this will be the total number of substeps that
comprise the synchronization step.

db2QuerySatelliteProgress - Get the status of a satellite synchronization session

228 Administrative API Reference

oScriptStep
Output. If the current substep is the execution of a script, this parameter
reports on the progress of the script execution, if available.

oNumScriptSteps
Output. If a script step is reported, this parameter contains the total
number of steps that comprise the script's execution.

poDescription
Output. A description of the state of the satellite's synchronization session.

poError
Output. If the synchronization session is in error, a description of the error
is passed by this parameter.

poProgressLog
Output. The entire log of the satellite's synchronization session is returned
by this parameter.

db2QuerySatelliteProgress - Get the status of a satellite synchronization session

Chapter 5. Administrative APIs 229

db2ReadLog - Read log records

Reads log records from the DB2 database logs, or queries the Log Manager for
current log state information. This API can only be used with recoverable
databases. A database is recoverable if the database configuration parameters
logarchmeth1 and/or logarchmeth2 are not set to OFF.

Authorization

One of the following:
v sysadm
v dbadm

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ReadLog (
db2Uint32 versionNumber,
void * pDB2ReadLogStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogStruct
{

db2Uint32 iCallerAction;
db2LSN *piStartLSN;
db2LSN *piEndLSN;
char *poLogBuffer;
db2Uint32 iLogBufferSize;
db2Uint32 iFilterOption;
db2ReadLogInfoStruct *poReadLogInfo;

} db2ReadLogStruct;

typedef SQL_STRUCTURE db2ReadLogInfoStruct
{

db2LSN initialLSN;
db2LSN firstReadLSN;
db2LSN nextStartLSN;
db2LSN firstReusedLSN;
db2Uint32 logRecsWritten;
db2Uint32 logBytesWritten;
db2Uint32 timeOfLSNReuse;
db2TimeOfLog currentTimeValue;

} db2ReadLogInfoStruct;

typedef SQL_STRUCTURE db2TimeOfLog
{

db2Uint32 seconds;
db2Uint32 accuracy;

} db2TimeOfLog;

typedef SQL_STRUCTURE db2ReadLogFilterData
{

db2LSN recordLSN;
db2Uint32 realLogRecLen;
db2int32 sqlcode;

}

db2ReadLog - Read log records

230 Administrative API Reference

db2ReadLog API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter, pDB2ReadLogStruct.

pDB2ReadLogStruct
Input. A pointer to the db2ReadLogStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ReadLogStruct data structure parameters

iCallerAction
Input. Specifies the action to be performed.

DB2READLOG_READ
Read the database log from the starting log sequence to the ending
log sequence number and return log records within this range.

DB2READLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by the
starting log sequence number.

DB2READLOG_QUERY
Query the database log. Results of the query will be sent back via
the db2ReadLogInfoStruct structure.

piStartLsn
Input. The starting log sequence number specifies the starting relative byte
address for the reading of the log. This value must be the start of an actual
log record.

piEndLsn
Input. The ending log sequence number specifies the ending relative byte
address for the reading of the log. This value must be greater than the
startLsn parameter, and does not need to be the end of an actual log
record.

poLogBuffer
Output. The buffer where all the propagatable log records read within the
specified range are stored sequentially. This buffer must be large enough to
hold a single log record. As a guideline, this buffer should be a minimum
of 56 bytes. Its maximum size is dependent on the size of the requested
range.
v If the iFilterOption is ON, the db2ReadLogFilterData structure will be

prefixed to each log record.
v If the iFilterOption is OFF, each log record in the buffer is prefixed by an

eight-byte log sequence number (LSN), representing the LSN of the
following log record.

iLogBufferSize
Input. Specifies the size, in bytes, of the log buffer.

iFilterOption
Input. Specifies the level of log record filtering to be used when reading
the log records. Valid values are:

DB2READLOG_FILTER_OFF
Read all log records in the given LSN range.

db2ReadLog - Read log records

Chapter 5. Administrative APIs 231

DB2READLOG_FILTER_ON
Reads only log records in the given LSN range marked as
propagatable. This is the traditional behavior of the asynchronous
log read API. The log records that are returned when this value is
used are documented in the "DB2 log records" topic. All other log
records are for IBM internal use only and are therefore not
documented.

poReadLogInfo
Output. A structure detailing information regarding the call and the
database log.

db2ReadLogInfoStruct data structure parameters

initialLSN
The first LSN used, or that will be used, by the database since it was
activated.

firstReadLSN
The first LSN present in poLogBuffer parameter.

nextStartLSN
The start of the next log record the caller should read. Because some log
records can be filtered and not returned in poLogBuffer parameter, using
this LSN as the start of the next read instead of the end of the last log
record in poLogBuffer parameter will prevent rescanning log records which
have already been filtered.

firstReusedLSN
The first LSN to be reused due to a database restore or rollforward
operation.

logRecsWritten
The number of log records written to poLogBuffer parameter.

logBytesWritten
The total number of bytes of data written to poLogBuffer parameter.

timeOfLSNReuse
The time at which the LSN represented by firstReusedLSN was reused.
The time is the number of seconds since January 1, 1970.

currentTimeValue
The current time according to the database.

db2TimeOfLog data structure parameters

seconds
The number of seconds since Januray 1, 1970.

accuracy
A high accuracy counter which allows callers to distinguish the order of
events when comparing timestamps that occurred within the same second.

db2ReadLogFilterData data structure parameters

Output. The db2ReadLogFilterData structure holds meta-data for the log record, as
follows:

recordLSN
LSN of the following log record.

db2ReadLog - Read log records

232 Administrative API Reference

realLogRecLen
The physical log record length in the DB2 logs.

sqlcode
This field will be non-zero if an error occurred while trying to decompress
the compressed row image in the log record. If an error occurred, it will
contain an integer representing the SQL code associated with the error. For
permanent errors, SQL0204N will most likely be returned. Resubmitting
the API request may return with the same error. For transient errors, the
SQL code returned will correspond to the cause of the error, which may or
may not require a user action to rectify.

Usage notes

If the requested action is to read the log, you must provide a log sequence number
range and a buffer to hold the log records. This API reads the log sequentially,
bounded by the requested LSN range, and returns log records associated with
tables defined with the DATA CAPTURE CHANGES clause, and a
db2ReadLogInfoStruct structure with the current active log information. If the
requested action is a query of the database log (indicated by specifying the value
DB2READLOG_QUERY), the API returns a db2ReadLogInfoStruct structure with
the current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid
starting LSN. Following the query call, the read log information structure
(db2ReadLogInfoStruct) will contain a valid starting LSN (in the initialLSN
member), to be used on a read call. The value used as the ending LSN on a read
can be one of the following:
v A value greater than initialLSN
v FFFF FFFF FFFF FFFF, which is interpreted by the asynchronous log reader as

the end of the current log.

The propagatable log records that are read within the starting and ending LSN
range are returned in the log buffer. If the iFilterOption option is set to
DB2READLOG_FILTER_ON, the LSN is replaced with the db2ReadLogFilterData
data structure, in the buffer. Descriptions of the various DB2 log records returned
by db2ReadLog can be found in the "DB2 log records" topic.

To read the next sequential log record after the initial read, use the nextStartLSN
field returned in the db2ReadLogStruct structure. Resubmit the call, with this new
starting LSN and a valid ending LSN. The next block of records is then read. An
sqlca code of SQLU_RLOG_READ_TO_CURRENT means that the log reader has
read to the end of the current active log.

This API reads data from the DB2 logs. Label-based access control (LBAC) is not
enforced on such logs. Thus, an application that calls this API can gain access to
table data if the caller has sufficient authority to call the API and is able to
understand the log records format.

The db2ReadLog API works on the current database connection. If multiple
database connections are created with the same process, then use the concurrent
access APIs to manage the multiple contexts.

Calling the db2ReadLog API from an application can result in an error when the
application disconnects from the database if a commit or rollback is not performed
before the disconnect:

db2ReadLog - Read log records

Chapter 5. Administrative APIs 233

v A CLI0116E error might be generated if the db2ReadLog API is called from a
CLI application.

v A SQL0428N error might be generated if the db2ReadLog API is called from an
embedded SQL application written in C.

Workaround 1: For non-embedded SQL applications, set autocommit mode on
before calling the db2ReadLog API.

Workaround 2: Issue a COMMIT or ROLLBACK statement after calling the
db2ReadLog API and before disconnecting from the database.

db2ReadLog - Read log records

234 Administrative API Reference

db2ReadLogNoConn - Read the database logs without a database
connection

Extracts log records from the DB2 database logs, or queries the Log Manager for
current log state information. Prior to using this API, call the
db2ReadLogNoConnInit API to allocate the memory that is passed as an input
parameter to this API. After calling this API, call the db2ReadLogNoConnTerm API
to deallocate the memory.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ReadLogNoConn (
db2Uint32 versionNumber,
void * pDB2ReadLogNoConnStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnStruct
{

db2Uint32 iCallerAction;
db2LSN *piStartLSN;
db2LSN *piEndLSN;
char *poLogBuffer;
db2Uint32 iLogBufferSize;
char *piReadLogMemPtr;
db2ReadLogNoConnInfoStruct *poReadLogInfo;

} db2ReadLogNoConnStruct;

typedef SQL_STRUCTURE db2ReadLogNoConnInfoStruct
{

db2LSN firstAvailableLSN;
db2LSN firstReadLSN;
db2LSN nextStartLSN;
db2Uint32 logRecsWritten;
db2Uint32 logBytesWritten;
db2Uint32 lastLogFullyRead;
db2TimeOfLog currentTimeValue;

} db2ReadLogNoConnInfoStruct;

db2ReadLogNoConn API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter, pDB2ReadLogNoConnStruct.

pDB2ReadLogNoConnStruct
Input. A pointer to the db2ReadLogNoConnStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ReadLogNoConn - Read the database logs without a database connection

Chapter 5. Administrative APIs 235

db2ReadLogNoConnStruct data structure parameters

iCallerAction
Input. Specifies the action to be performed. Valid values are:

DB2READLOG_READ
Read the database log from the starting log sequence to the ending
log sequence number and return log records within this range.

DB2READLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by the
starting log sequence number.

DB2READLOG_QUERY
Query the database log. Results of the query will be sent back via
the db2ReadLogNoConnInfoStruct structure.

piStartLSN
Input. The starting log sequence number specifies the starting relative byte
address for the reading of the log. This value must be the start of an actual
log record.

piEndLSN
Input. The ending log sequence number specifies the ending relative byte
address for the reading of the log. This value must be greater than
piStartLsn, and does not need to be the end of an actual log record.

poLogBuffer
Output. The buffer where all the propagatable log records read within the
specified range are stored sequentially. This buffer must be large enough to
hold a single log record. As a guideline, this buffer should be a minimum
of 48 bytes. Its maximum size is dependent on the size of the requested
range.

Each log record in the buffer is prefixed by a eight-byte log sequence
number (LSN), representing the LSN of the following log record.

iLogBufferSize
Input. Specifies the size, in bytes, of the log buffer.

piReadLogMemPtr
Input. Block of memory of size iReadLogMemoryLimit that was allocated
in the initialization call. This memory contains persistent data that the API
requires at each invocation. This memory block must not be reallocated or
altered in any way by the caller.

poReadLogInfo
Output. A pointer to the db2ReadLogNoConnInfoStruct structure.

db2ReadLogNoConnInfoStruct data structure parameters

firstAvailableLSN
First available LSN in available logs.

firstReadLSN
First LSN read on this call.

nextStartLSN
Next readable LSN.

logRecsWritten
Number of log records written to the log buffer field, poLogBuffer.

db2ReadLogNoConn - Read the database logs without a database connection

236 Administrative API Reference

logBytesWritten
Number of bytes written to the log buffer field, poLogBuffer.

lastLogFullyRead
Number indicating the last log file that was read to completion.

currentTimeValue
Reserved for future use.

Usage notes

The db2ReadLogNoConn API requires a memory block that must be allocated
using the db2ReadLogNoConnInit API. The memory block must be passed as an
input parameter to all subsequent db2ReadLogNoConn API calls, and must not be
altered.

When requesting a sequential read of log, the API requires a log sequence number
(LSN) range and the allocated memory . The API will return a sequence of log
records based on the filter option specified when initialized and the LSN range.
When requesting a query, the read log information structure will contain a valid
starting LSN, to be used on a read call. The value used as the ending LSN on a
read can be one of the following:
v A value greater than the caller-specified startLSN.
v FFFF FFFF FFFF FFFF which is interpreted by the asynchronous log reader as

the end of the available logs.

The propagatable log records read within the starting and ending LSN range are
returned in the log buffer. A log record does not contain its LSN, it is contained in
the buffer before the actual log record. Descriptions of the various DB2 log records
returned by db2ReadLogNoConn can be found in the DB2 Log Records section.

After the initial read, in order to read the next sequential log record, use the
nextStartLSN value returned in db2ReadLogNoConnInfoStruct. Resubmit the call,
with this new starting LSN and a valid ending LSN and the next block of records
is then read. An sqlca code of SQLU_RLOG_READ_TO_CURRENT means the log
reader has read to the end of the available log files.

When the API will no longer be used, use db2ReadLogNoConnTerm to terminate
the memory.

This API reads data from the DB2 logs. Label-based access control (LBAC) is not
enforced on such logs. Thus, an application that calls this API can potentially gain
access to table data if the caller has sufficient authority to call the API and is able
to understand the log records format.

Note: This API does not support the formatting of compressed row images in log
records, which requires a connection to the database. To do this, use the
db2ReadLog API instead. Since the formatting of compressed row images is not
supported, this API returns the compressed row image as is.

db2ReadLogNoConn - Read the database logs without a database connection

Chapter 5. Administrative APIs 237

db2ReadLogNoConnInit - Initialize reading the database logs without a
database connection

Allocates the memory to be used by db2ReadLogNoConn in order to extract log
records from the DB2 database logs and query the Log Manager for current log
state information.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ReadLogNoConnInit (
db2Uint32 versionNumber,
void * pDB2ReadLogNoConnInitStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnInitStruct
{

db2Uint32 iFilterOption;
char *piLogFilePath;
char *piOverflowLogPath;
db2Uint32 iRetrieveLogs;
char *piDatabaseName;
char *piNodeName;
db2Uint32 iReadLogMemoryLimit;
char **poReadLogMemPtr;

} db2ReadLogNoConnInitStruct;

db2ReadLogNoConnInit API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2ReadLogNoConnInitStruct.

pDB2ReadLogNoConnInitStruct
Input. A pointer to the db2ReadLogNoConnInitStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ReadLogNoConnInitStruct data structure parameters

iFilterOption
Input. Specifies the level of log record filtering to be used when reading
the log records. Valid values are:

DB2READLOG_FILTER_OFF
Read all log records in the given LSN range.

db2ReadLogNoConnInit - Initialize reading the database logs without a database
connection

238 Administrative API Reference

DB2READLOG_FILTER_ON
Reads only log records in the given LSN range marked as
propagatable. This is the traditional behavior of the asynchronous
log read API.

piLogFilePath
Input. Path where the log files to be read are located.

piOverflowLogPath
Input. Alternate path where the log files to be read may be located.

iRetrieveLogs
Input. Option specifying if userexit should be invoked to retrieve log files
that cannot be found in either the log file path or the overflow log path.
Valid values are:

DB2READLOG_RETRIEVE_OFF
Userexit should not be invoked to retrieve missing log files.

DB2READLOG_RETRIEVE_LOGPATH
Userexit should be invoked to retrieve missing log files into the
specified log file path.

DB2READLOG_RETRIEVE_OVERFLOW
Userexit should be invoked to retrieve missing log files into the
specified overflow log path.

piDatabaseName
Input. Name of the database that owns the recovery logs being read. This
is required if the retrieve option above is specified.

piNodeName
Input. Name of the node that owns the recovery logs being read. This is
required if the retrieve option above is specified.

iReadLogMemoryLimit
Input. Maximum number of bytes that the API may allocate internally.

poReadLogMemPtr
Output. API-allocated block of memory of size iReadLogMemoryLimit.
This memory contains persistent data that the API requires at each
invocation. This memory block must not be reallocated or altered in any
way by the caller.

Usage notes

The memory initialized by db2ReadLogNoConnInit must not be altered.

When db2ReadLogNoConn will no longer be used, invoke
db2ReadLogNoConnTerm to deallocate the memory initialized by
db2ReadLogNoConnInit.

db2ReadLogNoConnInit - Initialize reading the database logs without a database
connection

Chapter 5. Administrative APIs 239

db2ReadLogNoConnTerm - Terminate reading the database logs
without a database connection

Deallocates the memory used by the db2ReadLogNoConn API, originally
initialized by the db2ReadLogNoConnInit API.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ReadLogNoConnTerm (
db2Uint32 versionNumber,
void * pDB2ReadLogNoConnTermStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReadLogNoConnTermStruct
{

char **poReadLogMemPtr;
} db2ReadLogNoConnTermStruct;

db2ReadLogNoConnTerm API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2ReadLogNoConnTermStruct.

pDB2ReadLogNoConnTermStruct
Input. A pointer to the db2ReadLogNoConnTermStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ReadLogNoConnTermStruct data structure parameters

poReadLogMemPtr
Output. Pointer to the block of memory allocated in the initialization call.
This pointer will be freed and set to NULL.

db2ReadLogNoConnTerm - Terminate reading the database logs without a database
connection

240 Administrative API Reference

db2Recover - Restore and roll forward a database

Restores and rolls forward a database to a particular point in time or to the end of
the logs.

Scope

In a partitioned database environment, this API can only be called from the catalog
partition. If no database partition servers are specified, it affects all database
partition servers that are listed in the db2nodes.cfg file. If a point in time is
specified, the API affects all database partitions.

Authorization

To recover an existing database, one of the following:
v sysadm
v sysctrl
v sysmaint

To recover to a new database, one of the following:
v sysadm
v sysctrl

Required connection

To recover an existing database, a database connection is required. This API
automatically establishes a connection to the specified database and will release the
connection when the recover operation finishes. Instance and database, to recover
to a new database. The instance attachment is required to create the database.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Recover (
db2Uint32 versionNumber,
void * pDB2RecovStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RecoverStruct
{

char *piSourceDBAlias;
char *piUsername;
char *piPassword;
db2Uint32 iRecoverCallerAction;
db2Uint32 iOptions;
sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
char *piStopTime;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piHistoryFile;

db2Recover - Restore and roll forward a database

Chapter 5. Administrative APIs 241

db2Uint32 iNumChngHistoryFile;
struct sqlu_histFile *piChngHistoryFile;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;

} db2RecoverStruct;

SQL_STRUCTURE sqlu_histFile
{

SQL_PDB_NODE_TYPE nodeNum;
unsigned short filenameLen;
char filename[SQL_FILENAME_SZ+1];

};

SQL_API_RC SQL_API_FN
db2gRecover (

db2Uint32 versionNumber,
void * pDB2gRecoverStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRecoverStruct
{

char *piSourceDBAlias;
db2Uint32 iSourceDBAliasLen;
char *piUserName;
db2Uint32 iUserNameLen;
char *piPassword;
db2Uint32 iPasswordLen;
db2Uint32 iRecoverCallerAction;
db2Uint32 iOptions;
sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
char *piStopTime;
db2Uint32 iStopTimeLen;
char *piOverflowLogPath;
db2Uint32 iOverflowLogPathLen;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piHistoryFile;
db2Uint32 iHistoryFileLen;
db2Uint32 iNumChngHistoryFile;
struct sqlu_histFile *piChngHistoryFile;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;

} db2gRecoverStruct;

db2Recover API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2RecoverStruct.

pDB2RecoverStruct
Input. A pointer to the db2RecoverStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Recover - Restore and roll forward a database

242 Administrative API Reference

db2RecoverStruct data structure parameters

piSourceDBAlias
Input. A string containing the database alias of the database to be
recovered.

piUserName
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

iRecoverCallerAction
Input. Valid values are:

DB2RECOVER
Starts the recover operation. Specifies that the recover will run
unattended, and that scenarios that normally require user
intervention will either be attempted without first returning to the
caller, or will generate an error. Use this caller action, for example,
if it is known that all of the media required for the recover have
been mounted, and utility prompts are not desired.

DB2RECOVER_RESTART
Allows the user to ignore a prior recover and start over from the
beginning.

DB2RECOVER_CONTINUE
Continue using the device that generated the warning message (for
example, when a new tape has been mounted).

DB2RECOVER_LOADREC_TERM
Terminate all devices being used by load recovery.

DB2RECOVER_DEVICE_TERM
Stop using the device that generated the warning message (for
example, when there are no more tapes).

DB2RECOVER_PARM_CHK_ONLY
Used to validate parameters without performing a recover
operation. Before this call returns, the database connection
established by this call is terminated, and no subsequent call is
required.

DB2RECOVER_DEVICE_TERMINATE
Removes a particular device from the list of devices used by the
recover operation. When a particular device has exhausted its
input, recover will return a warning to the caller. Call the recover
utility again with this caller action to remove the device that
generated the warning from the list of devices being used.

iOptions
Input. Valid values are:

- DB2RECOVER_EMPTY_FLAG
No flags specified.

- DB2RECOVER_LOCAL_TIME
Indicates that the value specified for the stop time by piStopTime
is in local time, not GMT. This is the default setting.

db2Recover - Restore and roll forward a database

Chapter 5. Administrative APIs 243

- DB2RECOVER_GMT_TIME
This flag indicates that the value specified for the stop time by
piStopTime is in GMT (Greenwich Mean Time).

poNumReplies
Output. The number of replies received.

poNodeInfo
Output. Database partition reply information.

piStopTime
Input. A character string containing a time stamp in ISO format. Database
recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be
NULL for DB2ROLLFORWARD_QUERY,
DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery
(DB2ROLLFORWARD_LOADREC_) caller actions.

piOverflowLogPath
Input. This parameter is used to specify an alternate log path to be used.
In addition to the active log files, archived log files need to be moved (by
the user) into the location specified by the logpath configuration parameter
before they can be used by this utility. This can be a problem if the user
does not have sufficient space in the log path. The overflow log path is
provided for this reason. During roll-forward recovery, the required log
files are searched, first in the log path, and then in the overflow log path.
The log files needed for table space rollforward recovery can be brought
into either the log path or the overflow log path. If the caller does not
specify an overflow log path, the default value is the log path.

In a partitioned database environment, the overflow log path must be a
valid, fully qualified path; the default path is the default overflow log path
for each database partition. In a single-partition database environment, the
overflow log path can be relative if the server is local.

iNumChngLgOvrflw
Input. Partitioned database environments only. The number of changed
overflow log paths. These new log paths override the default overflow log
path for the specified database partition server only.

piChngLogOvrflw
Input. Partitioned database environments only. A pointer to a structure
containing the fully qualified names of changed overflow log paths. These
new log paths override the default overflow log path for the specified
database partition server only.

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
rollforward operation is to be applied to all database partition servers
defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

DB2_ALL_NODES
Apply to all database partition servers. piNodeList should be
NULL. This is the default value.

db2Recover - Restore and roll forward a database

244 Administrative API Reference

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

DB2_CAT_NODE_ONLY
Apply to the catalog partition only. piNodeList should be NULL.

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the rollforward recovery.

iNumNodeInfo
Input. Defines the size of the output parameter poNodeInfo, which must
be large enough to hold status information from each database partition
that is being rolled forward. In a single-partition database environment,
this parameter should be set to 1. The value of this parameter should be
the same as the number of database partition servers for which this API is
being called.

piHistoryFile
History file.

iNumChngHistoryFile
Number of history files in list.

piChngHistoryFile
List of history files.

piComprLibrary
Input. Indicates the name of the external library to be used to perform
decompression of the backup image if the image is compressed. The name
must be a fully-qualified path referring to a file on the server. If the value
is a null pointer or a pointer to an empty string, DB2 will attempt to use
the library stored in the image. If the backup was not compressed, the
value of this parameter will be ignored. If the specified library is not
found, the restore will fail.

piComprOptions
Input. Describes a block of binary data that will be passed to the
initialization routine in the decompression library. DB2 will pass this string
directly from the client to the server, so any issues of byte-reversal or
code-page conversion will have to be handled by the compression library.
If the first character of the data block is '@', the remainder of the data will
be interpreted by DB2 as the name of a file residing on the server. DB2 will
then replace the contents of piComprOptions and iComprOptionsSize with
the contents and size of this file respectively and will pass these new
values to the initialization routine instead.

iComprOptionsSize
Input. Represents the size of the block of data passed as piComprOptions.
iComprOptionsSize shall be zero if and only if piComprOptions is a null
pointer.

sqlu_histFile data structure parameters

nodeNum
Input. Specifies which database partition this entry should be used for.

db2Recover - Restore and roll forward a database

Chapter 5. Administrative APIs 245

filenameLen
Input. Length in bytes of filename.

filename
Input. Path to the history file for this database partition. The path must
end with a slash.

db2gRecoverStruct data structure specific parameters

iSourceDBAliasLen
Specifies the length in bytes of the piSourceDBAlias parameter.

iUserNameLen
Specified the length in bytes of the piUsername parameter.

iPasswordLen
Specifies the length in bytes of the piPassword parameter.

iStopTimeLen
Specifies the length in bytes of the piStopTime parameter.

iOverflowLogPathLen
Specifies the length in bytes of the piOverflowLogPath parameter.

iHistoryFileLen
Specifies the length in bytes of the piHistoryFile parameter.

iComprLibraryLen
Input. Specifies the length in bytes of the name of the library specified in
the piComprLibrary parameter. Set to zero if no library name is given.

db2Recover - Restore and roll forward a database

246 Administrative API Reference

db2Reorg - Reorganize an index or a table

Reorganizes a table or all indexes defined on a table by compacting the
information and reconstructing the rows or index data to eliminate fragmented
data.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v SQLADM
v CONTROL privilege on the table

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Reorg (
db2Uint32 versionNumber,
void * pReorgStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ReorgStruct
{

db2Uint32 reorgType;
db2Uint32 reorgFlags;
db2int32 nodeListFlag;
db2Uint32 numNodes;
SQL_PDB_NODE_TYPE *pNodeList;
union db2ReorgObject reorgObject;

} db2ReorgStruct;

union db2ReorgObject
{

struct db2ReorgTable tableStruct;
struct db2ReorgIndexesAll indexesAllStruct;

};

typedef SQL_STRUCTURE db2ReorgTable
{

char *pTableName;
char *pOrderByIndex;
char *pSysTempSpace;
char *pLongTempSpace;
char *pPartitionName;

} db2ReorgTable;

typedef SQL_STRUCTURE db2ReorgIndexesAll
{

char *pTableName;
char *pIndexName;

db2Reorg - Reorganize an index or a table

Chapter 5. Administrative APIs 247

char *pPartitionName;
} db2ReorgIndexesAll;

SQL_API_RC SQL_API_FN
db2gReorg (

db2Uint32 versionNumber,
void * pReorgStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gReorgStruct
{

db2Uint32 reorgType;
db2Uint32 reorgFlags;
db2int32 nodeListFlag;
db2Uint32 numNodes;
SQL_PDB_NODE_TYPE *pNodeList;
union db2gReorgObject reorgObject;

} db2gReorgStruct;

typedef SQL_STRUCTURE db2gReorgNodes
{

SQL_PDB_NODE_TYPE nodeNum[SQL_PDB_MAX_NUM_NODE];
} db2gReorgNodes;

union db2gReorgObject
{

struct db2gReorgTable tableStruct;
struct db2gReorgIndexesAll indexesAllStruct;

};

typedef SQL_STRUCTURE db2gReorgTable
{

db2Uint32 tableNameLen;
char *pTableName;
db2Uint32 orderByIndexLen;
char *pOrderByIndex;
db2Uint32 sysTempSpaceLen;
char *pSysTempSpace;
db2Uint32 longTempSpaceLen;
char *pLongTempSpace;
db2Uint32 partitionNameLen;
char *pPartitionName;

} db2gReorgTable;

typedef SQL_STRUCTURE db2gReorgIndexesAll
{

db2Uint32 tableNameLen;
char *pTableName;
db2Uint32 indexNameLen;
char *pIndexName;
db2Uint32 partitionNameLen;
char *pPartitionName;

} db2gReorgIndexesAll;

db2Reorg API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter, pReorgStruct.

pReorgStruct
Input. A pointer to the db2ReorgStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2Reorg - Reorganize an index or a table

248 Administrative API Reference

db2ReorgStruct data structure parameters

reorgType
Input. Specifies the type of reorganization. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2REORG_OBJ_TABLE_OFFLINE
Reorganize the table offline.

DB2REORG_OBJ_TABLE_INPLACE
Reorganize the table inplace.

DB2REORG_OBJ_INDEXESALL
Reorganize all indexes.

DB2REORG_OBJ_INDEX
Reorganize one index.

DB2REORG_RECLAIM_EXTENTS
Reorganize a multidimensional clustering (MDC) table to reclaim
empty extents for the table space.

reorgFlags
Input. Reorganization options. Valid values (defined in db2ApiDf header
file, located in the include directory) are:

DB2REORG_OPTION_NONE
Default action.

DB2REORG_LONGLOB
Reorganize long fields and lobs, used when
DB2REORG_OBJ_TABLE_OFFLINE is specified as the reorgType. If
DB2REORG_RESETDICTIONARY or
DB2REORG_KEEPDICTIONARY option is also specified, the
options apply to the XML storage object of the table in addition to
the table object.

DB2REORG_INDEXSCAN
Recluster utilizing index scan, used when
DB2REORG_OBJ_TABLE_OFFLINE is specified as the reorgType.

DB2REORG_START_ONLINE
Start online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_PAUSE_ONLINE
Pause an existing online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_STOP_ONLINE
Stop an existing online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_RESUME_ONLINE
Resume a paused online reorganization, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

DB2REORG_NOTRUNCATE_ONLINE
Do not perform table truncation, used when
DB2REORG_OBJ_TABLE_INPLACE is specified as the reorgType.

db2Reorg - Reorganize an index or a table

Chapter 5. Administrative APIs 249

DB2REORG_ALLOW_NONE
No read or write access to the table. This parameter is not
supported when DB2REORG_OBJ_TABLE_INPLACE is specified as
the reorgType.

DB2REORG_ALLOW_WRITE
Allow read and write access to the table. This parameter is not
supported when DB2REORG_OBJ_TABLE_OFFLINE is specified as
the reorgType.

DB2REORG_ALLOW_READ
Allow only read access to the table.

DB2REORG_CLEANUP_NONE
No clean up is required, used when
DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX are
specified as the reorgType.

DB2REORG_CLEANUP_ALL
Clean up the committed pseudo deleted keys and committed
pseudo empty pages, used when DB2REORG_OBJ_INDEXESALL
or DB2REORG_OBJ_INDEX are specified as the reorgType.

DB2REORG_CLEANUP_PAGES
Clean up committed pseudo empty pages only, but do not clean up
pseudo deleted keys on pages that are not pseudo empty, used
when DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX
are specified as the reorgType.

DB2REORG_CONVERT_NONE
No conversion is required, used when
DB2REORG_OBJ_INDEXESALL or DB2REORG_OBJ_INDEX are
specified as the reorgType.

DB2REORG_CONVERT
Convert to type 2 index, used when
DB2REORG_OBJ_INDEXESALL is specified as the reorgType.
Type-1 indexes are no longer supported and are converted to
type-2 indexes when the table is next accessed. As a result, this
value is deprecated and might be removed in a future release.

DB2REORG_RESET_DICTIONARY
If the DB2REORG_LONGLOB option is also specified,
DB2REORG_RESETDICTIONARY applies to the XML storage
object of the table also. If the COMPRESS attribute for the table is
YES then a new compression dictionary is built. All the rows
processed during reorganization are subject to compression using
this new dictionary. This dictionary replaces any previous
dictionary in the object. If the COMPRESS attribute for the table is
NO and the table object or the XML storage object does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in non-compressed format. This parameter is only supported for
the DB2REORG_OBJ_TABLE_OFFLINE reorgType.

DB2REORG_KEEP_DICTIONARY
If DB2REORG_LONGLOB keyword is also specified,
DB2REORG_KEEPDICTIONARY applies to the table object and the
XML storage object of the table. If DB2REORG_LONGLOB is not
specified, the following applies only to the table object.

db2Reorg - Reorganize an index or a table

250 Administrative API Reference

If the COMPRESS attribute for the table is YES and a dictionary
exists, it is kept. If the COMPRESS attribute for the table is YES
and a dictionary does not exist, one is built, as the option defaults
to DB2REORG_RESET_DICTIONARY in that case. All rows
processed by reorganization are subject to compression. If the
COMPRESS attribute for the table is NO, the dictionary will be
retained (if one existed), and all rows in the newly reorganized
table will be in non-compressed format. This parameter is only
supported for the DB2REORG_OBJ_TABLE_OFFLINE reorgType.

nodeListFlag
Input. Specifies which nodes to reorganize. Valid values (defined in
db2ApiDf header file, located in the include directory) are:

DB2REORG_NODE_LIST
Submit to all nodes in the nodelist array.

DB2REORG_ALL_NODES
Submit to all nodes in the database partition group.

DB2REORG_ALL_EXCEPT
Submit to all nodes except the ones specified by the nodelist
parameter.

numNodes
Input. Number of nodes in the nodelist array.

pNodeList
A pointer to the array of node numbers.

reorgObject
Input. Specifies the type of object to be reorganized.

db2ReorgObject union parameters

tableStruct
Specifies the options for a table reorganization.

indexesAllStruct
Specifies the options for an index reorganization.

db2ReorgTable data structure parameters

pTableName
Input. Specifies the name of the table to reorganize.

pOrderByIndex
Input. Specifies the index to order the table by.

pSysTempSpace
Input. Specifies the system temporary table space where temporary objects
are created. The REORG command may expand rows in cases where a
column is added to a table (i.e. from ALTER TABLE ADD COLUMN) and
the rows were inserted before the column was added. For a nonpartitioned
table, this parameter must specify a table space with enough room to
create the new table object. A partitioned table is reorganized a single data
partition at a time. In this case, there must be enough free space in the
table space to hold the largest data partition of the table. When the
pPartitionName parameter is specified, the temporary table space must be
able to hold the specified partition.

db2Reorg - Reorganize an index or a table

Chapter 5. Administrative APIs 251

If this parameter is not specified for a nonpartitioned table the table space
the table resides in is used. If this parameter is not specified for a
partitioned table, the table space where each data partition is located is
used for temporary storage of that data partition. There must be enough
free space in each data partition's table space to hold a copy of the data
partition.

pLongTempSpace
Input. Specifies the temporary table space to create long objects (LONG
VARCHAR and LOB columns) in during table reorganization. If the
pSysTempSpace parameter is not specified, this parameter is ignored. If
this parameter is not specified, but the pSysTempSpace parameter is
specified, then DB2 will create the long data objects in the table space
specified by the pSysTempSpace parameter, unless the page sizes differ.

When page sizes differ, if pSysTempSpace is specified, but this parameter
is not, DB2 will attempt to find an existing table space with a matching
page size to create the long objects in.

pPartitionName
Input. Specifies the name of the data partition to reorganize.

db2ReorgIndexesAll data structure parameters

pTableName
Input. Specifies the name of the table for index reorganization. If
DB2REORG_OBJ_INDEX is specified as the reorgType, the pTableName
parameter is not required and can be NULL. However, if the pTableName
parameter is specified, it must be the table on which the index is defined.

pIndexName
Input. Specifies the name of the index to reorganize. This parameter is
used only when the reorgType parameter is set to a value of
DB2REORG_OBJ_INDEX otherwise set pIndexName parameter to NULL.

pPartitionName
Input. Specifies the name of the data partition whose indexes are to be
reorganized.

db2gReorgTable data structure specific parameters

tableNameLen
Input. Specifies the length in bytes of pTableName.

orderByIndexLen
Input. Specifies the length in byte of pOrderByIndex.

sysTempSpaceLen
Input. Specifies the length in bytes of pSysTempSpace.

longTempSpaceLen
Input. Specifies the length of the name stored in the pLongTempSpace

partitionNameLen
Input. Specifies the length, in bytes, of pPartitionName.

pPartitionName
Input. Specifies the name of the data partition to reorganize.

db2Reorg - Reorganize an index or a table

252 Administrative API Reference

db2gReorgIndexesAll data structure specific parameters

tableNameLen
Input. Specifies the length in bytes of pTableName.

indexNameLen
Input. Specifies the length in bytes of the pIndexName parameter.

partitionNameLen
Input. Specifies the length, in bytes, of pPartitionName.

pPartitionName
Input. Specifies the name of the data partition for the index.

Usage notes
v Performance of table access, index scans, and the effectiveness of index page

prefetching can be adversely affected when the table data has been modified
many times, becoming fragmented and unclustered. Use REORGCHK to
determine whether a table or its indexes are candidates for reorganizing. All
work will be committed and all open cursors will be closed during reorg
processing. After reorganizing a table or its indexes, use db2Runstats to update
the statistics and sqlarbnd to rebind the packages that use this table.

v If the table data is distributed onto several nodes and the reorganization fails on
any of the affected nodes, then only the failing nodes will have the
reorganization rolled back. If table reorganization is not successful, temporary
files should not be deleted. The database manager uses these files to recover the
database.

v For table reorganization, if the name of an index is specified, the database
manager reorganizes the data according to the order in the index. To maximize
performance, specify an index that is often used in SQL queries. If the name of
an index is not specified, and if a clustering index exists, the data will be
ordered according to the clustering index.

v The PCTFREE value of a table determines the amount of free space designated
per page. If the value has not been set, the utility will fill up as much space as
possible on each page.

v To complete a table space rollforward recovery following a table reorganization,
both data and LONG table spaces must be rollforward enabled.

v If the table contains LOB columns not defined with the COMPACT option, the
LOB DATA storage object can be significantly larger following table
reorganization. This can be a result of the order in which the rows were
reorganized, and the types of table spaces used (SMS/DMS).

v The following table illustrates the default table access chosen based on the type
of reorg and table:

Table 8. Default table access chosen based on the type of reorg and table

Type of reorg and applicable flags which can affect the
default table access Access mode chosen for each table type

reorgType reorgFlags (if applicable) Non-partitioned table Partitioned table

DB2REORG_OBJ_TABLE_
OFFLINE

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
NONE1

DB2REORG_OBJ_TABLE_
INPLACE

DB2REORG_ALLOW_
WRITE

N/A

DB2REORG_OBJ_
INDEXESALL

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
NONE1

db2Reorg - Reorganize an index or a table

Chapter 5. Administrative APIs 253

Table 8. Default table access chosen based on the type of reorg and table (continued)

Type of reorg and applicable flags which can affect the
default table access Access mode chosen for each table type

reorgType reorgFlags (if applicable) Non-partitioned table Partitioned table

DB2REORG_OBJ_
INDEXESALL

DB2REORG_CLEANUP_
ALL,
DB2REORG_CLEANUP_
PAGES

DB2REORG_ALLOW_
READ

DB2REORG_ALLOW_
READ

DB2REORG_OBJ_INDEX N/A DB2REORG_ALLOW_
READ

DB2REORG_OBJ_INDEX DB2REORG_CLEANUP_
ALL,
DB2REORG_CLEANUP_
PAGES

N/A DB2REORG_ALLOW_
READ

Note:

1: The pPartitionName does not specify a data partition name. For information
about access modes when pPartitionName specifies a partition name, see the
REORG INDEXES/TABLE command.

N/A: Not applicable at this time since it is not supported.

Some access modes may not be supported on certain types of tables or indexes.
In these cases and where possible, the least restrictive access mode is used. (The
most restrictive access mode being DB2REORG_ALLOW_NONE, followed by
DB2REORG_ALLOW_READ, and then DB2REORG_ALLOW_WRITE, which is
the least restrictive). As support for existing table or index types change, or new
table or index types are provided, the default can change from a more restrictive
access mode to a less restrictive mode. The least restrictive mode chosen for the
default will not go beyond DB2REORG_ALLOW_READ when the reorgType is
not DB2REORG_OBJ_TABLE_INPLACE. The default access mode is chosen
when none of the DB2REORG_ALLOW_NONE, DB2REORG_ALLOW_READ, or
DB2REORG_ALLOW_WRITE flags are specified.

v When reorganizing indexes, use the access option to allow other transactions
either read-only or read-write access to the table.

v If an index reorganization with allow read or allow write access fails because the
indexes need to be rebuilt, the reorganization will switch to allow no access and
then continue. A message will be written to both the administration notification
log and the diagnostics log about the change in the access mode. When
DB2REORG_OBJ_INDEX is specified for a partitioned table, indexes that need to
be rebuilt are rebuilt offline, then the specified index is reorganized (assuming
that it was not rebuilt). This reorganization uses the specified access mode (that
is, the access mode will not change during processing). A message will be
written to the administration notification log and the diagnostics log about the
indexes being rebuilt offline.

v For non-inplace table reorganization, if neither
DB2REORG_RESET_DICTIONARY or DB2REORG_KEEP_DICTIONARY is
specified, the default is DB2REORG_KEEP_DICTIONARY.

v If an index reorganization with no access fails, some or all indexes will not be
available and will be rebuilt on the next table access.

v This API cannot be used with:

db2Reorg - Reorganize an index or a table

254 Administrative API Reference

– Views or an index that is based on an index extension.
– Declared temporary tables.
– Created temporary tables.

v With DB2 Version 9.7 Fix Pack 1 and later releases, pPartitionName can specify
a data partition name to reorganize a specific data partition of a data partitioned
table or the partitioned indexes on a specific data partition of a partitioned table.
The following items apply for a data partitioned table when using
pPartitionName to reorganize the partitioned indexes on a specific data partition
of a partitioned table:
– Only the specified data partition is restricted to the access mode level. Users

are allowed to read from and write to the other partitions of the table while
the partitioned indexes of a specified partition are being reorganized.

– Only the partitioned indexes for the specified partition are reorganized. The
nonpartitioned indexes on the partitioned table are not reorganized.
If there are any nonpartitioned indexes on the table marked "invalid" or "for
rebuild", all indexes marked "invalid" or "for rebuild" are rebuilt before
reorganization. Otherwise, only partitioned indexes on the specified partition
are reorganized or rebuilt if the index object is marked "invalid" or "for
rebuild".

– Only partitioned indexes for the specified partition are cleaned when cleaning
up indexes.

When using pPartitionName to perform a table reorganization on a data
partition of a data partitioned table, nonpartitioned indexes affect access to the
table:
– If there are no nonpartitioned indexes (except system-generated XML path

indexes) defined on the table, only the specified partition is reorganized. The
access mode applies only to the specified partition, users are allowed to read
from and write to the other partitions of the table.

– If there are nonpartitioned indexes defined on the table (excluding
system-generated XML path indexes), the ALLOW NONE mode is the default
and only supported access mode. In this case, the table is placed in ALLOW
NONE mode. If ALLOW READ ACCESS is specified, SQL1548N is returned
(SQLSTATE 5U047).

– For a data partitioned table, a table reorganization rebuilds the nonpartitioned
indexes and partitioned indexes on the table after reorganizing the table. If
pPartitionName is used to reorganize a specific data partition of a data
partitioned table, a table reorganization rebuilds the nonpartitioned indexes
and partitioned indexes only for the specified partition.

When using pPartitionName to perform a table or index reorganization, the
following conditions return an error:
– If the data partition name does not exist on the given table when performing

a table reorganization of a specific data partition, the reorganization fails and
returns SQL2222N with reason code 1.

– If a data partition name is specified when performing an index reorganization
a specific nonpartitioned index defined on a partitioned table, the
reorganization fails and returns SQL2222N with reason code 2�

– If the data partition name specified is still in attached or detached state when
performing a table reorganization of a data partition, the reorganization fails
and returns SQL2222N with error code 3.

– If the data partition name specified is still in attached or detached state when
performing an index reorganization on the partitioned indexes of a data
partition, the reorganization fails and returns SQL2222N with error code 3.

db2Reorg - Reorganize an index or a table

Chapter 5. Administrative APIs 255

db2ResetAlertCfg - Reset the alert configuration of health indicators

Resets the health indicator settings for specific objects to the current defaults for
that object type or resets the current default health indicator settings for an object
type to the install defaults.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

One of the following:
v sysadm
v sysmaint
v sysctrl

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ResetAlertCfg (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ResetAlertCfgData
{

db2Uint32 iObjType;
char *piObjName;
char *piDbName;
db2Uint32 iIndicatorID;

} db2ResetAlertCfgData;

db2ResetAlertCfg API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ResetAlertCfgData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ResetAlertCfg - Reset the alert configuration of health indicators

256 Administrative API Reference

db2ResetAlertCfgData data structure parameters

iObjType
Input. Specifies the type of object for which configuration should be reset.
Valid values (defined in db2ApiDf header file, located in the include
directory) are:
v DB2ALERTCFG_OBJTYPE_DBM
v DB2ALERTCFG_OBJTYPE_DATABASES
v DB2ALERTCFG_OBJTYPE_TABLESPACES
v DB2ALERTCFG_OBJTYPE_TS_CONTAINERS
v DB2ALERTCFG_OBJTYPE_DATABASE
v DB2ALERTCFG_OBJTYPE_TABLESPACE
v DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName
Input. The name of the table space or table space container when object
type, iObjType, is set to DB2ALERTCFG_OBJTYPE_TS_CONTAINER or
DB2ALERTCFG_OBJTYPE_TABLESPACE. The name of the table space
container is defined as <tablespace-numericalID>.<tablespace-container-
name>.

piDbname
Input. The alias name for the database for which configuration should be
reset when object type, iObjType, is set to
DB2ALERTCFG_OBJTYPE_TS_CONTAINER,
DB2ALERTCFG_OBJTYPE_TABLESPACE, and
DB2ALERTCFG_OBJTYPE_DATABASE.

iIndicatorID
Input. The health indicator for which the configuration resets are to apply.

Usage notes

The current default for the object type is reset when iObjType is
DB2ALERTCFG_OBJTYPE_DBM, DB2ALERTCFG_OBJTYPE_DATABASES,
DB2ALERTCFG_OBJTYPE_TABLESPACES,
DB2ALERTCFG_OBJTYPE_TS_CONTAINERS or when piObjName and piDbName
are both NULL. If iObjType is DB2ALERTCFG_OBJTYPE_DATABASE,
DB2ALERTCFG_OBJTYPE_TABLESPACE,
DB2ALERTCFG_OBJTYPE_TS_CONTAINER and piDbName and piObjName (not
needed for database) are specified, then the current settings for that specific object
will be reset.

db2ResetAlertCfg - Reset the alert configuration of health indicators

Chapter 5. Administrative APIs 257

db2ResetMonitor - Reset the database system monitor data

Resets the database system monitor data of a specified database, or of all active
databases, for the application issuing the call.

Scope

This API can either affect a given database partition on the instance, or all database
partitions on the instance.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

To reset the monitor switches for a remote instance (or a different local instance), it
is necessary to first attach to that instance.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2ResetMonitor (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ResetMonitorData
{

db2Uint32 iResetAll;
char *piDbAlias;
db2Uint32 iVersion;
db2int32 iNodeNumber;

} db2ResetMonitorData;

SQL_API_RC SQL_API_FN
db2gResetMonitor (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gResetMonitorData
{

db2Uint32 iResetAll;
char *piDbAlias;
db2Uint32 iDbAliasLength;
db2Uint32 iVersion;
db2int32 iNodeNumber;

} db2gResetMonitorData;

db2ResetMonitor - Reset the database system monitor data

258 Administrative API Reference

db2ResetMonitor API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ResetMonitorData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2ResetMonitorData data structure parameters

iResetAll
Input. The reset flag.

piDbAlias
Input. A pointer to the database alias.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version. Set
this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1
v SQLM_DBMON_VERSION2
v SQLM_DBMON_VERSION5
v SQLM_DBMON_VERSION5_2
v SQLM_DBMON_VERSION6
v SQLM_DBMON_VERSION7
v SQLM_DBMON_VERSION8
v SQLM_DBMON_VERSION9
v SQLM_DBMON_VERSION9_5

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

Note: Constants SQLM_DBMON_VERSION5_2, and earlier, are deprecated
and may be removed in a future release of DB2.

iNodeNumber
Input. The database partition server where the request is to be sent. Based
on this value, the request will be processed for the current database
partition server, all database partition servers or a user specified database
partition server. Valid values are:
v SQLM_CURRENT_NODE
v SQLM_ALL_NODES
v node value

Note: For standalone instances the value, SQLM_CURRENT_NODE, must
be used.

db2gResetMonitorData data structure specific parameters

iDbAliasLength
Input. Specifies the length in bytes of the piDbAlias parameter.

db2ResetMonitor - Reset the database system monitor data

Chapter 5. Administrative APIs 259

Usage notes

Each process (attachment) has its own private view of the monitor data. If one user
resets, or turns off a monitor switch, other users are not affected. When an
application first calls any database monitor function, it inherits the default switch
settings from the database manager configuration file. These settings can be
overridden with db2MonitorSwitches - Get/Update Monitor Switches.

If all active databases are reset, some database manager information is also reset to
maintain the consistency of the data that is returned.

This API cannot be used to selectively reset specific data items or specific monitor
groups. However, a specific group can be reset by turning its switch off, and then
on, using db2MonitorSwitches - Get/Update Monitor Switches.

db2ResetMonitor - Reset the database system monitor data

260 Administrative API Reference

db2Restore - Restore a database or table space
Recreates a damaged or corrupted database that has been backed up using the
db2Backup API. The restored database is in the same state it was in when the
backup copy was made.

This utility can also:
v Restore to a database with a name different from the database name in the

backup image (in addition to being able to restore to a new database), the
exception being a snapshot restore where the backup image database name must
be the same.

v Restore DB2 databases that were created in the two previous releases.
v Restore from a table space level backup, or restore table spaces from within a

database backup image.
v Transport a set of table spaces and schemas from database backup image to a

database (starting in DB2 Version 9.7 Fix Pack 2).

Scope

This API only affects the database partition from which it is called.

Authorization

To restore to an existing database, one of the following:
v sysadm

v sysctrl

v sysmaint

To restore to a new database, one of the following:
v sysadm

v sysctrl

Required connection

Database, to restore to an existing database. This API automatically establishes a
connection to the specified database and will release the connection when the
restore operation finishes.

Instance and database, to restore to a new database. The instance attachment is
required to create the database.

For snapshot restore, instance and database connections are required.

To restore to a new database at an instance different from the current instance (as
defined by the value of the DB2INSTANCE environment variable), it is necessary
to first attach to the instance where the new database will reside.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Restore (
db2Uint32 versionNumber,

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 261

void * pDB2RestoreStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RestoreStruct
{

char *piSourceDBAlias;
char *piTargetDBAlias;
char oApplicationId[SQLU_APPLID_LEN+1];
char *piTimestamp;
char *piTargetDBPath;
char *piReportFile;
struct db2TablespaceStruct *piTablespaceList;
struct db2MediaListStruct *piMediaList;
char *piUsername;
char *piPassword;
char *piNewLogPath;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;
char *piComprLibrary;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
char *piLogTarget;
struct db2StoragePathsStruct *piStoragePaths;
char *piRedirectScript;
char *piStagingDBAlias;
struct db2SchemaStruct *piSchemaList;

} db2RestoreStruct;

typedef SQL_STRUCTURE db2TablespaceStruct
{

char **tablespaces;
db2Uint32 numTablespaces;

} db2TablespaceStruct;

typedef SQL_STRUCTURE db2MediaListStruct
{

char **locations;
db2Uint32 numLocations;
char locationType;

} db2MediaListStruct;

typedef SQL_STRUCTURE db2StoragePathsStruct
{

char **storagePaths;
db2Uint32 numStoragePaths;

} db2StoragePathsStruct;

SQL_API_RC SQL_API_FN
db2gRestore (

db2Uint32 versionNumber,
void * pDB2gRestoreStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRestoreStruct
{

char *piSourceDBAlias;
db2Uint32 iSourceDBAliasLen;
char *piTargetDBAlias;
db2Uint32 iTargetDBAliasLen;
char *poApplicationId;
db2Uint32 iApplicationIdLen;
char *piTimestamp;

db2Restore - Restore a database or table space

262 Administrative API Reference

db2Uint32 iTimestampLen;
char *piTargetDBPath;
db2Uint32 iTargetDBPathLen;
char *piReportFile;
db2Uint32 iReportFileLen;
struct db2gTablespaceStruct *piTablespaceList;
struct db2gMediaListStruct *piMediaList;
char *piUsername;
db2Uint32 iUsernameLen;
char *piPassword;
db2Uint32 iPasswordLen;
char *piNewLogPath;
db2Uint32 iNewLogPathLen;
void *piVendorOptions;
db2Uint32 iVendorOptionsSize;
db2Uint32 iParallelism;
db2Uint32 iBufferSize;
db2Uint32 iNumBuffers;
db2Uint32 iCallerAction;
db2Uint32 iOptions;
char *piComprLibrary;
db2Uint32 iComprLibraryLen;
void *piComprOptions;
db2Uint32 iComprOptionsSize;
char *piLogTarget;
db2Uint32 iLogTargetLen;
struct db2gStoragePathsStruct *piStoragePaths;
char *piRedirectScript;
db2Uint32 iRedirectScriptLen;
struct db2gSchemaStruct *piSchemaList;
char *piStagingDBAlias;
db2Uint32 iStagingDBAliasLen;

} db2gRestoreStruct;

typedef SQL_STRUCTURE db2gTablespaceStruct
{

struct db2Char *tablespaces;
db2Uint32 numTablespaces;

} db2gTablespaceStruct;

typedef SQL_STRUCTURE db2gMediaListStruct
{

struct db2Char *locations;
db2Uint32 numLocations;
char locationType;

} db2gMediaListStruct;

typedef SQL_STRUCTURE db2gStoragePathsStruct
{

struct db2Char *storagePaths;
db2Uint32 numStoragePaths;

} db2gStoragePathsStruct;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;

db2Restore API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pDB2RestoreStruct.

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 263

pDB2RestoreStruct
Input. A pointer to the db2RestoreStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RestoreStruct data structure parameters

piSourceDBAlias
Input. A string containing the database alias of the source database backup
image.

piTargetDBAlias
Input. A string containing the target database alias. If this parameter is
null, the value of the piSourceDBAlias parameter will be used.

piStagingDBAlias
Input. A string containing the staging database name to be used with the
TRANSPORT option. If this parameter is NULL the staging database name
will be internally generated and the database will be dropped after
transport completes. If a name is provided the staging database will not be
dropped.

oApplicationId
Output. The API will return a string identifying the agent servicing the
application. Can be used to obtain information about the progress of the
backup operation using the database monitor.

piTimestamp
Input. A string representing the time stamp of the backup image. This field
is optional if there is only one backup image in the source specified.

piTargetDBPath
Input. A string containing the relative or fully qualified name of the target
database directory on the server. Used if a new database is to be created
for the restored backup; otherwise not used.

piReportFile
Input. The file name, if specified, must be fully qualified.

Note: This parameter is obsolete, but still defined.

piTablespaceList
Input. List of table spaces to be restored. Used when restoring a subset of
table spaces from a database or table space backup image. For rebuild
cases, this can be an include list or exclude list of table spaces used to
rebuild your database. See the DB2TablespaceStruct structure. The
following restrictions apply:
v The database must be recoverable (for non-rebuild cases only); that is,

log retain or user exits must be enabled.
v The database being restored to must be the same database that was used

to create the backup image. That is, table spaces can not be added to a
database through the table space restore function.

v The rollforward utility will ensure that table spaces restored in a
partitioned database environment are synchronized with any other
database partition containing the same table spaces. If a table space
restore operation is requested and the piTablespaceList is NULL, the
restore utility will attempt to restore all of the table spaces in the backup
image.

db2Restore - Restore a database or table space

264 Administrative API Reference

v When restoring a table space that has been renamed since it was backed
up, the new table space name must be used in the restore command. If
the old table space name is used, it will not be found.

v In the case of rebuild, the list must be given for 3 of the 5 rebuild types:
DB2RESTORE_ALL_TBSP_IN_DB_EXC,
DB2RESTORE_ALL_TBSP_IN_IMG_EXC and
DB2RESTORE_ALL_TBSP_IN_LIST.

piSchemaList
Input. The list of schemas to be transported. Used with piTablespaceList
and to define a valid transportable set.

piMediaList
Input. Source media for the backup image.

For more information, see the db2MediaListStruct structure below.

piUsername
Input. A string containing the user name to be used when attempting a
connection. Can be NULL.

piPassword
Input. A string containing the password to be used with the user name.
Can be NULL.

piNewLogPath
Input. A string representing the path to be used for logging after the
restore has completed. If this field is null the default log path will be used.

piVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of indirection is
supported. Note that byte-reversal is not done, and the code page is not
checked for this data.

iVendorOptionsSize
Input. The length in bytes of the piVendorOptions parameter, which
cannot exceed 65535 bytes.

iParallelism
Input. Degree of parallelism (number of buffer manipulators). Minimum is
1. Maximum is 1024.

iBufferSize
Input. Backup buffer size in 4 KB allocation units (pages). Minimum is 8
units. The size entered for a restore must be equal to or an integer multiple
of the buffer size used to produce the backup image.

iNumBuffers
Input. Specifies number of restore buffers to be used.

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:
v DB2RESTORE_RESTORE - Start the restore operation.
v DB2RESTORE_NOINTERRUPT - Start the restore. Specifies that the

restore will run unattended, and that scenarios which normally require
user intervention will either be attempted without first returning to the
caller, or will generate an error. Use this caller action, for example, if it is
known that all of the media required for the restore have been mounted,
and utility prompts are not desired.

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 265

v DB2RESTORE_CONTINUE - Continue the restore after the user has
performed some action requested by the utility (mount a new tape, for
example).

v DB2RESTORE_TERMINATE - Terminate the restore after the user has
failed to perform some action requested by the utility.

v DB2RESTORE_DEVICE_TERMINATE - Remove a particular device from
the list of devices used by restore. When a particular device has
exhausted its input, restore will return a warning to the caller. Call
restore again with this caller action to remove the device which
generated the warning from the list of devices being used.

v DB2RESTORE_PARM_CHK - Used to validate parameters without
performing a restore. This option does not terminate the database
connection after the call returns. After a successful return of this call, it
is expected that the user will issue another call to this API with the
iCallerAction parameter set to the value DB2RESTORE_CONTINUE to
continue with the restore.

v DB2RESTORE_PARM_CHK_ONLY - Used to validate parameters
without performing a restore. Before this call returns, the database
connection established by this call is terminated, and no subsequent call
is required.

v DB2RESTORE_TERMINATE_INCRE - Terminate an incremental restore
operation before completion.

v DB2RESTORE_RESTORE_STORDEF - Initial call. Table space container
redefinition requested.

v DB2RESTORE_STORDEF_NOINTERRUPT - Initial call. The restore will
run uninterrupted. Table space container redefinition requested.

iOptions
Input. A bitmap of restore properties. The options are to be combined
using the bitwise OR operator to produce a value for iOptions. Valid
values (defined in db2ApiDf header file, located in the include directory)
are:
v DB2RESTORE_OFFLINE - Perform an offline restore operation.
v DB2RESTORE_ONLINE - Perform an online restore operation.
v DB2RESTORE_DB - Restore all table spaces in the database. This must

be run offline.
v DB2RESTORE_TABLESPACE - Restore only the table spaces listed in the

piTablespaceList parameter from the backup image. This can be online
or offline.

v DB2RESTORE_HISTORY - Restore only the history file.
v DB2RESTORE_COMPR_LIB - Indicates that the compression library is to

be restored. This option cannot be used simultaneously with any other
type of restore process. If the object exists in the backup image, it will be
restored into the database directory. If the object does not exist in the
backup image, the restore operation will fail.

v DB2RESTORE_LOGS - Specifies that only the set of log files contained in
the backup image are to be restored. If the backup image does not
include log files, the restore operation will fail. If this option is specified,
the piLogTarget parameter must also be specified.

v DB2RESTORE_INCREMENTAL - Perform a manual cumulative restore
operation.

db2Restore - Restore a database or table space

266 Administrative API Reference

v DB2RESTORE_AUTOMATIC - Perform an automatic cumulative
(incremental) restore operation. Must be specified with
DB2RESTORE_INCREMENTAL.

v DB2RESTORE_ROLLFWD - Place the database in rollforward pending
state after it has been successfully restored.

v DB2RESTORE_NOROLLFWD - Do not place the database in rollforward
pending state after it has been successfully restored. This cannot be
specified for backups taken online or for table space level restores. If,
following a successful restore, the database is in roll-forward pending
state, the db2Rollforward API must be called before the database can be
used.

v DB2RESTORE_GENERATE_SCRIPT - Create a script, that can be used to
perform a redirected restore. piRedirectScript must contain a valid file
name. The iCallerAction need to be either
DB2RESTORE_RESTORE_STORDEF or
DB2RESTORE_STORDEF_NOINTERRUPT.

v DB2RESTORE_TRANSPORT - Transport a set of table spaces and SQL
schemas. The table spaces and schemas listed in the piTablespaceList
and piSchemaList parameters must define a valid transportable set
(starting in DB2 Version 9.7 Fix Pack 2).

The following values should be used for rebuild operations only:
v DB2RESTORE_ALL_TBSP_IN_DB - Restores the database with all the

table spaces known to the database at the time of the image being
restored. This rebuild overwrites a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_DB_EXC - Restores the database with all
the table spaces known to the database at the time of the image being
restored except for those specified in the list pointed to by the
piTablespaceList parameter. This rebuild overwrites a database if it
already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG - Restores the database with only the
table spaces in the image being restored. This rebuild overwrites a
database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_IMG_EXC - Restores the database with
only the table spaces in the image being restored except for those
specified in the list pointed to by the piTablespaceList parameter. This
rebuild overwrites a database if it already exists.

v DB2RESTORE_ALL_TBSP_IN_LIST - Restores the database with only the
table spaces specified in the list pointed to by the piTablespaceList
parameter. This rebuild overwrites a database if it already exists.

NOTE: If the backup image is of a recoverable database, then WITHOUT
ROLLING FORWARD (DB2RESTORE_NOROLLFWD) cannot be specified
with any of the above rebuild actions.

piComprLibrary
Input. Indicates the name of the external library to use to decompress the
backup image if the image is compressed. The name must be a
fully-qualified path that refers to a file on the server. If the value is a null
pointer or a pointer to an empty string, the DB2 database system attempts
to use the library stored in the image. If the backup is not compressed, the
value of this parameter will be ignored. If the specified library is not
found, the restore operation will fail.

piComprOptions
Input. This API parameter describes a block of binary data that will be

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 267

passed to the initialization routine in the decompression library. The DB2
database system passes this string directly from the client to the server, so
any issues of byte-reversal or code-page conversion must be handled by
the compression library. If the first character of the data block is '@', the
remainder of the data is interpreted as the name of a file residing on the
server. The DB2 database system then replaces the contents of the
piComprOptions and iComprOptionsSize parameters with the contents
and size of this file and passes these new values to the initialization
routine.

iComprOptionsSize
Input. A four-byte unsigned integer that represents the size of the block of
data passed as piComprOptions. The iComprOptionsSize parameter
should be zero if and only if the piComprOptions value is a null pointer.

piLogTarget
Input. Specifies the absolute path of a directory on the database server that
must be used as the target directory for extracting log files from a backup
image. If this parameter is specified, any log files included in the backup
image are extracted into the target directory. If this parameter is not
specified, log files included in the backup image are not extracted. To
extract only the log files from the backup image, DB2RESTORE_LOGS
value should be passed to the iOptions parameter.

For snapshot restore, one of the following must be given:
v DB2RESTORE_LOGTARGET_INCLUDE "INCLUDE"

Restore log directory volumes from the snapshot image. If this option is
specified and the backup image contains log directories, then they will
be restored. Existing log directories and log files on disk will be left
intact if they do not conflict with the log directories in the backup
image. If existing log directories on disk conflict with the log directories
in the backup image, then an error will be returned.

v DB2RESTORE_LOGTARGET_EXCLUDE "EXCLUDE"
Do not restore log directory volumes. If this option is specified, then log
directories will not be restored from the backup image. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If a path belonging to the
database is restored and a log directory will implicitly be restored
because of this, thus causing a log directory to be overwritten, an error
will be returned.

v DB2RESTORE_LOGTARGET_INCFORCE "INCLUDE FORCE"
Allow existing log directories to be overwritten and replaced when
restoring the snapshot image. If this option is specified and the backup
image contains log directories, then they will be restored. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If existing log directories
on disk conflict with the log directories in the backup image, then they
will be overwritten by those from the backup image.

v DB2RESTORE_LOGTARGET_EXCFORCE "EXCLUDE FORCE"
Allow existing log directories to be overwritten and replaced when
restoring the snapshot image. If this option is specified, then log
directories will not be restored from the backup image. Existing log
directories and log files on disk will be left intact if they do not conflict
with the log directories in the backup image. If a path belonging to the
database is restored and a log directory will implicitly be restored

db2Restore - Restore a database or table space

268 Administrative API Reference

because of this, thus causing a log directory to be overwritten, the
restore will go ahead and overwrite the conflicting log directory.

where DB2RESTORE_LOGTARGET_EXCLUDE is the default.

piStoragePaths
Input. A structure containing fields that describe a list of storage paths
used for automatic storage. Set this to NULL if automatic storage is not
enabled for the database.

piRedirectScript
Input. The file name for the redirect restore script that will be created on
client side. The file name can be specified relative or absolute. The
iOptions field need to have the DB2RESTORE_GENERATE_SCRIPT bit set.

db2TablespaceStruct data structure specific parameters

tablespaces
Input. A pointer to the list of table spaces to be backed up. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numTablespaces
Input. Number of entries in the tablespaces parameter.

db2MediaListStruct data structure parameters

locations
Input. A pointer to the list of media locations. For C, the list is
null-terminated strings. In the generic case, it is a list of db2Char
structures.

numLocations
Input. The number of entries in the locations parameter.

locationType
Input. A character indicating the media type. Valid values (defined in
sqlutil header file, located in the include directory) are:

SQLU_LOCAL_MEDIA: 'L'
Local devices (tapes, disks, diskettes, or named pipes).

SQLU_XBSA_MEDIA: 'X'
XBSA interface.

SQLU_TSM_MEDIA: 'A'
Tivoli Storage Manager.

SQLU_OTHER_MEDIA: 'O'
Vendor library.

SQLU_SNAPSHOT_MEDIA: 'F'
Specifies that the data is to be restored from a snapshot backup.

You cannot use SQLU_SNAPSHOT_MEDIA with any of the
following:
v caller actions: DB2RESTORE_RESTORE_STORDEF,

DB2RESTORE_STORDEF_NOINTERRUPT,
DB2RESTORE_TERMINATE_INCRE

v DB2RESTORE_REPLACE_HISTORY
v DB2RESTORE_TABLESPACE
v DB2RESTORE_COMPR_LIB

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 269

v DB2RESTORE_INCREMENTAL
v DB2RESTORE_HISTORY
v DB2RESTORE_LOGS
v piStoragePaths - it must be NULL or empty in order to use it
v piTargetDBPath

v piTargetDBAlias

v piNewLogPath

v iNumBuffers

v iBufferSize

v piRedirectScript

v iRedirectScriptLen

v iParallelism

v piComprLibrary, iComprLibraryLen, piComprOptions, or
iComprOptionsSize

v numLocations field of this structure must be 1 for snapshot
restore

Also, you cannot use the SNAPSHOT parameter with any restore
operation that involves a table space list.

The default behavior when restoring data from a snapshot backup
image will be a FULL DATABASE OFFLINE restore of all paths
that make up the database including all containers, local volume
directory, database path (DBPATH), primary log and mirror log
paths of the most recent snapshot backup if no timestamp is
provided (INCLUDE LOGS is the default for all snapshot backups
unless EXCLUDE LOGS is explicitly stated). If a timestamp is
provided then that snapshot backup image will be restored.

Integrated into IBM Data Server is a DB2 ACS API driver for the
following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server Model 800
v IBM System Storage DS6000
v IBM System Storage DS8000
v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

db2StoragePathsStruct data structure parameters

storagePaths
Input. An array of strings containing fully qualified names of storage paths
on the server that will be used for automatic storage table spaces. In a
multi-partition database the same storage paths are used on all database
partitions. If a multi-partition database is being restored with new storage
paths, then the catalog partition must be restored before any other
database partitions are restored.

numStoragePaths
Input. The number of storage paths in the storagePaths parameter of the
db2StoragePathsStruct structure.

db2Restore - Restore a database or table space

270 Administrative API Reference

db2gRestoreStruct data structure specific parameters

iSourceDBAliasLen
Input. Specifies the length in bytes of the piSourceDBAlias parameter.

iTargetDBAliasLen
Input. Specifies the length in bytes of the piTargetDBAlias parameter.

iStagingDBAliasLen
Input. A four-byte unsigned integer representing the length in bytes of the
piStagingDBAlias parameter.

iApplicationIdLen
Input. Specifies the length in bytes of the poApplicationId parameter.
Should be equal to SQLU_APPLID_LEN + 1. The constant
SQLU_APPLID_LEN is defined in sqlutil header file that is located in the
include directory.

iTimestampLen
Input. Specifies the length in bytes of the piTimestamp parameter.

iTargetDBPathLen
Input. Specifies the length in bytes of the piTargetDBPath parameter.

iReportFileLen
Input. Specifies the length in bytes of the piReportFile parameter.

iUsernameLen
Input. Specifies the length in bytes of the piUsername parameter. Set to
zero if no user name is provided.

iPasswordLen
Input. Specifies the length in bytes of the piPassword parameter. Set to
zero if no password is provided.

iNewLogPathLen
Input. Specifies the length in bytes of the piNewLogPath parameter.

iLogTargetLen
Input. Specifies the length in bytes of the piLogTarget parameter.

iRedirectScriptLen
Input. A four-byte unsigned integer representing the length in bytes of the
name of the library specified in piRedirectScript. Set to zero if no script
name is given.

db2Char data structure parameters

pioData
A pointer to a character data buffer. If NULL, no data will be returned.

iLength
Input. The size of the pioData buffer.

oLength
Output. The number of valid characters of data in the pioData buffer.

Usage notes
v For offline restore, this utility connects to the database in exclusive mode. The

utility fails if any application, including the calling application, is already
connected to the database that is being restored. In addition, the request will fail
if the restore utility is being used to perform the restore, and any application,
including the calling application, is already connected to any database on the

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 271

same workstation. If the connect is successful, the API locks out other
applications until the restore is completed.

v The current database configuration file will not be replaced by the backup copy
unless it is unusable. In this case, if the file is replaced, a warning message is
returned.

v The database or table space must have been backed up using the db2Backup
API.

v If the caller action value is DB2RESTORE_NOINTERRUPT, the restore continues
without prompting the application. If the caller action value is
DB2RESTORE_RESTORE, and the utility is restoring to an existing database, the
utility returns control to the application with a message requesting some user
interaction. After handling the user interaction, the application calls RESTORE
DATABASE again, with the caller action value set to indicate whether processing
is to continue (DB2RESTORE_CONTINUE) or terminate
(DB2RESTORE_TERMINATE) on the subsequent call. The utility finishes
processing, and returns an SQLCODE in the sqlca.

v To close a device when finished, set the caller action value to
DB2RESTORE_DEVICE_TERMINATE. If, for example, a user is restoring from 3
tape volumes using 2 tape devices, and one of the tapes has been restored, the
application obtains control from the API with an SQLCODE indicating end of
tape. The application can prompt the user to mount another tape, and if the user
indicates "no more", return to the API with caller action value
DB2RESTORE_DEVICE_TERMINATE to signal end of the media device. The
device driver will be terminated, but the rest of the devices involved in the
restore will continue to have their input processed until all segments of the
restore set have been restored (the number of segments in the restore set is
placed on the last media device during the backup process). This caller action
can be used with devices other than tape (vendor supported devices).

v To perform a parameter check before returning to the application, set caller
action value to DB2RESTORE_PARM_CHK.

v Set caller action value to DB2RESTORE_RESTORE_STORDEF when performing
a redirected restore; used in conjunction with the sqlbstsc API.

v If a system failure occurs during a critical stage of restoring a database, the user
will not be able to successfully connect to the database until a successful restore
is performed. This condition will be detected when the connection is attempted,
and an error message is returned. If the backed-up database is not configured
for roll-forward recovery, and there is a usable current configuration file with
either of these parameters enabled, following the restore, the user will be
required to either take a new backup of the database, or disable the log retain
and user exit parameters before connecting to the database.

v Although the restored database will not be dropped (unless restoring to a
nonexistent database), if the restore fails, it will not be usable.

v If the restore type specifies that the history file in the backup is to be restored, it
will be restored over the existing history file for the database, effectively erasing
any changes made to the history file after the backup that is being restored. If
this is undesirable, restore the history file to a new or test database so that its
contents can be viewed without destroying any updates that have taken place.

v If, at the time of the backup operation, the database was enabled for roll forward
recovery, the database can be brought to the state it was in prior to the
occurrence of the damage or corruption by issuing db2Rollforward after
successful execution of db2Restore. If the database is recoverable, it will default
to roll forward pending state after the completion of the restore.

db2Restore - Restore a database or table space

272 Administrative API Reference

v If the database backup image is taken offline, and the caller does not want to
roll forward the database after the restore, the DB2RESTORE_NOROLLFWD
option can be used for the restore. This results in the database being usable
immediately after the restore. If the backup image is taken online, the caller
must roll forward through the corresponding log records at the completion of
the restore.

v To restore log files from a backup image that contains them, the LOGTARGET
option must be specified, assuming a fully qualified and valid path exists on the
DB2 server. If those conditions are satisfied, the restore utility writes the log files
from the image to the target path. If LOGTARGET is specified during a
restoration of a backup image that does not include logs, the restore operation
returns an error before attempting to restore any table space data. A restore
operation also fails with an error if an invalid or read-only LOGTARGET path
is specified.

v If any log files exist in the LOGTARGET path at the time the RESTORE
DATABASE command is issued, a warning prompt is returned to user. This
warning is not returned if WITHOUT PROMPTING is specified.

v During a restore operation in which a LOGTARGET is specified, if any log file
cannot be extracted, the restore operation fails and returns an error. If any of the
log files being extracted from the backup image have the same name as an
existing file in the LOGTARGET path, the restore operation fails and an error is
returned. The restore utility does not overwrite existing log files in the
LOGTARGET directory.

v You can restore only the saved log set from a backup image. To indicate that
only the log files are to be restored, specify the LOGS option in addition to the
LOGTARGET path. Specifying the LOGS option without a LOGTARGET path
results in an error. If any problem occurs while restoring log files in this mode
the restore operation terminates immediately and an error is returned.

v During an automatic incremental restore operation, only the logs included in the
target image of the restore operation are retrieved from the backup image. Any
logs that are included in intermediate images that are referenced during the
incremental restore process are not extracted from those intermediate backup
images. During a manual incremental restore operation, the LOGTARGET path
should be specified only with the final restore command.

v If a backup is compressed, the DB2 database system detects this state and
automatically decompresses the data before restoring it. If a library is specified
on the db2Restore API, it is used for decompressing the data. If a library is not
specified on the db2Restore API, the library stored in the backup image is used.
And if there is no library stored in the backup image, the data cannot be
decompressed and the restore operation fails.

v If the compression library is being restored from a backup image (either
explicitly by specifying the DB2RESTORE_COMPR_LIB restore type or implicitly
by performing a normal restoration of a compressed backup), the restore
operation must be done on the same platform and operating system that the
backup was taken on. If the platforms are different, the restore operation will
fail, even when the DB2 database system normally supports cross-platform
restore operations involving the two systems.

v If restoring a database that is enabled for automatic storage, the storage paths
associated with the database can be redefined or they can remain as they were
previously. To keep the storage path definitions as is, do not provide any storage
paths as part of the restore operation. Otherwise, specify a new set of storage
paths to associate with the database. Automatic storage table spaces will be
automatically redirected to the new storage paths during the restore operation.

db2Restore - Restore a database or table space

Chapter 5. Administrative APIs 273

Snapshot restore

Like a traditional (non-snapshot) restore, the default behavior when restoring a
snapshot backup image will be to NOT restore the log directories —
DB2RESTORE_LOGTARGET_EXCLUDE.

If the DB2 manager detects that any log directory's group ID is shared among any
of the other paths to be restored, then an error is returned. In this case,
DB2RESTORE_LOGTARGET_INCLUDE or
DB2RESTORE_LOGTARGET_INCFORCE must be specified, as the log directories
must be part of the restore.

The DB2 manager will make all efforts to save existing log directories (primary,
mirror and overflow) before the restore of the paths from the backup image takes
place.

If you wish the log directories to be restored and the DB2 manager detects that the
preexisting log directories on disk conflict with the log directories in the backup
image, then the DB2 manager will report an error. In such a case, if you have
specified DB2RESTORE_LOGTARGET_INCFORCE, then this error will be
suppressed and the log directories from the image will be restored, deleting
whatever existed beforehand.

There is a special case in which the DB2RESTORE_LOGTARGET_EXCLUDE option
is specified and a log directory path resides under the database directory (for
example, /NODExxxx/SQLxxxxx/SQLOGDIR/). In this case, a restore would still
overwrite the log directory as the database path, and all of the contents beneath it,
would be restored. If the DB2 manager detects this scenario and log files exist in
this log directory, then an error will be reported. If you specify
DB2RESTORE_LOGTARGET_EXCLUDE, then this error will be suppressed and
those log directories from the backup image will overwrite the conflicting log
directories on disk.

db2Restore - Restore a database or table space

274 Administrative API Reference

db2Rollforward - Roll forward a database

Recovers a database by applying transactions recorded in the database log files.
Called after a database or a table space backup has been restored, or if any table
spaces have been taken offline by the database due to a media error. The database
must be recoverable (that is, either the logarchmeth1 database configuration
parameter or the logarchmeth2 database configuration parameter must be set to a
value other than OFF) before the database can be recovered with rollforward
recovery.

Scope

In a partitioned database environment, you must call this API from the catalog
partition. The partitions that are rolled forward depend on what you specify in the
TO clause:
v A point-in-time rollforward call affects all database partition servers that are

listed in the db2nodes.cfg file.
v An END OF LOGS rollforward call affects the database partition servers that are

specified in the ON DATABASE PARTITION clause. If no database partition
servers are specified, the rollforward call affects all database partition servers
that are listed in the db2nodes.cfg file.

v A database or table space rollforward call specifying end of backup affects all
database partitions servers that are listed in the db2nodes.cfg file.

If all of the transactions on a particular database partition server have already been
applied to the current database, and therefore none of those transactions need to be
rolled forward, that database partition server is ignored.

When you roll forward a partitioned table to a certain point in time, you must also
roll forward the table spaces that contain that table to the same point in time.
However, when you roll forward a table space, you do not have to roll forward all
the tables in that table space.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required connection

None. This API establishes a database connection.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Rollforward (
db2Uint32 versionNumber,
void * pDB2RollforwardStruct,
struct sqlca * pSqlca);

db2Rollforward - Roll forward a database

Chapter 5. Administrative APIs 275

typedef SQL_STRUCTURE db2RollforwardStruct
{

struct db2RfwdInputStruct *piRfwdInput;
struct db2RfwdOutputStruct *poRfwdOutput;

} db2RollforwardStruct;

typedef SQL_STRUCTURE db2RfwdInputStruct
{

sqluint32 iVersion;
char *piDbAlias;
db2Uint32 iCallerAction;
char *piStopTime;
char *piUserName;
char *piPassword;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2Uint32 iConnectMode;
struct sqlu_tablespace_bkrst_list *piTablespaceList;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piDroppedTblID;
char *piExportDir;
db2Uint32 iRollforwardFlags;

} db2RfwdInputStruct;

typedef SQL_STRUCTURE db2RfwdOutputStruct
{

char *poApplicationId;
sqlint32 *poNumReplies;
struct sqlurf_info *poNodeInfo;
db2Uint32 oRollforwardFlags;

} db2RfwdOutputStruct;

SQL_STRUCTURE sqlurf_newlogpath
{

SQL_PDB_NODE_TYPE nodenum;
unsigned short pathlen;
char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};

typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list
{

sqlint32 num_entry;
struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;

typedef SQL_STRUCTURE sqlu_tablespace_entry
{

sqluint32 reserve_len;
char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];
char filler[1];

} sqlu_tablespace_entry;

SQL_STRUCTURE sqlurf_info
{

SQL_PDB_NODE_TYPE nodenum;
sqlint32 state;
unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};

SQL_API_RC SQL_API_FN

db2Rollforward - Roll forward a database

276 Administrative API Reference

db2gRollforward (
db2Uint32 versionNumber,
void * pDB2gRollforwardStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRollforwardStruct
{

struct db2gRfwdInputStruct *piRfwdInput;
struct db2RfwdOutputStruct *poRfwdOutput;

} db2gRollforwardStruct;

typedef SQL_STRUCTURE db2gRfwdInputStruct
{

db2Uint32 iDbAliasLen;
db2Uint32 iStopTimeLen;
db2Uint32 iUserNameLen;
db2Uint32 iPasswordLen;
db2Uint32 iOvrflwLogPathLen;
db2Uint32 iDroppedTblIDLen;
db2Uint32 iExportDirLen;
sqluint32 iVersion;
char *piDbAlias;
db2Uint32 iCallerAction;
char *piStopTime;
char *piUserName;
char *piPassword;
char *piOverflowLogPath;
db2Uint32 iNumChngLgOvrflw;
struct sqlurf_newlogpath *piChngLogOvrflw;
db2Uint32 iConnectMode;
struct sqlu_tablespace_bkrst_list *piTablespaceList;
db2int32 iAllNodeFlag;
db2int32 iNumNodes;
SQL_PDB_NODE_TYPE *piNodeList;
db2int32 iNumNodeInfo;
char *piDroppedTblID;
char *piExportDir;
db2Uint32 iRollforwardFlags;

} db2gRfwdInputStruct;

db2Rollforward API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter.

pDB2RollforwardStruct
Input. A pointer to the db2RollforwardStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RollforwardStruct data structure parameters

piRfwdInput
Input. A pointer to the db2RfwdInputStruct structure.

poRfwdOutput
Output. A pointer to the db2RfwdOutputStruct structure.

db2RfwdInputStruct data structure parameters

iVersion
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

db2Rollforward - Roll forward a database

Chapter 5. Administrative APIs 277

piDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

iCallerAction
Input. Specifies action to be taken. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2ROLLFORWARD_ROLLFWD
Rollforward to the point in time specified by the piStopTime
parameter. For database rollforward, the database is left in
rollforward-pending state. For table space rollforward to a point in
time, the table spaces are left in rollforward-in-progress state.

DB2ROLLFORWARD_STOP
End roll-forward recovery by rolling forward the database using
available log files and then rolling it back. Uncommitted
transactions are backed out and the rollforward-pending state of
the database or table spaces is turned off. A synonym for this value
is DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_RFWD_STOP
Rollforward to the point in time specified by piStopTime, and end
roll-forward recovery. The rollforward-pending state of the
database or table spaces is turned off. A synonym for this value is
DB2ROLLFORWARD_RFWD_COMPLETE.

DB2ROLLFORWARD_QUERY
Query values for nextarclog, firstarcdel, lastarcdel, and lastcommit.
Return database status and a node number.

DB2ROLLFORWARD_PARM_CHECK
Validate parameters without performing the roll forward.

DB2ROLLFORWARD_CANCEL
Cancel the rollforward operation that is currently running. The
database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward is actually
running. It can be used if the rollforward is paused (that is,
waiting for a STOP), or if a system failure occurred during the
rollforward. It should be used with caution.
Rolling databases forward may require a load recovery using tape
devices. The rollforward API will return with a warning message if
user intervention on a device is required. The API can be called
again with one of the following three caller actions:

DB2ROLLFORWARD_LOADREC_CONT
Continue using the device that generated the warning message (for
example, when a new tape has been mounted).

DB2ROLLFORWARD_DEVICE_TERM
Stop using the device that generated the warning message (for
example, when there are no more tapes).

DB2ROLLFORWARD_LOAD_REC_TERM
Terminate all devices being used by load recovery.

piStopTime
Input. A character string containing a time stamp in ISO format. Database
recovery will stop when this time stamp is exceeded. Specify

db2Rollforward - Roll forward a database

278 Administrative API Reference

SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible. May be
NULL for DB2ROLLFORWARD_QUERY,
DB2ROLLFORWARD_PARM_CHECK, and any of the load recovery
(DB2ROLLFORWARD_LOADREC_xxx) caller actions.

piUserName
Input. A string containing the user name of the application. Can be NULL.

piPassword
Input. A string containing the password of the supplied user name (if any).
Can be NULL.

piOverflowLogPath
Input. This parameter is used to specify an alternate log path to be used.
In addition to the active log files, archived log files need to be moved (by
the user) into the logpath before they can be used by this utility. This can
be a problem if the database does not have sufficient space in the logpath.
The overflow log path is provided for this reason. During roll-forward
recovery, the required log files are searched, first in the logpath, and then
in the overflow log path. The log files needed for table space roll-forward
recovery can be brought into either the logpath or the overflow log path. If
the caller does not specify an overflow log path, the default value is the
logpath. In a partitioned database environment, the overflow log path must
be a valid, fully qualified path; the default path is the default overflow log
path for each node. In a single-partition database environment, the
overflow log path can be relative if the server is local.

iNumChngLgOvrflw
Input. Partitioned database environments only. The number of changed
overflow log paths. These new log paths override the default overflow log
path for the specified database partition server only.

piChngLogOvrflw
Input. Partitioned database environments only. A pointer to a structure
containing the fully qualified names of changed overflow log paths. These
new log paths override the default overflow log path for the specified
database partition server only.

iConnectMode
Input. Valid values (defined in db2ApiDf header file, located in the include
directory) are:

DB2ROLLFORWARD_OFFLINE
Offline roll forward. This value must be specified for database
roll-forward recovery.

DB2ROLLFORWARD_ONLINE
Online roll forward.

piTablespaceList
Input. A pointer to a structure containing the names of the table spaces to
be rolled forward to the end-of-logs or to a specific point in time. If not
specified, the table spaces needing rollforward will be selected.

For partitioned tables, point in time (PIT) roll-forward of a table space
containing any piece of a partitioned table must also roll forward all of the
other table spaces in which that table resides to the same point in time.
Roll forward to the end of the logs for a single table space containing a
piece of a partitioned table is still allowed.

db2Rollforward - Roll forward a database

Chapter 5. Administrative APIs 279

If a partitioned table has any attached, detached or dropped data
partitions, then PIT roll-forward must include all table spaces for these
data partitions as well. To determine if a partitioned table has any
attached, detached, or dropped data partitions, query the Status field of the
SYSDATAPARTITIONS catalog table.

Because a partitioned table can reside in multiple table spaces, it is
generally necessary to roll forward multiple table spaces. Data that is
recovered via dropped table recovery is written to the export directory
specified in the piExportDir parameter. It is possible to roll forward all
table spaces in one command, or do repeated roll-forward operations for
subsets of the table spaces involved. A warning will be written to the
notify log if the db2Rollforward API did not specify the full set of the table
spaces necessary to recover all the data for the table. A warning will be
returned to the user with full details of all partitions not recovered on the
command found in the administration notification log.

Allowing the roll forward of a subset of the table spaces makes it easier to
deal with cases where there is more data to be recovered than can fit into a
single export directory.

iAllNodeFlag
Input. Partitioned database environments only. Indicates whether the
rollforward operation is to be applied to all database partition servers
defined in db2nodes.cfg. Valid values are:

DB2_NODE_LIST
Apply to database partition servers in a list that is passed in
piNodeList.

DB2_ALL_NODES
Apply to all database partition servers. This is the default value.
The piNodeList parameter must be set to NULL, if this value is
used.

DB2_ALL_EXCEPT
Apply to all database partition servers except those in a list that is
passed in piNodeList.

DB2_CAT_NODE_ONLY
Apply to the catalog partition only. The piNodeList parameter
must be set to NULL, if this value is used.

iNumNodes
Input. Specifies the number of database partition servers in the piNodeList
array.

piNodeList
Input. A pointer to an array of database partition server numbers on which
to perform the roll-forward recovery.

iNumNodeInfo
Input. Defines the size of the output parameter poNodeInfo, which must
be large enough to hold status information from each database partition
that is being rolled forward. In a single-partition database environment,
this parameter should be set to 1. The value of this parameter should be
the same as the number of database partition servers for which this API is
being called.

piDroppedTblID
Input. A string containing the ID of the dropped table whose recovery is

db2Rollforward - Roll forward a database

280 Administrative API Reference

being attempted. For partitioned tables, the drop-table-id identifies the
table as a whole, so that all data partitions of the table can be recovered in
a single roll-forward command.

piExportDir
Input. The name of the directory into which the dropped table data will be
exported.

iRollforwardFlags
Input. Specifies the rollforward flags. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2ROLLFORWARD_EMPTY_FLAG
No flags specified.

DB2ROLLFORWARD_LOCAL_TIME
Allows the user to rollforward to a point in time that is the user's
local time rather than GMT time. This makes it easier for users to
rollforward to a specific point in time on their local machines, and
eliminates potential user errors due to the translation of local to
GMT time.

DB2ROLLFORWARD_NO_RETRIEVE
Controls which log files to be rolled forward on the standby
machine by allowing the user to disable the retrieval of archived
logs. By controlling the log files to be rolled forward, one can
ensure that the standby machine is X hours behind the production
machine, to prevent the user affecting both systems. This option is
useful if the standby system does not have access to archive, for
example, if TSM is the archive, it only allows the original machine
to retrieve the files. It will also remove the possibility that the
standby system would retrieve an incomplete log file while the
production system is archiving a file and the standby system is
retrieving the same file.

DB2ROLLFORWARD_END_OF_BACKUP
Specifies that the database should be rolled forward to the
minimum recovery time.

db2RfwdOutputStruct data structure parameters

poApplicationId
Output. The application ID.

poNumReplies
Output. The number of replies received.

poNodeInfo
Output. Database partition reply information.

oRollforwardFlags
Output. Rollforward output flags. Valid values are:

DB2ROLLFORWARD_OUT_LOCAL_TIME
Indicates to user that the last committed transaction timestamp is
displayed in local time rather than UTC. Local time is based on the
server's local time, not on the client's. In a partitioned database
environment, local time is based on the catalog partition's local
time.

db2Rollforward - Roll forward a database

Chapter 5. Administrative APIs 281

sqlurf_newlogpath data structure parameters

nodenum
Input. The number of the database partition that this structure details.

pathlen
Input. The total length of the logpath field.

logpath
Input. A fully qualified path to be used for a specific node for the
rollforward operation.

sqlu_tablespace_bkrst_list data structure parameters

num_entry
Input. The number of structures contained in the list pointed to by the
table space parameter.

tablespace
Input. A pointer to a list of sqlu_tablespace_entry structures.

sqlu_tablespace_entry data structure parameters

reserve_len
Input. Specifies the length in bytes of the tablespace_entry parameter.

tablespace_entry
Input. The name of the table space to rollforward.

filler Filler used for proper alignment of data structure in memory.

sqlurf_info data structure parameters

nodenum
Output. The number of the database partition that this structure contains
information for.

state Output. The current state of the database or table spaces that were
included in the rollforward on a database partition.

nextarclog
Output. If the rollforward has completed, this field will be empty. If the
rollforward has not yet completed, this will be the name of the next log file
which will be processed for the rollforward.

firstarcdel
Output. The first log file replayed by the rollforward.

lastarcdel
Output. The last log file replayed by the rollforward.

lastcommit
Output. The time of the last committed transaction.

db2gRfwdInputStruct data structure specific parameters

iDbAliasLen
Input. Specifies the length in bytes of the database alias.

iStopTimeLen
Input. Specifies the length in bytes of the stop time parameter. Set to zero
if no stop time is provided.

db2Rollforward - Roll forward a database

282 Administrative API Reference

iUserNameLen
Input. Specifies the length in bytes of the user name. Set to zero if no user
name is provided.

iPasswordLen
Input. Specifies the length in bytes of the password. Set to zero if no
password is provided.

iOverflowLogPathLen
Input. Specifies the length in bytes of the overflow log path. Set to zero if
no overflow log path is provided.

iDroppedTblIDLen
Input. Specifies the length in bytes of the dropped table ID
(piDroppedTblID parameter). Set to zero if no dropped table ID is
provided.

iExportDirLen
Input. Specifies the length in bytes of the dropped table export directory
(piExportDir parameter). Set to zero if no dropped table export directory is
provided.

Usage notes

The database manager uses the information stored in the archived and the active
log files to reconstruct the transactions performed on the database since its last
backup.

The action performed when this API is called depends on the rollforward_pending
flag of the database prior to the call. This can be queried using db2CfgGet - Get
Configuration Parameters. The rollforward_pending flag is set to DATABASE if the
database is in roll-forward pending state. It is set to TABLESPACE if one or more
table spaces are in SQLB_ROLLFORWARD_PENDING or
SQLB_ROLLFORWARD_IN_PROGRESS state. The rollforward_pending flag is set
to NO if neither the database nor any of the table spaces needs to be rolled
forward.

If the database is in roll-forward pending state when this API is called, the
database will be rolled forward. Table spaces are returned to normal state after a
successful database roll-forward, unless an abnormal state causes one or more table
spaces to go offline. If the rollforward_pending flag is set to TABLESPACE, only
those table spaces that are in roll-forward pending state, or those table spaces
requested by name, will be rolled forward.

Note: If table space rollforward terminates abnormally, table spaces that were
being rolled forward will be put in SQLB_ROLLFORWARD_IN_PROGRESS state.
In the next invocation of ROLLFORWARD DATABASE, only those table spaces in
SQLB_ROLLFORWARD_IN_PROGRESS state will be processed. If the set of
selected table space names does not include all table spaces that are in
SQLB_ROLLFORWARD_IN_PROGRESS state, the table spaces that are not
required will be put into SQLB_RESTORE_PENDING state.

If the database is not in roll-forward pending state and no point in time is
specified, any table spaces that are in rollforward-in-progress state will be rolled
forward to the end of logs. If no table spaces are in rollforward-in-progress state,
any table spaces that are in rollforward pending state will be rolled forward to the
end of logs.

db2Rollforward - Roll forward a database

Chapter 5. Administrative APIs 283

This API reads the log files, beginning with the log file that is matched with the
backup image. The name of this log file can be determined by calling this API with
a caller action of DB2ROLLFORWARD_QUERY before rolling forward any log
files.

The transactions contained in the log files are reapplied to the database. The log is
processed as far forward in time as information is available, or until the time
specified by the stop time parameter.

Recovery stops when any one of the following events occurs:
v No more log files are found
v A time stamp in the log file exceeds the completion time stamp specified by the

stop time parameter
v An error occurs while reading the log file.

Some transactions might not be recovered. The value returned in lastcommit
indicates the time stamp of the last committed transaction that was applied to the
database.

If the need for database recovery was caused by application or human error, the
user may want to provide a time stamp value in piStopTime, indicating that
recovery should be stopped before the time of the error. This applies only to full
database roll-forward recovery, and to table space rollforward to a point in time. It
also permits recovery to be stopped before a log read error occurs, determined
during an earlier failed attempt to recover.

When the rollforward_recovery flag is set to DATABASE, the database is not
available for use until roll-forward recovery is terminated. Termination is
accomplished by calling the API with a caller action of DB2ROLLFORWARD_STOP
or DB2ROLLFORWARD_RFWRD_STOP to bring the database out of roll-forward
pending state. If the rollforward_recovery flag is TABLESPACE, the database is
available for use. However, the table spaces in SQLB_ROLLFORWARD_PENDING
and SQLB_ROLLFORWARD_IN_PROGRESS states will not be available until the
API is called to perform table space roll-forward recovery. If rolling forward table
spaces to a point in time, the table spaces are placed in backup pending state after
a successful rollforward.

When the RollforwardFlags option is set to DB2ROLLFORWARD_LOCAL_TIME,
all messages returned to the user will also be in local time. All times are converted
on the server, and on the catalog partition, if it is a partitioned database
environment. The timestamp string is converted to GMT on the server, so the time
is local to the server's time zone, not the client's. If the client is in one time zone
and the server in another, the server's local time should be used. This is different
from the local time option from the Control Center, which is local to the client. If
the timestamp string is close to the time change of the clock due to daylight
savings, it is important to know if the stop time is before or after the clock change,
and specify it correctly.

db2Rollforward - Roll forward a database

284 Administrative API Reference

db2Runstats - Update statistics for tables and indexes

Updates statistics about the characteristics of a table and/or any associated indexes
or statistical views. These characteristics include, among many others, number of
records, number of pages, and average record length. The optimizer uses these
statistics when determining access paths to the data.

When used on tables, this utility should be called when a table has had many
updates, after reorganizing a table, or after creating a new index.

Statistics are based on the portion of the table that resides on the database partition
where the API executes. Global table statistics are derived by multiplying the
values obtained at a database partition by the number of database partitions on
which the table is completely stored. The global statistics are stored in the catalog
tables. The database partition from which the API is called does not have to
contain a portion of the table:
v If the API is called from a database partition that contains a portion of the table,

the utility executes at this database partition.
v If the API is called from a database partition that does not contain a portion of

the table, the request is sent to the first database partition in the database
partition group that contains a portion of the table. The utility then executes at
this database partition. When you collect statistics for a statistical view, statistics
are collected for all database partitions.

When used on statistical views, this utility should be called when changes to
underlying tables have substantially affected the rows returned by a view. These
views must have been enabled for use in query optimization using "ALTER VIEW
... ENABLE QUERY OPTIMIZATION."

Scope

This API can be called from any database partition server in the db2nodes.cfg file.
It can be used to update the catalogs on the catalog database partition.

Authorization

When used on tables, one of the following:
v sysadm
v sysctrl
v sysmaint
v dbadm
v sqladm
v CONTROL privilege on the table
v LOAD

When used on statistical views, one of the following:
v sysadm
v sysctrl
v sysmaint
v dbadm
v sqladm
v CONTROL privilege on the view

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 285

In addition, the user needs to have the appropriate authority or privilege to access
rows from the view. Specifically, for each table, view or nickname referenced in the
view definition, the user must have one of the following authorities or privileges:
v dataaccess
v CONTROL privilege
v SELECT privilege

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2Runstats (
db2Uint32 versionNumber,
void * data,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2RunstatsData
{

double iSamplingOption;
unsigned char *piTablename;
struct db2ColumnData **piColumnList;
struct db2ColumnDistData **piColumnDistributionList;
struct db2ColumnGrpData **piColumnGroupList;
unsigned char **piIndexList;
db2Uint32 iRunstatsFlags;
db2int16 iNumColumns;
db2int16 iNumColdist;
db2int16 iNumColGroups;
db2int16 iNumIndexes;
db2int16 iParallelismOption;
db2int16 iTableDefaultFreqValues;
db2int16 iTableDefaultQuantiles;
db2Uint32 iSamplingRepeatable;
db2Uint32 iUtilImpactPriority;

} db2RunstatsData;

typedef SQL_STRUCTURE db2ColumnData
{

unsigned char *piColumnName;
db2int16 iColumnFlags;

} db2ColumnData;

typedef SQL_STRUCTURE db2ColumnDistData
{

unsigned char *piColumnName;
db2int16 iNumFreqValues;
db2int16 iNumQuantiles;

} db2ColumnDistData;

typedef SQL_STRUCTURE db2ColumnGrpData
{

unsigned char **piGroupColumnNames;
db2int16 iGroupSize;
db2int16 iNumFreqValues;
db2int16 iNumQuantiles;

} db2ColumnGrpData;

SQL_API_RC SQL_API_FN

db2Runstats - Update statistics for tables and indexes

286 Administrative API Reference

db2gRunstats (
db2Uint32 versionNumber,
void * data,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gRunstatsData
{

double iSamplingOption;
unsigned char *piTablename;
struct db2gColumnData **piColumnList;
struct db2gColumnDistData **piColumnDistributionList;
struct db2gColumnGrpData **piColumnGroupList;
unsigned char **piIndexList;
db2Uint16 *piIndexNamesLen;
db2Uint32 iRunstatsFlags;
db2Uint16 iTablenameLen;
db2int16 iNumColumns;
db2int16 iNumColdist;
db2int16 iNumColGroups;
db2int16 iNumIndexes;
db2int16 iParallelismOption;
db2int16 iTableDefaultFreqValues;
db2int16 iTableDefaultQuantiles;
db2Uint32 iSamplingRepeatable;
db2Uint32 iUtilImpactPriority;

} db2gRunstatsData;

typedef SQL_STRUCTURE db2gColumnData
{

unsigned char *piColumnName;
db2Uint16 iColumnNameLen;
db2int16 iColumnFlags;

} db2gColumnData;

typedef SQL_STRUCTURE db2gColumnDistData
{

unsigned char *piColumnName;
db2Uint16 iColumnNameLen;
db2int16 iNumFreqValues;
db2int16 iNumQuantiles;

} db2gColumnDistData;

typedef SQL_STRUCTURE db2gColumnGrpData
{

unsigned char **piGroupColumnNames;
db2Uint16 *piGroupColumnNamesLen;
db2int16 iGroupSize;
db2int16 iNumFreqValues;
db2int16 iNumQuantiles;

} db2gColumnGrpData;

db2Runstats API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter data.

data Input. A pointer to the db2RunstatsData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2RunstatsData data structure parameters

iSamplingOption
Input. Indicates that statistics are to be collected on a sample of table or

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 287

view data. iSamplingOption represents the size of the sample as a
percentage P. This value must be a positive number that is less than or
equal to 100, but may be between 1 and 0. For example, a value of 0.01
represents one one-hundredth of a percent, such that 1 row in 10 000
would be sampled, on average. A value of 0 or 100 will be treated by DB2
as if sampling was not specified, regardless of whether
DB2RUNSTATS_SAMPLING_SYSTEM has been specified. A value greater
than 100 or less than 0 will be treated by DB2 as an error (SQL1197N). The
two possible types of sampling are BERNOULLI and SYSTEM. The
sampling type specification is controlled by the indicated setting of
DB2RUNSTATS_SAMPLING_SYSTEM in the iRunstatsFlags.

piTablename
Input. A pointer to the fully qualified name of the table or statistical view
on which statistics are to be gathered. The name can be an alias. For row
types, piTablename must be the name of the hierarchy's root table.

piColumnList
Input. An array of db2ColumnData elements. Each element of this array is
made up of two sub-elements:
v a string that represents the name of the column on which to collect

statistics
v a flags field indicating statistic options for the column

If iNumColumns is zero then piColumnList is ignored if provided.

piColumnDistributionList
Input. An array of db2ColumnDistData elements. These elements are
provided when collecting distribution statistics on a particular column or
columns is desired. Each element of this array is made up of three
sub-elements:
v a string that represents the name of the column on which to collect

distribution statistics
v the number of frequent values to collect.
v the number of quantiles to collect

Any columns which appear in the piColumnDistributionList that do NOT
appear in the piColumnList, will have basic column statistics collected on
them. This would be the same effect as having included these columns in
the piColumnList in the first place. If iNumColdist is zero then
piColumnDistributionList is ignored.

piColumnGroupList
Input. An array of db2ColumnGrpData elements. These elements are
provided when collecting column statistics on a group of columns. That is,
the values in each column of the group for each row will be concatenated
together and treated as a single value. Each db2ColumnGrpData is made
up of 3 integer fields and an array of strings. The first integer field
represents the number of strings in the array of strings piGroupColumns.
Each string in this array contains one column name. For example, if
column combinations statistics are to be collected on column groups (c1,c2)
and on (c3,c4,c5) then there are 2 db2ColumnGrpData elements in
piGroupColumns.

The first db2ColumnGrpData element is as follows: piGroupSize = 2 and
the array of strings contains 2 elements, namely, c1 and c2.

The second db2ColumnGrpData element is as follows: piGroupSize = 3
and the array of strings contains 3 elements, namely, c3, c4 and c5.

db2Runstats - Update statistics for tables and indexes

288 Administrative API Reference

The second and the third integer fields represent the number of frequent
values and the number of quantiles respectively when collecting
distribution statistics on column groups. This is not currently supported.

Any columns which appear in the piColumnGroupList that do NOT
appear in the piColumnList, will have basic column statistics collected on
them. This would be the same effect as having included these columns in
the piColumnList in the first place. If iNumColGroups is zero then
piColumnGroupList is ignored.

piIndexList
Input. An array of strings. Each string contains one fully qualified index
name. If NumIndexes is zero then piIndexList is ignored.

iRunstatsFlags
Input. A bit mask field used to specify statistics options. Valid values
(defined in db2ApiDf header file, located in the include directory) are:

DB2RUNSTATS_ALL_COLUMNS
Collect statistics on all columns of the table or statistical view. This
option can be specified in combination with column, column
distribution, column group or index structure lists. This is useful if
you would like to collect statistics on all columns of the table or
view but would like to provide statistics options for specific
columns.

DB2RUNSTATS_KEY_COLUMNS
Collect statistics only on the columns that make up all the indexes
defined on the table. This option cannot be used for statistical
views. On tables, it can be specified in combination with column,
column distribution, column group or index structure lists. This is
useful if you would like to collect statistics on all key columns of
the table but would also like to gather statistics for some non-key
columns or would like to provide statistics options for specific key
columns. XML type columns are, by definition, not key columns
and will not be included for statistics collection when the
iRunstatsFlags parameter is set to the value
DB2RUNSTATS_KEY_COLUMNS.

DB2RUNSTATS_DISTRIBUTION
Collect distribution statistics. This option can only be used with
DB2RUNSTATS_ALL_COLUMNS and
DB2RUNSTATS_KEY_COLUMNS. When used with
DB2RUNSTATS_ALL_COLUMNS, distribution statistics are
gathered for all columns of the table or statistical view. When used
with DB2RUNSTATS_KEY_COLUMNS, distribution statistics are
gathered for all columns that make up all the indexes defined on
the table. When used with both DB2RUNSTATS_ALL_COLUMNS
and DB2RUNSTATS_KEY_COLUMNS, basic statistics are gathered
for all columns of the table and distribution statistics are gathered
for only columns that make up all the indexes defined on the table.

DB2RUNSTATS_ALL_INDEXES
Collect statistics on all indexes defined on the table. This option
cannot be used for statistical views.

DB2RUNSTATS_EXT_INDEX
Collect detailed index statistics. The option must be specified with

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 289

either DB2RUNSTATS_ALL_INDEXES or an explicit list of index
names (piIndexList and iNumIndexes > 0). This option cannot be
used for statistical views.

DB2RUNSTATS_EXT_INDEX_SAMPLED
Collect detailed index statistics using sampling methods. The
option must be specified with either
DB2RUNSTATS_ALL_INDEXES or an explicit list of index names
(piIndexList and iNumIndexes > 0). DB2RUNSTATS_EXT_INDEX
will be ignored if specified at the same time. This option cannot be
used for statistical views.

DB2RUNSTATS_ALLOW_READ
Allows others to have read-only access while the statistics are
being gathered. The default is to allow read and write access.

DB2RUNSTATS_SAMPLING_SYSTEM
Collect statistics on a percentage of the data pages as specified by
the user via the iSamplingOption parameter. SYSTEM sampling
considers each page individually, including that page with
probability P/100 (where P is the value of iSamplingOption) and
excluding it with probability 1-P/100. Thus, if iSamplingOption is
the value 10, representing a 10 percent sample, each page would be
included with probability 0.1 and be excluded with probability 0.9.

On statistical views, SYSTEM sampling is restricted to views whose
definitions are a select over a single base table. If the view contains
multiple tables, SYSTEM sampling is also possible if:
v the tables are joined using equality predicates on all the primary

key and foreign key columns included in a referential integrity
constraint defined between the tables,

v no search condition filters rows in any parent tables in the
relationship, and

v a single child table, that is also not a parent table, can be
identified among all the tables.

If the statistical view does not meet those conditions, BERNOULLI
sampling will be used instead and a warning will be returned
(SQL2317W).

If DB2RUNSTATS_SAMPLING_SYSTEM is not specified, DB2 will
assume that BERNOULLI sampling is to be used as the sampling
method. BERNOULLI sampling considers each row individually,
including that row with probability P/100 (where P is the value of
iSamplingOption) and excluding it with probability 1-P/100.

In both SYSTEM and BERNOULLI sampling, unless the
DB2RUNSTATS_SAMPLING_REPEAT flag is specified, each
execution of statistics collection will usually yield a different
sample of the table or statistical view.

DB2RUNSTATS_SAMPLING_REPEAT
Specifies that a seed has been passed through the
iSamplingRepeatable parameter. The iSamplingRepeatable value
will be used as the seed to generate the data sample. The
iSamplingOption parameter must also be specified to indicate the
sampling rate.

DB2RUNSTATS_USE_PROFILE
Collect statistics for a table or statistical view by using a statistics

db2Runstats - Update statistics for tables and indexes

290 Administrative API Reference

profile already registered in the catalogs of the table or view. If the
USE PROFILE option is specified by this flag set in iRunstatsFlags
bit mask, all other options in db2RunstatsData will be ignored.

DB2RUNSTATS_SET_PROFILE
Generate and store a profile in the catalogs recording the statistics
options specified and collect statistics using those same options.

DB2RUNSTATS_SET_PROFILE_ONLY
Generate and store a profile in the catalogs recording the statistics
options specified without actually collecting statistics for the table
or view.

DB2RUNSTATS_UNSET_PROFILE
Unsetting a statistics profile will remove the statistics profile from
the system catalogs by setting the SYSCAT.STATISTICS_PROFILE
to NULL. If a statistics profile does not exist, attempting to unset it
will result in an error (SQLCODE -2315).

DB2RUNSTATS_UPDATE_PROFILE
Modify an existing statistics profile in the catalogs and collect
statistics using the options from the updated profile.

DB2RUNSTATS_UPDA_PROFILE_ONLY
Modify an existing statistics profile in the catalogs without actually
collecting statistics for the table or view.

DB2RUNSTATS_EXCLUDING_XML
Do not collect statistics on XML type columns. Statistics will still be
collected on all specified columns that have non-XML type. This
option takes precedence over all other methods that specify XML
columns.

iNumColumns
Input. The number of items specified in the piColumnList list.

iNumColdist
Input. The number of items specified in the piColumnDistributionList list.

iNumColGroups
Input. The number of items specified in the piColumnGroupList list.

iNumIndexes
Input. The number of items specified in the piIndexList list.

iParallelismOption
Input. Reserved for future use. Valid value is 0.

iTableDefaultFreqValues
Input. Specifies the default number of frequent values to collect for the
table or view. Valid values are:

n n frequent values will be collected unless otherwise specified at the
column level.

0 No frequent values will be collected unless otherwise specified at
the column level.

-1 Use the default database configuration parameter
NUM_FREQVALUES for the number of frequent values to collect.

iTableDefaultQuantiles
Input. Specifies the default number of quantiles to collect for the table or
view. Valid values are:

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 291

n n quantiles will be collected unless otherwise specified at the
column level.

0 No quantiles will be collected unless otherwise specified at the
column level.

-1 Use the default database configuration parameter
NUM_QUANTILES for the number of quantiles to collect.

iSamplingRepeatable
Input. A non-negative integer representing the seed to be used in table or
view sampling. Passing a negative seed will result in an error (SQL1197N).

The DB2RUNSTATS_SAMPLING_REPEAT flag must be set to use this
seed. This option is used in conjunction with the iSamplingOption
parameter to generate the same sample of data in subsequent statistics
collection. The sample set may still vary between repeatable requests if
activity against the table or view resulted in changes to the table or view
data since the last time a repeatable request was run. Also, the method by
which the sample was obtained (BERNOULLI or SYSTEM) must also be
the same to ensure consistent results.

iUtilImpactPriority
Input. Priority for the runstats invocation. Valid values must fall in the
range 0-100, with 70 representing unthrottled and 100 representing the
highest possible priority. This option cannot be used for statistical views.

db2ColumnData data structure parameters

piColumnName
Input. Pointer to a string representing a column name.

iColumnFlags
Input. A bit mask field used to specify statistics options for the column.
Valid values are:

DB2RUNSTATS_COLUMN_LIKE_STATS
Collect LIKE statistics on the column.

db2ColumnDistData data structure parameters

piColumnName
Input. Pointer to a string representing a column name.

iNumFreqValues
Input. The number of frequent values to collect on the column. Valid
values are:

n Collect n frequent values on the column.

-1 Use the table default number of frequent values, such as
iTableDefaultFreqValues if set, or the database configuration
parameter NUM_FREQVALUES.

iNumQuantiles
Input. The number of quantiles to collect on the column. Valid values are:

n Collect n quantiles on the column.

-1 Use the table default number of quantiles, iTableDefaultQuantiles if
set, or the database configuration parameter NUM_QUANTILES.

db2Runstats - Update statistics for tables and indexes

292 Administrative API Reference

db2ColumnGrpData data structure parameters

piGroupColumnNames
Input. An array of strings. Each string represents a column name that is
part of the column group on which to collect statistics.

iGroupSize
Input. Number of columns in the column group. Valid values are:

n The column group is made up of n columns.

iNumFreqValues
Input. Reserved for future use.

iNumQuantiles
Input. Reserved for future use.

db2gRunstatsData data structure specific parameters

piIndexNamesLen
Input. An array of values representing the length in bytes of each of the
index names in the index list. If NumIndexes is zero then
piIndexNamesLen is ignored.

iTablenameLen
Input. A value representing the length in bytes of the table or view name.

db2gColumnData data structure specific parameters

iColumnNameLen
Input. A value representing the length in bytes of the column name.

db2gColumnDistData data structure specific parameters

iColumnNameLen
Input. A value representing the length in bytes of the column name.

db2gColumnGrpData data structure specific parameters

piGroupColumnNamesLen
Input. An array of values representing the length in bytes of each of the
column names in the column names list.

Usage notes

Use db2Runstats to update statistics:
v On tables that have been modified many times (for example, if a large number

of updates have been made, or if a significant amount of data has been inserted
or deleted)

v On tables that have been reorganized
v When a new index has been created.
v On views whose underlying tables have been modified substantially so as to

change the rows that are returned by the view.

After statistics have been updated, new access paths to the table can be created by
rebinding the packages using sqlabndx - Bind.

If index statistics are requested, and statistics have never been run on the table
containing the index, statistics on both the table and indexes are calculated.

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 293

If the db2Runstats API is collecting statistics on indexes only then previously
collected distribution statistics are retained. Otherwise, the API will drop
previously collected distribution statistics. If the db2Runstats API is collecting
statistics on XML columns only, then previously collected basic column statistics
and distribution statistics are retained. In the case where statistics on some XML
columns have been collected previously, the previously collected statistics for an
XML column will either be dropped if no statistics on that XML column are
collected by the current call to the db2Runstats API, or be replaced if statistics on
that XML column are collected by the current call to the db2Runstats API.
Otherwise, the API will drop previously collected distribution statistics.

If the iRunstatsFlags parameter is set to the value
DB2RUNSTATS_EXCLUDING_XML, statistics will not be collected on XML
columns. This value takes precedence over all other methods that specify XML
columns.

For DB2 V9.7 Fix Pack 1 and later releases, the following items apply for the
collection of distribution statistics for a column of type XML:
v Distribution statistics are collected for each index over XML data specified on an

XML column.
v To collect distribution statistics for an index over XML data, both distribution

statistics and table statistics must be collected. Table statistics must be gathered
in order for distribution statistics to be collected because XML distribution
statistics are stored with table statistics.
Collecting index statistics is not required to collect XML distribution statistics.
Collecting index statistics without collecting distribution statistics does not
collect XML distribution statistics.
By default, XML distribution statistics use a maximum of 250 quantiles.

v Distribution statistics are collected for indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. Distribution statistics are not
collected for indexes over XML data of type VARCHAR HASHED.

v Distribution statistics are not collected for partitioned indexes over XML data
defined on a partitioned table.

After calling this API, the application should issue a COMMIT to release the locks.

To allow new access plans to be generated, the packages that reference the target
table must be rebound after calling this API. Packages that contain queries that can
take advantage of statistical views must also be rebound after updating statistics
on such views.

When statistics are collected for statistical views, an SQL query is run internally.
The EXPLAIN facility can be used to examine the access plan selected for this
query to investigate any performance problems with the statistics collection. To
save the query access plan in the EXPLAIN tables, set the CURRENT EXPLAIN
MODE special register to YES.

Running this API on the table only may result in a situation where the table level
statistics are inconsistent with the already existing index level statistics. For
example, if index level statistics are collected on a particular table and later a
significant number of rows is deleted from this table, issuing this API on the table
only may end up with the table cardinality less than FIRSTKEYCARD
(FIRSTKEYCARD is a catalog statistics field in SYSCAT.INDEXES and
SYSSTAT.INDEXES catalog views) which is an inconsistent state. Likewise, issuing

db2Runstats - Update statistics for tables and indexes

294 Administrative API Reference

this API for indexes only may leave the already existing table level statistics in an
inconsistent state. For example, if table level statistics are collected on a particular
table and later a significant number of rows is deleted from this table, issuing the
db2Runstats API for the indexes only may end up with some columns having a
COLCARD (COLCARD is a catalog statistics field in SYSCAT.COLUMNS and
SYSSTAT.COLUMNS catalog views) greater than the table cardinality. A warning
will be returned if such an inconsistency is detected.

Statistics are not collected for columns with structured types. If they are specified,
columns with these data types are ignored.

Only AVGCOLLEN and NUMNULLS are collected for columns with LOB or
LONG data types.

AVGCOLLEN represents the average space in bytes when the column is stored in
database memory or a temporary table. This value represents the length of the data
descriptor for LOB or LONG data types, except when LOB data is inlined on the
data page.

Note: The average space required to store the column on disk may be different
than the value represented by this statistic.

db2Runstats - Update statistics for tables and indexes

Chapter 5. Administrative APIs 295

db2SelectDB2Copy - Select the DB2 copy to be used by your
application

Sets the environment required by your application to use a particular DB2 copy or
the location specified. If your environment is already set up for the DB2 copy you
want to use, you do not need to call this API. If, however, you need to use a
different DB2 copy you must call this API. Call this API before loading any DB2
dll files within your process. This call can only be made once per process.

Authorization

None

Required connection

None

API include file
db2ApiInstall.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SelectDB2Copy (
db2Uint32 versionNumber,
void *pDB2SelectDB2CopyStruct);

typedef enum DB2CopyParmType
{

DB2CopyInvalid=0,
DB2CopyName,
DB2CopyPath

} db2CopyParmType;

typedef struct DB2SelectDB2CopyStruct
{

DB2CopyParmType Type;
char *psziDB2Copy;

} db2SelectDB2CopyStruct

db2SelectDB2Copy API parameters

versionNumber
Input. Specifies the version number and release level of the variable passed
in as the second parameter, pDB2SelectInstallationStruct.

pDB2SelectDB2CopyStruct
Input. A pointer to the DB2SelectDB2CopyStruct structure.

DB2SelectDB2CopyStruct data structure parameters

Type Input. This can be either DB2CopyName or DB2CopyPath.

psziDB2Copy
Input. If Type is specified as DB2CopyName, psziDB2Copy is the name of the
DB2 copy. If Type is specified as db2CopyPath, psziDB2Copy is the DB2
installation path. This cannot be NULL.

db2SelectDB2Copy - Select the DB2 copy to be used by your application

296 Administrative API Reference

Usage notes

To use the API, you will need to include db2ApiInstall.h, which will force your
application to statically link in db2ApiInstall.lib.

In addition, this API must be called before loading any DB2 libraries and can only
be called once by an application. You can avoid loading DB2 libraries by making
use of the /delayload option when linking DB2 libraries or you can load these
libraries dynamically using LoadLibraryEx and specifying LOAD_WITH_ALTERED_SEA.

db2SelectDB2Copy - Select the DB2 copy to be used by your application

Chapter 5. Administrative APIs 297

db2SetSyncSession - Set satellite synchronization session

Sets the synchronization session for a satellite. A synchronization session is
associated with the version of the user application executing on the satellite. Each
version of an application is supported by a particular database configuration, and
manipulates particular data sets, each of which can be synchronized with a central
site.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SetSyncSession (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2SetSyncSessionStruct
{

char *piSyncSessionID;
} db2SetSyncSessionStruct;

db2SetSyncSession API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2SetSyncSessionStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2SetSyncSessionStruct data structure parameters

piSyncSessionID
Input. Specifies an identifier for the synchronization session that a satellite
will use. The specified value must match the appropriate application
version for the satellite's group, as defined at the satellite control server.

db2SetSyncSession - Set satellite synchronization session

298 Administrative API Reference

db2SetWriteForDB - Suspend or resume I/O writes for database

Sets the database to be I/O write suspended, or resumes I/O writes to disk. I/O
writes must be suspended for a database before a split mirror can be taken. To
avoid potential problems, keep the same connection to do the write suspension
and resumption.

Scope

This API only affects the database partition on which it is executed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Database

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SetWriteForDB (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef struct db2SetWriteDbStruct
{

db2int32 iOption;
char *piTablespaceNames;

} db2SetWriteDbStruct;

db2SetWriteForDB API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2SetWriteDbStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2SetWriteDbStruct data structure parameters

iOption
Input. Specifies the action. Valid values are:

- DB2_DB_SUSPEND_WRITE
Suspends I/O write to disk.

db2SetWriteForDB - Suspend or resume I/O writes for database

Chapter 5. Administrative APIs 299

- DB2_DB_RESUME_WRITE
Resumes I/O write to disk.

piTablespaceNames
Input. Reserved for future use.

db2SetWriteForDB - Suspend or resume I/O writes for database

300 Administrative API Reference

db2SpmListIndTrans - List SPM indoubt transactions

Provides a list of transactions that are indoubt at the Syncpoint Manager.

Scope

This API only affects the database partition on which it is issued.

Authorization

None

Required connection

Connection to the Syncpoint Manager

API include file
sqlxa.h

API and data structure syntax
SQL_API_RC SQL_API_FN
db2SpmListIndTrans (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2SpmListIndTransStruct
{
db2SpmRecoverStruct * piIndoubtData;
db2Uint32 iIndoubtDataLen;
db2Uint32 oNumIndoubtsReturned;
db2Uint32 oNumIndoubtsTotal;
db2Uint32 oReqBufferLen;
} db2XaListIndTransStruct;

typedef SQL_STRUCTURE db2SpmRecoverStruct
{

SQLXA_XID xid;
char luwid[SQLCSPQY_LUWID_SZ+1];
char corrtok[SQLCSPQY_APPLID_SZ+1];
char partner[SQLCSPQY_LUNAME_SZ+1];
char dbname[SQLCSPQY_DBNAME_SZ+1];
char dbalias[SQLCSPQY_DBNAME_SZ+1];
char role;
char uow_status;
char partner_status;

} db2SpmRecoverStruct;

db2SpmListIndTrans API parameters

versionNumber
Input. Specifies the version and release level.

pParmStruct
Input. A pointer to the db2SpmListIndTransStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2SpmListIndTrans - List SPM indoubt transactions

Chapter 5. Administrative APIs 301

db2SpmListIndTransStruct data structure parameters

piIndoubtData
Input. A pointer to the application supplied buffer where indoubt data will
be returned. The indoubt data is in db2SpmRecoverStruct format. The
application can traverse the list of indoubt transactions by using the size of
the db2SpmRecoverStruct structure, starting at the address provided by this
parameter. If the value is NULL, size of the required buffer is calculated and
returned in oReqBufferLen. oNumIndoubtsTotal will contain the total
number of indoubt transactions. The application may allocate the required
buffer size and issue the API again.

oNumIndoubtsReturned
Output. The number of indoubt transaction records returned in the buffer
specified by pIndoubtData.

oNumIndoubtsTotal
Output. The total number of indoubt transaction records available at the
time of API invocation. If the piIndoubtData buffer is too small to contain
all the records, oNumIndoubtsTotal will be greater than the total for
oNumIndoubtsReturned. The application may reissue the API in order to
obtain all records.

This number may change between API invocations as a result of automatic
or heuristic indoubt transaction resynchronization, or as a result of other
transactions entering the indoubt state.

oReqBufferLen
Output. Required buffer length to hold all indoubt transaction records at
the time of API invocation. The application can use this value to determine
the required buffer size by calling the API with pIndoubtData set to NULL.
This value can then be used to allocate the required buffer, and the API
can be issued with pIndoubtData set to the address of the allocated buffer.

The required buffer size may change between API invocations as a result
of automatic or heuristic indoubt transaction resynchronization, or as a
result of other transactions entering the indoubt state. The application may
allocate a larger buffer to account for this.

db2SpmRecoverStruct data structure parameters

xid Output. Specifies the XA identifier assigned by the transaction manager to
uniquely identify a global transaction.

luwid Output. Specifies the Logical Unit of Work ID (LUWID) assigned by the
Syncpoint Manager to identify the XA Identifier (XID) at the partner
system.

corrtok
Output. Specifies the application identifier assigned by the Syncpoint
manager for this transaction.

partner
Output. Specifies the name of the Partner system.

dbname
Output. Database of the partner system

dbalias
Output. Specifies the alias of the database where the indoubt transaction is
found.

db2SpmListIndTrans - List SPM indoubt transactions

302 Administrative API Reference

role Output. Role of the Syncpoint manager.

SQLCSPQY_AR
Syncpoint Manager is an Application Requestor

SQLCSPQY_AS
Syncpoint manager is an Application Server

uow_status
Output. Indicates the status of this indoubt transaction at the Syncpoint
Manager. Valid values are:

SQLCSPQY_STATUS_COM
The transaction is in commit status at the Syncpoint Manager. The
Transaction is waiting to be resynchronized with the partner
system during the next resynchronization interval.

SQLCSPQY_STATUS_RBK
The transaction is in rollback status at the Syncpoint Manager.
Waiting for the Partner system to initiate resynchronization and
resolve indoubt.

SQLCSPQY_STATUS_IDB
The transaction is in prepared state at the Syncpoint manager. The
connected parameter can be used to determine whether the
transaction is waiting for the second phase of normal commit
processing or whether an error occurred and resynchronization
with the transaction manager is required.

SQLCSPQY_STATUS_HCM
The transaction has been heuristically committed.

SQLCSPQY_STATUS_HRB
The transaction has been heuristically rolled back.

Usage notes

A typical application will perform the following steps after setting the current
connection to the Syncpoint Manager*:
1. Call db2SpmListIndTrans API with piIndoubtData set to NULL. This will return

values in oReqBufferLen and oNumIndoubtsTotal.
2. Use the returned value in oReqBufferLen to allocate a buffer. This buffer may

not be large enough if there are additional indoubt transactions because of the
initial invocation of this API to obtain oReqBufferLen. The application may
provide a buffer larger than oReqBufferLen.

3. Determine if all indoubt transaction records have been obtained. This can be
done by comparing oNumIndoubtsReturned to oNumIndoubtsTotal. If
oNumIndoubtsTotal is greater than oNumIndoubtsReturned, the application can
repeat the above steps.

* To connect to the Syncpoint Manager, determine the name of the Syncpoint
Manager being used at the DB2 Connect Server. This can determined by querying
the database configuration parameter, spm_name, at the DB2 Connect Server. Issue a
connect by specifying the spm_name as the database alias on the connect API.

db2SpmListIndTrans - List SPM indoubt transactions

Chapter 5. Administrative APIs 303

db2SyncSatellite - Start satellite synchronization

Synchronizes a satellite. Satellite synchronization involves bringing a satellite to a
state that is consistent with the other satellites of its group.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SyncSatellite (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2SyncSatellite API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

db2SyncSatellite - Start satellite synchronization

304 Administrative API Reference

db2SyncSatelliteStop - Pause satellite synchronization

Stops the satellite's currently active synchronization session. The session is stopped
in such a way that synchronization for this satellite can be restarted where it left
off by invoking db2SyncSatellite.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SyncSatelliteStop (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2SyncSatelliteStop API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

db2SyncSatelliteStop - Pause satellite synchronization

Chapter 5. Administrative APIs 305

db2SyncSatelliteTest - Test whether a satellite can be synchronized

Tests the ability of a satellite to synchronize that is, tests whether the satellite can
be brought to a state that is consistent with the other satellites of its group.

Authorization

None

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2SyncSatelliteTest (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

db2SyncSatelliteTest API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. Set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

db2SyncSatelliteTest - Test whether a satellite can be synchronized

306 Administrative API Reference

db2UpdateAlertCfg - Update the alert configuration settings for health
indicators

Updates the alert configuration settings for health indicators.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UpdateAlertCfg (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UpdateAlertCfgData
{

db2Uint32 iObjType;
char *piObjName;
char *piDbName;
db2Uint32 iIndicatorID;
db2Uint32 iNumIndAttribUpdates;
struct db2AlertAttrib *piIndAttribUpdates;
db2Uint32 iNumActionUpdates;
struct db2AlertActionUpdate *piActionUpdates;
db2Uint32 iNumActionDeletes;
struct db2AlertActionDelete *piActionDeletes;
db2Uint32 iNumNewActions;
struct db2AlertActionNew *piNewActions;

} db2UpdateAlertCfgData;

typedef SQL_STRUCTURE db2AlertAttrib
{

db2Uint32 iAttribID;
char *piAttribValue;

} db2AlertAttrib;

typedef SQL_STRUCTURE db2AlertActionUpdate
{

db2Uint32 iActionType;
char *piActionName;
db2Uint32 iCondition;

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

Chapter 5. Administrative APIs 307

db2Uint32 iNumParmUpdates;
struct db2AlertAttrib *piParmUpdates;

} db2AlertActionUpdate;

typedef SQL_STRUCTURE db2AlertActionDelete
{

db2Uint32 iActionType;
char *piName;
db2Uint32 iCondition;

} db2AlertActionDelete;

typedef SQL_STRUCTURE db2AlertActionNew
{

db2Uint32 iActionType;
struct db2AlertScriptAction *piScriptAttribs;
struct db2AlertTaskAction *piTaskAttribs;

} db2AlertActionNew;

typedef SQL_STRUCTURE db2AlertScriptAction
{

db2Uint32 scriptType;
db2Uint32 condition;
char *pPathName;
char *pWorkingDir;
char *pCmdLineParms;
char stmtTermChar;
char *pUserID;
char *pPassword;
char *pHostName;

} db2AlertScriptAction;

typedef SQL_STRUCTURE db2AlertTaskAction
{

char *pTaskName;
db2Uint32 condition;
char *pUserID;
char *pPassword;
char *pHostName;

} db2AlertTaskAction;

db2UpdateAlertCfg API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2UpdateAlertCfgData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2UpdateAlertCfgData data structure parameters

iObjType
Input. Specifies the type of object for which configuration is requested.
Valid values are:
v DB2ALERTCFG_OBJTYPE_DBM
v DB2ALERTCFG_OBJTYPE_DATABASES
v DB2ALERTCFG_OBJTYPE_TABLESPACES
v DB2ALERTCFG_OBJTYPE_TS_CONTAINERS
v DB2ALERTCFG_OBJTYPE_DATABASE
v DB2ALERTCFG_OBJTYPE_TABLESPACE

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

308 Administrative API Reference

v DB2ALERTCFG_OBJTYPE_TS_CONTAINER

piObjName
Input. The name of the table space or table space container when object
type, iObjType, is set to DB2ALERTCFG_OBJTYPE_TABLESPACE or
DB2ALERTCFG_OBJTYPE_TS_CONTAINER, otherwise set to NULL.

piDbName
Input. The alias name for the database for which configuration is requested
when object type, iObjType, is
DB2ALERTCFG_OBJTYPE_TS_CONTAINER,
DB2ALERTCFG_OBJTYPE_TABLESPACE, and
DB2ALERTCFG_OBJTYPE_DATABASE, otherwise set to NULL.

iIndicatorID
Input. The health indicator for which the configuration updates are to
apply.

iNumIndAttribUpdates
Input. The number of alert attributes to be updated for the iIndicatorID
health indicator.

piIndAttribUpdates
Input. A pointer to the db2AlertAttrib structure array.

iNumActionUpdates
Input. The number of alert actions to be updated for the iIndicatorID
health indicator.

piActionUpdates
Input. A pointer to the db2AlertActionUpdate structure array.

iNumActionDeletes
Input. The number of alert actions to be deleted from the iIndicatorID
health indicator.

piActionDeletes
Input. A pointer to the db2AlertActionDelete structure array.

iNumNewActions
Input. The number of new alert actions to be added to the iIndicatorID
health indicator.

piNewActions
Input. A pointer to the db2AlertActionNew structure array.

db2AlertAttrib data structure parameters

iAttribID
Input. Specifies the alert attribute that will be updated. Valid values
include:
v DB2ALERTCFG_ALARM
v DB2ALERTCFG_WARNING
v DB2ALERTCFG_SENSITIVITY
v DB2ALERTCFG_ACTIONS_ENABLED
v DB2ALERTCFG_THRESHOLD_CHECK

piAttribValue
Input. The new value of the alert attribute. Valid values are:
v DB2ALERTCFG_ALARM
v DB2ALERTCFG_WARNING

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

Chapter 5. Administrative APIs 309

v DB2ALERTCFG_SENSITIVITY
v DB2ALERTCFG_ACTIONS_ENABLED
v DB2ALERTCFG_THRESHOLD_CHECK

db2AlertActionUpdate data structure parameters

iActionType
Input. Specifies the alert action. Valid values are:
v DB2ALERTCFG_ACTIONTYPE_SCRIPT
v DB2ALERTCFG_ACTIONTYPE_TASK

piActionName
Input. The alert action name. The name of a script action is the absolute
pathname of the script. The name of a task action is a string in the form:
<task-numberical-ID>.<task-numberical-suffix>.

iCondition
The condition on which to run the action. Valid values for threshold based
health indicators are:
v DB2ALERTCFG_CONDITION_ALL
v DB2ALERTCFG_CONDITION_WARNING
v DB2ALERTCFG_CONDITION_ALARM

For state based health indicators, use the numerical value defined in
sqlmon.

iNumParmUpdates
Input. The number of action attributes to be updated in the
piParmUpdates array.

piParmUpdates
Input. A pointer to the db2AlertAttrib structure.

db2AlertActionDelete data structure parameters

iActionType
Input. Specifies the alert action. Valid values are:
v DB2ALERTCFG_ACTIONTYPE_SCRIPT
v DB2ALERTCFG_ACTIONTYPE_TASK

piName
Input. The name of the alert action or the script action. The name of the
script action is the absolute pathname of the script, whereas the name of
the task action is a string in the form: <task-numerical-ID>.<task-
numerical-suffix>.

iCondition
The condition on which to run the action. Valid values for threshold based
health indicators are:
v DB2ALERTCFG_CONDITION_ALL
v DB2ALERTCFG_CONDITION_WARNING
v DB2ALERTCFG_CONDITION_ALARM

For state based health indicators, use the numerical value defined in
sqlmon.

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

310 Administrative API Reference

db2AlertActionNew data structure parameters

iActionType
Input. Specifies the alert action. Valid values are:
v DB2ALERTCFG_ACTIONTYPE_SCRIPT
v DB2ALERTCFG_ACTIONTYPE_TASK

piScriptAttribs
Input. A pointer to the db2AlertScriptAction structure.

piTaskAttribs
Input. A pointer to the db2AlertTaskAction structure.

db2AlertScriptAction data structure parameters

scriptType

Specifies the type of script. Valid values are:
v DB2ALERTCFG_SCRIPTTYPE_DB2CMD
v DB2ALERTCFG_SCRIPTTYPE_OS

condition
The condition on which to run the action. Valid values for threshold based
health indicators are:
v DB2ALERTCFG_CONDITION_ALL
v DB2ALERTCFG_CONDITION_WARNING
v DB2ALERTCFG_CONDITION_ALARM

For state based health indicators, use the numerical value defined in
sqlmon.

pPathname
The absolute pathname of the script.

pWorkingDir
The absolute pathname of the directory in which the script is to be
executed.

pCmdLineParms
The command line parameters to be passed to the script when it is
invoked. Optional for DB2ALERTCFG_SCRIPTTYPE_OS only.

stmtTermChar
The character that is used in the script to terminate statements. Optional
for DB2ALERTCFG_SCRIPTTYPE_DB2CMD only.

pUserID
The user account under which the script will be executed.

pPassword
The password for the user account pUserId.

pHostName
The host name on which to run the script. This applies for both task and
script.

Script The hostname for where the script resides and will be run.

Task The hostname for where the scheduler resides.

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

Chapter 5. Administrative APIs 311

db2AlertTaskAction data structure parameters

pTaskname
The name of the task.

condition
The condition for which to run the action.

pUserID
The user account under which the script will be executed.

pPassword
The password for the user account pUserId.

pHostName
The host name on which to run the script. This applies for both task and
script.

Script The hostname for where the script resides and will be run.

Task The hostname for where the scheduler resides.

db2UpdateAlertCfg - Update the alert configuration settings for health indicators

312 Administrative API Reference

db2UpdateAlternateServerForDB - Update the alternate server for a
database alias in the system database directory

Updates the alternate server for a database alias in the system database directory.

Scope

This API affects the system database directory.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UpdateAlternateServerForDB (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UpdateAltServerStruct
{

char *piDbAlias;
char *piHostName;
char *piPort;

} db2UpdateAltServerStruct;

SQL_API_RC SQL_API_FN
db2gUpdateAlternateServerForDB (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gUpdateAltServerStruct
{

db2Uint32 iDbAlias_len;
char *piDbAlias;
db2Uint32 iHostName_len;
char *piHostName;
db2Uint32 iPort_len;
char *piPort;

} db2gUpdateAltServerStruct;

db2UpdateAlternateServerForDB API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2UpdateAltServerStruct structure.

db2UpdateAlternateServerForDB - Update the alternate server for a database alias in the
system database directory

Chapter 5. Administrative APIs 313

pSqlca
Output. A pointer to the sqlca structure.

db2UpdateAltServerStruct data structure parameters

piDbAlias
Input. A string containing an alias for the database.

piHostName
Input. A string containing the host name or the IP address of the node
where the alternate server for the database resides. The host name is the
name of the node that is known to the TCP/IP network. The maximum
length of the host name is 255 characters. The IP address can be an IPv4 or
an IPv6 address.

piPort Input. The port number of the alternate server database manager instance.
The maximum length of the port number is 14 characters.

db2gUpdateAltServerStruct data structure specific parameters

iDbAlias_len
Input. The length in bytes of piDbAlias.

iHostName_len
Input. The length in bytes of piHostName.

iPort_len
Input. The length in bytes of piPort.

Usage notes

The API will only be applied to the system database directory.

The API should only be used on a server. If it is issued on a client, it will be
ignored and warning SQL1889W will be issued.

If LDAP (Lightweight Directory Access Protocol) support is enabled on the current
machine, the alternate server for the database will automatically be updated in the
LDAP directory.

db2UpdateAlternateServerForDB - Update the alternate server for a database alias in the
system database directory

314 Administrative API Reference

db2UpdateContact - Update the attributes of a contact

Updates the attributes of a contact. Contacts are users to whom notification
messages can be sent. Contacts can be either defined locally on the system or in a
global list. The setting of the DB2 administration server (DAS) configuration
parameter contact_host determines whether the list is local or global.

Authorization

None

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UpdateContact (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UpdateContactData
{

char *piUserid;
char *piPassword;
char *piContactName;
db2Uint32 iNumAttribsUpdated;
struct db2ContactAttrib *piAttribs;

} db2UpdateContactData;

typedef SQL_STRUCTURE db2ContactAttrib
{

db2Uint32 iAttribID;
char *piAttribValue;

} db2ContactAttrib;

db2UpdateContact API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2UpdateContactData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2UpdateContactData data structure parameters

piContactName
Input. Specifies the name of the contact to be updated.

iNumAttribsUpdated
Input. The number attributes to be updated.

db2UpdateContact - Update the attributes of a contact

Chapter 5. Administrative APIs 315

piAttribs
Input. A pointer to the db2ContactAttrib structure.

db2ContactAttrib data structure parameters

iAttribID
Input. Specifies the contact attribute. Valid values are:
v DB2CONTACT_ADDRESS
v DB2CONTACT_TYPE
v DB2CONTACT_MAXPAGELEN
v DB2CONTACT_DESCRIPTION

piAttribValue
Input. The new value of the contact attribute.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2UpdateContact - Update the attributes of a contact

316 Administrative API Reference

db2UpdateContactGroup - Update the attributes of a contact group

Updates the attributes of a contact group. A contact group contains a list of users
to whom notification messages can be sent. Contact groups can be either defined
locally on the system or in a global list. The setting of the DB2 administration
server (DAS) configuration parameter contact_host determines whether the list is
local or global.

Authorization

None.

Required connection

None.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UpdateContactGroup (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UpdateContactGroupData
{

char *piUserid;
char *piPassword;
char *piGroupName;
db2Uint32 iNumNewContacts;
struct db2ContactTypeData *piNewContacts;
db2Uint32 iNumDroppedContacts;
struct db2ContactTypeData *piDroppedContacts;
char *piNewDescription;

} db2UpdateContactGroupData;

typedef SQL_STRUCTURE db2ContactTypeData
{

db2Uint32 contactType;
char *pName;

} db2ContactTypeData;

db2UpdateContactGroup API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2ResetMonitorData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2UpdateContactGroupData data structure parameters

piUserid
Input. The user name.

db2UpdateContactGroup - Update the attributes of a contact group

Chapter 5. Administrative APIs 317

piPassword
Input. The password for piUserid.

piGroupName
Input. The name of the contact group to update.

iNumNewContacts
Input. The number of new contacts to be added to the group

piNewContacts
Input. A pointer to the db2ContactTypeData structure.

iNumDroppedContacts
Input. The number of contacts in the group to be dropped.

piDroppedContacts
Input. A pointer to the db2ContactTypeData structure.

piNewDescription
Input. The new description for the group. Set this parameter to NULL if
the old description should not be changed.

db2ContactTypeData data structure parameters

contactType
Specifies the type of contact. Valid values are:
v DB2CONTACT_SINGLE
v DB2CONTACT_GROUP

pName
The contact group name, or the contact name if contactType is set to
DB2CONTACT_SINGLE.

Usage notes

This API is not supported on UNIX and Linux. However, you can access the same
functionality through the SQL interface.

db2UpdateContactGroup - Update the attributes of a contact group

318 Administrative API Reference

db2UpdateHealthNotificationList - Update the list of contacts to whom
health alert notifications can be sent

Updates the contact list for notification about health alerts issued by an instance.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. If there is no instance attachment, a default instance attachment is
created.

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UpdateHealthNotificationList (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UpdateHealthNotificationListData
{

db2Uint32 iNumUpdates;
struct db2HealthNotificationListUpdate *piUpdates;

} db2UpdateHealthNotificationListData;

typedef SQL_STRUCTURE db2HealthNotificationListUpdate
{

db2Uint32 iUpdateType;
struct db2ContactTypeData *piContact;

} db2HealthNotificationListUpdate;

typedef SQL_STRUCTURE db2ContactTypeData
{

db2Uint32 contactType;
char *pName;

} db2ContactTypeData;

db2UpdateHealthNotificationList API parameters

versionNumber
Input. Specifies the version and release level of the structure passed as the
second parameter pParmStruct.

pParmStruct
Input. A pointer to the db2UpdateHealthNotificationListData structure.

pSqlca
Output. A pointer to the sqlca structure.

db2UpdateHealthNotificationList - Update the list of contacts to whom health alert
notifications can be sent

Chapter 5. Administrative APIs 319

db2UpdateHealthNotificationListData data structure parameters

iNumUpdates
Input. The number of updates.

piUpdates
Input. A pointer to the db2HealthNotificationListUpdate structure.

db2HealthNotificationListUpdate data structure parameters

iUpdateType
Input. Specifies the type of update. Valid values are:
v DB2HEALTHNOTIFICATIONLIST_ADD
v DB2HEALTHNOTIFICATIONLIST_DROP

piContact
Input. A pointer to the db2ContactTypeData structure.

db2ContactTypeData data structure parameters

contactType
Specifies the type of contact. Valid values are:
v DB2CONTACT_SINGLE
v DB2CONTACT_GROUP

pName
The contact group name, or the contact name if contactType is set to
DB2CONTACT_SINGLE.

db2UpdateHealthNotificationList - Update the list of contacts to whom health alert
notifications can be sent

320 Administrative API Reference

db2UtilityControl - Set the priority level of running utilities

Controls the priority level of running utilities. Can be used to throttle and
unthrottle utility invocations.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance

API include file
db2ApiDf.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2UtilityControl (
db2Uint32 version,
void * pUtilityControlStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2UtilityControlStruct
{

db2Uint32 iID;
db2Uint32 iAttribute;
void *pioValue;

} db2UtilityControlStruct;

SQL_API_RC SQL_API_FN
db2gUtilityControl (
db2Uint32 version,
void * pgUtilityControlStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gUtilityControlStruct
{

db2Uint32 iID;
db2Uint32 iAttribute;
void *pioValue;

} db2gUtilityControlStruct;

db2UtilityControl API parameters

version
Input. Specifies the version and release level of the structure passed in as
the second parameter, pUtilityControlStruct.

pUtilityControlStruct
Input. A pointer to the db2UtilityControlStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2UtilityControl - Set the priority level of running utilities

Chapter 5. Administrative APIs 321

db2UtilityControlStruct data structure parameters

iId Input. Specifies the ID of the utility to modify.

iAttribute
Input. Specifies the attribute to modify. Valid values (defined in db2ApiDf
header file, located in the include directory) are:

DB2UTILCTRL_PRIORITY_ATTRIB
Modify the throttling priority of the utility.

pioValue
Input. Specifies the new attribute value associated with the iAttribute
parameter.

Note: If the iAttribute parameter is set to
DB2UTILCTRL_PRIORITY_ATTRIB, then the pioValue parameter must
point to a db2Uint32 containing the priority.

Usage notes

SQL1153N will be returned if there is no existing utility with the specified iId. This
may indicate that the function was invoked with invalid arguments or that the
utility has completed.

SQL1154N will be returned if the utility does not support throttling.

db2UtilityControl - Set the priority level of running utilities

322 Administrative API Reference

sqlabndx - Bind application program to create a package

Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the database.

Scope

This API can be called from any database partition server in db2nodes.cfg. It
updates the database catalogs on the catalog partition. Its effects are visible to all
database partition servers.

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlabndx (
_SQLOLDCHAR * pBindFileName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pBindOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgbndx (

unsigned short MsgFileNameLen,
unsigned short BindFileNameLen,

sqlabndx - Bind application program to create a package

Chapter 5. Administrative APIs 323

struct sqlca * pSqlca,
struct sqlopt * pBindOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pBindFileName);

sqlabndx API parameters

pBindFileName

Input. A string containing the name of the bind file, or the name of a file
containing a list of bind file names. The bind file names must contain the
extension .bnd. A path for these files can be specified.

Precede the name of a bind list file with the at sign (@). For example, a
fully qualified bind list file name might be:
/u/user1/bnd/@all.lst

The bind list file should contain one or more bind file names, and must
have the extension .lst.

Precede all but the first bind file name with a plus symbol (+). The bind
file names might be on one or more lines. For example, the bind list file
all.lst might contain:
mybind1.bnd+mybind2.bnd+
mybind3.bnd+
mybind4.bnd

Path specifications on bind file names in the list file can be used. If no path
is specified, the database manager takes path information from the bind
list file.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pBindOptions
Input. A structure used to pass bind options to the API. For more
information about this structure, see SQLOPT.

pSqlca
Output. A pointer to the sqlca structure.

sqlgbndx API-specific parameters

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

BindFileNameLen
Input. Length in bytes of the pBindFileName parameter.

Usage notes

Binding can be done as part of the precompile process for an application program
source file, or as a separate step at a later time. Use BIND when binding is
performed as a separate process.

sqlabndx - Bind application program to create a package

324 Administrative API Reference

The name used to create the package is stored in the bind file, and is based on the
source file name from which it was generated (existing paths or extensions are
discarded). For example, a precompiled source file called myapp.sqc generates a
default bind file called myapp.bnd and a default package name of MYAPP.
(However, the bind file name and the package name can be overridden at
precompile time by using the SQL_BIND_OPT and the SQL_PKG_OPT options of
sqlaprep.)

BIND executes under the transaction that the user has started. After performing
the bind, BIND issues a COMMIT (if bind is successful) or a ROLLBACK (if bind
is unsuccessful) operation to terminate the current transaction and start another
one.

Binding halts if a fatal error or more than 100 errors occur. If a fatal error occurs
during binding, BIND stops binding, attempts to close all files, and discards the
package.

Binding application programs have prerequisite requirements and restrictions
beyond the scope of this manual. For example, an application cannot be bound
from a Version 8 client to a Version 8 server, and then executed against a Version 7
server.

The Bind option types and values are defined in sql.h.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlabndx - Bind application program to create a package

Chapter 5. Administrative APIs 325

sqlaintp - Get error message

Retrieves the message associated with an error condition specified by the sqlcode
field of the sqlca structure.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlaintp (
char * pBuffer,
short BufferSize,
short LineWidth,
const char * pMsgFileName,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgintp (

short BufferSize,
short LineWidth,
struct sqlca * pSqlca,
_SQLOLDCHAR * pBuffer);

sqlaintp API parameters

pBuffer
Output. A pointer to a string buffer where the message text is placed. If the
message must be truncated to fit in the buffer, the truncation allows for the
null string terminator character.

BufferSize
Input. Size, in bytes, of a string buffer to hold the retrieved message text.

LineWidth
Input. The maximum line width for each line of message text. Lines are
broken on word boundaries. A value of zero indicates that the message text
is returned without line breaks.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

One message is returned per call.

A new line (line feed, LF, or carriage return/line feed, CR/LF) sequence is placed
at the end of each message.

If a positive line width is specified, new line sequences are inserted between words
so that the lines do not exceed the line width.

sqlaintp - Get error message

326 Administrative API Reference

If a word is longer than a line width, the line is filled with as many characters as
will fit, a new line is inserted, and the remaining characters are placed on the next
line.

In a multi-threaded application, sqlaintp must be attached to a valid context;
otherwise, the message text for SQLCODE - 1445 cannot be obtained

Return codes

Code Message

+i Positive integer indicating the number of bytes in the formatted
message. If this is greater than the buffer size input by the caller,
the message is truncated.

-1 Insufficient memory available for message formatting services to
function. The requested message is not returned.

-2 No error. The sqlca did not contain an error code (SQLCODE = 0).

-3 Message file inaccessible or incorrect.

-4 Line width is less than zero.

-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain additional information
about the problem.

REXX API syntax
GET MESSAGE INTO :msg [LINEWIDTH width]

REXX API parameters

msg REXX variable into which the text message is placed.

width Maximum line width for each line in the text message. The line is broken
on word boundaries. If width is not given or set to 0, the message text
returns without line breaks.

sqlaintp - Get error message

Chapter 5. Administrative APIs 327

sqlaprep - Precompile application program

Processes an application program source file containing embedded SQL statements.
A modified source file is produced containing host language calls for the SQL
statements and, by default, a package is created in the database.

Scope

This API can be called from any database partition server in db2nodes.cfg. It
updates the database catalogs on the catalog partition. Its effects are visible to all
database partition servers.

Authorization

One of the following authorizations:
v dbadm authority
v If EXPLAIN ONLY is specified, EXPLAIN authority or an authority that

implicitly includes EXPLAIN is sufficient.
v If SQLERROR CHECK or EXPLAIN ONLY is specified, either EXPLAIN or

SQLADM authority is sufficient.
v If a package does not exist, BINDADD authority and:

– If the schema name of the package does not exist, IMPLICIT_SCHEMA
authority on the database.

– If the schema name of the package does exist, CREATEIN privilege on the
schema.

v If the package exists, one of the following privileges:
– ALTERIN privilege on the schema
– BIND privilege on the package

In addition, if capturing explain information using the EXPLAIN or the
EXPLSNAP clause, one of the following authorizations is required:
v INSERT privilege on the explain tables
v DATAACCESS authority

The user also needs all privileges required to compile any static SQL statements in
the application. Privileges granted to groups are not used for authorization
checking of static statements.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlaprep (
_SQLOLDCHAR * pProgramName,
_SQLOLDCHAR * pMsgFileName,
struct sqlopt * pPrepOptions,
struct sqlca * pSqlca);

sqlaprep - Precompile application program

328 Administrative API Reference

SQL_API_RC SQL_API_FN
sqlgprep (

unsigned short MsgFileNameLen,
unsigned short ProgramNameLen,
struct sqlca * pSqlca,
struct sqlopt * pPrepOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pProgramName);

sqlaprep API parameters

pProgramName
Input. A string containing the name of the application to be precompiled.
Use the following extensions:
v .sqb: for COBOL applications
v .sqc: for C applications
v .sqC: for UNIX C++ applications
v .sqf: for FORTRAN applications
v .sqx: for C++ applications

When the TARGET option is used, the input file name extension does not
have to be from this predefined list.

The preferred extension for C++ applications containing embedded SQL on
UNIX based systems is sqC; however, the sqx convention, which was
invented for systems that are not case sensitive, is tolerated by UNIX based
systems.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pPrepOptions
Input. A structure used to pass precompile options to the API. For more
information about this structure, see SQLOPT.

pSqlca
Output. A pointer to the sqlca structure.

sqlgprep API-specific parameters

MsgFileNameLen
Input. Length in bytes of the pMsgFileName parameter.

ProgramNameLen
Input. Length in bytes of the pProgramName parameter.

Usage notes

A modified source file is produced, which contains host language equivalents to
the SQL statements. By default, a package is created in the database to which a
connection has been established. The name of the package is the same as the
program file name (minus the extension and folded to uppercase), up to a
maximum of 8 characters.

Following connection to a database, sqlaprep executes under the transaction that
was started. PRECOMPILE PROGRAM then issues a COMMIT or a ROLLBACK
operation to terminate the current transaction and start another one.

sqlaprep - Precompile application program

Chapter 5. Administrative APIs 329

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal error
does occur, PRECOMPILE PROGRAM stops precompiling, attempts to close all
files, and discards the package.

The Precompile option types and values are defined in sql.h.

When using the PRECOMPILE command or sqlaprep API, the name of the
package can be specified with the PACKAGE USING option. When using this
option, up to 128 bytes may be specified for the package name. When this option
is not used, the name of the package is generated by the precompiler. The name of
the application program source file (minus extension and folded to uppercase) is
used up to a maximum of 8 characters. The name generated will continue to have
a maximum of 8 bytes to be compatible with previous versions of DB2.

REXX API syntax
This API can be called from REXX through the SQLDB2 interface.

sqlaprep - Precompile application program

330 Administrative API Reference

sqlarbnd - Rebind package

Allows the user to recreate a package stored in the database without the need for a
bind file.

Authorization

One of the following:
v dbadm authority
v ALTERIN privilege on the schema
v BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the SYSCAT.PACKAGES
system catalog table, which is the ID of the most recent binder of the package, is
used as the binder authorization ID for the rebind, and for the default schema for
table references in the package. Note that this default qualifier may be different
from the authorization ID of the user executing the rebind request. REBIND will
use the same bind options that were specified when the package was created.

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlarbnd (
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

SQL_API_RC SQL_API_FN
sqlgrbnd (

unsigned short PackageNameLen,
char * pPackageName,
struct sqlca * pSqlca,
struct sqlopt * pRebindOptions);

sqlarbnd API parameters

pPackageName
Input. A string containing the qualified or unqualified name that
designates the package to be rebound. An unqualified package-name is
implicitly qualified by the current authorization ID. This name does not
include the package version. When specifying a package that has a version
that is not the empty string, then the version-id must be specified using
the SQL_VERSION_OPT rebind option.

pSqlca
Output. A pointer to the sqlca structure.

pRebindOptions
Input. A pointer to the SQLOPT structure, used to pass rebind options to
the API. For more information about this structure, see SQLOPT.

sqlarbnd - Rebind package

Chapter 5. Administrative APIs 331

sqlgrbnd API-specific parameters

PackageNameLen
Input. Length in bytes of the pPackageName parameter.

Usage notes

REBIND does not automatically commit the transaction following a successful
rebind. The user must explicitly commit the transaction. This enables "what if "
analysis, in which the user updates certain statistics, and then tries to rebind the
package to see what changes. It also permits multiple rebinds within a unit of
work.

This API:
v Provides a quick way to recreate a package. This enables the user to take

advantage of a change in the system without a need for the original bind file.fs.
For example, if it is likely that a particular SQL statement can take advantage of
a newly created index, REBIND can be used to recreate the package. REBIND
can also be used to recreate packages after db2Runstats has been executed,
thereby taking advantage of the new statistics.

v Provides a method to recreate inoperative packages. Inoperative packages must
be explicitly rebound by invoking either the bind utility or the rebind utility. A
package will be marked inoperative (the VALID column of the
SYSCAT.PACKAGES system catalog will be set to X) if a function instance on
which the package depends is dropped. The rebind conservative option is not
supported for inoperative packages.

v Gives users control over the rebinding of invalid packages. Invalid packages will
be automatically (or implicitly) rebound by the database manager when they are
executed. This may result in a noticeable delay in the execution of the first SQL
request for the invalid package. It may be desirable to explicitly rebind invalid
packages, rather than allow the system to automatically rebind them, in order to
eliminate the initial delay and to prevent unexpected SQL error messages which
may be returned in case the implicit rebind fails. For example, following
database upgrade, all packages stored in the database will be invalidated by the
UPGRADE DATABASE command. Given that this may involve a large number
of packages, it may be desirable to explicitly rebind all of the invalid packages at
one time. This explicit rebinding can be accomplished using BIND, REBIND, or
the db2rbind tool.

The choice of whether to use BIND or REBIND to explicitly rebind a package
depends on the circumstances. It is recommended that REBIND be used whenever
the situation does not specifically require the use of BIND, since the performance
of REBIND is significantly better than that of BIND. BIND must be used, however:
v When there have been modifications to the program (for example, when SQL

statements have been added or deleted, or when the package does not match the
executable for the program).

v When the user wishes to modify any of the bind options as part of the rebind.
REBIND does not support any bind options. For example, if the user wishes to
have privileges on the package granted as part of the bind process, BIND must
be used, since it has an SQL_GRANT_OPT option.

v When the package does not currently exist in the database.
v When detection of all bind errors is desired. REBIND only returns the first error

it detects, and then ends, whereas the BIND command returns the first 100
errors that occur during binding.

sqlarbnd - Rebind package

332 Administrative API Reference

REBIND is supported by DB2 Connect.

If REBIND is executed on a package that is in use by another user, the rebind will
not occur until the other user's logical unit of work ends, because an exclusive lock
is held on the package's record in the SYSCAT.PACKAGES system catalog table
during the rebind.

When REBIND is executed, the database manager recreates the package from the
SQL statements stored in the SYSCAT.STATEMENTS system catalog table. If many
versions with the same package number and creator exist, only one version can be
bound at once. If not specified using the SQL_VERSION_OPT rebind option, the
VERSION defaults to be "". Even if there is only one package with a name and
creator that matches the name and creator specified in the rebind request, it will
not rebound unless its VERSION matches the VERSION specified explicitly or
implicitly.

If REBIND encounters an error, processing stops, and an error message is returned.

The Explain tables are populated during REBIND if either SQL_EXPLSNAP_OPT
or SQL_EXPLAIN_OPT have been set to YES or ALL (check
EXPLAIN_SNAPSHOT and EXPLAIN_MODE columns in the catalog). The Explain
tables used are those of the REBIND requester, not the original binder. The Rebind
option types and values are defined in sql.h.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlarbnd - Rebind package

Chapter 5. Administrative APIs 333

sqlbctcq - Close a table space container query

Ends a table space container query request and frees the associated resources.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbctcq (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgctcq (
struct sqlca * pSqlca);

sqlbctcq API parameters

pSqlca
Output. A pointer to the sqlca structure.

sqlbctcq - Close a table space container query

334 Administrative API Reference

sqlbctsq - Close a table space query

Ends a table space query request, and frees up associated resources.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbctsq (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgctsq (
struct sqlca * pSqlca);

sqlbctsq API parameters

pSqlca
Output. A pointer to the sqlca structure.

sqlbctsq - Close a table space query

Chapter 5. Administrative APIs 335

sqlbftcq - Fetch the query data for rows in a table space container

Fetches a specified number of rows of table space container query data, each row
consisting of data for a container.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbftcq (
struct sqlca * pSqlca,
sqluint32 MaxContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData,
sqluint32 * pNumContainers);

SQL_API_RC SQL_API_FN
sqlgftcq (
struct sqlca * pSqlca,
sqluint32 MaxContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData,
sqluint32 * pNumContainers);

sqlbftcq API parameters

pSqlca
Output. A pointer to the sqlca structure.

MaxContainers
Input. The maximum number of rows of data that the user allocated
output area (pointed to by pContainerData) can hold.

pContainerData
Output. Pointer to the output area, a structure for query data. For more
information about this structure, see SQLB-TBSCONTQRY-DATA. The
caller of this API must allocate space for MaxContainers of these structures,
and set pContainerData to point to this space. The API will use this space
to return the table space container data.

sqlbftcq - Fetch the query data for rows in a table space container

336 Administrative API Reference

pNumContainers
Output. Number of rows of output returned.

Usage notes

The user is responsible for allocating and freeing the memory pointed to by the
pContainerData parameter. This API can only be used after a successful sqlbotcq
call. It can be invoked repeatedly to fetch the list generated by sqlbotcq.

sqlbftcq - Fetch the query data for rows in a table space container

Chapter 5. Administrative APIs 337

sqlbftpq - Fetch the query data for rows in a table space

Fetches a specified number of rows of table space query data, each row consisting
of data for a table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

SQL_API_RC SQL_API_FN
sqlgftpq (
struct sqlca * pSqlca,
sqluint32 MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 * pNumTablespaces);

sqlbftpq API parameters

pSqlca
Output. A pointer to the sqlca structure.

sqlbftpq - Fetch the query data for rows in a table space

338 Administrative API Reference

MaxTablespaces
Input. The maximum number of rows of data that the user allocated
output area (pointed to by pTablespaceData) can hold.

pTablespaceData
Input and output. Pointer to the output area, a structure for query data.
For more information about this structure, see SQLB-TBSPQRY-DATA. The
caller of this API must:
v Allocate space for MaxTablespaces of these structures
v Initialize the structures
v Set TBSPQVER in the first structure to SQLB_TBSPQRY_DATA_ID
v Set pTablespaceData to point to this space. The API will use this space to

return the table space data.

pNumTablespaces
Output. Number of rows of output returned.

Usage notes

The user is responsible for allocating and freeing the memory pointed to by the
pTablespaceData parameter. This API can only be used after a successful sqlbotsq
call. It can be invoked repeatedly to fetch the list generated by sqlbotsq.

sqlbftpq - Fetch the query data for rows in a table space

Chapter 5. Administrative APIs 339

sqlbgtss - Get table space usage statistics

Provides information on the space utilization of a table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbgtss (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBS_STATS * pTablespaceStats);

SQL_API_RC SQL_API_FN
sqlggtss (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBS_STATS * pTablespaceStats);

sqlbgtss API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceId
Input. ID of the single table space to be queried.

pTablespaceStats
Output. A pointer to a user-allocated SQLB_TBS_STATS structure. The
information about the table space is returned in this structure.

sqlbgtss - Get table space usage statistics

340 Administrative API Reference

Usage notes

See SQLB-TBS-STATS for information about the fields returned and their meaning.

sqlbgtss - Get table space usage statistics

Chapter 5. Administrative APIs 341

sqlbmtsq - Get the query data for all table spaces

Provides a one-call interface to the table space query data. The query data for all
table spaces in the database is returned in an array.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

SQL_API_RC SQL_API_FN
sqlgmtsq (
struct sqlca * pSqlca,
sqluint32 * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *** pppTablespaceData,
sqluint32 reserved1,
sqluint32 reserved2);

sqlbmtsq API parameters

pSqlca
Output. A pointer to the sqlca structure.

sqlbmtsq - Get the query data for all table spaces

342 Administrative API Reference

pNumTablespaces
Output. The total number of table spaces in the connected database.

pppTablespaceData
Output. The caller supplies the API with the address of a pointer. The
space for the table space query data is allocated by the API, and a pointer
to that space is returned to the caller. On return from the call, the pointer
points to an array of SQLB_TBSPQRY_DATA pointers to the complete set
of table space query data.

reserved1
Input. Always SQLB_RESERVED1.

reserved2
Input. Always SQLB_RESERVED2.

Usage notes

This API uses the lower level services, namely:
v sqlbotsq
v sqlbftpq
v sqlbctsq

to get all of the table space query data at once.

If sufficient memory is available, this function returns the number of table spaces,
and a pointer to the memory location of the table space query data. It is the user's
responsibility to free this memory with a call to sqlefmem.

If sufficient memory is not available, this function simply returns the number of
table spaces, and no memory is allocated. If this should happen, use sqlbotsq,
sqlbftpq, and sqlbctsq, to fetch less than the whole list at once.

sqlbmtsq - Get the query data for all table spaces

Chapter 5. Administrative APIs 343

sqlbotcq - Open a table space container query

Prepares for a table space container query operation, and returns the number of
containers currently in the table space.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

SQL_API_RC SQL_API_FN
sqlgotcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers);

sqlbotcq API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceId
Input. ID of the table space for which container data is desired. If the
special identifier SQLB_ALL_TABLESPACES (in sqlutil.h) is specified, a
complete list of containers for the entire database is produced.

pNumContainers
Output. The number of containers in the specified table space.

Usage notes

This API is normally followed by one or more calls to sqlbftcq, and then by one
call to sqlbctcq.

An application can use the following APIs to fetch information about containers in
use by table spaces:
v sqlbtcq

sqlbotcq - Open a table space container query

344 Administrative API Reference

Fetches a complete list of container information. The API allocates the space
required to hold the information for all the containers, and returns a pointer to
this information. Use this API to scan the list of containers for specific
information. Using this API is identical to calling the three APIs below (sqlbotcq,
sqlbftcq, sqlbctcq), except that this API automatically allocates the memory for
the output information. A call to this API must be followed by a call to
sqlefmem to free the memory.

v sqlbotcq
v sqlbftcq
v sqlbctcq

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for
the fetch. Unlike an SQL cursor, only one table space container query can be
active at a time. Use this set of APIs to scan the list of table space containers for
specific information. These APIs allows the user to control the memory
requirements of an application (compared with sqlbtcq).

When sqlbotcq is called, a snapshot of the current container information is formed
in the agent servicing the application. If the application issues a second table space
container query call (sqlbtcq or sqlbotcq), this snapshot is replaced with refreshed
information.

No locking is performed, so the information in the buffer may not reflect changes
made by another application after the snapshot was generated. The information is
not part of a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

sqlbotcq - Open a table space container query

Chapter 5. Administrative APIs 345

sqlbotsq - Open a table space query

Prepares for a table space query operation, and returns the number of table spaces
currently in the database.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbotsq (
struct sqlca * pSqlca,
sqluint32 TablespaceQueryOptions,
sqluint32 * pNumTablespaces);

SQL_API_RC SQL_API_FN
sqlgotsq (
struct sqlca * pSqlca,
sqluint32 TablespaceQueryOptions,
sqluint32 * pNumTablespaces);

sqlbotsq API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceQueryOptions
Input. Indicates which table spaces to process. Valid values (defined in
sqlutil) are:

SQLB_OPEN_TBS_ALL
Process all the table spaces in the database.

SQLB_OPEN_TBS_RESTORE
Process only the table spaces that the user's agent is restoring.

sqlbotsq - Open a table space query

346 Administrative API Reference

pNumTablespaces
Output. The number of table spaces in the connected database.

Usage notes

This API is normally followed by one or more calls to sqlbftpq, and then by one
call to sqlbctsq.

An application can use the following APIs to fetch information about the currently
defined table spaces:
v sqlbstpq

Fetches information about a given table space. Only one table space entry is
returned (into a space provided by the caller). Use this API when the table space
identifier is known, and information about only that table space is desired.

v sqlbmtsq
Fetches information about all table spaces. The API allocates the space required
to hold the information for all table spaces, and returns a pointer to this
information. Use this API to scan the list of table spaces when searching for
specific information. Using this API is identical to calling the three APIs below,
except that this API automatically allocates the memory for the output
information. A call to this API must be followed by a call to sqlefmem to free the
memory.

v sqlbotsq
v sqlbftpq
v sqlbctsq

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for
the fetch. Unlike an SQL cursor, only one table space query may be active at a
time. Use this set of APIs to scan the list of table spaces when searching for
specific information. This set of APIs allows the user to control the memory
requirements of an application (compared with sqlbmtsq).

When sqlbotsq is called, a snapshot of the current table space information is
buffered in the agent servicing the application. If the application issues a second
table space query call (sqlbmtsq or sqlbotsq), this snapshot is replaced with
refreshed information.

No locking is performed, so the information in the buffer may not reflect more
recent changes made by another application. The information is not part of a
transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

sqlbotsq - Open a table space query

Chapter 5. Administrative APIs 347

sqlbstpq - Get information about a single table space

Retrieves information about a single currently defined table space.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 reserved);

SQL_API_RC SQL_API_FN
sqlgstpq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
sqluint32 reserved);

sqlbstpq API parameters

pSqlca
Output. A pointer to the sqlca structure.

TablespaceId
Input. Identifier for the table space which is to be queried.

sqlbstpq - Get information about a single table space

348 Administrative API Reference

pTablespaceData
Input and output. Pointer to a user-supplied SQLB_TBSPQRY_DATA
structure where the table space information will be placed upon return.
The caller of this API must initialize the structure and set TBSPQVER to
SQLB_TBSPQRY_DATA_ID (in sqlutil).

reserved
Input. Always SQLB_RESERVED1.

Usage notes

This API retrieves information about a single table space if the table space
identifier to be queried is known. This API provides an alternative to the more
expensive OPEN TABLESPACE QUERY, FETCH, and CLOSE combination of APIs,
which must be used to scan for the desired table space when the table space
identifier is not known in advance. The table space IDs can be found in the system
catalogs. No agent snapshot is taken; since there is only one entry to return, it is
returned directly.

sqlbstpq - Get information about a single table space

Chapter 5. Administrative APIs 349

sqlbstsc - Set table space containers

This API facilitates the provision of a redirected restore, in which the user is
restoring a database, and a different set of operating system storage containers is
desired or required. Use this API when the table space is in a storage definition
pending or a storage definition allowed state. These states are possible during a
restore operation, immediately prior to the restoration of database pages.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbstsc (
struct sqlca * pSqlca,
sqluint32 SetContainerOptions,
sqluint32 TablespaceId,
sqluint32 NumContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData);

SQL_API_RC SQL_API_FN
sqlgstsc (
struct sqlca * pSqlca,
sqluint32 SetContainerOptions,
sqluint32 TablespaceId,
sqluint32 NumContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData);

sqlbstsc API parameters

pSqlca
Output. A pointer to the sqlca structure.

SetContainerOptions
Input. Use this field to specify additional options. Valid values (defined in
sqlutil) are:

SQLB_SET_CONT_INIT_STATE
Redo alter table space operations when performing a roll forward.

SQLB_SET_CONT_FINAL_STATE
Ignore alter table space operations in the log when performing a
roll forward.

TablespaceId
Input. Identifier for the table space which is to be changed.

NumContainers
Input. The number of rows the structure pointed to by pContainerData

sqlbstsc - Set table space containers

350 Administrative API Reference

holds. A value of 0 provided with a NULL pointer for pContainerData
indicates that the table space is to be managed by automatic storage.

pContainerData
Input. Container specifications. Although the SQLB_TBSCONTQRY_DATA
structure is used, only the contType, totalPages, name, and nameLen (for
languages other than C) fields are used; all other fields are ignored. A
NULL value along with a 0 value for NumContainers indicates that the
table space is to be managed by automatic storage. This option can also be
used to provide better striping for existing automatic storage enabled table
spaces on the existing storage paths by redefining the containers.

Note: The table space will be offline while being restored.

Usage notes

This API is used in conjunction with db2Restore.

A backup of a database, or one or more table spaces, keeps a record of all the table
space containers in use by the table spaces being backed up. During a restore, all
containers listed in the backup are checked to see if they currently exist and are
accessible. If one or more of the containers is inaccessible for any reason, the
restore will fail. In order to allow a restore in such a case, the redirecting of table
space containers is supported during the restore. This support includes adding,
changing, or removing of table space containers. It is this API that allows the user
to add, change or remove those containers.

Typical use of this API would involve the following sequence of actions:
1. Invoke db2Restore with CallerAction set to

DB2RESTORE_RESTORE_STORDEF. The restore utility returns an sqlcode
indicating that some of the containers are inaccessible.

2. Invoke sqlbstsc to set the table space container definitions with the
SetContainerOptions parameter set to SQLB_SET_CONT_FINAL_STATE.

3. Invoke db2Restore a second time with CallerAction set to
DB2RESTORE_CONTINUE.

The above sequence will allow the restore to use the new table space container
definitions and will ignore table space add container operations in the logs when
db2Rollforward is called after the restore is complete.

The user of this API should be aware that when setting the container list, there
must be sufficient disk space to allow for the restore or rollforward operation to
replace all of the original data into these new containers. If there is not sufficient
space, such table spaces will be left in the recovery pending state until sufficient
disk space is made available. A prudent Database Administrator will keep records
of disk utilization on a regular basis. Then, when a restore or rollforward operation
is needed, the required disk space will be known.

Using this API to enable automatic storage for table spaces will cause all current
containers to be redefined to use the storage paths provided to the database.

Existing system-managed (SMS) table spaces cannot be converted to use automatic
storage.

SetContainerOptions is ignored when a table space is being converted to use
automatic storage (NumContainers is 0, and pContainerData is NULL).

sqlbstsc - Set table space containers

Chapter 5. Administrative APIs 351

A redirected restore of a table space in a multi-partition environment using the
USING AUTOMATIC STORAGE option of SET TABLESPACE CONTAINERS
statement only converts the table space to automatic storage on the partition being
restored. The containers on any other database partition are not redefined.

Note: Converting the table space on only one of the partitions to automatic storage
as part of a redirected restore operation causes inconsistencies in the definition of
the table space. Unexpected results could also be caused when adding new
database partitions to the system or to the database partition group. For example,
if all of the database partitions were subject to a redirected restore followed by
using the USING AUTOMATIC STORAGE option of the SET TABLESPACE
CONTAINERS command, then the table space will be converted to automatic
storage on all the database partitions. Adding another database partition later will
have the same definition for the table space as that found on the other database
partitions.

sqlbstsc - Set table space containers

352 Administrative API Reference

sqlbtcq - Get the query data for all table space containers

Provides a one-call interface to the table space container query data. The query
data for all containers in a table space, or for all containers in all table spaces, is
returned in an array.

Important: This command or API has been deprecated and might be removed in a
future release. You can use the MON_GET_TABLESPACE and the
MON_GET_CONTAINER table functions instead which return more information.
For more information, see the “LIST TABLESPACES and LIST TABLESPACE
CONTAINERS commands have been deprecated” topic in the What's New for DB2
Version 9.7 book.

Scope

In a partitioned database environment, only the table spaces on the current
database partition are listed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v sysmon
v dbadm

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlbtcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers,
struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

SQL_API_RC SQL_API_FN
sqlgtcq (
struct sqlca * pSqlca,
sqluint32 TablespaceId,
sqluint32 * pNumContainers,
struct SQLB_TBSCONTQRY_DATA ** ppContainerData);

sqlbtcq API parameters

pSqlca
Output. A pointer to the sqlca structure.

sqlbtcq - Get the query data for all table space containers

Chapter 5. Administrative APIs 353

TablespaceId
Input. ID of the table space for which container data is desired, or a special
ID, SQLB_ALL_TABLESPACES (defined in sqlutil), which produces a list of
all containers for the entire database.

pNumContainers
Output. The number of containers in the table space.

ppContainerData
Output. The caller supplies the API with the address of a pointer to a
SQLB_TBSCONTQRY_DATA structure. The space for the table space
container query data is allocated by the API, and a pointer to that space is
returned to the caller. On return from the call, the pointer to the
SQLB_TBSCONTQRY_DATA structure points to the complete set of table
space container query data.

Usage notes

This API uses the lower level services, namely:
v sqlbotcq
v sqlbftcq
v sqlbctcq

to get all of the table space container query data at once.

If sufficient memory is available, this function returns the number of containers,
and a pointer to the memory location of the table space container query data. It is
the user's responsibility to free this memory with a call to sqlefmem. If sufficient
memory is not available, this function simply returns the number of containers,
and no memory is allocated. If this should happen, use sqlbotcq, sqlbftcq, and
sqlbctcq to fetch less than the whole list at once.

sqlbtcq - Get the query data for all table space containers

354 Administrative API Reference

sqlcspqy - List DRDA indoubt transactions

Provides a list of transactions that are indoubt between the syncpoint manager
partner connections. This API is being deprecated. Please see 'db2SpmListIndTrans
API - List SPM Indoubt Transactions'.

Authorization

None

Required connection

Instance

API include file
sqlxa.h

API and data structure syntax
extern int SQL_API_FN sqlcspqy(SQLCSPQY_INDOUBT **indoubt_data,

sqlint32 *indoubt_count,
struct sqlca *sqlca);

sqlcspqy API parameters

indoubt_data
Output. A pointer to the returned array.

indoubt_count
Output. The number of elements in the returned array.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

DRDA indoubt transactions occur when communication is lost between
coordinators and participants in distributed units of work.

A distributed unit of work lets a user or application read and update data at
multiple locations within a single unit of work. Such work requires a two-phase
commit.

The first phase requests all the participants to prepare for commit. The second
phase commits or rolls back the transactions. If a coordinator or participant
becomes unavailable after the first phase then the distributed transactions are
indoubt.

Before issuing the LIST DRDA INDOUBT TRANSACTIONS command, the
application process must be connected to the Sync Point Manager (SPM) instance.
Use the spm_name database manager configuration parameter as the dbalias on
the CONNECT statement.

sqlcspqy - List DRDA indoubt transactions

Chapter 5. Administrative APIs 355

sqle_activate_db - Activate database

Activates the specified database and starts up all necessary database services, so
that the database is available for connection and use by any application.

Scope

This API activates the specified database on all database partition servers. If one or
more of these database partition servers encounters an error during activation of
the database, a warning is returned. The database remains activated on all
database partition servers on which the API has succeeded.

Note: If it is the coordinator partition or the catalog partition that encounters the
error, the API returns a negative sqlcode, and the database will not be activated on
any database partition server.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None. Applications invoking ACTIVATE DATABASE cannot have any existing
database connections.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqle_activate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlg_activate_db (

unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

sqle_activate_db API parameters

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID starting the database. Can be NULL.

sqle_activate_db - Activate database

356 Administrative API Reference

pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlg_activate_db API-specific parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

Usage notes

If a database has not been started, and a DB2 CONNECT TO (or an implicit
connect) is encountered in an application, the application must wait while the
database manager starts up the required database. In such cases, this first
application spends time on database initialization before it can do any work.
However, once the first application has started a database, other applications can
simply connect and use it.

Database administrators can use ACTIVATE DATABASE to start up selected
databases. This eliminates any application time spent on database initialization.

Databases initialized by ACTIVATE DATABASE can only be shut down by
sqle_deactivate_db, or by db2InstanceStop. To obtain a list of activated databases,
call db2GetSnapshot.

If a database was started by a DB2 CONNECT TO (or an implicit connect) and
subsequently an ACTIVATE DATABASE is issued for that same database, then
DEACTIVATE DATABASE must be used to shut down that database.

ACTIVATE DATABASE behaves in a similar manner to a DB2 CONNECT TO (or
an implicit connect) when working with a database requiring a restart (for
example, database in an inconsistent state). The database will be restarted before it
can be initialized by ACTIVATE DATABASE.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqle_activate_db - Activate database

Chapter 5. Administrative APIs 357

sqle_deactivate_db - Deactivate database

Stops the specified database.

Scope

In a partitioned database environment, this API deactivates the specified database
on all database partition servers. If one or more of these database partition servers
encounters an error, a warning is returned. The database will be successfully
deactivated on some database partition servers, but may remain activated on the
database partition servers encountering the error.

Note: If it is the coordinator partition or the catalog partition that encounters the
error, the API returns a negative sqlcode, and the database will not be reactivated
on any database partition server on which it was deactivated.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

None. Applications invoking DEACTIVATE DATABASE cannot have any existing
database connections.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqle_deactivate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlg_deactivate_db (

unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

sqle_deactivate_db API parameters

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID stopping the database. Can be NULL.

sqle_deactivate_db - Deactivate database

358 Administrative API Reference

pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlg_deactivate_db API-specific parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

Usage notes

Databases initialized by ACTIVATE DATABASE can only be shut down by
DEACTIVATE DATABASE. db2InstanceStop automatically stops all activated
databases before stopping the database manager. If a database was initialized by
ACTIVATE DATABASE, the last DB2 CONNECT RESET statement (counter equal
0) will not shut down the database; DEACTIVATE DATABASE must be used.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqle_deactivate_db - Deactivate database

Chapter 5. Administrative APIs 359

sqleaddn - Add a database partition to the partitioned database
environment

Adds a database partition to a database partition server.

Scope

This API only affects the database partition server on which it is executed.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgaddn (

unsigned short addnOptionsLen,
struct sqlca * pSqlca,
void * pAddNodeOptions);

sqleaddn API parameters

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This structure
is used to specify the source database partition server, if any, of the system
temporary table space definitions for all database partitions to be created.
If not specified (that is, a NULL pointer is specified), the system temporary
table space definitions will be the same as those for the catalog partition.

pSqlca
Output. A pointer to the sqlca structure.

sqlgaddn API-specific parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the optional
sqle_addn_options structure in bytes.

Usage notes

This API should only be used if a database partition server is added to an
environment that has one database and that database is not cataloged at the time
of the add partition operation. In this situation, because the database is not
cataloged, the add partition operation does not recognize the database, and does

sqleaddn - Add a database partition to the partitioned database environment

360 Administrative API Reference

not create a database partition for the database on the new database partition
server. Any attempt to connect to the database partition on the new database
partition server results in an error. The database must first be cataloged before the
sqleaddn API can be used to create the database partition for the database on the
new database partition server.

This API should not be used if the environment has more than one database and at
least one of the databases is cataloged at the time of the add partition operation. In
this situation, use the sqlecran API to create a database partition for each database
that was not cataloged at the time of the add partition operation. Each uncataloged
database must first be cataloged before the sqlecran API can be used to create the
database partition for the database on the new database partition server.

Before adding a new database partition, ensure that there is sufficient storage for
the containers that must be created.

The add node operation creates an empty database partition on the new database
partition server for every database that exists in the instance. The configuration
parameters for the new database partitions are set to the default value.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

If an add node operation fails while creating a database partition locally, it enters a
clean-up phase, in which it locally drops all databases that have been created. This
means that the database partitions are removed only from the database partition
server being added (that is, the local database partition server). Existing database
partitions remain unaffected on all other database partition servers. If this fails, no
further clean up is done, and an error is returned.

The database partitions on the new database partition server cannot be used to
contain user data until after the ALTER DATABASE PARTITION GROUP statement
has been used to add the database partition server to a database partition group.

This API will fail if a create database or a drop database operation is in progress.
The API can be called again when the operation has completed.

To determine whether or not a database is enabled for automatic storage, the
sqleaddn API has to communicate with the catalog partition for each of the
databases in the instance. If automatic storage is enabled then the storage path
definitions are retrieved as part of that communication. Likewise, if system
temporary table spaces are to be created with the database partitions, the sqleaddn
API may have to communicate with another database partition server in the
partitioned database environment in order to retrieve the table space definitions.
The start_stop_time database manager configuration parameter is used to specify
the time, in minutes, by which the other database partition server must respond
with the automatic storage and table space definitions. If this time is exceeded, the
API fails. Increase the value of start_stop_time, and call the API again.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqleaddn - Add a database partition to the partitioned database environment

Chapter 5. Administrative APIs 361

sqleatcp - Attach to instance and change password

Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of the
DB2INSTANCE environment variable), another instance on the same workstation,
or an instance on a remote workstation. Establishes a logical instance attachment to
the node specified, and starts a physical communications connection to the node if
one does not already exist.

Note: This API extends the function of the sqleatin API by permitting the optional
change of the user password for the instance being attached. The DB2 database
system provides support for changing passwords on AIX, Linux and Windows
operating systems.

Authorization

None

Required connection

This API establishes an instance attachment.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleatcp (
char * pNodeName,
char * pUserName,
char * pPassword,
char * pNewPassword,
struct sqlca * pSqlca);

sqleatcp API parameters

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the object
of an attachment, but cannot be used as a node name in the node directory.
May be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. May be NULL.

pPassword
Input. A string containing the password for the specified user name. May
be NULL.

pNewPassword
Input. A string containing the new password for the specified user name.
Set to NULL if a password change is not required.

sqleatcp - Attach to instance and change password

362 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

A node name in the node directory can be regarded as an alias for an instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):
1. Country/region code of the application server
2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server
6. Agent ID of the agent which has been started at the server
7. Agent index
8. Node number of the server
9. Number of database partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current
state of attachment is returned. If no attachment exists, sqlcode 1427 is returned.
Otherwise, information about the attachment is returned in the sqlerrmc field of
the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start, db2stop, and all directory services, for example) are
never executed remotely. That is, they affect only the local instance environment, as
defined by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated, and where the password is
changed, depend on the authentication type of the target instance.

The node to which an attachment is to be made can also be specified by a call to
the sqlesetc API.

REXX API syntax

Calling this API directly from REXX is not supported. However, REXX
programmers can utilize this function by calling the DB2 command line processor
to execute the ATTACH command.

sqleatcp - Attach to instance and change password

Chapter 5. Administrative APIs 363

sqleatin - Attach to instance

Enables an application to specify the node at which instance-level functions
(CREATE DATABASE and FORCE APPLICATION, for example) are to be
executed. This node may be the current instance (as defined by the value of the
DB2INSTANCE environment variable), another instance on the same workstation,
or an instance on a remote workstation. Establishes a logical instance attachment to
the node specified, and starts a physical communications connection to the node if
one does not already exist.

Note: If a password change is required, use the sqleatcp API instead of the sqleatin
API.

Authorization

None

Required connection

This API establishes an instance attachment.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleatin (
char * pNodeName,
char * pUserName,
char * pPassword,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgatin (

unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short NodeNameLen,
struct sqlca * pSqlca,
char * pPassword,
char * pUserName,
char * pNodeName);

sqleatin API parameters

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the object
of an attachment, but cannot be used as a node name in the node directory.
Can be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. Can be NULL.

pPassword
Input. A string containing the password for the specified user name. Can
be NULL.

sqleatin - Attach to instance

364 Administrative API Reference

pSqlca
Output. A pointer to the sqlca structure.

sqlgatin API-specific parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password
in bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node name
in bytes. Set to zero if no node name is supplied.

Usage notes

Note: A node name in the node directory can be regarded as an alias for an
instance.

If an attach request succeeds, the sqlerrmc field of the sqlca will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):
1. Country/region code of the application server
2. Code page of the application server
3. Authorization ID
4. Node name (as specified on the API)
5. Identity and platform type of the server
6. Agent ID of the agent which has been started at the server
7. Agent index
8. Node number of the server
9. Number of database partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current
state of attachment is returned. If no attachment exists, sqlcode 1427 is returned.
Otherwise, information about the attachment is returned in the sqlerrmc field of
the sqlca (as outlined above).

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start, db2stop, and all directory services, for example) are
never executed remotely. That is, they affect only the local instance environment, as
defined by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current
attachment is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated depends on the
authentication type of the target instance.

The node to which an attachment is to be made can also be specified by a call to
the sqlesetc API.

sqleatin - Attach to instance

Chapter 5. Administrative APIs 365

REXX API syntax
ATTACH [TO nodename [USER username USING password]]

REXX API parameters

nodename
Alias of the instance to which the user wants to attach. This instance must
have a matching entry in the local node directory. The only exception is the
local instance (as specified by the DB2INSTANCE environment variable),
which can be specified as the object of an attachment, but cannot be used
as a node name in the node directory.

username
Name under which the user attaches to the instance.

password
Password used to authenticate the user name.

sqleatin - Attach to instance

366 Administrative API Reference

sqlecadb - Catalog a database in the system database directory
Stores database location information in the system database directory. The database
can be located either on the local workstation or on a remote database partition
server.

Scope

This API affects the system database directory. In a partitioned database
environment, when cataloging a local database into the system database directory,
this API must be called from a database partition server where the database
resides.

Authorization

One of the following:
v SYSADM
v SYSCTRL

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecadb (
_SQLOLDCHAR * pDbName,
_SQLOLDCHAR * pDbAlias,
unsigned char Type,
_SQLOLDCHAR * pNodeName,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pComment,
unsigned short Authentication,
_SQLOLDCHAR * pPrincipal,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcadb (

unsigned short PrinLen,
unsigned short CommentLen,
unsigned short PathLen,
unsigned short NodeNameLen,
unsigned short DbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPrinName,
unsigned short Authentication,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pNodeName,
unsigned char Type,
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pDbName);

sqlecadb - Catalog a database in the system database directory

Chapter 5. Administrative APIs 367

sqlecadb API parameters

pDbName
Input. A string containing the database name.

pDbAlias
Input. A string containing an alias for the database.

Type Input. A single character that designates whether the database is indirect,
remote, or is cataloged via DCE. Valid values (defined in sqlenv.h) are:

SQL_INDIRECT
Specifies that the database resides at this instance.

SQL_REMOTE
Specifies that the database resides at another instance.

SQL_DCE
Specifies that the database is cataloged via DCE.

pNodeName
Input. A string containing the name of the database partition where the
database is located. May be NULL.

Note: If neither pPath nor pNodeName is specified, the database is
assumed to be local, and the location of the database is assumed to be that
specified in the database manager configuration parameter dftdbpath.

pPath

Input. A string which, on Linux and UNIX systems, specifies the name of
the path on which the database being cataloged resides. Maximum length
is 215 characters.

On the Windows operating system, this string specifies the letter of the
drive on which the database being cataloged resides.

If a NULL pointer is provided, the default database path is assumed to be
that specified by the database manager configuration parameter dftdbpath.

pComment
Input. A string containing an optional description of the database. A null
string indicates no comment. The maximum length of a comment string is
30 characters.

Authentication

Input. Contains the authentication type specified for the database.
Authentication is a process that verifies that the user is who he/she claims
to be. Access to database objects depends on the user's authentication.
Valid values (from sqlenv.h) are:

SQL_AUTHENTICATION_SERVER
Specifies that authentication takes place on the database partition
server containing the target database.

SQL_AUTHENTICATION_CLIENT
Specifies that authentication takes place on the database partition
server where the application is invoked.

SQL_AUTHENTICATION_KERBEROS
Specifies that authentication takes place using Kerberos Security
Mechanism.

sqlecadb - Catalog a database in the system database directory

368 Administrative API Reference

SQL_AUTHENTICATION_NOT_SPECIFIED
Authentication not specified.

SQL_AUTHENTICATION_SVR_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
password is to be encrypted.

SQL_AUTHENTICATION_DATAENC
Specifies that authentication takes place on the database partition
server containing the target database, and that connections must
use data encryption.

SQL_AUTHENTICATION_GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

SQL_AUTHENTICATION_SVRENC_AESO
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted using an Advanced
Encryption Standard (AES) encryption algorithm.

This parameter can be set to SQL_AUTHENTICATION_NOT_SPECIFIED,
except when cataloging a database that resides on a DB2 Version 1 server.

Specifying the authentication type in the database catalog results in a
performance improvement during a connect.

pPrincipal
Input. A string containing the principal name of the DB2 server on which
the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_KERBEROS.

pSqlca
Output. A pointer to the sqlca structure.

sqlgcadb API-specific parameters

PrinLen
Input. A 2-byte unsigned integer representing the length in bytes of the
principal name. Set to zero if no principal is provided. This value should
be nonzero only when authentication is specified as
SQL_AUTHENTICATION_KERBEROS.

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to 0 if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path of the local database directory. Set to 0 if no path is provided.

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name. Set to 0 if no node name is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

sqlecadb - Catalog a database in the system database directory

Chapter 5. Administrative APIs 369

DbNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database name.

pPrinName
Input. A string containing the principal name of the DB2 server on which
the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_KERBEROS.

Usage notes

Use CATALOG DATABASE to catalog databases located on local or remote nodes,
recatalog databases that were uncataloged previously, or maintain multiple aliases
for one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an entry
for the database in the local database directory, and another entry in the system
database directory. If the database is created from a remote client (or a client which
is executing from a different instance on the same machine), an entry is also made
in the system database directory at the client instance.

Databases created at the current instance (as defined by the value of the
DB2INSTANCE environment variable) are cataloged as indirect. Databases created
at other instances are cataloged as remote (even if they physically reside on the
same machine).

CATALOG DATABASE automatically creates a system database directory if one
does not exist. The system database directory is stored on the path that contains
the database manager instance that is being used. The system database directory is
maintained outside of the database. Each entry in the directory contains:
v Alias
v Authentication type
v Comment
v Database
v Entry type
v Local database directory (when cataloging a local database)
v Node name (when cataloging a remote database)
v Release information

If a database is cataloged with the type parameter set to SQL_INDIRECT, the value
of the authentication parameter provided will be ignored, and the authentication
in the directory will be set to SQL_AUTHENTICATION_NOT_SPECIFIED.

If directory caching is enabled, database, node, and DCS directory files are cached
in memory. An application's directory cache is created during its first directory
lookup. Since the cache is only refreshed when the application modifies any of the
directory files, directory changes made by other applications may not be effective
until the application has restarted. To refresh DB2's shared cache (server only), stop
(db2stop) and then restart (db2start) the database manager. To refresh the directory
cache for another application, stop and then restart that application.

sqlecadb - Catalog a database in the system database directory

370 Administrative API Reference

REXX API syntax
CATALOG DATABASE dbname [AS alias] [ON path|AT NODE nodename]
[AUTHENTICATION authentication] [WITH "comment"]
CATALOG GLOBAL DATABASE db_global_name AS alias
USING DIRECTORY {DCE} [WITH "comment"]

REXX API parameters

dbname
Name of the database to be cataloged.

alias Alternate name for the database. If an alias is not specified, the database
name is used as the alias.

path Path on which the database being cataloged resides.

nodename
Name of the remote workstation where the database being cataloged
resides.

Note: If neither path nor nodename is specified, the database is assumed
to be local, and the location of the database is assumed to be that specified
in the database manager configuration parameter dftdbpath.

authentication
Place where authentication is to be done. Valid values are:

SERVER
Authentication occurs at the database partition server containing
the target database. This is the default.

CLIENT
Authentication occurs at the database partition server where the
application is invoked.

KERBEROS
Specifies that authentication takes place using Kerberos Security
Mechanism.

NOT_SPECIFIED
Authentication not specified.

SVR_ENCRYPT
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted.

DATAENC
Specifies that authentication takes place on the database partition
server containing the target database, and that connections must
use data encryption.

GSSPLUGIN
Specifies that authentication takes place using an external GSS
API-based plug-in security mechanism.

SQL_AUTHENTICATION_SVRENC_AESO
Specifies that authentication takes place on the database partition
server containing the target database, and that the authentication
userid and password are to be encrypted using an AES encryption
algorithm.

sqlecadb - Catalog a database in the system database directory

Chapter 5. Administrative APIs 371

comment
Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

db_global_name
The fully qualified name that uniquely identifies the database in the DCE
name space.

DCE The global directory service being used.

REXX examples
call SQLDBS 'CATALOG GLOBAL DATABASE /.../cell1/subsys/database/DB3
AS dbtest USING DIRECTORY DCE WITH "Sample Database"'

sqlecadb - Catalog a database in the system database directory

372 Administrative API Reference

sqlecran - Create a database on a database partition server

Creates a database only on the database partition server that calls the API. This
API is not intended for general use. For example, it should be used with
db2Restore if the database partition at a database partition server was damaged
and must be recreated. Improper use of this API can cause inconsistencies in the
system, so it should only be used with caution.

Note: If this API is used to recreate a database partition that was dropped
(because it was damaged), the database at this database partition server will be in
the restore-pending state. After recreating the database partition, the database must
immediately be restored on this database partition server.

Scope

This API only affects the database partition server on which it is called.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Instance. To create a database at another database partition server, it is necessary to
first attach to that database partition server. A database connection is temporarily
established by this API during processing.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecran (
char * pDbName,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcran (

unsigned short reservedLen,
unsigned short dbNameLen,
struct sqlca * pSqlca,
void * pReserved,
char * pDbName);

sqlecran API parameters

pDbName
Input. A string containing the name of the database to be created. Must not
be NULL.

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved for
future use.

sqlecran - Create a database on a database partition server

Chapter 5. Administrative APIs 373

pSqlca
Output. A pointer to the sqlca structure.

sqlgcran API-specific parameters

reservedLen
Input. Reserved for the length of pReserved.

dbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

Usage notes

When the database is successfully created, it is placed in restore-pending state. The
database must be restored on this database partition server before it can be used.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlecran - Create a database on a database partition server

374 Administrative API Reference

sqlecrea - Create database

Initializes a new database with an optional user-defined collating sequence, creates
the three initial table spaces, creates the system tables, and allocates the recovery
log.

Scope

In a partitioned database environment, this API affects all database partition
servers that are listed in the db2nodes.cfg file.

The database partition server from which this API is called becomes the catalog
partition for the new database.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Instance. To create a database at another (remote) node, it is necessary to first
attach to that node. A database connection is temporarily established by this API
during processing.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecrea (
char * pDbName,
char * pLocalDbAlias,
char * pPath,
struct sqledbdesc * pDbDescriptor,
SQLEDBTERRITORYINFO * pTerritoryInfo,
char Reserved2,
void * pDbDescriptorExt,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcrea (

unsigned short PathLen,
unsigned short LocalDbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
void * pReserved1,
unsigned short Reserved2,
SQLEDBTERRITORYINFO * pTerritoryInfo,
struct sqledbdesc * pDbDescriptor,
char * pPath,
char * pLocalDbAlias,
char * pDbName);

sqlecrea API parameters

pDbName
Input. A string containing the database name. This is the database name

sqlecrea - Create database

Chapter 5. Administrative APIs 375

that will be cataloged in the system database directory. Once the database
has been successfully created in the server's system database directory, it is
automatically cataloged in the system database directory with a database
alias identical to the database name. Must not be NULL.

pLocalDbAlias
Input. A string containing the alias to be placed in the client's system
database directory. Can be NULL. If no local alias is specified, the database
name is the default.

pPath Input. On Linux and UNIX systems, specifies the path on which to create
the database. If a path is not specified, the database is created on the
default database path specified in the database manager configuration file
(dftdbpath parameter). On the Windows operating system, specifies the
letter of the drive on which to create the database. Can be NULL.

Note: For partitioned database environments, a database should not be
created in an NFS-mounted directory. If a path is not specified, ensure that
the dftdbpath database manager configuration parameter is not set to an
NFS-mounted path (for example, on UNIX based systems, it should not
specify the $HOME directory of the instance owner). The path specified for
this API in a partitioned database environment cannot be a relative path.

pDbDescriptor
Input. A pointer to the database description block that is used when
creating the database. The database description block can be used by you
to supply values that are permanently stored in the configuration file of
the database.

The supplied values are a collating sequence, a database comment, or a
table space definition. The supplied value can be NULL if you do not want
to supply any values. For information about the values that can be
supplied through this parameter, see the SQLEDBDESC data structure
topic.

pTerritoryInfo
Input. A pointer to the sqledbterritoryinfo structure, containing the locale
and the code set for the database. Can be NULL. The default code set for a
database is UTF-8 (Unicode). If a particular code set and territory is
needed for a database, the desired code set and territory should be
specified via the sqledbterritoryinfo structure. If this field is NULL, then
one of the following is allowed as a collation value for the database
(sqlcode 1083): NULL, SQL_CS_SYSTEM, SQL_CS_IDENTITY_16BIT,
SQL_CS_UCA400_NO, SQL_CS_UCA400_LTH, SQL_CS_UCA400_LSK, or
SQL_CS_UNICODE.

Reserved2
Input. Reserved for future use.

pDbDescriptorExt
Input. This parameter refers to an extended database description block
(sqledbdescext) that is used when creating the database. The extended
database description block controls automatic storage for a database,
chooses a default page size for the database, and specifies values for new
table space attributes that have been introduced. If set to null or zero, a
default page size of 4 096 bytes is chosen for the database and automatic
storage is enabled.

pSqlca
Output. A pointer to the sqlca structure.

sqlecrea - Create database

376 Administrative API Reference

sqlgcrea API-specific parameters

PathLen
Input. A 2-byte unsigned integer representing the length of the path in
bytes. Set to zero if no path is provided.

LocalDbALiasLen
Input. A 2-byte unsigned integer representing the length of the local
database alias in bytes. Set to zero if no local alias is provided.

DbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

Usage notes

CREATE DATABASE:
v Creates a database in the specified subdirectory. In a partitioned database

environment, creates the database on all database partition servers listed in
db2nodes.cfg, and creates a $DB2INSTANCE/NODExxxx directory under the
specified subdirectory at each database partition server, where xxxx represents
the local database partition server number. In a single-partition environment,
creates a $DB2INSTANCE/NODE0000 directory under the specified
subdirectory.

v Creates the system catalog tables and recovery log.
v Catalogs the database in the following database directories:

– server's local database directory on the path indicated by pPath or, if the path
is not specified, the default database path defined in the database manager
system configuration file. A local database directory resides on each file
system that contains a database.

– server's system database directory for the attached instance. The resulting
directory entry will contain the database name and a database alias.
If the API was called from a remote client, the client's system database
directory is also updated with the database name and an alias.

v Creates a system or a local database directory if neither exists. If specified, the
comment and code set values are placed in both directories.

v Stores the specified code set, territory, and collating sequence. A flag is set in the
database configuration file if the collating sequence consists of unique weights,
or if it is the identity sequence.

v Creates the schemata called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The database partition server on which this API is called
becomes the catalog partition for the new database. Two database partition
groups are created automatically: IBMDEFAULTGROUP and IBMCATGROUP.

v Binds the previously defined database manager bind files to the database (these
are listed in db2ubind.lst). If one or more of these files do not bind successfully,
sqlecrea returns a warning in the SQLCA, and provides information about the
binds that failed. If a bind fails, the user can take corrective action and manually
bind the failing file. The database is created in any case. A schema called
NULLID is implicitly created when performing the binds with CREATEIN
privilege granted to PUBLIC, if the RESTRICTIVE option is not selected.

v Creates SYSCATSPACE, TEMPSPACE1, and USERSPACE1 table spaces. The
SYSCATSPACE table space is only created on the catalog partition. All database
partitions have the same table space definitions.

v Grants the following:

sqlecrea - Create database

Chapter 5. Administrative APIs 377

– DBADM, CONNECT, CREATETAB, BINDADD, CREATE_NOT_FENCED,
IMPLICIT_SCHEMA, and LOAD authorities to the database creator

– CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA authorities to
PUBLIC

– USE privilege on the USERSPACE1 table space to PUBLIC
– SELECT privilege on each system catalog to PUBLIC
– BIND and EXECUTE privilege to PUBLIC for each successfully bound utility
– EXECUTE WITH GRANT privilege to PUBLIC on all functions in the

SYSFUN schema.
– EXECUTE privilege to PUBLIC on all procedures in SYSIBM schema.

Note: If the RESTRICTIVE option is present, it causes the RESTRICT_ACCESS
database configuration parameter to be set to YES and no privileges or
authorities are automatically granted to PUBLIC. For more detailed information,
see the RESTRICTIVE option of the CREATE DATABASE command.

With dbadm authority, one can grant these privileges to (and revoke them from)
other users or PUBLIC. If another administrator with sysadm or dbadm authority
over the database revokes these privileges, the database creator nevertheless retains
them.

In a partitioned database environment, the database manager creates a
subdirectory, $DB2INSTANCE/NODExxxx, under the specified or default path on
all database partition servers. The xxxx is the node number as defined in the
db2nodes.cfg file (that is, node 0 becomes NODE0000). Subdirectories SQL00001
through SQLnnnnn will reside on this path. This ensures that the database objects
associated with different database partition servers are stored in different
directories (even if the subdirectory $DB2INSTANCE under the specified or default
path is shared by all database partition servers).

On Windows and AIX operating systems, the length of the code set name is
limited to a maximum of 9 characters. For example, specify a code set name such
as ISO885915 instead of ISO8859-15.

The sqlecrea API accepts a data structure called the Database Descriptor Block
(SQLEDBDESC). You can define your own collating sequence within this structure.

Note: You can only define your own collating sequence for a single-byte database.

To specify a collating sequence for a database:
v Pass the desired SQLEDBDESC structure, or
v Pass a NULL pointer. The collating sequence of the operating system (based on

the current locale code and the code page) is used. This is the same as specifying
SQLDBCSS equal to SQL_CS_SYSTEM (0).

Execution of the CREATE DATABASE command will fail if the application is
already connected to a database.

If the database description block structure is not set correctly, an error message is
returned.

The most prominent value of the database description block must be set to the
symbolic value SQLE_DBDESC_2 (defined in sqlenv). The following sample
user-defined collating sequences are available in the host language include files:

sqlecrea - Create database

378 Administrative API Reference

sqle819a
If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle819b
If the code page of the database is 819 (ISO Latin/1),this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle850a
If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle850b
If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle932a
If the code page of the database is 932 (ASCII Japanese), this sequence will
cause sorting to be performed according to the host CCSID 5035 (EBCDIC
Japanese).

sqle932b
If the code page of the database is 932 (ASCII Japanese), this sequence will
cause sorting to be performed according to the host CCSID 5026 (EBCDIC
Japanese).

The collating sequence specified during database creation cannot be changed later.
It determines how character strings are compared. This affects the structure of
indexes as well as the results of queries. In a Unicode database, the catalog tables
and views are always created with the IDENTITY collation, regardless of the
collation specified in the create database call. In a non-Unicode database, the
catalog tables and views are created with the database collation.

Use sqlecadb to define different alias names for the new database.

The Configuration Advisor is called by default during the database creation
process unless specifically told not to do so.

REXX API syntax
CREATE DATABASE dbname [ON path] [ALIAS dbalias]
[USING CODESET codeset TERRITORY territory]
[COLLATE USING {SYSTEM | IDENTITY | USER :udcs}]
[NUMSEGS numsegs] [DFT_EXTENT_SZ dft_extentsize]
[CATALOG TABLESPACE <tablespace_definition>]
[USER TABLESPACE <tablespace_definition>]
[TEMPORARY TABLESPACE <tablespace_definition>]
[WITH comment]

Where <tablespace_definition> stands for:
MANAGED BY {
SYSTEM USING :SMS_string |
DATABASE USING :DMS_string }
[EXTENTSIZE number_of_pages]
[PREFETCHSIZE number_of_pages]
[OVERHEAD number_of_milliseconds]
[TRANSFERRATE number_of_milliseconds]

sqlecrea - Create database

Chapter 5. Administrative APIs 379

REXX API parameters

dbname
Name of the database.

dbalias
Alias of the database.

path Path on which to create the database. If a path is not specified, the
database is created on the default database path specified in the database
manager configuration file (dftdbpath configuration parameter).

Note: For partitioned database environments, a database should not be
created in an NFS-mounted directory. If a path is not specified, ensure that
the dftdbpath database manager configuration parameter is not set to an
NFS-mounted path (for example, on UNIX based systems, it should not
specify the $HOME directory of the instance owner). The path specified for
this API in a partitioned database environment cannot be a relative path.

codeset
Code set to be used for data entered into the database.

territory
Territory code (locale) to be used for data entered into the database.

SYSTEM
For non-Unicode databases, this is the default option, with the collating
sequence based on the database territory. For Unicode databases, this
option is equivalent to the IDENTITY option.

IDENTITY
Identity collating sequence, in which strings are compared byte for byte.
This is the default for Unicode databases.

USER udcs
The collating sequence is specified by the calling application in a host
variable containing a 256-byte string defining the collating sequence.

numsegs
Number of directories (table space containers) that will be created and
used to store the database table files for any default SMS table spaces.

dft_extentsize
Specifies the default extent size for table spaces in the database.

SMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, and where the table space data will be
stored. In the following, XXX represents the host variable name. Note that
each of the directory names cannot exceed 254 bytes in length.

XXX.0 Number of directories specified

XXX.1 First directory name for SMS table space

XXX.2 Second directory name for SMS table space

XXX.3 and so on.

DMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, where the table space data will be stored,
container sizes (specified in a number of 4KB pages) and types (file or
device). The specified devices (not files) must already exist. In the

sqlecrea - Create database

380 Administrative API Reference

following, XXX represents the host variable name. Note that each of the
container names cannot exceed 254 bytes in length.

XXX.0 Number of strings in the REXX host variable (number of first level
elements)

XXX.1.1
Type of the first container (file or device)

XXX.1.2
First file name or device name

XXX.1.3
Size (in pages) of the first container

XXX.2.1
Type of the second container (file or device)

XXX.2.2
Second file name or device name

XXX.2.3
Size (in pages) of the second container

XXX.3.1
and so on.

EXTENTSIZE number_of_pages
Number of 4KB pages that will be written to a container before skipping to
the next container.

PREFETCHSIZE number_of_pages
Number of 4KB pages that will be read from the table space when data
prefetching is being performed.

OVERHEAD number_of_milliseconds
Number that specifies the I/O controller overhead, disk seek, and latency
time in milliseconds.

TRANSFERRATE number_of_milliseconds
Number that specifies the time in milliseconds to read one 4 KB page into
memory.

comment
Description of the database or the database entry in the system directory.
Do not use a carriage return or line feed character in the comment. Be sure
to enclose the comment text in double quotation marks. Maximum size is
30 characters.

sqlecrea - Create database

Chapter 5. Administrative APIs 381

sqlectnd - Catalog an entry in the node directory

Stores information in the node directory about the location of a DB2 server
instance based on the communications protocol used to access that instance. The
information is needed to establish a database connection or attachment between an
application and a server instance.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlectnd (
struct sqle_node_struct * pNodeInfo,
void * pProtocolInfo,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgctnd (

struct sqlca * pSqlca,
struct sqle_node_struct * pNodeInfo,
void * pProtocolInfo);

sqlectnd API parameters

pNodeInfo
Input. A pointer to a node directory structure.

pProtocolInfo
Input. A pointer to the protocol structure:
v SQLE-NODE-LOCAL
v SQLE-NODE-NPIPE
v SQLE-NODE-TCPIP

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

DB2 creates the node directory on the first call to this API if the node directory
does not exist. On the Windows operating system, the node directory is stored in
the directory of the instance being used. On UNIX based systems, it is stored in the
DB2 install directory (sqllib, for example).

If directory caching is enabled, database, node, and DCS directory files are cached
in memory. An application's directory cache is created during its first directory
lookup. Since the cache is only refreshed when the application modifies any of the

sqlectnd - Catalog an entry in the node directory

382 Administrative API Reference

directory files, directory changes made by other applications may not be effective
until the application has restarted. To refresh DB2's shared cache (server only), stop
(db2stop command) and then restart (db2start command) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

REXX API syntax, option 1
CATALOG LOCAL NODE nodename INSTANCE instance_name [WITH comment]

REXX API parameters, option 1

nodename
Alias for the node to be cataloged.

instance_name
Name of the instance to be cataloged.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation marks.

REXX API syntax, option 2
CATALOG NPIPE NODE nodename REMOTE computer_name INSTANCE instance_name

REXX API parameters, option 2

nodename
Alias for the node to be cataloged.

computer_name
The computer name of the node on which the target database resides.

instance_name
Name of the instance to be cataloged.

REXX API syntax, option 3
CATALOG TCPIP NODE nodename REMOTE hostname SERVER servicename
[WITH comment]

REXX API parameters, option 3

nodename
Alias for the node to be cataloged.

hostname
Host name or IPv4 address or IPv6 address of the node where the target
database resides

servicename
Either the service name of the database manager instance on the remote
node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation marks.

REXX API syntax, option 4
CATALOG TCPIP4 NODE nodename REMOTE hostname SERVER servicename
[WITH comment]

sqlectnd - Catalog an entry in the node directory

Chapter 5. Administrative APIs 383

REXX API parameters, option 4

nodename
Alias for the node to be cataloged.

hostname
Host name or IPv4 address or IPv6 address of the node where the target
database resides

servicename
Either the service name of the database manager instance on the remote
node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation marks.

REXX API syntax, option 5
CATALOG TCPIP6 NODE nodename REMOTE hostname SERVER servicename
[WITH comment]

REXX API parameters, option 5

nodename
Alias for the node to be cataloged.

hostname
Host name or IPv4 address or IPv6 address of the node where the target
database resides

servicename
Either the service name of the database manager instance on the remote
node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation marks.

sqlectnd - Catalog an entry in the node directory

384 Administrative API Reference

sqledcgd - Change a database comment in the system or local
database directory

Changes a database comment in the system database directory or the local
database directory. New comment text can be substituted for text currently
associated with a comment.

Scope

This API only affects the database partition server on which it is issued.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledcgd (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pComment,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdcgd (

unsigned short CommentLen,
unsigned short PathLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pDbAlias);

sqledcgd API parameters

pDbAlias
Input. A string containing the database alias. This is the name that is
cataloged in the system database directory, or the name cataloged in the
local database directory if the path is specified.

pPath Input. A string containing the path on which the local database directory
resides. If the specified path is a null pointer, the system database directory
is used.

The comment is only changed in the local database directory or the system
database directory on the database partition server on which the API is
executed. To change the database comment on all database partition
servers, run the API on every database partition server.

sqledcgd - Change a database comment in the system or local database directory

Chapter 5. Administrative APIs 385

pComment
Input. A string containing an optional description of the database. A null
string indicates no comment. It can also indicate no change to an existing
database comment.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdcgd API-specific parameters

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path parameter. Set to zero if no path is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

New comment text replaces existing text. To append information, enter the old
comment text, followed by the new text.

Only the comment for an entry associated with the database alias is modified.
Other entries with the same database name, but with different aliases, are not
affected.

If the path is specified, the database alias must be cataloged in the local database
directory. If the path is not specified, the database alias must be cataloged in the
system database directory.

REXX API syntax
CHANGE DATABASE database_alias COMMENT [ON path] WITH comment

REXX API parameters

database_alias
Alias of the database whose comment is to be changed.

To change the comment in the system database directory, it is necessary to
specify the database alias.

If the path where the database resides is specified (with the path
parameter), enter the name (not the alias) of the database. Use this method
to change the comment in the local database directory.

path Path on which the database resides.

comment
Describes the entry in the system database directory or the local database
directory. Any comment that helps to describe the cataloged database can
be entered. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

sqledcgd - Change a database comment in the system or local database directory

386 Administrative API Reference

sqledpan - Drop a database on a database partition server

Drops a database at a specified database partition server. Can only be run in a
partitioned database environment.

Scope

This API only affects the database partition server on which it is called.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None. An instance attachment is established for the duration of the call.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledpan (
char * pDbAlias,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdpan (

unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
void * pReserved2,
char * pDbAlias);

sqledpan API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system database
directory.

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdpan API-specific parameters

Reserved1
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

sqledpan - Drop a database on a database partition server

Chapter 5. Administrative APIs 387

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future
use.

Usage notes

Improper use of this API can cause inconsistencies in the system, so it should only
be used with caution.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqledpan - Drop a database on a database partition server

388 Administrative API Reference

sqledrpd - Drop database

Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

Scope

By default, this API affects all database partition servers that are listed in the
db2nodes.cfg file.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Instance. It is not necessary to call ATTACH before dropping a remote database. If
the database is cataloged as remote, an instance attachment to the remote node is
established for the duration of the call.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledrpd (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pReserved2,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpd (

unsigned short Reserved1,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pReserved2,
_SQLOLDCHAR * pDbAlias);

sqledrpd API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system database
directory.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future
use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrpd API-specific parameters

Reserved1
Reserved for future use.

sqledrpd - Drop database

Chapter 5. Administrative APIs 389

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

The sqledrpd API deletes all user data and log files. If the log files are needed for a
roll-forward recovery after a restore operation, the files should be saved prior to
calling this API.

The database must not be in use; all users must be disconnected from the database
before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory.
Only the specified database alias is removed from the system database directory. If
other aliases with the same database name exist, their entries remain. If the
database being dropped is the last entry in the local database directory, the local
database directory is deleted automatically.

If this API is called from a remote client (or from a different instance on the same
machine), the specified alias is removed from the client's system database directory.
The corresponding database name is removed from the server's system database
directory.

REXX API syntax
DROP DATABASE dbalias

REXX API parameters

dbalias
The alias of the database to be dropped.

sqledrpd - Drop database

390 Administrative API Reference

sqledrpn - Check whether a database partition server can be dropped

Verifies whether a database partition server is being used by a database. A message
is returned, indicating whether the database partition server can be dropped.

Scope

This API only affects the database partition server on which it is issued.

Authorization

One of the following:
v sysadm
v sysctrl

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpn (

unsigned short Reserved1,
struct sqlca * pSqlca,
void * pReserved2,
unsigned short Action);

sqledrpn API parameters

Action
The action requested. The valid value is: SQL_DROPNODE_VERIFY

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrpn API-specific parameters

Reserved1
Reserved for the length of pReserved2.

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.

Usage notes

If a message is returned, indicating that the database partition server is not in use,
use the db2stop command with DROP NODENUM to remove the entry for the
database partition server from the db2nodes.cfg file, which removes the database
partition server from the partitioned database environment.

sqledrpn - Check whether a database partition server can be dropped

Chapter 5. Administrative APIs 391

If a message is returned, indicating that the database partition server is in use, the
following actions should be taken:
1. The database partition server to be dropped will have a database partition on it

for each database in the instance. If any of these database partitions contain
data, redistribute the database partition groups that use these database
partitions. Redistribute the database partition groups to move the data to
database partitions that exist at database partition servers that are not being
dropped.

2. After the database partition groups are redistributed, drop the database
partition from every database partition group that uses it. To remove a database
partition from a database partition group, you can use either the drop node
option of the sqludrdt API or the ALTER DATABASE PARTITION GROUP
statement.

3. Drop any event monitors that are defined on the database partition server.
4. Rerun sqledrpn to ensure that the database partition at the database partition

server is no longer in use.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqledrpn - Check whether a database partition server can be dropped

392 Administrative API Reference

sqledtin - Detach from instance

Removes the logical instance attachment, and terminates the physical
communication connection if there are no other logical connections using this layer.

Authorization

None

Required connection

None. Removes an existing instance attachment.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledtin (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdtin (

struct sqlca * pSqlca);

sqledtin API parameters

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax
DETACH

sqledtin - Detach from instance

Chapter 5. Administrative APIs 393

sqlefmem - Free the memory allocated by the sqlbtcq and sqlbmtsq
API

Frees memory allocated by DB2 APIs on the caller's behalf. Intended for use with
the sqlbtcq and sqlbmtsq APIs.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlefmem (
struct sqlca * pSqlca,
void * pBuffer);

SQL_API_RC SQL_API_FN
sqlgfmem (

struct sqlca * pSqlca,
void * pBuffer);

sqlefmem API parameters

pSqlca
Output. A pointer to the sqlca structure

pBuffer
Input. Pointer to the memory to be freed.

sqlefmem - Free the memory allocated by the sqlbtcq and sqlbmtsq API

394 Administrative API Reference

sqlefrce - Force users and applications off the system

Forces local or remote users or applications off the system to allow for
maintenance on a server. Attention: If an operation that cannot be interrupted (a
database restore, for example) is forced, the operation must be successfully
re-executed before the database becomes available.

Scope

This API affects all database partition servers that are listed in the db2nodes.cfg
file.

In a partitioned database environment, this API does not have to be issued from
the coordinator partition of the application being forced. This API can be issued
from any database partition server in the partitioned database environment.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint

Required connection

Instance. To force users off a remote server, it is necessary to first attach to that
server. If no attachment exists, this API is executed locally.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlefrce (
sqlint32 NumAgentIds,
sqluint32 * pAgentIds,
unsigned short ForceMode,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgfrce (

struct sqlca * pSqlca,
unsigned short ForceMode,
sqluint32 * pAgentIds,
sqlint32 NumAgentIds);

sqlefrce API parameters

NumAgentIds
Input. An integer representing the total number of users to be terminated.
This number should be the same as the number of elements in the array of
agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), all
applications with either database connections or instance attachments are
forced. If it is set to zero, an error is returned.

sqlefrce - Force users and applications off the system

Chapter 5. Administrative APIs 395

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding database user.

ForceMode
Input. An integer specifying the operating mode of the sqlefrce API. Only
the asynchronous mode is supported. This means that the API does not
wait until all specified users are terminated before returning. It returns as
soon as the API has been issued successfully, or an error occurs. As a
result, there may be a short interval between the time the force application
call completes and the specified users have been terminated.

This parameter must be set to SQL_ASYNCH (defined in sqlenv).

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The database manager remains active so that subsequent database manager
operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible
database operations can be forced off.

After a force command has been issued, the database will still accept requests to
connect. Additional forces may be required to completely force all users off. The
database system monitor functions are used to gather the agent IDs of the users to
be forced.

When the force mode is set to SQL_ASYNCH (the only value permitted), the API
immediately returns to the calling application.

Minimal validation is performed on the array of agent IDs to be forced. The user
must ensure that the pointer points to an array containing the total number of
elements specified. If NumAgentIds is set to SQL_ALL_USERS, the array is
ignored.

When a user is forced off, a unit of work rollback is performed to ensure database
consistency.

All users that can be forced will be forced. If one or more specified agent IDs
cannot be found, sqlcode in the sqlca structure is set to 1230. An agent ID may not
be found, for instance, if the user signs off between the time an agent ID is
collected and sqlefrce is called. The user that calls this API is never forced off.

Agent IDs are recycled, and are used to force applications some time after being
gathered by the database system monitor. When a user signs off, therefore, another
user may sign on and acquire the same agent ID through this recycling process,
with the result that the wrong user may be forced.

REXX API syntax
FORCE APPLICATION {ALL | :agentidarray} [MODE ASYNC]

REXX API parameters

ALL All applications will be disconnected. This includes applications that have
database connections and applications that have instance attachments.

sqlefrce - Force users and applications off the system

396 Administrative API Reference

agentidarray
A compound REXX host variable containing the list of agent IDs to be
terminated. In the following, XXX is the name of the host variable:

- XXX.0
Number of agents to be terminated

- XXX.1
First agent ID

- XXX.2
Second agent ID

- XXX.3
and so on.

ASYNC
The only mode currently supported means that sqlefrce does not wait until
all specified applications are terminated before returning.

sqlefrce - Force users and applications off the system

Chapter 5. Administrative APIs 397

sqlegdad - Catalog a database in the database connection services
(DCS) directory

Stores information about remote databases in the Database Connection Services
(DCS) directory. These databases are accessed through an Application Requester
(AR), such as DB2 Connect. Having a DCS directory entry with a database name
matching a database name in the system database directory invokes the specified
AR to forward SQL requests to the remote server where the database resides.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdad (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdad (

struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

sqlegdad API parameters

pDCSDirEntry
Input. A pointer to an sql_dir_entry (Database Connection Services
directory) structure.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The DB2 Connect program provides connections to DRDA Application Servers
such as:
v DB2 for OS/390 databases on System/370 and System/390® architecture host

computers
v DB2 for VM and VSE databases on System/370 and System/390 architecture

host computers
v OS/400 databases on Application System/400® (AS/400®) host computers

The database manager creates a Database Connection Services directory if one does
not exist. This directory is stored on the path that contains the database manager
instance that is being used. The DCS directory is maintained outside of the
database.

sqlegdad - Catalog a database in the database connection services (DCS) directory

398 Administrative API Reference

The database must also be cataloged as a remote database in the system database
directory.

Note: If directory caching is enabled, database, node, and DCS directory files are
cached in memory. An application's directory cache is created during its first
directory lookup. Since the cache is only refreshed when the application modifies
any of the directory files, directory changes made by other applications might not
be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

REXX API syntax
CATALOG DCS DATABASE dbname [AS target_dbname]
[AR arname] [PARMS parms] [WITH comment]

REXX API parameters

dbname
The local database name of the directory entry to be added.

target_dbname
The target database name.

arname
The application client name.

parms Parameter string. If specified, the string must be enclosed by double
quotation marks.

comment
Description associated with the entry. Maximum length is 30 characters.
Enclose the comment by double quotation marks.

sqlegdad - Catalog a database in the database connection services (DCS) directory

Chapter 5. Administrative APIs 399

sqlegdcl - End a database connection services (DCS) directory scan

Frees the resources that are allocated by the sqlegdsc API.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdcl (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdcl (

struct sqlca * pSqlca);

sqlegdcl API parameters

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax
CLOSE DCS DIRECTORY

sqlegdcl - End a database connection services (DCS) directory scan

400 Administrative API Reference

sqlegdel - Uncatalog a database from the database connection
services (DCS) directory

Deletes an entry from the Database Connection Services (DCS) directory.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdel (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdel (

struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

sqlegdel API parameters

pDCSDirEntry
Input/Output. A pointer to the Database Connection Services directory
structure. Fill in the ldb field of this structure with the local name of the
database to be deleted. The DCS directory entry with a matching local
database name is copied to this structure before being deleted.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

DCS databases are also cataloged in the system database directory as remote
databases that can be uncataloged using the sqleuncd API.

To recatalog a database in the DCS directory, use the sqlegdad API.

To list the DCS databases that are cataloged on a node, use the sqlegdsc, sqlegdgt,
and sqlegdcl APIs.

If directory caching is enabled (using the dir_cache configuration parameter,
database, node, and DCS directory files are cached in memory. An application's
directory cache is created during its first directory lookup. Since the cache is only
refreshed when the application modifies any of the directory files, directory
changes made by other applications may not be effective until the application has
restarted. To refresh DB2's shared cache (server only), stop (db2stop) and then

sqlegdel - Uncatalog a database from the database connection services (DCS) directory

Chapter 5. Administrative APIs 401

restart (db2start) the database manager. To refresh the directory cache for another
application, stop and then restart that application.

REXX API syntax
UNCATALOG DCS DATABASE dbname [USING :value]

REXX API parameters

dbname
The local database name of the directory entry to be deleted.

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host variable
name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED

sqlegdel - Uncatalog a database from the database connection services (DCS) directory

402 Administrative API Reference

sqlegdge - Get a specific entry in the database connection services
(DCS) directory

Returns information for a specific entry in the Database Connection Services (DCS)
directory.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdge (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdge (

struct sqlca * pSqlca,
struct sql_dir_entry * pDCSDirEntry);

sqlegdge API parameters

pDCSDirEntry
Input/Output. Pointer to the Database Connection Services directory
structure. Fill in the ldb field of this structure with the local name of the
database whose DCS directory entry is to be retrieved.

The remaining fields in the structure are filled in upon return of this API.

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax
GET DCS DIRECTORY ENTRY FOR DATABASE dbname [USING :value]

REXX API parameters

dbname
Specifies the local database name of the directory entry to be obtained.

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host variable
name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

sqlegdge - Get a specific entry in the database connection services (DCS) directory

Chapter 5. Administrative APIs 403

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

sqlegdge - Get a specific entry in the database connection services (DCS) directory

404 Administrative API Reference

sqlegdgt - Get database connection services (DCS) directory entries

Transfers a copy of Database Connection Services (DCS) directory entries to a
buffer supplied by the application.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdgt (
short * pNumEntries,
struct sql_dir_entry * pDCSDirEntries,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdgt (

struct sqlca * pSqlca,
short * pNumEntries,
struct sql_dir_entry * pDCSDirEntries);

sqlegdgt API parameters

pNumEntries
Input/Output. Pointer to a short integer representing the number of entries
to be copied to the caller's buffer. The number of entries actually copied is
returned.

pDCSDirEntries
Output. Pointer to a buffer where the collected DCS directory entries will
be held upon return of the API call. The buffer must be large enough to
hold the number of entries specified in the pNumEntries parameter.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The sqlegdsc API, which returns the entry count, must be called prior to issuing
GET DCS DIRECTORY ENTRIES.

If all entries are copied to the caller, the Database Connection Services directory
scan is automatically closed, and all resources are released.

If entries remain, subsequent calls to this API should be made, or CLOSE DCS
DIRECTORY SCAN should be called, to release system resources.

REXX API syntax
GET DCS DIRECTORY ENTRY [USING :value]

sqlegdgt - Get database connection services (DCS) directory entries

Chapter 5. Administrative APIs 405

REXX API parameters

value A compound REXX host variable into which the directory entry
information is returned. In the following, XXX represents the host variable
name. If no name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)

XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED

sqlegdgt - Get database connection services (DCS) directory entries

406 Administrative API Reference

sqlegdsc - Start a database connection services (DCS) directory scan

Stores a copy in memory of the Database Connection Services directory entries,
and returns the number of entries. This is a snapshot of the directory at the time
the directory is opened.

The copy is not updated if the directory itself changes after a call to this API. Use
sqlegdgt API and sqlegdcl API to release the resources associated with calling this
API.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegdsc (
short * pNumEntries,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggdsc (

struct sqlca * pSqlca,
short * pNumEntries);

sqlegdsc API parameters

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The caller of the scan uses the returned value pNumEntries to allocate enough
memory to receive the entries. If a scan call is received while a copy is already
held, the previous copy is released, and a new copy is collected.

REXX API syntax
OPEN DCS DIRECTORY

sqlegdsc - Start a database connection services (DCS) directory scan

Chapter 5. Administrative APIs 407

sqlegins - Get current instance

Returns the value of the DB2INSTANCE environment variable.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlegins (
_SQLOLDCHAR * pInstance,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlggins (

struct sqlca * pSqlca,
_SQLOLDCHAR * pInstance);

sqlegins API parameters

pInstance
Output. Pointer to a string buffer where the database manager instance
name is placed. This buffer must be at least 9 bytes in length, including 1
byte for the null terminating character.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The value in the DB2INSTANCE environment variable is not necessarily the
instance to which the user is attached.

To identify the instance to which a user is currently attached, call sqleatin -
Attach, with null arguments except for the sqlca structure.

REXX API syntax
GET INSTANCE INTO :instance

REXX API parameters

instance
A REXX host variable into which the database manager instance name is to
be placed.

sqlegins - Get current instance

408 Administrative API Reference

sqleintr - Interrupt application requests

Stops a request. This API is called from a control break signal handler in an
application. The control break signal handler can be the default, installed by
sqleisig - Install Signal Handler, or a routine supplied by the programmer and
installed using an appropriate operating system call.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_INTR

sqleintr (void);

SQL_API_RC SQL_API_FN
sqlgintr (

void);

sqleintr API parameters

None

Usage notes

No database manager APIs should be called from an interrupt handler except
sqleintr. However, the system will not prevent it.

Any database transaction in a state of committing or rollback cannot be
interrupted.

An interrupted database manager request returns a code indicating that it was
interrupted.

The following table summarizes the effect of an interrupt operation on other APIs:

Table 9. INTERRUPT actions

Database activity Action

BACKUP Utility cancelled. Data on media may be incomplete.

BIND Binding cancelled. Package creation rolled back.

COMMIT None. COMMIT completes.

CREATE
DATABASE/CREATE
DATABASE AT
NODE/ADD
NODE/DROP NODE
VERIFY

After a certain point, these APIs are not interruptible. If the
interrupt call is received before this point, the database is not
created. If the interrupt call is received after this point, it is
ignored.

sqleintr - Interrupt application requests

Chapter 5. Administrative APIs 409

Table 9. INTERRUPT actions (continued)

Database activity Action

DROP
DATABASE/DROP
DATABASE AT
NODE

None. The APIs complete.

EXPORT/IMPORT/
RUNSTATS

Utility cancelled. Database updates rolled back.

FORCE
APPLICATION

None. FORCE APPLICATION completes.

LOAD Utility cancelled. Data in table may be incomplete.

PREP Precompile cancelled. Package creation rolled back.

REORGANIZE
TABLE

The interrupt will be delayed until the copy is complete. The
recreation of the indexes will be resume on the next attempt to
access the table.

RESTORE Utility cancelled. DROP DATABASE performed. Not applicable to
table space level restore.

ROLLBACK None. ROLLBACK completes.

Directory services Directory left in consistent state. Utility function may or may not
be performed.

SQL data definition
statements

Database transactions are set to the state existing prior to
invocation of the SQL statement.

Other SQL statements Database transactions are set to the state existing prior to
invocation ofthe SQL statement.

REXX API syntax
INTERRUPT

Examples
call SQLDBS 'INTERRUPT'

sqleintr - Interrupt application requests

410 Administrative API Reference

sqleisig - Install signal handler

Installs the default interrupt (usually Control-C and/or Control-Break) signal
handler. When this default handler detects an interrupt signal, it resets the signal
and calls sqleintr.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleisig (
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgisig (

struct sqlca * pSqlca);

sqleisig API parameters

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

If an application has no signal handler, and an interrupt is received, the application
is terminated. This API provides simple signal handling, and can be used if an
application does not have extensive interrupt handling requirements.

The API must be called for the interrupt signal handler to function properly.

If an application requires a more elaborate interrupt handling scheme, a signal
handling routine that can also call the sqleintr API can be developed. Use either
the operating system call or the language-specific library signal function. The
sqleintr API should be the only database manager operation performed by a
customized signal handler. Follow all operating system programming techniques
and practices to ensure that the previously installed signal handlers work properly.

REXX API syntax
INSTALL SIGNAL HANDLER

sqleisig - Install signal handler

Chapter 5. Administrative APIs 411

sqlemgdb - Migrate previous version of DB2 database to current
version

Converts a previous (Version 8 or higher) version of a DB2 database to the current
release. The sqlemgdb and sqlgmgdb APIs are deprecated and will be discontinued
in a future release. You should use the new db2DatabaseUpgrade API instead.

Authorization

SYSADM

Required connection

This API establishes a database connection.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlemgdb (
_SQLOLDCHAR * pDbAlias,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pPassword,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgmgdb (

unsigned short PasswordLen,
unsigned short UserNameLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pPassword,
_SQLOLDCHAR * pUserName,
_SQLOLDCHAR * pDbAlias);

sqlemgdb API parameters

pDbAlias
Input. A string containing the alias of the database that is cataloged in the
system database directory.

pUserName
Input. A string containing the user name of the application. May be NULL.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgmgdb API-specific parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero when no password is supplied.

sqlemgdb - Migrate previous version of DB2 database to current version

412 Administrative API Reference

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero when no user name is supplied.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

This API will only migrate a database to a newer version, and cannot be used to
convert a migrated database to its previous version.

The database must be cataloged before migration.

REXX API syntax
MIGRATE DATABASE dbalias [USER username USING password]

REXX API parameters

dbalias
Alias of the database to be migrated.

username
User name under which the database is to be restarted.

password
Password used to authenticate the user name.

sqlemgdb - Migrate previous version of DB2 database to current version

Chapter 5. Administrative APIs 413

sqlencls - End a node directory scan

Frees the resources that are allocated by the sqlenops API.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlencls (
unsigned short Handle,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgncls (

unsigned short Handle,
struct sqlca * pSqlca);

sqlencls API parameters

Handle
Input. Identifier returned from the associated OPEN NODE DIRECTORY
SCAN API.

pSqlca
Output. A pointer to the sqlca structure.

REXX API syntax
CLOSE NODE DIRECTORY :scanid

REXX API parameters

scanid A host variable containing the scanid returned from the OPEN NODE
DIRECTORY SCAN API.

sqlencls - End a node directory scan

414 Administrative API Reference

sqlengne - Get the next node directory entry

Returns the next entry in the node directory after sqlenops - Open Node Directory
Scan is called. Subsequent calls to this API return additional entries.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlengne (
unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgngne (

unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);

sqlengne API parameters

Handle
Input. Identifier returned from sqlenops - Open Node Directory Scan.

ppNodeDirEntry
Output. Address of a pointer to an sqleninfo structure. The caller of this
API does not have to provide memory for the structure, just the pointer.
Upon return from the API, the pointer points to the next node directory
entry in the copy of the node directory allocated by sqlenops - Open Node
Directory Scan.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

All fields in the node directory entry information buffer are padded to the right
with blanks.

The sqlcode value of sqlca is set to 1014 if there are no more entries to scan when
this API is called.

The entire directory can be scanned by calling this API pNumEntries times.

REXX API syntax
GET NODE DIRECTORY ENTRY :scanid [USING :value]

sqlengne - Get the next node directory entry

Chapter 5. Administrative APIs 415

REXX API parameters

scanid A REXX host variable containing the identifier returned from the OPEN
NODE DIRECTORY SCAN API.

value A compound REXX host variable to which the node entry information is
returned. If no name is given, the name SQLENINFO is used. In the
following, XXX represents the host variable name (the corresponding field
names are taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 16)

XXX.1 NODENAME

XXX.2 LOCALLU

XXX.3 PARTNERLU

XXX.4 MODE

XXX.5 COMMENT

XXX.6 RESERVED

XXX.7 PROTOCOL (protocol type)

XXX.9 RESERVED

XXX.10
SYMDESTNAME (symbolic destination name)

XXX.11
SECURITY (security type)

XXX.12
HOSTNAME

XXX.13
SERVICENAME

XXX.14
FILESERVER

XXX.15
OBJECTNAME

XXX.16
INSTANCE (local instance name).

sqlengne - Get the next node directory entry

416 Administrative API Reference

sqlenops - Start a node directory scan

Stores a copy in memory of the node directory, and returns the number of entries.
This is a snapshot of the directory at the time the directory is opened. This copy is
not updated, even if the directory itself is changed later.

Call the sqlengne API to advance through the node directory and examine
information about the node entries. Close the scan by calling the sqlencls API. This
removes the copy of the directory from memory.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlenops (
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgnops (

unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);

sqlenops API parameters

pHandle
Output. Identifier returned from this API. This identifier must be passed to
the sqlengne API and sqlencls API.

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

Storage allocated by this API is freed by calling sqlencls - Close Node Directory
Scan.

Multiple node directory scans can be issued against the node directory. However,
the results may not be the same. The directory may change between openings.

There can be a maximum of eight node directory scans per process.

sqlenops - Start a node directory scan

Chapter 5. Administrative APIs 417

REXX API syntax
OPEN NODE DIRECTORY USING :value

REXX API parameters

value A compound REXX variable to which node directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Specifies a REXX host variable containing a number for scanid

XXX.2 The number of entries contained within the directory.

sqlenops - Start a node directory scan

418 Administrative API Reference

sqleqryc - Query client connection settings

Returns current connection settings for an application process. The
sqle_conn_setting data structure is populated with the connection setting types and
values.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleqryc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgqryc (

struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

sqleqryc API parameters

pConnectionSettings
Input/Output. A pointer to an sqle_conn_setting structure, which specifies
connection setting types and values. The user defines an array of
NumSettings connection settings structures, and sets the type field of each
element in this array to indicate one of the five possible connection settings
options. Upon return, the value field of each element contains the current
setting of the option specified.

NumSettings
Input. Any integer (from 0 to 7) representing the number of connection
option values to be returned.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The connection settings for an application process can be queried at any time
during execution.

If QUERY CLIENT is successful, the fields in the sqle_conn_setting structure will
contain the current connection settings of the application process. If SET CLIENT
has never been called, the settings will contain the values of the precompile
options only if an SQL statement has already been processed; otherwise, they will
contain the default values for the precompile options.

sqleqryc - Query client connection settings

Chapter 5. Administrative APIs 419

REXX API syntax
QUERY CLIENT INTO :output

REXX API parameters

output
A compound REXX host variable containing information about the current
connection settings of the application process. In the following, XXX
represents the host variable name.

XXX.1 Current connection setting for the CONNECTION type

XXX.2 Current connection setting for the SQLRULES

XXX.3 Current connection setting indicating which connections will be
released when a COMMIT is issued.

XXX.4 Current connection setting of the SYNCPOINT option. The
SYNCPOINT option is ignored and is available only for backward
compatibility. Indicates whether a transaction manager should be
used to enforce two-phase commit semantics, whether the database
manager should ensure that there is only one database being
updated when multiple databases are accessed within a single
transaction, or whether neither of these options is to be used.

XXX.6 Current connection setting for deferred PREPARE.

sqleqryc - Query client connection settings

420 Administrative API Reference

sqleqryi - Query client information

Returns existing client information by populating the fields in the sqle_client_info
data structure. Since this API permits specification of a database alias, an
application can query client information associated with a specific connection.
Returns null if the sqleseti API has not previously established a value.

If a specific connection is requested, this API returns the latest values for that
connection. If all connections are specified, the API returns the values that are to be
associated with all connections; that is, the values passed in the last call to sqleseti
(specifying all connections).

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleqryi (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

sqleqryi API parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias. If a value greater than zero is provided, pDbAlias must
point to the alias name. Returns the settings associated with the last call to
sqleseti for this alias (or a call to sqleseti specifying a zero length alias). If
zero is specified, returns the settings associated with the last call to sqleseti
which specified a zero length alias.

pDbAlias
Input. A pointer to a string containing the database alias.

NumItems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of NumItems sqle_client_info structures, each
containing a type field indicating which value to return, and a pointer to
the returned value. The area pointed to must be large enough to
accommodate the value being requested.

pSqlca
Output. A pointer to the sqlca structure.

sqleqryi - Query client information

Chapter 5. Administrative APIs 421

Usage notes

The settings can be queried at any time during execution. If the API call is
successful, the current settings are returned to the specified areas. Returns a length
of zero and a null-terminated string (\0) for any fields that have not been set
through a call to the sqleseti API.

sqleqryi - Query client information

422 Administrative API Reference

sqlesact - Set accounting string

Provides accounting information that will be sent to a DRDA server with the
application's next connect request.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlesact (
char * pAccountingString,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgsact (

unsigned short AccountingStringLen,
char * pAccountingString,
struct sqlca * pSqlca);

sqlesact API parameters

pAccountingString
Input. A string containing the accounting data.

pSqlca
Output. A pointer to the sqlca structure.

sqlgsact API-specific parameters

AccountingStringLen
Input. A 2-byte unsigned integer representing the length in bytes of the
accounting string.

Usage notes

To send accounting data with a connect request, an application should call this API
before connecting to a database. The accounting string can be changed before
connecting to another database by calling the API again; otherwise, the value
remains in effect until the end of the application. The accounting string can be at
most SQL_ACCOUNT_STR_SZ (defined in sqlenv) bytes long; longer strings will
be truncated. To ensure that the accounting string is converted correctly when
transmitted to the DRDA server, use only the characters A to Z, 0 to 9, and the
underscore (_).

sqlesact - Set accounting string

Chapter 5. Administrative APIs 423

sqlesdeg - Set the maximum runtime intra-partition parallelism level or
degree for SQL statements

Sets the maximum run time degree of intra-partition parallelism for SQL statement
execution for specified active applications. It has no effect on CREATE INDEX
statement execution parallelism.

Scope

This API affects all database partition servers that are listed in the db2nodes.cfg
file.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

Instance. To change the maximum run time degree of parallelism on a remote
server, it is first necessary to attach to that server. If no attachment exists, the SET
RUNTIME DEGREE statement fails.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlesdeg (
sqlint32 NumAgentIds,
sqluint32 * pAgentIds,
sqlint32 Degree,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgsdeg (

struct sqlca * pSqlca,
sqlint32 Degree,
sqluint32 * pAgentIds,
sqlint32 NumAgentIds);

sqlesdeg API parameters

NumAgentIds
Input. An integer representing the total number of active applications to
which the new degree value will apply. This number should be the same
as the number of elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), the new
degree will apply to all active applications. If it is set to zero, an error is
returned.

pAgentIds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding application. To list the agent IDs of the
active applications, use the db2GetSnapshot API.

sqlesdeg - Set the maximum runtime intra-partition parallelism level or degree for SQL
statements

424 Administrative API Reference

Degree
Input. The new value for the maximum run time degree of parallelism. The
value must be in the range 1 to 32767.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

The database system monitor functions are used to gather the agent IDs and
degrees of active applications.

Minimal validation is performed on the array of agent IDs. The user must ensure
that the pointer points to an array containing the total number of elements
specified. If NumAgentIds is set to SQL_ALL_USERS, the array is ignored.

If one or more specified agent IDs cannot be found, the unknown agent IDs are
ignored, and the function continues. No error is returned. An agent ID may not be
found, for instance, if the user signs off between the time an agent ID is collected
and the API is called.

Agent IDs are recycled, and are used to change the degree of parallelism for
applications some time after being gathered by the database system monitor. When
a user signs off, therefore, another user may sign on and acquire the same agent ID
through this recycling process, with the result that the new degree of parallelism
will be modified for the wrong user.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlesdeg - Set the maximum runtime intra-partition parallelism level or degree for SQL
statements

Chapter 5. Administrative APIs 425

sqlesetc - Set client connection settings

Specifies connection settings for the application. Use the sqle_conn_setting data
structure to specify the connection setting types and values.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlesetc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgsetc (

struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);

sqlesetc API parameters

pConnectionSettings
Input. A pointer to the sqle_conn_setting structure, which specifies
connection setting types and values. Allocate an array of NumSettings
sqle_conn_setting structures. Set the type field of each element in this array
to indicate the connection option to set. Set the value field to the desired
value for the option.

NumSettings
Input. Any integer (from 0 to 7) representing the number of connection
option values to set.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

If this API is successful, the connections in the subsequent units of work will use
the connection settings specified. If this API is unsuccessful, the connection settings
are unchanged.

The connection settings for the application can only be changed when there are no
existing connections (for example, before any connection is established, or after
RELEASE ALL and COMMIT).

Once the SET CLIENT API has executed successfully, the connection settings are
fixed and can only be changed by again executing the SET CLIENT API. All
corresponding precompiled options of the application modules will be overridden.

sqlesetc - Set client connection settings

426 Administrative API Reference

REXX API syntax
SET CLIENT USING :values

REXX API parameters

values A compound REXX host variable containing the connection settings for the
application process. In the following, XXX represents the host variable
name.

XXX.0 Number of connection settings to be established

XXX.1 Specifies how to set up the CONNECTION type. The valid values
are:

1 Type 1 CONNECT

2 Type 2 CONNECT

XXX.2 Specifies how to set up the SQLRULES according to:
v Whether type 2 CONNECTs are to be processed according to the

DB2 rules or the Standard (STD) rules based on ISO/ANS
SQL92.

v How an application specifies the format of LOB columns in the
result set.

DB2

v Permits the SQL CONNECT statement to switch the
current connection to another established (dormant)
connection.

v This default setting allows an application to specify
whether LOB values or LOB locators are retrieved only
during the first fetch request. Subsequent fetch requests
must use the same format for the LOB columns.

STD

v Permits the SQL CONNECT statement to establish a new
connection only. The SQL SET CONNECTION statement
must be used to switch to a dormant connection.

v The application can change between retrieving LOB
values and LOB locators with each fetch request. This
means that cursors with one or more LOB columns
cannot be blocked, regardless of the BLOCKING bind
option setting.

XXX.3 Specifies how to set up the scope of disconnection to databases at
commit. The valid values are:

EXPLICIT
Disconnect only those marked by the SQL RELEASE
statement

CONDITIONAL
Disconnect only those that have no open WITH HOLD
cursors

AUTOMATIC
Disconnect all connections

XXX.4 Specifies how to set up the coordination among multiple database
connections during commits or rollbacks. The valid values are:

sqlesetc - Set client connection settings

Chapter 5. Administrative APIs 427

TWOPHASE
Use Transaction Manager (TM) to coordinate two-phase
commits. The SYNCPOINT option is ignored and is
available only for backward compatibility.

XXX.6 Specifies when to execute the PREPARE statement. The valid
values are:

NO The PREPARE statement will be executed at the time it is
issued

YES The PREPARE statement will not be executed until the
corresponding OPEN, DESCRIBE, or EXECUTE statement
is issued. However, the PREPARE INTO statement is not
deferred

ALL Same as YES, except that the PREPARE INTO statement is
also deferred

sqlesetc - Set client connection settings

428 Administrative API Reference

sqleseti - Set client information
Permits an application to set client information (by setting the fields in the
sqle_client_info data structure) associated with a specific connection, provided a
connection already exists.

In a TP monitor or 3-tier client/server application environment, there is a need to
obtain information about the client, and not just the application server that is
working on behalf of the client. By using this API, the application server can pass
the client's user ID, workstation information, program information, and other
accounting information to the DB2 server; otherwise, only the application server's
information is passed, and that information is likely to be the same for the many
client invocations that go through the same application server.

The application can elect to not specify an alias, in which case the client
information will be set for all existing, as well as future, connections. This API will
only permit information to be changed outside of a unit of work, either before any
SQL is executed, or after a commit or a rollback. If the call is successful, the values
for the connection will be sent at the next opportunity, grouped with the next SQL
request sent on that connection; a successful call means that the values have been
accepted, and that they will be propagated to subsequent connections.

This API can be used to establish values prior to connecting to a database, or it can
be used to set or modify the values once a connection has been established.

Authorization

None

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleseti (
unsigned short DbAliasLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);

sqleseti API parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias. If a value greater than zero is provided, pDbAlias must
point to the alias name, and the settings will affect only the specified
connection. If zero is specified, the settings will affect all existing and
future connections.

pDbAlias
Input. A pointer to a string containing the database alias.

sqleseti - Set client information

Chapter 5. Administrative APIs 429

NumItems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of NumItems sqle_client_info structures, each
containing a type field indicating which value to set, the length of that
value, and a pointer to the new value.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

If an alias name was provided, a connection to the alias must already exist, and all
connections to that alias will inherit the changes. The information will be retained
until the connection for that alias is broken. If an alias name was not provided,
settings for all existing connections will be changed, and any future connections
will inherit the changes. The information will be retained until the program
terminates.

The field names represent guidelines for the type of information that can be
provided. For example, a TP monitor application could choose to provide the TP
monitor transaction ID along with the application name in the
SQL_CLIENT_INFO_APPLNAM field. This would provide better monitoring and
accounting on the DB2 server, where the DB2 transaction ID can be associated with
the TP monitor transaction ID.

Currently this API will pass information to DB2 OS/390 Version 5 and higher, DB2
Universal Database Version 7 and higher, and DB2 i5/OS® V6R1 and higher. All
information (except the accounting string) is displayed on the DISPLAY THREAD
command, and will all be logged into the accounting records.

The data values provided with the API can also be accessed by SQL special
register. The values in these registers are stored in the database code page. Data
values provided with this API are converted to the database code page before
being stored in the special registers. Any data value that exceeds the maximum
supported size after conversion to the database code page will be truncated before
being stored at the server. These truncated values will be returned by the special
registers. The original data values will also be stored at the server and are not
converted to the database code page. The unconverted values can be returned by
calling the sqleqryi API.

Calling the sqleseti API in a CLI program before a connection will not work.
Calling the sqleseti API in a CLI program after a connection has been established
may result in unpredictable behavior. It is recommended that the corresponding
CLI functions SQLSetConnectAttr() or SQLSetEnvAttr() be used instead.

sqleseti - Set client information

430 Administrative API Reference

sqleuncd - Uncatalog a database from the system database directory

Deletes an entry from the system database directory.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleuncd (
_SQLOLDCHAR * pDbAlias,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlguncd (

unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pDbAlias);

sqleuncd API parameters

pDbAlias
Input. A string containing the database alias that is to be uncataloged.

pSqlca
Output. A pointer to the sqlca structure.

sqlguncd API-specific parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Usage notes

Only entries in the system database directory can be uncataloged. Entries in the
local database directory can be deleted using the sqledrpd API.

To recatalog the database, use the sqlecadb API.

To list the databases that are cataloged on a node, use the db2DbDirOpenScan,
db2DbDirGetNextEntry, and db2DbDirCloseScan APIs.

The authentication type of a database, used when communicating with an earlier
server, can be changed by first uncataloging the database, and then cataloging it
again with a different type.

sqleuncd - Uncatalog a database from the system database directory

Chapter 5. Administrative APIs 431

If directory caching is enabled using the dir_cache configuration parameter,
database, node, and DCS directory files are cached in memory. An application's
directory cache is created during its first directory lookup. Since the cache is only
refreshed when the application modifies any of the directory files, directory
changes made by other applications may not be effective until the application has
restarted. To refresh DB2's shared cache (server only), stop (db2stop) and then
restart (db2start) the database manager. To refresh the directory cache for another
application, stop and then restart that application.

REXX API syntax
UNCATALOG DATABASE dbname

REXX API parameters

dbname
Alias of the database to be uncataloged.

sqleuncd - Uncatalog a database from the system database directory

432 Administrative API Reference

sqleuncn - Uncatalog an entry from the node directory

Deletes an entry from the node directory.

Authorization

One of the following:
v sysadm
v sysctrl

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleuncn (
_SQLOLDCHAR * pNodeName,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlguncn (

unsigned short NodeNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pNodeName);

sqleuncn API parameters

pNodeName
Input. A string containing the name of the node to be uncataloged.

pSqlca
Output. A pointer to the sqlca structure.

sqlguncn API-specific parameters

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name.

Usage notes

To recatalog the node, use the sqlectnd API.

To list the nodes that are cataloged, use the db2DbDirOpenScan,
db2DbDirGetNextEntry, and db2DbDirCloseScan APIs.

If directory caching is enabled using the dir_cache configuration parameter,
database, node, and DCS directory files are cached in memory. An application's
directory cache is created during its first directory lookup. Since the cache is only
refreshed when the application modifies any of the directory files, directory
changes made by other applications may not be effective until the application has
restarted. To refresh DB2's shared cache (server only), stop (db2stop) and then
restart (db2start) the database manager. To refresh the directory cache for another

sqleuncn - Uncatalog an entry from the node directory

Chapter 5. Administrative APIs 433

application, stop and then restart that application.

REXX API syntax
UNCATALOG NODE nodename

REXX API parameters

nodename
Name of the node to be uncataloged.

sqleuncn - Uncatalog an entry from the node directory

434 Administrative API Reference

sqlgaddr - Get the address of a variable

Places the address of a variable into another variable. This API is used in host
programming languages, FORTRAN and COBOL, which do not provide pointer
manipulation.

Authorization

None

Required connection

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlgaddr (
char * pVariable,
char ** ppOutputAddress);

sqlgaddr API parameters

pVariable
Input. Variable whose address is to be returned.

ppOutputAddress
Output. A 4-byte area into which the variable address is returned.

sqlgaddr - Get the address of a variable

Chapter 5. Administrative APIs 435

sqlgdref - Dereference an address

Copies data from a buffer that is defined by a pointer, into a variable that is
directly accessible by the application. This API is used in host programming
languages, FORTRAN and COBOL, which do not provide pointer manipulation.
This API can be used to obtain results from APIs that return a pointer to the
desired data.

Authorization

None

Required connection

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlgdref (
unsigned int NumBytes,
char * pTargetBuffer,
char ** ppSourceBuffer);

sqlgdref API parameters

NumBytes
Input. An integer representing the number of bytes to be transferred.

pTargetBuffer
Output. Area into which the data are moved.

ppSourceBuffer
Input. A pointer to the area containing the desired data.

sqlgdref - Dereference an address

436 Administrative API Reference

sqlgmcpy - Copy data from one memory area to another

Copies data from one memory area to another. This API is used in host
programming languages, FORTRAN and COBOL, that do not provide memory
block copy functions.

Authorization

None

Required connection

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlgmcpy (
void * pTargetBuffer,
const void * pSource,
sqluint32 NumBytes);

sqlgmcpy API parameters

pTargetBuffer
Output. Area into which to move the data.

pSource
Input. Area from which to move the data.

NumBytes
Input. A 4-byte unsigned integer representing the number of bytes to be
transferred.

sqlgmcpy - Copy data from one memory area to another

Chapter 5. Administrative APIs 437

sqlogstt - Get the SQLSTATE message

Retrieves the message text associated with an SQLSTATE value.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlogstt (
char * pBuffer,
short BufferSize,
short LineWidth,
char * pSqlstate);

SQL_API_RC SQL_API_FN
sqlggstt (

short BufferSize,
short LineWidth,
char * pSqlstate,
char * pBuffer);

sqlogstt API parameters

pBuffer
Output. A pointer to a string buffer where the message text is to be placed.
If the message must be truncated to fit in the buffer, the truncation allows
for the null string terminator character.

BufferSize
Input. Size, in bytes, of a string buffer to hold the retrieved message text.

LineWidth
Input. The maximum line width for each line of message text. Lines are
broken on word boundaries. A value of zero indicates that the message text
is returned without line breaks.

pSqlstate
Input. A string containing the SQLSTATE for which the message text is to
be retrieved. This field is alphanumeric and must be either five-digit
(specific SQLSTATE) or two-digit (SQLSTATE class, first two digits of an
SQLSTATE). This field does not need to be NULL-terminated if 5 digits are
being passed in, but must be NULL-terminated if 2 digits are being passed.

Usage notes

One message is returned per call.

A LF/NULL sequence is placed at the end of each message.

sqlogstt - Get the SQLSTATE message

438 Administrative API Reference

If a positive line width is specified, LF/NULL sequences are inserted between
words so that the lines do not exceed the line width.

If a word is longer than a line width, the line is filled with as many characters as
will fit, a LF/NULL is inserted, and the remaining characters are placed on the
next line.

Return codes

Code Message

+i Positive integer indicating the number of bytes in the formatted
message. If this is greater than the buffer size input by the caller,
the message is truncated.

-1 Insufficient memory available for message formatting services to
function. The requested message is not returned.

-2 The SQLSTATE is in the wrong format. It must be alphanumeric
and be either 2 or 5 digits in length.

-3 Message file inaccessible or incorrect.

-4 Line width is less than zero.

-5 Invalid sqlca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain further information
about the problem.

REXX API syntax
GET MESSAGE FOR SQLSTATE sqlstate INTO :msg [LINEWIDTH width]

REXX API parameters

sqlstate
The SQLSTATE for which the message text is to be retrieved.

msg REXX variable into which the message is placed.

width Maximum line width for each line of the message text. The line is broken
on word boundaries. If a value is not specified, or this parameter is set to
0, the message text returns without line breaks.

sqlogstt - Get the SQLSTATE message

Chapter 5. Administrative APIs 439

sqludrdt - Redistribute data across a database partition group

Redistributes data across the database partitions in a database partition group. The
current data distribution, whether it is uniform or skewed, can be specified. The
redistribution algorithm selects the database partitions to be moved based on the
current data distribution. This API does not support the NOT ROLLFORWARD
RECOVERABLE option of the REDISTRIBUTE DATABASE PARTITION GROUP
command.

This API can only be called from the catalog partition. Use the LIST DATABASE
DIRECTORY command to determine which database partition server is the catalog
partition for each database.

Scope

This API affects all database partitions in the database partition group.

Authorization

One of the following authorities:
v sysadm
v sysctrl
v dbadm

In addition, one of the following groups of authorizations is also required:
v DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
v DATAACCESS authority

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqludrdt (
char * pNodeGroupName,
char * pTargetPMapFileName,
char * pDataDistFileName,
SQL_PDB_NODE_TYPE * pAddList,
unsigned short AddCount,
SQL_PDB_NODE_TYPE * pDropList,
unsigned short DropCount,
unsigned char DataRedistOption,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrdt (
unsigned short NodeGroupNameLen,
unsigned short TargetPMapFileNameLen,
unsigned short DataDistFileNameLen,
char * pNodeGroupName,
char * pTargetPMapFileName,
char * pDataDistFileName,
SQL_PDB_NODE_TYPE * pAddList,
unsigned short AddCount,

sqludrdt - Redistribute data across a database partition group

440 Administrative API Reference

SQL_PDB_NODE_TYPE * pDropList,
unsigned short DropCount,
unsigned char DataRedistOption,
struct sqlca * pSqlca);

sqludrdt API parameters

pNodeGroupName
The name of the database partition group to be redistributed.

pTargetPMapFileName
The name of the file that contains the target distribution map. If a directory
path is not specified as part of the file name, the current directory is used.
This parameter is used when the DataRedistOption value is T. The file
should be in character format and contain either 4 096 entries (for a
multiple-partition database partition group) or 1 entry (for a
single-partition database partition group). Entries in the file indicate node
numbers. Entries can be in free format.

pDataDistFileName
The name of the file that contains input distribution information. If a
directory path is not specified as part of the file name, the current directory
is used. This parameter is used when the DataRedistOption value is U. The
file should be in character format and contain 4 096 positive integer
entries. Each entry in the file should indicate the weight of the
corresponding database partition. The sum of the 4 096 values should be
less than or equal to 4 294 967 295.

pAddList
The list of database partitions to add to the database partition group
during the data redistribution. Entries in the list must be in the form:
SQL_PDB_NODE_TYPE.

AddCount
The number of database partitions to add to the database partition group.

pDropList
The list of database partitions to drop from the database partition group
during the data redistribution. Entries in the list must be in the form:
SQL_PDB_NODE_TYPE.

DropCount
The number of database partitions to drop from the database partition
group.

DataRedistOption
A single character that indicates the type of data redistribution to be done.
Possible values are:

U Specifies to redistribute the database partition group to achieve a
balanced distribution. If pDataDistFileName is null, the current
data distribution is assumed to be uniform (that is, each database
partition represents the same amount of data). If
pDataDistFileName parameter is not null, the values in this file are
assumed to represent the current data distribution. When the
DataRedistOption is U, the pTargetPMapFileName parameter
should be null. Database partitions specified in the add list are
added, and database partitions specified in the drop list are
dropped from the database partition group.

T Specifies to redistribute the database partition group using the
pTargetPMapFileName parameter. For this option, the parameters,

sqludrdt - Redistribute data across a database partition group

Chapter 5. Administrative APIs 441

pDataDistFileName, pAddList, and pDropList should be null, and
both the parameters, AddCount and DropCount must be zero.

C Specifies to continue a redistribution operation that failed. For this
option, the parameters, pTargetPMapFileName,
pDataDistFileName, pAddList, and pDropList should be null, and
both the parameters, AddCount and DropCount must be zero.

R Specifies to roll back a redistribution operation that failed. For this
option, the parameters, pTargetPMapFileName,
pDataDistFileName, pAddList, and pDropList should be null, and
both the parameters, AddCount and DropCount must be zero.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrdt API-specific parameters

NodeGroupNameLen
The length of the name of the database partition group.

TargetPMapFileNameLen
The length of the name of the target distribution map file.

DataDistFileNameLen
The length of the name of the data distribution file.

Usage notes

When a redistribution operation is done, a message file is written to:
v The $HOME/sqllib/redist directory on UNIX based systems, using the following

format for subdirectories and file name: database-name.nodegroup-
name.timestamp.

v The $HOME\sqllib\redist\ directory on the Windows operating system, using
the following format for subdirectories and file name: database-name\first-eight-
characters-of-the-nodegroup-name\date\time.

The time stamp value is the time at which the API was called.

This utility performs intermittent COMMITs during processing.

Use the ALTER DATABASE PARTITION GROUP statement to add database
partitions to a database partition group. This statement permits one to define the
containers for the table spaces associated with the database partition group.

All packages having a dependency on a table that has undergone redistribution are
invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding
eliminates the initial delay in the execution of the first SQL request for the invalid
package. The redistribute message file contains a list of all the tables that have
undergone redistribution.

It is also recommended to update statistics by issuing the db2Runstats API after
the redistribute database partition group operation has completed.

Database partition groups containing replicated summary tables or tables defined
with the DATA CAPTURE CHANGES clause cannot be redistributed.

sqludrdt - Redistribute data across a database partition group

442 Administrative API Reference

Redistribution is not allowed if there are user temporary table spaces with existing
declared temporary tables in the database partition group.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqludrdt - Redistribute data across a database partition group

Chapter 5. Administrative APIs 443

sqlugrpn - Get the database partition server number for a row

Beginning with Version 9.7, this API is deprecated. Use the db2GetRowPartNum
(Get the database partition server number for a row) API to return the database
partition number and database partition server number for a row. If you call the
sqlugrpn API and the DB2_PMAP_COMPATIBILITY registry variable is set to OFF,
the error message SQL2768N is returned.

Returns the database partition number and the database partition server number
based on the distribution key values. An application can use this information to
determine on which database partition server a specific row of a table is stored.

The partitioning data structure, sqlupi, is the input for this API. The structure can
be returned by the sqlugtpi API. Another input is the character representations of
the corresponding distribution key values. The output is a database partition
number generated by the distribution strategy and the corresponding database
partition server number from the distribution map. If the distribution map
information is not provided, only the database partition number is returned. This
can be useful when analyzing data distribution.

The database manager does not need to be running when this API is called.

Scope

This API must be invoked from a database partition server in the db2nodes.cfg file.
This API should not be invoked from a client, since it could result in erroneous
database partitioning information being returned due to differences in codepage
and endianess between the client and the server.

Authorization

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlugrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short territory_ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

SQL_API_RC SQL_API_FN
sqlggrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,

sqlugrpn - Get the database partition server number for a row

444 Administrative API Reference

unsigned short territory_code,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

sqlugrpn API parameters

num_ptrs
The number of pointers in ptr_array. The value must be the same as the
one specified for the part_info parameter; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the
corresponding values of each part of the distribution key specified in
part_info. If a null value is required, the corresponding pointer is set to
null. For generated columns, this function does not generate values for the
row. The user is responsible for providing a value that will lead to the
correct partitioning of the row.

ptr_lens
An array of unsigned integers that contains the lengths of the character
representations of the corresponding values of each part of the partitioning
key specified in part_info.

territory_ctrycode
The country/region code of the target database. This value can also be
obtained from the database configuration file using the GET DATABASE
CONFIGURATION command.

codepage
The code page of the target database. This value can also be obtained from
the database configuration file using the GET DATABASE
CONFIGURATION command.

part_info
A pointer to the sqlupi structure.

part_num
A pointer to a 2-byte signed integer that is used to store the database
partition number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node
number. If the pointer is null, no node number is returned.

chklvl An unsigned integer that specifies the level of checking that is done on
input parameters. If the value specified is zero, no checking is done. If any
non-zero value is specified, all input parameters are checked.

sqlca Output. A pointer to the sqlca structure.

dataformat
Specifies the representation of distribution key values. Valid values are:

SQL_CHARSTRING_FORMAT
All distribution key values are represented by character strings.
This is the default value.

sqlugrpn - Get the database partition server number for a row

Chapter 5. Administrative APIs 445

SQL_IMPLIEDDECIMAL_FORMAT
The location of an implied decimal point is determined by the
column definition. For example, if the column definition is
DECIMAL(8,2), the value 12345 is processed as 123.45.

SQL_PACKEDDECIMAL_FORMAT
All decimal column distribution key values are in packed decimal
format.

SQL_BINARYNUMERICS_FORMAT
All numeric distribution key values are in big-endian binary
format.

pReserved1
Reserved for future use.

pReserved2
Reserved for future use.

Usage notes

Data types supported on the operating system are the same as those that can be
defined as a distribution key.

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types must be
converted to the database code page before this API is called.

For numeric and datetime data types, the character representations must be at the
code page of the respective system where the API is invoked.

If node_num is not null, the distribution map must be supplied; that is, pmaplen
field in part_info parameter (part_info->pmaplen) is either 2 or 8192. Otherwise,
SQLCODE -6038 is returned. The distribution key must be defined; that is, sqld
field in part_info parameter (part_info->sqld) must be greater than zero. Otherwise,
SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE -6039
is returned.

All the leading blanks and trailing blanks of the input character string are stripped,
except for the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types,
where only trailing blanks are stripped.

sqlugrpn - Get the database partition server number for a row

446 Administrative API Reference

sqlugtpi - Get table distribution information

Beginning with DB2 9.7, this API is deprecated. Use the db2GetDistMap (Get
distribution map) API to return the distribution information. If you call the
sqlugtpi API and the DB2_PMAP_COMPATIBILITY registry variable is set to OFF,
the error message SQL2768N is returned.

Allows an application to obtain the distribution information for a table. The
distribution information includes the distribution map and the column definitions
of the distribution key. Information returned by this API can be passed to the
sqlugrpn API to determine the database partition number and the database
partition server number for any row in the table.

To use this API, the application must be connected to the database that contains
the table for which distribution information is being requested.

Scope

This API can be executed on any database partition server defined in the
db2nodes.cfg file.

Authorization

For the table being referenced, a user must have at least one of the following:
v DATAACCESS authority
v CONTROL privilege
v SELECT privilege

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlugtpi (
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

SQL_API_RC SQL_API_FN
sqlggtpi (
unsigned short tn_length,
unsigned char * tablename,
struct sqlupi * part_info,
struct sqlca * sqlca);

sqlugtpi API parameters

tablename
The fully qualified name of the table.

part_info
A pointer to the sqlupi structure.

sqlugtpi - Get table distribution information

Chapter 5. Administrative APIs 447

pSqlca
Output. A pointer to the sqlca structure.

sqlggtpi API-specific parameters

tn_length
A 2-byte unsigned integer with the length of the table name.

sqlugtpi - Get table distribution information

448 Administrative API Reference

sqluvqdp - Quiesce table spaces for a table

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent
to update, and exclusive. There are three possible table space states resulting from
the quiesce function:
v Quiesced: SHARE
v Quiesced: UPDATE
v Quiesced: EXCLUSIVE

Scope

In a single-partition database environment, this API quiesces all table spaces
involved in a load operation in exclusive mode for the duration of the load. In a
partitioned database environment, this API acts locally on a database partition. It
quiesces only that portion of table spaces belonging to the database partition on
which the load is performed.

Authorization

One of the following:
v sysadm
v sysctrl
v sysmaint
v dbadm
v load

Required connection

Database

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqluvqdp (
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgvqdp (
unsigned short TableNameLen,
char * pTableName,
sqlint32 QuiesceMode,
void * pReserved,
struct sqlca * pSqlca);

sqluvqdp API parameters

pTableName
Input. A string containing the table name as used in the system catalog.
This may be a two-part name with the schema and the table name
separated by a period (.). If the schema is not provided, the CURRENT
SCHEMA will be used.

sqluvqdp - Quiesce table spaces for a table

Chapter 5. Administrative APIs 449

The table cannot be a system catalog table. This field is mandatory.

QuiesceMode
Input. Specifies the quiesce mode. Valid values (defined in sqlutil) are:

SQLU_QUIESCEMODE_SHARE
For share mode

SQLU_QUIESCEMODE_INTENT_UPDATE
For intent to update mode

SQLU_QUIESCEMODE_EXCLUSIVE
For exclusive mode

SQLU_QUIESCEMODE_RESET
To reset the state of the table spaces to normal if either of the
following is true:
v The caller owns the quiesce
v The caller who sets the quiesce disconnects, creating a "phantom

quiesce"

SQLU_QUIESCEMODE_RESET_OWNED
To reset the state of the table spaces to normal if the caller owns
the quiesce.

This field is mandatory.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgvqdp API-specific parameters

TableNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
table name.

Usage notes

This API is not supported for declared temporary tables.

When the quiesce share request is received, the transaction requests intent share
locks for the table spaces and a share lock for the table. When the transaction
obtains the locks, the state of the table spaces is changed to QUIESCED SHARE.
The state is granted to the quiescer only if there is no conflicting state held by
other users. The state of the table spaces is recorded in the table space table, along
with the authorization ID and the database agent ID of the quiescer, so that the
state is persistent.

The table cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces will be
allowed. When the transaction commits or rolls back, the locks are released, but
the table spaces for the table remain in QUIESCED SHARE state until the state is
explicitly reset.

When the quiesce exclusive request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table. When
the transaction obtains the locks, the state of the table spaces changes to

sqluvqdp - Quiesce table spaces for a table

450 Administrative API Reference

QUIESCED EXCLUSIVE. The state of the table spaces, along with the authorization
ID and the database agent ID of the quiescer, are recorded in the table space table.
Since the table spaces are held in super exclusive mode, no other access to the
table spaces is allowed. The user who invokes the quiesce function (the quiescer),
however, has exclusive access to the table and the table spaces.

When a quiesce update request is made, the table spaces are locked in intent
exclusive (IX) mode, and the table is locked in update (U) mode. The state of the
table spaces with the quiescer is recorded in the table space table.

There is a limit of five quiescers on a table space at any given time. Since
QUIESCED EXCLUSIVE is incompatible with any other state, and QUIESCED
UPDATE is incompatible with another QUIESCED UPDATE, the five quiescer
limit, if reached, must have at least four QUIESCED SHARE and at most one
QUIESCED UPDATE.

A quiescer can upgrade the state of a table space from a less restrictive state to a
more restrictive one (for example, S to U, or U to X). If a user requests a state
lower than one that is already held, the original state is returned. States are not
downgraded.

The quiesced state of a table space must be reset explicitly by using
SQLU_QUIESCEMODE_RESET.

REXX API syntax
QUIESCE TABLESPACES FOR TABLE table_name
{SHARE | INTENT TO UPDATE | EXCLUSIVE | RESET}

REXX API parameters

table_name
Name of the table as used in the system catalog. This may be a two-part
name with the schema and the table name separated by a period (.). If the
schema is not provided, the CURRENT SCHEMA will be used.

sqluvqdp - Quiesce table spaces for a table

Chapter 5. Administrative APIs 451

sqluvqdp - Quiesce table spaces for a table

452 Administrative API Reference

Chapter 6. Calling DB2 APIs in REXX

Use the SQLDBS routine to call DB2 APIs with the following syntax:
CALL SQLDBS 'command string'

If a DB2 API you want to use cannot be called using the SQLDBS routine, you can
still call the API by calling the DB2 command line processor (CLP) from within the
REXX application. However, because the DB2 CLP directs output either to the
standard output device or to a specified file, your REXX application cannot directly
access the output from the called DB2 API, nor can it easily make a determination
as to whether the called API is successful or not. The SQLDB2 API provides an
interface to the DB2 CLP that provides direct feedback to your REXX application
on the success or failure of each called API by setting the compound REXX
variable, SQLCA, after each call.

You can use the SQLDB2 routine to call DB2 APIs using the following syntax:
CALL SQLDB2 'command string'

where 'command string' is a string that can be processed by the command-line
processor (CLP).

Calling a DB2 API using SQLDB2 is equivalent to calling the CLP directly, except
for the following:
v The call to the CLP executable is replaced by the call to SQLDB2 (all other CLP

options and parameters are specified the same way).
v The REXX compound variable SQLCA is set after calling the SQLDB2 but is not

set after calling the CLP executable.
v The default display output of the CLP is set to off when you call SQLDB2,

whereas the display is set to on output when you call the CLP executable. Note
that you can turn the display output of the CLP to on by passing the +o or the
-o- option to the SQLDB2.

Because the only REXX variable that is set after you call SQLDB2 is the SQLCA,
you only use this routine to call DB2 APIs that do not return any data other than
the SQLCA and that are not currently implemented through the SQLDBS interface.
Thus, only the following DB2 APIs are supported by SQLDB2:
v Activate Database
v Add Node
v Bind for DB2 Version 1(1) (2)

v Bind for DB2 Version 2 or 5(1)

v Create Database at Node
v Drop Database at Node
v Drop Node Verify
v Deactivate Database
v Deregister
v Load(3)

v Load Query
v Precompile Program(1)

v Rebind Package(1)

v Redistribute Database Partition Group
v Register
v Start Database Manager

© Copyright IBM Corp. 1993, 2010 453

v Stop Database Manager

Notes on DB2 APIs Supported by SQLDB2:

1. These commands require a CONNECT statement through the SQLDB2
interface. Connections using the SQLDB2 interface are not accessible to the
SQLEXEC interface and connections using the SQLEXEC interface are not
accessible to the SQLDB2 interface.

2. Is supported on Windows-based platforms through the SQLDB2 interface.
3. The optional output parameter, poLoadInfoOut for the Load API is not returned

to the application in REXX.

Note: Although the SQLDB2 routine is intended to be used only for the DB2 APIs
listed above, it can also be used for other DB2 APIs that are not supported through
the SQLDBS routine. Alternatively, the DB2 APIs can be accessed through the CLP
from within the REXX application.

Calling DB2 APIs in REXX

454 Administrative API Reference

Change Isolation Level

Changes the way that DB2 isolates data from other processes while a database is
being accessed. This API can only be called from a REXX application.

Authorization

None

Required connection

None

REXX API syntax
CHANGE SQLISL TO {RR|CS|UR|RS|NC}

REXX API parameters

RR Repeatable read.

CS Cursor stability. This is the default.

UR Uncommitted read.

RS Read stability.

NC No commit.

Change Isolation Level

Chapter 6. REXX APIs 455

Change Isolation Level

456 Administrative API Reference

Chapter 7. Indoubt transaction management APIs

There may be times where it is useful to be able to query, commit, and roll back
indoubt transactions without waiting for the Transaction Manager (TM) to perform
a re-sync action. This situation may arise, for example, if the communication line is
broken, and an indoubt transaction is tying up needed resources.

A set of APIs is provided for tool writers to perform heuristic functions on indoubt
transactions when the resource owner (such as the database administrator) cannot
wait for the TM to perform the re-sync operation. For the database manager, these
resources include locks on tables and indexes, log space, and storage used by the
transaction. Each indoubt transaction also decreases by one the maximum number
of concurrent transactions that could be processed by the database manager.

The heuristic APIs have the capability to query, commit, and roll back indoubt
transactions, and to cancel transactions that have been heuristically committed or
rolled back, by removing the log records and releasing log pages.

Attention: The heuristic APIs should be used with caution and only as a last
resort. The TM should drive the re-sync events. If the TM has an operator
command to start the re-sync action, it should be used. If the user cannot wait for
a TM-initiated re-sync, heuristic actions are necessary.

Although there is no set way to perform these actions, the following guidelines
may be helpful:
v Use the db2XaListIndTrans function to display the indoubt transactions. They

have a status = 'P' (prepared), and are not connected. The gtrid portion of an xid
is the global transaction ID that is identical to that in other resource managers
(RM) that participate in the global transaction.

v Use knowledge of the application and the operating environment to identify the
other participating RMs.

v If the transaction manager is CICS®, and the only RM is a CICS resource,
perform a heuristic rollback.

v If the transaction manager is not CICS, use it to determine the status of the
transaction that has the same gtrid as does the indoubt transaction.

v If at least one RM has committed or rolled back, perform a heuristic commit or a
rollback.

v If they are all in the prepared state, perform a heuristic rollback.
v If at least one RM is not available, perform a heuristic rollback.

If the transaction manager is available, and the indoubt transaction is due to the
RM not being available in the second phase, or in an earlier re-sync, the DBA
should determine from the TM's log what action has been taken against the other
RMs, and then do the same. The gtrid is the matching key between the TM and the
RMs.

Do not execute sqlxhfrg unless a heuristically committed or rolled back transaction
happens to cause a log full condition. The forget function releases the log space
occupied by this indoubt transaction. If a transaction manager eventually performs
a re-sync action for this indoubt transaction, the TM could make the wrong
decision to commit or to roll back other RMs, because no record was found in this

© Copyright IBM Corp. 1993, 2010 457

RM. In general, a missing record implies that the RM has rolled back.

Indoubt transaction management APIs

458 Administrative API Reference

db2XaGetInfo - Get information for a resource manager

Extracts information for a particular resource manager once an xa_open call has
been made.

Authorization

Instance - SPM name connection

Required Connection

Database

API include file
sqlxa.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2XaGetInfo(db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2XaGetInfoStruct
{

db2int32 iRmid;
struct sqlca oLastSqlca;

} db2XaGetInfoStruct;

db2XaGetInfo API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2XaGetInfoStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2XaGetInfoStruct data structure parameters

iRmid
Input. Specifies the resource manager for which information is required.

oLastSqlca
Output. Contains the sqlca for the last XA API call.

Note: Only the sqlca that resulted from the last failing XA API can be
retrieved.

db2XaGetInfo - Get information for a resource manager

Chapter 7. Heuristic APIs 459

db2XaListIndTrans - List indoubt transactions

Provides a list of all indoubt transactions for the currently connected database.

Scope

This API only affects the database partition on which it is issued.

Authorization

None

Required connection

Database

API include file
sqlxa.h

API and data structure syntax
SQL_API_RC SQL_API_FN

db2XaListIndTrans (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2XaListIndTransStruct
{

db2XaRecoverStruct * piIndoubtData;
db2Uint32 iIndoubtDataLen;
db2Uint32 oNumIndoubtsReturned;
db2Uint32 oNumIndoubtsTotal;
db2Uint32 oReqBufferLen;

} db2XaListIndTransStruct;

typedef SQL_STRUCTURE db2XaRecoverStruct{
sqluint32 timestamp;
SQLXA_XID xid;
char dbalias[SQLXA_DBNAME_SZ];
char applid[SQLXA_APPLID_SZ];
char sequence_no[SQLXA_SEQ_SZ];
char auth_id[SQLXA_USERID_SZ];
char log_full;
char connected;
char indoubt_status;
char originator;
char reserved[8];
sqluint32 rmn;
rm_entry rm_list[SQLXA_MAX_FedRM];
} db2XaRecoverStruct;

typedef SQL_STRUCTURE rm_entry
{

char name[SQLQG_MAX_SERVER_NAME_LEN];
SQLXA_XID xid;

} rm_entry;

db2XaListIndTrans - List indoubt transactions

460 Administrative API Reference

db2XaListIndTrans API parameters

versionNumber
Input. Specifies the version and release level of the structure passed in as
the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2XaListIndTransStruct structure.

pSqlca
Output. A pointer to the sqlca structure.

db2XaListIndTransStruct data structure parameters

piIndoubtData
Input. A pointer to the application supplied buffer where indoubt data will
be returned. The indoubt data is in db2XaRecoverStruct format. The
application can traverse the list of indoubt transactions by using the size of
the db2XaRecoverStruct structure, starting at the address provided by this
parameter.

If the value is NULL, DB2 will calculate the size of the buffer required and
return this value in oReqBufferLen. oNumIndoubtsTotal will contain the
total number of indoubt transactions. The application may allocate the
required buffer size and issue the API again.

iIndoubtDataLen
Input. Size of the buffer pointed to by piIndoubtData parameter in bytes.

oNumIndoubtsReturned
Output. The number of indoubt transaction records returned in the buffer
specified by pIndoubtData.

oNumIndoubtsTotal
Output. The Total number of indoubt transaction records available at the
time of API invocation. If the piIndoubtData buffer is too small to contain
all the records, oNumIndoubtsTotal will be greater than the total for
oNumIndoubtsReturned. The application may reissue the API in order to
obtain all records.

Note: This number may change between API invocations as a result of
automatic or heuristic indoubt transaction resynchronization, or as a result
of other transactions entering the indoubt state.

oReqBufferLen
Output. Required buffer length to hold all indoubt transaction records at
the time of API invocation. The application can use this value to determine
the required buffer size by calling the API with pIndoubtData set to NULL.
This value can then be used to allocate the required buffer, and the API
can be issued with pIndoubtData set to the address of the allocated buffer.

Note: The required buffer size may change between API invocations as a
result of automatic or heuristic indoubt transaction resynchronization, or as
a result of other transactions entering the indoubt state. The application
may allocate a larger buffer to account for this.

db2XaRecoverStruct data structure parameters

timestamp
Output. Specifies the time when the transaction entered the indoubt state.

db2XaListIndTrans - List indoubt transactions

Chapter 7. Heuristic APIs 461

xid Output. Specifies the XA identifier assigned by the transaction manager to
uniquely identify a global transaction.

dbalias
Output. Specifies the alias of the database where the indoubt transaction is
found.

applid
Output. Specifies the application identifier assigned by the database
manager for this transaction.

sequence_no
Output. Specifies the sequence number assigned by the database manager
as an extension to the applid.

auth_id
Output. Specifies the authorization ID of the user who ran the transaction.

log_full
Output. Indicates whether or not this transaction caused a log full
condition. Valid values are:

SQLXA_TRUE
This indoubt transaction caused a log full condition.

SQLXA_FALSE
This indoubt transaction did not cause a log full condition.

connected
Indicates whether an application is connected.

Possible values for CONNECTED (defined in sqlxa) are:

SQLXA_TRUE
True. The transaction is undergoing normal syncpoint processing,
and is waiting for the second phase of the two-phase commit.

SQLXA_FALSE
False. The transaction was left indoubt by an earlier failure, and is
now waiting for re-sync from a transaction manager.

indoubt_status
Output. Indicates the status of this indoubt transaction. Valid values are:

- SQLXA_TS_PREP
The transaction is prepared. The connected parameter can be used
to determine whether the transaction is waiting for the second
phase of normal commit processing or whether an error occurred
and resynchronization with the transaction manager is required.

- SQLXA_TS_HCOM
The transaction has been heuristically committed.

- SQLXA_TS_HROL
The transaction has been heuristically rolled back.

- SQLXA_TS_MACK
The transaction is missing commit acknowledgement from a node
in a partitioned database.

- SQLXA_TS_END
The transaction has ended at this database. This transaction may be
re-activated, committed, or rolled back at a later time. It is also
possible that the transaction manager encountered an error and the

db2XaListIndTrans - List indoubt transactions

462 Administrative API Reference

transaction will not be completed. If this is the case, this
transaction requires heuristic actions, because it may be holding
locks and preventing other applications from accessing data.

When the originator parameter is set to the value SQLXA_ORIG_FXA,
valid values for the indoubt_status parameter (defined in sqlxa.h located in
the include directory) are:

SQLXA_TS_MFCACK
Indicates that the transaction is missing commit acknowledgement
from one or more federated data sources.

SQLXA_TS_MFRACK
Indicates that the transaction is missing rollback acknowledgement
from one or more federated data sources.

originator
Identifies the origin of an indoubt transaction.

Possible values for ORIGINATOR (defined in sqlxa.h located in the include
directory) are:

SQLXA_ORIG_PE
Transaction originated by DB2 in MPP environment.

SQLXA_ORIG_XA
Transaction originated by XA.

SQLXA_ORIG_FXA
Transaction originated in the second phase of the federated
two-phase commit process. It indicates that this transaction has
entered the second phase of the two-phase commit protocol,
however one or more federated data sources cannot complete the
second phase or cannot communicate with the federated server.

reserved
The first byte is used to indicate the type of indoubt transaction: 0
indicates RM, and 1 indicates TM.

rmn Output. Number of federated data sources that failed to commit or
rollback a transaction.

rm_list
Output. List of failed federated data source entries, each of which contains
a server name and a xid.

rm_entry data structure parameters

name Output. Name of a federated data source.

xid Output. Specifies the XA identifier assigned by the federated database to a
federated data source to uniquely identify a federated transaction.

Usage notes

SQLXA_MAX_FEDRM is defined to be 16. Most federated transactions involve less
than 10 data sources. If more than 16 federated data sources fail to commit or
rollback in a transaction, only 16 of them will be returned by the
db2XaListIndTrans API for this indoubt transaction. For a non-federated indoubt
transaction, rmn parameter will be set to 0, indicating that the indoubt transaction
involves no federated data sources.

db2XaListIndTrans - List indoubt transactions

Chapter 7. Heuristic APIs 463

If a federated indoubt transaction involves more than 16 failed federated data
sources, when the heuristic processing is invoked, all the data sources (regardless
of whether they are returned by the db2XaListIndTrans API) will commit or roll
back the indoubt transaction. Any federated data source that successfully
committed or rolled back the indoubt transaction will be removed from the list of
failed federated data sources for the federated indoubt transaction. On the next call
to the db2XaListIndTrans API, only federated data sources that still failed to
commit or roll back the indoubt transaction will remain in the list for the federated
indoubt transaction.

To obtain the list of data sources in a federated indoubt transaction, you must
compile applications using DB2 Version 9.1 header files and pass in a version
number db2Version900 or higher (for later releases) to the db2XaListIndTrans API.
If you pass in a lower version number, the API will still return a list of indoubt
transactions, but federated data source information will be excluded. Regardless,
the version of the header file used by the application must be in sync with the
version number passed to the API. Otherwise, the results will be unpredictable.

A typical application will perform the following steps after setting the current
connection to the database or to the partitioned database coordinator node:
1. Call db2XaListIndTrans with piIndoubtData set to NULL. This will return

values in oReqBufferLen and oNumIndoubtsTotal.
2. Use the returned value in oReqBufferLen to allocate a buffer. This buffer may

not be large enough if there are additional indoubt transactions because the
initial invocation of this API to obtain oReqBufferLen. The application may
provide a buffer larger than oReqBufferLen.

3. Determine if all indoubt transaction records have been obtained. This can be
done by comparing oNumIndoubtsReturned to oNumIndoubtsTotal. If
oNumIndoubtsTotal is greater than oNumIndoubtsReturned, the application
can repeat the above steps.

db2XaListIndTrans - List indoubt transactions

464 Administrative API Reference

sqlxhfrg - Forget transaction status

Permits the resource manager to release resources held by a heuristically
completed transaction (that is, one that has been committed or rolled back
heuristically). You might call this API after heuristically committing or rolling back
an indoubt XA transaction.

Authorization

None

Required connection

Database

API include file
sqlxa.h

API and data structure syntax
extern int SQL_API_FN sqlxhfrg(

SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

sqlxhfrg API parameters

pTransId
Input. XA identifier of the transaction to be heuristically forgotten, or
removed from the database log.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

Only transactions with a status of heuristically committed or rolled back can have
the FORGET operation applied to them.

sqlxhfrg - Forget transaction status

Chapter 7. Heuristic APIs 465

sqlxphcm - Commit an indoubt transaction

Commits an indoubt transaction (that is, a transaction that is prepared to be
committed). If the operation succeeds, the transaction's state becomes heuristically
committed.

Scope

This API only affects the node on which it is issued.

Authorization

None

Required connection

Database

API include file
sqlxa.h

API and data structure syntax
extern int SQL_API_FN sqlxphcm(

int exe_type,
SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

sqlxphcm API parameters

exe_type
Input. If EXE_THIS_NODE is specified, the operation is executed only at
this node.

pTransId
Input. XA identifier of the transaction to be heuristically committed.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

Only transactions with a status of prepared can be committed. Once heuristically
committed, the database manager remembers the state of the transaction until the
sqlxhfrg API is called.

sqlxphcm - Commit an indoubt transaction

466 Administrative API Reference

sqlxphrl - Roll back an indoubt transaction

Rolls back an indoubt transaction (that is, a transaction that has been prepared). If
the operation succeeds, the transaction's state becomes heuristically rolled back.

Scope

This API only affects the node on which it is issued.

Authorization

None

Required connection

Database

API include file
sqlxa.h

API and data structure syntax
extern int SQL_API_FN sqlxphrl(

int exe_type,
SQLXA_XID *pTransId,
struct sqlca *pSqlca
);

sqlxphrl API parameters

exe_type
Input. If EXE_THIS_NODE is specified, the operation is executed only at
this node.

pTransId
Input. XA identifier of the transaction to be heuristically rolled back.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

Only transactions with a status of prepared or idle can be rolled back. Once
heuristically rolled back, the database manager remembers the state of the
transaction until the sqlxhfrg API is called.

sqlxphrl - Roll back an indoubt transaction

Chapter 7. Heuristic APIs 467

468 Administrative API Reference

Chapter 8. Threaded applications with concurrent access

© Copyright IBM Corp. 1993, 2010 469

sqleAttachToCtx - Attach to context

Makes the current thread use a specified context. All subsequent database calls
made on this thread will use this context. If more than one thread is attached to a
given context, access is serialized for these threads, and they share a commit scope.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleAttachToCtx (
void * pCtx,
void * reserved,
struct sqlca * pSqlca);

sqleAttachToCtx API parameters

pCtx Input. A valid context previously allocated by sqleBeginCtx.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqleAttachToCtx - Attach to context

470 Administrative API Reference

sqleBeginCtx - Create and attach to an application context

Creates an application context, or creates and then attaches to an application
context. More than one application context can be created. Each context has its
own commit scope. Different threads can attach to different contexts (see the
sqleAttachToCtx API). Any database API calls made by such threads will not be
serialized with one another.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleBeginCtx (
void ** ppCtx,
sqlint32 lOptions,
void * reserved,
struct sqlca * pSqlca);

sqleBeginCtx API parameters

ppCtx Output. A data area allocated out of private memory for the storage of
context information.

lOptions
Input. Valid values are:

SQL_CTX_CREATE_ONLY
The context memory will be allocated, but there will be no
attachment.

SQL_CTX_BEGIN_ALL
The context memory will be allocated, and then a call to
sqleAttachToCtx will be made for the current thread. If this option
is used, the ppCtx parameter can be NULL. If the thread is already
attached to a context, the call will fail.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqleBeginCtx - Create and attach to an application context

Chapter 8. Threaded applications with concurrent access 471

sqleDetachFromCtx - Detach from context

Detaches the context being used by the current thread. The context will be
detached only if an attach to that context has previously been made.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleDetachFromCtx (
void * pCtx,
void * reserved,
struct sqlca * pSqlca);

sqleDetachFromCtx API parameters

pCtx Input. A valid context previously allocated by sqleBeginCtx.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqleDetachFromCtx - Detach from context

472 Administrative API Reference

sqleEndCtx - Detach from and free the memory associated with an
application context

Frees all memory associated with a given context.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleEndCtx (
void ** ppCtx,
sqlint32 lOptions,
void * reserved,
struct sqlca * pSqlca);

sqleEndCtx API parameters

ppCtx Output. A data area in private memory (used for the storage of context
information) that is freed.

lOptions
Input. Valid values are:

SQL_CTX_FREE_ONLY
The context memory will be freed only if a prior detach has been
done.

Note: pCtx must be a valid context previously allocated by
sqleBeginCtx.

SQL_CTX_END_ALL
If necessary, a call to sqleDetachFromCtx will be made before the
memory is freed.

Note: A detach will be done even if the context is still in use. If
this option is used, the ppCtx parameter can be NULL, but if
passed, it must be a valid context previously allocated by
sqleBeginCtx. A call to sqleGetCurrentCtx will be made, and the
current context freed from there.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqleEndCtx - Detach from and free the memory associated with an application context

Chapter 8. Threaded applications with concurrent access 473

Usage notes

If a database connection exists, or the context has been attached by another thread,
this call will fail.

Note: If a context calls an API that establishes an instance attachment (for
example, db2CfgGet, it is necessary to detach from the instance using sqledtin
before calling sqleEndCtx.

sqleEndCtx - Detach from and free the memory associated with an application context

474 Administrative API Reference

sqleGetCurrentCtx - Get current context

Returns the current context associated with a thread.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleGetCurrentCtx (
void ** ppCtx,
void * reserved,
struct sqlca * pSqlca);

sqleGetCurrentCtx API parameters

ppCtx Output. A data area allocated out of private memory for the storage of
context information.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqleGetCurrentCtx - Get current context

Chapter 8. Threaded applications with concurrent access 475

sqleInterruptCtx - Interrupt context

Interrupts the specified context.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

Database

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleInterruptCtx (
void * pCtx,
void * reserved,
struct sqlca * pSqlca);

sqleInterruptCtx API parameters

pCtx Input. A valid context previously allocated by sqleBeginCtx.

reserved
Reserved for future use. Must be set to NULL.

pSqlca
Output. A pointer to the sqlca structure.

Usage notes

During processing, this API:
v Switches to the context that has been passed in
v Sends an interrupt
v Switches to the original context
v Exits.

sqleInterruptCtx - Interrupt context

476 Administrative API Reference

sqleSetTypeCtx - Set application context type

Sets the application context type. This API should be the first database API called
inside an application.

Scope

The scope of this API is limited to the immediate process.

Authorization

None

Required connection

None

API include file
sql.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleSetTypeCtx (
sqlint32 lOptions);

sqleSetTypeCtx API parameters

lOptions
Input. Valid values are:

SQL_CTX_ORIGINAL
All threads will use the same context, and concurrent access will be
blocked. This is the default if none of these APIs is called.

SQL_CTX_MULTI_MANUAL
All threads will use separate contexts, and it is up to the
application to manage the context for each thread. See
v sqleBeginCtx API
v sqleAttachToCtx API
v sqleDetachFromCtx API
v sqleEndCtx API

The following restrictions/changes apply when this option is used:
v When termination is normal, automatic COMMIT at process

termination is disabled. All outstanding transactions are rolled
back, and all COMMITs must be done explicitly.

v sqleintr API interrupts all contexts. To interrupt a specific
context, use sqleInterruptCtx.

Usage notes

This API must be called before any other database call, and only the first call is
effective.

sqleSetTypeCtx - Set application context type

Chapter 8. Threaded applications with concurrent access 477

sqleSetTypeCtx - Set application context type

478 Administrative API Reference

Chapter 9. DB2 database system plug-ins for customizing
database management

DB2 database products come with plug-in interfaces that you and third-party
vendors can use to customize certain database management functions.

Currently, DB2 database systems have three types of plug-ins:
v Security plug-ins for customizing DB2 database system authentication and group

membership lookup behavior
v Backup and restore plug-ins for backing up and restoring data onto devices that

are not supported by backup and restore facilities provided by DB2 database
systems

v Compression plug-in for compressing and decompressing backup images

The functionalities provided through the above three plug-ins come with DB2
database system products, however if you want to customize or augment DB2
database system behavior then you can write your own plug-in or purchase one
from a vendor.

Each plug-in is a dynamically loadable library of APIs and data structures. The
prototypes for the APIs and data structures are provided by DB2 database systems
and the implementation is provided by the vendor. DB2 database systems provide
the implementations for some of the APIs and data structures. For a list of plug-in
APIs and data structures that are implemented by DB2 database systems, refer to
the individual plug-in topic. The implementation is in the form of a shared library
on UNIX systems and a DLL on Windows platforms. For the actual location of
where DB2 database systems look for a particular plug-in, refer to the individual
plug-in topic.

A plug-in API differs from a DB2 API (for example, db2Export, db2Backup) in two
ways. First, the implementation for a plug-in API, in most cases, is provided by the
vendor. Whereas the implementation for a DB2 API is provided by DB2. Second, a
plug-in API is called by DB2 whereas a DB2 API is called by the user from a client
application. So if a plug-in API topic lists a parameter as input then it means that
DB2 fills in a value for the parameter and if the parameter is listed as output then
the vendor's implementation of the API is responsible for filling in a value for the
parameter.

Enabling plug-ins

Deploying a group retrieval plug-in
To customize the DB2 security system's group retrieval behavior, you can develop
your own group retrieval plug-in or buy one from a third party.

After you acquire a group retrieval plug-in that is suitable for your database
management system, you can deploy it.
v To deploy a group retrieval plug-in on the database server, perform the

following steps:
1. Copy the group retrieval plug-in library into the server's group plug-in

directory.

© Copyright IBM Corp. 1993, 2010 479

2. Update the database manager configuration parameter group_plugin with the
name of the plug-in.

v To deploy a group retrieval plug-in on database clients, perform the following
steps:
1. Copy the group retrieval plug-in library in the client's group plug-in

directory.
2. On the database client, update the database manager configuration

parameter group_plugin with the name of the plug-in.

Deploying a user ID/password plug-in
To customize the DB2 security system's user ID/password authentication behavior,
you can develop your own user ID/password authentication plug-ins or buy one
from a third party.

Depending on their intended usage, all user ID-password based authentication
plug-ins must be placed in either the client plug-in directory or the server plug-in
directory. If a plug-in is placed in the client plug-in directory, it will be used both
for local authorization checking and for validating the client when it attempts to
connect with the server. If the plug-in is placed in the server plug-in directory, it
will be used for handling incoming connections to the server and for checking
whether an authorization ID exists and is valid whenever the GRANT statement is
issued without specifying either the keyword USER or GROUP. In most situations,
user ID/password authentication requires only a server-side plug-in. It is possible,
though generally deemed less useful, to have only a client user ID/password
plug-in. It is possible, though quite unusual to require matching user ID/password
plug-ins on both the client and the server.

Note: You must stop the DB2 server or any applications using the plug-ins before
you deploy a new version of an existing plug-in. Undefined behavior including
traps will occur if a process is still using a plug-in when a new version (with the
same name) is copied over it. This restriction is not in effect when you deploy a
plugin for the first time or when the plug-in is not in use.

After you acquire user ID/password authentication plug-ins that are suitable for
your database management system, you can deploy them.
v To deploy a user ID/password authentication plug-in on the database server,

perform the following steps on the database server:
1. Copy the user ID/password authentication plug-in library in the server

plug-in directory.
2. Update the database manager configuration parameter srvcon_pw_plugin with

the name of the server plug-in. This plug-in is used by the server when it is
handling CONNECT and ATTACH requests.

3. Either:
– Set the database manager configuration parameter srvcon_auth to the

CLIENT, SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or
DATA_ENCRYPT_CMP authentication type. Or:

– Set the database manager configuration parameter srvcon_auth to
NOT_SPECIFIED and set authentication to CLIENT, SERVER,
SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP
authentication type.

v To deploy a user ID/password authentication plug-in on database clients,
perform the following steps on each client:

Deploying a group retrieval plug-in

480 Administrative API Reference

1. Copy the user ID/password authentication plug-in library in the client
plug-in directory.

2. Update the database manager configuration parameter clnt_pw_plugin with
the name of the client plug-in. This plug-in is loaded and called regardless of
where the authentication is being done, not only when the database
configuration parameter, authentication is set to CLIENT.

v For local authorization on a client, server, or gateway using a user ID/password
authentication plug-in, perform the following steps on each client, server, or
gateway:
1. Copy the user ID/password authentication plug-in library in the client

plug-in directory on the client, server, or gateway.
2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the plug-in.
3. Set the authentication database manager configuration parameter to CLIENT,

SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

Deploying a GSS-API plug-in
To customize the DB2 security system's authentication behavior, you can develop
your own authentication plug-ins using the GSS-API, or buy one from a third
party.

In the case of plug-in types other than Kerberos, you must have matching plug-in
names on the client and the server along with the same plug-in type. The plug-ins
on the client and server need not be from the same vendor, but they must generate
and consume compatible GSS-API tokens. Any combination of Kerberos plug-ins
deployed on the client and the server is acceptable since Kerberos plug-ins are
standardized. However, different implementations of less standardized GSS-API
mechanisms, such as x.509 certificates, might only be partially compatible with
DB2 database systems. Depending on their intended usage, all GSS-API
authentication plug-ins must be placed in either the client plug-in directory or the
server plug-in directory. If a plug-in is placed in the client plug-in directory, it will
be used for local authorization checking and when a client attempts to connect
with the server. If the plug-in is placed in the server plug-in directory, it will be
used for handling incoming connections to the server and for checking whether an
authorization ID exists and is valid whenever the GRANT statement is issued
without specifying either the keyword USER or GROUP.

Note: You must stop the DB2 server or any applications using the plug-ins before
you deploy a new version of an existing plug-in. Undefined behavior including
traps will occur if a process is still using a plug-in when a new version (with the
same name) is copied over it. This restriction is not in effect when you deploy a
plugin for the first time or when the plug-in is not in use.

After you acquire GSS-API authentication plug-ins that are suitable for your
database management system, you can deploy them.
v To deploy a GSS-API authentication plug-in on the database server, perform the

following steps on the server:
1. Copy the GSS-API authentication plug-in library in the server plug-in

directory. You can copy numerous GSS-API plug-ins into this directory.
2. Update the database manager configuration parameter srvcon_gssplugin_list

with an ordered, comma-delimited list of the names of the plug-ins installed
in the GSS-API plug-in directory.

3. Either:

Deploying a user ID/password plug-in

Chapter 9. DB2 database system plug-ins for customizing database management 481

– Setting the database manager configuration parameter srvcon_auth to
GSSPLUGIN or GSS_SERVER_ENCRYPT is a way to enable the server to
use GSSAPI PLUGIN authentication method. Or:

– Setting the database manager configuration parameter srvcon_auth to
NOT_SPECIFIED and setting authentication to GSSPLUGIN or
GSS_SERVER_ENCRYPT is a way to enable the server to use GSSAPI
PLUGIN authentication method.

v To deploy a GSS-API authentication plug-in on database clients, perform the
following steps on each client:
1. Copy the GSS-API authentication plug-in library in the client plug-in

directory. You can copy numerous GSS-API plug-ins into this directory. The
client selects a GSS-API plug-in for authentication during a CONNECT or
ATTACH operation by picking the first GSS-API plug-in contained in the
server's plug-in list that is available on the client.

2. Optional: Catalog the databases that the client will access, indicating that the
client will only accept a GSS-API authentication plug-in as the authentication
mechanism. For example:
CATALOG DB testdb AT NODE testnode AUTHENTICATION GSSPLUGIN

v For local authorization on a client, server, or gateway using a GSS-API
authentication plug-in, perform the following steps:
1. Copy the GSS-API authentication plug-in library in the client plug-in

directory on the client, server, or gateway.
2. Update the database manager configuration parameter local_gssplugin with

the name of the plug-in.
3. Set the authentication database manager configuration parameter to

GSSPLUGIN, or GSS_SERVER_ENCRYPT.

Deploying a Kerberos plug-in
To customize the DB2 security system's Kerberos authentication behavior, you can
develop your own Kerberos authentication plug-ins or buy one from a third party.
Note that the Kerberos security plug-in will not support IPv6.

Note: You must stop the DB2 server or any applications using the plug-ins before
you deploy a new version of an existing plug-in. Undefined behavior including
traps will occur if a process is still using a plug-in when a new version (with the
same name) is copied over it. This restriction is not in effect when you deploy a
plugin for the first time or when the plug-in is not in use.

After you acquire Kerberos authentication plug-ins that are suitable for your
database management system, you can deploy them.
v To deploy a Kerberos authentication plug-in on the database server, perform the

following steps on the server:
1. Copy the Kerberos authentication plug-in library in the server plug-in

directory.
2. Update the database manager configuration parameter

srvcon_gssplugin_list, which is presented as an ordered, comma delimited
list, to include the Kerberos server plug-in name. Only one plug-in in this list
can be a Kerberos plug-in. If this list is blank and authentication is set to
KERBEROS or KRB_SVR_ENCRYPT, the default DB2 Kerberos plug-in:
IBMkrb5 will be used.

3. If necessary, set the srvcon_auth database manager configuration parameter
to override the current authentication type. If the srvcon_auth database

Deploying a GSS-API plug-in

482 Administrative API Reference

manager configuration parameter is not set, the DB2 database manager uses
the value of the authentication configuration parameter. If the authentication
configuration parameter is currently set to any of the following
authentication types, you can deploy and use a Kerberos plug-in:
– KERBEROS
– KRB_SERVER_ENCRYPT
– GSSPLUGIN
– GSS_SERVER_ENCRYPT

If you need to override the current authentication type, set the srvcon_auth
configuration parameter to one of the following authentication types:
– KERBEROS
– KRB_SERVER_ENCRYPT
– GSSPLUGIN
– GSS_SERVER_ENCRYPT

v To deploy a Kerberos authentication plug-in on database clients, perform the
following steps on each client:
1. Copy the Kerberos authentication plug-in library in the client plug-in

directory.
2. Update the database manager configuration parameter clnt_krb_plugin with

the name of the Kerberos plug-in. If clnt_krb_plugin is blank, DB2 assumes
that the client cannot use Kerberos authentication. This setting is only
appropriate when the server cannot support plug-ins. If both the server and
the client support security plug-ins, the default server plug-in, IBMkrb5
would be used over the client value of clnt_krb_plugin. For local
authorization on a client, server, or gateway using a Kerberos authentication
plug-in, perform the following steps:
a. Copy the Kerberos authentication plug-in library in the client plug-in

directory on the client, server, or gateway.
b. Update the database manager configuration parameter clnt_krb_plugin

with the name of the plug-in.
c. Set the authentication database manager configuration parameter to

KERBEROS, or KRB_SERVER_ENCRYPT.
3. Optional: Catalog the databases that the client will access, indicating that the

client will only use a Kerberos authentication plug-in. For example:
CATALOG DB testdb AT NODE testnode AUTHENTICATION KERBEROS

TARGET PRINCIPAL service/host@REALM

Note: For platforms supporting Kerberos, the IBMkrb5 library will be present in the
client plug-in directory. The DB2 database manager recognizes this library as a
valid GSS-API plug-in, because Kerberos plug-ins are implemented using GSS-API
plug-in.

Writing security plug-ins

How DB2 loads security plug-ins
So that the DB2 database system has the necessary information to call security
plug-in functions, a security plug-in must have a correctly set up initialization
function.

Each plug-in library must contain an initialization function with a specific name
determined by the plug-in type:

Deploying a Kerberos plug-in

Chapter 9. DB2 database system plug-ins for customizing database management 483

v Server side authentication plug-in: db2secServerAuthPluginInit()
v Client side authentication plug-in: db2secClientAuthPluginInit()
v Group plug-in: db2secGroupPluginInit()

This function is known as the plug-in initialization function. The plug-in
initialization function initializes the specified plug-in and provides DB2 with
information that it requires to call the plug-in's functions. The plug-in initialization
function accepts the following parameters:
v The highest version number of the function pointer structure that the DB2

instance invoking the plugin can support
v A pointer to a structure containing pointers to all the APIs requiring

implementation
v A pointer to a function that adds log messages to the db2diag log files
v A pointer to an error message string
v The length of the error message

The following is a function signature for the initialization function of a group
retrieval plug-in:

SQL_API_RC SQL_API_FN db2secGroupPluginInit(
db2int32 version,
void *group_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

Note: If the plug-in library is compiled as C++, all functions must be declared
with: extern "C". DB2 relies on the underlying operating system dynamic loader
to handle the C++ constructors and destructors used inside of a C++ user-written
plug-in library.

The initialization function is the only function in the plug-in library that uses a
prescribed function name. The other plug-in functions are referenced through
function pointers returned from the initialization function. Server plug-ins are
loaded when the DB2 server starts. Client plug-ins are loaded when required on
the client. Immediately after DB2 loads a plug-in library, it will resolve the location
of this initialization function and call it. The specific task of this function is as
follows:
v Cast the functions pointer to a pointer to an appropriate functions structure
v Fill in the pointers to the other functions in the library
v Fill in the version number of the function pointer structure being returned

DB2 can potentially call the plug-in initialization function more than once. This
situation can occur when an application dynamically loads the DB2 client library,
unloads it, and reloads it again, then performs authentication functions from a
plug-in both before and after reloading. In this situation, the plug-in library might
not be unloaded and then re-loaded; however, this behavior varies depending on
the operating system.

Another example of DB2 issuing multiple calls to a plug-in initialization function
occurs during the execution of stored procedures or federated system calls, where
the database server can itself act as a client. If the client and server plug-ins on the
database server are in the same file, DB2 could call the plug-in initialization
function twice.

How DB2 loads security plug-ins

484 Administrative API Reference

If the plug-in detects that db2secGroupPluginInit is called more than once, it
should handle this event as if it was directed to terminate and reinitialize the
plug-in library. As such, the plug-in initialization function should do the entire
cleanup tasks that a call to db2secPluginTerm would do before returning the set of
function pointers again.

On a DB2 server running on a UNIX or Linux-based operating system, DB2 can
potentially load and initialize plug-in libraries more than once in different
processes.

How DB2 loads security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 485

Restrictions for developing security plug-in libraries
There are certain restrictions that affect how you develop plug-in libraries.

Following are the restrictions for developing plug-in libraries.

C-linkage
Plug-in libraries must be linked with C-linkage. Header files providing the
prototypes, data structures needed to implement the plug-ins, and error
code definitions are provided for C/C++ only. Functions that DB2 will
resolve at load time must be declared with extern "C" if the plug-in library
is compiled as C++.

.NET common language runtime is not supported
The .NET common language runtime (CLR) is not supported for compiling
and linking source code for plug-in libraries.

Signal handlers
Plug-in libraries must not install signal handlers or change the signal mask,
because this will interfere with DB2's signal handlers. Interfering with the
DB2 signal handlers could seriously interfere with DB2's ability to report
and recover from errors, including traps in the plug-in code itself. Plug-in
libraries should also never throw C++ exceptions, as this can also interfere
with DB2's error handling.

Thread-safe
Plug-in libraries must be thread-safe and re-entrant. The plug-in
initialization function is the only API that is not required to be re-entrant.
The plug-in initialization function could potentially be called multiple
times from different processes; in which case, the plug-in will cleanup all
used resources and reinitialize itself.

Exit handlers and overriding standard C library and operating system calls
Plug-in libraries should not override standard C library or operating
system calls. Plug-in libraries should also not install exit handlers or
pthread_atfork handlers. The use of exit handlers is not recommended
because they could be unloaded before the program exits.

Library dependencies
On Linux or UNIX, the processes that load the plug-in libraries can be
setuid or setgid, which means that they will not be able to rely on the
$LD_LIBRARY_PATH, $SHLIB_PATH, or $LIBPATH environment variables to find
dependent libraries. Therefore, plug-in libraries should not depend on
additional libraries, unless any dependant libraries are accessible through
other methods, such as the following:
v By being in /lib or /usr/lib

v By having the directories they reside in being specified OS-wide (such as
in the ld.so.conf file on Linux)

v By being specified in the RPATH in the plug-in library itself

This restriction is not applicable to Windows operating systems.

Symbol collisions
When possible, plug-in libraries should be compiled and linked with any
available options that reduce the likelihood of symbol collisions, such as
those that reduce unbound external symbolic references. For example, use
of the "-Bsymbolic" linker option on HP, Solaris, and Linux can help
prevent problems related to symbol collisions. However, for plug-ins
written on AIX, do not use the "-brtl" linker option explicitly or
implicitly.

Restrictions for developing security plug-in libraries

486 Administrative API Reference

32-bit and 64-bit applications
32-bit applications must use 32-bit plug-ins. 64-bit applications must use
64-bit plug-ins. Refer to the topic about 32-bit and 64-bit considerations for
more details.

Text strings
Input text strings are not guaranteed to be null-terminated, and output
strings are not required to be null-terminated. Instead, integer lengths are
given for all input strings, and pointers to integers are given for lengths to
be returned.

Passing authorization ID parameters
An authorization ID (authid) parameter that DB2 passes into a plug-in (an
input authid parameter) will contain an upper-case authid, with padded
blanks removed. An authid parameter that a plug-in returns to DB2 (an
output authid parameter) does not require any special treatment, but DB2
will fold the authid to upper-case and pad it with blanks according to the
internal DB2 standard.

Size limits for parameters
The plug-in APIs use the following as length limits for parameters:
#define DB2SEC_MAX_AUTHID_LENGTH 255
#define DB2SEC_MAX_USERID_LENGTH 255
#define DB2SEC_MAX_USERNAMESPACE_LENGTH 255
#define DB2SEC_MAX_PASSWORD_LENGTH 255
#define DB2SEC_MAX_DBNAME_LENGTH 128

A particular plug-in implementation may require or enforce smaller
maximum lengths for the authorization IDs, user IDs, and passwords. In
particular, the operating system authentication plug-ins supplied with DB2
database systems are restricted to the maximum user, group and
namespace length limits enforced by the operating system for cases where
the operating system limits are lower than those stated above.

Security plug-in library extensions in AIX
On AIX systems, security plug-in libraries can have a file name extension
of .a or .so. The mechanism used to load the plug-in library depends on
which extension is used:
v Plug-in libraries with a file name extension of .a are assumed to be

archives containing shared object members. These members must be
named shr.o (32-bit) or shr64.o (64-bit). A single archive can contain both
the 32-bit and 64-bit members, allowing it to be deployed on both types
of platforms.
For example, to build a 32-bit archive style plug-in library:
xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so are assumed to be
dynamically loadable shared objects. Such an object is either 32-bit or
64-bit, depending on the compiler and linker options used when it was
built. For example, to build a 32-bit plug-in library:

xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always
assumed to be dynamically loadable shared objects.

Restrictions on security plug-ins
There are certain restrictions on the use of security plug-ins.

Restrictions for developing security plug-in libraries

Chapter 9. DB2 database system plug-ins for customizing database management 487

DB2 database family support restrictions

You cannot use a GSS-API plug-in to authenticate connections between DB2 clients
on Linux, UNIX, and Windows and another DB2 family servers such as DB2 for
z/OS. You also cannot authenticate connections from another DB2 database family
product, acting as a client, to a DB2 server on Linux, UNIX, or Windows.

If you use a DB2 client on Linux, UNIX, or Windows to connect to other DB2
database family servers, you can use client-side user ID/password plug-ins (such
as the IBM-shipped operating system authentication plug-in), or you can write
your own user ID/password plug-in. You can also use the built-in Kerberos
plug-ins, or implement your own.

With a DB2 client on Linux, UNIX, or Windows, you should not catalog a database
using the GSSPLUGIN authentication type.

Restrictions on the AUTHID identifier. Version 9.5, and later, of the DB2 database
system allows you to have an 128-byte authorization ID, but when the
authorization ID is interpreted as an operating system user ID or group name, the
operating system naming restrictions apply (for example, a limitation to 8 or 30
character user IDs and 30 character group names). Therefore, while you can grant
an 128-byte authorization ID, it is not possible to connect as a user that has that
authorization ID. If you write your own security plugin, you should be able to
take full advantage of the extended sizes for the authorization ID. For example,
you can give your security plugin a 30-byte user ID and it can return an 128-byte
authorization ID during authentication that you are able to connect with.

InfoSphere™ Federation Server support restrictions

DB2 II does not support the use of delegated credentials from a GSS_API plug-in
to establish outbound connections to data sources. Connections to data sources
must continue to use the CREATE USER MAPPING command.

Database Administration Server support restrictions

The DB2 Administration Server (DAS) does not support security plug-ins. The DAS
only supports the operating system authentication mechanism.

Security plug-in problem and restriction for DB2 clients
(Windows)

When developing security plug-ins that will be deployed in DB2 clients on
Windows operating systems, do not unload any auxiliary libraries in the plug-in
termination function. This restriction applies to all types of client security plug-ins,
including group, user ID and password, Kerberos, and GSS-API plug-ins. Since
these termination APIs such as db2secPluginTerm, db2secClientAuthPluginTerm
and db2secServerAuthPluginTerm are not called on any Windows platform, you
need to do the appropriate resource cleanup.

This restriction is related to cleanup issues associated with the unloading of DLLs
on Windows.

Loading plug-in libraries on AIX with extension of .a or .so

On AIX, security plug-in libraries can have a file name extension of .a or .so. The
mechanism used to load the plug-in library depends on which extension is used:

Restrictions on security plug-ins

488 Administrative API Reference

v Plug-in libraries with a file name extension of .a
Plug-in libraries with file name extensions of .a are assumed to be archives
containing shared object members. These members must be named shr.o (32-bit)
or shr64.o (64-bit). A single archive can contain both the 32-bit and 64-bit
members, allowing it to be deployed on both types of platforms.
For example, to build a 32-bit archive style plug-in library:

xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so
Plug-in libraries with file name extensions of .so are assumed to be dynamically
loadable shared objects. Such an object is either 32-bit or 64-bit, depending on
the compiler and linker options used when it was built. For example, to build a
32-bit plug-in library:

xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to
be dynamically loadable shared objects.

GSS-API security plug-ins do not support message encryption
and signing

Message encryption and signing is not available in GSS-API security plug-ins.

Restrictions on security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 489

Return codes for security plug-ins
All security plug-in APIs must return an integer value to indicate the success or
failure of the execution of the API. A return code value of 0 indicates that the API
ran successfully. All negative return codes, with the exception of -3, -4, and -5,
indicate that the API encountered an error.

All negative return codes returned from the security-plug-in APIs are mapped to
SQLCODE -1365, SQLCODE -1366, or SQLCODE -30082, with the exception of
return codes with the -3, -4, or -5. The values -3, -4, and -5 are used to indicate
whether or not an authorization ID represents a valid user or group.

All the security plug-in API return codes are defined in db2secPlugin.h, which can
be found in the DB2 include directory: SQLLIB/include.

Details regarding all of the security plug-in return codes are presented in the
following table:

Table 10. Security plug-in return codes

Return
code

Define value Meaning Applicable APIs

0 DB2SEC_PLUGIN_OK The plug-in API executed
successfully.

All

-1
DB2SEC_PLUGIN_UNKNOWNERROR

The plug-in API encountered an
unexpected error.

All

-2 DB2SEC_PLUGIN_BADUSER The user ID passed in as input is
not defined. db2secGenerateInitialCred

db2secValidatePassword
db2secRemapUserid
db2secGetGroupsForUser

-3
DB2SEC_PLUGIN
_INVALIDUSERORGROUP

No such user or group.
db2secDoesAuthIDExist
db2secDoesGroupExist

-4
DB2SEC_PLUGIN
_USERSTATUSNOTKNOWN

Unknown user status. This is not
treated as an error by DB2; it is
used by a GRANT statement to
determine if an authid represents
a user or an operating system
group.

db2secDoesAuthIDExist

-5
DB2SEC_PLUGIN
_GROUPSTATUSNOTKNOWN

Unknown group status. This is
not treated as an error by DB2; it
is used by a GRANT statement to
determine if an authid represents
a user or an operating system
group.

db2secDoesGroupExist

-6 DB2SEC_PLUGIN_UID_EXPIRED User ID expired.
db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCred

-7 DB2SEC_PLUGIN_PWD_EXPIRED Password expired.
db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCred

Return codes for security plug-ins

490 Administrative API Reference

Table 10. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-8 DB2SEC_PLUGIN_USER_REVOKED User revoked.
db2secValidatePassword
db2GetGroupsForUser

-9
DB2SEC_PLUGIN
_USER_SUSPENDED

User suspended.
db2secValidatePassword
db2GetGroupsForUser

-10 DB2SEC_PLUGIN_BADPWD Bad password.
db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCred

-11
DB2SEC_PLUGIN
_BAD_NEWPASSWORD

Bad new password.
db2secValidatePassword
db2secRemapUserid

-12
DB2SEC_PLUGIN
_CHANGEPASSWORD
_NOTSUPPORTED

Change password not supported.
db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCred

-13 DB2SEC_PLUGIN_NOMEM Plug-in attempt to allocate
memory failed due to insufficient
memory.

All

-14 DB2SEC_PLUGIN_DISKERROR Plug-in encountered a disk error. All

-15 DB2SEC_PLUGIN_NOPERM Plug-in attempt to access a file
failed because of wrong
permissions on the file.

All

-16 DB2SEC_PLUGIN_NETWORKERROR Plug-in encountered a network
error.

All

-17
DB2SEC_PLUGIN
_CANTLOADLIBRARY

Plug-in is unable to load a
required library. db2secGroupPluginInit

db2secClientAuthPluginInit
db2secServerAuthPluginInit

-18
DB2SEC_PLUGIN_CANT
_OPEN_FILE

Plug-in is unable to open and
read a file for a reason other than
missing file or inadequate file
permissions.

All

-19 DB2SEC_PLUGIN_FILENOTFOUND Plug-in is unable to open and
read a file, because the file is
missing from the file system.

All

-20
DB2SEC_PLUGIN
_CONNECTION_DISALLOWED

The plug-in is refusing the
connection because of the
restriction on which database is
allowed to connect, or the
TCP/IP address cannot connect
to a specific database.

All server-side plug-in APIs.

-21 DB2SEC_PLUGIN_NO_CRED GSS API plug-in only: initial
client credential is missing. db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22 DB2SEC_PLUGIN_CRED_EXPIRED GSS API plug-in only: client
credential has expired. db2secGetDefaultLoginContext

db2secServerAuthPluginInit

Return codes for security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 491

Table 10. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-23
DB2SEC_PLUGIN
_BAD_PRINCIPAL_NAME

GSS API plug-in only: the
principal name is invalid.

db2secProcessServer
PrincipalName

-24
DB2SEC_PLUGIN
_NO_CON_DETAILS

This return code is returned by
the db2secGetConDetails callback
(for example, from DB2 to the
plug-in) to indicate that DB2 is
unable to determine the client's
TCP/IP address.

db2secGetConDetails

-25
DB2SEC_PLUGIN
_BAD_INPUT_PARAMETERS

Some parameters are not valid or
are missing when plug-in API is
called.

All

-26
DB2SEC_PLUGIN
_INCOMPATIBLE_VER

The version of the APIs reported
by the plug-in is not compatible
with DB2.

db2secGroupPluginInit
db2secClientAuthPluginInit
db2secServerAuthPluginInit

-27 DB2SEC_PLUGIN_PROCESS_LIMIT Insufficient resources are
available for the plug-in to create
a new process.

All

-28 DB2SEC_PLUGIN_NO_LICENSES The plug-in encountered a user
license problem. A possibility
exists that the underlying
mechanism license has reached
the limit.

All

-29 DB2SEC_PLUGIN_ROOT_NEEDED The plug-in is trying to run an
application that requires root
privileges.

All

-30 DB2SEC_PLUGIN_UNEXPECTED
_SYSTEM_ERROR

The plug-in encountered an
unexpected system error. A
possibility exists that the current
system configuration is not
supported.

All

Return codes for security plug-ins

492 Administrative API Reference

Error message handling for security plug-ins
When an error occurs in a security plug-in API, the API can return an ASCII text
string in the errormsg field to provide a more specific description of the problem
than the return code.

For example, the errormsg string can contain "File /home/db2inst1/mypasswd.txt
does not exist." DB2 will write this entire string into the DB2 administration
notification log, and will also include a truncated version as a token in some SQL
messages. Because tokens in SQL messages can only be of limited length, these
messages should be kept short, and important variable portions of these messages
should appear at the front of the string. To aid in debugging, consider adding the
name of the security plug-in to the error message.

For non-urgent errors, such as password expired errors, the errormsg string will
only be dumped when the DIAGLEVEL database manager configuration parameter
is set at 4.

The memory for these error messages must be allocated by the security plug-in.
Therefore, the plug-ins must also provide an API to free this memory:
db2secFreeErrormsg.

The errormsg field will only be checked by DB2 if an API returns a non-zero value.
Therefore, the plug-in should not allocate memory for this returned error message
if there is no error.

At initialization time a message logging function pointer, logMessage_fn, is passed
to the group, client, and server plug-ins. The plug-ins can use the function to log
any debugging information to the db2diag log files. For example:

// Log an message indicate init successful
(*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

"db2secGroupPluginInit successful",
strlen("db2secGroupPluginInit successful"));

For more details about each parameter for the db2secLogMessage function, refer to
the initialization API for each of the plug-in types.

Error message handling for security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 493

Calling sequences for the security plug-in APIs
The sequence with which the DB2 database manager calls the security plug-in APIs
varies according to the scenario in which the security plug-in API is called.

These are the main scenarios in which the DB2 database manager will call security
plug-in APIs:
v On a client for a database connection (implicit and explicit)

– CLIENT
– Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT)
– GSSAPI and Kerberos

v On a client, server, or gateway for local authorization
v On a server for a database connection
v On a server for a grant statement
v On a server to get a list of groups to which an authorization ID belongs

Note: The DB2 database servers treat database actions requiring local
authorizations, such as db2start, db2stop, and db2trc like client applications.

For each of these operations, the sequence with which the DB2 database manager
calls the security plug-in APIs is different. Following are the sequences of APIs
called by the DB2 database manager for each of these scenarios.

CLIENT - implicit
When the user-configured authentication type is CLIENT, the DB2 client
application will call the following security plug-in APIs:
v db2secGetDefaultLoginContext();

v db2secValidatePassword();

v db2secFreetoken();

For an implicit authentication, that is, when you connect without
specifying a particular user ID or password, the db2secValidatePassword
API is called if you are using a user ID/password plug-in. This API
permits plug-in developers to prohibit implicit authentication if necessary.

CLIENT - explicit
On an explicit authentication, that is, when you connect to a database in
which both the user ID and password are specified, if the authentication
database manager configuration parameter is set to CLIENT the DB2 client
application will call the following security plug-in APIs multiple times if
the implementation requires it:
v db2secRemapUserid();

v db2secValidatePassword();

v db2secFreeToken();

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - implicit
On an implicit authentication, when the client and server have negotiated
user ID/password authentication (for instance, when the srvcon_auth
parameter at the server is set to SERVER; SERVER_ENCRYPT,
DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will
call the following security plug-in APIs:
v db2secGetDefaultLoginContext();

v db2secFreeToken();

Calling sequences for the security plug-in APIs

494 Administrative API Reference

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - explicit
On an explicit authentication, when the client and server have negotiated
userid/password authentication (for instance, when the srvcon_auth
parameter at the server is set to SERVER; SERVER_ENCRYPT,
DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will
call the following security plug-in APIs:
v db2secRemapUserid();

GSSAPI and Kerberos - implicit
On an implicit authentication, when the client and server have negotiated
GSS-API or Kerberos authentication (for instance, when the srvcon_auth
parameter at the server is set to KERBEROS; KRB_SERVER_ENCRYPT,
GSSPLUGIN, or GSS_SERVER_ENCRYPT), the client application will call
the following security plug-in APIs. (The call to gss_init_sec_context() will
use GSS_C_NO_CREDENTIAL as the input credential.)
v db2secGetDefaultLoginContext();

v db2secProcessServerPrincipalName();

v gss_init_sec_context();

v gss_release_buffer();

v gss_release_name();

v gss_delete_sec_context();

v db2secFreeToken();

With multi-flow GSS-API support, gss_init_sec_context() can be called
multiple times if the implementation requires it.

GSSAPI and Kerberos - explicit
If the negotiated authentication type is GSS-API or Kerberos, the client
application will call the following security plug-in APIs for GSS-API
plug-ins in the following sequence. These APIs are used for both implicit
and explicit authentication unless otherwise stated.
v db2secProcessServerPrincipalName();

v db2secGenerateInitialCred(); (For explicit authentication only)
v gss_init_sec_context();

v gss_release_buffer ();

v gss_release_name();

v gss_release_cred();

v db2secFreeInitInfo();

v gss_delete_sec_context();

v db2secFreeToken();

The API gss_init_sec_context() may be called multiple times if a mutual
authentication token is returned from the server and the implementation
requires it.

On a client, server, or gateway for local authorization
For a local authorization, the DB2 command being used will call the
following security plug-in APIs:
v db2secGetDefaultLoginContext();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

Calling sequences for the security plug-in APIs

Chapter 9. DB2 database system plug-ins for customizing database management 495

These APIs will be called for both user ID/password and GSS-API
authentication mechanisms.

On a server for a database connection
For a database connection on the database server, the DB2 agent process or
thread will call the following security plug-in APIs for the user
ID/password authentication mechanism:
v db2secValidatePassword(); Only if the authentication database

configuration parameter is not CLIENT
v db2secGetAuthIDs();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

For a CONNECT to a database, the DB2 agent process or thread will call
the following security plug-in APIs for the GSS-API authentication
mechanism:
v gss_accept_sec_context();

v gss_release_buffer();

v db2secGetAuthIDs();

v db2secGetGroupsForUser();

v gss_delete_sec_context();

v db2secFreeGroupListMemory();

On a server for a GRANT statement
For a GRANT statement that does not specify the USER or GROUP
keyword, (for example, "GRANT CONNECT ON DATABASE TO user1"), the DB2
agent process or thread must be able to determine if user1 is a user, a
group, or both. Therefore, the DB2 agent process or thread will call the
following security plug-in APIs:
v db2secDoesGroupExist();

v db2secDoesAuthIDExist();

On a server to get a list of groups to which an authid belongs
From your database server, when you need to get a list of groups to which
an authorization ID belongs, the DB2 agent process or thread will call the
following security plug-in API with only the authorization ID as input:
v db2secGetGroupsForUser();

There will be no token from other security plug-ins.

Security plug-ins
Authentication for the DB2 database system is done using security plug-ins. A
security plug-in is a dynamically-loadable library that provides authentication
security services.

The DB2 database system provides the following types of plug-ins:
v Group retrieval plug-in: retrieves group membership information for a given

user.
v Client authentication plug-in: manages authentication on a DB2 client.
v Server authentication plug-in: manages authentication on a DB2 server.

The DB2 database manager supports two mechanisms for plug-in authentication:

Calling sequences for the security plug-in APIs

496 Administrative API Reference

User ID/password authentication
This involves authentication using a user ID and password. The following
authentication types are implemented using user ID/password
authentication plug-ins:

- CLIENT
- SERVER
- SERVER_ENCRYPT
- DATA_ENCRYPT
- DATA_ENCRYPT_CMP

These authentication types determine how and where authentication of a
user occurs. The authentication type used depends on the authentication
type specified by the authentication database manager configuration
parameter. If the SRVCON_AUTH parameter is specified it takes
precedence over AUTHENTICATION when dealing with connect or attach
operations.

GSS-API authentication
GSS-API is formally known as Generic Security Service Application Program
Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version
2: C-Bindings (IETF RFC2744). Kerberos authentication is also implemented
using GSS-API. The following authentication types are implemented using
GSS-API authentication plug-ins:

- KERBEROS
- GSSPLUGIN
- KRB_SERVER_ENCRYPT
- GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both
GSS-API authentication and user ID/password authentication; however,
GSS-API authentication is the preferred authentication type.

Note: Authentication types determine how and where a user is authenticated. To
use a particular authentication type, update the authentication database manager
configuration parameter.

Each of the plug-ins can be used independently or in conjunction with one or more
of the other plug-ins. For example, you might only use a server authentication
plug-in and assume the DB2 defaults for client and group authentication.
Alternatively, you might have only a group or client authentication plug-in. The
only situation where both a client and server plug-in are required is for GSS-API
authentication plug-ins.

The default behavior is to use a user ID/password plug-in that implements an
operating-system-level mechanism for authentication. In previous releases, the
default behavior is to directly use operating-system-level authentication without a
plug-in implementation. Client-side Kerberos support is available on Solaris, AIX,
Windows, and Linux operating systems. For Windows platforms, Kerberos support
is enabled by default.

DB2 database systems include sets of plug-ins for group retrieval, user
ID/password authentication, and for Kerberos authentication. With the security
plug-in architecture you can customize DB2 client and server authentication
behavior by either developing your own plug-ins, or buying plug-ins from a third
party.

Security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 497

Deployment of security plug-ins on DB2 clients

DB2 clients can support one group plug-in, one user ID/password authentication
plug-in, and will negotiate with the DB2 server for a particular GSS-API plug-in.
This negotiation consists of a scan by the client of the DB2 server's list of
implemented GSS-API plug-ins for the first authentication plug-in name that
matches an authentication plug-in implemented on the client. The server's list of
plug-ins is specified in the srvcon_gssplugin_list database manager configuration
parameter value, which contains the names of all of the plug-ins that are
implemented on the server. The following figure portrays the security plug-in
infrastructure on a DB2 client.

Deployment of security plug-ins on DB2 servers

DB2 servers can support one group plug-in, one user ID/password authentication
plug-in, and multiple GSS-API plug-ins. The multiple GSS-API plug-ins are
specified in the srvcon_gssplugin_list database manager configuration parameter
value as a list. Only one GSS-API plug-in in this list can be a Kerberos plug-in.

In addition to server-side security plug-ins, you might also need to deploy client
authorization plug-ins on your database server. When you run instance-level
operations like db2start and db2trc, the DB2 database manager performs
authorization checking for these operations using client authentication plug-ins.
Therefore, you should install the client authentication plug-in that corresponds to
the server plug-in that is specified by the authentication database manager
configuration parameter. There is a main distinction between authentication and
srvcon_auth. Specifically, they could be set to different values to cause one
mechanism to be used to authenticate database connections and another
mechanism to be used for local authorization. The most common usage is
srvcon_auth set as GSSPLUGIN and authentication set as SERVER. If you do not use
client authentication plug-ins on the database server, instance level operations such
as db2start will fail. For example, if the authentication type is SERVER and no
user-supplied client plug-in is used, the DB2 database system will use the
IBM-shipped default client operating-system plug-in. The following figure portrays

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Figure 1. Deploying Security Plug-ins on DB2 Clients

Security plug-ins

498 Administrative API Reference

the security plug-in infrastructure on a DB2 server.

Note: The integrity of your DB2 database system installation can be compromised
if the deployment of security plug-ins are not adequately coded, reviewed, and
tested. The DB2 database system takes precaution against many common types of
failures, but it cannot guarantee complete integrity when user-written security
plug-ins are deployed.

Enabling security plug-ins

The system administrator can specify the names of the plug-ins to use for each
authentication mechanism by updating certain plug-in-related database manager
configuration parameters. If these parameters are null, they will default to the
DB2-supplied plug-ins for group retrieval, user ID/password management, or
Kerberos (if authentication is set to Kerberos -- on the server). DB2 does not
provide a default GSS-API plug-in. Therefore, if system administrators specify an
authentication type of GSSPLUGIN in authentication parameter, they must also
specify a GSS-API authentication plug-in in srvcon_gssplugin_list.

How DB2 loads security plug-ins

All of the supported plug-ins identified by the database manager configuration
parameters are loaded when the database manager starts.

The DB2 client will load a plug-in appropriate for the security mechanism
negotiated with the server during connect or attach operations. It is possible that a
client application can cause multiple security plug-ins to be concurrently loaded
and used. This situation can occur, for example, in a threaded program that has
concurrent connections to different databases from different instances.

Actions other than connect or attach operations require authorization (such as
updating the database manager configuration, starting and stopping the database
manager, turning DB2 trace on and off) as well. For such actions, the DB2 client
program will load a plug-in specified in another database manager configuration
parameter. If authentication is set to GSSPLUGIN, DB2 database manager will use

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos GSS-API
server plug-in

GSS-API
server plug-in

Figure 2. Deploying Security Plug-ins on DB2 Servers

Security plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 499

the plug-in specified by local_gssplugin. If authentication is set to KERBEROS, DB2
database manager will use the plug-in specified by clnt_krb_plugin. Otherwise, DB2
database manager will use the plug-in specified by clnt_pw_plugin.

Security plug-ins APIs can be called from either an IPv4 platform or an IPv6
platform. An IPv4 address is a 32-bit address that has a readable form a.b.c.d,
where each of a-d represents a decimal number from 0-255. An IPv6 address is a
128-bit address of the form a:b:c:d:e:f:g:h, where each of a-h represents 4 hex digits.

Developing security plug-ins

If you are developing a security plug-in, you need to implement the standard
authentication functions that DB2 database manager will use. If you are using your
own customized security plug-in, you can use a user ID of up to 255 characters on
a connect statement issued through the CLP or a dynamic SQL statement. For the
available types of plug-ins, the functionality you will need to implement is as
follows:

Group retrieval
Gets the list of groups to which a user belongs.

User ID/password authentication

v Identifies the default security context (client only).
v Validates and optionally changes a password.
v Determines if a given string represents a valid user (server only).
v Modifies the user ID or password provided on the client before it is sent

to the server (client only).
v Returns the DB2 authorization ID associated with a given user.

GSS-API authentication

v Implements the required GSS-API functions.
v Identifies the default security context (client only).
v Generates initial credentials based on a user ID and password and

optionally changes password (client only).
v Creates and accepts security tickets.
v Returns the DB2 authorization ID associated with a given GSS-API

security context.

Security plug-in library locations
After you acquire your security plug-ins (either by developing them yourself, or
purchasing them from a third party), copy them to specific locations on your
database server.

DB2 clients looks for client-side user authentication plug-ins in the following
directory:
v UNIX 32-bit: $DB2PATH/security32/plugin/client
v UNIX 64-bit: $DB2PATH/security64/plugin/client
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\client

Note: On Windows-based platforms, the subdirectories instance name and client are
not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for server-side user authentication plug-ins in the
following directory:

Security plug-ins

500 Administrative API Reference

v UNIX 32-bit: $DB2PATH/security32/plugin/server
v UNIX 64-bit: $DB2PATH/security64/plugin/server
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\server

Note: On Windows-based platforms, the subdirectories instance name and server are
not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for group plug-ins in the following directory:
v UNIX 32-bit: $DB2PATH/security32/plugin/group
v UNIX 64-bit: $DB2PATH/security64/plugin/group
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\group

Note: On Windows-based platforms, the subdirectories instance name and group are
not created automatically. The instance owner has to manually create them.

Security plug-in naming conventions
Security plug-in libraries must have a platform-specific file name extension.
Security plug-in libraries written in C or C++ must have a platform-specific file
name extension:
v Windows: .dll
v AIX: .a or .so, and if both extensions exist, .a extension is used.
v Linux, HP IPF and Solaris: .so

Note: Users can also develop security plug-ins with the DB2 Universal JDBC
Driver.
For example, assume you have a security plug-in library called MyPlugin. For each
supported operating system, the appropriate library file name follows:
v Windows 32-bit: MyPlugin.dll
v Windows 64-bit: MyPlugin64.dll
v AIX 32 or 64-bit: MyPlugin.a or MyPlugin.so
v SUN 32 or 64-bit, Linux 32 or 64 bit, HP 32 or 64 bit on IPF: MyPlugin.so

Note: The suffix "64" is only required on the library name for 64-bit Windows
security plug-ins.

When you update the database manager configuration with the name of a security
plug-in, use the full name of the library without the "64" suffix and omit both the
file extension and any qualified path portion of the name. Regardless of the
operating system, a security plug-in library called MyPlugin would be registered as
follows:
UPDATE DBM CFG USING CLNT_PW_PLUGIN MyPlugin

The security plug-in name is case sensitive, and must exactly match the library
name. DB2 database systems use the value from the relevant database manager
configuration parameter to assemble the library path, and then uses the library
path to load the security plug-in library.

To avoid security plug-in name conflicts, you should name the plug-in using the
authentication method used, and an identifying symbol of the firm that wrote the
plug-in. For instance, if the company Foo, Inc. wrote a plug-in implementing the
authentication method FOOsomemethod, the plug-in could have a name like
FOOsomemethod.dll.

Security plug-in library locations

Chapter 9. DB2 database system plug-ins for customizing database management 501

The maximum length of a plug-in name (not including the file extension and the
"64" suffix) is limited to 32 bytes. There is no maximum number of plug-ins
supported by the database server, but the maximum length of the
comma-separated list of plug-ins in the database manager configuration is 255
bytes. Two defines located in the include file sqlenv.h identifies these two limits:
#define SQL_PLUGIN_NAME_SZ 32 /* plug-in name */
#define SQL_SRVCON_GSSPLUGIN_LIST_SZ 255 /* GSS API plug-in list */

The security plug-in library files must have the following file permissions:
v Owned by the instance owner.
v Readable by all users on the system.
v Executable by all users on the system.

Security plug-in support for two-part user IDs
The DB2 database manager on Windows supports the use of two-part user IDs,
and the mapping of two-part user IDs to two-part authorization IDs.

For example, consider a Windows operating system two-part user ID composed of
a domain and user ID such as: MEDWAY\pieter. In this example, MEDWAY is a domain
and pieter is the user name. In DB2 database systems, you can specify whether
this two-part user ID should be mapped to either a one-part authorization ID or a
two-part authorization ID.

The mapping of a two-part user ID to a two-part authorization ID is supported,
but is not the default behavior. By default, both one-part user IDs and two-part
user IDs map to one-part authorization IDs. The mapping of a two-part user ID to
a two-part authorization ID is supported, but is not the default behavior.

The default mapping of a two-part user ID to a one-part user ID allows a user to
connect to the database using:
db2 connect to db user MEDWAY\pieter using pw

In this situation, if the default behavior is used, the user ID MEDWAY\pieter is
resolved to the authorization ID PIETER. If the support for mapping a two-part
user ID to a two-part authorization ID is enabled, the authorization ID would be
MEDWAY\PIETER.

To enable DB2 to map two-part user IDs to two-part authorization IDs, DB2
supplies two sets of authentication plug-ins:
v One set exclusively maps a one-part user ID to a one-part authorization ID and

maps a two-part user-ID to a one-part authorization ID.
v Another set maps both one-part user ID or two-part user ID to a two-part

authorization ID.

If a user name in your work environment can be mapped to multiple accounts
defined in different locations (such as local account, domain account, and trusted
domain accounts), you can specify the plug-ins that enable two-part authorization
ID mapping.

It is important to note that a one-part authorization ID, such as, PIETER and a
two-part authorization ID that combines a domain and a user ID like
MEDWAY\pieter are functionally distinct authorization IDs. The set of privileges
associated with one of these authorization IDs can be completely distinct from the

Security plug-in naming conventions

502 Administrative API Reference

set of privileges associated with the other authorization ID. Care should be taken
when working with one-part and two-part authorization IDs.

The following table identifies the kinds of plug-ins supplied by DB2 database
systems, and the plug-in names for the specific authentication implementations.

Table 11. DB2 security plug-ins

Authentication type
Name of one-part user ID
plug-in

Name of two-part user ID
plug-in

User ID/password (client) IBMOSauthclient IBMOSauthclientTwoPart

User ID/password (server) IBMOSauthserver IBMOSauthserverTwoPart

Kerberos IBMkrb5 IBMkrb5TwoPart

Note: On Windows 64-bit platforms, the characters "64" are appended to the
plug-in names listed here.

When you specify an authentication type that requires a user ID/password or
Kerberos plug-in, the plug-ins that are listed in the "Name of one-part user ID
plug-in" column in the previous table are used by default.

To map a two-part user ID to a two-part authorization ID, you must specify that
the two-part plug-in, which is not the default plug-in, be used. Security plug-ins
are specified at the instance level by setting the security related database manager
configuration parameters as follows:

For server authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For client authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For Kerberos authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_gssplugin_list to IBMOSkrb5TwoPart

v clnt_krb_plugin to IBMkrb5TwoPart

The security plug-in libraries accept two-part user IDs specified in a Microsoft®

Windows Security Account Manager compatible format. For example, in the
format: domain\user ID. Both the domain and user ID information will be used by
the DB2 authentication and authorization processes at connection time.

You should consider implementing the two-part plug-ins when creating new
databases to avoid conflicts with one-part authorization IDs in existing databases.
New databases that use two-part authorization IDs must be created in a separate
instance from databases that use single-part authorization IDs.

Security plug-in support for two-part user IDs

Chapter 9. DB2 database system plug-ins for customizing database management 503

Security plug-in API versioning
The DB2 database system supports version numbering of the security plug-in APIs.
These version numbers are integers starting with 1 for DB2 UDB, Version 8.2.

The version number that DB2 passes to the security plug-in APIs is the highest
version number of the API that DB2 can support, and corresponds to the version
number of the structure. If the plug-in can support a higher API version, it must
return function pointers for the version that DB2 has requested. If the plug-in only
supports a lower version of the API, the plug-in should fill in function pointers for
the lower version. In either situation, the security plug-in APIs should return the
version number for the API it is supporting in the version field of the functions
structure.

For DB2, the version numbers of the security plug-ins will only change when
necessary (for example, when there are changes to the parameters of the APIs).
Version numbers will not automatically change with DB2 release numbers.

32-bit and 64-bit considerations for security plug-ins
In general, a 32-bit DB2 instance uses the 32-bit security plug-in and a 64-bit DB2
instance uses the 64-bit security plug-in. However, on a 64-bit instance, DB2
supports 32-bit applications, which require the 32-bit plug-in library.

A database instance where both the 32-bit and the 64-bit applications can run is
known as a hybrid instance. If you have a hybrid instance and intend to run 32-bit
applications, ensure that the required 32-bit security plug-ins are available in the
32-bit plug-in directory. For 64-bit DB2 instances on Linux and UNIX operating
systems, excluding Linux on IPF, the directories security32 and security64
appear. For a 64-bit DB2 instance on Windows on x64 or IPF, both 32-bit and 64-bit
security plug-ins are located in the same directory, but 64-bit plug-in names have a
suffix, "64".

If you want to upgrade from a 32-bit instance to a 64-bit instance, you should
obtain versions of your security plug-ins that are recompiled for 64-bit.

If you acquired your security plug-ins from a vendor that does not supply 64-bit
plug-in libraries, you can implement a 64-bit stub that executes a 32-bit application.
In this situation, the security plug-in is an external program rather than a library.

Security plug-in problem determination
Problems with security plug-ins are reported in two ways: through SQL errors and
through the administration notification log.

Following are the SQLCODE values related to security plug-ins:
v SQLCODE -1365 is returned when a plug-in error occurs during db2start or

db2stop.
v SQLCODE -1366 is returned whenever there is a local authorization problem.
v SQLCODE -30082 is returned for all connection-related plug-in errors.

The administration notification logs are a good resource for debugging and
administrating security plug-ins. To see the an administration notification log file
on UNIX, check sqllib/db2dump/instance name.N.nfy. To see an administration
notification log on Windows operating systems, use the Event Viewer tool. The
Event Viewer tool can be found by navigating from the Windows operating system

Security plug-in API versioning

504 Administrative API Reference

"Start" button to Settings -> Control Panel -> Administrative Tools -> Event
Viewer. Following are the administration notification log values related to security
plug-ins:
v 13000 indicates that a call to a GSS-API security plug-in API failed with an error,

and returned an optional error message.
SQLT_ADMIN_GSS_API_ERROR (13000)
Plug-in "plug-in name" received error code "error code" from
GSS API "gss api name" with the error message "error message"

v 13001 indicates that a call to a DB2 security plug-in API failed with an error, and
returned an optional error message.
SQLT_ADMIN_PLUGIN_API_ERROR(13001)
Plug-in "plug-in name" received error code "error code" from DB2
security plug-in API "gss api name" with the error message
"error message"

v 13002 indicates that DB2 failed to unload a plug-in.
SQLT_ADMIN_PLUGIN_UNLOAD_ERROR (13002)
Unable to unload plug-in "plug-in name". No further action required.

v 13003 indicates a bad principal name.
SQLT_ADMIN_INVALID_PRIN_NAME (13003)
The principal name "principal name" used for "plug-in name"
is invalid. Fix the principal name.

v 13004 indicates that the plug-in name is not valid. Path separators (On UNIX "/"
and on Windows "\") are not allowed in the plug-in name.
SQLT_ADMIN_INVALID_PLGN_NAME (13004)
The plug-in name "plug-in name" is invalid. Fix the plug-in name.

v 13005 indicates that the security plug-in failed to load. Ensure the plug-in is in
the correct directory and that the appropriate database manager configuration
parameters are updated.
SQLT_ADMIN_PLUGIN_LOAD_ERROR (13005)
Unable to load plug-in "plug-in name". Verify the plug-in existence and
directory where it is located is correct.

v 13006 indicates that an unexpected error was encountered by a security plug-in.
Gather all the db2support information, if possible capture a db2trc, and then call
IBM support for further assistance.
SQLT_ADMIN_PLUGIN_UNEXP_ERROR (13006)
Plug-in encountered unexpected error. Contact IBM Support for further assistance.

Note: If you are using security plug-ins on a Windows 64-bit database server and
are seeing a load error for a security plug-in, see the topics about 32-bit and 64-bit
considerations and security plug-in naming conventions. The 64-bit plug-in library
requires the suffix "64" on the library name, but the entry in the security plug-in
database manager configuration parameters should not indicate this suffix.

Security plug-in APIs
To enable you to customize the DB2 database system authentication and group
membership lookup behavior, the DB2 database system provides APIs that you can
use to modify existing plug-in modules or build new security plug-in modules.

When you develop a security plug-in module, you need to implement the standard
authentication or group membership lookup functions that the DB2 database
manager will invoke. For the three available types of plug-in modules, the
functionality you need to implement is as follows:

Security plug-in problem determination

Chapter 9. DB2 database system plug-ins for customizing database management 505

Group retrieval
Retrieves group membership information for a given user and determines
if a given string represents a valid group name.

User ID/password authentication
Authentication that identifies the default security context (client only),
validates and optionally changes a password, determines if a given string
represents a valid user (server only), modifies the user ID or password
provided on the client before it is sent to the server (client only), returns
the DB2 authorization ID associated with a given user.

GSS-API authentication
Authentication that implements the required GSS-API functions, identifies
the default security context (client side only), generates initial credentials
based on user ID and password, and optionally changes password (client
side only), creates and accepts security tickets, and returns the DB2
authorization ID associated with a given GSS-API security context.

The following are the definitions for terminology used in the descriptions of the
plug-in APIs.

Plug-in
A dynamically loadable library that DB2 will load to access user-written
authentication or group membership lookup functions.

Implicit authentication
A connection to a database without specifying a user ID or a password.

Explicit authentication
A connection to a database in which both the user ID and password are
specified.

Authid
An internal ID representing an individual or group to which authorities
and privileges within the database are granted. Internally, a DB2 authid is
folded to upper-case and is a minimum of 8 characters (blank padded to 8
characters). Currently, DB2 requires authids, user IDs, passwords, group
names, namespaces, and domain names that can be represented in 7-bit
ASCII.

Local authorization
Authorization that is local to the server or client that implements it, that
checks if a user is authorized to perform an action (other than connecting
to the database), such as starting and stopping the database manager,
turning DB2 trace on and off, or updating the database manager
configuration.

Namespace
A collection or grouping of users within which individual user identifiers
must be unique. Common examples include Windows domains and
Kerberos Realms. For example, within the Windows domain
"usa.company.com" all user names must be unique. For example,
"user1@usa.company.com". The same user ID in another domain, as in the
case of "user1@canada.company.com", however refers to a different person.
A fully qualified user identifier includes a user ID and namespace pair; for
example, "user@domain.name" or "domain\user".

Input Indicates that DB2 will fill in the value for the security plug-in API
parameter.

Security plug-in APIs

506 Administrative API Reference

Output
Indicates that the security plug-in API will fill in the value for the API
parameter.

Security plug-in APIs

Chapter 9. DB2 database system plug-ins for customizing database management 507

APIs for group retrieval plug-ins
For the group retrieval plug-in module, you need to implement the following APIs:
v db2secGroupPluginInit

Note: The db2secGroupPluginInit API takes as input a pointer, *logMessage_fn,
to an API with the following prototype:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. This API is provided by the
DB2 database system, so you need not implement it.

v db2secPluginTerm

v db2secGetGroupsForUser

v db2secDoesGroupExist

v db2secFreeGroupListMemory

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secGroupPluginInit. This
API will take a void * parameter, which should be cast to the type:
typedef struct db2secGroupFunctions_1
{
db2int32 version;
db2int32 plugintype;
SQL_API_RC (SQL_API_FN * db2secGetGroupsForUser)
(
const char *authid,
db2int32 authidlen,
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
const void *token,
db2int32 tokentype,
db2int32 location,
const char *authpluginname,
db2int32 authpluginnamelen,
void **grouplist,
db2int32 *numgroups,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secDoesGroupExist)
(
const char *groupname,
db2int32 groupnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeGroupListMemory)
(
void *ptr,

APIs for group retrieval plug-ins

508 Administrative API Reference

char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *msgtobefree
);

SQL_API_RC (SQL_API_FN * db2secPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

} db2secGroupFunctions_1;

The db2secGroupPluginInit API assigns the addresses for the rest of the
externally available functions.

Note: The _1 indicates that this is the structure corresponding to version 1 of the
API. Subsequent interface versions will have the extension _2, _3, and so on.

APIs for group retrieval plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 509

db2secDoesGroupExist API - Check if group exists
Determines if an authid represents a group.

If the groupname exists, the API must be able to return the value
DB2SEC_PLUGIN_OK, to indicate success. It must also be able to return the value
DB2SEC_PLUGIN_INVALIDUSERORGROUP if the group name is not valid. It is
permissible for the API to return the value
DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN if it is impossible to determine if
the input is a valid group. If an invalid group
(DB2SEC_PLUGIN_INVALIDUSERORGROUP) or group not known
(DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN) value is returned, DB2 might
not be able to determine whether the authid is a group or user when issuing the
GRANT statement without the keywords USER and GROUP, which would result
in the error SQLCODE -569, SQLSTATE 56092 being returned to the user.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secDoesGroupExist)

(const char *groupname,
db2int32 groupnamelen,
char **errormsg,
db2int32 *errormsglen);

db2secDoesGroupExist API parameters

groupname
Input. An authid, upper-cased, with no trailing blanks.

groupnamelen
Input. Length in bytes of the groupname parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secDoesGroupExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secDoesGroupExist API - Check if group exists

510 Administrative API Reference

db2secFreeErrormsg API - Free error message memory
Frees the memory used to hold an error message from a previous API call. This is
the only API that does not return an error message. If this API returns an error,
DB2 will log it and continue.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeErrormsg)

(char *errormsg);

db2secFreeErrormsg API parameters

msgtofree
Input. A pointer to the error message allocated from a previous API call.

db2secFreeErrormsg API - Free error message memory

Chapter 9. DB2 database system plug-ins for customizing database management 511

db2secFreeGroupListMemory API - Free group list memory
Frees the memory used to hold the list of groups from a previous call to
db2secGetGroupsForUser API.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeGroupListMemory)

(void *ptr,
char **errormsg,
db2int32 *errormsglen);

db2secFreeGroupListMemory API parameters

ptr Input. Pointer to the memory to be freed.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secFreeGroupListMemory API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in the errormsg parameter.

db2secFreeGroupListMemory API - Free group list memory

512 Administrative API Reference

db2secGetGroupsForUser API - Get list of groups for user
Returns the list of groups to which a user belongs.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetGroupsForUser)

(const char *authid,
db2int32 authidlen,
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void *token,
db2int32 tokentype,
db2int32 location,
const char *authpluginname,
db2int32 authpluginnamelen,
void **grouplist,
db2int32 *numgroups,
char **errormsg,
db2int32 *errormsglen);

db2secGetGroupsForUser API parameters

authid Input. This parameter value is an SQL authid, which means that DB2
converts it to an uppercase character string with no trailing blanks. DB2
will always provide a non-null value for the authid parameter. The API
must be able to return a list of groups to which the authid belongs without
depending on the other input parameters. It is permissible to return a
shortened or empty list if this cannot be determined.

If a user does not exist, the API must return the return code
DB2SEC_PLUGIN_BADUSER. DB2 does not treat the case of a user not
existing as an error, since it is permissible for an authid to not have any
groups associated with it. For example, the db2secGetAuthids API can
return an authid that does not exist on the operating system. The authid is
not associated with any groups, however, it can still be assigned privileges
directly.

If the API cannot return a complete list of groups using only the authid,
then there will be some restrictions on certain SQL functions related to
group support. For a list of possible problem scenarios, refer to the Usage
notes section in this topic.

authidlen
Input. Length in bytes of the authid parameter value. The DB2 database
manager always provides a non-zero value for the authidlen parameter.

userid Input. This is the user ID corresponding to the authid. When this API is
called on the server in a non-connect scenario, this parameter will not be
filled by DB2.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained. When the
user ID is not available, this parameter will not be filled by the DB2
database manager.

db2secGetGroupsForUser API - Get list of groups for user

Chapter 9. DB2 database system plug-ins for customizing database management 513

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace. Valid values for the usernamespacetype
parameter (defined in db2secPlugin.h) are:
v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username

style like domain\myname
v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username

style like myname@domain.ibm.com

Currently, the DB2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not
available, the usernamespacetype parameter is set to the value
DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

dbname
Input. Name of the database being connected to. This parameter can be
NULL in a non-connect scenario.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is
set to 0 if dbname parameter is NULL in a non-connect scenario.

token Input. A pointer to data provided by the authentication plug-in. It is not
used by DB2. It provides the plug-in writer with the ability to coordinate
user and group information. This parameter might not be provided in all
cases (for example, in a non-connect scenario), in which case it will be
NULL. If the authentication plug-in used is GSS-API based, the token will
be set to the GSS-API context handle (gss_ctx_id_t).

tokentype
Input. Indicates the type of data provided by the authentication plug-in. If
the authentication plug-in used is GSS-API based, the token will be set to
the GSS-API context handle (gss_ctx_id_t). If the authentication plug-in
used is user ID/password based, it will be a generic type. Valid values for
the tokentype parameter (defined in db2secPlugin.h) are:
v DB2SEC_GENERIC: Indicates that the token is from a user ID/password

based plug-in.
v DB2SEC_GSSAPI_CTX_HANDLE: Indicates that the token is from a GSS-API

(including Kerberos) based plug-in.

location
Input. Indicates whether DB2 is calling this API on the client side or server
side. Valid values for the location parameter (defined in db2secPlugin.h)
are:
v DB2SEC_SERVER_SIDE: The API is to be called on the database server.
v DB2SEC_CLIENT_SIDE: The API is to be called on a client.

authpluginname
Input. Name of the authentication plug-in that provided the data in the
token. The db2secGetGroupsForUser API might use this information in
determining the correct group memberships. This parameter might not be
filled by DB2 if the authid is not authenticated (for example, if the authid
does not match the current connected user).

authpluginnamelen
Input. Length in bytes of the authpluginname parameter value.

db2secGetGroupsForUser API - Get list of groups for user

514 Administrative API Reference

grouplist
Output. List of groups to which the user belongs. The list of groups must
be returned as a pointer to a section of memory allocated by the plug-in
containing concatenated varchars (a varchar is a character array in which
the first byte indicates the number of bytes following it). The length is an
unsigned char (1 byte) and that limits the maximum length of a
groupname to 255 characters. For example, "\006GROUP1\
007MYGROUP\008MYGROUP3". Each group name should be a valid DB2
authid. The memory for this array must be allocated by the plug-in. The
plug-in must therefore provide an API, such as the
db2secFreeGroupListMemory API that DB2 will call to free the memory.

numgroups
Output. The number of groups contained in the grouplist parameter.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGetGroupsForUser API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

Usage notes

The following is a list of scenarios when problems can occur if an incomplete
group list is returned by this API to DB2:
v Alternate authorization is provided in CREATE SCHEMA statement. Group

lookup will be performed against the AUTHORIZATION NAME parameter if
there are nested CREATE statements in the CREATE SCHEMA statement.

v Processing a jar file in an MPP environment. In an MPP environment, the jar
processing request is sent from the coordinator node with the session authid.
The catalog node received the requests and process the jar files based on the
privilege of the session authid (the user executing the jar processing requests).
– Install jar file. The session authid needs to have one of the following rights:

DBADM, or CREATEIN (implicit or explicit on the jar schema). The operation
will fail if the above rights are granted to group containing the session authid,
but not explicitly to the session authid.

– Remove jar file. The session authid needs to have one of the following rights:
DBADM, or DROPIN (implicit or explicit on the jar schema), or is the definer
of the jar file. The operation will fail if the above rights are granted to group
containing the session authid, but not explicitly to the session authid, and if
the session authid is not the definer of the jar file.

– Replace jar file. This is same as removing the jar file, followed by installing
the jar file. Both of the above apply.

v When SET SESSION_USER statement is issued. Subsequent DB2 operations are
run under the context of the authid specified by this statement. These operations
will fail if the privileges required are owned by one of the SESSION_USER's
group is not explicitly granted to the SESSION_USER authid.

db2secGetGroupsForUser API - Get list of groups for user

Chapter 9. DB2 database system plug-ins for customizing database management 515

db2secGroupPluginInit API - Initialize group plug-in
Initialization API, for the group-retrieval plug-in, that the DB2 database manager
calls immediately after loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secGroupPluginInit

(db2int32 version,
void *group_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secGroupPluginInit API parameters

version
Input. The highest version of the API supported by the instance loading
that plugin. The value DB2SEC_API_VERSION (in db2secPlugin.h)
contains the latest version number of the API that the DB2 database
manager currently supports.

group_fns
Output. A pointer to the db2secGroupFunctions_<version_number> (also
known as group_functions_<version_number>) structure. The
db2secGroupFunctions_<version_number> structure contains pointers to
the APIs implemented for the group-retrieval plug-in. In future, there
might be different versions of the APIs (for example,
db2secGroupFunctions_<version_number>), so the group_fns parameter is
cast as a pointer to the db2secGroupFunctions_<version_number> structure
corresponding to the version the plug-in has implemented. The first
parameter of the group_functions_<version_number> structure tells DB2
the version of the APIs that the plug-in has implemented. Note: The
casting is done only if the DB2 version is higher or equal to the version of
the APIs that the plug-in has implemented. The version number represents
the version of the APIs implemented by the plugin, and the pluginType
should be set to DB2SEC_PLUGIN_TYPE_GROUP.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by
the DB2 database system. The db2secGroupPluginInit API can call the
db2secLogMessage API to log messages to the db2diag log files for
debugging or informational purposes. The first parameter (level) of
db2secLogMessage API specifies the type of diagnostic errors that will be
recorded in the db2diag log files and the last two parameters respectively
are the message string and its length. The valid values for the first
parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:
v DB2SEC_LOG_NONE: (0) No logging
v DB2SEC_LOG_CRITICAL: (1) Severe Error encountered
v DB2SEC_LOG_ERROR: (2) Error encountered
v DB2SEC_LOG_WARNING: (3) Warning
v DB2SEC_LOG_INFO: (4) Informational

The message text will show up in the diag.log only if the value of the
'level' parameter of the db2secLogMessage API is less than or equal to the
diaglevel database manager configuration parameter. So for example, if
you use the DB2SEC_LOG_INFO value, the message text will only show up in
the db2diag log files if the diaglevel database manager configuration
parameter is set to 4.

db2secGroupPluginInit API - Initialize group plug-in

516 Administrative API Reference

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGroupPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secGroupPluginInit API - Initialize group plug-in

Chapter 9. DB2 database system plug-ins for customizing database management 517

db2secPluginTerm - Clean up group plug-in resources
Frees resources used by the group-retrieval plug-in.

This API is called by the DB2 database manager just before it unloads the
group-retrieval plug-in. It should be implemented in a manner that it does a
proper cleanup of any resources the plug-in library holds, for instance, free any
memory allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows platform.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secPluginTerm - Clean up group plug-in resources

518 Administrative API Reference

APIs for user ID/password authentication plug-ins
For the user ID/password plug-in module, you need to implement the following
client-side APIs:
v db2secClientAuthPluginInit

Note: The db2secClientAuthPluginInit API takes as input a pointer,
*logMessage_fn, to an API with the following prototype:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. This API is provided by the
DB2 database system, so you need not implement it.

v db2secClientAuthPluginTerm

v db2secGenerateInitialCred (Only used for gssapi)
v db2secRemapUserid (Optional)
v db2secGetDefaultLoginContext

v db2secValidatePassword

v db2secProcessServerPrincipalName (This is only for GSS-API)
v db2secFreeToken (Functions to free memory held by the DLL)
v db2secFreeErrormsg

v db2secFreeInitInfo

v The only API that must be resolvable externally is db2secClientAuthPluginInit.
This API will take a void * parameter, which should be cast to either:
typedef struct db2secUseridPasswordClientAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen
);
/* Optional */
SQL_API_RC (SQL_API_FN * db2secRemapUserid)
(
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,

APIs for user ID/password authentication plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 519

char password[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *passwordlen,
char newpassword[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secValidatePassword)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
db2Uint32 connection_details,
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);
}

or
typedef struct db2secGssapiClientAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,

APIs for user ID/password authentication plug-ins

520 Administrative API Reference

void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secProcessServerPrincipalName)
(
const void *data,
gss_name_t *gssName,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secGenerateInitialCred)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
gss_cred_id_t *pGSSCredHandle,
void **initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void *token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secFreeInitInfo)
(
void *initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

/* GSS-API specific functions -- refer to db2secPlugin.h
for parameter list*/

OM_uint32 (SQL_API_FN * gss_init_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);

APIs for user ID/password authentication plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 521

OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);
}

You should use the db2secUseridPasswordClientAuthFunctions_1 structure if
you are writing an user ID/password plug-in. If you are writing a GSS-API
(including Kerberos) plug-in, you should use the
db2secGssapiClientAuthFunctions_1 structure.

For the user ID/password plug-in library, you will need to implement the
following server-side APIs:
v db2secServerAuthPluginInit

The db2secServerAuthPluginInit API takes as input a pointer, *logMessage_fn, to
the db2secLogMessage API, and a pointer, *getConDetails_fn, to the
db2secGetConDetails API with the following prototypes:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

SQL_API_RC (SQL_API_FN db2secGetConDetails)
(
db2int32 conDetailsVersion,
const void *pConDetails
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. The db2secGetConDetails API
allows the plug-in to obtain details about the client that is trying to attempt to
have a database connection. Both the db2secLogMessage API and
db2secGetConDetails API are provided by the DB2 database system, so you do
not need to implement them. The db2secGetConDetails API in turn, takes as its
second parameter,pConDetails, a pointer to one of the following structures:
db2sec_con_details_1:
typedef struct db2sec_con_details_1
{

db2int32 clientProtocol;
db2Uint32 clientIPAddress;
db2Uint32 connect_info_bitmap;
db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

} db2sec_con_details_1;

db2sec_con_details_2:
typedef struct db2sec_con_details_2
{

db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
db2Uint32 connect_info_bitmap;
db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

} db2sec_con_details_2;

db2sec_con_details_3:
typedef struct db2sec_con_details_3
{

db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
db2Uint32 connect_info_bitmap;

APIs for user ID/password authentication plug-ins

522 Administrative API Reference

db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */
db2Uint32 clientPlatform; /* SQLM_PLATFORM_* from sqlmon.h */
db2Uint32 _reserved[16];

} db2sec_con_details_3;

The possible values for conDetailsVersion are
DB2SEC_CON_DETAILS_VERSION_1, DB2SEC_CON_DETAILS_VERSION_2,
and DB2SEC_CON_DETAILS_VERSION_3 representing the version of the API.

Note: While using db2sec_con_details_1, db2sec_con_details_2, or
db2sec_con_details_3, consider the following:
– Existing plugins that are using the db2sec_con_details_1 structure and the

DB2SEC_CON_DETAILS_VERSION_1 value will continue to work as they did
with Version 8.2 when calling the db2GetConDetails API. If this API is called
on an IPv4 platform, the client IP address is returned in the clientIPAddress
field of the structure. If this API is called on an IPv6 platform,a value of 0 is
returned in the clientIPAddress field. To retrieve the client IP address on an
IPv6 platform, the security plug-in code should be changed to use either the
db2sec_con_details_2 structure and the DB2SEC_CON_DETAILS_VERSION_2
value, or the db2sec_con_details_3 structure and the
DB2SEC_CON_DETAILS_VERSION_3 value .

– New plugins should use the db2sec_con_details_3 structure and the
DB2SEC_CON_DETAILS_VERSION_3 value. If the db2secGetConDetails API
is called on an IPv4 platform, the client IP address is returned in the
clientIPAddress field of the db2sec_con_details_3 structure and if the API is
called on an IPv6 platform the client IP address is returned in the
clientIP6Address field of the db2sec_con_details_3 structure. The clientProtocol
field of the connection details structure will be set to one of
SQL_PROTOCOL_TCPIP (IPv4, with v1 of the structure),
SQL_PROTOCOL_TCPIP4 (IPv4, with v2 of the structure) or
SQL_PROTOCOL_TCPIP6 (IPv6, with v2 or v3 of the structure).

– The structure db2sec_con_details_3 is identical to the structure
db2sec_con_details_2 except that it contains an additional field (clientPlatform)
that identifies the client platform type (as reported by the communication
layer) using platform type constants defined in sqlmon.h, such as
SQLM_PLATFORM_AIX.

v db2secServerAuthPluginTerm

v db2secValidatePassword

v db2secGetAuthIDs

v db2secDoesAuthIDExist

v db2secFreeToken

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secServerAuthPluginInit.
This API will take a void * parameter, which should be cast to either:
typedef struct db2secUseridPasswordServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

/* parameter lists left blank for readability
see above for parameters */

SQL_API_RC (SQL_API_FN * db2secValidatePassword)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);

APIs for user ID/password authentication plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 523

SQL_API_RC (SQL_API_FN * db2secFreeToken)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();
} userid_password_server_auth_functions;

or
typedef struct db2secGssapiServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;
gss_buffer_desc serverPrincipalName;
gss_cred_id_t ServerCredHandle;
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

/* GSS-API specific functions
refer to db2secPlugin.h for parameter list*/
OM_uint32 (SQL_API_FN * gss_accept_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_name)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

} gssapi_server_auth_functions;

You should use the db2secUseridPasswordServerAuthFunctions_1 structure if
you are writing an user ID/password plug-in. If you are writing a GSS-API
(including Kerberos) plug-in, you should use the
db2secGssapiServerAuthFunctions_1 structure.

APIs for user ID/password authentication plug-ins

524 Administrative API Reference

db2secClientAuthPluginInit API - Initialize client authentication
plug-in

Initialization API, for the client authentication plug-in, that the DB2 database
manager calls immediately after loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secClientAuthPluginInit

(db2int32 version,
void *client_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secClientAuthPluginInit API parameters

version
Input. The highest version number of the API that the DB2 database
manager currently supports. The DB2SEC_API_VERSION value (in
db2secPlugin.h) contains the latest version number of the API that DB2
currently supports.

client_fns
Output. A pointer to memory provided by the DB2 database manager for a
db2secGssapiClientAuthFunctions_<version_number> structure (also
known as gssapi_client_auth_functions_<version_number>), if GSS-API
authentication is used, or a
db2secUseridPasswordClientAuthFunctions_<version_number> structure
(also known as
userid_password_client_auth_functions_<version_number>), if
userid/password authentication is used. The
db2secGssapiClientAuthFunctions_<version_number> structure and
db2secUseridPasswordClientAuthFunctions_<version_number> structure
respectively contain pointers to the APIs implemented for the GSS-API
authentication plug-in and userid/password authentication plug-in. In
future versions of DB2, there might be different versions of the APIs, so the
client_fns parameter is cast as a pointer to the
gssapi_client_auth_functions_<version_number> structure corresponding to
the version the plug-in has implemented.

The first parameter of the gssapi_client_auth_functions_<version_number>
structure or the userid_password_client_auth_functions_<version_number>
structure tells the DB2 database manager the version of the APIs that the
plug-in has implemented.

Note: The casting is done only if the DB2 version is higher or equal to the
version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the
plugintype parameter should be set to one of
DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,
DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.
Other values can be defined in future versions of the API.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by
the DB2 database manager. The db2secClientAuthPluginInit API can call
the db2secLogMessage API to log messages to the db2diag log files for

db2secClientAuthPluginInit API - Initialize client authentication plug-in

Chapter 9. DB2 database system plug-ins for customizing database management 525

debugging or informational purposes. The first parameter (level) of
db2secLogMessage API specifies the type of diagnostic errors that will be
recorded in the db2diag log files and the last two parameters respectively
are the message string and its length. The valid values for the first
parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:
v DB2SEC_LOG_NONE (0) No logging
v DB2SEC_LOG_CRITICAL (1) Severe Error encountered
v DB2SEC_LOG_ERROR (2) Error encountered
v DB2SEC_LOG_WARNING (3) Warning
v DB2SEC_LOG_INFO (4) Informational

The message text will show up in the db2diag log files only if the value of
the 'level' parameter of the db2secLogMessage API is less than or equal to
the diaglevel database manager configuration parameter. For example, if
you use the DB2SEC_LOG_INFO value, the message text will only appear
in the db2diag log files if the diaglevel database manager configuration
parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secClientAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secClientAuthPluginInit API - Initialize client authentication plug-in

526 Administrative API Reference

db2secClientAuthPluginTerm API - Clean up client
authentication plug-in resources

Frees resources used by the client authentication plug-in.

This API is called by the DB2 database manager just before it unloads the client
authentication plug-in. It should be implemented in a manner that it does a proper
cleanup of any resources the plug-in library holds, for instance, free any memory
allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows platform.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secClientAuthPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secClientAuthPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secClientAuthPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secClientAuthPluginTerm API - Clean up client authentication plug-in resources

Chapter 9. DB2 database system plug-ins for customizing database management 527

db2secDoesAuthIDExist - Check if authentication ID exists
Determines if the authid represents an individual user (for example, whether the
API can map the authid to an external user ID).

The API should return the value DB2SEC_PLUGIN_OK if it is successful - the
authid is valid, DB2SEC_PLUGIN_INVALID_USERORGROUP if it is not valid, or
DB2SEC_PLUGIN_USERSTATUSNOTKNOWN if the authid existence cannot be
determined.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secDoesAuthIDExist)

(const char *authid,
db2int32 authidlen,
char **errormsg,
db2int32 *errormsglen);

db2secDoesAuthIDExist API parameters

authid Input. The authid to validate. This is upper-cased, with no trailing blanks.

authidlen
Input. Length in bytes of the authid parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secDoesAuthIDExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length of the error
message string in errormsg parameter.

db2secDoesAuthIDExist - Check if authentication ID exists

528 Administrative API Reference

db2secFreeInitInfo API - Clean up resources held by the
db2secGenerateInitialCred

Frees any resources allocated by the db2secGenerateInitialCred API. This can
include, for example, handles to underlying mechanism contexts or a credential
cache created for the GSS-API credential cache.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeInitInfo)

(void *initinfo,
char **errormsg,
db2int32 *errormsglen);

db2secFreeInitInfo API parameters

initinfo
Input. A pointer to data that is not known to the DB2 database manager.
The plug-in can use this memory to maintain a list of resources that are
allocated in the process of generating the credential handle. These
resources are freed by calling this API.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secFreeInitInfo API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secFreeInitInfo API - Clean up resources held by the db2secGenerateInitialCred

Chapter 9. DB2 database system plug-ins for customizing database management 529

db2secFreeToken API - Free memory held by token
Frees the memory held by a token. This API is called by the DB2 database
manager when it no longer needs the memory held by the token parameter.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeToken)

(void *token,
char **errormsg,
db2int32 *errormsglen);

db2secFreeToken API parameters

token Input. Pointer to the memory to be freed.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secFreeToken API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secFreeToken API - Free memory held by token

530 Administrative API Reference

db2secGenerateInitialCred API - Generate initial credentials
The db2secGenerateInitialCred API obtains the initial GSS-API credentials based on
the user ID and password that are passed in.

For Kerberos, this is the ticket-granting ticket (TGT). The credential handle that is
returned in pGSSCredHandle parameter is the handle that is used with the
gss_init_sec_context API and must be either an INITIATE or BOTH credential. The
db2secGenerateInitialCred API is only called when a user ID, and possibly a
password are supplied. Otherwise, the DB2 database manager specifies the value
GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to signify
that the default credential obtained from the current login context is to be used.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
gss_cred_id_t *pGSSCredHandle,
void **InitInfo,
char **errormsg,
db2int32 *errormsglen);

db2secGenerateInitialCred API parameters

userid Input. The user ID whose password is to be verified on the database
server.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace.

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpassword
Input. A new password if the password is to be changed. If no change is
requested, the newpassword parameter is set to NULL. If it is not NULL,
the API should validate the old password before setting the password to its
new value. The API does not have to honour a request to change the
password, but if it does not, it should immediately return with the return
value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without
validating the old password.

db2secGenerateInitialCred API - Generate initial credentials

Chapter 9. DB2 database system plug-ins for customizing database management 531

newpasswordlen
Input. Length in bytes of the newpassword parameter value.

dbname
Input. The name of the database being connected to. The API is free to
ignore this parameter, or the API can return the value
DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of
restricting access to certain databases to users who otherwise have valid
passwords.

dbnamelen
Input. Length in bytes of the dbname parameter value.

pGSSCredHandle
Output. Pointer to the GSS-API credential handle.

InitInfo
Output. A pointer to data that is not known to DB2. The plug-in can use
this memory to maintain a list of resources that are allocated in the process
of generating the credential handle. The DB2 database manager calls the
db2secFreeInitInfo API at the end of the authentication process, at which
point these resources are freed. If the db2secGenerateInitialCred API does
not need to maintain such a list, then it should return NULL.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return
value indicates a bad user ID or password. An error message should only
be returned if there is an internal error in the API that prevented it from
completing properly.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secGenerateInitialCred API - Generate initial credentials

532 Administrative API Reference

db2secGetAuthIDs API - Get authentication IDs
Returns an SQL authid for an authenticated user. This API is called during
database connections for both user ID/password and GSS-API authentication
methods.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetAuthIDs)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *SystemAuthIDlen,
char InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *InitialSessionAuthIDlen,
char username[DB2SEC_MAX_USERID_LENGTH],
db2int32 *usernamelen,
db2int32 *initsessionidtype,
char **errormsg,
db2int32 *errormsglen);

db2secGetAuthIDs API parameters

userid Input. The authenticated user. This is usually not used for GSS-API
authentication unless a trusted context is defined to permit switch user
operations without authentication. In those situations, the user name
provided for the switch user request is passed in this parameter.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. Namespacetype value. currently, the only supported namespace type
value is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a
username style like domain\myname).

dbname
Input. The name of the database being connected to. The API can ignore
this, or it can return differing authids when the same user connects to
different databases. This parameter can be NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is
set to 0 if dbname parameter is NULL.

token Input or output. Data that the plug-in might pass to the
db2secGetGroupsForUser API. For GSS-API, this is a context handle
(gss_ctx_id_t). Ordinarily, token is an input-only parameter and its value is
taken from the db2secValidatePassword API. It can also be an output
parameter when authentication is done on the client and therefore
db2secValidatePassword API is not called. In environments where a trusted
context is defined that allows switch user operations without

db2secGetAuthIDs API - Get authentication IDs

Chapter 9. DB2 database system plug-ins for customizing database management 533

authentication, the db2secGetAuthIDs API must be able to accommodate
receiving a NULL value for this token parameter and be able to derive a
system authorization ID based on the userid and useridlen input
parameters above.

SystemAuthID
Output. The system authorization ID that corresponds to the ID of the
authenticated user. The size is 255 bytes, but the DB2 database manager
currently uses only up to (and including) 30 bytes.

SystemAuthIDlen
Output. Length in bytes of the SystemAuthID parameter value.

InitialSessionAuthID
Output. Authid used for this connection session. This is usually the same
as the SystemAuthID parameter but can be different in some situations, for
instance, when issuing a SET SESSION AUTHORIZATION statement. The
size is 255 bytes, but the DB2 database manager currently uses only up to
(and including) 30 bytes.

InitialSessionAuthIDlen
Output. Length in bytes of the InitialSessionAuthID parameter value.

username
Output. A username corresponding to the authenticated user and authid.
This will only be used for auditing and will be logged in the "User ID"
field in the audit record for CONNECT statement. If the API does not fill
in the username parameter, the DB2 database manager copies it from the
userid.

usernamelen
Output. Length in bytes of the username parameter value.

initsessionidtype
Output. Session authid type indicating whether or not the
InitialSessionAuthid parameter is a role or an authid. The API should
return one of the following values (defined in db2secPlugin.h):
v DB2SEC_ID_TYPE_AUTHID (0)
v DB2SEC_ID_TYPE_ROLE (1)

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGetAuthIDs API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secGetAuthIDs API - Get authentication IDs

534 Administrative API Reference

db2secGetDefaultLoginContext API - Get default login context
Determines the user associated with the default login context, in other words,
determines the DB2 authid of the user invoking a DB2 command without explicitly
specifying a user ID (either an implicit authentication to a database, or a local
authorization). This API must return both an authid and a user ID.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetDefaultLoginContext)

(char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen);

db2secGetDefaultLoginContext API parameters

authid Output. The parameter in which the authid should be returned. The
returned value must conform to DB2 authid naming rules, or the user will
not be authorized to perform the requested action.

authidlen
Output. Length in bytes of the authid parameter value.

userid Output. The parameter in which the user ID associated with the default
login context should be returned.

useridlen
Output. Length in bytes of the userid parameter value.

useridtype
Input. Indicates if the real or effective user ID of the process is being
specified. On Windows, only the real user ID exists. On UNIX and Linux,
the real user ID and effective user ID can be different if the uid user ID for
the application is different than the ID of the user executing the process.
Valid values for the userid parameter (defined in db2secPlugin.h) are:

DB2SEC_PLUGIN_REAL_USER_NAME
Indicates that the real user ID is being specified.

DB2SEC_PLUGIN_EFFECTIVE_USER_NAME
Indicates that the effective user ID is being specified.

Note: Some plug-in implementations might not distinguish
between the real and effective userid. In particular, a plug-in that
does not use the UNIX or Linux identity of the user to establish
the DB2 authorization ID can safely ignore this distinction.

usernamespace
Output. The namespace of the user ID.

usernamespacelen
Output. Length in bytes of the usernamespace parameter value. Under the
limitation that the usernamespacetype parameter must be set to the value

db2secGetDefaultLoginContext API - Get default login context

Chapter 9. DB2 database system plug-ins for customizing database management 535

DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h),
the maximum length currently supported is 15 bytes.

usernamespacetype
Output. Namespacetype value. Currently, the only supported namespace
type is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a
username style like domain\myname).

dbname
Input. Contains the name of the database being connected to, if this call is
being used in the context of a database connection. For local authorization
actions or instance attachments, this parameter is set to NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value.

token Output. This is a pointer to data allocated by the plug-in that it might pass
to subsequent authentication calls in the plug-in, or possibly to the group
retrieval plug-in. The structure of this data is determined by the plug-in
writer.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGetDefaultLoginContext API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secGetDefaultLoginContext API - Get default login context

536 Administrative API Reference

db2secProcessServerPrincipalName API - Process service
principal name returned from server

The db2secProcessServerPrincipalName API processes the service principal name
returned from the server and returns the principal name in the gss_name_t internal
format to be used with the gss_init_sec_context API.

The db2secProcessServerPrincipalName API also processes the service principal
name cataloged with the database directory when Kerberos authentication is used.
Ordinarily, this conversion uses the gss_import_name API. After the context is
established, the gss_name_t object is freed through the call to gss_release_name
API. The db2secProcessServerPrincipalName API returns the value
DB2SEC_PLUGIN_OK if gssName parameter points to a valid GSS name; a
DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME error code is returned if the principal
name is invalid.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secProcessServerPrincipalName)

(const char *name,
db2int32 namelen,
gss_name_t *gssName,
char **errormsg,
db2int32 *errormsglen);

db2secProcessServerPrincipalName API parameters

name Input. Text name of the service principal in GSS_C_NT_USER_NAME
format; for example, service/host@REALM.

namelen
Input. Length in bytes of the name parameter value.

gssName
Output. Pointer to the output service principal name in the GSS-API
internal format.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secProcessServerPrincipalName API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secProcessServerPrincipalName API - Process service principal name returned from
server

Chapter 9. DB2 database system plug-ins for customizing database management 537

db2secRemapUserid API - Remap user ID and password
This API is called by the DB2 database manager on the client side to remap a
given user ID and password (and possibly new password and usernamespace) to
values different from those given at connect time.

The DB2 database manager only calls this API if a user ID and a password are
supplied at connect time. This prevents a plug-in from remapping a user ID by
itself to a user ID/password pair. This API is optional and is not called if it is not
provided or implemented by the security plug-in.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secRemapUserid)

(char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
char password[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *passwordlen,
char newpasswd[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *newpasswdlen,
const char *dbname,
db2int32 dbnamelen,
char **errormsg,
db2int32 *errormsglen);

db2secRemapUserid API parameters

userid Input or output. The user ID to be remapped. If there is an input user ID
value, then the API must provide an output user ID value that can be the
same or different from the input user ID value. If there is no input user ID
value, then the API should not return an output user ID value.

useridlen
Input or output. Length in bytes of the userid parameter value.

usernamespace
Input or output. The namespace of the user ID. This value can optionally
be remapped. If no input parameter value is specified, but an output value
is returned, then the usernamespace will only be used by the DB2 database
manager for CLIENT type authentication and is disregarded for other
authentication types.

usernamespacelen
Input or output. Length in bytes of the usernamespace parameter value.
Under the limitation that the usernamespacetype parameter must be set to
the value DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in
db2secPlugin.h), the maximum length currently supported is 15 bytes.

usernamespacetype
Input or output. Old and new namespacetype value. Currently, the only
supported namespace type value is
DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username
style like domain\myname).

password
Input or output. As an input, it is the password that is to be remapped. As
an output it is the remapped password. If an input value is specified for

db2secRemapUserid API - Remap user ID and password

538 Administrative API Reference

this parameter, the API must be able to return an output value that differs
from the input value. If no input value is specified, the API must not
return an output password value.

passwordlen
Input or output. Length in bytes of the password parameter value.

newpasswd
Input or output. As an input, it is the new password that is to be set. As
an output it is the confirmed new password.

Note: This is the new password that is passed by the DB2 database
manager into the newpassword parameter of the db2secValidatePassword
API on the client or the server (depending on the value of the
authentication database manager configuration parameter). If a new
password was passed as input, then the API must be able to return an
output value and it can be a different new password. If there is no new
password passed in as input, then the API should not return an output
new password.

newpasswdlen
Input or output. Length in bytes of the newpasswd parameter value.

dbname
Input. Name of the database to which the client is connecting.

dbnamelen
Input. Length in bytes of the dbname parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secRemapUserid API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secRemapUserid API - Remap user ID and password

Chapter 9. DB2 database system plug-ins for customizing database management 539

db2secServerAuthPluginInit - Initialize server authentication
plug-in

The db2secServerAuthPluginInit API is the initialization API for the server
authentication plug-in that the DB2 database manager calls immediately after
loading the plug-in.

In the case of GSS-API, the plug-in is responsible for filling in the server's principal
name in the serverPrincipalName parameter inside the
gssapi_server_auth_functions structure at initialization time and providing the
server's credential handle in the serverCredHandle parameter inside the
gssapi_server_auth_functions structure. The freeing of the memory allocated to
hold the principal name and the credential handle must be done by the
db2secServerAuthPluginTerm API by calling the gss_release_name and
gss_release_cred APIs.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secServerAuthPluginInit

(db2int32 version,
void *server_fns,
db2secGetConDetails *getConDetails_fn,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secServerAuthPluginInit API parameters

version
Input. The highest version number of the API that the DB2 database
manager currently supports. The DB2SEC_API_VERSION value (in
db2secPlugin.h) contains the latest version number of the API that the DB2
database manager currently supports.

server_fns
Output. A pointer to memory provided by the DB2 database manager for a
db2secGssapiServerAuthFunctions_<version_number> structure (also
known as gssapi_server_auth_functions_<version_number>), if GSS-API
authentication is used, or a
db2secUseridPasswordServerAuthFunctions_<version_number> structure
(also known as
userid_password_server_auth_functions_<version_number>), if
userid/password authentication is used. The
db2secGssapiServerAuthFunctions_<version_number> structure and
db2secUseridPasswordServerAuthFunctions_<version_number> structure
respectively contain pointers to the APIs implemented for the GSS-API
authentication plug-in and userid/password authentication plug-in.

The server_fns parameter is cast as a pointer to the
gssapi_server_auth_functions_<version_number> structure corresponding
to the version the plug-in has implemented. The first parameter of the
gssapi_server_auth_functions_<version_number> structure or the
userid_password_server_auth_functions_<version_number> structure tells
theDB2 database manager the version of the APIs that the plug-in has
implemented.

Note: The casting is done only if the DB2 version is higher or equal to the
version of the APIs that the plug-in has implemented.

db2secServerAuthPluginInit - Initialize server authentication plug-in

540 Administrative API Reference

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the
plugintype parameter should be set to one of
DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,
DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.
Other values can be defined in future versions of the API.

getConDetails_fn
Input. Pointer to the db2secGetConDetails API, which is implemented by
DB2. The db2secServerAuthPluginInit API can call the
db2secGetConDetails API in any one of the other authentication APIs to
obtain details related to the database connection. These details include
information about the communication mechanism associated with the
connection (such as the IP address, in the case of TCP/IP), which the
plug-in writer might need to reference when making authentication
decisions. For example, the plug-in could disallow a connection for a
particular user, unless that user is connecting from a particular IP address.
The use of the db2secGetConDetails API is optional.

If the db2secGetConDetails API is called in a situation not involving a
database connection, it returns the value
DB2SEC_PLUGIN_NO_CON_DETAILS, otherwise, it returns 0 on success.

The db2secGetConDetails API takes two input parameters; pConDetails,
which is a pointer to the db2sec_con_details_<version_number> structure,
and conDetailsVersion, which is a version number indicating which
db2sec_con_details structure to use. Possible values are
DB2SEC_CON_DETAILS_VERSION_1 when db2sec_con_details1 is used or
DB2SEC_CON_DETAILS_VERSION_2 when db2sec_con_details2. The
recommended version number to use is
DB2SEC_CON_DETAILS_VERSION_2.

Upon a successful return, the db2sec_con_details structure (either
db2sec_con_details1 or db2sec_con_details2) will contain the following
information:
v The protocol used for the connection to the server. The listing of protocol

definitions can be found in the file sqlenv.h (located in the include
directory) (SQL_PROTOCOL_*). This information is filled out in the
clientProtocol parameter.

v The TCP/IP address of the inbound connect to the server if the
clientProtocol is SQL_PROTOCOL_TCPIP or SQL_PROTOCOL_TCPIP4.
This information is filled out in the clientIPAddress parameter.

v The database name the client is attempting to connect to. This will not
be set for instance attachments. This information is filled out in the
dbname and dbnameLen parameters.

v A connection information bit-map that contains the same details as
documented in the connection_details parameter of the
db2secValidatePassword API. This information is filled out in the
connect_info_bitmap parameter.

v The TCP/IP address of the inbound connect to the server if the
clientProtocol is SQL_PROTOCOL_TCPIP6. This information is filled out
in the clientIP6Address parameter and it is only available if
DB2SEC_CON_DETAILS_VERSION_2 is used for db2secGetConDetails
API call.

logMessage_fn

db2secServerAuthPluginInit - Initialize server authentication plug-in

Chapter 9. DB2 database system plug-ins for customizing database management 541

Input. A pointer to the db2secLogMessage API, which is implemented by
the DB2 database manager. The db2secClientAuthPluginInit API can call
the db2secLogMessage API to log messages to the db2diag log files for
debugging or informational purposes. The first parameter (level) of
db2secLogMessage API specifies the type of diagnostic errors that will be
recorded in the db2diag log files and the last two parameters respectively
are the message string and its length. The valid values for the first
parameter of dbesecLogMessage API (defined in db2secPlugin.h) are:

DB2SEC_LOG_NONE (0)
No logging

DB2SEC_LOG_CRITICAL (1)
Severe Error encountered

DB2SEC_LOG_ERROR (2)
Error encountered

DB2SEC_LOG_WARNING (3)
Warning

DB2SEC_LOG_INFO (4)
Informational

The message text will appear in the db2diag log files only if the value of
the 'level' parameter of the db2secLogMessage API is less than or equal to
the diaglevel database manager configuration parameter.

So for example, if you use the DB2SEC_LOG_INFO value, the message text
will only appear in the db2diag log files if the diaglevel database manager
configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secServerAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secServerAuthPluginInit - Initialize server authentication plug-in

542 Administrative API Reference

db2secServerAuthPluginTerm API - Clean up server
authentication plug-in resources

The db2secServerAuthPluginTerm API frees resources used by the server
authentication plug-in.

This API is called by the DB2 database manager just before it unloads the server
authentication plug-in. It should be implemented in a manner that it does a proper
cleanup of any resources the plug-in library holds, for instance, free any memory
allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows platform.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secServerAuthPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secServerAuthPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secServerAuthPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secServerAuthPluginTerm API - Clean up server authentication plug-in resources

Chapter 9. DB2 database system plug-ins for customizing database management 543

db2secValidatePassword API - Validate password
Provides a method for performing user ID and password style authentication
during a database connect operation.

Note: When the API is run on the client side, the API code is run with the
privileges of the user executing the CONNECT statement. This API will only be
called on the client side if the authentication configuration parameter is set to
CLIENT.

When the API is run on the server side, the API code is run with the privileges of
the instance owner.

The plug-in writer should take the above into consideration if authentication
requires special privileges (such as root level system access on UNIX).

This API must return the value DB2SEC_PLUGIN_OK (success) if the password is
valid, or an error code such as DB2SEC_PLUGIN_BADPWD if the password is
invalid.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secValidatePassword)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpasswd,
db2int32 newpasswdlen,
const char *dbname,
db2int32 dbnamelen,
db2Uint32 connection_details,
void **token,
char **errormsg,
db2int32 *errormsglen);

db2secValidatePassword API parameters

userid Input. The user ID whose password is to be verified.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace. Valid values for the usernamespacetype
parameter (defined in db2secPlugin.h) are:
v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like

domain\myname
v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the DB2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not

db2secValidatePassword API - Validate password

544 Administrative API Reference

available, the usernamespacetype parameter is set to the value
DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpasswd
Input. A new password, if the password is to be changed. If no change is
requested, this parameter is set to NULL. If this parameter is not NULL,
the API should validate the old password before changing it to the new
password. The API does not have to fulfill a request to change the
password, but if it does not, it should immediately return with the return
value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without
validating the old password.

newpasswdlen
Input. Length in bytes of the newpasswd parameter value.

dbname
Input. The name of the database being connected to. The API is free to
ignore the dbname parameter, or it can return the value
DB2SEC_PLUGIN_CONNECTIONREFUSED if it has a policy of restricting
access to certain databases to users who otherwise have valid passwords.
This parameter can be NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is
set to 0 if dbname parameter is NULL.

connection_details
Input. A 32-bit parameter of which 3 bits are currently used to store the
following information:
v The rightmost bit indicates whether the source of the user ID is the

default from the db2secGetDefaultLoginContext API, or was explicitly
provided during the connect.

v The second-from-right bit indicates whether the connection is local
(using Inter Process Communication (IPC) or a connect from one of the
nodes in the db2nodes.cfg in the partitioned database environment), or
remote (through a network or loopback). This gives the API the ability
to decide whether clients on the same machine can connect to the DB2
server without a password. Due to the default operating-system-based
user ID/password plugin, local connections are permitted without a
password from clients on the same machine (assuming the user has
connect privileges).

v The third-from-right bit indicates whether the DB2 database manager is
calling the API from the server side or client side.

The bit values are defined in db2secPlugin.h:
v DB2SEC_USERID_FROM_OS (0x00000001) Indicates that the user ID is

obtained from OS and not explicitly given on the connect statement.
v DB2SEC_CONNECTION_ISLOCAL (0x00000002) Indicates a local connection.
v DB2SEC_VALIDATING_ON_SERVER_SIDE (0x0000004) Indicates whether the

DB2 database manager is calling from the server side or client side to

db2secValidatePassword API - Validate password

Chapter 9. DB2 database system plug-ins for customizing database management 545

validate password. If this bit value is set, then the DB2 database
manager is calling from server side; otherwise, it is calling from the
client side.

The DB2 database system default behavior for an implicit authentication is
to allow the connection without any password validation. However,
plug-in developers have the option to disallow implicit authentication by
returning a DB2SEC_PLUGIN_BADPASSWORD error.

token Input. A pointer to data which can be passed as a parameter to subsequent
API calls during the current connection. Possible APIs that might be called
include db2secGetAuthIDs API and db2secGetGroupsForUser API.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secValidatePassword API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secValidatePassword API - Validate password

546 Administrative API Reference

Required APIs and definitions for GSS-API authentication plug-ins
Following is a complete list of GSS-APIs required for the DB2 security plug-in
interface.

The supported APIs follow these specifications: Generic Security Service Application
Program Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version
2: C-Bindings (IETF RFC2744). Before implementing a GSS-API based plug-in, you
should have a complete understanding of these specifications.

Table 12. Required APIs and Definitions for GSS-API authentication plug-ins

Name Description

Client-side APIs gss_init_sec_context Initiate a security context with a peer application.

Server-side APIs gss_accept_sec_context Accept a security context initiated by a peer application.

Server-side APIs gss_display_name Convert an internal format name to text.

Common APIs gss_delete_sec_context Delete an established security context.

Common APIs gss_display_status Obtain the text error message associated with a GSS-API
status code.

Common APIs gss_release_buffer Delete a buffer.

Common APIs gss_release_cred Release local data structures associated with a GSS-API
credential.

Common APIs gss_release_name Delete internal format name.

Required
definitions

GSS_C_DELEG_FLAG Requests delegation.

Required
definitions

GSS_C_EMPTY_BUFFER Signifies that the gss_buffer_desc does not contain any
data.

Required
definitions

GSS_C_GSS_CODE Indicates a GSS major status code.

Required
definitions

GSS_C_INDEFINITE Indicates that the mechanism does not support context
expiration.

Required
definitions

GSS_C_MECH_CODE Indicates a GSS minor status code.

Required
definitions

GSS_C_MUTUAL_FLAG Mutual authentication requested.

Required
definitions

GSS_C_NO_BUFFER Signifies that the gss_buffer_t variable does not point to
a valid gss_buffer_desc structure.

Required
definitions

GSS_C_NO_CHANNEL_BINDINGS No communication channel bindings.

Required
definitions

GSS_C_NO_CONTEXT Signifies that the gss_ctx_id_t variable does not point to
a valid context.

Required
definitions

GSS_C_NO_CREDENTIAL Signifies that gss_cred_id_t variable does not point to a
valid credential handle.

Required
definitions

GSS_C_NO_NAME Signifies that the gss_name_t variable does not point to a
valid internal name.

Required
definitions

GSS_C_NO_OID Use default authentication mechanism.

Required
definitions

GSS_C_NULL_OID_SET Use default mechanism.

Required
definitions

GSS_S_COMPLETE API completed successfully.

Required APIs and definitions for GSS-API authentication plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 547

Table 12. Required APIs and Definitions for GSS-API authentication plug-ins (continued)

Name Description

Required
definitions

GSS_S_CONTINUE_NEEDED Processing is not complete and the API must be called
again with the reply token received from the peer.

Required APIs and definitions for GSS-API authentication plug-ins

548 Administrative API Reference

Restrictions for GSS-API authentication plug-ins
The following is a list of restrictions for GSS-API authentication plug-ins.
v The default security mechanism is always assumed; therefore, there is no OID

consideration.
v The only GSS services requested in gss_init_sec_context() are mutual

authentication and delegation. The DB2 database manager always requests a
ticket for delegation, but does not use that ticket to generate a new ticket.

v Only the default context time is requested.
v Context tokens from gss_delete_sec_context() are not sent from the client to

the server and vice-versa.
v Anonymity is not supported.
v Channel binding is not supported
v If the initial credentials expire, the DB2 database manager does not automatically

renew them.
v The GSS-API specification stipulates that even if gss_init_sec_context() or

gss_accept_sec_context() fail, either function must return a token to send to
the peer. However, because of DRDA limitations, the DB2 database manager
only sends a token if gss_init_sec_context() fails and generates a token on the
first call.

Restrictions for GSS-API authentication plug-ins

Chapter 9. DB2 database system plug-ins for customizing database management 549

Security plug-in samples

UNIX and Linux directories: The 'C' samples are located in sqllib/samples/
security/plugins and the JCC GSS-API plugin samples (.java) are located in
sqllib/samples/java/jdbc

Windows directory: The 'C' samples are located in sqllib\samples\security\
plugins and the JCC GSS-API plugin samples (.java) are located in
sqllib\samples\java\jdbc

Table 13. Security plug-in sample program files

Sample program name Program description

combined.c Combined user ID and password authentication and
group lookup sample

duaconfigschema.ldif Used to ITDS LDAP server when a HP-UX system
wants to connect to the LDAP server.

group_file.c Simple file-based group management plug-in sample

gssapi_simple.c Basic GSS-API authentication plug-in sample (both
client and server)

IBMLDAPauthclient.c Implements a client side DB2 security plugin that
interacts with an LDAP user registry

IBMLDAPauthserver.c Implements a server side DB2 security plugin that
interacts with an LDAP user registry

IBMLDAPconfig.c Contains functions related to finding and parsing the
configuration file for a DB2 LDAP security plugin

IBMLDAPgroups.c Implements a DB2 security plugin for LDAP-based
group lookup

IBMLDAPutils.c Contains utility functions used in the DB2 LDAP
security plugin

IBMLDAPutils.h LDAP security plugin header file

JCCKerberosPlugin.java Implements a GSS-API Plugin that does Kerberos
authentication using IBM DB2 Universal Driver

JCCKerberosPluginTest.java Uses JCCKerberosPlugin to get a DB2 Connection using
IBM DB2 Universal Driver.

JCCSimpleGSSPlugin.java Implements a GSS-API Plugin that does userid and
password checking using IBM DB2 Universal Driver.

JCCSimpleGSSContext.java Implements a GSSContext to be used by
JCCSimpleGSSPlugin

JCCSimpleGSSCredential.java Implements a GSSCredential to be used by
JCCSimpleGSSPlugin

JCCSimpleGSSException.java Implements a GSSException to be used by
JCCSimpleGSSPlugin

JCCSimpleGSSName.java Implements a GSSName to be used by
JCCSimpleGSSPlugin

JCCSimpleGSSPluginTest.java Uses JCCSimpleGSSPlugin to get a DB2 Connection
using IBM DB2 Universal Driver.

Security plug-in samples

550 Administrative API Reference

DB2 APIs for backup and restore to storage managers

DB2 provides an interface that can be used by third-party media management
products to store and retrieve data for backup and restore operations and log files.
This interface is designed to augment the backup, restore, and log archiving data
targets of diskette, disk, tape, and Tivoli Storage Manager, that are supported as a
standard part of DB2.

These third-party media management products will be referred to as vendor
products in the remainder of this section.

DB2 defines a set of API prototypes that provide a general purpose data interface
to backup, restore, and log archiving that can be used by many vendors. These
APIs are to be provided by the vendor in a shared library on UNIX based systems,
or DLL on the Windows operating system. When the APIs are invoked by DB2, the
shared library or DLL specified by the calling backup, restore, or log archiving
routine is loaded and the APIs provided by the vendor are called to perform the
required tasks.

Sample files demonstrating the DB2 vendor functionality are located on UNIX
platforms in the sqllib/samples/BARVendor directory, and on Windows in the
sqllib\samples\BARVendor directory.

The following are the definitions for terminology used in the descriptions of the
backup and restore vendor storage plug-in APIs.

Backup and restore vendor storage plug-in
A dynamically loadable library that DB2 will load to access user-written
backup and restore APIs for vendor products.

Input Indicates that DB2 will fill in the value for the backup and restore vendor
storage plug-in API parameter.

Output
Indicates that the backup and restore vendor storage plug-in API will fill in
the value for the API parameter.

DB2 APIs for backup and restore to storage managers

Chapter 9. DB2 database system plug-ins for customizing database management 551

db2VendorGetNextObj - Get next object on device

This API is called after a query has been set up (using the sqluvint API) to get the
next object (image or archived log file) that matches the search criteria. Only one
search for either images or log files can be set up at one time.

Authorization

None

Required connection

Database.

API include file
db2VendorApi.h

API and data structure syntax
int db2VendorGetNextObj (void * vendorCB,

struct db2VendorQueryInfo * queryInfo,
struct Return_code * returnCode);

typedef struct db2VendorQueryInfo
{

db2Uint64 sizeEstimate;
db2Uint32 type;
SQL_PDB_NODE_TYPE dbPartitionNum;
db2Uint16 sequenceNum;
char db2Instance[SQL_INSTNAME_SZ + 1];
char dbname[SQL_DBNAME_SZ + 1];
char dbalias[SQL_ALIAS_SZ + 1];
char timestamp[SQLU_TIME_STAMP_LEN + 1];
char filename[DB2VENDOR_MAX_FILENAME_SZ + 1];
char owner[DB2VENDOR_MAX_OWNER_SZ + 1];
char mgmtClass[DB2VENDOR_MAX_MGMTCLASS_SZ + 1];
char oldestLogfile[DB2_LOGFILE_NAME_LEN + 1];

} db2VendorQueryInfo;

db2VendorGetNextObj API parameters

vendorCB
Input. Pointer to space allocated by the vendor library.

queryInfo
Output. Pointer to a db2VendorQueryInfo structure to be filled in by the
vendor library.

returnCode
Output. The return code from the API call.

db2VendorQueryInfo data structure parameters

sizeEstimate
Specifies the estimated size of the object.

type Specifies the image type if the object is a backup image.

dbPartitionNum
Specifies the number of the database partition that the object belongs to.

db2VendorGetNextObj - Get next object on device

552 Administrative API Reference

sequenceNum
Specifies the file extension for the backup image. Valid only if the object is
a backup.

db2Instance
Specifies the name of the instance that the object belongs to.

dbname
Specifies the name of the database that the object belongs to.

dbalias
Specifies the alias of the database that the object belongs to.

timestamp
Specifies the time stamp used to identify the backup image. Valid only if
the object is a backup image.

filename
Specifies the name of the object if the object is a load copy image or an
archived log file.

owner Specifies the owner of the object.

mgmtClass
Specifies the management class the object was stored under (used by TSM).

oldestLogfile
Specifies the oldest log file stored with a backup image.

Usage notes

Not all parameters will pertain to each object or each vendor. The mandatory
parameters that need to be filled out are db2Instance, dbname, dbalias, timestamp
(for images), filename (for logs and load copy images), owner, sequenceNum (for
images) and dbPartitionNum. The remaining parameters will be left for the specific
vendors to define. If a parameter does not pertain, then it should be initialized to
"" for strings and 0 for numeric types.

Return codes

The following table lists all possible return codes for this API.

Table 14. db2VendorGetNextObj API return codes

Number Return code Explanation

2 SQLUV_COMM_ERROR Communication error with device - Failure.

4 SQLUV_INV_ACTION Invalid action requested or combination of input parameters
results in an operation that is not possible - Failure.

5 SQLUV_NO_DEV_AVAIL No device is available for use at the moment - Failure.

6 SQLUV_OBJ_NOT_FOUND No object found to delete - Failure.

12 SQLUV_INV_DEV_HANDLE Invalid device handle - Failure.

14 SQLUV_END_OF_DATA No more query objects to return - Success.

18 SQLUV_DEV_ERROR Device error - Failure.

19 SQLUV_WARNING Warning, see return code - Success.

21 SQLUV_MORE_DATA More query objects to return - Success.

25 SQLUV_IO_ERROR I/O error - Failure.

30 SQLUV_UNEXPECTED_ERROR A severe error encountered - Failure.

db2VendorGetNextObj - Get next object on device

Chapter 9. DB2 database system plug-ins for customizing database management 553

db2VendorQueryApiVersion - Get the supported level of the
vendor storage API

Determines which level of the vendor storage API is supported by the backup and
restore vendor storage plug-in. If the specified vendor storage plug-in is not
compatible with DB2, then it will not be used.

If a vendor storage plug-in does not have this API implemented for logs, then it
cannot be used and DB2 will report an error. This will not affect images that
currently work with existing vendor libraries.

Authorization

None

Required connection

Database.

API include file
db2VendorApi.h

API and data structure syntax
void db2VendorQueryApiVersion (db2Uint32 * supportedVersion);

db2VendorQueryApiVersion API parameters

supportedVersion
Output. Returns the version of the vendor storage API the vendor library
supports.

Usage notes

This API will be called before any other vendor storage APIs are invoked.

db2VendorQueryApiVersion - Get the supported level of the vendor storage API

554 Administrative API Reference

sqluvdel - Delete committed session

Deletes committed sessions from a vendor device.

Authorization

None

Required connection

Database

API include file
sqluvend.h

API and data structure syntax
int sqluvdel (struct Init_input *in,

struct Init_output *vendorDevData,
struct Return_code *return_code);

sqluvdel API parameters

in Input. Space allocated for Init_input and Return_code.

vendorDevData
Output. Structure containing the output returned by the vendor device.

return_code
Output. Return code from the API call. The object pointed to by the
Init_input structure is deleted.

Usage notes

If multiple sessions are opened, and some sessions are committed, but one of them
fails, this API is called to delete the committed sessions. No sequence number is
specified; sqluvdel is responsible for finding all of the objects that were created
during a particular backup operation, and deleting them. Information in the
Init_input structure is used to identify the output data to be deleted. The call to
sqluvdel is responsible for establishing any connection or session that is required
to delete a backup object from the vendor device. If the return code from this call
is SQLUV_DELETE_FAILED, DB2 does not notify the caller, because DB2 returns
the first fatal failure and ignores subsequent failures. In this case, for DB2 to have
called the sqluvdel API, an initial fatal error must have occurred.

Return codes

Table 15. Valid return codes for sqluvdel and resulting database server action

Literal in header file Description Probable next call

SQLUV_OK Operation successful No further calls

SQLUV_DELETE_FAILED Delete request failed No further calls

sqluvdel - Delete committed session

Chapter 9. DB2 database system plug-ins for customizing database management 555

sqluvend - Unlink a vendor device and release its resources

Unlinks a vendor device and frees all of its related resources. All unused resources
(for example, allocated space and file handles) must be released before the
sqluvend API call returns to DB2.

Authorization

None

Required connection

Database

API include file
sqluvend.h

API and data structure syntax
int sqluvend (sqlint32 action,

void *hdle,
struct Init_output *in_out,
struct Return_code *return_code);

sqluvend API parameters

action Input. Used to commit or abort the session:
v SQLUV_COMMIT (0 = to commit)
v SQLUV_ABORT (1 = to abort)

hdle Input. Pointer to the Init_output structure.

in_out Output. Space for Init_output de-allocated. The data has been committed
to stable storage for a backup if action is to commit. The data is purged for
a backup if the action is to abort.

return_code
Output. The return code from the API call.

Usage notes

This API is called for each session that has been opened. There are two possible
action codes:

Commit
Output of data to this session, or the reading of data from the session, is
complete.

For a write (backup) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, DB2 assumes that the output data has been
appropriately saved by the vendor product, and can be accessed if
referenced in a later sqluvint call.

For a read (restore) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, the data should not be deleted, because it may be
needed again. If the vendor returns SQLUV_COMMIT_FAILED, DB2
assumes that there are problems with the entire backup or restore
operation. All active sessions are terminated by sqluvend calls with action
= SQLUV_ABORT. For a backup operation, committed sessions receive a
sqluvint, sqluvdel, and sqluvend sequence of calls.

sqluvend - Unlink a vendor device and release its resources

556 Administrative API Reference

Abort A problem has been encountered by DB2, and there will be no more
reading or writing of data to the session.

For a write (backup) session, the vendor should delete the partial output
data set, and use a SQLUV_OK return code if the partial output is deleted.
DB2 assumes that there are problems with the entire backup. All active
sessions are terminated by sqluvend calls with action = SQLUV_ABORT,
and committed sessions receive a sqluvint, sqluvdel, and sqluvend
sequence of calls.

For a read (restore) session, the vendor should not delete the data (because
it may be needed again), but should clean up and return to DB2 with a
SQLUV_OK return code. DB2 terminates all the restore sessions by
sqluvend calls with action = SQLUV_ABORT. If the vendor returns
SQLUV_ABORT_FAILED to DB2, the caller is not notified of this error,
because DB2 returns the first fatal failure and ignores subsequent failures.
In this case, for DB2 to have called sqluvend with action =
SQLUV_ABORT, an initial fatal error must have occurred.

Return codes

Table 16. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next
Call

Other
Comments

SQLUV_OK Operation
successful

No further calls Free all memory
allocated for this
session and
terminate.

SQLUV_COMMIT_FAILED Commit request
failed.

No further calls Free all memory
allocated for this
session and
terminate.

SQLUV_ABORT_FAILED Abort request
failed.

No further calls

sqluvend - Unlink a vendor device and release its resources

Chapter 9. DB2 database system plug-ins for customizing database management 557

sqluvget - Read data from a vendor device

After a vendor device has been initialized with the sqluvint API, DB2 calls this API
to read from the device during a restore operation.

Authorization

None

Required connection

Database

API include file
sqluvend.h

API and data structure syntax
int sqluvget (void * hdle,

struct Data *data,
struct Return_code *return_code);

sqluvget API parameters

hdle Input. Pointer to space allocated for the Data structure (including the data
buffer) and Return_code.

data Input or output. A pointer to the Data structure.

return_code
Output. The return code from the API call.

Usage notes

This API is used by the restore utility.

Return codes

Table 17. Valid Return Codes for sqluvget and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the
data

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

sqluvget - Read data from a vendor device

558 Administrative API Reference

Table 17. Valid Return Codes for sqluvget and Resulting DB2 Action (continued)

Literal in Header File Description Probable Next Call Other Comments

SQLUV_WARNING Warning. This should not be used
to indicate end-of- media to DB2;
use SQLUV_ENDOFMEDIA or
SQLUV_ENDOFMEDIA_NO
_DATA for this
purpose.However, device not
ready conditions can be indicated
using this return code.

sqluvget, or sqluvend,
action= SQLU_ABORT

SQLUV_LINK_NOT_EXIST No link currently exists sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

SQLUV_MORE_DATA Operation successful; more data
available.

sqluvget

SQLUV_ENDOFMEDIA_NO_
DATA

End of media and 0 bytes read
(for example, end of tape).

sqluvend

SQLUV_ENDOFMEDIA End of media and > 0 bytes read
(for example, end of tape).

sqluvend DB2 processes the
data, and then
handles the end-of-
media condition.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORT (see
note below

The session will be
terminated.

Note: Next call: If the next call is an sqluvend, action = SQLU_ABORT, this session
and all other active sessions will be terminated.

sqluvget - Read data from a vendor device

Chapter 9. DB2 database system plug-ins for customizing database management 559

sqluvint - Initialize and link to a vendor device

Provides information for initializing a vendor device and for establishing a logical
link between DB2 and the vendor device.

Authorization

None

Required connection

Database

API include file
sqluvend.h

API and data structure syntax
int sqluvint (struct Init_input *in,

struct Init_output *out,
struct Return_code *return_code);

sqluvint API parameters

in Input. Structure that contains information provided by DB2 to establish a
logical link with the vendor device.

out Output. Structure that contains the output returned by the vendor device.

return_code
Output. Structure that contains the return code to be passed to DB2, and a
brief text explanation.

Usage notes

For each media I/O session, DB2 will call this API to obtain a device handle. If for
any reason, the vendor storage API encounters an error during initialization, it will
indicate it via a return code. If the return code indicates an error, DB2 may choose
to terminate the operation by calling the sqluvend API. Details on possible return
codes, and the DB2 reaction to each of these, is contained in the return codes table
(see table below).

The Init_input structure contains elements that can be used by the vendor product
to determine if the backup or restore can proceed:

size_HI_order and size_LOW_order
This is the estimated size of the backup. They can be used to determine if
the vendor devices can handle the size of the backup image. They can be
used to estimate the quantity of removable media that will be required to
hold the backup. It might be beneficial to fail at the first sqluvint call if
problems are anticipated.

req_sessions
The number of user requested sessions can be used in conjunction with the
estimated size and the prompting level to determine if the backup or
restore operation is possible.

prompt_lvl
The prompting level indicates to the vendor if it is possible to prompt for
actions such as changing removable media (for example, put another tape

sqluvint - Initialize and link to a vendor device

560 Administrative API Reference

in the tape drive). This might suggest that the operation cannot proceed
since there will be no way to prompt the user. If the prompting level is
WITHOUT PROMPTING and the quantity of removable media is greater
than the number of sessions requested, DB2 will not be able to complete
the operation successfully.

DB2 names the backup being written or the restore to be read via fields in the
DB2_info structure. In the case of an action = SQLUV_READ, the vendor product
must check for the existence of the named object. If it cannot be found, the return
code should be set to SQLUV_OBJ_NOT_FOUND so that DB2 will take the
appropriate action.

After initialization is completed successfully, DB2 will continue by calling other
data transfer APIs, but may terminate the session at any time with an sqluvend
call.

Return codes

Table 18. Valid Return Codes for sqluvint and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget
(see comments)

If action = SQLUV_WRITE, the
next call will be to the
sqluvput API (to BACKUP
data). If action =
SQLUV_READ, verify the
existence of the named object
prior to returning SQLUV_OK;
the next call will be to the
sqluvget API to restore data.

SQLUV_LINK_EXIST Session activated
previously.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_COMM_ERROR Communication error
with device.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INV_VERSION The DB2 and vendor
products are incompatible

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INV_ACTION Invalid action is
requested. This could also
be used to indicate that
the combination of
parameters results in an
operation which is not
possible.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

sqluvint - Initialize and link to a vendor device

Chapter 9. DB2 database system plug-ins for customizing database management 561

Table 18. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)

Literal in Header File Description Probable Next Call Other Comments

SQLUV_NO_DEV_AVAIL No device is available for
use at the moment.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_OBJ_NOT_FOUND Object specified cannot be
found. This should be
used when the action on
the sqluvint call is "R"
(read) and the requested
object cannot be found
based on the criteria
specified in the DB2_info
structure.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_OBJS_FOUND More than 1 object
matches the specified
criteria. This will result
when the action on the
sqluvint call is "R" (read)
and more than one object
matches the criteria in the
DB2_info structure.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INV_USERID Invalid userid specified. No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INV_PASSWORD Invalid password
provided.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INV_OPTIONS Invalid options
encountered in the
vendor options field.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_INIT_FAILED Initialization failed and
the session is to be
terminated.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_DEV_ERROR Device error. No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

sqluvint - Initialize and link to a vendor device

562 Administrative API Reference

Table 18. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)

Literal in Header File Description Probable Next Call Other Comments

SQLUV_MAX_LINK_GRANT Max number of links
established.

sqluvput, sqluvget
(see comments).

This is treated as a warning by
DB2. The warning tells DB2
not to open additional sessions
with the vendor product,
because the maximum number
of sessions it can support has
been reached (note: this could
be due to device availability).
If action = SQLUV_WRITE
(BACKUP), the next call will
be to sqluvput API. If action =
SQLUV_READ, verify the
existence of the named object
prior to returning
SQLUV_MAX_LINK_ GRANT;
the next call will be to the
sqluvget API to restore data.

SQLUV_IO_ERROR I/O error. No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

SQLUV_NOT_ENOUGH_
SPACE

There is not enough space
to store the entire backup
image; the size estimate is
provided as a 64-bit value
in bytes.

No further calls. Session initialization fails. Free
up memory allocated for this
session and terminate. A
sqluvend API call will not be
received, since the session was
never established.

sqluvint - Initialize and link to a vendor device

Chapter 9. DB2 database system plug-ins for customizing database management 563

sqluvput - Write data to a vendor device

After a vendor device has been initialized with the sqluvint API, DB2 calls this API
to write to the device during a backup operation.

Authorization

None

Required connection

Database

API include file
sqluvend.h

API and data structure syntax
int sqluvput (void *hdle,

struct Data *data,
struct Return_code *return_code);

sqluvput API parameters

hdle Input. Pointer to space allocated for the DATA structure (including the data
buffer) and Return_code.

data Output. Data buffer filled with data to be written out.

return_code
Output. The return code from the API call.

Usage notes

This API is used by the backup utility.

Return codes

Table 19. Valid Return Codes for sqluvput and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend,
if complete (for
example, DB2 has no
more data)

Inform other processes of
successful operation.

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

sqluvput - Write data to a vendor device

564 Administrative API Reference

Table 19. Valid Return Codes for sqluvput and Resulting DB2 Action (continued)

Literal in Header File Description Probable Next Call Other Comments

SQLUV_ENDOFMEDIA End of media reached, for
example, end of tape.

sqluvend

SQLUV_DATA_RESEND Device requested to have
buffer sent again.

sqluvput DB2 will retransmit the
last buffer. This will only
be done once.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-
media to DB2; use
SQLUV_ENDOFMEDIA for
this purpose. However,
device not ready conditions
can be indicated using this
return code.

sqluvput

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORT (see
note below).

The session will be
terminated.

Note: Next call: If the next call is an sqluvend, action = SQLU_ABORT, this session
and all other active sessions will be terminated. Committed sessions are deleted
with an sqluvint, sqluvdel, and sqluvend sequence of calls.

sqluvput - Write data to a vendor device

Chapter 9. DB2 database system plug-ins for customizing database management 565

DB2_info

Contains information about the DB2 product and the database that is being backed
up or restored. This structure is used to identify DB2 to the vendor device and to
describe a particular session between DB2 and the vendor device. It is passed to
the backup and restore vendor storage plug-in as part of the Init_input data
structure.

Table 20. Fields in the DB2_info Structure.

Field Name Data Type Description

DB2_id char An identifier for the DB2
product. Maximum length of
the string it points to is 8
characters.

version char The current version of the
DB2 product. Maximum
length of the string it points
to is 8 characters.

release char The current release of the
DB2 product. Set to NULL if
it is insignificant. Maximum
length of the string it points
to is 8 characters.

level char The current level of the DB2
product. Set to NULL if it is
insignificant. Maximum
length of the string it points
to is 8 characters.

action char Specifies the action to be
taken. Maximum length of
the string it points to is 1
character.

filename char The file name used to
identify the backup image. If
it is NULL, the server_id,
db2instance, dbname, and
timestamp will uniquely
identify the backup image.
Maximum length of the
string it points to is 255
characters.

server_id char A unique name identifying
the server where the
database resides. Maximum
length of the string it points
to is 8 characters.

db2instance char The db2instance ID. This is
the user ID invoking the
command. Maximum length
of the string it points to is 8
characters.

DB2_info

566 Administrative API Reference

Table 20. Fields in the DB2_info Structure. (continued)

Field Name Data Type Description

type char Specifies the type of backup
being taken or the type of
restore being performed. The
following are possible values:
When action is
SQLUV_WRITE: 0 - full
database backup 3 - table
space level backup When
action is SQLUV_READ: 0 -
full restore 3 - online table
space restore 4 - table space
restore 5 - history file restore

dbname char The name of the database to
be backed up or restored.
Maximum length of the
string it points to is 8
characters.

alias char The alias of the database to
be backed up or restored.
Maximum length of the
string it points to is 8
characters.

timestamp char The time stamp used to
identify the backup image.
Maximum length of the
string it points to is 26
characters.

sequence char Specifies the file extension
for the backup image. For
write operations, the value
for the first session is 1 and
each time another session is
initiated with an sqluvint
call, the value is incremented
by 1. For read operations, the
value is always zero.
Maximum length of the
string it points to is 3
characters.

obj_list struct sqlu_gen_list Reserved for future use.

max_bytes_per_txn sqlint32 Specifies to the vendor in
bytes, the transfer buffer size
specified by the user.

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which
the backup was generated.

password char Password for the node at
which the backup was
generated.

owner char ID of the backup originator.

mcNameP char Management class.

DB2_info

Chapter 9. DB2 database system plug-ins for customizing database management 567

Table 20. Fields in the DB2_info Structure. (continued)

Field Name Data Type Description

nodeNum SQL_PDB_NODE_TYPE Node number. Numbers
greater than 255 are
supported by the vendor
interface.

Note: All char data type fields are null-terminated strings.

The filename, or server_id, db2instance, type, dbname and timestamp uniquely
identifies the backup image. The sequence number, specified by sequence,
identifies the file extension. When a backup image is to be restored, the same
values must be specified to retrieve the backup image. Depending on the vendor
product, if filename is used, the other parameters may be set to NULL, and vice
versa.

API and data structure syntax
typedef struct DB2_info
{

char *DB2_id;
char *version;
char *release;
char *level;
char *action;
char *filename;
char *server_id;
char *db2instance;
char *type;
char *dbname;
char *alias;
char *timestamp;
char *sequence;
struct sqlu_gen_list

*obj_list;
sqlint32 max_bytes_per_txn;
char *image_filename;
void *reserve;
char *nodename;
char *password;
char *owner;
char *mcNameP;
SQL_PDB_NODE_TYPE nodeNum;

} DB2_info ;

DB2_info

568 Administrative API Reference

Vendor_info

Contains information, returned to DB2 as part of the Init_output structure,
identifying the vendor and the version of the vendor device.

Table 21. Fields in the Vendor_info Structure.

Field Name Data Type Description

vendor_id char An identifier for the vendor.
Maximum length of the
string it points to is 64
characters.

version char The current version of the
vendor product. Maximum
length of the string it points
to is 8 characters.

release char The current release of the
vendor product. Set to NULL
if it is insignificant.
Maximum length of the
string it points to is 8
characters.

level char The current level of the
vendor product. Set to NULL
if it is insignificant.
Maximum length of the
string it points to is 8
characters.

server_id char A unique name identifying
the server where the
database resides. Maximum
length of the string it points
to is 8 characters.

max_bytes_per_txn sqlint32 The maximum supported
transfer buffer size. Specified
by the vendor, in bytes. This
is used only if the return
code from the vendor
initialize API is
SQLUV_BUFF_SIZE,
indicating that an invalid
buffer size wasspecified.

num_objects_in_backup sqlint32 The number of sessions that
were used to make a
complete backup. This is
used to determine when all
backup images have been
processed during a restore
operation.

reserve void Reserved for future use.

Note: All char data type fields are NULL-terminated strings.

Vendor_info

Chapter 9. DB2 database system plug-ins for customizing database management 569

API and data structure syntax
typedef struct Vendor_info
{

char *vendor_id;
char *version;
char *release;
char *level;
char *server_id;
sqlint32 max_bytes_per_txn;
sqlint32 num_objects_in_backup;
void *reserve;

} Vendor_info;

Vendor_info

570 Administrative API Reference

Init_input

Contains information provided by DB2 to set up and to establish a logical link
with a vendor device. This data structure is used by DB2 to send information to
the backup and restore vendor storage plug-in through the sqluvint and sqluvdel
APIs.

Table 22. Fields in the Init_input Structure.

Field Name Data Type Description

DB2_session struct DB2_info A description of the session
from the perspective of DB2.

size_options unsigned short The length of the options
field. When using the DB2
backup or restore function,
the data in this field is
passed directly from the
VendorOptionsSize
parameter.

size_HI_order sqluint32 High order 32 bits of DB size
estimate in bytes; total size is
64 bits.

size_LOW_order sqluint32 Low order 32 bits of DB size
estimate in bytes; total size is
64 bits.

options void This information is passed
from the application when
the backup or the restore
function is invoked. This
data structure must be flat;
in other words, no level of
indirection is supported.
Byte-reversal is not done,
and the code page for this
data is not checked. When
using the DB2 backup or
restore function, the data in
this field is passed directly
from the pVendorOptions
parameter.

reserve void Reserved for future use.

prompt_lvl char Prompting level requested by
the user when a backup or a
restore operation was
invoked. Maximum length of
the string it points to is 1
character. This field is a
NULL-terminated string.

num_sessions unsigned short Number of sessions
requested by the user when
a backup or a restore
operation was invoked.

Init_input

Chapter 9. DB2 database system plug-ins for customizing database management 571

API and data structure syntax
typedef struct Init_input
{

struct DB2_info *DB2_session;
unsigned short size_options;
sqluint32 size_HI_order;
sqluint32 size_LOW_order;
void *options;
void *reserve;
char *prompt_lvl;
unsigned short num_sessions;

} Init_input;

Init_input

572 Administrative API Reference

Init_output

Contains a control block for the session and information returned by the backup
and restore vendor storage plug-in to DB2. This data structure is used by the
sqluvint and sqluvdel APIs.

Table 23. Fields in the Init_output Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to
identify the vendor to DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

API and data structure syntax
typedef struct Init_output
{

struct Vendor_info * vendor_session;
void * pVendorCB;
void * reserve;

} Init_output ;

Init_output

Chapter 9. DB2 database system plug-ins for customizing database management 573

Data

Contains data transferred between DB2 and a vendor device. This structure is used
by the sqluvput API when data is being written to the vendor device and by the
sqluvget API when data is being read from the vendor device.

Table 24. Fields in the Data Structure

Field Name Data Type Description

obj_num sqlint32 The sequence number
assigned by DB2 during a
backup operation.

buff_size sqlint32 The size of the buffer.

actual_buff_size sqlint32 The actual number of bytes
sent or received. This must
not exceed buff_size.

dataptr void Pointer to the data buffer.
DB2 allocates space for the
buffer.

reserve void Reserved for future use.

API and data structure syntax
typedef struct Data
{

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

} Data;

Data

574 Administrative API Reference

Return_code

Contains the return code for and a short explanation of the error being returned to
DB2 by the backup and restore vendor storage plug-in. This data structure is used
by all the vendor storage plug-in APIs.

Table 25. Fields in the Return_code Structure

Field Name Data Type Description

return_code (see note below) sqlint32 Return code from the vendor
API.

description char A short description of the
return code.

reserve void Reserved for future use.

Note: This is a vendor-specific return code that is not the same as the value
returned by various DB2 APIs. See the individual API descriptions for the return
codes that are accepted from vendor products.

API and data structure syntax
typedef struct Return_code
{

sqlint32 return_code;
char description[SQLUV_COMMENT_LEN];
void *reserve;

} Return_code;

Return_code

Chapter 9. DB2 database system plug-ins for customizing database management 575

DB2 APIs for using compression with backup and restore operations

DB2 provides APIs that can be used by third-party compression products to
compress and decompress backup images. This interface is designed to augment or
replace the compression library that is supported as a standard part of DB2. The
compression plug-in interface can be used with the backup and restore DB2 APIs
or the backup and restore plug-ins for vendor storage devices.

DB2 defines a set of API prototypes that provide a general purpose interface for
compression and decompression that can be used by many vendors. These APIs
are to be provided by the vendor in a shared library on Linux and UNIX systems,
or DLL on the Windows operating system. When the APIs are invoked by DB2, the
shared library or DLL specified by the calling backup or restore routine is loaded
and the APIs provided by the vendor are called to perform the required tasks.

Operational overview

Eight APIs are defined to interface DB2 and the vendor product:
v InitCompression - Initialize the compression library
v GetSavedBlock - Get vendor block for backup image
v Compress - Compress a block of data
v GetMaxCompressedSize - Estimate largest possible buffer size
v TermCompression - Terminate the compression library
v InitDecompression - Initialize the decompression library
v Decompress - Decompress a block of data
v TermDecompression - Terminate the decompression library

DB2 will provide the definition for the COMPR_DB2INFO structure; the vendor
will provide definitions for each of the other structures and APIs for using
compression with backup and restore. The structures, prototypes, and constants are
defined in the file sqlucompr.h, which is shipped with DB2.

DB2 will call these APIs, and they should be provided by the vendor product in a
shared library on Linux and UNIX systems, or in a DLL on the Windows operating
system.

Note: The shared library or DLL code will be run as part of the database engine
code. Therefore, it must be reentrant and thoroughly debugged. An errant function
might compromise data integrity of the database.

Sample calling sequence

For backup, the following sequence of calls is issued by DB2 for each session:
InitCompression

followed by 0 to 1
GetMaxCompressedSize
Compress

followed by 1
TermCompress

For restore, the sequence of calls for each session is:

DB2 APIs for using compression with backup and restore operations

576 Administrative API Reference

InitDecompression

followed by 1 to n
Decompress

followed by 1
TermCompression

Compression plug-in interface return codes

The following are the return codes that the APIs might return. Except where
specified, DB2 will terminate the backup or restore when any non-zero return code
is returned.

SQLUV_OK

0

Operation succeeded
SQLUV_BUFFER_TOO_SMALL

100

Target buffer is too small. When indicated on backup, the tgtAct field shall indicate
the estimated size required to compress the object. DB2 will retry the operation
with a buffer at least as large as specified. When indicated on restore, the operation
will fail.

SQLUV_PARTIAL_BUFFER

101

A buffer was partially compressed. When indicated on backup, the srcAct field
shall indicate the actual amount of data actually compressed and the tgtAct field
shall indicate the actual size of the compressed data. When indicated on restore,
the operation will fail.

SQLUV_NO_MEMORY

102

Out of memory
SQLUV_EXCEPTION

103

A signal or exception was raised in the code.
SQLUV_INTERNAL_ERROR

104

An internal error was detected.

The difference between SQLUV_BUFFER_TOO_SMALL and
SQLUV_PARTIAL_BUFFER is that when SQLUV_PARTIAL_BUFFER is returned,
DB2 will consider the data in the output buffer to be valid.

DB2 APIs for using compression with backup and restore operations

Chapter 9. DB2 database system plug-ins for customizing database management 577

COMPR_CB

This structure is used internally by the plug-in library as the control block. It
contains data used internally by compression and decompression APIs. DB2 passes
this structure to each call it makes to the plug-in library, but all aspects of the
structure are left up to the library, including the definition of the structure's
parameters and memory management of the structure.

API and data structure syntax
struct COMPR_CB;

COMPR_CB

578 Administrative API Reference

COMPR_DB2INFO

Describes the DB2 environment. DB2 allocates and defines this structure and
passes it in as a parameter to the InitCompression and InitDecompression APIs.
This structure describes the database being backed up or restored and gives details
about the DB2 environment where the operation is occurring. The dbalias, instance,
node, catnode, and timestamp parameters are used to name the backup image.

API and data structure syntax
struct COMPR_DB2INFO {

char tag[16];
db2Uint32 version;
db2Uint32 size;
char dbalias[SQLU_ALIAS_SZ+1];
char instance[SQL_INSTNAME_SZ+1];
SQL_PDB_NODE_TYPE node;
SQL_PDB_NODE_TYPE catnode;
char timestamp[SQLU_TIME_STAMP_LEN+1];
db2Uint32 bufferSize;
db2Uint32 options;
db2Uint32 bkOptions;
db2Uint32 db2Version;
db2Uint32 platform;
db2int32 comprOptionsByteOrder;
db2Uint32 comprOptionsSize;
void *comprOptions;
db2Uint32 savedBlockSize;
void *savedBlock;

};

COMPR_DB2INFO data structure parameters

tag Used as an eye catcher for the structure. This is always set to the string
"COMPR_DB2INFO \0".

version
Indicates which version of the structure is being used so APIs can indicate
the presence of additional fields. Currently, the version is 1. In the future
there may be more parameters added to this structure.

size Specifies the size of the COMPR_DB2INFO structure in bytes.

dbalias
Database alias. For restore operations, dbalias refers to the alias of the
source database.

instance
Instance name.

node Node number.

catnode
Catalog node number.

timestamp
The timestamp of the image being backed up or restored.

bufferSize
Specifies the size of a transfer buffer (in 4K pages).

options
The iOptions parameter specified in the db2Backup API or the db2Restore
API.

COMPR_DB2INFO

Chapter 9. DB2 database system plug-ins for customizing database management 579

bkOptions
For restore operations, specifies the iOptions parameter that was used in
the db2Backup API when the backup was created. For backup operations,
it is set to zero.

db2Version
Specifies the version of the DB2 engine.

platform
Specifies the platform on which the DB2 engine is running. The value will
be one of the ones listed in sqlmon.h (located in the include directory).

comprOptionsByteOrder
Specifies the byte-order used on the client where the API is being run. DB2
will do no interpretation or conversion of the data passed through as
comprOptions, so this field should be used to determine whether the data
needs to be byte reversed before being used. Any conversion must be done
by the plug-in library itself.

comprOptionsSize
Specifies the value of the piComprOptionsSize parameter in the db2Backup
and db2Restore APIs.

comprOptions
Specifies the value of the piComprOptions parameter in the db2Backup
and db2Restore APIs.

savedBlockSize
Size in bytes of savedBlock.

savedBlock
DB2 allows the plug-in library to save an arbitrary block of data in the
backup image. If such a block of data was saved with a particular backup,
it will be returned in these fields on the restore operation. For backup
operations, these fields are set to zero.

COMPR_DB2INFO

580 Administrative API Reference

COMPR_PIINFO

This structure is used by the plug-in library to describe itself to DB2. This structure
is allocated and initialized by DB2, and the key fields are filled in by the plug-in
library on the InitCompression API call.

API and data structure syntax
struct COMPR_PIINFO {

char tag[16];
db2Uint32 version;
db2Uint32 size;
db2Uint32 useCRC;
db2Uint32 useGran;
db2Uint32 useAllBlocks;
db2Uint32 savedBlockSize;

};

COMPR_PIINFO data structure parameters

tag Used as an eye catcher for the structure. (It is set by DB2.) This is always
set to the string "COMPR_PIINFO \0".

version
Indicates which version of the structure is being used so APIs can indicate
the presence of additional fields. Currently, the version is 1.

(It is set by DB2.) In the future there may be more fields added to this
structure.

size Indicates the size of the COMPR_PIINFO structure (in bytes). (It is set by
DB2.)

useCRC
DB2 allows compression plug-ins to use a 32-bit CRC or checksum value to
validate the integrity of the data being compressed and decompressed.

If the library uses such a check, it will set this field to 1. Otherwise, it will
set the field to 0.

useGran
If the compression routine is able to compress data in arbitrarily-sized
increments, the library will set this field to 1. If the compression routine
compresses data only in byte-sized increments, the library will set this field
to 0. See the description of the srcGran parameter of Compress API for
details of the implications of setting this indicator.

For restore operations, this parameter is ignored.

useAllBlocks
Specifies whether DB2 should back up a compressed block of data that is
larger than the original uncompressed block. By default, DB2 will store
data uncompressed if the compressed version is larger, but under some
circumstances the plug-in library will want to have the compressed data
backed up anyway. If DB2 is to save the compressed version of the data for
all blocks, the library will set this value to 1. If DB2 is to save the
compressed version of the data only when it is smaller than the original
data, the library will set this value to 0. For restore operations, this field is
ignored.

savedBlockSize
DB2 allows the plug-in library to save an arbitrary block of data in the
backup image. If such a block of data is to be saved with a particular

COMPR_PIINFO

Chapter 9. DB2 database system plug-ins for customizing database management 581

backup, the library will set this parameter to the size of the block to be
allocated for this data. (The actual data will be passed to DB2 on a
subsequent API call.) If no data is to be saved, the plug-in library will set
this parameter to zero. For restore operations, this parameter is ignored.

COMPR_PIINFO

582 Administrative API Reference

Compress - Compress a block of data

Compress a block of data. The src parameter points to a block of data that is
srcLen bytes in size. The tgt parameter points to a buffer that is tgtSize bytes in
size. The plug-in library compresses the data at address src and writes the
compressed data to the buffer at address tgt. The actual amount of uncompressed
data that was compressed is stored in srcAct. The actual size of the compressed
data is returned as tgtAct.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int Compress(

struct COMPR_CB *pCB,
const char *src,
db2int32 srcSize,
db2Uint32 srcGran,
char *tgt,
db2int32 tgtSize,
db2int32 *srcAct,
db2int32 *tgtAct,
db2Uint32 *tgtCRC);

Compress API parameters

pCB Input. This is the control block that was returned by the InitCompression
API call.

src Input. Pointer to the block of data to be compressed.

srcLen Input. Size in bytes of the block of data to be compressed.

srcGran
Input. If the library returned a value of 1 for piInfo->useGran, srcGran
specifies the log2 of the page size of the data. (For example, if the page
size of the data is 4096 bytes, srcGran is 12.) The library ensures that the
amount of data actually compressed (srcAct) is an exact multiple of this
page size. If the library sets the useGran flag, DB2 is able to use a more
efficient algorithm for fitting the compressed data into the backup image.
This means that both the performance of the plug-in will be better and that
the compressed backup image will be smaller. If the library returned a
value of 0 for piInfo->srcGran, the granularity is 1 byte.

tgt Input and output. Target buffer for compressed data. DB2 will supply this
target buffer and the plug-in will compress the data at src and write
compressed data here.

tgtSize
Input. Size in bytes of the target buffer.

Compress - Compress a block of data

Chapter 9. DB2 database system plug-ins for customizing database management 583

srcAct Output. Actual amount in bytes of uncompressed data from src that was
compressed.

tgtAct Output. Actual amount in bytes of compressed data stored in tgt.

tgtCRC
Output. If the library returned a value of 1 for piInfo->useCRC, the CRC
value of the uncompressed block is returned as tgtCRC. If the library
returned a value of 0 for piInfo->useCRC, tgtCRC will be a null pointer.

Compress - Compress a block of data

584 Administrative API Reference

Decompress - Decompress a block of data

Decompresses a block of data. The src parameter points to a block of data that is
srcLen bytes in size. The tgt parameter points to a buffer that is tgtSize bytes in
size. The plug-in library decompresses the data at address src and writes the
uncompressed data to the buffer at address tgt. The actual size of the
uncompressed data is returned as tgtLen. If the library returned a value of 1 for
piInfo->useCRC, the CRC of the uncompressed block is returned as tgtCRC. If the
library returned a value of 0 for piInfo->useCRC, tgtLen will be a null pointer.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int Decompress(

struct COMPR_CB *pCB,
const char *src,
db2int32 srcSize,
char *tgt,
db2int32 tgtSize,
db2int32 *tgtLen,
db2Uint32 *tgtCRC);

Decompress API parameters

pCB Input. This is the control block that was returned by the InitDecompression
API call.

src Input. Pointer to the block of data to be decompressed.

srcLen Input. Size in bytes of the block of data to be decompressed.

tgt Input and output. Target buffer for decompressed data. DB2 will supply
this target buffer and the plug-in will decompress the data at src and write
decompressed data here.

tgtSize
Input. Size in bytes of the target buffer.

tgtLen Output. Actual amount in bytes of decompressed data stored in tgt.

tgtCRC
Output. If the library returned a value of 1 for piInfo->useCRC, the CRC
value of the uncompressed block is returned as tgtCRC. If the library
returned a value of 0 for piInfo->useCRC, tgtCRC will be a null pointer.

Decompress - Decompress a block of data

Chapter 9. DB2 database system plug-ins for customizing database management 585

GetMaxCompressedSize - Estimate largest possible buffer
size

Estimates the size of the largest possible buffer required to compress a block of
data. srcLen indicates the size of a block of data about to be compressed. The
library returns the theoretical maximum size of the buffer after compression as
tgtLen.

DB2 will use the value returned as tgtLen to optimize its use of memory internally.
The penalty for not calculating a value or for calculating an incorrect value is that
DB2 will have to call the Compress API more than once for a single block of data,
or that it may waste memory from the utility heap. DB2 will still create the backup
correctly, regardless of the values returned.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int GetMaxCompressedSize(

struct COMPR_CB *pCB,
db2Uint32 srcLen);

GetMaxCompressedSize API parameters

pCB Input. This is the control block that was returned by the InitCompression
API call.

srcLen Input. Size in bytes of a block of data about to be compressed.

GetMaxCompressedSize - Estimate largest possible buffer size

586 Administrative API Reference

GetSavedBlock - Get the vendor of block data for the backup
image

Gets the vendor-specific block of data to be saved with the backup image. If the
library returned a non-zero value for piInfo->savedBlockSize, DB2 will call
GetSavedBlock using that value as blockSize. The plug-in library writes data of the
given size to the memory referenced by data. This API will be called during initial
data processing by the first db2bm process for backup only. Even if parallelism > 1
is specified in the db2Backup API, this API will be called only once per backup.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int GetSavedBlock(

struct COMPR_CB *pCB,
db2Uint32 blockSize,
void *data);

GetSavedBlock API parameters

pCB Input. This is the control block that was returned by the InitCompression
API call.

blocksize
Input. This is the size of the block that was returned in
piInfo->savedBlockSize by the InitCompression API call.

data Output. This is the vendor-specific block of data to be saved with the
backup image.

GetSavedBlock - Get the vendor of block data for the backup image

Chapter 9. DB2 database system plug-ins for customizing database management 587

InitCompression - Initialize the compression library

Initializes the compression library. DB2 will pass the db2Info and piInfo structures.
The library will fill in the appropriate parameters of piInfo, and will allocate pCB
and return a pointer to the allocated memory.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int InitCompression(

const struct COMPR_DB2INFO
*db2Info,

struct COMPR_PIINFO
*piInfo,

struct COMPR_CB **pCB);

InitCompression API parameters

db2Info
Input. Describes the database being backed up and gives details about the
DB2 environment where the operation is occuring.

piInfo Output. This structure is used by the plug-in library to describe itself to
DB2. It is allocated and initialized by DB2 and the key parameters are
filled in by the plug-in library.

pCB Output. This is the control block used by the compression library. The
plug-in library is responsible for memory management of the structure.

InitCompression - Initialize the compression library

588 Administrative API Reference

InitDecompression - Initialize the decompression library

Initializes the decompression library. DB2 will pass the db2Info structure. The
library will allocate pCB and return a pointer to the allocated memory.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int InitDecompression(

const struct COMPR_DB2INFO
*db2Info,

struct COMPR_CB **pCB);

InitDecompression API parameters

db2Info
Input. Describes the database being backed up and gives details about the
DB2 environment where the operation is occuring.

pCB Output. This is the control block used by the decompression library. The
plug-in library is responsible for memory management of the structure.

InitDecompression - Initialize the decompression library

Chapter 9. DB2 database system plug-ins for customizing database management 589

TermCompression - Stop the compression library

Terminates the compression library. The library will free the memory used for pCB.

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int TermCompression(

struct COMPR_CB *pCB);

TermCompression API parameters

pCB Input. This is the control block that was returned by the InitCompression
API call.

TermCompression - Stop the compression library

590 Administrative API Reference

TermDecompression - Stop the decompression library

Terminates the decompression library. The library will free the memory used for
pCB. All the memory used internally by the compression APIs will be managed by
the library. The plug-in library will also manage memory used by the COMPR_CB
structure. DB2 will manage the memory used for the data buffers (the src and tgt
parameters in the compression APIs).

Authorization

None

Required connection

None

API include file
sqlucompr.h

API and data structure syntax
int TermDecompression(

struct COMPR_CB *pCB);

TermDecompression API parameters

pCB Input. This is the control block that was returned by the InitDecompression
API call.

TermDecompression - Stop the decompression library

Chapter 9. DB2 database system plug-ins for customizing database management 591

TermDecompression - Stop the decompression library

592 Administrative API Reference

Chapter 10. Data structures used by APIs

© Copyright IBM Corp. 1993, 2010 593

db2DistMapStruct
This structure is used by the db2GetDistMap API

Table 26. Fields in the db2DistMapStruct structure

Field Name Data Type Description

tname unsigned char Fully qualified table name.

distmaplen unsigned short Length of the distribution map.

distmap[SQL_PDB_MAP_SIZE} SQL_PDB_NODE_TYPE Distribution map.

sqld unsigned short Number of used SQLDPARTKEY
elements.

sqlpartkey[SQL_MAX_NUM_PART_KEYS] sqlpartkey The distribution keys used to
distribute the table data.

API and data structure syntax
SQL_STRUCTURE db2DistMapStruct
{
unsigned char *tname; /* fully qualified table name */
unsigned short distmaplen; /* Length of distribution map */
SQL_PDB_NODE_TYPE distmap[SQL_PDB_MAP_SIZE]; /* Distribution map */
unsigned short sqld; /* # of used SQLPARTKEY elements */
struct sqlpartkey sqlpartkey[SQL_MAX_NUM_PART_KEYS]; /* Distribution Keys */

};

db2DistMapStruct

594 Administrative API Reference

db2HistoryData

This structure is used to return information after a call to the db2HistoryGetEntry
API.

Note: The language support for COBOL and FORTRAN has been deprecated for
that API and might be discontinued in a future release. Use the following
supported alternatives:
v Build your application using C, C++, or Java.
v Access database history records by using the DB_HISTORY administrative view.

Table 27. Fields in the db2HistoryData structure

Field name Data type Description

ioHistDataID char(8) An 8-byte structure identifier and "eye-catcher" for
storage dumps. The only valid value is
SQLUHINF. No symbolic definition for this string
exists.

oObjectPart db2Char The first 14 characters are a time stamp with
format yyyymmddhhmmss, indicating when the
operation was begun. The next 3 characters are a
sequence number. Each backup operation can
result in multiple entries in this file when the
backup image is saved in multiple files or on
multiple tapes. The sequence number allows
multiple locations to be specified. Restore and load
operations have only a single entry in this file,
which corresponds to sequence number "001" of
the corresponding backup. The time stamp,
combined with the sequence number, must be
unique.

oEndTime db2Char A time stamp with format yyyymmddhhmmss,
indicating when the operation was completed.

oFirstLog db2Char The earliest log file ID (ranging from S0000000 to
S9999999):

v Required to apply rollforward recovery for an
online backup

v Required to apply rollforward recovery for an
offline backup

v Applied after restoring a full database or table
space level backup that was current when the
load started.

oLastLog db2Char The latest log file ID (ranging from S0000000 to
S9999999):

v Required to apply rollforward recovery for an
online backup

v Required to apply rollforward recovery to the
current point in time for an offline backup

v Applied after restoring a full database or table
space level backup that was current when the
load operation finished (will be the same as
oFirstLog if roll forward recovery is not
applied).

oID db2Char Unique backup or table identifier.

db2HistoryData

Chapter 10. Data structures used by APIs 595

Table 27. Fields in the db2HistoryData structure (continued)

Field name Data type Description

oTableQualifier db2Char Table qualifier.

oTableName db2Char Table name.

oLocation db2Char For backups and load copies, this field indicates
where the data has been saved. For operations that
require multiple entries in the file, the sequence
number defined by oObjectPart parameter
identifies which part of the backup is found in the
specified location. For restore and load operations,
the location always identifies where the first part
of the data restored or loaded (corresponding to
sequence "001" for multi-part backups) has been
saved. The data in oLocation is interpreted
differently, depending on oDeviceType parameter:

v For disk or diskette (D or K), a fully qualified
file name.

v For tape (T), a volume label.

v For TSM (A and F), the vendor library
name/path that did the backup.

v For user exit or other (U or O), free form text.

oComment db2Char Free form text comment.

oCommandText db2Char Command text, or DDL.

oLastLSN db2LSN Last log sequence number.

oEID Structure Unique entry identifier.

poEventSQLCA Structure Result sqlca of the recorded event.

poTablespace db2Char A list of table space names.

iNumTablespaces db2Uint32 Number of entries in the poTablespace list that are
available for use by the db2HistoryGetEntry API.

oNumTablespaces db2Uint32 Number of entries in the poTablespace list that
were used by the db2HistoryGetEntry API. Each
table space backup contains one or more table
spaces. Each table space restore operation replaces
one or more table spaces. If this field is not zero
(indicating a table space level backup or restore),
the next lines in this file contain the name of the
table space backed up or restored, represented by
an 18-character string. One table space name
appears on each line.

oOperation char See Table 28 on page 597.

oObject char Granularity of the operation: D for full database, P
for table space, and T for table.

oOptype char See Table 29 on page 597.

oStatus char Entry status: A for active; I for inactive; E for
expired; D for deleted; and X for do not delete.

oDeviceType char Device type. This field determines how the
oLocation field is interpreted: A for TSM, C for
client, D for disk, F for snapshot backup, K for
diskette, L for local, O for other (for other vendor
device support), P for pipe, Q for cursor, S for
server, T for tape, and U for user exit.

db2HistoryData

596 Administrative API Reference

Table 28. Valid oOperation values in the db2HistoryData structure

Value Description C definition COBOL/FORTRAN definition

A add table
space

DB2HISTORY_OP_ADD_
TABLESPACE

DB2HIST_OP_ADD_
TABLESPACE

B backup DB2HISTORY_OP_BACKUP DB2HIST_OP_BACKUP

C load copy DB2HISTORY_OP_LOAD_COPY DB2HIST_OP_LOAD_COPY

D dropped
table

DB2HISTORY_OP_DROPPED_
TABLE

DB2HIST_OP_DROPPED_
TABLE

F rollforward DB2HISTORY_OP_ROLLFWD DB2HIST_OP_ROLLFWD

G reorganize
table

DB2HISTORY_OP_REORG DB2HIST_OP_REORG

L load DB2HISTORY_OP_LOAD DB2HIST_OP_LOAD

N rename table
space

DB2HISTORY_OP_REN_
TABLESPACE

DB2HIST_OP_REN_
TABLESPACE

O drop table
space

DB2HISTORY_OP_DROP_
TABLESPACE

DB2HIST_OP_DROP_
TABLESPACE

Q quiesce DB2HISTORY_OP_QUIESCE DB2HIST_OP_QUIESCE

R restore DB2HISTORY_OP_RESTORE DB2HIST_OP_RESTORE

T alter table
space

DB2HISTORY_OP_ALT_
TABLESPACE

DB2HIST_OP_ALT_TBS

U unload DB2HISTORY_OP_UNLOAD DB2HIST_OP_UNLOAD

X log archive DB2HISTORY_OP_ARCHIVE_
LOG

DB2HIST_OP_ARCHIVE_LOG

Table 29. Valid oOptype values in the db2HistData structure

oOperation oOptype Description C/COBOL/FORTRAN definition

B F N I O D
E

offline, online,
incremental offline,
incremental online,
delta offline, delta
online

DB2HISTORY_OPTYPE_OFFLINE,
DB2HISTORY_OPTYPE_ONLINE,
DB2HISTORY_OPTYPE_INCR_OFFLINE,
DB2HISTORY_OPTYPE_INCR_ONLINE,
DB2HISTORY_OPTYPE_DELTA_OFFLINE,
DB2HISTORY_OPTYPE_DELTA_ONLINE

F E P end of logs, point
in time

DB2HISTORY_OPTYPE_EOL,
DB2HISTORY_OPTYPE_PIT

G F N offline, online DB2HISTORY_OPTYPE_OFFLINE,
DB2HISTORY_OPTYPE_ONLINE

L I R insert, replace DB2HISTORY_OPTYPE_INSERT,
DB2HISTORY_OPTYPE_REPLACE

Q S U X Z quiesce share,
quiesce update,
quiesce exclusive,
quiesce reset

DB2HISTORY_OPTYPE_SHARE,
DB2HISTORY_OPTYPE_UPDATE,
DB2HISTORY_OPTYPE_EXCL,
DB2HISTORY_OPTYPE_RESET

R F N I O R offline, online,
incremental offline,
incremental online,
rebuild

DB2HISTORY_OPTYPE_OFFLINE,
DB2HISTORY_OPTYPE_ONLINE,
DB2HISTORY_OPTYPE_INCR_OFFLINE,
DB2HISTORY_OPTYPE_INCR_ONLINE,
DB2HISTORY_OPTYPE_REBUILD

T C R add containers,
rebalance

DB2HISTORY_OPTYPE_ADD_CONT,
DB2HISTORY_OPTYPE_REB

db2HistoryData

Chapter 10. Data structures used by APIs 597

Table 29. Valid oOptype values in the db2HistData structure (continued)

oOperation oOptype Description C/COBOL/FORTRAN definition

X N P M F 1
2

archive log
command, primary
log path, mirror log
path, archive fail
path, log archive
method 1, log
archive method 2

DB2HISTORY_OPTYPE_ARCHIVE_CMD,
DB2HISTORY_OPTYPE_PRIMARY,
DB2HISTORY_OPTYPE_MIRROR,
DB2HISTORY_OPTYPE_ARCHFAIL,
DB2HISTORY_OPTYPE_ARCH1,
DB2HISTORY_OPTYPE_ARCH2

Table 30. Fields in the db2HistoryEID structure

Field name Data type Description

ioNode ioHID SQL_PDB_NODE_TYPE
db2Uint32

Node number. Local
database history records
entry ID.

API and data structure syntax
typedef SQL_STRUCTURE db2HistoryData
{

char ioHistDataID[8];
db2Char oObjectPart;
db2Char oEndTime;
db2Char oFirstLog;
db2Char oLastLog;
db2Char oID;
db2Char oTableQualifier;
db2Char oTableName;
db2Char oLocation;
db2Char oComment;
db2Char oCommandText;
db2LSN oLastLSN;
db2HistoryEID oEID;
struct sqlca *poEventSQLCA;
struct db2Char *poTablespace;
db2Uint32 iNumTablespaces;
db2Uint32 oNumTablespaces;
char oOperation;
char oObject;
char oOptype;
char oStatus;
char oDeviceType;

} db2HistoryData;

typedef SQL_STRUCTURE db2Char
{

char *pioData;
db2Uint32 iLength;
db2Uint32 oLength;

} db2Char;

typedef SQL_STRUCTURE db2HistoryEID
{

SQL_PDB_NODE_TYPE ioNode;
db2Uint32 ioHID;

} db2HistoryEID;

db2Char data structure parameters

pioData
A pointer to a character data buffer. If NULL, no data will be returned.

db2HistoryData

598 Administrative API Reference

iLength
Input. The size of the pioData buffer.

oLength
Output. The number of valid characters of data in the pioData buffer.

db2HistoryEID data structure parameters

ioNode
This parameter can be used as either an input or output parameter.
Indicates the node number.

ioHID This parameter can be used as either an input or output parameter.
Indicates the local database history records entry ID.

db2HistoryData

Chapter 10. Data structures used by APIs 599

db2LSN data structure
This union, used by the db2ReadLog and db2ReadLogNoConn APIs, contains the
definition of the log sequence number.

A log sequence number (LSN) represents a relative byte address within the
database log. All log records are identified by this number. An LSN represents the
byte offset of the log record from the beginning of the database log.

Table 31. Fields in the db2LSN Structure

Field Name Data Type Description

lsnU64 db2Uint64 Specifies the log sequence
number.

API and data structure syntax
typedef SQL_STRUCTURE db2LSN
{

db2Uint64 lsnU64; /* Log sequence number */
} db2LSN;

db2LSN data structure

600 Administrative API Reference

sql_dir_entry

This structure is used by the DCS directory APIs.

Table 32. Fields in the SQL-DIR-ENTRY Structure

Field Name Data Type Description

STRUCT_ID RELEASE
CODEPAGE COMMENT
LDB TDB AR PARM

SMALLINT SMALLINT
SMALLINT CHAR(30)
CHAR(8) CHAR(18)
CHAR(32) CHAR(512)

Structure identifier. Set to
SQL_DCS_STR_ID (defined
in sqlenv). Release version
(assigned by the API). Code
page for comment. Optional
description of the database.
Local name of the database;
must match database alias in
system database directory.
Actual name of the database.
Name of the application
client. Contains transaction
program prefix, transaction
program name, SQLCODE
mapping file name, and
disconnect and security
option.

Note: The character fields passed in this structure must be null terminated or
blank filled up to the length of the field.

API and data structure syntax
SQL_STRUCTURE sql_dir_entry
{

unsigned short struct_id;
unsigned short release;
unsigned short codepage;
_SQLOLDCHAR comment[SQL_CMT_SZ + 1];
_SQLOLDCHAR ldb[SQL_DBNAME_SZ + 1];
_SQLOLDCHAR tdb[SQL_LONG_NAME_SZ + 1];
_SQLOLDCHAR ar[SQL_AR_SZ + 1];
_SQLOLDCHAR parm[SQL_PARAMETER_SZ + 1];

};

COBOL Structure
* File: sqlenv.cbl
01 SQL-DIR-ENTRY.

05 STRUCT-ID PIC 9(4) COMP-5.
05 RELEASE-LVL PIC 9(4) COMP-5.
05 CODEPAGE PIC 9(4) COMP-5.
05 COMMENT PIC X(30).
05 FILLER PIC X.
05 LDB PIC X(8).
05 FILLER PIC X.
05 TDB PIC X(18).
05 FILLER PIC X.
05 AR PIC X(32).
05 FILLER PIC X.
05 PARM PIC X(512).
05 FILLER PIC X.
05 FILLER PIC X(1).

*

sql_dir_entry

Chapter 10. Data structures used by APIs 601

SQLB_TBS_STATS

This structure is used to return additional table space statistics to an application
program.

Table 33. Fields in the SQLB-TBS-STATS Structure

Field Name Data Type Description

TOTALPAGES INTEGER Total operating system space occupied by the
table space (in 4KB pages). For DMS, this is
the sum of the container sizes (including
overhead). For SMS, this is the sum of all file
space used for the tables stored in this table
space. This is the only piece of information
returned for SMS table spaces; the other fields
are set to this value or zero.

USEABLEPAGES INTEGER For DMS, equal to TOTALPAGES minus
(overhead plus partial extents). For SMS,
equal to TOTALPAGES.

USEDPAGES INTEGER For DMS, the total number of pages in use.
For SMS, equal to TOTALPAGES.

FREEPAGES INTEGER For DMS, equal to USEABLEPAGES minus
USEDPAGES. For SMS, not applicable.

HIGHWATERMARK INTEGER For DMS, the high water mark is the current
"end" of the table space address space. In
other words, the page number of the first free
extent following the last allocated extent of a
table space.

Note: This is not a "high water mark", but rather a "current water mark", since the
value can decrease. For SMS, this is not applicable.

During a table space rebalance, the number of useable pages will include pages for
the newly added container, but these new pages will not be reflected in the
number of free pages until the rebalance is complete. When a table space rebalance
is not taking place, the number of used pages plus the number of free pages will
equal the number of useable pages.

API and data structure syntax
SQL_STRUCTURE SQLB_TBS_STATS
{

sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 usedPages;
sqluint32 freePages;
sqluint32 highWaterMark;

};

COBOL Structure
* File: sqlutil.cbl
01 SQLB-TBS-STATS.

05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-USED-PAGES PIC 9(9) COMP-5.
05 SQL-FREE-PAGES PIC 9(9) COMP-5.
05 SQL-HIGH-WATER-MARK PIC 9(9) COMP-5.

*

SQLB_TBS_STATS

602 Administrative API Reference

SQLB_TBSCONTQRY_DATA

This structure is used to return container data to an application program.

Table 34. Fields in the SQLB-TBSCONTQRY-DATA Structure

Field Name Data Type Description

ID INTEGER Container identifier.

NTBS INTEGER Always 1.

TBSID INTEGER Table space identifier.

NAMELEN INTEGER Length of the container name (for
languages other than C).

NAME CHAR(256) Container name.

UNDERDBDIR INTEGER Either 1 (container is under the DB
directory) or 0 (container is not under
the DB directory)

CONTTYPE INTEGER Container type.

TOTALPAGES INTEGER Total number of pages occupied by the
table space container.

USEABLEPAGES INTEGER For DMS, TOTALPAGES minus
overhead. For SMS, equal to
TOTALPAGES.

OK INTEGER Either 1 (container is accessible) or 0
(container is inaccessible). Zero indicates
an abnormal situation that usually
requires the attention of the database
administrator.

Possible values for CONTTYPE (defined in sqlutil) are:

SQLB_CONT_PATH
Specifies a directory path (SMS only).

SQLB_CONT_DISK
Specifies a raw device (DMS only).

SQLB_CONT_FILE
Specifies a file (DMS only).

API and data structure syntax
SQL_STRUCTURE SQLB_TBSCONTQRY_DATA
{

sqluint32 id;
sqluint32 nTbs;
sqluint32 tbsID;
sqluint32 nameLen;
char name[SQLB_MAX_CONTAIN_NAME_SZ];
sqluint32 underDBDir;
sqluint32 contType;
sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 ok;

};

SQLB_TBSCONTQRY_DATA

Chapter 10. Data structures used by APIs 603

COBOL Structure
* File: sqlutbcq.cbl
01 SQLB-TBSCONTQRY-DATA.

05 SQL-ID PIC 9(9) COMP-5.
05 SQL-N-TBS PIC 9(9) COMP-5.
05 SQL-TBS-ID PIC 9(9) COMP-5.
05 SQL-NAME-LEN PIC 9(9) COMP-5.
05 SQL-NAME PIC X(256).
05 SQL-UNDER-DBDIR PIC 9(9) COMP-5.
05 SQL-CONT-TYPE PIC 9(9) COMP-5.
05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-OK PIC 9(9) COMP-5.

*

SQLB_TBSCONTQRY_DATA

604 Administrative API Reference

SQLB_TBSPQRY_DATA

This structure is used to return table space data to an application program.

Table 35. Fields in the SQLB-TBSPQRY-DATA Structure

Field Name Data Type Description

TBSPQVER CHAR(8) Structure version identifier.

ID INTEGER Internal identifier for the
table space.

NAMELEN INTEGER Length of the table space
name.

NAME CHAR(128) Null-terminated name of the
table space.

TOTALPAGES INTEGER Number of pages specified
by CREATE TABLESPACE
(DMS only).

USEABLEPAGES INTEGER TOTALPAGES minus
overhead (DMS only). This
value is rounded down to
the next multiple of 4KB.

FLAGS INTEGER Bit attributes for the table
space.

PAGESIZE INTEGER Page size (in bytes) of the
table space. Currently fixed
at 4KB.

EXTSIZE INTEGER Extent size (in pages) of the
table space.

PREFETCHSIZE INTEGER Prefetch size.

NCONTAINERS INTEGER Number of containers in the
table space.

TBSSTATE INTEGER Table space states.

LIFELSN INTEGER (64-BIT) Time stamp identifying the
origin of the table space.

FLAGS2 INTEGER Bit attributes for the table
space.

MINIMUMRECTIME CHAR(27) Earliest point in time that
may be specified by
point-in-time table space
rollforward.

STATECHNGOBJ INTEGER If TBSSTATE is
SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING,
the object ID in table space
STATECHANGEID that
caused the table space state
to be set. Otherwise zero.

SQLB_TBSPQRY_DATA

Chapter 10. Data structures used by APIs 605

Table 35. Fields in the SQLB-TBSPQRY-DATA Structure (continued)

Field Name Data Type Description

STATECHNGID INTEGER If TBSSTATE is
SQLB_LOAD_PENDING or
SQLB_DELETE_PENDING,
the table space ID of the
object STATECHANGEOBJ
that caused the table space
state to be set. Otherwise
zero.

NQUIESCERS INTEGER If TBSSTATE is
SQLB_QUIESCED_SHARE,
UPDATE, or EXCLUSIVE,
the number of quiescers of
the table space and the
number of entries in
QUIESCERS.

QUIESCER Array of SQLB_QUIESCER_
DATA structures

Each array entry consists of
the quiesce data for a
quiesced object.

FSCACHING UNSIGNED CHAR File system caching policy to
support Direct I/O. This is a
31-bit field.

RESERVED CHAR(31) Reserved for future use.

Possible values for FLAGS (defined in sqlutil) are:

SQLB_TBS_SMS
System Managed Space

SQLB_TBS_DMS
Database Managed Space

SQLB_TBS_ANY
All types of permanent data. Regular table space.

SQLB_TBS_LONG
All types of permanent data. Large table space.

SQLB_TBS_SYSTMP
System temporary data.

SQLB_TBS_USRTMP
User temporary data.

Possible values for TBSSTATE (defined in sqlutil) are:

SQLB_NORMAL
Normal

SQLB_QUIESCED_SHARE
Quiesced: SHARE

SQLB_QUIESCED_UPDATE
Quiesced: UPDATE

SQLB_QUIESCED_EXCLUSIVE
Quiesced: EXCLUSIVE

SQLB_TBSPQRY_DATA

606 Administrative API Reference

SQLB_LOAD_PENDING
Load pending

SQLB_DELETE_PENDING
Delete pending

SQLB_BACKUP_PENDING
Backup pending

SQLB_ROLLFORWARD_IN_PROGRESS
Roll forward in progress

SQLB_ROLLFORWARD_PENDING
Roll forward pending

SQLB_RESTORE_PENDING
Restore pending

SQLB_DISABLE_PENDING
Disable pending

SQLB_REORG_IN_PROGRESS
Reorganization in progress

SQLB_BACKUP_IN_PROGRESS
Backup in progress

SQLB_STORDEF_PENDING
Storage must be defined

SQLB_RESTORE_IN_PROGRESS
Restore in progress

SQLB_STORDEF_ALLOWED
Storage may be defined

SQLB_STORDEF_FINAL_VERSION
Storage definition is in 'final' state

SQLB_STORDEF_CHANGED
Storage definition was changed prior to roll forward

SQLB_REBAL_IN_PROGRESS
DMS rebalancer is active

SQLB_PSTAT_DELETION
Table space deletion in progress

SQLB_PSTAT_CREATION
Table space creation in progress.

Possible values for FLAGS2 (defined in sqlutil) are:

SQLB_STATE_SET
For service use only.

API and data structure syntax
SQL_STRUCTURE SQLB_TBSPQRY_DATA
{

char tbspqver[SQLB_SVERSION_SIZE];
sqluint32 id;
sqluint32 nameLen;
char name[SQLB_MAX_TBS_NAME_SZ];
sqluint32 totalPages;
sqluint32 useablePages;
sqluint32 flags;

SQLB_TBSPQRY_DATA

Chapter 10. Data structures used by APIs 607

sqluint32 pageSize;
sqluint32 extSize;
sqluint32 prefetchSize;
sqluint32 nContainers;
sqluint32 tbsState;
sqluint64 lifeLSN;
sqluint32 flags2;
char minimumRecTime[SQL_STAMP_STRLEN+1];
char pad1[1];
sqluint32 StateChngObj;
sqluint32 StateChngID;
sqluint32 nQuiescers;
struct SQLB_QUIESCER_DATA quiescer[SQLB_MAX_QUIESCERS];
unsigned char fsCaching;
char reserved[31];

};

SQL_STRUCTURE SQLB_QUIESCER_DATA
{

sqluint32 quiesceId;
sqluint32 quiesceObject;

};

SQLB_QUIESCER_DATA data structure parameters

pad Reserved. Used for structure alignment and should not be populated by
user data.

pad1 Reserved. Used for structure alignment and should not be populated by
user data.

quiesceId
Input. ID of the table space that the quiesced object was created in.

quiesceObject
Input. Object ID of the quiesced object.

COBOL Structure
* File: sqlutbsp.cbl
01 SQLB-TBSPQRY-DATA.

05 SQL-TBSPQVER PIC X(8).
05 SQL-ID PIC 9(9) COMP-5.
05 SQL-NAME-LEN PIC 9(9) COMP-5.
05 SQL-NAME PIC X(128).
05 SQL-TOTAL-PAGES PIC 9(9) COMP-5.
05 SQL-USEABLE-PAGES PIC 9(9) COMP-5.
05 SQL-FLAGS PIC 9(9) COMP-5.
05 SQL-PAGE-SIZE PIC 9(9) COMP-5.
05 SQL-EXT-SIZE PIC 9(9) COMP-5.
05 SQL-PREFETCH-SIZE PIC 9(9) COMP-5.
05 SQL-N-CONTAINERS PIC 9(9) COMP-5.
05 SQL-TBS-STATE PIC 9(9) COMP-5.
05 SQL-LIFE-LSN PIC 9(18) COMP-5.
05 SQL-FLAGS2 PIC 9(9) COMP-5.
05 SQL-MINIMUM-REC-TIME PIC X(26).
05 FILLER PIC X.
05 SQL-PAD1 PIC X(1).
05 SQL-STATE-CHNG-OBJ PIC 9(9) COMP-5.
05 SQL-STATE-CHNG-ID PIC 9(9) COMP-5.
05 SQL-N-QUIESCERS PIC 9(9) COMP-5.
05 SQL-QUIESCER OCCURS 5 TIMES.

10 SQL-QUIESCE-ID PIC 9(9) COMP-5.
10 SQL-QUIESCE-OBJECT PIC 9(9) COMP-5.

05 SQL-FSCACHING PIC X(1).
05 SQL-RESERVED PIC X(31).

*

SQLB_TBSPQRY_DATA

608 Administrative API Reference

SQLCA

The SQL communications area (SQLCA) structure is used by the database manager
to return error information to an application program. This structure is updated
after every API call and SQL statement issued.

Language syntax

C Structure
/* File: sqlca.h */
/* Structure: SQLCA */
/* ... */
SQL_STRUCTURE sqlca
{

_SQLOLDCHAR sqlcaid[8];
sqlint32 sqlcabc;
#ifdef DB2_SQL92E
sqlint32 sqlcade;
#else
sqlint32 sqlcode;
#endif
short sqlerrml;
_SQLOLDCHAR sqlerrmc[70];
_SQLOLDCHAR sqlerrp[8];
sqlint32 sqlerrd[6];
_SQLOLDCHAR sqlwarn[11];
#ifdef DB2_SQL92E
_SQLOLDCHAR sqlstat[5];
#else
_SQLOLDCHAR sqlstate[5];
#endif

};
/* ... */

COBOL Structure
* File: sqlca.cbl
01 SQLCA SYNC.

05 SQLCAID PIC X(8) VALUE "SQLCA ".
05 SQLCABC PIC S9(9) COMP-5 VALUE 136.
05 SQLCODE PIC S9(9) COMP-5.
05 SQLERRM.
05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES PIC S9(9) COMP-5.
05 SQLWARN.

10 SQLWARN0 PIC X.
10 SQLWARN1 PIC X.
10 SQLWARN2 PIC X.
10 SQLWARN3 PIC X.
10 SQLWARN4 PIC X.
10 SQLWARN5 PIC X.
10 SQLWARN6 PIC X.
10 SQLWARN7 PIC X.
10 SQLWARN8 PIC X.
10 SQLWARN9 PIC X.
10 SQLWARNA PIC X.

05 SQLSTATE PIC X(5).
*

SQLCA

Chapter 10. Data structures used by APIs 609

sqlchar

This structure is used to pass variable length data to the database manager.

Table 36. Fields in the SQLCHAR Structure

Field Name Data Type Description

LENGTH SMALLINT Length of the character string
pointed to by DATA.

DATA CHAR(n) An array of characters of
length LENGTH.

API and data structure syntax
SQL_STRUCTURE sqlchar
{

short length;
_SQLOLDCHAR data[1];

};

COBOL Structure

This is not defined in any header file. The following is an example that shows how
to define the structure in COBOL:
* Replace maxlen with the appropriate value:
01 SQLCHAR.
49 SQLCHAR-LEN PIC S9(4) COMP-5.
49 SQLCHAR-DATA PIC X(maxlen).

sqlchar

610 Administrative API Reference

SQLDA

The SQL descriptor area (SQLDA) structure is a collection of variables that is
required for execution of the SQL DESCRIBE statement. The SQLDA variables are
options that can be used with the PREPARE, OPEN, FETCH, EXECUTE, and CALL
statements.

An SQLDA communicates with dynamic SQL; it can be used in a DESCRIBE
statement, modified with the addresses of host variables, and then reused in a
FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are provided
only for C, REXX, FORTRAN, and COBOL.

The meaning of the information in an SQLDA depends on its use. In PREPARE
and DESCRIBE, an SQLDA provides information to an application program about
a prepared statement. In OPEN, EXECUTE, FETCH, and CALL, an SQLDA
describes host variables.

Language syntax

C Structure
/* File: sqlda.h */
/* Structure: SQLDA */
/* ... */
SQL_STRUCTURE sqlda
{

_SQLOLDCHAR sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar sqlvar[1];

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLVAR */
/* ... */
SQL_STRUCTURE sqlvar
{

short sqltype;
short sqllen;
_SQLOLDCHAR *SQL_POINTER sqldata;
short *SQL_POINTER sqlind;
struct sqlname sqlname;

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLNAME */
/* ... */
SQL_STRUCTURE sqlname
{

short length;
_SQLOLDCHAR data[30];

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLVAR2 */
/* ... */
SQL_STRUCTURE sqlvar2
{

SQLDA

Chapter 10. Data structures used by APIs 611

union sql8bytelen len;
char *SQL_POINTER sqldatalen;
struct sqldistinct_type sqldatatype_name;

};
/* ... */

/* File: sqlda.h */
/* Structure: SQL8BYTELEN */
/* ... */
union sql8bytelen
{

long reserve1[2];
long sqllonglen;

};
/* ... */

/* File: sqlda.h */
/* Structure: SQLDISTINCT-TYPE */
/* ... */
SQL_STRUCTURE sqldistinct_type
{

short length;
char data[27];
char reserved1[3];

};
/* ... */

COBOL Structure
* File: sqlda.cbl
01 SQLDA SYNC.

05 SQLDAID PIC X(8) VALUE "SQLDA ".
05 SQLDABC PIC S9(9) COMP-5.
05 SQLN PIC S9(4) COMP-5.
05 SQLD PIC S9(4) COMP-5.
05 SQLVAR-ENTRIES OCCURS 0 TO 1489 TIMES

10 SQLVAR.
10 SQLVAR2 REDEFINES SQLVAR.

*

SQLDA

612 Administrative API Reference

sqldcol

This structure is used to pass variable column information to the db2Export,
db2Import, and db2Load APIs.

Table 37. Fields in the SQLDCOL Structure

Field Name Data Type Description

DCOLMETH SMALLINT A character indicating the
method to be used to select
columns within the data file.

DCOLNUM SMALLINT The number of columns
specified in the array
DCOLNAME .

DCOLNAME Array An array of DCOLNUM
sqldcoln structures.

The valid values for DCOLMETH (defined in sqlutil) are:

SQL_METH_N
Names. When importing or loading, use the column names provided via
this structure to identify the data to import or load from the external file.
The case of these column names must match the case of the corresponding
names in the system catalogs. When exporting, use the column names
provided via this structure as the column names in the output file.

The dcolnptr pointer of each element of the dcolname array points to an
array of characters, of length dcolnlen bytes, that make up the name of a
column to be imported or loaded. The dcolnum field, which must be
positive, indicates the number of elements in the dcolname array.

This method is invalid if the external file does not contain column names
(DEL or ASC format files, for example).

SQL_METH_P
Positions. When importing or loading, use starting column positions
provided via this structure to identify the data to import or load from the
external file. This method is not valid when exporting data.

The dcolnptr pointer of each element of the dcolname array is ignored,
while the dcolnlen field contains a column position in the external file. The
dcolnum field, which must be positive, indicates the number of elements in
the dcolname array.

The lowest valid column position value is 1 (indicating the first column),
and the highest valid value depends on the external file type. Positional
selection is not valid for import of ASC files.

SQL_METH_L
Locations. When importing or loading, use starting and ending column
positions provided via this structure to identify the data to import or load
from the external file. This method is not valid when exporting data.

The dcolnptr field of the first element of the dcolname array points to an
sqlloctab structure, which consists of an array of sqllocpair structures. The
number of elements in this array is determined by the dcolnum field of the
sqldcol structure, which must be positive. Each element in the array is a
pair of 2-byte integers that indicate where the column begins and ends.
The first element of each location pair is the byte within the file where the

sqldcol

Chapter 10. Data structures used by APIs 613

column begins, and the second element is the byte where the column ends.
The first byte position within a row in the file is considered byte position
1. The columns can overlap.

SQL_METH_D
Default. When importing or loading DEL and IXF files, the first column of
the file is loaded or imported into the first column of the table, and so on.
When exporting, the default names are used for the columns in the
external file.

The dcolnum and dcolname fields of the sqldcol structure are both
ignored, and the columns from the external file are taken in their natural
order.

A column from the external file can be used in the array more than once. It
is not necessary to use every column from the external file.

Table 38. Fields in the SQLDCOLN Structure

Field Name Data Type Description

DCOLNLEN SMALLINT Length of the data pointed to
by DCOLNPTR.

DCOLNPTR Pointer Pointer to a data element
determined by DCOLMETH.

Note: The DCOLNLEN and DCOLNPTR fields are repeated for each column
specified.

Table 39. Fields in the SQLLOCTAB Structure

Field Name Data Type Description

LOCPAIR Array An array of sqllocpair
structures.

Table 40. Fields in the SQLLOCPAIR Structure

Field Name Data Type Description

BEGIN_LOC SMALLINT Starting position of the
column data in the external
file.

END_LOC SMALLINT Ending position of the
column data in the external
file.

API and data structure syntax
SQL_STRUCTURE sqldcol
{

short dcolmeth;
short dcolnum;
struct sqldcoln dcolname[1];

};

SQL_STRUCTURE sqldcoln
{

short dcolnlen;
char *dcolnptr;

};

SQL_STRUCTURE sqlloctab

sqldcol

614 Administrative API Reference

{
struct sqllocpair locpair[1];

};

SQL_STRUCTURE sqllocpair
{

short begin_loc;
short end_loc;

};

COBOL Structure
* File: sqlutil.cbl
01 SQL-DCOLDATA.

05 SQL-DCOLMETH PIC S9(4) COMP-5.
05 SQL-DCOLNUM PIC S9(4) COMP-5.
05 SQLDCOLN OCCURS 0 TO 255 TIMES DEPENDING ON SQL-DCOLNUM.

10 SQL-DCOLNLEN PIC S9(4) COMP-5.
10 FILLER PIC X(2).
10 SQL-DCOLN-PTR USAGE IS POINTER.

*

* File: sqlutil.cbl
01 SQL-LOCTAB.

05 SQL-LOC-PAIR OCCURS 1 TIMES.
10 SQL-BEGIN-LOC PIC S9(4) COMP-5.
10 SQL-END-LOC PIC S9(4) COMP-5.

*

sqldcol

Chapter 10. Data structures used by APIs 615

sqle_addn_options

This structure is used to pass information to the sqleaddn API.

Table 41. Fields in the SQLE-ADDN-OPTIONS Structure

Field Name Data Type Description

SQLADDID CHAR An "eyecatcher" value which must be
set to SQLE_ADDOPTID_V51.

TBLSPACE_TYPE sqluint32 Specifies the type of system
temporary table space definitions to
be used for the node being added.
See below for values. Note: This
option is ignored for system
temporary table spaces that are
defined to use automatic storage (that
is system temporary table spaces that
were created with the MANAGED
BY AUTOMATIC STORAGE clause of
the CREATE TABLESPACE statement
or where no MANAGED BY
CLAUSE was specified at all). For
these table spaces, there is no way to
defer container creation or choose to
create a set of containers like they are
defined on another partition.
Containers will automatically be
assigned by the database manager
based on the storage paths that are
associated with the database.

TBLSPACE_NODE SQL_PDB_NODE_TYPE Specifies the node number from
which the system temporary table
space definitions should be obtained.
The node number must exist in the
db2nodes.cfg file, and is only used if
the tblspace_type field is set to
SQLE_TABLESPACES_LIKE_NODE.

Valid values for TBLSPACE_TYPE (defined in sqlenv) are:

SQLE_TABLESPACES_NONE
Do not create any system temporary table spaces.

SQLE_TABLESPACES_LIKE_NODE
The containers for the system temporary table spaces should be the same
as those for the specified node.

SQLE_TABLESPACES_LIKE_CATALOG
The containers for the system temporary table spaces should be the same
as those for the catalog node of each database.

API and data structure syntax
SQL_STRUCTURE sqle_addn_options
{

char sqladdid[8];
sqluint32 tblspace_type;
SQL_PDB_NODE_TYPE tblspace_node;

};

sqle_addn_options

616 Administrative API Reference

COBOL Structure
* File: sqlenv.cbl
01 SQLE-ADDN-OPTIONS.

05 SQLADDID PIC X(8).
05 SQL-TBLSPACE-TYPE PIC 9(9) COMP-5.
05 SQL-TBLSPACE-NODE PIC S9(4) COMP-5.
05 FILLER PIC X(2).

*

sqle_addn_options

Chapter 10. Data structures used by APIs 617

sqle_client_info

This structure is used to pass information to the sqleseti and sqleqryi APIs. This
structure specifies:
v The type of information being set or queried
v The length of the data being set or queried
v A pointer to either:

– An area that will contain the data being set
– An area of sufficient length to contain the data being queried

Applications can specify the following types of information:
v Client user ID being set or queried. A maximum of 255 characters can be set,

although servers can truncate this to some platform-specific value.

Note: This user ID is for identification purposes only, and is not used for any
authorization.

v Client workstation name being set or queried. A maximum of 255 characters can
be set, although servers can truncate this to some platform-specific value.

v Client application name being set or queried. A maximum of 255 characters can
be set, although servers can truncate this to some platform-specific value.

v Client current package path being set or queried. A maximum of 255 characters
can be set, although servers can truncate this to some platform-specific value.

v Client program ID being set or queried. A maximum of 80 characters can be set,
although servers can truncate this to some platform-specific value.

v Client accounting string being set or queried. A maximum of 200 characters can
be set, although servers can truncate this to some platform-specific value.

Note: The information can be set using the sqlesact API. However, sqlesact does
not permit the accounting string to be changed once a connection exists, whereas
sqleseti allows the accounting information to be changed for future, as well as
already established, connections.

Table 42. Fields in the SQLE-CLIENT-INFO Structure

Field Name Data Type Description

TYPE sqlint32 Setting type.

LENGTH sqlint32 Length of the value. On sqleseti calls, the length
can be between zero and the maximum length
defined for the type. A length of zero indicates a
null value. On sqleqryi calls, the length is
returned, but the area pointed to by pValue
must be large enough to contain the maximum
length for the type. A length of zero indicates a
null value.

PVALUE Pointer Pointer to an application-allocated buffer that
contains the specified value. The data type of
this value is dependent on the type field.

The valid entries for the SQLE-CLIENT-INFO TYPE element and the associated
descriptions for each entry are listed below:

sqle_client_info

618 Administrative API Reference

Table 43. Connection Settings

Type Data Type Description

SQLE_CLIENT_INFO_USERID CHAR(255) The user ID for the client. Some servers may truncate
the value. For example, DB2 for z/OS servers support
up to length 16. This user ID is for identification
purposes only, and is not used for any authorization.

SQLE_CLIENT_INFO_WRKSTNNAME CHAR(255) The workstation name for the client. Some servers
may truncate the value. For example, DB2 for z/OS
servers support up to length 18.

SQLE_CLIENT_INFO_APPLNAME CHAR(255) The application name for the client. Some servers may
truncate the value. For example, DB2 for z/OS servers
support up to length 32.

SQLE_CLIENT_INFO_PROGRAMID CHAR(80) The program identifier for the client. Once this
element is set, DB2 Universal Database for z/OS
Version 8 associates this identifier with any statements
inserted into the dynamic SQL statement cache. This
element is only supported for applications accessing
DB2 UDB for z/OS Version 8.

SQLE_CLIENT_INFO_ACCTSTR CHAR(200) The accounting string for the client. Some servers may
truncate the value. For example, DB2 for z/OS servers
support up to length 200.

SQLE_CLIENT_INFO_AUTOCOMMIT CHAR(1) The autocommit setting of the client. It can be set to
SQLE_CLIENT_AUTOCOMMIT_ON or
SQLE_CLIENT_AUTOCOMMIT_OFF.

Note: These field names are defined for the C programming language. There are
similar names for FORTRAN and COBOL, which have the same semantics.

API and data structure syntax
SQL_STRUCTURE sqle_client_info
{

unsigned short type;
unsigned short length;
char *pValue;

};

COBOL Structure
* File: sqlenv.cbl
01 SQLE-CLIENT-INFO.

05 SQLE-CLIENT-INFO-ITEM OCCURS 4 TIMES.
10 SQLE-CLIENT-INFO-TYPE PIC S9(4) COMP-5.
10 SQLE-CLIENT-INFO-LENGTH PIC S9(4) COMP-5.
10 SQLE-CLIENT-INFO-VALUE USAGE IS POINTER.

*

sqle_client_info

Chapter 10. Data structures used by APIs 619

sqle_conn_setting

This structure is used to specify connection setting types and values for the
sqleqryc and sqlesetc APIs.

Table 44. Fields in the SQLE-CONN-SETTING Structure

Field Name Data Type Description

TYPE VALUE SMALLINT SMALLINT Setting type. Setting value.

The valid entries for the SQLE-CONN-SETTING TYPE element and the associated
descriptions for each entry are listed below (defined in sqlenv and sql):

Table 45. Connection Settings

Type Value Description

SQL_CONNECT_TYPE SQL_CONNECT_1
SQL_CONNECT_2

Type 1 CONNECTs enforce the single
database per unit of work semantics
of older releases, also known as the
rules for remote unit of work
(RUOW). Type 2 CONNECTs support
the multiple databases per unit of
work semantics of DUOW.

SQL_RULES SQL_RULES_DB2 SQL_RULES_STD Enable the SQL CONNECT statement
to switch the current connection to an
established (dormant) connection.
Permit only the establishment of a
new connection through the SQL
CONNECT statement. The SQL SET
CONNECTION statement must be
used to switch the current connection
to a dormant connection.

SQL_DISCONNECT SQL_DISCONNECT_EXPL
SQL_DISCONNECT_COND
SQL_DISCONNECT_AUTO

Removes those connections that have
been explicitly marked for release by
the SQL RELEASE statement at
commit. Breaks those connections
that have no open WITH HOLD
cursors at commit, and those that
have been marked for release by the
SQL RELEASE statement. Breaks all
connections at commit.

SQL_SYNCPOINT SQL_SYNC_TWOPHASE
SQL_SYNC_ONEPHASE
SQL_SYNC_NONE

Requires a Transaction Manager (TM)
to coordinate two-phase commits
among databases that support this
protocol. Uses one-phase commits to
commit the work done by each
database in multiple database
transactions. Enforces single updater,
multiple read behavior. Uses
one-phase commits to commit work
done, but does not enforce single
updater, multiple read behavior.

sqle_conn_setting

620 Administrative API Reference

Table 45. Connection Settings (continued)

Type Value Description

SQL_DEFERRED_PREPARE SQL_DEFERRED_PREPARE_NO
SQL_DEFERRED_PREPARE_YES
SQL_DEFERRED_PREPARE_ALL

The PREPARE statement will be
executed at the time it is issued.
Execution of the PREPARE statement
will be deferred until the
corresponding OPEN, DESCRIBE, or
EXECUTE statement is issued. The
PREPARE statement will not be
deferred if it uses the INTO clause,
which requires an SQLDA to be
returned immediately. However, if
the PREPARE INTO statement is
issued for a cursor that does not use
any parameter markers, the
processing will be optimized by
pre-OPENing the cursor when the
PREPARE is executed. Same as YES,
except that a PREPARE INTO
statement which contains parameter
markers is deferred. If a PREPARE
INTO statement does not contain
parameter markers, pre-OPENing of
the cursor will still be performed. If
the PREPARE statement uses the
INTO clause to return an SQLDA, the
application must not reference the
content of this SQLDA until the
OPEN, DESCRIBE, or EXECUTE
statement is issued and returned.

SQL_CONNECT_NODE Between 0 and 999, or the keyword
SQL_CONN_CATALOG_NODE.

Specifies the node to which a connect
is to be made. Overrides the value of
the environment variable DB2NODE.
For example, if nodes 1, 2, and 3 are
defined, the client only needs to be
able to access one of these nodes. If
only node 1 containing databases has
been cataloged, and this parameter is
set to 3, the next connect attempt will
result in a connection at node 3, after
an initial connection at node 1.

SQL_ATTACH_NODE Between 0 and 999. Specifies the node to which an attach
is to be made. Overrides the value of
the environment variable DB2NODE.
For example, if nodes 1, 2, and 3 are
defined, the client only needs to be
able to access one of these nodes. If
only node 1 containing databases has
been cataloged, and this parameter is
set to 3, then the next attach attempt
will result in an attachment at node
3, after an initial attachment at node
1.

Note: These field names are defined for the C programming language. There are
similar names for FORTRAN and COBOL, which have the same semantics.

sqle_conn_setting

Chapter 10. Data structures used by APIs 621

API and data structure syntax
SQL_STRUCTURE sqle_conn_setting
{

unsigned short type;
unsigned short value;

};

COBOL Structure
* File: sqlenv.cbl
01 SQLE-CONN-SETTING.

05 SQLE-CONN-SETTING-ITEM OCCURS 7 TIMES.
10 SQLE-CONN-TYPE PIC S9(4) COMP-5.
10 SQLE-CONN-VALUE PIC S9(4) COMP-5.

*

sqle_conn_setting

622 Administrative API Reference

sqle_node_local

This structure is used to catalog local nodes for the sqlectnd API.

Table 46. Fields in the SQLE-NODE-LOCAL Structure

Field Name Data Type Description

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or
blank filled up to the length of the field.

API and data structure syntax
SQL_STRUCTURE sqle_node_local
{

char instance_name[SQL_INSTNAME_SZ+1];
};

COBOL Structure
* File: sqlenv.cbl
01 SQL-NODE-LOCAL.

05 SQL-INSTANCE-NAME PIC X(8).
05 FILLER PIC X.

*

sqle_node_local

Chapter 10. Data structures used by APIs 623

sqle_node_npipe

This structure is used to catalog named pipe nodes for the sqlectnd API.

Table 47. Fields in the SQLE-NODE-NPIPE Structure

Field Name Data Type Description

COMPUTERNAME CHAR(15) Computer name.

INSTANCE_NAME CHAR(8) Name of an instance.

Note: The character fields passed in this structure must be null terminated or
blank filled up to the length of the field.

API and data structure syntax
SQL_STRUCTURE sqle_node_npipe
{

char computername[SQL_COMPUTERNAME_SZ+1];
char instance_name[SQL_INSTNAME_SZ+1];

};

COBOL Structure
* File: sqlenv.cbl
01 SQL-NODE-NPIPE.

05 COMPUTERNAME PIC X(15).
05 FILLER PIC X.
05 INSTANCE-NAME PIC X(8).
05 FILLER PIC X.

*

sqle_node_npipe

624 Administrative API Reference

sqle_node_struct

This structure is used to catalog nodes for the sqlectnd API.

Note: NetBIOS is no longer supported. SNA, including its APIs APPC, APPN, and
CPI-C, is also no longer supported. If you use these protocols, you must re-catalog
your nodes and databases using a supported protocol such as TCP/IP. References
to these protocols should be ignored.

Table 48. Fields in the SQLE-NODE-STRUCT Structure

Field Name Data Type Description

STRUCT_ID SMALLINT Structure identifier.

CODEPAGE SMALLINT Code page for comment.

COMMENT CHAR(30) Optional description of the
node.

NODENAME CHAR(8) Local name for the node
where the database is
located.

PROTOCOL CHAR(1) Communications protocol
type.

Note: The character fields passed in this structure must be null terminated or
blank filled up to the length of the field.

Valid values for PROTOCOL (defined in sqlenv) are:
v SQL_PROTOCOL_APPC
v SQL_PROTOCOL_APPN
v SQL_PROTOCOL_CPIC
v SQL_PROTOCOL_LOCAL
v SQL_PROTOCOL_NETB
v SQL_PROTOCOL_NPIPE
v SQL_PROTOCOL_SOCKS
v SQL_PROTOCOL_TCPIP

API and data structure syntax
SQL_STRUCTURE sqle_node_struct
{

unsigned short struct_id;
unsigned short codepage;
_SQLOLDCHAR comment[SQL_CMT_SZ + 1];
_SQLOLDCHAR nodename[SQL_NNAME_SZ + 1];
unsigned char protocol;

};

COBOL Structure
* File: sqlenv.cbl
01 SQL-NODE-STRUCT.

05 STRUCT-ID PIC 9(4) COMP-5.
05 CODEPAGE PIC 9(4) COMP-5.
05 COMMENT PIC X(30).
05 FILLER PIC X.
05 NODENAME PIC X(8).

sqle_node_struct

Chapter 10. Data structures used by APIs 625

05 FILLER PIC X.
05 PROTOCOL PIC X.
05 FILLER PIC X(1).

*

sqle_node_struct

626 Administrative API Reference

sqle_node_tcpip

This structure is used to catalog TCP/IP nodes for the sqlectnd API.

Note: To catalog a TCP/IP, TCP/IPv4 or TCP/IPv6 node, set the PROTOCOL type
in the node directory structure to SQL_PROTOCOL_TCPIP,
SQL_PROTOCOL_TCPIP4 or SQL_PROTOCOL_TCPIP6 respectively in the
SQLE-NODE-STRUCT structure before calling the sqlectnd API. To catalog a
TCP/IP or TCP/IPv4 SOCKS node, set the PROTOCOL type in the node directory
structure to SQL_PROTOCOL_SOCKS or SQL_PROTOCOL_SOCKS4 respectively
in the SQLE-NODE-STRUCT structure before calling the sqlectnd API. SOCKS is
not supported on IPv6. For example, SQL_PROTOCOL_SOCKS with an IPv6
address is not supported.

Table 49. Fields in the SQLE-NODE-TCPIP Structure

Field Name Data Type Description

HOSTNAME CHAR(255) Hostname or IP address on
which the DB2 server
instance resides. The type of
IP address accepted depends
on the protocol selected.

SERVICE_NAME CHAR(14) TCP/IP service name or
associated port number of
the DB2 server instance.

Note: The character fields passed in this structure must be null terminated or
blank filled up to the length of the field.

API and data structure syntax
SQL_STRUCTURE sqle_node_tcpip
{

_SQLOLDCHAR hostname[SQL_HOSTNAME_SZ+1];
_SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ+1];

};

COBOL Structure
* File: sqlenv.cbl
01 SQL-NODE-TCPIP.

05 HOSTNAME PIC X(255).
05 FILLER PIC X.
05 SERVICE-NAME PIC X(14).
05 FILLER PIC X.

*

sqle_node_tcpip

Chapter 10. Data structures used by APIs 627

sqledbdesc

The Database Description Block (SQLEDBDESC) structure can be used during a
call to the sqlecrea API to specify permanent values for database attributes. These
attributes include database comment, collating sequences, and table space
definitions.

Table 50. Fields in the SQLEDBDESC Structure

Field Name Data Type Description

SQLDBDID CHAR(8) A structure identifier and
"eye-catcher" for storage
dumps. It is a string of eight
bytes that must be initialized
with the value of
SQLE_DBDESC_2 (defined in
sqlenv). The contents of this
field are validated for
version control.

SQLDBCCP INTEGER The code page of the
database comment. This
value is no longer used by
the database manager.

SQLDBCSS INTEGER A value indicating the source
of the database collating
sequence. See below for
values. Note: Specify
SQL_CS_NONE to specify
that the collating sequence
for the database is
IDENTITY (which
implements a binary
collating sequence).
SQL_CS_NONE is the
default.

SQLDBUDC CHAR(256) If SQLDBCSS is set to
SQL_CS_USER, the nth byte
of this field contains the sort
weight of the code point
whose underlying decimal
representation is n in the
code page of the database. If
SQLDBCSS is set to
SQL_CS_UNICODE, this
field contains the
language-aware or
locale-sensitive UCA-based
collation name (a NULL
terminated string up to 128
bytes in length). If
SQLDBCSS is not equal to
SQL_CS_USER or
SQL_CS_UNICODE, this
field is ignored.

SQLDBCMT CHAR(30) The comment for the
database.

sqledbdesc

628 Administrative API Reference

Table 50. Fields in the SQLEDBDESC Structure (continued)

Field Name Data Type Description

SQLDBSGP INTEGER Reserved field. No longer
used.

SQLDBNSG SHORT A value that indicates the
number of file segments to
be created in the database.
The minimum value for this
field is 1 and the maximum
value for this field is 256. If a
value of -1 is supplied, this
field will default to 1. Note:
SQLDBNSG set to zero
produces a default for
Version 1 compatibility.

SQLTSEXT INTEGER A value, in 4KB pages, which
indicates the default extent
size for each table space in
the database. The minimum
value for this field is 2 and
the maximum value for this
field is 256. If a value of -1 is
supplied, this field will
default to 32.

SQLCATTS Pointer A pointer to a table space
description control block,
SQLETSDESC, which defines
the catalog table space. If
null, a default catalog table
space based on the values of
SQLTSEXT and SQLDBNSG
will be created.

SQLUSRTS Pointer A pointer to a table space
description control block,
SQLETSDESC, which defines
the user table space. If null, a
default user table space
based on the values of
SQLTSEXT and SQLDBNSG
will be created.

SQLTMPTS Pointer A pointer to a table space
description control block,
SQLETSDESC, which defines
the system temporary table
space. If null, a default
system temporary table space
based on the values of
SQLTSEXT and SQLDBNSG
will be created.

The table space description block structure (SQLETSDESC) is used to specify the
attributes of any of the three initial table spaces.

sqledbdesc

Chapter 10. Data structures used by APIs 629

Table 51. Fields in the SQLETSDESC Structure

Field Name Data Type Description

SQLTSDID CHAR(8) A structure identifier and
"eye-catcher" for storage
dumps. It is a string of eight
bytes that must be initialized
with the value of
SQLE_DBTSDESC_1 (defined
in sqlenv). The contents of
this field are validated for
version control.

SQLEXTNT INTEGER Table space extent size, in 4
KB pages. If a value of -1 is
supplied, this field will
default to the current value
of the dft_extent_sz
configuration parameter.

SQLPRFTC INTEGER Table space prefetch size, in
4 KB pages. If a value of -1 is
supplied, this field will
default to the current value
of the dft_prefetch_sz
configuration parameter.

SQLFSCACHING UNSIGNED CHAR File system caching. If a
value of 1 is supplied, file
system caching will be OFF
for the current table space. If
a value of 0 is supplied, file
system caching will be ON
for the current table space.
Specify 2 to indicate the
default setting. In this case,
file system caching will be
OFF on AIX, Linux, Solaris,
and Windows except on AIX
JFS, Linux on System z®,
Solaris non-VxFS for SMS
temporary table space files,
and for SMS Large Object
files or Large Files. File
system caching will be ON
for all other platforms.

SQLPOVHD DOUBLE Table space I/O overhead, in
milliseconds. If a value of -1
is supplied, this field will
default to an internal
database manager value
(currently 24.1 ms) that could
change with future releases.

SQLTRFRT DOUBLE Table space I/O transfer rate,
in milliseconds. If a value of
-1 is supplied, this field will
default to an internal
database manager value
(currently 0.9 ms) that could
change with future releases.

sqledbdesc

630 Administrative API Reference

Table 51. Fields in the SQLETSDESC Structure (continued)

Field Name Data Type Description

SQLTSTYP CHAR(1) Indicates whether the table
space is system-managed or
database-managed. See
below for values.

SQLCCNT SMALLINT Number of containers being
assigned to the table space.
Indicates how many
SQLCTYPE/SQLCSIZE/
SQLCLEN/SQLCONTR
values follow.

CONTAINR Array An array of sqlccnt
SQLETSCDESC structures.

Table 52. Fields in the SQLETSCDESC Structure

Field Name Data Type Description

SQLCTYPE CHAR(1) Identifies the type of this
container. See below for
values.

SQLCSIZE INTEGER Size of the container
identified in SQLCONTR,
specified in 4KB pages. Valid
only when SQLTSTYP is set
to SQL_TBS_TYP_DMS.

SQLCLEN SMALLINT Length of following
SQLCONTR value.

SQLCONTR CHAR(256) Container string.

Valid values for SQLDBCSS (defined in sqlenv) are:

SQL_CS_SYSTEM
For non-Unicode databases, this is the default option, with the collating
sequence based on the database territory. For Unicode databases, this
option is equivalent to the IDENTITY option. If you pass a NULL pointer,
the collating sequence of the operating system (based on the current locale
code and the code page) is used. This is the same as specifying SQLDBCSS
equal to SQL_CS_SYSTEM (0).

SQL_CS_USER
Collation sequence is specified by the 256-byte weight table supplied by
the user. Each weight in the table is one byte in length.

SQL_CS_NONE
Identity collating sequence, in which strings are compared byte for byte.
This is the default for Unicode databases.

SQL_CS_COMPATABILITY
Use pre-Version collating sequence.

SQL_CS_SYSTEM_NLSCHAR
Collating sequence from system using the NLS version of compare routines
for character types. This value can only be specified when creating a Thai
TIS620-1 database.

sqledbdesc

Chapter 10. Data structures used by APIs 631

SQL_CS_USER_NLSCHAR
Collation sequence is specified by the 256-byte weight table supplied by
the user. Each weight in the table is one byte in length. This value can only
be specified when creating a Thai TIS620-1 database.

SQL_CS_IDENTITY_16BIT
CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-Bit) collation
sequence as specified by the Unicode Technical Report #26, available at the
Unicode Consortium web site (www.unicode.org). This value can only be
specified when creating a Unicode database.

SQL_CS_UCA400_NO
UCA (Unicode Collation Algorithm) collation sequence based on the
Unicode Standard version 4.0.0 with normalization implicitly set to 'on'.
Details of the UCA can be found in the Unicode Technical Standard #10
available at the Unicode Consortium web site (www.unicode.org). This
value can only be specified when creating a Unicode database.

SQL_CS_UCA400_LSK
The UCA (Unicode Collation Algorithm) collation sequence that is based
on the Unicode Standard version 4.0.0 but will sort Slovakian characters in
the appropriate order. Details of the UCA can be found in the Unicode
Technical Standard #10, which is available at the Unicode Consortium Web
site (www.unicode.org). This value can only be specified when creating a
Unicode database.

SQL_CS_UCA400_LTH
UCA (Unicode Collation Algorithm) collation sequence based on the
Unicode Standard version 4.0.0, with sorting of all Thai characters
according to the Royal Thai Dictionary order. Details of the UCA can be
found in the Unicode Technical Standard #10 available at the Unicode
Consortium web site (www.unicode.org). This value can only be specified
when creating a Unicode database.

SQL_CS_UNICODE

Collating sequence is language-based for a Unicode database. The specific
collation name is specified in the SQLDBUDC field and must be
terminated with a 0x00 byte. The collation name can identify any
language-aware collation as defined in "Language-aware collations for
Unicode data" or any locale-sensitive UCA-based collation identified in
"Unicode Collation Algorithm based collations".

For example, to use collation equivalent to US English in code page 819,
set SQLDBCSS to SQL_CS_UNICODE and SQLDBUDC to
SYSTEM_819_US.

Note: When CREATE DATABASE is performed against a server earlier
than Version 9.5, this option cannot be used. By default, a Unicode
database on such a server will be created with SYSTEM collation.

Valid values for SQLTSTYP (defined in sqlenv) are:

SQL_TBS_TYP_SMS
System managed

SQL_TBS_TYP_DMS
Database managed

Valid values for SQLCTYPE (defined in sqlenv) are:

sqledbdesc

632 Administrative API Reference

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

SQL_TBSC_TYP_DEV
Device. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_FILE
File. Valid only when SQLTSTYP = SQL_TBS_TYP_DMS.

SQL_TBSC_TYP_PATH
Path (directory). Valid only when SQLTSTYP = SQL_TBS_TYP_SMS.

API and data structure syntax
SQL_STRUCTURE sqledbdesc
{

_SQLOLDCHAR sqldbdid[8];
sqlint32 sqldbccp;
sqlint32 sqldbcss;
unsigned char sqldbudc[SQL_CS_SZ];
_SQLOLDCHAR sqldbcmt[SQL_CMT_SZ+1];
_SQLOLDCHAR pad[1];
sqluint32 sqldbsgp;
short sqldbnsg;
char pad2[2];
sqlint32 sqltsext;
struct SQLETSDESC *sqlcatts;
struct SQLETSDESC *sqlusrts;
struct SQLETSDESC *sqltmpts;

};

SQL_STRUCTURE SQLETSDESC
{

char sqltsdid[8];
sqlint32 sqlextnt;
sqlint32 sqlprftc;
double sqlpovhd;
double sqltrfrt;
char sqltstyp;
unsigned char sqlfscaching;
short sqlccnt;
struct SQLETSCDESC containr[1];

};

SQL_STRUCTURE SQLETSCDESC
{

char sqlctype;
char pad1[3];
sqlint32 sqlcsize;
short sqlclen;
char sqlcontr[SQLB_MAX_CONTAIN_NAME_SZ];
char pad2[2];

};

sqledbdesc structure parameters

pad1 Reserved. Used for structure alignment and should not to be populated by
user data.

pad2 Reserved. Used for structure alignment and should not to be populated by
user data.

SQLETSCDESC structure parameters

pad1 Reserved. Used for structure alignment and should not to be populated by
user data.

pad2 Reserved. Used for structure alignment and should not to be populated by
user data.

sqledbdesc

Chapter 10. Data structures used by APIs 633

COBOL Structure
* File: sqlenv.cbl
01 SQLEDBDESC.

05 SQLDBDID PIC X(8).
05 SQLDBCCP PIC S9(9) COMP-5.
05 SQLDBCSS PIC S9(9) COMP-5.
05 SQLDBUDC PIC X(256).
05 SQLDBCMT PIC X(30).
05 FILLER PIC X.
05 SQL-PAD PIC X(1).
05 SQLDBSGP PIC 9(9) COMP-5.
05 SQLDBNSG PIC S9(4) COMP-5.
05 SQL-PAD2 PIC X(2).
05 SQLTSEXT PIC S9(9) COMP-5.
05 SQLCATTS USAGE IS POINTER.
05 SQLUSRTS USAGE IS POINTER.
05 SQLTMPTS USAGE IS POINTER.

*

* File: sqletsd.cbl
01 SQLETSDESC.

05 SQLTSDID PIC X(8).
05 SQLEXTNT PIC S9(9) COMP-5.
05 SQLPRFTC PIC S9(9) COMP-5.
05 SQLPOVHD USAGE COMP-2.
05 SQLTRFRT USAGE COMP-2.
05 SQLTSTYP PIC X.
05 SQL-PAD1 PIC X.
05 SQLCCNT PIC S9(4) COMP-5.
05 SQL-CONTAINR OCCURS 001 TIMES.

10 SQLCTYPE PIC X.
10 SQL-PAD1 PIC X(3).
10 SQLCSIZE PIC S9(9) COMP-5.
10 SQLCLEN PIC S9(4) COMP-5.
10 SQLCONTR PIC X(256).
10 SQL-PAD2 PIC X(2).

*

* File: sqlenv.cbl
01 SQLETSCDESC.

05 SQLCTYPE PIC X.
05 SQL-PAD1 PIC X(3).
05 SQLCSIZE PIC S9(9) COMP-5.
05 SQLCLEN PIC S9(4) COMP-5.
05 SQLCONTR PIC X(256).
05 SQL-PAD2 PIC X(2).

*

sqledbdesc

634 Administrative API Reference

sqledbdescext

The extended database description block (sqledbdescext) structure is used during a
call to the sqlecrea API to specify permanent values for database attributes. The
extended database description block enables automatic storage for a database,
chooses a default page size for the database, or specifies values for new table space
attributes that have been introduced. This structure is used in addition to, not
instead of, the database description block (sqledbdesc) structure.

If this structure is not passed to the sqlecrea API, the following behavior is used:
v Automatic storage is enabled for the database
v The default page size for the database is 4096 bytes (4 KB)
v If relevant, DB2 database systems determine the value of the extended table

space attributes automatically

API and data structure syntax
SQL_STRUCTURE sqledbdescext
{

sqluint32 sqlPageSize;
struct sqleAutoStorageCfg *sqlAutoStorage;
struct SQLETSDESCEXT *sqlcattsext;
struct SQLETSDESCEXT *sqlusrtsext;
struct SQLETSDESCEXT *sqltmptsext;
void *reserved;

};

SQL_STRUCTURE sqleAutoStorageCfg
{

char sqlEnableAutoStorage;
char pad[3];
sqluint32 sqlNumStoragePaths;
char **sqlStoragePaths;

};

SQL_STRUCTURE SQLETSDESCEXT
{

sqlint64 sqlInitSize;
sqlint64 sqlIncreaseSize;
sqlint64 sqlMaximumSize;
char sqlAutoResize;
char sqlInitSizeUnit;
char sqlIncreaseSizeUnit;
char sqlMaximumSizeUnit;

};

SQL_STRUCTURE sqledboptions
{

void *piAutoConfigInterface;
sqlint32 restrictive;
void *reserved;

};

sqledbdescext

Chapter 10. Data structures used by APIs 635

sqledbdescext data structure parameters

Table 53. Fields in the sqledbdescext structure

Field name Data type Description

SQLPAGESIZE sqluint32 Specifies the page size of the default buffer pool
as well as the initial table spaces
(SYSCATSPACE, TEMPSPACE1, USERSPACE1)
when the database is created. The value given
also represents the default page size for all
future CREATE BUFFERPOOL and CREATE
TABLESPACE statements. See the information
that follows this table for values.

SQLAUTOSTORAGE Pointer A pointer to an automatic storage configuration
structure. This pointer enables or disables
automatic storage for the database. If a pointer
is given, automatic storage may be enabled or
disabled. If NULL, automatic storage is enabled
and a single storage path is assumed with a
value determined by the dbpath passed in, or
the database manager configuration parameter,
dftdbpath.

SQLCATTSEXT Pointer A pointer to an extended table space description
control block (SQLETSDESCEXT) for the system
catalog table space, which defines additional
attributes to those found in SQLETSDESC. If
NULL, the database manager determines the
value of these attributes automatically (if
relevant).

SQLUSRTSEXT Pointer A pointer to an extended table space description
control block (SQLETSDESCEXT) for the user
table space, which defines additional attributes
to those found in SQLETSDESC. If NULL, the
database manager determines the value of these
attributes automatically (if relevant).

SQLTMPTSEXT Pointer A pointer to an extended table space description
control block (SQLETSDESCEXT) for the system
temporary table space, which defines additional
attributes to those found in SQLETSDESC. If
NULL, the database manager determines the
value of these attributes automatically (if
relevant).

RESERVED Pointer A pointer to a database options control block
(sqledboptions).

Valid values for SQLPAGESIZE (defined in sqlenv) are:

SQL_PAGESIZE_4K
Default page size for the database is 4 096 bytes.

SQL_PAGESIZE_8K
Default page size for the database is 8 192 bytes.

SQL_PAGESIZE_16K
Default page size for the database is 16 384 bytes.

SQL_PAGESIZE_32K
Default page size for the database is 32 768 bytes.

sqledbdescext

636 Administrative API Reference

Automatic storage configuration (sqleAutoStorageCfg) data
structure parameters

The automatic storage configuration (sqleAutoStorageCfg) structure can be used
during a call to the sqlecrea API. It is an element of the sqledbdescext structure,
and it specifies whether or not automatic storage is enabled for the database.

Table 54. Fields in the sqleAutoStorageCfg Structure

Field name Data type Description

SQLENABLEAUTOSTORAGE CHAR(1) Specifies whether or not automatic
storage is enabled for the database. See
the information that follows this table for
values.

SQLNUMSTORAGEPATHS sqluint32 A value indicating the number of storage
paths being pointed to by the
SQLSTORAGEPATHS array. If the value
is 0, the SQLSTORAGEPATHS pointer
must be NULL. The maximum number
of storage paths is 128
(SQL_MAX_STORAGE_PATHS).

SQLSTORAGEPATHS Pointer An array of string pointers that point to
storage paths. The number of pointers in
the array is reflected by
SQLNUMSTORAGEPATHS. Set
SQLSTORAGEPATHS to NULL if there
are no storage paths being provided (in
which case, SQLNUMSTORAGEPATHS
must be set to 0). The maximum length
of each path is 175 characters.

Valid values for SQLENABLEAUTOSTORAGE (defined in sqlenv) are:

SQL_AUTOMATIC_STORAGE_NO
Automatic storage is disabled for the database. When this value is used,
SQLNUMSTORAGEPATHS must be set to 0 and SQLSTORAGEPATHS
must be set to NULL.

SQL_AUTOMATIC_STORAGE_YES
Automatic storage is enabled for the database. The storage paths used for
automatic storage are specified using the SQLSTORAGEPATHS pointer. If
this pointer is NULL, then a single storage path is assumed with a value
determined by database manager configuration parameter dftdbpath.

SQL_AUTOMATIC_STORAGE_DFT
The database manager determines whether or not automatic storage is
enabled. Currently, the choice is made based on the SQLSTORAGEPATHS
pointer. If this pointer is NULL, automatic storage is not enabled,
otherwise it is enabled. The default value is equivalent to
SQL_AUTOMATIC_STORAGE_YES.

Extended table space description block (SQLETSDESCEXT)
structure parameters

The extended table space description block (SQLETSDESCEXT) structure is used to
specify the attributes for the three initial table spaces. This structure is used in
addition to, not instead of, the Table Space Description Block (SQLETSDESC)
structure.

sqledbdescext

Chapter 10. Data structures used by APIs 637

Table 55. Fields in the SQLETSDESCEXT Structure

Field name Data type Description

SQLINITSIZE sqlint64 Defines the initial size of each table space that
uses automatic storage. This field is only
relevant for regular or large automatic storage
table spaces. Use a value of
SQL_TBS_AUTOMATIC_INITSIZE for other
table space types or if the intent is to have
DB2 automatically determine an initial size.
Note: The actual value used by the database
manager may be slightly smaller or larger than
what was specified. This action is taken to
keep sizes consistent across containers in the
table space and the value provided may not
allow for that consistency.

SQLINCREASESIZE sqlint64 Defines the size that the database manager
automatically increases the table space by
when the table space becomes full. This field is
only relevant for table spaces that have
auto-resize enabled. Use a value of
SQL_TBS_AUTOMATIC_INCSIZE if
auto-resize is disabled or if the intent is to
have the database manager determine the size
increase automatically. Note: The actual value
used by the database manager may be slightly
smaller or larger than what was specified. This
action is taken to keep sizes consistent across
containers in the table space and the value
provided may not allow for that consistency.

SQLMAXIMUMSIZE sqlint64 Defines the maximum size to which the
database manager automatically increases the
table space. Alternately, a value of
SQL_TBS_NO_MAXSIZE can be used to
specify that the maximum size is "unlimited",
in which case the table space can grow to the
architectural limit for the table space or until a
"filesystem full" condition is encountered. This
field is only relevant for table spaces that have
auto-resize enabled. Use a value of
SQL_TBS_AUTOMATIC_MAXSIZE if
auto-resize is disabled or if the intent is to
have the database manager determine the
maximum size automatically. Note: The actual
value used by the database manager may be
slightly smaller or larger than what was
specified. This action is taken to keep sizes
consistent across containers in the table space
and the value provided may not allow for that
consistency.

SQLAUTORESIZE CHAR(1) Specifies whether auto-resize is enabled for the
table space or not. See the information that
follows this table for values.

SQLINITSIZEUNIT CHAR(1) If relevant, indicates whether SQLINITSIZE is
being provided in bytes, kilobytes, megabytes,
or gigabytes. See the information that follows
this table for values.

sqledbdescext

638 Administrative API Reference

Table 55. Fields in the SQLETSDESCEXT Structure (continued)

Field name Data type Description

SQLINCREASESIZEUNIT CHAR(1) If relevant, indicates whether
SQLINCREASESIZE is being provided in
bytes, kilobytes, megabytes, gigabytes, or as a
percentage. See the information that follows
this table for values.

SQLMAXIMUMSIZEUNIT CHAR(1) If relevant, indicates whether
SQLMAXIMUMSIZE is being provided in
bytes, kilobytes, megabytes, or gigabytes. See
the information that follows this table for
values.

Valid values for SQLAUTORESIZE (defined in sqlenv) are:

SQL_TBS_AUTORESIZE_NO
Auto-resize is disabled for the table space. This value can only be specified
for database-managed space (DMS) table spaces or automatic storage table
spaces.

SQL_TBS_AUTORESIZE_YES
Auto-resize is enabled for the table space. This value can only be specified
for database-managed space (DMS) table spaces or automatic storage table
spaces.

SQL_TBS_AUTORESIZE_DFT
The database manager determines whether or not auto-resize is enabled
based on the table space type: auto-resize is turned off for
database-managed space (DMS) table spaces and on for automatic storage
table spaces. Use this value for system-managed space (SMS) table spaces
since auto-resize is not applicable for that type of table space.

Valid values for SQLINITSIZEUNIT, SQLINCREASESIZEUNIT and
SQLMAXIMUMSIZEUNIT (defined in sqlenv) are:

SQL_TBS_STORAGE_UNIT_BYTES
The value specified in the corresponding size field is in bytes.

SQL_TBS_STORAGE_UNIT_KILOBYTES
The value specified in the corresponding size field is in kilobytes (1
kilobyte = 1 024 bytes).

SQL_TBS_STORAGE_UNIT_MEGABYTES
The value specified in the corresponding size field is in megabytes (1
megabyte = 1 048 576 bytes)

SQL_TBS_STORAGE_UNIT_GIGABYTES
The value specified in the corresponding size field is in gigabytes (1
gigabyte = 1 073 741 824 bytes)

SQL_TBS_STORAGE_UNIT_PERCENT
The value specified in the corresponding size field is a percentage (valid
range is 1 to 100). This value is only valid for SQLINCREASESIZEUNIT.

sqledboptions data structure parameters

piAutoConfigInterface
Input. A pointer to db2AutoConfigInterface structure which contains
information that serves as input for the Configuration Advisor

sqledbdescext

Chapter 10. Data structures used by APIs 639

restrictive
The setting of the restrictive field is stored in the RESTRICT_ACCESS
database configuration parameter and will affect all future upgrades of this
database. That is, when a database is upgraded to a subsequent DB2
release, the UPGRADE DATABASE checks the RESTRICT_ACCESS
database configuration parameter setting to determine whether the
restrictive set of default actions needs to be applied to any new objects (for
example, new system catalog tables) introduced in the new DB2 release.

The valid values (defined in the sqlenv header file, which is located in the
include directory) for this parameter are:

SQL_DB_RESTRICT_ACCESS_NO or
SQL_DB_RESTRICT_ACCESS_DFT

Indicates that the database is to be created not using the restrictive
set of default actions. This setting will result in the following
privileges granted to PUBLIC:
v CREATETAB privilege
v BINDADD privilege
v CONNECT privilege
v IMPLICIT_SCHEMA privilege
v EXECUTE with GRANT privilege on all procedures in schema

SQLJ
v EXECUTE with GRANT privilege on all functions and

procedures in schema SYSPROC
v BIND privilege on all packages created in the NULLID schema
v EXECUTE privilege on all packages created in the NULLID

schema
v CREATEIN privilege on schema SQLJ
v CREATEIN privilege on schema NULLID
v USE privilege on table space USERSPACE1
v SELECT privilege on the SYSIBM catalog tables
v SELECT privilege on the SYSCAT catalog views
v SELECT privilege on the SYSSTAT catalog views
v UPDATE privilege on the SYSSTAT catalog views

SQL_DB_RESTRICT_ACCESS_YES
Indicates that the database is to be created using the restrictive set
of default actions. This means that the grant actions listed above
under SQL_DB_RESTRICT_ACCESS_NO do not occur.

reserved
Reserved for future use.

sqledbdescext

640 Administrative API Reference

sqledbterritoryinfo

This structure is used to provide code set and territory options to the sqlecrea API.

Table 56. Fields in the SQLEDBTERRITORYINFO Structure

Field Name Data Type Description

SQLDBCODESET CHAR(9) Database code set.

SQLDBLOCALE CHAR(5) Database territory.

API and data structure syntax
SQL_STRUCTURE sqledbcountryinfo
{

char sqldbcodeset[SQL_CODESET_LEN + 1];
char sqldblocale[SQL_LOCALE_LEN + 1];

};
typedef SQL_STRUCTURE sqledbcountryinfo SQLEDBTERRITORYINFO;

COBOL Structure
* File: sqlenv.cbl
01 SQLEDBTERRITORYINFO.

05 SQLDBCODESET PIC X(9).
05 FILLER PIC X.
05 SQLDBLOCALE PIC X(5).
05 FILLER PIC X.

*

sqledbterritoryinfo

Chapter 10. Data structures used by APIs 641

sqleninfo

This structure returns information after a call to the sqlengne API.

Note: NetBIOS is no longer supported. SNA, including its APIs APPC, APPN, and
CPI-C, is also no longer supported. If you use these protocols, you must re-catalog
your nodes and databases using a supported protocol such as TCP/IP. References
to these protocols should be ignored.

Table 57. Fields in the SQLENINFO Structure

Field Name Data Type Description

NODENAME CHAR(8) Used for the NetBIOS
protocol; the nname of the
node where the database is
located (valid in system
directory only)

LOCAL_LU CHAR(8) Used for the APPN protocol;
local logical unit.

PARTNER_LU CHAR(8) Used for the APPN protocol;
partner logical unit.

MODE CHAR(8) Used for the APPN protocol;
transmission service mode.

COMMENT CHAR(30) The comment associated
with the node.

COM_CODEPAGE SMALLINT The code page of the
comment. This field is no
longer used by the database
manager.

ADAPTER SMALLINT Used for the NetBIOS
protocol; the local network
adapter.

NETWORKID CHAR(8) Used for the APPN protocol;
network ID.

PROTOCOL CHAR(1) Communications protocol.

SYM_DEST_NAME CHAR(8) Used for the APPC protocol;
the symbolic destination
name.

SECURITY_TYPE SMALLINT Used for the APPC protocol;
the security type. See below
for values.

HOSTNAME CHAR(255) Used for the TCP/IP
protocol; the name of the
TCP/IP host or IPv4 or IPv6
address on which the DB2
server instance resides.

SERVICE_NAME CHAR(14) Used for the TCP/IP
protocol; the TCP/IP service
name or associated port
number of the DB2 server
instance.

sqleninfo

642 Administrative API Reference

Table 57. Fields in the SQLENINFO Structure (continued)

Field Name Data Type Description

FILESERVER CHAR(48) Used for the IPX/SPX
protocol; the name of the
NetWare file server where
the DB2 server instance is
registered.

OBJECTNAME CHAR(48) The database manager server
instance is represented as the
object, objectname, on the
NetWare file server. The
server's IPX/SPX
internetwork address is
stored and retrieved from
this object.

INSTANCE_NAME CHAR(8) Used for the local and NPIPE
protocols; the name of the
server instance.

COMPUTERNAME CHAR(15) Used by the NPIPE protocol;
the server node's computer
name.

SYSTEM_NAME CHAR(21) The DB2 system name of the
remote server.

REMOTE_INSTNAME CHAR(8) The name of the DB2 server
instance.

CATALOG_NODE_TYPE CHAR Catalog node type.

OS_TYPE UNSIGNED SHORT Identifies the operating
system of the server.

Note: Each character field returned is blank filled up to the length of the field.

Valid values for SECURITY_TYPE (defined in sqlenv) are:
v SQL_CPIC_SECURITY_NONE
v SQL_CPIC_SECURITY_SAME
v SQL_CPIC_SECURITY_PROGRAM

API and data structure syntax
SQL_STRUCTURE sqleninfo
{

_SQLOLDCHAR nodename[SQL_NNAME_SZ];
_SQLOLDCHAR local_lu[SQL_LOCLU_SZ];
_SQLOLDCHAR partner_lu[SQL_RMTLU_SZ];
_SQLOLDCHAR mode[SQL_MODE_SZ];
_SQLOLDCHAR comment[SQL_CMT_SZ];
unsigned short com_codepage;
unsigned short adapter;
_SQLOLDCHAR networkid[SQL_NETID_SZ];
_SQLOLDCHAR protocol;
_SQLOLDCHAR sym_dest_name[SQL_SYM_DEST_NAME_SZ];
unsigned short security_type;
_SQLOLDCHAR hostname[SQL_HOSTNAME_SZ];
_SQLOLDCHAR service_name[SQL_SERVICE_NAME_SZ];
char fileserver[SQL_FILESERVER_SZ];
char objectname[SQL_OBJECTNAME_SZ];
char instance_name[SQL_INSTNAME_SZ];
char computername[SQL_COMPUTERNAME_SZ];

sqleninfo

Chapter 10. Data structures used by APIs 643

char system_name[SQL_SYSTEM_NAME_SZ];
char remote_instname[SQL_REMOTE_INSTNAME_SZ];
_SQLOLDCHAR catalog_node_type;
unsigned short os_type;
_SQLOLDCHAR chgpwd_lu[SQL_RMTLU_SZ];
_SQLOLDCHAR transpn[SQL_TPNAME_SZ];
_SQLOLDCHAR lanaddr[SQL_LANADDRESS_SZ];

};

COBOL Structure
* File: sqlenv.cbl
01 SQLENINFO.

05 SQL-NODE-NAME PIC X(8).
05 SQL-LOCAL-LU PIC X(8).
05 SQL-PARTNER-LU PIC X(8).
05 SQL-MODE PIC X(8).
05 SQL-COMMENT PIC X(30).
05 SQL-COM-CODEPAGE PIC 9(4) COMP-5.
05 SQL-ADAPTER PIC 9(4) COMP-5.
05 SQL-NETWORKID PIC X(8).
05 SQL-PROTOCOL PIC X.
05 SQL-SYM-DEST-NAME PIC X(8).
05 FILLER PIC X(1).
05 SQL-SECURITY-TYPE PIC 9(4) COMP-5.
05 SQL-HOSTNAME PIC X(255).
05 SQL-SERVICE-NAME PIC X(14).
05 SQL-FILESERVER PIC X(48).
05 SQL-OBJECTNAME PIC X(48).
05 SQL-INSTANCE-NAME PIC X(8).
05 SQL-COMPUTERNAME PIC X(15).
05 SQL-SYSTEM-NAME PIC X(21).
05 SQL-REMOTE-INSTNAME PIC X(8).
05 SQL-CATALOG-NODE-TYPE PIC X.
05 SQL-OS-TYPE PIC 9(4) COMP-5.

*

sqleninfo

644 Administrative API Reference

sqlfupd

This structure passes information about database configuration files and the
database manager configuration file.

Table 58. Fields in the SQLFUPD Structure

Field Name Data Type Description

TOKEN UINT16 Specifies the configuration
value to return or update.

PTRVALUE Pointer A pointer to an application
allocated buffer that holds
the data specified by
TOKEN.

Valid data types for the token element are:

Uint16
Unsigned 2-byte integer

Sint16
Signed 2-byte integer

Uint32
Unsigned 4-byte integer

Sint32
Signed 4-byte integer

Uint64
Unsigned 8-byte integer

float 4-byte floating-point decimal

char(n)
String of length n (not including null termination).

Valid entries for the SQLFUPD token element are listed below:

Table 59. Updatable Database Configuration Parameters

Parameter Name Token Token
Value

Data Type

alt_collate SQLF_DBTN_ALT_COLLATE 809 Uint32

app_ctl_heap_sz SQLF_DBTN_APP_CTL_HEAP_SZ 500 Uint16

appgroup_mem_sz SQLF_DBTN_APPGROUP_MEM_SZ 800 Uint32

applheapsz SQLF_DBTN_APPLHEAPSZ 51 Uint16

archretrydelay SQLF_DBTN_ARCHRETRYDELAY 828 Uint16

v auto_maint

v auto_db_backup

v auto_tbl_maint

v auto_runstats

v auto_stats_prof

v auto_prof_upd

v auto_reorg

v SQLF_DBTN_AUTO_MAINT

v SQLF_DBTN_AUTO_DB_BACKUP

v SQLF_DBTN_AUTO_TBL_MAINT

v SQLF_DBTN_AUTO_RUNSTATS

v SQLF_DBTN_AUTO_STATS_PROF

v SQLF_DBTN_AUTO_PROF_UPD

v SQLF_DBTN_AUTO_REORG

v 831

v 833

v 835

v 837

v 839

v 844

v 841

Uint16

autorestart SQLF_DBTN_AUTO_RESTART 25 Uint16

sqlfupd

Chapter 10. Data structures used by APIs 645

Table 59. Updatable Database Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

avg_appls SQLF_DBTN_AVG_APPLS 47 Uint16

blk_log_dsk_ful SQLF_DBTN_BLK_LOG_DSK_FUL 804 Uint16

catalogcache_sz SQLF_DBTN_CATALOGCACHE_SZ 56 Sint32

chngpgs_thresh SQLF_DBTN_CHNGPGS_THRESH 38 Uint16

database_memory SQLF_DBTN_DATABASE_MEMORY 803 Uint64

dbheap SQLF_DBTN_DB_HEAP 58 Uint64

db_mem_thresh SQLF_DBTN_DB_MEM_THRESH 849 Uint16

dft_degree SQLF_DBTN_DFT_DEGREE 301 Sint32

dft_extent_sz SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32

dft_loadrec_ses SQLF_DBTN_DFT_LOADREC_SES 42 Sint16

dft_mttb_types SQLF_DBTN_DFT_MTTB_TYPES 843 Uint32

dft_prefetch_sz SQLF_DBTN_DFT_PREFETCH_SZ 40 Sint16

dft_queryopt SQLF_DBTN_DFT_QUERYOPT 57 Sint32

dft_refresh_age SQLF_DBTN_DFT_REFRESH_AGE 702 char(22)

dft_sqlmathwarn SQLF_DBTN_DFT_SQLMATHWARN 309 Sint16

discover SQLF_DBTN_DISCOVER 308 Uint16

dlchktime SQLF_DBTN_DLCHKTIME 9 Uint32

dyn_query_mgmt SQLF_DBTN_DYN_QUERY_MGMT 604 Uint16

failarchpath SQLF_DBTN_FAILARCHPATH 826 char(243)

groupheap_ratio SQLF_DBTN_GROUPHEAP_RATIO 801 Uint16

hadr_local_host SQLF_DBTN_HADR_LOCAL_HOST 811 char(256)

hadr_local_svc SQLF_DBTN_HADR_LOCAL_SVC 812 char(41)

hadr_remote_host SQLF_DBTN_HADR_REMOTE_HOST 813 char(256)

hadr_remote_inst SQLF_DBTN_HADR_REMOTE_INST 815 char(9)

hadr_remote_svc SQLF_DBTN_HADR_REMOTE_SVC 814 char(41)

hadr_syncmode SQLF_DBTN_HADR_SYNCMODE 817 Uint32

hadr_timeout SQLF_DBTN_HADR_TIMEOUT 816 Sint32

indexrec SQLF_DBTN_INDEXREC 30 Uint16

locklist SQLF_DBTN_LOCK_LIST 704 Uint64

locktimeout SQLF_DBTN_LOCKTIMEOUT 34 Sint16

logarchmeth1 SQLF_DBTN_LOGARCHMETH1 822 Uint16

logarchmeth2 SQLF_DBTN_LOGARCHMETH2 823 Uint16

logarchopt1 SQLF_DBTN_LOGARCHOPT1 824 char(243)

logarchopt2 SQLF_DBTN_LOGARCHOPT2 825 char(243)

logbufsz SQLF_DBTN_LOGBUFSZ 33 Uint16

logfilsiz SQLF_DBTN_LOGFIL_SIZ 92 Uint32

logindexbuild SQLF_DBTN_LOGINDEXBUILD 818 Uint32

logprimary SQLF_DBTN_LOGPRIMARY 16 Uint16

logretain SQLF_DBTN_LOG_RETAIN 23 Uint16

sqlfupd

646 Administrative API Reference

Table 59. Updatable Database Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

logsecond SQLF_DBTN_LOGSECOND 17 Uint16

max_log SQLF_DBTN_MAX_LOG 807 Uint16

maxappls SQLF_DBTN_MAXAPPLS 6 Uint16

maxfilop SQLF_DBTN_MAXFILOP 3 Uint16

maxlocks SQLF_DBTN_MAXLOCKS 15 Uint16

max_log SQLF_DBTN_MAX_LOG 807 Uint16

mincommit SQLF_DBTN_MINCOMMIT 32 Uint16

mirrorlogpath SQLF_DBTN_MIRRORLOGPATH 806 char(242)

newlogpath SQLF_DBTN_NEWLOGPATH 20 char(242)

num_db_backups SQLF_DBTN_NUM_DB_BACKUPS 601 Uint16

num_freqvalues SQLF_DBTN_NUM_FREQVALUES 36 Uint16

num_iocleaners SQLF_DBTN_NUM_IOCLEANERS 37 Uint16

num_ioservers SQLF_DBTN_NUM_IOSERVERS 39 Uint16

num_log_span SQLF_DBTN_NUM_LOG_SPAN 808 Uint16

num_quantiles SQLF_DBTN_NUM_QUANTILES 48 Uint16

numarchretry SQLF_DBTN_NUMARCHRETRY 827 Uint16

overflowlogpath SQLF_DBTN_OVERFLOWLOGPATH 805 char(242)

pckcachesz SQLF_DBTN_PCKCACHE_SZ 505 Sint32

rec_his_retentn SQLF_DBTN_REC_HIS_RETENTN 43 Sint16

self_tuning_mem SQLF_DBTN_SELF_TUNING_MEM 848 Uint16

seqdetect SQLF_DBTN_SEQDETECT 41 Uint16

sheapthres_shr SQLF_DBTN_SHEAPTHRES_SHR 802 Uint32

softmax SQLF_DBTN_SOFTMAX 5 Uint16

sortheap SQLF_DBTN_SORT_HEAP 52 Uint32

stat_heap_sz SQLF_DBTN_STAT_HEAP_SZ 45 Uint32

stmtheap SQLF_DBTN_STMTHEAP 53 Uint16

trackmod SQLF_DBTN_TRACKMOD 703 Uint16

tsm_mgmtclass SQLF_DBTN_TSM_MGMTCLASS 307 char(30)

tsm_nodename SQLF_DBTN_TSM_NODENAME 306 char(64)

tsm_owner SQLF_DBTN_TSM_OWNER 305 char(64)

tsm_password SQLF_DBTN_TSM_PASSWORD 501 char(64)

userexit SQLF_DBTN_USER_EXIT 24 Uint16

util_heap_sz SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32

vendoropt SQLF_DBTN_VENDOROPT 829 char(242)

The bits of SQLF_DBTN_AUTONOMIC_SWITCHES indicate the default settings
for a number of auto-maintenance configuration parameters. The individual bits
making up this composite parameter are:
Default => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint

Bit 2 off (xxxx xxxx xxxx xx0x): auto_db_backup
Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint

sqlfupd

Chapter 10. Data structures used by APIs 647

Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats
Bit 5 off (xxxx xxxx xxx0 xxxx): auto_stats_prof
Bit 6 off (xxxx xxxx xx0x xxxx): auto_prof_upd
Bit 7 off (xxxx xxxx x0xx xxxx): auto_reorg
Bit 8 off (xxxx xxxx 0xxx xxxx): auto_storage
Bit 9 off (xxxx xxx0 xxxx xxxx): auto_stmt_stats

0 0 0 D

Maximum => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint
Bit 2 off (xxxx xxxx xxxx xx1x): auto_db_backup
Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint
Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats
Bit 5 off (xxxx xxxx xxx1 xxxx): auto_stats_prof
Bit 6 off (xxxx xxxx xx1x xxxx): auto_prof_upd
Bit 7 off (xxxx xxxx x1xx xxxx): auto_reorg
Bit 8 off (xxxx xxxx 1xxx xxxx): auto_storage
Bit 9 off (xxxx xxx1 xxxx xxxx): auto_stmt_stats

0 1 F F

Valid values for indexrec (defined in sqlutil.h):
v SQLF_INX_REC_SYSTEM (0)
v SQLF_INX_REC_REFERENCE (1)
v SQLF_INX_REC_RESTART (2)

Valid values for logretain (defined in sqlutil.h):
v SQLF_LOGRETAIN_NO (0)
v SQLF_LOGRETAIN_RECOVERY (1)
v SQLF_LOGRETAIN_CAPTURE (2)

Table 60. Non-updatable Database Configuration Parameters

Parameter Name Token Token
Value

Data Type

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16

codepage SQLF_DBTN_CODEPAGE 101 Uint16

codeset SQLF_DBTN_CODESET 120 char(9)
(see note 1

below)

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260)

country/region SQLF_DBTN_COUNTRY 100 Uint16

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16

loghead SQLF_DBTN_LOGHEAD 105 char(12)

logpath SQLF_DBTN_LOGPATH 103 char(242)

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16

numsegs SQLF_DBTN_NUMSEGS 122 Uint16

release SQLF_DBTN_RELEASE 102 Uint16

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16

territory SQLF_DBTN_TERRITORY 121 char(5)
(see note 2

below)

sqlfupd

648 Administrative API Reference

Table 60. Non-updatable Database Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16

Note:

1. char(17) on HP-UX, Solaris and Linux operating systems.
2. char(33) on HP-UX, Solaris and Linux operating systems.

Valid entries for the SQLFUPD token element are listed below:

Table 61. Updatable Database Manager Configuration Parameters

Parameter Name Token Token
Value

Data Type

agent_stack_sz SQLF_KTN_AGENT_STACK_SZ 61 Uint16

agentpri SQLF_KTN_AGENTPRI 26 Sint16

alternate_auth_enc SQLF_KTN_ALTERNATE_AUTH_ENC 938 Uint16

aslheapsz SQLF_KTN_ASLHEAPSZ 15 Uint32

audit_buf_sz SQLF_KTN_AUDIT_BUF_SZ 312 Sint32

authentication SQLF_KTN_AUTHENTICATION 78 Uint16

catalog_noauth SQLF_KTN_CATALOG_NOAUTH 314 Uint16

clnt_krb_plugin SQLF_KTN_CLNT_KRB_PLUGIN 812 char(33)

clnt_pw_plugin SQLF_KTN_CLNT_PW_PLUGIN 811 char(33)

comm_bandwidth SQLF_KTN_COMM_BANDWIDTH 307 float

conn_elapse SQLF_KTN_CONN_ELAPSE 508 Uint16

cpuspeed SQLF_KTN_CPUSPEED 42 float

dft_account_str SQLF_KTN_DFT_ACCOUNT_STR 28 char(25)

dft_monswitches SQLF_KTN_DFT_MONSWITCHES 29 Uint16

dft_mon_bufpool SQLF_KTN_DFT_MON_BUFPOOL 33 Uint16

dft_mon_lock SQLF_KTN_DFT_MON_LOCK 34 Uint16

dft_mon_sort SQLF_KTN_DFT_MON_SORT 35 Uint16

dft_mon_stmt SQLF_KTN_DFT_MON_STMT 31 Uint16

dft_mon_table SQLF_KTN_DFT_MON_TABLE 32 Uint16

dft_mon_timestamp SQLF_KTN_DFT_MON_ TIMESTAMP 36 Uint16

dft_mon_uow SQLF_KTN_DFT_MON_UOW 30 Uint16

dftdbpath SQLF_KTN_DFTDBPATH 27 char(215)

diaglevel SQLF_KTN_DIAGLEVEL 64 Uint16

diagpath SQLF_KTN_DIAGPATH 65 char(215)

dir_cache SQLF_KTN_DIR_CACHE 40 Uint16

discover SQLF_KTN_DISCOVER 304 Uint16

discover_inst SQLF_KTN_DISCOVER_INST 308 Uint16

fcm_num_buffers SQLF_KTN_FCM_NUM_BUFFERS 503 Uint32

fcm_num_channels SQLF_KTN_FCM_NUM_CHANNELS 902 Uint32

fed_noauth SQLF_KTN_FED_NOAUTH 806 Uint16

sqlfupd

Chapter 10. Data structures used by APIs 649

Table 61. Updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

federated SQLF_KTN_FEDERATED 604 Sint16

federated_async SQLF_KTN_FEDERATED_ASYNC 849 Sint32

fenced_pool SQLF_KTN_FENCED_POOL 80 Sint32

group_plugin SQLF_KTN_GROUP_PLUGIN 810 char(33)

health_mon SQLF_KTN_HEALTH_MON 804 Uint16

indexrec SQLF_KTN_INDEXREC 20 Uint16

instance_memory SQLF_KTN_INSTANCE_MEMORY 803 Uint64

intra_parallel SQLF_KTN_INTRA_PARALLEL 306 Sint16

java_heap_sz SQLF_KTN_JAVA_HEAP_SZ 310 Sint32

jdk_path SQLF_KTN_JDK_PATH 311 char(255)

keepfenced SQLF_KTN_KEEPFENCED 81 Uint16

local_gssplugin SQLF_KTN_LOCAL_GSSPLUGIN 816 char(33)

max_connections SQLF_DBTN_MAX_CONNECTIONS 802 Sint32

max_connretries SQLF_KTN_MAX_CONNRETRIES 509 Uint16

max_coordagents SQLF_KTN_MAX_COORDAGENTS 501 Sint32

max_querydegree SQLF_KTN_MAX_QUERYDEGREE 303 Sint32

max_time_diff SQLF_KTN_MAX_TIME_DIFF 510 Uint16

mon_heap_sz SQLF_KTN_MON_HEAP_SZ 79 Uint16

notifylevel SQLF_KTN_NOTIFYLEVEL 605 Sint16

num_initagents SQLF_KTN_NUM_INITAGENTS 500 Uint32

num_initfenced SQLF_KTN_NUM_INITFENCED 601 Sint32

num_poolagents SQLF_KTN_NUM_POOLAGENTS 502 Sint32

numdb SQLF_KTN_NUMDB 6 Uint16

query_heap_sz SQLF_KTN_QUERY_HEAP_SZ 49 Sint32

resync_interval SQLF_KTN_RESYNC_INTERVAL 68 Uint16

rqrioblk SQLF_KTN_RQRIOBLK 1 Uint16

sheapthres SQLF_KTN_SHEAPTHRES 21 Uint32

spm_log_file_sz SQLF_KTN_SPM_LOG_FILE_SZ 90 Sint32

spm_log_path SQLF_KTN_SPM_LOG_PATH 313 char(226)

spm_max_resync SQLF_KTN_SPM_MAX_RESYNC 91 Sint32

spm_name SQLF_KTN_SPM_NAME 92 char(8)

srvcon_auth SQLF_KTN_SRVCON_AUTH 815 Uint16

srvcon_gssplugin_list SQLF_KTN_SRVCON_GSSPLUGIN_ LIST 814 char(256)

srv_plugin_mode SQLF_KTN_SRV_PLUGIN_MODE 809 Uint16

srvcon_pw_plugin SQLF_KTN_SRVCON_PW_PLUGIN 813 char(33)

ssl_cipherspecs SQLF_KTN_SSL_CIPHERSPECS 934 char(255)

ssl_clnt_keydb SQLF_KTN_SSL_CLNT_KEYDB 936 char(1023)

ssl_clnt_stash SQLF_KTN_SSL_CLNT_STASH 937 char(1023)

ssl_svcename SQLF_KTN_SSL_SVCENAME 933 char(14)

sqlfupd

650 Administrative API Reference

Table 61. Updatable Database Manager Configuration Parameters (continued)

Parameter Name Token Token
Value

Data Type

ssl_svr_keydb SQLF_KTN_SSL_SVR_KEYDB 930 char(1023)

ssl_svr_label SQLF_KTN_SSL_SVR_LABEL 932 char(1023)

ssl_svr_stash SQLF_KTN_SSL_SVR_STASH 931 char(1023)

ssl_versions SQLF_KTN_SSL_VERSIONS 935 char(255)

start_stop_time SQLF_KTN_START_STOP_TIME 511 Uint16

svcename SQLF_KTN_SVCENAME 24 char(14)

sysadm_group SQLF_KTN_SYSADM_GROUP 39 char(16)

sysctrl_group SQLF_KTN_SYSCTRL_GROUP 63 char(16)

sysmaint_group SQLF_KTN_SYSMAINT_GROUP 62 char(16)

sysmon_group SQLF_KTN_SYSMON_GROUP 808 char(30)

tm_database SQLF_KTN_TM_DATABASE 67 char(8)

tp_mon_name SQLF_KTN_TP_MON_NAME 66 char(19)

trust_allclnts SQLF_KTN_TRUST_ALLCLNTS 301 Uint16

trust_clntauth SQLF_KTN_TRUST_CLNTAUTH 302 Uint16

util_impact_lim SQLF_KTN_UTIL_IMPACT_LIM 807 Uint32

Note: The configuration parameters maxagents and maxcagents are deprecated. In a
future release, these configuration parameters may be removed completely.

Valid values for alternate_auth_enc (defined in sqlenv.h):
v SQL_ALTERNATE_AUTH_ENC_AES (0)
v SQL_ALTERNATE_AUTH_ENC_AES_CMP (1)
v SQL_ALTERNATE_AUTH_ENC_NOTSPEC (255)

Valid values for authentication (defined in sqlenv.h):
v SQL_AUTHENTICATION_SERVER (0)
v SQL_AUTHENTICATION_CLIENT (1)
v SQL_AUTHENTICATION_DCS (2)
v SQL_AUTHENTICATION_DCE (3)
v SQL_AUTHENTICATION_SVR_ENCRYPT (4)
v SQL_AUTHENTICATION_DCS_ENCRYPT (5)
v SQL_AUTHENTICATION_DCE_SVR_ENC (6)
v SQL_AUTHENTICATION_KERBEROS (7)
v SQL_AUTHENTICATION_KRB_SVR_ENC (8)
v SQL_AUTHENTICATION_GSSPLUGIN (9)
v SQL_AUTHENTICATION_GSS_SVR_ENC (10)
v SQL_AUTHENTICATION_DATAENC (11)
v SQL_AUTHENTICATION_DATAENC_CMP (12)
v SQL_AUTHENTICATION_NOT_SPEC (255)

sqlfupd

Chapter 10. Data structures used by APIs 651

SQLF_KTN_DFT_MONSWITCHES is a Uint16 parameter, the bits of which
indicate the default monitor switch settings. This allows for the specification of a
number of parameters at once. The individual bits making up this composite
parameter are:
v Bit 1 (xxxx xxx1): dft_mon_uow
v Bit 2 (xxxx xx1x): dft_mon_stmt
v Bit 3 (xxxx x1xx): dft_mon_table
v Bit 4 (xxxx 1xxx): dft_mon_buffpool
v Bit 5 (xxx1 xxxx): dft_mon_lock
v Bit 6 (xx1x xxxx): dft_mon_sort
v Bit 7 (x1xx xxxx): dft_mon_timestamp

Valid values for discover (defined in sqlutil.h):
v SQLF_DSCVR_KNOWN (1)
v SQLF_DSCVR_SEARCH (2)

Valid values for indexrec (defined in sqlutil.h):
v SQLF_INX_REC_SYSTEM (0)
v SQLF_INX_REC_REFERENCE (1)
v SQLF_INX_REC_RESTART (2)

Valid values for trust_allclnts (defined in sqlutil.h):
v SQLF_TRUST_ALLCLNTS_NO (0)
v SQLF_TRUST_ALLCLNTS_YES (1)
v SQLF_TRUST_ALLCLNTS_DRDAONLY (2)

Table 62. Non-updatable Database Manager Configuration Parameters

Parameter Name Token Token
Value

Data Type

nodetype SQLF_KTN_NODETYPE 100 Uint16

release SQLF_KTN_RELEASE 101 Uint16

Valid values for nodetype (defined in sqlutil.h):
v SQLF_NT_STANDALONE (0)
v SQLF_NT_SERVER (1)
v SQLF_NT_REQUESTOR (2)
v SQLF_NT_STAND_REQ (3)
v SQLF_NT_MPP (4)
v SQLF_NT_SATELLITE (5)

API and data structure syntax
SQL_STRUCTURE sqlfupd
{

unsigned short token;
char *ptrvalue;

};

sqlfupd

652 Administrative API Reference

COBOL Structure
* File: sqlutil.cbl
01 SQL-FUPD.

05 SQL-TOKEN PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-VALUE-PTR USAGE IS POINTER.

*

sqlfupd

Chapter 10. Data structures used by APIs 653

sqllob

This structure is used to represent a LOB data type in a host programming
language.

Table 63. Fields in the sqllob structure

Field name Data type Description

length sqluint32 Length in bytes of the data
parameter.

data char(1) Data being passed in.

API and data structure syntax
SQL_STRUCTURE sqllob
{

sqluint32 length;
char data[1];

};

sqllob

654 Administrative API Reference

sqlma

The SQL monitor area (SQLMA) structure is used to send database monitor
snapshot requests to the database manager. It is also used to estimate the size (in
bytes) of the snapshot output.

Table 64. Fields in the SQLMA Structure

Field Name Data Type Description

OBJ_NUM INTEGER Number of objects to be monitored.

OBJ_VAR Array An array of sqlm_obj_struct structures containing
descriptions of objects to be monitored. The length
of the array is determined by OBJ_NUM.

Table 65. Fields in the SQLM-OBJ-STRUCT Structure

Field Name Data Type Description

AGENT_ID INTEGER The application handle of the application to be
monitored. Specified only if OBJ_TYPE requires an
agent_id (application handle). To retrieve a health
snapshot with full collection information, specify
SQLM_HMON_OPT_COLL_FULL in this field.
Note: The SQLM_HMON_OPT_COLL_FULL value
is deprecated and might be removed in a future
release because the health monitor has been
deprecated in Version 9.7.

OBJ_TYPE INTEGER The type of object to be monitored.

OBJECT CHAR(128) The name of the object to be monitored. Specified
only if OBJ_TYPE requires a name, such as appl_id,
or a database alias.

Valid values for OBJ_TYPE (defined in the sqlmon header file, found in the include
directory) are:

SQLMA_DB2
Instance related information.

SQLMA_DBASE
Database related information for a particular database. If you use the
SQLMA_DBASE value, you must provide the database name in the object
parameter of sqlm_obj_struct structure.

SQLMA_APPL
Application information for an application that matches the provided
application ID. If you use the SQLMA_APPL value, you must provide an
application ID in the object parameter of sqlm_obj_struct structure.

SQLMA_AGENT_ID
Application information for an application that matches the provided agent
ID. If you use the SQLMA_AGENT_ID value, you must provide an agent
ID in the agent_id parameter of sqlm_obj_struct structure.

SQLMA_DBASE_TABLES
Table information for a particular database. If you use the
SQLMA_DBASE_TABLES value, you must provide the database name in
the object parameter of sqlm_obj_struct structure.

sqlma

Chapter 10. Data structures used by APIs 655

SQLMA_DBASE_APPLS
Application information for all applications connected to a particular
database. If you use the SQLMA_DBASE_APPLS value, you must provide
the database name in the object parameter of sqlm_obj_struct structure.

SQLMA_DBASE_APPLINFO
Summary application information for connections to a particular database.
If you use the SQLMA_DBASE_APPLINFO value, you must provide the
database name in the object parameter of sqlm_obj_struct structure.

SQLMA_DBASE_LOCKS
List of locks held on a particular database. If you use the
SQLMA_DBASE_LOCKS value, you must provide the database name in
the object parameter of sqlm_obj_struct structure.

SQLMA_APPL_LOCKS
List of locks held by an application with the matching application ID. If
you use the SQLMA_APPL_LOCKS value, you must provide an
application ID in the object parameter of sqlm_obj_struct structure.

SQLMA_APPL_LOCKS_AGENT_ID
List of locks held by an application with the matching agent ID. If you use
the SQLMA_APPL_LOCKS_AGENT_ID value, you must provide an agent
ID in the agent_id parameter of sqlm_obj_struct structure.

SQLMA_DBASE_ALL
Database information for all active databases in the instance.

SQLMA_APPL_ALL
Application information for all database connections in the instance.

SQLMA_APPLINFO_ALL
Summary application information for all connections to the instance.

SQLMA_DCS_APPLINFO_ALL
List of Database Connection Services (DCS) connections to the instance.

SQLMA_DYNAMIC_SQL
Dynamic SQL statement information for a particular database. If you use
the SQLMA_DYNAMIC_SQL value, you must provide the database name
in the object parameter of sqlm_obj_struct structure.

SQLMA_DCS_DBASE
Information for a particular Database Connection Services (DCS) database.
If you use the SQLMA_DCS_DBASE value, you must provide the database
name in the object parameter of sqlm_obj_struct structure.

SQLMA_DCS_DBASE_ALL
Information for all active Database Connection Services (DCS) databases.

SQLMA_DCS_APPL_ALL
Database Connection Services (DCS) application information for all
connections.

SQLMA_DCS_APPL
Database Connection Services (DCS) application information for an
application that matches the provided application ID. If you use the
SQLMA_DCS_APPL value, you must provide an application ID in the
object parameter of sqlm_obj_struct structure.

SQLMA_DCS_APPL_HANDLE
Database Connection Services (DCS) application information for an
application that matches the provided agent ID. If you use the

sqlma

656 Administrative API Reference

SQLMA_DCS_APPL_HANDLE value, you must provide an agent ID in the
agent_id parameter of sqlm_obj_struct structure.

SQLMA_DCS_DBASE_APPLS
Database Connection Services (DCS) application information for all active
connections to a particular database. If you use the
SQLMA_DCS_DBASE_APPLS value, you must provide the database name
in the object parameter of sqlm_obj_struct structure.

SQLMA_DBASE_TABLESPACES
Table space information for a particular database. If you use the
SQLMA_DBASE_TABLESPACES value, you must provide the database
name in the object parameter of sqlm_obj_struct structure.

SQLMA_DBASE_BUFFERPOOLS
Bufferpool information for a particular database. If you use the
SQLMA_DBASE_BUFFERPOOLS value, you must provide the database
name in the object parameter of sqlm_obj_struct structure.

SQLMA_BUFFERPOOLS_ALL
Information for all bufferpools.

SQLMA_DBASE_REMOTE
Remote access information for a particular federated database. If you use
the SQLMA_DBASE_REMOTE value, you must provide the database name
in the object parameter of sqlm_obj_struct structure.

SQLMA_DBASE_REMOTE_ALL
Remote access information for all federated databases.

SQLMA_DBASE_APPLS_REMOTE
Remote access information for an application connected to a particular
federated database. If you use the SQLMA_DBASE_APPLS_REMOTE
value, you must provide the database name in the object parameter of
sqlm_obj_struct structure.

SQLMA_APPL_REMOTE_ALL
Remote access information for all applications.

API and data structure syntax
typedef struct sqlma
{

sqluint32 obj_num;
sqlm_obj_struct obj_var[1];

}sqlma;

typedef struct sqlm_obj_struct
{

sqluint32 agent_id;
sqluint32 obj_type;
_SQLOLDCHAR object[SQLM_OBJECT_SZ];

}sqlm_obj_struct;

COBOL Structure
* File: sqlmonct.cbl
01 SQLMA.

05 OBJ-NUM PIC 9(9) COMP-5.
05 OBJ-VAR OCCURS 0 TO 100 TIMES DEPENDING ON OBJ-NUM.

10 AGENT-ID PIC 9(9) COMP-5.
10 OBJ-TYPE PIC 9(9) COMP-5.
10 OBJECT PIC X(128).

*

sqlma

Chapter 10. Data structures used by APIs 657

sqlopt

This structure is used to pass bind options to the sqlabndx API, precompile options
to the sqlaprep API, and rebind options to the sqlarbnd API.

Table 66. Fields in the SQLOPT Structure

Field Name Data Type Description

HEADER Structure An sqloptheader structure.

OPTION Array An array of sqloptions structures. The
number of elements in this array is
determined by the value of the
allocated field of the header.

Table 67. Fields in the SQLOPTHEADER Structure

Field Name Data Type Description

ALLOCATED INTEGER Number of elements in the option
array of the sqlopt structure.

USED INTEGER Number of elements in the option
array of the sqlopt structure actually
used. This is the number of option
pairs (TYPE and VAL) supplied.

Table 68. Fields in the SQLOPTIONS Structure

Field Name Data Type Description

TYPE VAL INTEGER

INTEGER

Bind/precompile/rebind option type.

Bind/precompile/rebind option
value.

Note: The TYPE and VAL fields are repeated for each bind, precompile, or rebind
option specified.

API and data structure syntax
SQL_STRUCTURE sqlopt
{

SQL_STRUCTURE sqloptheader header;
SQL_STRUCTURE sqloptions option[1];

};

SQL_STRUCTURE sqloptheader
{

sqluint32 allocated;
sqluint32 used;

};

SQL_STRUCTURE sqloptions
{

sqluint32 type;
sqluintptr val;

};

COBOL Structure
* File: sql.cbl
01 SQLOPT.

05 SQLOPTHEADER.

sqlopt

658 Administrative API Reference

10 ALLOCATED PIC 9(9) COMP-5.
10 USED PIC 9(9) COMP-5.

05 SQLOPTIONS OCCURS 1 TO 50 DEPENDING ON ALLOCATED.
10 SQLOPT-TYPE PIC 9(9) COMP-5.
10 SQLOPT-VAL PIC 9(9) COMP-5.
10 SQLOPT-VAL-PTR REDEFINES SQLOPT-VAL

*

sqlopt

Chapter 10. Data structures used by APIs 659

SQLU_LSN

This union contains the definition of the log sequence number. A log sequence
number (LSN) represents a relative byte address within the database log. All log
records are identified by this number. An LSN represents the byte offset of the log
record from the beginning of the database log.

Table 69. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED CHAR Specifies the 6-member
character array log sequence
number.

lsnWord Array of UNSIGNED SHORT Specifies the 3-member short
array log sequence number.

Note: The SQLU_LSN structure has been replaced by the db2LSN structure.

API and data structure syntax
typedef union SQLU_LSN
{

unsigned char lsnChar[6];
unsigned short lsnWord[3];

} SQLU_LSN;

SQLU_LSN

660 Administrative API Reference

sqlu_media_list

This structure is used to pass information to the db2Load API.

Table 70. Fields in the SQLU-MEDIA-LIST Structure

Field Name Data Type Description

MEDIA_TYPE CHAR(1) A character indicating media
type.

SESSIONS INTEGER Indicates the number of
elements in the array pointed
to by the target field of this
structure.

TARGET Union This field is a pointer to one
of four types of structures.
The type of structure pointed
to is determined by the value
of the media_type field. For
more information on what to
provide in this field, see the
appropriate API.

FILLER CHAR(3) Filler used for proper
alignment of data structure
in memory.

Table 71. Fields in the SQLU-MEDIA-LIST-TARGETS Structure

Field Name Data Type Description

MEDIA Pointer A pointer to an
sqlu_media_entry structure.

VENDOR Pointer A pointer to an sqlu_vendor
structure.

LOCATION Pointer A pointer to an
sqlu_location_entry structure.

PSTATEMENT Pointer A pointer to an
sqlu_statement_entry
structure.

PREMOTEFETCH Pointer A pointer to an
sqlu_remotefetch_entry
structure

Table 72. Fields in the SQLU-MEDIA-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN
MEDIA_ENTRY

INTEGER CHAR(215) Length of the media_entry
field. For languages other
than C. Path for a backup
image used by the backup
and restore utilities.

Table 73. Fields in the SQLU-VENDOR Structure

Field Name Data Type Description

RESERVE_LEN1 INTEGER Length of the shr_lib field.
For languages other than C.

sqlu_media_list

Chapter 10. Data structures used by APIs 661

Table 73. Fields in the SQLU-VENDOR Structure (continued)

Field Name Data Type Description

SHR_LIB CHAR(255) Name of a shared library
supplied by vendors for
storing or retrieving data.

RESERVE_LEN2 INTEGER Length of the filename field.
For languages other than C.

FILENAME CHAR(255) File name to identify the
load input source when
using a shared library.

Table 74. Fields in the SQLU-LOCATION-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the location_entry
field. For languages other
than C.

LOCATION_ENTRY CHAR(256) Name of input data files for
the load utility.

Table 75. Fields in the SQLU-STATEMENT-ENTRY Structure

Field Name Data Type Description

LENGTH INTEGER Length of the data field.

PDATA Pointer Pointer to the SQL query.

Table 76. Fields in the SQLU-REMOTEFETCH-ENTRY Structure

Field Name Data Type Description

pDatabaseName Pointer Source Database Name.

iDatabaseNameLen INTEGER Source Database Name
Length

pUserID Pointer Pointer to UserID.

iUserIDLen INTEGER UserID Length.

pPassword Pointer Pointer to Password.

iPasswordLen INTEGER Password Length.

pTableSchema Pointer Pointer to schema of source
table.

iTableSchemaLen INTEGER Schema Length.

pTableName Pointer Pointer to name of source
table.

iTableNameLen INTEGER Source table name Length.

pStatement Pointer Pointer to name of statement.

iStatementLen INTEGER Statement Length.

pIsolationLevel Pointer Pointer to isolation level
(default CS).

Valid values for MEDIA_TYPE (defined in sqlutil) are:

sqlu_media_list

662 Administrative API Reference

SQLU_LOCAL_MEDIA
Local devices (tapes, disks, or diskettes)

SQLU_SERVER_LOCATION
Server devices (tapes, disks, or diskettes; load only). Can be specified only
for the piSourceList parameter.

SQLU_CLIENT_LOCATION
Client devices (files or named pipes). Can be specified only for the
piSourceList parameter or the piLobFileList parameter.

SQLU_SQL_STMT
SQL query (load only). Can be specified only for the piSourceList
parameter.

SQLU_TSM_MEDIA
TSM

SQLU_XBSA_MEDIA
XBSA

SQLU_OTHER_MEDIA
Vendor library

SQLU_REMOTEFETCH
Remote Fetch media (load only). Can be specified only for the piSourceList
parameter.

SQLU_DISK_MEDIA
Disk (for vendor APIs only)

SQLU_DISKETTE_MEDIA
Diskette (for vendor APIs only)

SQLU_NULL_MEDIA
Null (generated internally by the DB2 database)

SQLU_TAPE_MEDIA
Tape (for vendor APIs only).

SQLU_PIPE_MEDIA
Named pipe (for vendor APIs only)

API and data structure syntax
typedef SQL_STRUCTURE sqlu_media_list
{

char media_type;
char filler[3];
sqlint32 sessions;
union sqlu_media_list_targets target;

} sqlu_media_list;

union sqlu_media_list_targets
{

struct sqlu_media_entry *media;
struct sqlu_vendor *vendor;
struct sqlu_location_entry *location;
struct sqlu_statement_entry *pStatement;
struct sqlu_remotefetch_entry *pRemoteFetch;

};

typedef SQL_STRUCTURE sqlu_media_entry
{

sqluint32 reserve_len;
char media_entry[SQLU_DB_DIR_LEN+1];

sqlu_media_list

Chapter 10. Data structures used by APIs 663

} sqlu_media_entry;

typedef SQL_STRUCTURE sqlu_vendor
{

sqluint32 reserve_len1;
char shr_lib[SQLU_SHR_LIB_LEN+1];
sqluint32 reserve_len2;
char filename[SQLU_SHR_LIB_LEN+1];

} sqlu_vendor;

typedef SQL_STRUCTURE sqlu_location_entry
{

sqluint32 reserve_len;
char location_entry[SQLU_MEDIA_LOCATION_LEN+1];

} sqlu_location_entry;

typedef SQL_STRUCTURE sqlu_statement_entry
{

sqluint32 length;
char *pEntry;

} sqlu_statement_entry;

typedef SQL_STRUCTURE sqlu_remotefetch_entry
{

char *pDatabaseName;
sqluint32 iDatabaseNameLen;
char *pUserID;
sqluint32 iUserIDLen;
char *pPassword;
sqluint32 iPasswordLen;
char *pTableSchema;
sqluint32 iTableSchemaLen;
char *pTableName;
sqluint32 iTableNameLen;
char *pStatement;
sqluint32 iStatementLen;
sqlint32 *pIsolationLevel;
sqluint32 *piEnableParallelism;

} sqlu_remotefetch_entry;

COBOL Structure
* File: sqlutil.cbl
01 SQLU-MEDIA-LIST.

05 SQL-MEDIA-TYPE PIC X.
05 SQL-FILLER PIC X(3).
05 SQL-SESSIONS PIC S9(9) COMP-5.
05 SQL-TARGET.

10 SQL-MEDIA USAGE IS POINTER.
10 SQL-VENDOR REDEFINES SQL-MEDIA
10 SQL-LOCATION REDEFINES SQL-MEDIA
10 SQL-STATEMENT REDEFINES SQL-MEDIA
10 FILLER REDEFINES SQL-MEDIA

*

* File: sqlutil.cbl
01 SQLU-MEDIA-ENTRY.

05 SQL-MEDENT-LEN PIC 9(9) COMP-5.
05 SQL-MEDIA-ENTRY PIC X(215).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-VENDOR.

05 SQL-SHRLIB-LEN PIC 9(9) COMP-5.

sqlu_media_list

664 Administrative API Reference

05 SQL-SHR-LIB PIC X(255).
05 FILLER PIC X.
05 SQL-FILENAME-LEN PIC 9(9) COMP-5.
05 SQL-FILENAME PIC X(255).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-LOCATION-ENTRY.

05 SQL-LOCATION-LEN PIC 9(9) COMP-5.
05 SQL-LOCATION-ENTRY PIC X(255).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-STATEMENT-ENTRY.

05 SQL-STATEMENT-LEN PIC 9(9) COMP-5.
05 SQL-STATEMENT-ENTRY USAGE IS POINTER.

*

sqlu_media_list

Chapter 10. Data structures used by APIs 665

SQLU_RLOG_INFO

This structure contains information about the status of calls to the db2ReadLog
API; and to the database log.

Table 77. Fields in the SQLU-RLOG-INFO Structure

Field Name Data Type Description

initialLSN SQLU_LSN Specifies the LSN value of
the first log record that is
written after the first
database CONNECT
statement is issued. For more
information, see SQLU-LSN.

firstReadLSN SQLU_LSN Specifies the LSN value of
the first log record read.

lastReadLSN SQLU_LSN Specifies the LSN value of
the last log record read.

curActiveLSN SQLU_LSN Specifies the LSN value of
the current (active) log.

logRecsWritten sqluint32 Specifies the number of log
records written to the buffer.

logBytesWritten sqluint32 Specifies the number of bytes
written to the buffer.

API and data structure syntax
typedef SQL_STRUCTURE SQLU_RLOG_INFO
{

SQLU_LSN initialLSN;
SQLU_LSN firstReadLSN;
SQLU_LSN lastReadLSN;
SQLU_LSN curActiveLSN;
sqluint32 logRecsWritten;
sqluint32 logBytesWritten;

} SQLU_RLOG_INFO;

SQLU_RLOG_INFO

666 Administrative API Reference

sqlupi

This structure is used to store partitioning information, such as the distribution
map and the distribution key of a table.

Table 78. Fields in the SQLUPI Structure

Field Name Data Type Description

PMAPLEN INTEGER The length of the distribution
map in bytes. For a single-node
table, the value is
sizeof(SQL_PDB_NODE_TYPE).
For a multi-node table, the value
is SQL_PDB_MAP_SIZE *
sizeof(SQL_PDB_NODE_TYPE).

PMAP SQL_PDB_NODE_TYPE The distribution map.

SQLD INTEGER The number of used
SQLPARTKEY elements; that is,
the number of key parts in a
distribution key.

SQLPARTKEY Structure The description of a distribution
column in a distribution key. The
maximum number of distribution
columns is
SQL_MAX_NUM_PART_KEYS.

The following table shows the SQL data types and lengths for the SQLUPI data
structure. The SQLTYPE column specifies the numeric value that represents the
data type of an item.

Table 79. SQL Data Types and Lengths for the SQLUPI Structure

Data type SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed)

SQLLEN AIX

Date 384 385 Ignored Yes

Time 388 389 Ignored Yes

Timestamp 392 393 Ignored Yes

Variable-length
character string

448 449 Length of the
string

Yes

Fixed-length
character string

452 453 Length of the
string

Yes

Long character
string

456 457 Ignored No

Null-terminated
character string

460 461 Length of the
string

Yes

Floating point 480 481 Ignored Yes

Decimal 484 485 Byte 1 =
precision Byte 2
= scale

Yes

Large integer 496 497 Ignored Yes

Small integer 500 501 Ignored Yes

sqlupi

Chapter 10. Data structures used by APIs 667

Table 79. SQL Data Types and Lengths for the SQLUPI Structure (continued)

Data type SQLTYPE (Nulls
Not Allowed)

SQLTYPE (Nulls
Allowed)

SQLLEN AIX

Variable-length
graphic string

464 465 Length in
double- byte
characters

Yes

Fixed-length
graphic string

468 469 Length in
double- byte
characters

Yes

Long graphic
string

472 473 Ignored No

sqlpartkey data structure parameter descriptions

sqltype
Input. Data type of the distribution key.

sqllen Input. Data length of the distribution key.

API and data structure syntax
SQL_STRUCTURE sqlupi
{

unsigned short pmaplen;
SQL_PDB_NODE_TYPE pmap[SQL_PDB_MAP_SIZE];
unsigned short sqld;
struct sqlpartkey sqlpartkey[SQL_MAX_NUM_PART_KEYS];

};

SQL_STRUCTURE sqlpartkey
{

unsigned short sqltype;
unsigned short sqllen;

};

sqlupi

668 Administrative API Reference

SQLXA_XID

This structure is used by the transaction APIs to identify XA transactions. sqlxhfrg,
sqlxphcm, sqlxphrl, sqlcspqy and db2XaListIndTrans APIs constitute the
transaction APIs group. These APIs are used for the management of indoubt
transactions.

Table 80. Fields in the SQLXA-XID Structure

Field Name Data Type Description

FORMATID INTEGER XA format ID.

GTRID_LENGTH INTEGER Length of the global
transaction ID.

BQUAL_LENGTH INTEGER Length of the branch
identifier.

DATA CHAR[128] GTRID, followed by BQUAL
and trailing blanks, for a
total of 128 bytes.

Note: The maximum size for GTRID and BQUAL is 64 bytes each.

API and data structure syntax
struct sqlxa_xid_t {

sqlint32 formatID;
sqlint32 gtrid_length;
sqlint32 bqual_length;
char data[SQLXA_XIDDATASIZE];
} ;

typedef struct sqlxa_xid_t SQLXA_XID;

SQLXA_XID

Chapter 10. Data structures used by APIs 669

SQLXA_XID

670 Administrative API Reference

Appendix A. Precompiler customization APIs

© Copyright IBM Corp. 1993, 2010 671

Precompiler customization APIs

A set of documented APIs to enable other application development tools to
implement precompiler support for DB2 directly within their products. For
example, IBM COBOL on AIX uses this interface. Information on the set of
Precompiler Services APIs is available from the PDF file, prepapi.pdf, at the
following web site:

http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Precompiler customization APIs

672 Administrative API Reference

http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Appendix B. DB2 log records

© Copyright IBM Corp. 1993, 2010 673

DB2 log records

This section describes the structure of the DB2 log records returned by the
db2ReadLog API when the iFilterOption input value DB2READLOG_FILTER_ON is
specified. Only log records marked as propagatable (propagatable flag is set in the
log record header) are returned when this value is used. Only propagatable log
records are documented. All other log records are intended for only IBM internal
use and are therefore not documented.

When a transaction invokes a log writing utility or performs writable work against
a table with the DATA CAPTURE CHANGES attribute set to ON, the transaction is
marked as propagatable. Only propagatable transactions have their transaction
manager log records marked as propagatable.

All DB2 log records begin with a log manager header. This header includes the
total log record size, the log record type, and transaction-specific information. It
does not include information about accounting, statistics, traces, or performance
evaluation. For more information, see “Log manager header” on page 676.

Log records are uniquely identified by a log sequence number (LSN). The LSN
represents a relative byte address, within the database log, for the first byte of the
log record. It marks the offset of the log record from the beginning of the database
log.

The log records written by a single transaction are uniquely identifiable by a field
in the log record header. The unique transaction identifier is a six-byte field that
increments by one whenever a new transaction is started. All log records written
by a single transaction contain the same identifier.

Table 81. DB2 Log Records

Type Record Name Description

Data Manager “Initialize table log record” on
page 692

New permanent table creation.

Data Manager “Import replace (truncate) log
record” on page 693

Import replace activity.

Data Manager “Activate not logged initially log
record” on page 694

Alter table activity that includes
the ACTIVATE NOT LOGGED
INITIALLY clause.

Data Manager “Rollback insert log record” on
page 694

Rollback row insert.

Data Manager “Reorg table log record” on page
694

REORG committed.

Data Manager “Create index, drop index log
records” on page 695

Index activity.

Data Manager “Create table, drop table, rollback
create table, rollback drop table
log records” on page 695

Table activity.

Data Manager “Alter table attribute log record”
on page 696

Propagation, check pending, and
append mode activity.

Data Manager “Alter table add columns,
rollback add columns log record”
on page 696

Adding columns to existing
tables.

DB2 log records

674 Administrative API Reference

Table 81. DB2 Log Records (continued)

Type Record Name Description

Data Manager “Alter column attribute log
record” on page 697

Columns activity.

Data Manager “Undo alter column attribute log
record” on page 697

Column activity.

Data Manager “Insert record, rollback delete
record, rollback update record
log records” on page 698

Table record activity.

Data Manager “Insert record to empty page,
delete record to empty page,
rollback delete record to empty
page, rollback insert record to
empty page log records” on page
701

Multidimensional clustered
(MDC) table activity.

Data Manager “Update record log record” on
page 702

Row updates where storage
location not changed.

Data Manager “Rename of a table or schema log
record” on page 703

Table or schema name activity.

Data Manager “Undo rename of a table or
schema log record” on page 703

Table or schema name activity.

Long Field Manager “Add/delete/non-update long
field record log records” on page
686

Long field record activity.

Transaction
Manager

“Normal commit log record” on
page 678

Transaction commits.

Transaction
Manager

“Heuristic commit log record” on
page 679

Indoubt transaction commits.

Transaction
Manager

“MPP coordinator commit log
record” on page 679

Transaction commits. This is
written on a coordinator node for
an application that performs
updates on at least one
subordinator node.

Transaction
Manager

“MPP subordinator commit log
record” on page 680

Transaction commits. This is
written on a subordinator node.

Transaction
Manager

“Normal abort log record” on
page 680

Transaction aborts.

Transaction
Manager

“Heuristic abort log record” on
page 681

Indoubt transaction aborts.

Transaction
Manager

“Local pending list log record”
on page 681

Transaction commits with a
pending list existing.

Transaction
Manager

“Global pending list log record”
on page 682

Transaction commits (two-phase)
with a pending list existing.

Transaction
Manager

“XA prepare log record” on page
682

XA transaction preparation in
two-phase commit environments.

Transaction
Manager

“MPP subordinator prepare log
record” on page 683

MPP transaction preparation in
two-phase commit environments.
This log record only exists on
subordinator node.

DB2 log records

Appendix B. DB2 log records 675

Table 81. DB2 Log Records (continued)

Type Record Name Description

Transaction
Manager

“TM prepare log record” on page
684

Coordinated transaction
preparation as part of a
two-phase commit, where the
database is acting as the TM
database.

Transaction
Manager

“Backout free log record” on
page 684

Marks the end of a backout free
interval. The backout free interval
is a set of log records that is not
to be compensated if the
transaction aborts.

Transaction
Manager

“Application information log
record” on page 684

Information about the application
that started the transaction.

Transaction
Manager

“Federated Prepare Log Record”
on page 685

Information about the federated
resource manager involved in the
transaction.

Utility Manager “System catalog migration begin
log record” on page 687

System catalog migration starts.

Utility Manager “System catalog migration end
log record” on page 688

System catalog migration
completes.

Utility Manager “Load start log record” on page
688

Table load starts.

Utility Manager “Backup end log record” on page
688

Backup activity completes.

Utility Manager “Table space rolled forward log
record” on page 689

Table space rollforward
completes.

Utility Manager “Table space roll forward to point
in time starts log record” on page
689

Marks the beginning of a table
space rollforward to a point in
time.

Utility Manager “Table space roll forward to point
in time ends log record” on page
689

Marks the end of a table space
rollforward to a point in time.

Log manager header
All DB2 log records begin with a log manager header. This header contains
information detailing the log record and transaction information of the log record
writer.

Note: A log record of type 'i' is an informational log record only. It will be ignored
by DB2 during rollforward, rollback, and crash recovery.

Table 82. Log Manager Log Record Header (LogManagerLogRecordHeader)

Description Type Offset (Bytes)

Length of the entire log record int 0(4)

Type of log record (See Table 83 on page
677.)

short 4(2)

Log record general flag1 short 6(2)

DB2 log records

676 Administrative API Reference

Table 82. Log Manager Log Record Header (LogManagerLogRecordHeader) (continued)

Description Type Offset (Bytes)

Log Sequence Number of the previous log
record written by this transaction. It is used
to chain log records by transaction. If the
value is 0000 0000 0000 0000, this is the first
log record written by the transaction.

db2LSN2 8(8)

Unique transaction identifier SQLU_TID3 16(6)

Log Sequence Number of the log record for
this transaction prior to the log record being
compensated. (Note: For compensation and
backout free log records only.)

db2LSN 22(8)

Log Sequence Number of the log record for
this transaction being compensated. (Note:
For propagatable compensation log records
only.)

db2LSN 30(8)

Total Length for Log Manager Log Record Header:

v Non Compensation: 22 bytes

v Compensation: 30 bytes

v Propagatable Compensation: 38 bytes

Note:

1. Log record general flag constants
Redo Always 0x0001
Propagatable 0x0002
Temp Table 0x0004
Tablespace rollforward undo 0x0008
Singular transaction (no commit/rollback) 0x0010
Conditionally Recoverable 0x0080
Tablespace rollforward at check constraint process 0x0100

2. Log Sequence Number (LSN)
A unique log record identifier representing the relative byte address
of the log record within the database log.

db2LSN: { db2Uint64 lsnU64;
}

3. Transaction Identifier (TID)
A unique log record identifier representing the transaction.

SQLU_TID: union { unsigned char [6] ;
unsigned short [3] ;
}

4. Record ID (RID)
A unique number identifying the position of a record.
RID: Page number char [4];
slot number char [2];

Table 83. Log Manager Log Record Header Log Type Values and Definitions

Value Definition

0x0041 Normal abort

0x0042 Backout free

0x0043 Compensation

0x0049 Heuristic abort

Log manager header

Appendix B. DB2 log records 677

Table 83. Log Manager Log Record Header Log Type Values and Definitions (continued)

Value Definition

0x004A Load start

0x004E Normal log record

0x004F Backup end

0x0051 Global pending list

0x0052 Redo

0x0055 Undo

0x0056 System catalog migration begin

0x0057 System catalog migration end

0x0069 Information only

0x006F Backup start

0x0071 Table Space Roll Forward to Point in Time
Ends

0x007B MPP prepare

0x007C XA prepare

0x007D Transaction Manager (TM) prepare

0x0084 Normal commit

0x0085 MPP subordinate commit

0x0086 MPP coordinator commit

0x0087 Heuristic commit

0x0089 Table Space Roll Forward to Point in Time
Starts

0x008A Local pending list

0x008B Application information

Transaction manager log records
The transaction manager produces log records signifying the completion of
transaction events (for example, commit or rollback). The time stamps in the log
records are in Coordinated Universal Time (UTC), and mark the time (in seconds)
since January 01, 1970.

Normal commit log record

This log record is written for a transaction in a single-node environment, or in a
multiple nodes environment, while the transaction only affects one node. The log
record is written when a transaction commits after one of the following events:
1. A user has issued a COMMIT
2. An implicit commit occurs during a CONNECT RESET

Table 84. Normal Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction committed sqluint64 22 (8)

Log manager header

678 Administrative API Reference

Table 84. Normal Commit Log Record Structure (continued)

Description Type Offset (Bytes)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short 30 (2)

Authorization identifier of
the application1 (if the log
record is marked as
propagatable)

char [] 32 (variable2)

Total length: 32 bytes plus variable propagatable (30 bytes nonpropagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on Authorization identifier length

Heuristic commit log record

This log record is written when an indoubt transaction is committed.

Table 85. Heuristic Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction committed sqluint64 22 (8)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short 30 (2)

Authorization identifier of
the application1 (if the log
record is marked as
propagatable)

char [] 32 (variable2)

Total length: 32 bytes plus variable propagatable (30 bytes nonpropagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on authorization identifier length

MPP coordinator commit log record

This log record is written on a coordinator node for an application that performs
updates on at least one subordinator node.

Table 86. MPP Coordinator Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction committed sqluint64 22 (8)

MPP identifier of the
transaction

SQLP_GXID 30 (20)

Maximum node number unsigned short 50 (2)

Transaction manager log records

Appendix B. DB2 log records 679

Table 86. MPP Coordinator Commit Log Record Structure (continued)

Description Type Offset (Bytes)

TNL unsigned char [] 52 (max node
number/8 + 1)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short variable (2)

Authorization identifier of
the application1 (if the log
record is marked as
propagatable)

char [] variable
(variable2)

Total length: variable

Note:

1. TNL defines the nodes except for the coordinator node that involved in a
transaction

2. Variable based on authorization identifier length

MPP subordinator commit log record

This log record is written on a subordinator node in MPP.

Table 87. MPP Subordinator Commit Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction committed sqluint64 22 (8)

MPP identifier of the
transaction

SQLP_GXID 30 (20)

Reserved unsigned short 50 (2)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short 52 (2)

Authorization identifier of
the application2 (if the log
record is marked as
propagatable)

char [] 54 (variable3)

Total length: 54 bytes plus variable

Note:

1. This is the current database partition number if the transaction is on one
database partition only, otherwise it is the coordinator partition number.

2. If the log record is marked as propagatable
3. Variable based on authorization identifier length

Normal abort log record

This log record is written when a transaction aborts after one of the following
events:
v A user has issued a ROLLBACK

Transaction manager log records

680 Administrative API Reference

v A deadlock occurs
v An implicit rollback occurs during crash recovery
v An implicit rollback occurs during ROLLFORWARD recovery.

Table 88. Normal Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short 22 (2)

Authorization identifier of
the application1 (if the log
record is marked as
propagatable)

char [] 24 (variable2)

Total ength: 24 bytes plus variable propagatable (22 bytes nonpropagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on authorization identifier length

Heuristic abort log record

This log record is written when an indoubt transaction is aborted.

Table 89. Heuristic Abort Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Authorization identifier
length 1 (if the log record is
marked as propagatable)

unsigned short 22 (2)

Authorization identifier of
the application1 (if the log
record is marked as
propagatable)

char [] 24 (variable2)

Total length: 24 bytes plus variable propagatable (22 bytes nonpropagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on authorization identifier length

Local pending list log record

This log record is written if a transaction commits and a pending list exists. The
pending list is a linked list of non-recoverable operations (such as deletion of a file)
that can only be performed when the user/application issues a COMMIT. The
variable length structure contains the pending list entries.

Table 90. Local Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Transaction manager log records

Appendix B. DB2 log records 681

Table 90. Local Pending List Log Record Structure (continued)

Description Type Offset (Bytes)

Time transaction committed sqluint64 22 (8)

Authorization identifier
length1

unsigned short 30 (2)

Authorization identifier of
the application1

char [] 32 (variable)2

Pending list entries variable variable (variable)

Total Length: 32 bytes plus variables propagatable (30 bytes plus pending list entries
non-propagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on Authorization identifier length

Global pending list log record

This log record is written if a transaction involved in a two-phase commit commits,
and a pending list exists. The pending list contains non-recoverable operations
(such as deletion of a file) that can only be performed when the user/application
issues a COMMIT. The variable length structure contains the pending list entries.

Table 91. Global Pending List Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Authorization identifier
length1

unsigned short 22 (2)

Authorization identifier of
the application1

char [] 24 (variable)2

Global pending list entries variable variable (variable)

Total Length: 24 bytes plus variables propagatable (22 bytes plus pending list entries
non-propagatable)

Note:

1. If the log record is marked as propagatable
2. Variable based on Authorization identifier length

XA prepare log record

This log record is written for XA transactions in a single-node environment, or on
the coordinator node in MPP. It is only used for XA applications. The log record is
written to mark the preparation of the transaction as part of a two-phase commit.
The XA prepare log record describes the application that started the transaction,
and is used to recreate an indoubt transaction.

Table 92. XA Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction prepared sqluint64 22 (8)

Transaction manager log records

682 Administrative API Reference

Table 92. XA Prepare Log Record Structure (continued)

Description Type Offset (Bytes)

Log space used by
transaction

sqluint64 30 (8)

Transaction Node List Size sqluint32 38 (4)

Transaction Node List unsigned char [] 42 (variable)

Reserve sqluint32 variable (2)

XA identifier of the
transaction

SQLXA_XID1 variable (140)

Synclog information variable variable (variable)

Total length: 184 bytes plus variables

Note: 1. For details on the SQLXA_XID log record type, see “SQLXA_XID” on
page 669.

MPP subordinator prepare log record

This log record is written for MPP transactions on subordinator nodes. The log
record is written to mark the preparation of the transaction as part of a two-phase
commit. The MPP subordinator prepare log record describes the application that
started the transaction, and is used to recreate an indoubt transaction.

Table 93. MPP Subordinator Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time Transaction Prepared sqluint64 22 (8)

Log space used by
transaction

sqluint64 30 (8)

Coordinator LSN db2LSN 38 (8)

Padding char [] 46 (2)

MPP identifier of the
transaction

SQLP_GXID1 48(20)

Total Length: 68 bytes

Note: 1.The SQLP-GXID log record is used to identify transactions in MPP
environment.

Table 94. Fields in the SQLP-GXID Structure

Field Name Data Type Description

FORMATID INTEGER GXID format ID

GXID_LENGTH INTEGER Length of GXID

BQAL_LENGTH INTEGER Length of the branch
identifier

DATA CHAR(8) First 2 bytes contain the node
number; remainder is the
transaction ID

Transaction manager log records

Appendix B. DB2 log records 683

TM prepare log record

This log record is written for DB2 coordinated transactions in a single-partition
database environment or on the coordinator partition in MPP, where the database
is acting as the TM database. The log record is written to mark the preparation of
the transaction as part of a two-phase commit.

Table 95. TM Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time transaction prepared sqluint64 22 (8)

Log space used by
transaction

sqluint64 30 (8)

Transaction Node List Size sqluint32 38 (4)

Transaction Node List unsigned char [] 42 (variable)

Reserve sqluint32 variable (2)

XA identifier of the
transaction

SQLXA_XID variable (140)

Synclog information variable variable (variable)

Total length: 184 bytes plus variables

Backout free log record

This log record is used to mark the end of a backout free interval. The backout free
interval is a set of log records that is not to be compensated if the transaction
aborts. This log record contains a 8-byte log sequence number (complsn, stored in
the log record header starting at offset 22). Under certain scenarios, the backout
free log record also contains log data, starting at offset 30, which is same as the
data logged in corresponding data manager log records. When this log record is
read during rollback (following an aborted transaction), complsn marks the next log
record to be compensated.

Table 96. Backout free Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Complsn db2LSN 22 (8)

Log data1 variable variable

Total Length: 30 bytes plus variables

Note: 1. Only applied in certain scenarios, and when used, the length of the
entire log record in the log header is more than 28 bytes.

Application information log record

This log record contains information about the application that started this
transaction.

Table 97. Application Information Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Transaction manager log records

684 Administrative API Reference

Table 97. Application Information Log Record Structure (continued)

Description Type Offset (Bytes)

Transaction Start Time sqluint32 22 (4)

Reserved char[] 26 (16)

Code page sqluint32 42 (4)

Application Name Length sqluint32 46 (4)

Application Name char [] 50 (variable)

Application Identifier Length sqluint32 variable (4)

Application Identifier char [] variable (variable)

Sequence Number Length sqluint32 variable (4)

Sequence Number char [] variable (variable)

Database Alias Used by
Client Length

sqluint32 variable (4)

Database Alias Used by
Client

char [] variable (variable)

Authorization Identifier
Length

sqluint32 variable (4)

Authorization Identifier char [] variable (variable)

Total Length: 66 bytes plus variables

Federated Prepare Log Record

This log record contains information about the federated resource managers that
were involved in the transaction.

Table 98. Federated Prepare Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Number of Resource
Managers

sqluint32 22 (4)

Authorization Identifier
Length

sqluint16 26 (2)

Encrypted Password Length sqluint16 28 (2)

Authorization Identifier char [128] 30 (128)

Encrypted Password char [255] 158 (255)

Resource Manager Entries variable 413 (variable)

Total Length: 413 bytes plus variables

Long field manager log records
Long field manager log records are written only if a database is configured with
LOG RETAIN on or USEREXITS enabled. They are written whenever long field
data is inserted, deleted, or updated.

Note: LOB manager log records are not propagatable, and are therefore not
documented.

Transaction manager log records

Appendix B. DB2 log records 685

To conserve log space, long field data inserted into tables is not logged if the
database is configured for circular logging. In addition, when a long field value is
updated, the before image is shadowed and not logged.

All long field manager log records begin with a header.

All long field manager log record offsets are from the end of the log manager log
record header.

When a table has been altered to capture LONG VARCHAR OR LONG
VARGRAPHIC columns (by specifying INCLUDE LONGVAR COLUMNS on the
ALTER TABLE statement):
v The long field manager will write the appropriate long field log record.
v When long field data is updated, the update is treated as a delete of the old long

field value, followed by an insert of the new value. To determine whether or not
a Delete/Add Long Field Record is associated with an update operation on the
table the original operation value would be logged to the Long Field Manager
Log Record.

v When tables with long field columns are updated, but the long field columns
themselves are not updated, a Non-update Long Field Record is written.

v The Delete Long Field Record and the Non-update Long Field Record are
information only log records.

Table 99. Long Field Manager Log Record Header (LongFieldLogRecordHeader)

Description Type Offset (Bytes)

Originator code (component
identifier = 3)

unsigned char 0 (1)

Operation type (See
Table 100.)

unsigned char 1 (1)

Table space identifier unsigned short 2 (2)

Object identifier unsigned short 4 (2)

Parent table space identifier1 unsigned short 6 (2)

Parent object identifier2 unsigned short 8 (2)

Total Length: 10 bytes

Note:

1. Table space ID of the data object
2. Object ID of the data object

Table 100. Long Field Manager Log Record Header Operation Type Values and Definitions

Value Definition

113 Add Long Field Record

114 Delete Long Field Record

115 Non-Update Long Field Record

Add/delete/non-update long field record log records

These log records are written whenever long field data is inserted, deleted, or
updated. The length of the data is rounded up to the next 512-byte boundary.

Long field manager log records

686 Administrative API Reference

Table 101. Add/Delete/Non-update Long Field Record Log Record Structure

Description Type Offset (Bytes)

Log header LongFieldLogRecordHeader 0 (10)

Internal Internal 10 (1)

Original operation type1 char 11 (1)

Column identifier2 unsigned short 12 (2)

Long field length3 unsigned short 14 (2)

File offset4 sqluint32 16 (4)

Long field data char[] 20 (variable)

Note:

1. Original operation type
1 Insert
2 Delete
4 Update

2. The column number that the log record is applied to. Column number starts
from 0.

3. Long field data length in 512-byte sectors (actual data length is recorded as the
first 4 bytes of long field descriptor (LF descriptor), which is logged in the
following insert/delete/update log record as part of formatted user data
record). The value of this field is always positive.
The long field manager never writes log records for zero length long field data
that is being inserted, deleted, or updated.

4. 512-byte sector offset into long field object where data is to be located.

Utility manager log records
The utility manager produces log records associated with the following DB2
utilities:
v Database Upgrad
v Load
v Backup
v Table space rollforward.

The log records signify the beginning or the end of the requested activity. Only
propagatable log records for these utilities are documented.

System catalog migration begin log record

During database upgrade, the system catalog objects are converted to the new
release format. This log record indicates the start of system catalog migration.

Table 102. System catalog migration Begin Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Start time char[] 22 (10)

Previous release unsigned short 32 (2)

New release unsigned short 34 (2)

Total Length: 36 bytes

Long field manager log records

Appendix B. DB2 log records 687

System catalog migration end log record

During database upgrade, the system catalog objects are converted to the new
release format. This log record indicates the successful completion of system
catalog migration.

Table 103. System catalog migration End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

End time char[] 22 (10)

New release unsigned short 32 (2)

Total Length: 34 bytes

Load start log record

This log record is associated with the beginning of a load.

It is the only Load log record that is propagatable.

For the purpose of log record propagation, it is recommended that after reading a
Log Start log record you not continue to propagate log records for the specific
table to a target table. After a Load Start log record, all propagatable log records
that belong to the table being loaded can be ignored regardless of the transaction
boundary, until such a time that a cold restart has taken place. A cold restart is
required to synchronize the source and target tables.

Table 104. Load Start Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Log record identifier sqluint32 22 (4)

Pool identifier unsigned short 26 (2)

Object identifier unsigned short 28 (2)

Flag sqluint32 30 (4)

Object pool list variable 34 (variable)

Total length: 34 bytes plus variable

Backup end log record

This log record is associated with the end of a successful backup.

Table 105. Backup End Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Backup end time sqluint64 22 (8)

Total Length: 30 bytes

Utility manager log records

688 Administrative API Reference

Table space rolled forward log record

This log record is associated with table space ROLLFORWARD recovery. It is
written for each table space that is successfully rolled forward.

Table 106. Table Space Rolled Forward Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Table space identifier sqluint32 22 (4)

Total length: 26 bytes

Table space roll forward to point in time starts log record

This log record is associated with table space ROLLFORWARD recovery. It marks
the beginning of a table space roll forward to a point in time.

Table 107. Table Space Roll Forward to Point in Time Starts Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time stamp for this log
record

sqluint64 22 (8)

Time stamp to which table
spaces are being rolled
forward

sqluint32 30 (4)

Number of pools being
rolled forward

sqluint32 34 (4)

Total length: 38 bytes

Table space roll forward to point in time ends log record

This log record is associated with table space ROLLFORWARD recovery. It marks
the end of a table space roll forward to a point in time.

Table 108. Table Space Roll Forward to Point in Time Ends Log Record Structure

Description Type Offset (Bytes)

Log header LogManagerLogRecordHeader 0 (22)

Time stamp for this log
record

sqluint64 22 (8)

Time stamp to which table
spaces were rolled forward

sqluint32 30 (4)

A flag whose value is TRUE if
the roll forward was
successful, or FALSE if the
roll forward was cancelled.

sqluint32 34 (4)

Total length: 38 bytes

Two timestamp fields are required to provide adequate precision so that event log
event timing can be differentiated. The first timestamp uses 8 bytes to indicate the
time when the log was written to a precision of seconds. The first 4 bytes of this
timestamp indicate the seconds portion. Since many actions can take place in one

Utility manager log records

Appendix B. DB2 log records 689

second, to understand the ordering of events it is necessary to have further
precision. The second timestamp field provides 4 bytes that are used as a counter
to indicate the ordering of the log records that occur within the same second. If the
log record timestamps of two log records are identical, the additional 4 byte
timestamp counter field can be used to determine the ordering of the associated
log events.

Data manager log records
Data manager log records are the result of DDL, DML, or Utility activities.

There are two types of data manager log records:
v Data Management System (DMS) logs have a component identifier of 1 in their

header.
v Data Object Manager (DOM) logs have a component identifier of 4 in their

header.

Table 109. DMS log record header structure (DMSLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=1) unsigned char 0(1)

Function identifier (See
Table 110.)

unsigned char 1(1)

Table identifiers

Table space identifier

Table identifier

unsigned short

unsigned short

2(2)

4(2)

Total Length: 6 bytes

Table 110. DMS log record header structure function identifier values and definitions

Value Definition

102 Add columns to table

104 Undo add columns

108 Undo update partition state

110 Undo insert record

111 Undo delete record

112 Undo update record

113 Alter column

115 Undo alter column

122 Rename a schema or table

123 Undo rename a schema or table

124 Alter table attribute

128 Initialize table

131 Undo insert record to empty page

137 Update partition state

161 Delete record

162 Insert record

163 Update record

Utility manager log records

690 Administrative API Reference

Table 110. DMS log record header structure function identifier values and
definitions (continued)

Value Definition

164 Delete record to empty page

165 Insert record to empty page

166 Undo delete record to empty page

167 Insert multiple records

168 Undo insert multiple records

Table 111. DOM log record header structure (DOMLogRecordHeader)

Description Type Offset (Bytes)

Component identifier (=4) unsigned char 0(1)

Function identifier (See
Table 112.)

unsigned char 1(1)

Object identifiers

Table space identifier

Object identifier

unsigned short

unsigned short

2(2)

4(2)

Table identifiers

Table space identifier

Table identifier

unsigned short

unsigned short

6(2)

8(2)

Object type unsigned char 10(1)

Flags unsigned char 11(1)

Total Length: 12 bytes

Table 112. DOM log record header structure function identifier values and definitions

Value Definition

2 Create index

3 Drop index

4 Drop table

5 Undo drop table

11 Truncate table (import replace)

12 Activate NOT LOGGED INITIALLY

35 Reorg table

101 Create table

130 Undo create table

Note: All data manager log record offsets are from the end of the log manager
record header.

All log records whose function identifier short name begins with UNDO are log
records written during the UNDO or ROLLBACK of the action in question.

The ROLLBACK can be a result of:

Data manager log records

Appendix B. DB2 log records 691

v The user issuing the ROLLBACK transaction statement
v A deadlock causing the ROLLBACK of a selected transaction
v The ROLLBACK of uncommitted transactions following a crash recovery
v The ROLLBACK of uncommitted transactions following a RESTORE and

ROLLFORWARD of the logs.

Initialize table log record

The initialize table log record is written when a new permanent table is being
created; it signifies table initialization. This record appears after any log records
that creates the DATA and Block Map storage objects, and before any log records
that create the LF and LOB storage objects. This is a Redo log record. The function
ID is 128.

Table 113. Initialize table log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

File create LSN db2LSN 6(8)

Internal Internal 14(74)

Table description length sqluint32 88(4)

Table description record variable 92(variable)

Total Length: 92 bytes plus table description record length

Table 114. Table description record

Description Type Offset (Bytes)

record type unsigned char 0(1)

Internal Internal 1(1)

number of columns unsigned short 2(2)

array of column descriptor variable long variable

Total length: 4 bytes plus the array of column descriptor length

Table description record: Column descriptor array

(number of columns) * 8, where each element of the array contains:
v field type (unsigned short, 2 bytes)

SMALLINT 0x0000
INTEGER 0x0001
DECIMAL 0x0002
DOUBLE 0x0003
REAL 0x0004
BIGINT 0x0005
DECFLOAT64 0x0006
DECFLOAT128 0x0007
CHAR 0x0100
VARCHAR 0x0101
LONG VARCHAR 0x0104
DATE 0x0105
TIME 0x0106
TIMESTAMP 0x0107
BLOB 0x0108
CLOB 0x0109
STRUCT 0x010D
XMLTYPE 0x0112

Data manager log records

692 Administrative API Reference

GRAPHIC 0x0200
VARGRAPH 0x0201
LONG VARG 0x0202
DBCLOB 0x0203

v length (2 bytes)
– If BLOB, CLOB, or DBCLOB, this field is not used. For the maximum

length of this field, see the array that follows the column descriptor
array.

– If not DECIMAL, length is the maximum length of the field (short).
– If PACKED DECIMAL: Byte 0, unsigned char, precision (total length)

Byte 1, unsigned char, scale (fraction digits).
v null flag (unsigned short, 2 bytes)

– mutually exclusive: allows nulls, or does not allow nulls
– valid options: no default, type default, user default, generated, or

compress type default
ISNULL 0x0001
NONULLS 0x0002
TYPE_DEFAULT 0x0004
USER_DEFAULT 0x0008
GENERATED 0x0040
COMPRESS_SYSTEM_DEFAULT 0x0080

v field offset (unsigned short, 2 bytes) This is the offset from the start of
the fixed-length portion of user record to where the field's fixed value
can be found.

Table description record: LOB column descriptor array

(number of LOB, CLOB, and DBCLOB fields) * 12, where each element of
the array contains:
v length (MAX LENGTH OF FIELD, sqluint32, 4 bytes)
v inline length (INLINE_LENGTH, sqluint16, 2 bytes)
v log flag (IS COLUMN LOGGED, sqluint16, 2 bytes)
v reserved (internal, sqluint32. 4 bytes)

The first LOB, CLOB, or DBCLOB encountered in the column descriptor
array uses the first element in the LOB descriptor array. The second LOB,
CLOB, or DBCLOB encountered in the column descriptor array uses the
second element in the LOB descriptor array, and so on.

Import replace (truncate) log record

The import replace (truncate) log record is written when an IMPORT REPLACE
action is being executed. This record indicates the re-initialization of the table (no
user records, new life LSN). The table identifiers in the log header identify the
table being truncated (IMPORT REPLACE). This is a normal log record. The
function ID is 11.

Table 115. Import replace (truncate) log record structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal Internal 12(variable)

Total Length: 12 bytes plus variable length

Data manager log records

Appendix B. DB2 log records 693

Activate not logged initially log record

The activate not logged initially log record is written when a user issues an ALTER
TABLE statement that includes the ACTIVATE NOT LOGGED INITIALLY clause.
This is a normal log record. This is function ID 12.

Table 116. Active not logged initially log record structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal Internal 12(4)

Long Tablespace ID* unsigned short 16(2)

Index Tablespace ID* unsigned short 18(2)

Index Object ID unsigned short 20(2)

LF Object ID unsigned short 22(2)

LOB Object ID unsigned short 24(2)

XML Object ID unsigned short 26(2)

Total Length: 28 bytes

* Same as table space identifiers in the DOM header; it is a unique identifier for each table
space defined in the database.

Rollback insert log record

The rollback insert log record is written when an insert row action (INSERT
RECORD) is rolled back. This is a Compensation log record. The function ID is 110.

Table 117. Rollback insert log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Internal Internal 6(2)

Record Length unsigned short 8(2)

Free space unsigned short 10(2)

RID char[] 12(6)

Total Length: 16 bytes

Reorg table log record

The reorg table log record is written when the REORG utility has committed to
completing the reorganization of a table. This is a Normal log record. The function
ID is 35.

Table 118. Reorg table log record structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(476)

Index token 1 unsigned short 488(2)

Temporary table space ID 2 unsigned short 490(2)

Data manager log records

694 Administrative API Reference

Table 118. Reorg table log record structure (continued)

Description Type Offset (Bytes)

Long temporary table space
ID

unsigned short 492(2)

Total Length: 494 bytes

Note:

1. If the value of the index token is not 0, it is the index by which the reorg is
clustered (clustering index).

2. If the value of the temporary table space ID is not 0, it is the system temporary
table space that was used to build the reorganized table.

Create index, drop index log records

These log records are written when indexes are created or dropped. The two
elements of the log record are:
v The index root page, which is an internal identifier
v The index token, which is equivalent to the IID column in SYSCAT.INDEXES. If

the value for this element is 0, the log record represents an action on an internal
index, and is not related to any user index.

This is a normal log record. The function ID is either 2 (create index) or 3 (drop
index).

Table 119. Create index, drop index log records structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal Internal 12(2)

Index token unsigned short 14(2)

Index root page sqluint32 16(4)

Total Length: 20 bytes

Create table, drop table, rollback create table, rollback drop table
log records

These log records are written when the DATA object for a permanent table is
created or dropped. For creation of an MDC table, there is also a create table log
record for creation of the Block Map object. The DATA object (and block Map
object if applicable) is created during a CREATE TABLE operation, and prior to
table initialization (Initialize Table). Create table and drop table are normal log
records. Rollback create table and rollback drop table are Compensation log
records. The function ID is either 101 (create table), 4 (drop table), 130 (rollback
create table), or 5 (rollback drop table).

Table 120. Create table, drop table, rollback create table, rollback drop table log records
structure

Description Type Offset (Bytes)

Log header DOMLogRecordHeader 0(12)

Internal variable 12(72)

Total Length: 84 bytes

Data manager log records

Appendix B. DB2 log records 695

Alter table attribute log record

The alter table attribute log record is written when the state of a table is changed
using the ALTER TABLE statement or as a result of adding or validating
constraints. This can be a Normal or Compensation log record. The function ID is
124.

Table 121. Alter table attribute, undo alter table attribute

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Alter bit (attribute) mask sqluint64 6(8)

Alter bit (attribute) values sqluint64 14(8)

Total Length: 22 bytes

Attribute bits
0x00000001 Propagation
0x00000002 Check Pending
0x00000010 Value Compression
0x00010000 Append Mode
0x00200000 LF Propagation

All other bits are for internal use.

If one of the bits above is present in the alter bit mask, then this attribute
of the table is being altered. To determine the new value of the table
attribute (0 = OFF and 1 = ON), check the corresponding bit in the alter bit
value.

Alter table add columns, rollback add columns log record

The alter table add columns log record is written when the user is adding columns
to an existing table using an ALTER TABLE statement. Complete information on
the old columns and new columns is logged.
v Column count elements represent the old number of columns and the new total

number of columns.
v The parallel arrays contain information about the columns defined in the table.

The old parallel array defines the table prior to the ALTER TABLE statement,
while the new parallel array defines the table resulting from ALTER TABLE
statement.

v Each parallel array consists of:
– One 8-byte element for each column.
– If there are any LOB columns, one 12 byte element for each LOB column. This

follows the array of 8 byte elements.

Alter table add columns is a Normal log record. Rollback add columns is a
Compensation log record. The function IDs are 102 (add column) or 104 (undo add
column).

Table 122. Alter table add columns, rollback add columns log records structure

Description Type Offset (Bytes)

Log header DMSLogRecordheader 0(6)

Internal Internal 6(2)

Data manager log records

696 Administrative API Reference

Table 122. Alter table add columns, rollback add columns log records structure (continued)

Description Type Offset (Bytes)

Old column count sqluint32 8(4)

New column count sqluint32 12(4)

Old parallel arrays 1 variable 16(variable)

New parallel arrays variable variable(variable)

Total Length: 16 bytes plus 2 sets of parallel arrays.

Array Elements:

1. The lengths of the elements in this array are defined as follows:
v If the element is a column descriptor, the element length is 8 bytes.
v If the element is a LOB column descriptor, the element length is 12 bytes.

For information about the column descriptor array or the LOB column descriptor
array, see the description following Table 114 on page 692).

Alter column attribute log record

The function ID is 113.

Table 123. Alter column attribute log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordheader 0(6)

Column ID unsigned short 6(2)

Old column definition Column descriptor 1 8(8)

New column definition Column descriptor 1 16(8)

Total Length: 24 bytes plus record length.

1 For a description of the column descriptor array, see the description following
Table 114 on page 692).

Undo alter column attribute log record

The function ID is 115.

Table 124. Undo alter column attribute log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Column ID unsigned short 6(2)

Old column definition Column descriptor 1 8(8)

New column definition Column descriptor 1 16(8)

Total Length: 24 bytes plus record length.

1 For a description of the column descriptor array, see the description following
Table 114 on page 692).

Data manager log records

Appendix B. DB2 log records 697

Insert record, rollback delete record, rollback update record log
records

These log records are written when rows are inserted into a table, or when a
deletion or update is rolled back. Insert Record and Delete Record log records can
also be generated during an update, if the location of the record being updated
must be changed to accommodate the modified record data. Insert Record log
records are Normal log records. Rollback Delete records and rollback update
records are Compensation log records. The function IDs are 162 (insert), 111
(rollback delete), or 112 (rollback update).

Table 125. Insert record, rollback delete record, rollback update record log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Internal Internal 6(2)

Record Length unsigned short 8(2)

Free space unsigned short 10(2)

RID char[] 12(6)

Record offset unsigned short 18(2)

Record header and data variable 20(variable)

Total Length: 20 bytes plus record length

Following are details about the record header and data:

Record header

v 4 bytes
v Record type (unsigned char, 1 byte).
v Reserved (char, 1 byte)
v Record length (unsigned short, 2 bytes)

Record

v Variable length
v Record type (unsigned char, 1 byte).
v Reserved (char, 1 byte)
v The rest of the record is dependent upon the record type and the table

descriptor record defined for the table.
v The following fields apply to user data records with record type having

the 1 bit set:
– Fixed length (unsigned short, 2 bytes). This is the length of the fixed

length section of the data row.
– Formatted record (all of the fixed length columns, followed by the

variable length columns).
v The following fields apply to user data records with record type having

the 2 bit set:
– Number of columns (unsigned short, 2 bytes). This is the number of

columns in the data portion of the data row. See “Formatted user data
record for table with VALUE COMPRESSION” on page 700.

Note: the offset array will contain 1 + the number of columns.
– Formatted record (offset array, followed by the data columns).

Data manager log records

698 Administrative API Reference

A user record is specified completely by the following characteristics:
1. Outer record type is 0, or
2. Outer record type is 0x10, or
3. Outer record type has the 0x04 bit set and
1. Inner record type has the 0x01 bit set, or
2. Inner record type has the 0x02 bit set.

Note: Row compression and data capture are not compatible.

Extracting inlined LOB data from formatted user data record

Inlined LOB data can be extracted from the user data record. Once the beginning
of the LOB column data is located (based on whether the table has VALUE
COMPRESSION enabled or not), examination of the first byte can reveal the
presence of inlined LOB data.

If the first byte is 0x69, it marks the beginning of a 4-byte inlined LOB data header.
The inlined LOB data begins after this 4-byte header.

If the first byte is 0x80, the LOB data is an empty string.

Formatted user data record for a table without VALUE
COMPRESSION

For records formatted without VALUE COMPRESSION, all fields contain a
fixed-length portion. In addition, there are eight field types that have variable
length parts:
v VARCHAR
v LONG VARCHAR
v BLOB
v CLOB
v VARGRAPHIC
v LONG VARG
v DBCLOB

The length of the fixed portion of the different field types can be determined as
follows:
v DECIMAL

This field is a standard packed decimal in the form: nnnnnn...s. The length of the
field is: (precision + 2)/2. The sign nibble (s) is xC for positive (+), and xD or xB
for negative (-).

v SMALLINT INTEGER BIGINT DOUBLE REAL CHAR GRAPHIC
The length field in the element for this column in the table descriptor record
contains the fixed length size of the field.

v DATE
This field is a 4-byte packed decimal in the form: yyyymmdd. For example, April
3, 1996 is represented as x‘19960403'.

v TIME
This field is a 3-byte packed decimal in the form: hhmmss. For example, 1:32PM
is represented as x‘133200'.

v TIMESTAMP

Data manager log records

Appendix B. DB2 log records 699

This field is a 10-byte packed decimal in the form: yyyymmddhhmmssuuuuuu
(DATE|TIME|microseconds).

v VARCHAR LONG VARCHAR BLOB CLOB VARGRAPHIC LONG VARG
DBCLOB
The length of the fixed portion of all the variable length fields is 4.

The following sections describe the location of the fixed portion of each field
within the formatted record.

The table descriptor record describes the column format of the table. It contains an
array of column structures, whose elements represent field type, field length, null
flag, and field offset. The latter is the offset from the beginning of the formatted
record, where the fixed length portion of the field is located.

Table 126. Table descriptor record structure

record type number of columns column structure

v field type

v length

v null flag

v field offset

LOB information

Note: For more information, see the description following Table 113 on page 692.

For columns that are nullable (as specified by the null flag), there is an additional
byte following the fixed length portion of the field. This byte contains one of two
values:
v NOT NULL (0x00)
v NULL (0x01)

If the null flag within the formatted record for a column that is nullable is set to
0x00, there is a valid value in the fixed length data portion of the record. If the null
flag value is 0x01, the data field value is NULL.

The formatted user data record contains the table data that is visible to the user. It
is formatted as a fixed length record, followed by a variable length section.

Table 127. Formatted user data record structure for table without VALUE COMPRESSION

record type length of fixed
section

fixed length section variable data section

Note: For more information, see the description following Table 125 on page 698.

All variable field types have a 4-byte fixed data portion in the fixed length section
(plus a null flag, if the column is nullable). The first 2 bytes (short) represent the
offset from the beginning of the fixed length section, where the variable data is
located. The next 2 bytes (short) specify the length of the variable data referenced
by the offset value.

Formatted user data record for table with VALUE COMPRESSION

Records formatted with VALUE COMPRESSION consist of the offset array and the
data portion. Each entry in the array is a 2-byte offset to the corresponding column
data in the data portion. The number of column data in the data portion can be

Data manager log records

700 Administrative API Reference

found in the record header, and the number of entries in the offset array is one
plus the number of column data that exists in the data portion.
1. Compressed column values consume only one byte of disk space which is used

for attribute byte. The attribute byte indicates that the column data is
compressed, for example, the data value is known but is not stored on disk.
The high bit (0x8000) in the offset is used to indicate that the accessed data is
an attribute byte. (Only 15 bits are used to represent the offset of the
corresponding column data.)

2. For regular column data, the column data follows the offset array. There will
not be any attribute byte or any length indicator present.

3. Accessed data can take two different values if it is an attribute byte:
v

NULL 0x01 (Value is NULL)

v

COMPRESSED SYSTEM DEFAULT 0x80 (Value is equal to the system default)

4. The length of column data is the difference between the current offset and the
offset of the next column.

Table 128. Formatted user data record structure for table with VALUE COMPRESSION

record type number of column in
data portion

offset array data portion

Note: For more information, see the description following Table 125 on page 698.

Insert record to empty page, delete record to empty page,
rollback delete record to empty page, rollback insert record to
empty page log records

These log records are written when the table is a multidimensional clustered
(MDC) table. The Insert Record To Empty Page log record is written when a record
is inserted and it is the first record on a page, where that page is not the first page
of a block. This log record logs the insert to the page, as well as the update of a bit
on the first page of the block, indicating that the page is no longer empty. The
Delete Record To Empty Page log record is written when the last record is deleted
from a page, where that page is not the first page of a block. This log record logs
the delete from the page, as well as the update of a bit on the first page of the
block, indicating that the page is empty. Insert Record to Empty Page log records
and Delete Record to Empty Page log records are Normal log records. Rollback
Delete Record log records and Rollback Insert Record log records are
Compensation log records. The function IDs are 165 (insert record to empty page),
164 (delete record to empty page), 166 (rollback delete record to empty page), or
131 (rollback insert record to empty page).

Table 129. Rollback insert record to empty page

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Internal Internal 6(2)

Record length unsigned short 8(2)

Free space unsigned short 10(2)

RID char[] 12(6)

Internal Internal 18(2)

Data manager log records

Appendix B. DB2 log records 701

Table 129. Rollback insert record to empty page (continued)

Description Type Offset (Bytes)

First page of the block sqluint32 20(4)

Total length: 24 bytes

Table 130. Insert record to empty page, rollback delete record to empty page, delete record
to empty page

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Internal Internal 6(2)

Record Length unsigned short 8(2)

Free space unsigned short 10(2)

RID char[] 12(6)

Internal Internal 18(2)

First page of the block sqluint32 20(4)

Record offset unsigned short 24(2)

Record header and data variable 26(variable)

Total Length: 26 bytes plus Record length

Note: For Record Header and Data Details, see the description following Table 125
on page 698.

Update record log record

The update record log record is written when a row is updated and its storage
location remains the same. There are two available record formats; they are
identical to the insert record (also the same as the delete log record) log records
(see “Insert record, rollback delete record, rollback update record log records” on
page 698). One contains the pre-update image of the row being updated; the other
contains the post-update image of the row being updated. This is a normal log
record. The function ID is 163.

Table 131. Update record log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Internal Internal 6(2)

New Record Length unsigned short 8(2)

Free space unsigned short 10(2)

RID char[] 12(6)

Record offset unsigned short 18(2)

Old record header and data variable 20(variable)

Log header DMSLogRecordHeader variable(6)

Internal Internal variable(2)

Old Record Length unsigned short variable(2)

Free space unsigned short variable(2)

RID char[] variable(6)

Data manager log records

702 Administrative API Reference

Table 131. Update record log record structure (continued)

Description Type Offset (Bytes)

Record offset unsigned short variable(2)

New record header and data variable variable(variable)

Total Length: 40 bytes plus 2 Record lengths

Rename of a table or schema log record

The Rename of a Table Schema Log Record is written when a table or schema
name is modified. This is function ID 122.

Table 132. Rename of a table or schema log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Total Length: 6 bytes

The Rename of a Table or Schema Log Record does not contain information
regarding the old and new names of a table or schema object. Separate insert,
update, and delete log records associated with operations on the system catalog
tables are generated when a table or schema renaming takes place.

Undo rename of a table or schema log record

The Undo Rename of a Table Schema Log Record is written when a table or
schema name modification is rolled back. This is function ID 123.

Table 133. Undo rename of a table or schema log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Total Length: 6 bytes

The Rename of a Table or Schema Log Record does not contain information
regarding the old and new names of a table or schema object. Separate insert,
update, and delete log records associated with operations on the system catalog
tables are generated when a table or schema renaming takes place.

Insert multiple records, undo insert multiple records

These log records are written when multiple rows are inserted into the same page
of a table. Rollback insert multiple record is a compensation log record. The
function IDs are 167 and 168.

Table 134. Insert multiple records structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Padding char[] 6(2)

Number of records unsigned short 8(2)

Free space unsigned short 10(2)

Sum of record lengths unsigned short 12(2)

Data manager log records

Appendix B. DB2 log records 703

Table 134. Insert multiple records structure (continued)

Description Type Offset (Bytes)

Variable part length unsigned short 14(2)

Pool page number sqluint32 16(4)

Record descriptions or
rollback descriptions

See Table 135 and Table 136.

variable 20(variable)

Total Length: 20 bytes plus record length

Table 135. Records descriptions (one for each record)

Description Type Offset (Bytes)

RID unsigned char[6] 0(6)

Record offset unsigned short 6(2)

Record header and data variable 8(variable)

Total Length: 8 bytes plus record length

Table 136. Rollback descriptions (one for each record)

Description Type Offset (Bytes)

RID unsigned char[6] 0(6)

Record offset unsigned short 6(2)

Total Length: 8 bytes

For record header and data details, see the description following Table 125 on page
698.

Update partition state, rollback partition state log records

The update partition state log record is written when a user issues an ALTER
TABLE statement with ADD PARTITION, ATTACH PARTITION, or DETACH
PARTITION clauses. It is also written when the SET INTEGRITY statement is
executed on a partitioned table to bring a previously attached partition online and
visible. The log record function ID is 137, while the undo or rollback log record
function ID is 108.

Table 137. Update partition state, rollback partition state log record structure

Description Type Offset (Bytes)

Log header DMSLogRecordHeader 0(6)

Master table space identifier unsigned short 6(2)

Master table identifier unsigned short 8(2)

Internal Internal 10(2)

Data partition identifier unsigned short 12(2)

Internal Internal 14(6)

Internal Internal 20(2)

Partition action unsigned short 22(2)

Total Length: 24 bytes

Data manager log records

704 Administrative API Reference

Log header
See Table 109 on page 690. The table space and table identifiers in the
DMSLogRecordHeader match the TBSPACEID and PARTITIONOBJECTID
column values, respectively, in the SYSCAT.DATAPARTITIONS catalog
view for the table partition.

Master table space identifier
The master table space identifier matches the TBSPACEID column value in
the SYSCAT.TABLES catalog view for the partitioned table.

Master table identifier
The master table identifier matches the TABLEID column value in the
SYSCAT.TABLES catalog view for the partitioned table.

Data partition identifier
The data partition identifier matches the DATAPARTITIONID column
value in the SYSCAT.DATAPARTITIONS catalog view for the table
partition.

Partition action
The partition action values have the following definitions:

Table 138. Data partition action values and definitions:

Action value Definition

1 ADD PARTITION

2 ATTACH PARTITION

4 SET INTEGRITY after ATTACH PARTITION

5 DETACH PARTITION (Deferred: Materialized query tables (MQT)
need to be maintained.)1

6 DETACH PARTITION (Deferred: Nonpartitioned indexes require
cleanup.)1

7 DETACH PARTITION (Immediate: Attached partition never had SET
INTEGRITY executed.)1

8 DETACH PARTITION (Immediate: There are no MQT or
nonpartitioned indexes.)1

13 DETACH PARTITION (Deferred: Logically detached)2

15 DETACH PARTITION (Deferred: Materialized query tables (MQT)
need to be maintained.)2

16 DETACH PARTITION (Deferred: Attached partition never had SET
INTEGRITY executed.)2

18 DETACH PARTITION (Deferred: Detached dependents maintained)2

20 DETACH PARTITION (Deferred: Nonpartitioned indexes require
cleanup.)2

21 DETACH PARTITION (Immediate: DETACH complete.)2

Note:

1. Starting with DB2 Version 9.7 Fix Pack 1, the action value will not be
generated. The value is listed for backward compatibility only.

2. The action value is defined starting with DB2 Version 9.7 Fix Pack 1.

Data manager log records

Appendix B. DB2 log records 705

Data manager log records

706 Administrative API Reference

Appendix C. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

© Copyright IBM Corp. 1993, 2010 707

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 9.7 manuals in PDF format can be downloaded
from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 139. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-02 Yes September, 2010

Administrative Routines
and Views

SC27-2436-02 No September, 2010

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-02 Yes September, 2010

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-02 Yes September, 2010

Command Reference SC27-2439-02 Yes September, 2010

Data Movement Utilities
Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High
Availability Guide and
Reference

SC27-2441-02 Yes September, 2010

Database Administration
Concepts and
Configuration Reference

SC27-2442-02 Yes September, 2010

Database Monitoring
Guide and Reference

SC27-2458-02 Yes September, 2010

Database Security Guide SC27-2443-01 Yes November, 2009

DB2 Text Search Guide SC27-2459-02 Yes September, 2010

Developing ADO.NET
and OLE DB
Applications

SC27-2444-01 Yes November, 2009

Developing Embedded
SQL Applications

SC27-2445-01 Yes November, 2009

Developing Java
Applications

SC27-2446-02 Yes September, 2010

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-01 No September, 2010

DB2 technical library in hardcopy or PDF format

708 Administrative API Reference

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 139. DB2 technical information (continued)

Name Form Number Available in print Last updated

Developing User-defined
Routines (SQL and
External)

SC27-2448-01 Yes November, 2009

Getting Started with
Database Application
Development

GI11-9410-01 Yes November, 2009

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-02 Yes September, 2010

Installing IBM Data
Server Clients

GC27-2454-01 No September, 2010

Message Reference
Volume 1

SC27-2450-00 No August, 2009

Message Reference
Volume 2

SC27-2451-00 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-01 Yes November, 2009

pureXML Guide SC27-2465-01 Yes November, 2009

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-01 No September, 2010

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-02 Yes September, 2010

SQL Reference, Volume 1 SC27-2456-02 Yes September, 2010

SQL Reference, Volume 2 SC27-2457-02 Yes September, 2010

Troubleshooting and
Tuning Database
Performance

SC27-2461-02 Yes September, 2010

Upgrading to DB2
Version 9.7

SC27-2452-02 Yes September, 2010

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-02 Yes September, 2010

Workload Manager
Guide and Reference

SC27-2464-02 Yes September, 2010

XQuery Reference SC27-2466-01 No November, 2009

DB2 technical library in hardcopy or PDF format

Appendix C. Overview of the DB2 technical information 709

Table 140. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-02 Yes September, 2010

Installing and
Configuring DB2
Connect Servers

SC27-2433-02 Yes September, 2010

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 141. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

DB2 technical library in hardcopy or PDF format

710 Administrative API Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7

v To find out whether you can order printed DB2 books online in your country or
region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:
1. Locate the contact information for your local representative from one of the

following Web sites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications Web site at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 708.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Ordering printed DB2 books

Appendix C. Overview of the DB2 technical information 711

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information
Center

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Displaying topics in your preferred language in the DB2 Information Center

712 Administrative API Reference

Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the ic-update script:

ic-update

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the ic-update.bat file:

ic-update.bat

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information

Updating the DB2 Information Center installed on your computer or intranet server

Appendix C. Overview of the DB2 technical information 713

Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript™ must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

Manually updating the DB2 Information Center installed on your computer or intranet
server

714 Administrative API Reference

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:
v On Windows, navigate to the installation directory's doc\bin directory, and

run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

Manually updating the DB2 Information Center installed on your computer or intranet
server

Appendix C. Overview of the DB2 technical information 715

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. There you will find information about how to isolate
and identify problems using DB2 diagnostic tools and utilities, solutions to
some of the most common problems, and other advice on how to solve
problems you might encounter with your DB2 database products.

DB2 Technical Support Web site
Refer to the DB2 Technical Support Web site if you are experiencing
problems and want help finding possible causes and solutions. The
Technical Support site has links to the latest DB2 publications, TechNotes,
Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and
other resources. You can search through this knowledge base to find
possible solutions to your problems.

Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

DB2 troubleshooting information

716 Administrative API Reference

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1993, 2010 717

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

Notices

718 Administrative API Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices

Appendix D. Notices 719

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

720 Administrative API Reference

Index

A
abnormal termination

db2DatabaseRestart API 74
Activate Database API 356
activate not logged initially log record 690
Add Contact API 34
add contact group API 36
Add Database Partition API 360
add long field record log record 685
alter column attribute log record 690
alter table add columns log record 690
alter table attribute log record 690
anyorder file type modifier 194
APIs

back level 19
Change Isolation Level (REXX) 455
Compress 583
db2AddContact 34
db2AddContactGroup 36
db2AddSnapshotRequest 38
db2AdminMsgWrite 40
db2ArchiveLog 42
db2AutoConfig 45
db2AutoConfigFreeMemory 49
db2Backup 50
db2CfgGet 60
db2CfgSet 63
db2ConvMonStream 67
db2DatabasePing 70
db2DatabaseQuiesce 72
db2DatabaseRestart 74
db2DatabaseUnquiesce 77
db2DropContact 88
db2DropContactGroup 89
db2Export 90
db2GetAlertCfg 97
db2GetAlertCfgFree 102
db2GetContactGroup 103
db2GetContactGroups 105
db2GetContacts 107
db2GetDistMap 109
db2GetHealthNotificationList 110
db2GetRecommendations 112
db2GetRecommendationsFree 115
db2GetSnapshot 116
db2GetSnapshotSize 120
db2GetSyncSession 123
db2HADRStart 124
db2HADRStop 126
db2HADRTakeover 128
db2HistoryCloseScan 131
db2HistoryGetEntry 133
db2HistoryOpenScan 136
db2HistoryUpdate 140
db2Import 144
db2Inspect 158
db2InstanceQuiesce 165
db2InstanceStart 168
db2InstanceStop 174
db2InstanceUnquiesce 177
db2LdapCatalogDatabase 179

APIs (continued)
db2LdapCatalogNode 181
db2LdapDeregister 182
db2LdapRegister 183
db2LdapUncatalogDatabase 187
db2LdapUncatalogNode 188
db2LdapUpdate 189
db2LdapUpdateAlternateServerForDB 192
db2Load 194
db2LoadQuery 215
db2MonitorSwitches 222
db2Prune 225
db2QuerySatelliteProgress 228
db2ReadLog 230
db2ReadLogNoConn 235
db2ReadLogNoConnInit 238
db2ReadLogNoConnTerm 240
db2Recover 241
db2Reorg 247
db2ResetAlertCfg 256
db2ResetMonitor 258
db2Restore 261
db2Rollforward 275
db2Runstats 285
db2SelectDB2Copy 296
db2SetSyncSession 298
db2SetWriteForDB 299
db2SpmListIndTrans 301
db2SyncSatellite 304
db2SyncSatelliteStop 305
db2SyncSatelliteTest 306
db2UpdateAlertCfg 307
db2UpdateAlternateServerForDB 313
db2UpdateContact 315
db2UpdateContactGroup 317
db2UpdateHealthNotificationList 319
db2UtilityControl 321
db2VendorGetNextObj 552
db2VendorQueryApiVersion 554
db2XaGetInfo 459
db2XaListIndTrans 460
Decompress 585
GetMaxCompressedSize 586
GetSavedBlock 587
group retrievel plug-in 508
heuristic 457
InitCompression 588
InitDecompression 589
precompiler customization 672
REXX syntax 453
security plug-in

db2secClientAuthPluginInit 525
db2secClientAuthPluginTerm 527
db2secDoesAuthIDExist 528
db2secDoesGroupExist 510
db2secFreeErrormsg 511
db2secFreeGroupListMemory 512
db2secFreeInitInfo 529
db2secFreeToken 530
db2secGenerateInitialCred 531
db2secGetAuthIDs 533

© Copyright IBM Corp. 1993, 2010 721

APIs (continued)
security plug-in (continued)

db2secGetDefaultLoginContext 535
db2secGetGroupsForUser 513
db2secGroupPluginInit 516
db2secPluginTerm 518
db2secProcessServerPrincipalName 537
db2secRemapUserid 538
db2secServerAuthPluginInit 540
db2secServerAuthPluginTerm 543
db2secValidatePassword 544
overview 505

sqlabndx 323
sqlaintp 326
sqlaprep 328
sqlarbnd 331
sqlbctcq 334
sqlbctsq 335
sqlbftcq 336
sqlbftpq 338
sqlbgtss 340
sqlbmtsq 342
sqlbotcq 344
sqlbotsq 346
sqlbstpq 348
sqlbstsc 350
sqlbtcq 353
sqlcspqy 355
sqle_activate_db 356
sqle_deactivate_db 358
sqleaddn 360
sqleatcp 362
sqleatin 364
sqleAttachToCtx 470
sqleBeginCtx 471
sqlecadb 367
sqlecran 373
sqlecrea 375
sqlectnd 382
sqledcgd 385
sqledcls 81
sqleDetachFromCtx 472
sqledgne 82
sqledosd 86
sqledpan 387
sqledrpd 389
sqledrpn 391
sqledtin 393
sqleEndCtx 473
sqlefmem 394
sqlefrce 395
sqlegdad 398
sqlegdcl 400
sqlegdel 401
sqlegdge 403
sqlegdgt 405
sqlegdsc 407
sqleGetCurrentCtx 475
sqlegins 408
sqleInterruptCtx 476
sqleintr 409
sqleisig 411
sqlemgdb 412
sqlencls 414
sqlengne 415
sqlenops 417
sqleqryc 419

APIs (continued)
sqleqryi 421
sqlesact 423
sqlesdeg 424
sqlesetc 426
sqleseti

details 429
sqleSetTypeCtx 477
sqleuncd 431
sqleuncn 433
sqlgaddr 435
sqlgdref 436
sqlgmcpy 437
sqlogstt 438
sqludrdt 440
sqluexpr 90
sqlugrpn 444
sqlugtpi 447
sqluimpr 144
sqluvdel 555
sqluvend 556
sqluvget 558
sqluvint 560
sqluvput 564
sqluvqdp 449
sqlxhfrg 465
sqlxphcm 466
sqlxphrl 467
summary 1
TermCompression 590
TermDecompression 591
user ID/password plug-in 519

application design
collating sequence setting 375
pointer manipulation

copying data 437
dereferencing address 436
getting variable address 435

signal handler installation 411
applications

access through database manager 323
archive active log API 42
asynchronous read log API 230
attach and change password API 362
attach API 364
attach to context API 470
authentication

GSS-API 496
ID/password 496
Kerberos 496
plug-ins

API for checking whether authentication ID exists 528
API for cleaning up client authentication plug-in

resources 527
API for cleaning up resources held by

db2secGenerateInitialCred API 529
API for cleaning up server authentication plug-in

resources 543
API for getting authentication IDs 533
API for initializing client authentication plug-in 525
API for initializing server authentication plug-in 540
API for validating passwords 544
APIs for user ID/ password authentication

plug-ins 519
deploying 479, 480, 482
library locations 500
security 496

722 Administrative API Reference

authentication (continued)
security plug-ins 496
two-part user IDs 502

autoconfigure API 45

B
backout free log record 678
backup and restore vendor products

overview 479, 551
backup database API

details 50
backups

end log record 687
binarynumerics file type modifier

db2load API 194
bind API

sqlabndx 323
binding

application programs to databases 323
defaults 323
errors 375

books
ordering 710

C
C/C++ language

applications
include files 30

catalog database API 367
catalog database LDAP entry API 179
catalog DCS database API 398
catalog node API 382
catalog node LDAP entry API 181
change isolation level REXX API 455
chardel file type modifier

db2Export API 90
db2Import API 144
db2Load API 194

close database directory scan API 81
close database history records scan API 131
close DCS directory scan API 400
close node directory scan API 414
close table space container query API 334
close table space query API 335
COBOL language

applications
include files 30

pointer manipulation 435, 436, 437
code page file type modifier 194
code pages

db2Export API 90
db2Import API 144

coldel file type modifier
db2Export API 90
db2Import API 144
db2Load API 194

collating sequences
user-defined 375

columns
importing 144

command line processor (CLP)
calling APIs from REXX applications 453

comments
database 385

commit an indoubt transaction API 466
compound file type modifier

db2Import API 144
COMPR_CB structure 578
COMPR_DB2INFO structure 579
COMPR_PIINFO structure 581
compress a block of data API 583
compression

plug-in interface 479, 576
stop the compression library API 590
stop the decompression library API 591

concurrency
change isolation level API 455

convert monitor stream API 67
copy memory API 437
create and attach to an application context API 471
create database API 375
create database at node API 373
create index log record 690
create table log record 690

D
data structures

COMPR_CB 578
COMPR_DB2INFO 579
COMPR_PIINFO 581
data 574
DB2-INFO 566
db2DistMapStruct 594
db2HistData 595
db2LSN 600
INIT-OUTPUT 573
RETURN-CODE 575
SQL-DIR-ENTRY 601
SQLB-TBS-STATS 602
SQLB-TBSCONTQRY-DATA 603
SQLB-TBSPQRY-DATA 605
SQLCA 609
SQLCHAR 610
SQLDA 611
SQLDCOL 613
SQLE-ADDN-OPTIONS 616
SQLE-CLIENT-INFO 618
SQLE-CONN-SETTING 620
SQLE-NODE-LOCAL 623
SQLE-NODE-NPIPE 624
SQLE-NODE-STRUCT 625
SQLE-NODE-TCPIP 627
SQLEDBTERRITORYINFO 641
SQLENINFO 642
SQLETSDESC 628
SQLFUPD 645
sqllob 654
SQLMA 655
SQLOPT 658
SQLU-LSN 660
SQLU-MEDIA-LIST 661
SQLU-RLOG-INFO 666
SQLUPI 667
SQLXA-XID 669
vendor APIs 551
VENDOR-INFO 569

database configuration file
valid entries 645

Database Connection Services (DCS) directory
adding entries 398

Index 723

Database Connection Services (DCS) directory (continued)
cataloging entries 398
copying entries 405
removing entries 401
retrieving entries 403
starting scan 407

database directories
retrieving next entry 82

database manager
log records 690

database quiesce API 72
databases

binding application programs 323
concurrent request processing 455
creating

sqlecrea API 375
deleting

sqledrpd API 389
dropping

sqledrpd API 389
exporting from table into file

db2Export API 90
importing from file into table

db2Import API 144
isolating data 455
managing 479

dateformat file type modifier
db2Import API 144
db2Load API 194

DB2 Connect
connections supported 398

DB2 Information Center
languages 712
updating 712, 713
versions 711

DB2-INFO structure 566
db2AddContact API 34
db2AddContactGroup API 36
db2AdminMsgWrite API 40
db2ArchiveLog API 42
db2AutoConfig API 45
db2AutoConfigFreeMemory API 49
db2Backup API

details 50
db2CfgGet API 60
db2CfgSet API 63
db2ConvMonStream API 67
db2DatabasePing API 70
db2DatabaseQuiesce API 72
db2DatabaseRestart API 74
db2DatabaseUnquiesce API 77
db2DatabaseUpgrade API 79
db2DistMapStruct structure 594
db2DropContact API 88
db2DropContactGroup API 89
db2GetAlertCfg API 97
db2GetAlertCfgFree API 102
db2GetContactGroup API 103
db2GetContactGroups API 105
db2GetContacts API 107
db2GetDistMap API 109
db2GetHealthNotificationList API 110
db2GetRecommendations API 112
db2GetRecommendationsFree API 115
db2GetSnapshot API

details 116
estimating output buffer size 120

db2GetSnapshotSize API 120
db2GetSyncSession API 123
db2HADRStart API 124
db2HADRStop API 126
db2HADRTakeover API 128
db2HistData structure 595
db2HistoryCloseScan API 131
db2HistoryGetEntry API 133
db2HistoryOpenScan API 136
db2HistoryUpdate API 140
db2Inspect API 158
db2InstanceQuiesce API 165
db2InstanceStart API 168
db2InstanceStop API 174
db2InstanceUnquiesce API 177
db2LdapCatalogDatabase API 179
db2LdapCatalogNode API 181
db2LdapDeregister API 182
db2LdapRegister API 183
db2LdapUncatalogDatabase API 187
db2LdapUncatalogNode API 188
db2LdapUpdate API 189
db2LdapUpdateAlternateServerForDB API 192
db2Load API 194
db2LoadQuery API 215
db2LSN data type 23
db2LSN structure 600
db2MonitorSwitches API 222
db2Prune API 225
db2QuerySatelliteProgress API 228
db2ReadLog API 230
db2ReadLogNoConn API 235
db2ReadLogNoConnInit API 238
db2ReadLogNoConnTerm API 240
db2Recover API

details 241
db2Reorg API 247
db2ResetAlertCfg API 256
db2ResetMonitor API 258
db2Restore API

details 261
db2Rollforward API

details 275
db2Runstats API 285
db2SelectDB2Copy API

details 296
db2SetSyncSession API 298
db2SetWriteForDB API 299
db2SyncSatellite API 304
db2SyncSatelliteStop API 305
db2SyncSatelliteTest API 306
db2UpdateAlertCfg API 307
db2UpdateAlternateServerForDB API 313
db2UpdateContact API 315
db2UpdateContactGroup API 317
db2UpdateHealthNotificationList API 319
db2UtilityControl API 321
db2VendorGetNextObj API 552
db2VendorQueryApiVersion API 554
db2XaGetInfo API 459
db2XaListIndTrans API 460
deactivate database API 358
debugging

security plug-ins 504
decompress a block of data API 585
delete committed session API 555
delete long field record log record 685

724 Administrative API Reference

delete record log record 690
delete record to empty page log record 690
dereference address API 436
detach from and free memory associated with application

context API 473
detach from context API 472
detach from instance API 393
directories

Database Connection Services (DCS)
adding entries 398
copying entries 405
deleting entries 401
retrieving entries 403
starting scan 407

local database
retrieving entries 82
starting scan 86

node
adding entries 382
deleting entries 433
details 433
retrieving entries 415

system database
adding entries 367
cataloguing databases 367
deleting entries 431
retrieving entries 82
starting scan 86
uncataloguing databases (command) 431

documentation
overview 707
PDF files 708
printed 708
terms and conditions of use 716

drop contact API 88
drop contact group API 89
drop database API 389
drop database on database partition server API 387
drop index log record 690
DROP statement

tables
log record 690

E
error messages

binding 323
retrieving

sqlaintp API 326
security plug-ins 493

errors
rollforward 275

export API 90
exporting

data
db2Export API 90
file type modifiers 90

extended database description block 635

F
fastparse file type modifier

db2Load API 194
fetch table space container query API 336
fetch table space query API 338

file type modifiers
Export API 90
Import API 144
Load API 194

force application API 395
forcein file type modifier

db2Import API 144
db2Load API 194

forget transaction status API 465
formatted user data record log record 690
FORTRAN language

applications
include files 30

pointer manipulation 435, 436, 437
free autoconfigure memory API 49
free db2GetRecommendations memory API 115
free get alert configuration API 102
free memory allocated by sqlbtcq and sqlbmtsq APIs API 394
functions

client plug-in
db2secClientAuthPluginInit API 525
db2secClientAuthPluginTerm API 527
db2secDoesAuthIDExist API 528
db2secFreeInitInfo API 529
db2secFreeToken API 530
db2secGenerateInitialCred API 531
db2secGetAuthIDs API 533
db2secGetDefaultLoginContext API 535
db2secProcessServerPrincipalName API 537
db2secRemapUserid API 538
db2secServerAuthPluginInit API 540
db2secServerAuthPluginTerm API 543
db2secValidatePassword API 544

group plug-in
db2secDoesGroupExist API 510
db2secFreeErrormsg API 511
db2secFreeGroupListMemory API 512
db2secGetGroupsForUser API 513
db2secGroupPluginInit API 516
db2secPluginTerm API 518

G
generatedignore file type modifier

db2Import API 144
db2load API 194

generatedmissing file type modifier
db2Import API 144
db2load API 194

generatedoverride file type modifier
db2load API 194

get address API 435
get alert configuration API 97
get configuration parameters API 60
get contact group API 103
get contact groups API 105
get contacts API 107
get current context API 475
get DCS directory entries API 405
get DCS directory entry for database API 403
get error message API

details 326
get health notification list API 110
get information for resource manager API 459
get instance API 408
get next database directory entry API 82
get next database history records API 133

Index 725

get next node directory entry API 415
get or update monitor switches API 222
get recommendations for a health indicator in alert state

API 112
get row distribution number API 444
get satellite sync session API 123
get snapshot API 116
get SQLSTATE message API 438
get table space statistics API 340
global pending list log record 678
GSS-APIs

authentication plug-ins 547

H
help

configuring language 712
SQL statements 711

heuristic abort log record 678
heuristic commit log record 678
highlighting conventions viii
host systems

connections supported by DB2 Connect
sqlegdad API 398

how this book is structured vii

I
identityignore file type modifier

db2Import API 144
db2Load API 194

identitymissing file type modifier
db2Import API 144
db2Load API 194

identityoverride file type modifier
db2Load API 194

implieddecimal file type modifier
db2Import API 144
db2Load API 194

import API 144
import replace (truncate) log record 690
importing

code page considerations 144
database access through DB2 Connect 144
file to database table 144
file-type modifiers 144
PC/IXF files

multiple-part 144
restrictions 144
to hierarchy that does not exist 144
to remote database 144
to table that does not exist 144
to typed tables 144

include files
overview 30

indexfreespace file type modifier
db2Import API 194

indexixf file type modifier
db2Import API 144

indexschema file type modifier
db2Import API 144

indoubt transactions
rolling back using API 467

INIT-INPUT structure 571
INIT-OUTPUT structure 573
initialize and link to device API 560

initialize read log without a database connection API 238
initialize table log record 690
initialize the compression library API 588
initialize the decompression library API 589
insert record log record 690
insert record to empty page log record 690
inspect database API 158
install signal handler API 411
instance quiesce API 165
instance start API 168
instance stop API 174
instance unquiesce API 177
interrupt API 409
interrupt context API 476
isolation levels

changing 455

K
keepblanks file type modifier

db2Import API 144
db2Load API 194

Kerberos authentication protocol
samples 550

L
libraries

security plug-ins
loading in DB2 483
restrictions 486

Lightweight Directory Access Protocol (LDAP)
deregister server API 182
register server API 183
update alternate server for database API 192
update server API 189

list DRDA indoubt transactions API 355
list indoubt transactions API 460
list SPM indoubt transactions API

details 301
load API 194
load pending list log record 687
load query API 215
load start log record

details 687
load utility

file type modifiers 194
lobsinfile file type modifier

db2Export API 90
db2Import API 144
db2Load API 194

local database directory
retrieving entries 82
starting scan 86

local pending list log record 678
locks

changing 455
log records

activate not logged initially 690
backout free 678
backup end 687
changing 690
creating 690
data manager 690
delete 690

726 Administrative API Reference

log records (continued)
deleting

data manager 690
long field 685

dropping
indexes 690
tables 690

global pending list 678
headers 676
heuristic abort 678
heuristic commit 678
import replace (truncate) 690
initialize tables 690
insert records 690
list 674
load delete start compensation 687
load pending list 687
load start 687
local pending list 678
log manager headers 676
long field manager 685
MPP coordinator commit 678
MPP subordinator commit 678
MPP subordinator prepare 678
non-update long field record 685
normal abort 678
normal commit 678
overview 674
rename schema 690
rename table 690
reorg table 690
rollback add columns 690
rollback create table 690
rollback delete record 690
rollback drop table 690
rollback insert 690
rollback partition state record 690
rollback update record 690
system catalog migration end 687
system catalog migration start 687
table details 690
table load delete start 687
table space roll forward to point in time ends 687
table space roll forward to point in time starts 687
table space rolled forward 687
TM prepare 678
transaction manager 678
undo change columns 690
undo partition state record 690
undo rename schema 690
undo rename table 690
update partition state record 690
update records 690
utility manager 687
XA prepare 678

log sequence numbers (LSNs)
changes 23
headers 676
log manager log record headers 676

logs
recovery 375

long field manager log records 685

M
migrate database API 412

migration
log records 687

moving data
between databases 144

MPP coordinator commit log record 678
MPP subordinator commit log record 678
MPP subordinator prepare log record 678
multiple concurrent requests

changing isolation levels 455

N
nochecklengths file type modifier

db2Import API 144
db2Load API 194

node directories
adding entries 382
deleting entries 433
retrieving entries 415

nodefaults file type modifier
db2Import API 144

nodes
directories

entries 415
sqlectnd API 382

open DCS directory scan API 407
SOCKS

sqle_node_struct data structure 625
sqle_node_tcpip data structure 627

nodoubledel file type modifier
db2Export API 90
db2Import API 144
db2Load API 194

noeofchar file type modifier
db2Import API 144
db2Load API 194

noheader file type modifier
db2Load API 194

non-update long field record log record 685
normal abort log record 678
normal commit log record 678
norowwarnings file type modifier

db2Load API 194
notices 717
notypeid file type modifier

db2Import API 144
nullindchar file type modifier

db2Import API 144
db2Load API 194

O
open table space container query API 344
open table space query API 346
ordering DB2 books 710

P
packages

creating
sqlabndx API 323

re-creating 331
partitioned database environments

table distribution information 109, 447

Index 727

passwords
changing

sqleatcp API 362
performance

tables
reorganizing 247

ping database API 70
plug-ins

database management 479
group retrieval 508
GSS-API authentication 547
ID authentication 519
password authentication 519
security

APIs 494, 505
deploying 479, 480, 481, 482
error messages 493
naming conventions 501
restrictions (GSS-API authentication) 549
restrictions (plug-in libraries) 486
restrictions (summary) 488
return codes 490
samples 550
versions 504

pointer manipulation
copying data between memory areas 437
dereferencing addresses 436
getting addresses of variables 435

precompile application program API 328
privileges

databases
granted when creating database 375

problem determination
information available 716
security plug-ins 504
tutorials 716

prune history file API 225

Q
query client API 419
query client information API 421
query satellite sync API 228
quiesce table spaces for table API 449

R
read log without a database connection API 235
reading data from device API 558
rebind API 331
reclen file type modifier

db2Import API 144
db2Load API 194

record identifiers (RIDs)
log records 676

recover database API 241
redistribute database partition group API 440
redistribution of data

database partition groups 440
rename schema log record 690
rename table log record 690
reorg table log record 690
reorganize API 247
reset alert configuration API 256
reset monitor API 258
restart database API 74

restore database API 261
return codes

APIs 27
RETURN-CODE structure 575
REXX language

APIs
calling DB2 CLP 453
syntax 453

roll-forward recovery
db2Rollforward API 275

rollback add columns log record 690
rollback create table log record 690
rollback delete record log record 690
rollback delete record to empty page log record 690
rollback drop table log record 690
rollback insert log record 690
rollback insert record to empty page log record 690
rollback update record log record 690
runstats API 285

S
schemas

new databases 375
security

plug-ins
32-bit considerations 504
64-bit considerations 504
API for validating passwords 544
APIs 505, 510, 511, 512, 513, 516, 518, 525, 527, 528,

529, 530, 531, 533, 535, 537, 538, 540, 543
APIs (group retrieval) 508
APIs (GSS-API) 547
APIs (user ID/password) 519
APIs (versions) 504
calling sequence 494
deploying 479, 480, 481, 482, 488, 496
developing 496
enabling 496
error messages 493
GSS-API (deploying) 481
GSS-API (restrictions) 549
initialization 483
libraries 500
loading 483, 496
naming 501
overview 496
problem determination 504
restrictions on libraries 486
return codes 490
SQLCODES 504
SQLSTATES 504
two-part user ID support 502

samples 550
user ID and password 479

set accounting string API 423
set application context type API 477
set client API 426
set client information API 429
set configuration parameters API 63
set runtime degree API 424
set satellite sync session API 298
set table space containers API 350
signal handlers

install signal handler API 411
interrupt API 409

single table space query API 348

728 Administrative API Reference

snapshot monitoring
adding requests 38

SOCKS
nodes

using 625, 627
SQL statements

help
displaying 711

SQL-DIR-ENTRY structure 601
sqlabndx API 323
sqlaintp API 326
sqlaprep API 328
sqlarbnd API 331
SQLB-TBS-STATS structure 602
SQLB-TBSCONTQRY-DATA structure 603
SQLB-TBSPQRY-DATA structure 605
sqlbctcq API 334
sqlbctsq API 335
sqlbftcq API 336
sqlbftpq API 338
sqlbgtss API 340
sqlbmtsq API 342
sqlbotcq API 344
sqlbotsq API 346
sqlbstpq API 348
sqlbstsc API 350
sqlbtcq API 353
SQLCA

details 609
retrieving error messages 27, 326, 438

SQLCHAR structure
details 610

SQLCODE
values 27

sqlcspqy API 355
SQLDA

overview 611
SQLDB2 API

calling DB2 APIs 453
SQLDCOL structure 613
sqle_activate_db API 356
sqle_deactivate_db API 358
SQLE-ADDN-OPTIONS structure 616
SQLE-CLIENT-INFO structure 618
SQLE-CONN-SETTING structure 620
SQLE-NODE-LOCAL structure 623
SQLE-NODE-NPIPE structure 624
SQLE-NODE-STRUCT structure 625
SQLE-NODE-TCPIP structure 627
sqleaddn API 360
sqleatcp API 362
sqleatin API 364
sqleAttachToCtx API

details 470
sqleBeginCtx API

details 471
sqlecadb API 367
sqlecran API 373
sqlecrea API 375
sqlectnd API 382
SQLEDBDESCEXT structure 635
SQLEDBTERRITORYINFO structure 641
sqledcgd API 385
sqledcls API 81
sqleDetachFromCtx API

details 472
sqledgne API 82

sqledosd API 86
sqledpan API 387
sqledrpd API 389
sqledrpn API 391
sqledtin API 393
sqleEndCtx API

details 473
sqlefmem API 394
sqlefrce API 395
sqlegdad API 398
sqlegdcl API 400
sqlegdel API 401
sqlegdge API 403
sqlegdgt API 405
sqlegdsc API 407
sqleGetCurrentCtx API

details 475
sqlegins API 408
sqleInterruptCtx API

details 476
sqleintr API 409
sqleisig API 411
sqlemgdb API

details 412
sqlencls API 414
sqlengne API 415
SQLENINFO structure 642
sqlenops API 417
sqleqryc API 419
sqleqryi API 421
sqlesact API 423
sqlesdeg API 424
sqlesetc API 426
sqleseti API

details 429
sqleSetTypeCtx API

details 477
SQLETSDESC structure 628
sqleuncd API 431
sqleuncn API 433
SQLFUPD structure 645
sqlgaddr API 435
sqlgdref API 436
sqlgmcpy API 437
sqllob structure 654
SQLMA structure 655
sqlogstt API 438
SQLOPT structure 658
SQLSTATE

APIs 27
retrieving messages 438

SQLU-LSN structure 660
SQLU-MEDIA-LIST structure 661
SQLU-RLOG-INFO structure 666
sqludrdt API 440
sqluexpr API 90
sqlugrpn API

details 444
sqlugtpi API

details 447
sqluimpr API 144
SQLUPI structure 667
sqluvdel API 555
sqluvend API 556
sqluvget API 558
sqluvint API 560
sqluvput API 564

Index 729

sqluvqdp API 449
SQLWARN

messages 27
SQLXA-XID structure 669
sqlxhfrg API 465
sqlxphcm API 466
sqlxphrl API 467
start database directory scan API 86
start database history records scan API 136
start DCS directory scan API 407
start HADR API 124
start node directory scan API 417
stop HADR API 126
stop satellite sync API 305
sync satellite API 304
system database directory

adding entries 367
cataloging databases 367
deleting entries 431
retrieving entries 82
starting scan 86
uncataloging 431

T
table space container query API 353
table space query API 342
table spaces

roll-forward to PIT begins log record 687
roll-forward to PIT ends log record 687
rolled forward log records 687

tables
exporting to files 90
importing files 144
load delete start log record 687

take over as primary database API 128
TCP/IP

SOCKS 625, 627
terminate reading logs without database connection API 240
termination

abnormal 74
terms and conditions

publications 716
Test Satellite Sync API 306
third party plug-ins 479
timeformat file type modifier

db2Import API 144
db2Load API 194

timestampformat file type modifier
db2import API 144
db2load API 194

TM prepare log record 678
totalfreespace file type modifier

db2Load API 194
transaction identifier log records 676
transaction managers

log records 678
troubleshooting

online information 716
security plug-ins 504
tutorials 716

tutorials
list 715
problem determination 716
troubleshooting 716
Visual Explain 715

U
uncatalog database API 431
uncatalog database LDAP entry API 187
uncatalog DCS database API 401
uncatalog node API 433
uncatalog node LDAP entry API 188
uncataloging

system database directory 431
undo alter column attribute log record 690
undo rename schema log record 690
undo rename table log record 690
unlink the device and release its resources API 556
unquiesce database API 77
update alert configuration API 307
update alternate server for database API 313
update contact API 315
update contact group API 317
update database history records API 140
update health notification list API 319
update record log record 690
updates

DB2 Information Center 712, 713
upgrade database API 79
usedefaults file type modifier

db2Import API 144
db2Load API 194

user IDs
two-part 502

utility control API 321
utility log records

summary 687

V
vendor database plug-ins 479
vendor products

APIs
backups 551
restores 551

DATA structure 574
INIT-INPUT structure 571

VENDOR-INFO structure 569

W
who should use this book vii
write data to a vendor device API 564

X
XA prepare log record 678

Z
zoned decimal file type modifier

db2Load API 194

730 Administrative API Reference

����

Printed in USA

SC27-2435-02

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

9.
7

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

Ad
m

in
is

tra
tiv

e
AP

IR
ef

er
en

ce
�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured
	Highlighting conventions

	Chapter 1. DB2 APIs
	Chapter 2. Changed APIs and data structures
	Chapter 3. Log sequence number changes affecting API and application behavior
	Chapter 4. How the API descriptions are organized
	Include files for DB2 API applications

	Chapter 5. Administrative APIs
	db2AddContact - Add a contact to whom notification messages can be sent
	db2AddContactGroup - Add a contact group to whom notification messages can be sent
	db2AddSnapshotRequest - Add a snapshot request
	db2AdminMsgWrite - Write log messages for administration and replication function
	db2ArchiveLog - Archive the active log file
	db2AutoConfig - Access the Configuration Advisor
	db2AutoConfigFreeMemory - Free the memory allocated by the db2AutoConfig API
	db2Backup - Back up a database or table space
	db2CfgGet - Get the database manager or database configuration parameters
	db2CfgSet - Set the database manager or database configuration parameters
	db2ConvMonStream - Convert the monitor stream to the pre-version 6 format
	db2DatabasePing - Ping the database to test network response time
	db2DatabaseQuiesce - Quiesce the database
	db2DatabaseRestart - Restart database
	db2DatabaseUnquiesce - Unquiesce database
	db2DatabaseUpgrade - Upgrade previous version of DB2 database to the current release
	db2DbDirCloseScan - End a system or local database directory scan
	db2DbDirGetNextEntry - Get the next system or local database directory entry
	db2DbDirOpenScan - Start a system or local database directory scan
	db2DropContact - Remove a contact from the list of contacts to whom notification messages can be sent
	db2DropContactGroup - Remove a contact group from the list of contacts to whom notification messages can be sent
	db2Export - Export data from a database
	db2GetAlertCfg - Get the alert configuration settings for the health indicators
	db2GetAlertCfgFree - Free the memory allocated by the db2GetAlertCfg API
	db2GetContactGroup - Get the list of contacts in a single contact group to whom notification messages can be sent
	db2GetContactGroups - Get the list of contact groups to whom notification messages can be sent
	db2GetContacts - Get the list of contacts to whom notification messages can be sent
	db2GetDistMap - Get distribution map
	db2GetHealthNotificationList - Get the list of contacts to whom health alert notifications can be sent
	db2GetRecommendations - Get recommendations to resolve a health indicator in alert state
	db2GetRecommendationsFree - Free the memory allocated by the db2GetRecommendations API
	db2GetSnapshot - Get a snapshot of the database manager operational status
	db2GetSnapshotSize - Estimate the output buffer size required for the db2GetSnapshot API
	db2GetSyncSession - Get a satellite synchronization session identifier
	db2HADRStart - Start high availability disaster recovery (HADR) operations
	db2HADRStop - Stop high availability disaster recovery (HADR) operations
	db2HADRTakeover - Instruct a database to take over as the high availability disaster recovery (HADR) primary database
	db2HistoryCloseScan - End the database history records scan
	db2HistoryGetEntry - Get the next entry in the database history records
	db2HistoryOpenScan - Start a database history records scan
	db2HistoryUpdate - Update a database history records entry
	db2Import - Import data into a table, hierarchy, nickname or view
	db2Inspect - Inspect database for architectural integrity
	db2InstanceQuiesce - Quiesce instance
	db2InstanceStart - Start instance
	db2InstanceStop - Stop instance
	db2InstanceUnquiesce - Unquiesce instance
	db2LdapCatalogDatabase - Register the database on the LDAP server
	db2LdapCatalogNode - Provide an alias for node name in LDAP server
	db2LdapDeregister - Deregister the DB2 server and cataloged databases from the LDAP server
	db2LdapRegister - Register the DB2 server on the LDAP server
	db2LdapUncatalogDatabase - Deregister database from LDAP server
	db2LdapUncatalogNode - Delete alias for node name from LDAP server
	db2LdapUpdate - Update the attributes of the DB2 server on the LDAP server
	db2LdapUpdateAlternateServerForDB - Update the alternate server for the database on the LDAP server
	db2Load - Load data into a table
	db2LoadQuery - Get the status of a load operation
	db2MonitorSwitches - Get or update the monitor switch settings
	db2Prune - Delete the history file entries or log files from the active log path
	db2QuerySatelliteProgress - Get the status of a satellite synchronization session
	db2ReadLog - Read log records
	db2ReadLogNoConn - Read the database logs without a database connection
	db2ReadLogNoConnInit - Initialize reading the database logs without a database connection
	db2ReadLogNoConnTerm - Terminate reading the database logs without a database connection
	db2Recover - Restore and roll forward a database
	db2Reorg - Reorganize an index or a table
	db2ResetAlertCfg - Reset the alert configuration of health indicators
	db2ResetMonitor - Reset the database system monitor data
	db2Restore - Restore a database or table space
	db2Rollforward - Roll forward a database
	db2Runstats - Update statistics for tables and indexes
	db2SelectDB2Copy - Select the DB2 copy to be used by your application
	db2SetSyncSession - Set satellite synchronization session
	db2SetWriteForDB - Suspend or resume I/O writes for database
	db2SpmListIndTrans - List SPM indoubt transactions
	db2SyncSatellite - Start satellite synchronization
	db2SyncSatelliteStop - Pause satellite synchronization
	db2SyncSatelliteTest - Test whether a satellite can be synchronized
	db2UpdateAlertCfg - Update the alert configuration settings for health indicators
	db2UpdateAlternateServerForDB - Update the alternate server for a database alias in the system database directory
	db2UpdateContact - Update the attributes of a contact
	db2UpdateContactGroup - Update the attributes of a contact group
	db2UpdateHealthNotificationList - Update the list of contacts to whom health alert notifications can be sent
	db2UtilityControl - Set the priority level of running utilities
	sqlabndx - Bind application program to create a package
	sqlaintp - Get error message
	sqlaprep - Precompile application program
	sqlarbnd - Rebind package
	sqlbctcq - Close a table space container query
	sqlbctsq - Close a table space query
	sqlbftcq - Fetch the query data for rows in a table space container
	sqlbftpq - Fetch the query data for rows in a table space
	sqlbgtss - Get table space usage statistics
	sqlbmtsq - Get the query data for all table spaces
	sqlbotcq - Open a table space container query
	sqlbotsq - Open a table space query
	sqlbstpq - Get information about a single table space
	sqlbstsc - Set table space containers
	sqlbtcq - Get the query data for all table space containers
	sqlcspqy - List DRDA indoubt transactions
	sqle_activate_db - Activate database
	sqle_deactivate_db - Deactivate database
	sqleaddn - Add a database partition to the partitioned database environment
	sqleatcp - Attach to instance and change password
	sqleatin - Attach to instance
	sqlecadb - Catalog a database in the system database directory
	sqlecran - Create a database on a database partition server
	sqlecrea - Create database
	sqlectnd - Catalog an entry in the node directory
	sqledcgd - Change a database comment in the system or local database directory
	sqledpan - Drop a database on a database partition server
	sqledrpd - Drop database
	sqledrpn - Check whether a database partition server can be dropped
	sqledtin - Detach from instance
	sqlefmem - Free the memory allocated by the sqlbtcq and sqlbmtsq API
	sqlefrce - Force users and applications off the system
	sqlegdad - Catalog a database in the database connection services (DCS) directory
	sqlegdcl - End a database connection services (DCS) directory scan
	sqlegdel - Uncatalog a database from the database connection services (DCS) directory
	sqlegdge - Get a specific entry in the database connection services (DCS) directory
	sqlegdgt - Get database connection services (DCS) directory entries
	sqlegdsc - Start a database connection services (DCS) directory scan
	sqlegins - Get current instance
	sqleintr - Interrupt application requests
	sqleisig - Install signal handler
	sqlemgdb - Migrate previous version of DB2 database to current version
	sqlencls - End a node directory scan
	sqlengne - Get the next node directory entry
	sqlenops - Start a node directory scan
	sqleqryc - Query client connection settings
	sqleqryi - Query client information
	sqlesact - Set accounting string
	sqlesdeg - Set the maximum runtime intra-partition parallelism level or degree for SQL statements
	sqlesetc - Set client connection settings
	sqleseti - Set client information
	sqleuncd - Uncatalog a database from the system database directory
	sqleuncn - Uncatalog an entry from the node directory
	sqlgaddr - Get the address of a variable
	sqlgdref - Dereference an address
	sqlgmcpy - Copy data from one memory area to another
	sqlogstt - Get the SQLSTATE message
	sqludrdt - Redistribute data across a database partition group
	sqlugrpn - Get the database partition server number for a row
	sqlugtpi - Get table distribution information
	sqluvqdp - Quiesce table spaces for a table

	Chapter 6. Calling DB2 APIs in REXX
	Change Isolation Level

	Chapter 7. Indoubt transaction management APIs
	db2XaGetInfo - Get information for a resource manager
	db2XaListIndTrans - List indoubt transactions
	sqlxhfrg - Forget transaction status
	sqlxphcm - Commit an indoubt transaction
	sqlxphrl - Roll back an indoubt transaction

	Chapter 8. Threaded applications with concurrent access
	sqleAttachToCtx - Attach to context
	sqleBeginCtx - Create and attach to an application context
	sqleDetachFromCtx - Detach from context
	sqleEndCtx - Detach from and free the memory associated with an application context
	sqleGetCurrentCtx - Get current context
	sqleInterruptCtx - Interrupt context
	sqleSetTypeCtx - Set application context type

	Chapter 9. DB2 database system plug-ins for customizing database management
	Enabling plug-ins
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in

	Writing security plug-ins
	How DB2 loads security plug-ins
	Restrictions for developing security plug-in libraries
	Restrictions on security plug-ins
	Return codes for security plug-ins
	Error message handling for security plug-ins
	Calling sequences for the security plug-in APIs

	Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	Security plug-in API versioning
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination

	Security plug-in APIs
	APIs for group retrieval plug-ins
	db2secDoesGroupExist API - Check if group exists
	db2secFreeErrormsg API - Free error message memory
	db2secFreeGroupListMemory API - Free group list memory
	db2secGetGroupsForUser API - Get list of groups for user
	db2secGroupPluginInit API - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources

	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit API - Initialize client authentication plug-in
	db2secClientAuthPluginTerm API - Clean up client authentication plug-in resources
	db2secDoesAuthIDExist - Check if authentication ID exists
	db2secFreeInitInfo API - Clean up resources held by the db2secGenerateInitialCred
	db2secFreeToken API - Free memory held by token
	db2secGenerateInitialCred API - Generate initial credentials
	db2secGetAuthIDs API - Get authentication IDs
	db2secGetDefaultLoginContext API - Get default login context
	db2secProcessServerPrincipalName API - Process service principal name returned from server
	db2secRemapUserid API - Remap user ID and password
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm API - Clean up server authentication plug-in resources
	db2secValidatePassword API - Validate password

	Required APIs and definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Security plug-in samples
	DB2 APIs for backup and restore to storage managers
	db2VendorGetNextObj - Get next object on device
	db2VendorQueryApiVersion - Get the supported level of the vendor storage API
	sqluvdel - Delete committed session
	sqluvend - Unlink a vendor device and release its resources
	sqluvget - Read data from a vendor device
	sqluvint - Initialize and link to a vendor device
	sqluvput - Write data to a vendor device
	DB2_info
	Vendor_info
	Init_input
	Init_output
	Data
	Return_code

	DB2 APIs for using compression with backup and restore operations
	COMPR_CB
	COMPR_DB2INFO
	COMPR_PIINFO
	Compress - Compress a block of data
	Decompress - Decompress a block of data
	GetMaxCompressedSize - Estimate largest possible buffer size
	GetSavedBlock - Get the vendor of block data for the backup image
	InitCompression - Initialize the compression library
	InitDecompression - Initialize the decompression library
	TermCompression - Stop the compression library
	TermDecompression - Stop the decompression library

	Chapter 10. Data structures used by APIs
	db2DistMapStruct
	db2HistoryData
	db2LSN data structure
	sql_dir_entry
	SQLB_TBS_STATS
	SQLB_TBSCONTQRY_DATA
	SQLB_TBSPQRY_DATA
	SQLCA
	sqlchar
	SQLDA
	sqldcol
	sqle_addn_options
	sqle_client_info
	sqle_conn_setting
	sqle_node_local
	sqle_node_npipe
	sqle_node_struct
	sqle_node_tcpip
	sqledbdesc
	sqledbdescext
	sqledbterritoryinfo
	sqleninfo
	sqlfupd
	sqllob
	sqlma
	sqlopt
	SQLU_LSN
	sqlu_media_list
	SQLU_RLOG_INFO
	sqlupi
	SQLXA_XID

	Appendix A. Precompiler customization APIs
	Precompiler customization APIs

	Appendix B. DB2 log records
	DB2 log records
	Log manager header
	Transaction manager log records
	Long field manager log records
	Utility manager log records
	Data manager log records

	Appendix C. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix D. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

